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1 Introduction

Since the early days of string theory, the geometry of Calabi-Yau (CY) threefolds has

played an important role in understanding compactifications of the theory that give rise

to four-dimensional effective physics [1–4]. Over the last three decades, progress from

both mathematical and physical directions has led to the construction of a wide range of

specific Calabi-Yau threefold geometries, and some general results on the structure of these

manifolds. (See for example [5–8].) Many basic questions regarding this class of geometries

remain unanswered, however, such as whether the number of distinct topological types of

CY threefolds is finite.

The class of CY threefolds that admit an elliptic (T 2 with complex structure) fibration

with at least one section forms a subset of the full set of Calabi-Yau manifolds that is of

interest both for mathematical and physical reasons. Mathematically, the existence of an

elliptic fibration adds structure that simplifies the analysis and classification of possible

CY geometries. It has been proven by Gross [9] that there are a finite number of distinct

topological types (up to birational equivalence) of elliptically fibered Calabi-Yau threefolds.

For an elliptically fibered Calabi-Yau threefold, the existence of a global section makes

possible an explicit presentation as a Weierstrass model [10]

y2 = x3 + fx+ g , (1.1)

where f, g are functions (really, sections of line bundles) on the base B2 of the ellip-

tic fibration π : X3 → B2, π−1(p) ∼= E ∼= T 2. Elliptically-fibered CY threefolds with

section (henceforth “EFS CY3s”) have a role in physics as compactification spaces for F-

theory [11, 12] that give rise to six-dimensional theories of supergravity. F-theory can be

thought of as a nonperturbative description of type IIB string theory where the axiodilaton

field χ + ie−φ varies over a compact space (a complex surface B2 for supersymmetric 6D

theories) and parameterizes the elliptic curve over this base. One particularly nice feature

of the set of elliptically fibered Calabi-Yau threefolds is that their moduli spaces are all

connected through singular Weierstrass models. On the physics side this unifies all the

corresponding F-theory vacuum solutions of 6D supergravity into a single theory; tension-

less string transitions [13, 14] connect the different branches of the theory. In addition to

the special features that make them easier to analyze mathematically and connect them

to the physics of F-theory, elliptically fibered threefolds may comprise a large fraction of

the set of all Calabi-Yau threefolds, particularly those with large Hodge numbers. This

paper contributes to a growing body of circumstantial evidence for this conclusion, which

is discussed further in section 4.3.2.

The close connection between the physics of 6D supergravity theories and the geometry

of EFS Calabi-Yau threefolds leads to a physically motivated approach to the classification

of these geometries. From the work of Grassi [15] and the mathematical minimal model

program for classifying surfaces [16, 17], it is known that all complex surfaces B2 that sup-

port elliptically fibered Calabi-Yau threefolds are in the set consisting of P2, the Enriques

surface, the Hirzebruch surfaces Fm for 0 ≤ m ≤ 12, and blow-ups of the Fm at one or more

points. As argued in [18], the finiteness of the set of EFS CY3s can then be understood in
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a constructive context from the finite number of topologically distinct tunings (strata) of

the class of Weierstrass models over the minimal bases P2 and Fm (the Enriques surface is

not as interesting since, up to torsion, the canonical class K vanishes, so the Weierstrass

model is essentially trivial). From this point of view, in principle all EFS CY threefolds can

be constructed by starting with the base surfaces P2 and Fm, and tuning the Weierstrass

models over these bases in all possible ways consistent with the existence of a Calabi-Yau

elliptic fibration. The set of such possible tunings can be described conveniently in terms

of the spectra (gauge group and matter content) of the corresponding 6D supergravity

theories. A complete classification of the types of intersection structures (corresponding

to “non-Higgsable clusters” in the physical picture) that can appear in the base B2 was

given in [19]. This was used in [20] to explicitly construct all toric bases B2 that support

EFS CY3s, and in [21] to construct a broader class of bases admitting a single C∗ action.

The generic elliptic fibrations over these toric and “semi-toric” bases were shown [22] to

include the EFS CY3 with the largest possible value of the Hodge number h2,1 (= 491), and

to describe in outline the “shield-shaped” boundary on the set of known Hodge numbers

found experimentally by Kreuzer and Skarke [23].

In this paper we pursue this line of inquiry further by explicitly constructing all EFS

CY3s with large h2,1 through the tuning of Weierstrass models on Fm for m ≥ 7. We

systematically construct all CY3s with h2,1 ≥ 350, and compare with known data for

threefolds with large h2,1. The Hodge number pairs for EFS Calabi-Yau threefolds that

have h2,1 ≥ 350 are plotted in figure 4; the detailed structure and construction of these

threefolds is explained in the bulk of the paper. The arbitrary bound of 350 is chosen

so that the number of possible threefolds is both limited enough to be manageable in a

case-by-case analysis, and rich enough to illustrate the range of principles involved. A

similar analysis can be used to systematically construct all elliptically fibered Calabi-Yau

threefolds with section at increasingly small values of h2,1. While this procedure becomes

computationally intensive at lower values of h2,1, and there are a number of practical and

theoretical issues that must be resolved before a complete classification is possible, this

program could in principle be pursued to enumerate all EFS CY3s.

The structure of this paper is as follows: in section 2 we review the basic structure

of EFS CY3s and describe some aspects of the Weierstrass tunings needed to construct

explicit CY3s. In section 3 we give a complete classification of all EFS CY3s that have

h2,1 ≥ 350. We conclude in section 4 with a description of the technical obstructions to

classifying all EFS Calabi-Yau threefolds, and give a summary of results and discussion of

further directions.

2 Classification of CY threefolds that are elliptically fibered with section

2.1 Elliptic fibrations and F-theory

As summarized in section 1, the Weierstrass form of an elliptic fibration y2 = x3+fxz4+gz6

describes the total space of a Calabi-Yau threefold X in terms of information on the base

surface (complex twofold) B2 by determining the complex structure of the elliptic fiber
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(torus) E ∼= T 2 over each point in the base in terms of a (complex) curve in P2,3,1. More

precisely, f and g, as well as the discriminant ∆ = 4f3 + 27g2, are sections of line bundles

f ∈ O(−4K) g ∈ O(−6K) ∆ ∈ O(−12K) ,

where K is the canonical class of the base B2. Note that throughout this paper we will

be somewhat informal about the distinction between divisors D in B2 and the associated

homology classes [D] in H2(B2,Z).

The singularity structure of X as an elliptic fibration over B2 is encoded in the vanish-

ing loci of f, g, and ∆. The close correspondence between the geometry of an elliptic fibra-

tion and the corresponding physical F-theory model illuminates both the mathematical and

physical properties of these constructions. (Pedagogical introductions to F-theory compact-

ifications can be found in [24–26].) The codimension one loci where ∆ vanishes to higher

degree lead to singularities in the total space of the threefold that must be resolved to form

a smooth Calabi-Yau total space. These singularities correspond physically to 7-branes

in the F-theory picture, and the degrees of vanishing of f, g,∆ (along with monodromy

information in some cases) encode geometric structure that corresponds to the Lie algebra

of the nonabelian gauge group G of the 6D theory according to the Kodaira-Tate classifica-

tion of singularities summarized in table 1 [14, 27–31]. The codimension two vanishing loci

of ∆ encode further singularities associated with hypermultiplet matter in the 6D theory

transforming under some combination of irreps of the gauge group G. While the correspon-

dence between matter and codimension two singularities is understood in the simplest and

most generic cases, there is not yet a complete dictionary of this correspondence for general

matter representations and arbitrary codimension two singularities. A further discussion

of exotic matter representations and associated singularities appears in section 4.1.3.

The generic Weierstrass model over a given baseB2 may have singularities in the elliptic

fibration that are forced by the structure of irreducible effective divisors (curves) of negative

self-intersection in B2 over which f, g, and ∆ must vanish. The possible configurations

of curves that give rise to mandatory singularities — corresponding to “non-Higgsable

clusters” of gauge groups and possible matter in the 6D F-theory picture — were classified

in [19] and are depicted in figure 1, with the minimal gauge group and matter content for

each cluster listed in table 2. By further tuning the coefficients in the Weierstrass model,

higher degree singularities can be produced on f, g, and ∆, corresponding to enhanced

gauge groups in the 6D supergravity theory. In this way, a variety of topologically distinct

Calabi-Yau threefolds can be constructed by tuning the Weierstrass model over a given

base B2.

In general, a smooth Calabi-Yau threefold can be constructed by resolving all singu-

larities in the total space of the elliptic fibration. If the vanishing of f, g,∆ reaches degrees

(4, 6, 12) over a divisor then there is no smooth resolution of the singular elliptic fibration

as a Calabi-Yau threefold. If the vanishing of f, g,∆ reaches degrees (4, 6, 12) on a codi-

mension two locus in the base (a point in the surface B2), then the point must be blown up

to form a new base B′

2 over which there is a smooth CY3 after resolution of singularities

(unless the blow-up leads to additional (4, 6, 12) vanishing on a divisor or point in the

new base). Thus, to describe the possible EFS CY3s over a given base B2, we need only
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Type ord (f) ord (g) ord (∆) singularity nonabelian symmetry algebra

I0 ≥ 0 ≥ 0 0 none none

In 0 0 n ≥ 2 An−1 su(n) or sp(⌊n/2⌋)

II ≥ 1 1 2 none none

III 1 ≥ 2 3 A1 su(2)

IV ≥ 2 2 4 A2 su(3) or su(2)

I∗0 ≥ 2 ≥ 3 6 D4 so(8) or so(7) or g2

I∗n 2 3 n ≥ 7 Dn−2 so(2n− 4) or so(2n− 5)

IV ∗ ≥ 3 4 8 e6 e6 or f4

III∗ 3 ≥ 5 9 e7 e7

II∗ ≥ 4 5 10 e8 e8

non-min ≥ 4 ≥ 6 ≥ 12 does not occur in F-theory

Table 1. Table of codimension one singularity types for elliptic fibrations and associated non-

abelian symmetry algebras. In cases where the algebra is not determined uniquely by the degrees of

vanishing of f, g, the precise gauge algebra is fixed by monodromy conditions that can be identified

from the form of the Weierstrass model.

Cluster gauge algebra r V Hcharged

(-12) e8 8 248 0

(-8) e7 7 133 0

(-7) e7 7 133 28

(-6) e6 6 78 0

(-5) f4 4 52 0

(-4) so(8) 4 28 0

(-3, -2, -2) g2 ⊕ su(2) 3 17 8

(-3, -2) g2 ⊕ su(2) 3 17 8

(-3) su(3) 2 8 0

(-2, -3, -2) su(2)⊕ so(7)⊕ su(2) 3 23 16

(-2, -2, . . . , -2) no gauge group 0 0 0

Table 2. List of “non-Higgsable clusters” of irreducible effective divisors with self-intersection −2

or below, and corresponding contributions to the gauge algebra and matter content of the 6D theory

associated with F-theory compactifications on a generic elliptic fibration (with section) over a base

containing each cluster. The quantities r and V denote the rank and dimension of the nonabelian

gauge algebra, and Hcharged denotes the number of charged hypermultiplet matter fields associated

with intersections between the curves supporting the gauge group factors.
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�
�

-2

-3

-2

su(2)⊕ so(7)⊕ su(2)

Figure 1. Clusters of intersecting curves that must carry a nonabelian gauge group factor. For

each cluster the corresponding gauge algebra is noted and the gauge algebra and number of charged

matter hypermultiplet are listed in table 2.

consider tunings where the degrees of vanishing of f, g,∆ do not reach (4, 6, 12) at any

point in the base.

For any given EFS CY threefold X with a Weierstrass description over a given base

B2, the Hodge numbers of X can be read off from the form of the singularities. A suc-

cinct description of the Hodge numbers of X can be given using the geometry-F-theory

correspondence [12, 14, 22]

h1,1(X) = r + T + 2 (2.1)

h2,1(X) = Hneutral − 1 = 272 + V − 29T −Hcharged . (2.2)

Here, T = h1,1(B2)−1 is the number of tensor multiplets in the 6D theory; r is the rank of

the 6D gauge group and V is the number of vector multiplets in the 6D theory, whileHneutral

and Hcharged refer to the number of 6D matter hypermultiplets that are neutral/charged

with respect to the gauge group G. The relation (2.1) is essentially the Shioda-Tate-

Wazir formula [32]. The equality (2.2) follows from the gravitational anomaly cancellation

condition in 6D supergravity, H − V = 273 − 29T, which corresponds to a topological

relation on the Calabi-Yau side that has been verified for most matter representations with

known nongeometric counterparts [31, 33]. The nonabelian part of the gauge group G can

be read off from the Kodaira types of the singularities in the elliptic fibration according

to table 1 (up to a discrete part that does not affect the Hodge numbers and that we

do not compute in detail here.). The contribution to the rank r and the numbers of

vector multiplets V and charged hypermultiplets Hneutral for the gauge fields and matter

associated with non-Higgsable clusters (NHCs) are listed in table 2.

In principle, G can also have abelian (U(1)) factors, corresponding to additional sec-

tions of the elliptic fibration, which contribute to h1,1(X) through r. Mathematically, these

sections are associated with a higher rank Mordell-Weil group of the fibration. There can

also be torsion in the Mordell-Weil group [34], which corresponds to the discrete part of the

gauge group in the gravity theory, but does not contribute to the Hodge numbers of the

elliptic fibration. Because abelian factors arise from global, rather than local, aspects of

the total space of the elliptic fibration, it is difficult to systematically describe U(1) factors

– 6 –
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in the gauge group. Though there has been substantial progress on this problem in recent

years, as we show in section 3.1, abelian U(1) factors in the gauge group cannot arise for

EFS CY3s with h2,1 ≥ 350, so we do not need to consider them in this paper, and r and

V in (2.1), (2.2) can be read off directly from the codimension one singularities in the el-

liptic fibration. The representations and multiplicity of charged matter needed to compute

Hcharged in (2.2) can also be read off directly from the form of the local singularities in the

absence of abelian gauge group factors. While the types of singularities associated with

completely general matter representations have not yet been classified, the codimension

two singularities that arise in EFS CY3s of large h2,1 belong to the simple categories of

well-understood matter representations and associated singularities.

We now describe some of the details of the steps needed to systematically classify EFS

Calabi-Yau threefolds starting at large h2,1.

2.2 Systematic classification of EFS Calabi-Yau threefolds

A complete classification and enumeration of Calabi-Yau threefolds that are elliptically

fibered with section can in principle be carried out in three steps:

1. Classify and enumerate all bases B2 that support a smooth elliptically fibered Calabi-

Yau threefold with section.

2. Classify and enumerate all codimension one gauge groups that can be “tuned” over

a given base, giving enhanced gauge groups in the 6D theory.

3. Given the gauge group structure, classify and enumerate the set of compatible matter

representations — in some cases this may involve further tuning of codimension two

singularities.

In the remainder of this section we describe some general aspects of the procedures

involved in these steps 1–3 for the construction of EFS CY3s with large h2,1. Some of the

technical limitations to carrying out these three steps for all EFS Calabi-Yau threefolds

are discussed in section 4.1.

A key principle that enables efficient classification of the threefolds of interest through

the structure of their singularities is the decomposition of an effective divisor (curve) D

in B2 into a base locus of irreducible effective curves Ci of negative self-intersection, and

a residual part X, which satisfies X · C ≥ 0 for all effective curves C. Treated over the

rational numbers Q, this gives the Zariski decomposition [35]

D =
∑

i

γiCi +X, γi ∈ Q . (2.3)

This decomposition determines the minimal degree of vanishing of a section of a line bundle

over curves Ci in the base. For example, on F12 we have an irreducible effective divisor S

with S · S = −12,−K · S = −10. Thus, −K has a Zariski decomposition −K = (5/6)C +

X. It follows that −4K = (10/3)C + X,−6K = 10C + X. Since f, g are sections of

O(−4K),O(−6K) respectively, f must vanish to degree 4 (= ⌈10/3⌉) on S, and g must
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vanish to degree 5 on C, implying that there is an e8 type singularity associated with

the generic elliptic fibration over F12. This matches the well-known fact that the gauge

group of the generic F-theory model on F12 is E8 [12]. This general principle was used

in the classification of all non-Higgsable clusters in [19], and will be used as a basic tool

throughout this paper. Note that the Zariski decomposition (2.3) determines the minimal

degree of singularity of f, g over a given curve, but the actual degree of vanishing can be

made higher for specific models by tuning the coefficients in the Weierstrass representation.

2.3 Bases B2 for EFS Calabi-Yau threefolds with large h2,1

The bases B2 that can support an elliptically fibered Calabi-Yau threefold are complex

surfaces, which can be characterized by the structure of effective divisors (complex curves)

on the surface. Divisors on B2 are formal integral linear combinations of algebraic curves,

which map to homology classes in H2(B2,Z). The effective divisors are those where the ex-

pansion in terms of algebraic curves has nonnegative coefficients; the effective divisors gen-

erate a cone (the Mori cone, dual to the Kähler cone on cohomology classes) in H2(B2,Z).

As summarized in section 1, the minimal model program for classification of complex

surfaces and the results of Grassi show that the only bases B2 that can support an ellip-

tically fibered Calabi-Yau threefold are P2,Fm(0 ≤ m ≤ 12), the Enriques surface, and

blow-ups of these spaces. The values of h2,1 for the generic elliptic fibration over each of

these surfaces can be read off from the intersection structure of each base using table 2 and

equations (2.1) and (2.2). The intersection structure of divisors on the bases Fm is quite

simple. Fm is a P1 bundle over P1, with h1,1(Fm) = 2, so T = 1. The cone of effective

divisor classes on each of these surfaces is generated by S, F, where S is a section of the P1

bundle with S · S = −m, and F is a fiber with F · F = 0, F · S = 1.1

The −12 curve on F12 carries an E8 gauge group, so the generic elliptic fibration over

this base has r = 8, V = 248 and h1,1 = 11, h2,1 = 491. Similarly, for F8 and F7 we have

h1,1 = 10, h2,1 = 376, and for F6, h
1,1 = 11, h2,1 = 321, with decreasing values of h2,1 for

Fm,m < 6 (see [20] for a complete list). Since tuning Weierstrass coefficients to increase

the size of the gauge group or blow up points in the base entails a reduction in h2,1, to

construct all EFS CY3s with h2,1 ≥ 350, we need only consider the minimal bases F12,F8,

and F7. Note that, as discussed, for example, in [19], Fm for m = 9, 10, 11 contain points

on the −m curve where f, g must vanish to degrees 4, 6, which must be blown up leading to

a new base of the form of F12 or a blow-up thereof, so the Hirzebruch surfaces F9,F10,F11

are not good bases for an EFS CY3.

The irreducible effective divisors on Fm are those of the form D = aS + bF, b ≥ ma,

since if b < ma, thenD·S < 0 andD contains S as a component (and is therefore reducible).

Blowing up a base B2 = Fm at a point p produces a new −1 curve, the exceptional divisor

E of the blow-up. Each curve C in B2 that passes once smoothly through p gives a proper

transform C ′ ∼ C −E, with E ·C ′ = 1. Since Fm is a P1 bundle over P1, each p ∈ Fm lies

on some fiber in the class of F .

1Really, [F ] is a class in H2, and the fibers are a continuous family of divisors in this class that foliate

the total space; as mentioned earlier, we will generally go back and forth freely between divisors and their

associated classes.
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-1
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�

S
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Β

Figure 2. A general F-theory base B2 is formed by a sequence of blow-ups on a Hirzebruch surface

Fm. In this example, three generic points are blown up sequentially on F12, and a fourth blow-up

point is chosen to be on the exceptional divisor from the third blow-up. These points are all blown

up on fibers in such a way that a global C∗ structure is preserved. The final base β enters the

discussion in the text in several places.

We can describe a sequence of blow-ups on Fm by tracking the cone of effective divisor

classes after each blow-up. The result of a single blow-up at a generic point on Fm gives

a new base B′

2, with an exceptional divisor E having E · E = −1 extending the cone of

effective divisors in a new direction. If we denote the specific fiber of Fm containing p as

F1, then F ′

1 ∼ F1 − E is also in the new cone of effective divisors, with F ′

1 · E = 1. There

is also an effective divisor in the class S̃ = S +mF (with S̃ · S̃ = +m) that passes through

the generic point p, and this gives a new curve S̃′ in B′

2 with S̃′ · S̃′ = m− 1. In this way,

we can sequentially blow up points on Fm to achieve any allowable base B2 for an EFS

Calabi-Yau threefold. An example of a sequence of bases formed from four consecutive

blow-ups of F12 is shown in figure 2.

A point in the base must be blown up whenever there is a (4, 6) vanishing of f, g at

that point. In general, such a singularity can be arranged at a point in the base by tuning

29 parameters in the Weierstrass model [36]. This matches with the gravitational anomaly

cancellation condition H − V = 273− 29T (see (2.9)), since a single new tensor field arises

when the point in base is blown up. From (2.1) and (2.2) we thus see that, generically,

blowing up a point will cause a change in the Hodge numbers of a base by

∆h1,1 = +1, ∆h2,1 = −29 . (2.4)

As an example, the final base β depicted in figure 2 is associated with four blow-ups of

F12, and thus has Hodge numbers h1,1 = 11 + 4 = 15, h2,1 = 491− 4× 29 = 375. In some

situations, when there is a gauge group involved along divisors containing the blow-up
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point, there is also a change in V that modifies the number of moduli removed by the

blow-up, and correspondingly affects the Hodge numbers of the new Calabi-Yau threefold.

In general, the combinatorial structure of the cone of effective divisors on B2 can

become quite complicated. A simple subclass of the set of bases that are formed when

multiple points on Fm are blown up consists of those bases where the points blown up lie

on φ distinct fibers, and those blown up on each fiber are at the intersection of irreducible

effective divisors of negative self intersection lying within that fiber or intersections between

such divisors and the sections S, S̃ of the original Fm. In this case, a global C∗-structure

is preserved on the base B2; bases of this type were classified in [21]. When φ ≤ 2, so

that all points blown up lie on two or fewer fibers, the base is toric; the set of toric bases

was classified in [20]. In cases where the number of fibers blown up satisfies φ ≤ m, the

initial point pi blown up on each fiber can be a generic point and a representative of the

class S̃ can be found that passes through all these points, so that the base has a global C∗

structure. Almost all the bases we consider in this paper will have this structure, and can

be represented as C∗-bases with φ nontrivial fibers. We will discuss particular situations

where we need to go beyond this framework as they arise.

For the toric and C∗-bases, an explicit representation of the monomials in the Weier-

strass model can easily be given, as described in [20, 21]. This representation is useful for

explicit calculations, as discussed further below in section 2.6.

One issue that must be addressed in enumerating distinct bases for EFS CY3s is the

role of −2 curves in the base. In general, isolated -2 curves, or connected clusters of −2

curves that do not carry a gauge group, are realized at specific points in the moduli space of

fibrations over bases without those −2 curves. For example, blowing up F12 at two distinct

generic points p1, p2 gives rise to two nontrivial fibers, each containing two connected curves

of self-intersection (-1, -1) (like the left two fibers in the base β from figure 2). In the limit

where p2 approaches p1, this becomes two blow-ups on a single fiber, containing three

connected curves of self-intersection (-1, -2, -1) (e.g., the right-most fiber in figure 2). This

can be seen in the toric and C∗ cases directly through the enumeration of monomials, as

discussed in [20, 21]; the −2 curves in clusters not associated with Kodaira singularities

giving nonabelian gauge groups correspond to extra elements of h2,1 not visible in the

explicit monomial count, and the corresponding Calabi-Yau is most effectively described

by the more generic base where the blow-up points are kept distinct. On the other hand,

when a −2 curve supports a nontrivial gauge group either due to an NHC or a tuning, this

curve is “held in place” by the singularity structure, which would not be possible in the

given form without the −2 curve. Thus, when enumerating all distinct possible EFS CY3s,

we should only include −2 curves in bases where (f, g,∆) have nonzero vanishing degrees

over these curves.2

By following these principles, we can systematically enumerate the bases associated

with EFS CY3s with large h2,1. In almost all cases, the bases have a C∗ structure and can

be described as F12 blown up at a sequence of points along one or more fibers. The precise

sequences of possible blow-ups are detailed in section 3.

2Note that there is one additional subtlety, which arises when a configuration of −2 curves describes a

degenerate elliptic fiber [21], but this situation does not arise for any bases considered in this paper.
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2.4 Constraints on codimension one singularities and associated gauge groups

In this and the following sections, we describe in more detail how codimension one and

two singularities in the elliptic fibration of the Calabi-Yau threefold X over a given base

B2 can be understood and classified. In this analysis we use the physical language of F-

theory; though in principle the arguments here could be understood purely mathematically

without reference to gauge groups or matter, the physical F-theory picture is extremely

helpful in clarifying the geometric structures involved.

As we have described already, the NHCs of intersecting irreducible effective divisors of

negative self-intersection tabulated in table 2 give rise to nonabelian gauge groups and, in

some cases, charged matter over any base B2 that contains these clusters. These physical

features of the EFS CY3s encode the topological structure of X through equations (2.1)

and (2.2). Additional and/or enhanced gauge groups and matter can also be realized, giving

rise to a range of different EFS CY3s over a given base B2, by tuning the parameters in

the Weierstrass model (1.1). Over simple bases like P2, the range of possible tunings is

enormous, giving rise to many thousands of topologically distinct CY3s elliptically fibered

over the fixed base [37, 38]. For the CY3s with large h2,1 that we consider here, however,

the range of possible tunings over the relevant bases B2 is quite small.

Some general constraints on when codimension one singularities can be tuned beyond

the minimal values required on a given base follow from the Zariski decompositions of −4K

and −6K. These constraints provide strong bounds on the set of possible gauge groups

that can be tuned over any given B2. These constraints, which we analyze in general

terms in this section, do not, however, guarantee the existence of a given tuned model

with specific gauge groups. To confirm that a Weierstrass model can be realized, a more

detailed analysis is needed, as discussed in the subsequent sections.

Consider a rational curve3 C of self-intersection C · C = −k. From (K + C) · C =

2g−2 = −2, we haveK ·C = k−2. Consider a divisorD = −nK that contains as irreducible

components a set of curves Bi with multiplicities bi that each intersect C simply at a single

point: Bi · C = 1. Then we have

D = cC +
∑

i

biBi +X, with X · C ≥ 0 , (2.5)

where D · C = −nK · C = −n(k − 2), so a section of (the line bundle associated with) D

must vanish at least c times on C, where

X · C =

(

D − cC −
∑

i

biBi

)

· C = −n(k − 2) + kc−
∑

i

bi ≥ 0. (2.6)

⇒ c ≥
1

k

(

∑

i

bi + n(k − 2)

)

. (2.7)

This result has a number of specific consequences for where codimension one singularities

can be tuned on bases with a given configuration of non-Higgsable clusters from table 2,

3A rational curve is a complex curve of genus 0; it is shown in [19] that an effective divisor in the base of

an elliptically fibered Calabi threefold cannot be a higher genus curve of negative self-intersection without

forcing a (4, 6) vanishing of f, g.
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which are connected in any given base by a network of −1 curves. We give some specific

examples:

No (f, g) tuning can give a nonabelian gauge algebra on −1 curves connected

to any singular cluster other than a single −3 curve. Consider, for example, a −4

curve C that intersects a −1 curve B. The minimal (f, g) tuning on B needed to get a

nontrivial Kodaira singularity (i.e., one which gives rise to a nonabelian gauge algebra) is

(1, 2). Applying (2.7) with k = 4 for n = 4, b1 = 1 gives c(4) ≥ 9/4, and for n = 6, b1 = 2

gives c(6) ≥ 13/4, so tuning a (1, 2) vanishing on a −1 curve B that intersects a −4 curve

C forces a (3, 4) vanishing on C, which means that f, g vanish to degrees (4, 6) at the

point B ·C, which cannot happen on a good base B2 for an EFS CY3. A similar argument

shows that (f, g) cannot be tuned to vanish to degrees (1, 2) on a −1 curve that intersects

any of the other NHCs that carry a nontrivial gauge group other than one or two isolated

-3 curves. A −1 curve that intersects a −3 curve can carry an (f, g) vanishing of (1, 2),

while the −3 curve carries a (2, 3) vanishing. Note that a −1 curve C intersecting three

−3 curves each with vanishing (2, 3) would have by (2.7) c(4) ≥ 2, c(6) ≥ 3, so C ·Bi would

correspond to points of (4, 6) vanishing.

Vanishing of f, g,∆ on a −2 curve. From (2.7), the degrees of vanishing of f, g, or

∆ on any −2 curve C must be

c ≥
∑

i

bi
2

(2.8)

where bi are the degrees of vanishing of f, g, or ∆ on curves Bi that intersect C. We refer to

this rule for degrees of vanishing on −2 curves as the “averaging rule” in later arguments,

where it will be of use in the analysis of toric and C∗ bases, for which each divisor in a

fiber intersects precisely two neighboring divisors.

As an example, in the non-Higgsable (-3, -2) cluster, the degrees of vanishing of (f, g)

on the −3 and −2 curves are, respectively, (2, 3), and (1, 2), which satisfy the above

inequality (e.g., for g, bi = 3, c(6) = 2 ≥ 3/2).

These rules, and applications of (2.7) in a variety of other cases, strongly constrain the

places where extra codimension one singularities can be tuned over EFS CY3s with large

h2,1. In general, a tuning is only possible when sections of O(−4K),O(−6K) can be found

in the form D =
∑

i ciCi+X with no divisor or points where (f, g) vanish to degrees (4, 6).

2.5 Anomalies and matter content

Another set of geometric constraints are encoded in the detailed anomaly cancellation

equations of 6D supergravity theories. For an F-theory compactification on a base B2 with

canonical class K and nonabelian gauge group factors Gi associated with codimension one

singularities on divisors Si, the anomaly cancellation conditions are [18, 39–42]

H − V = 273− 29T (2.9)

0 = Bi
adj −

∑

R

xiRB
i
R (2.10)

K ·K = 9− T (2.11)
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Group Rep AR BR CR

SU(2) 2 1 — 1
2

3 4 — 8

SU(3) 3 1 — 1
2

8 6 — 9

G2 7 1 — 1
4

14 4 — 5
2

Table 3. Group theory coefficients AR, BR, CR for fundamental and adjoint matter representations

of gauge groups relevant for the analysis of this paper. Note that the gauge groups SU(2), SU(3), G2

have no fourth order Casimir so there are no coefficients BR.

−K · Si =
1

6
λi

(

∑

R

xiRA
i
R −Ai

adj

)

(2.12)

Si · Si =
1

3
λ2
i

(

∑

R

xiRC
i
R − Ci

adj

)

(2.13)

Si · Sj = λiλj

∑

RS

xijRSA
i
RA

j
S (2.14)

where AR, BR, CR are group theory coefficients defined through

trRF
2 = ARtrF

2 (2.15)

trRF
4 = BRtrF

4 + CR(trF
2)2 , (2.16)

λi are numerical constants associated with the different types of gauge group factors (λ = 1

for SU(N), 2 for SO(N) and G2), and where xiR and xijRS denote the number of matter fields

that transform in each irreducible representation R of the gauge group factor Gi and (R,S)

of Gi ⊗ Gj respectively. (The unadorned “tr” above denotes a trace in the fundamental

representation.) Note that for groups such as SU(2) and SU(3), which lack a fourth order

invariant, BR = 0 and there is no condition (2.10). The group theory coefficients for the

representations relevant for this paper are compiled for convenience in table 3

The 6D anomaly cancellation conditions provide additional constraints on the set of

possible structures for EFS Calabi-Yau threefolds. For any set of possible gauge groups

satisfying the Zariski conditions described in the previous section, the anomaly cancellation

conditions can be used to further check the consistency of the model and to compute the

possible matter spectra, giving Hcharged, which can then be used in (2.2) to compute h2,1.

For example, consider tuning a gauge group SU(2) on a curve C of genus g and self-

intersection −n. Assuming only fundamental (2) and adjoint (3) matter, the spectrum of

fields charged under this gauge group is uniquely determined by the anomaly cancellation

conditions

K · C = 2g + n− 2 =
1

6
(A3(1− x3)−A2x2) = 2/3− x2/6− 2x3/3 (2.17)
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matter ∆h1,1 ∆h2,1

su(2) (16− 6n) × 2 +1 −29 + 12n

su(3) (18− 6n) × 3 +2 −46 + 18n

g2 (10− 3n)× 7 +2 −56 + 21n

Table 4. Table of matter content and Hodge number shifts for tuned gauge algebra summands on

a −n curve C. Shifts are computed assuming the curve carries no original gauge group; for n ≥ 3

the contribution from the associated non-Higgsable cluster must be subtracted. These shifts also

do not include any necessary modifications for bifundamental matter, which must be taken into

account when C intersects other curves carrying a gauge group.

C · C = −n =
1

3
(C3(x3 − 1) + C2x2) = 8(x3 − 1)/3 + x2/6 , (2.18)

to be x3 = g, x2 = 16−6n−16g. For a rational curve C with g = 0, there are simply 16−6n

fields in the fundamental (2) representation. This matches with the expectation that when

−n ≤ −3 there is a larger gauge group and an SU(2) is impossible. For higher genus curves

g the number of fields in the adjoint is generically g with no higher-dimensional matter

representations. For specially tuned models, higher matter representations are possible, but

for su(2) all representations other than 2 contribute to the genus [37, 43]. Gauge groups on

higher genus curves and associated exotic matter representations of this type do not appear

in the models considered here at large h2,1, and are discussed further in section 4.1.3.

From the gauge group and matter content associated with a given tuned Weierstrass

model, the Hodge numbers can be computed from (2.1), (2.2). Continuing with the pre-

ceding example, tuning an SU(2) gauge group on a divisor of self-intersection −n that does

not intersect any other curves carrying gauge groups leads to a change in Hodge numbers of

∆h1,1 = ∆r = +1, (2.19)

∆h2,1 = ∆V −∆Hcharged = +3− 2(16− 6n) = −29 + 12n . (2.20)

It is straightforward to compute the contribution to the Hodge numbers from tuning any

of the other gauge groups associated with a Kodaira singularity type on a rational curve

of given self-intersection. Table 4 tabulates these values for the gauge group factors that

are relevant for this paper.

Finally, the anomaly cancellation condition (2.14) indicates that when two curves C,D

intersect and both carry gauge groups, a certain part of the matter is charged under both

gauge group factors. This bi-charged matter is a subset of the total charged matter content

in each case, and must be taken into account when computing the Hodge numbers of a

threefold with this structure in the base. For example, two SU(2) factors tuned on two

intersecting −2 curves each have, from table 4, 4 fundamental matter fields. From (2.14),

there is one bifundamental matter field transforming in the 2 × 2 representation. This

field, which contains 4 complex scalars, is counted in the matter charged under each of the

SU(2). Thus, while the change in h2,1 from tuning each of these SU(2) factors individually

is ∆h2,1 = −5, the net change from tuning both of these factors is −6; i.e., the second

SU(2) requires tuning only a single additional Weierstrass modulus.
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2.6 Weierstrass models

While the Zariski decomposition of f, g,∆, and the anomaly cancellation conditions de-

scribed in the last two sections place strong constraints on the set of possible gauge groups

and matter fields that can be tuned in a Weierstrass model over any given base B2, these

constraints are necessary but not sufficient for the existence of a consistent geometry. To

prove that a given Calabi-Yau geometry exists, it is helpful to consider an explicit construc-

tion of the Weierstrass model. This can be done in a straightforward way for toric bases

using the explicit realization of the monomials in the Weierstrass model as elements of the

lattice N∗ dual to the lattice N in which the toric fan is described. This approach general-

izes in a simple way to bases that admit only a single C∗ action. The details of this analysis

are worked out in detail in [20, 21]. It is also possible to describe Weierstrass models explic-

itly for bases that are not toric or C∗, though there is at present no general method for doing

this and the analysis must be done on a case-by-case basis. Explicit construction of the

monomials in a given Weierstrass model plays two important roles in analyzing the Calabi-

Yau threefolds we consider in this paper. First, by imposing the desired vanishing condi-

tions for f, g,∆ on all curves carrying gauge groups, we can check the explicit Weierstrass

model to confirm that no additional vanishing conditions are forced on any curves or points

that would produce additional gauge groups or force a blow-up or invalidate the model due

to (4, 6) points or curves. Second, we can perform an explicit check on the value of h2,1

computed using the last term in (2.2) by relating the number of free degrees of freedom in

the Weierstrass model to the number of neutral scalar fields. This analysis can, among other

things, reveal the presence of additional U(1) gauge group factors that contribute to V and

r. In [21], for example, it was found using this type of analysis that a small subset of the pos-

sible C∗-bases for EFS Calabi-Yau threefolds give rise to generic nonzero Mordell-Weil rank.

We summarize here the relationship between h2,1 and the number of Weierstrass mono-

mials W for a generic elliptic fibration over a C∗ base:

h2,1(X) = Hneutral − 1 = W − waut +N − 4 +N−2 −G1 , (2.21)

where waut = 1+max(0, 1+ n0, 1+ n∞) is the number of automorphism symmetries, with

n0, n∞ the self-intersections of the divisors coming from S, S̃, N is the number of fibers

containing blow-ups, N−2 is the number of −2 curves that can be removed by moving to

a generic point in the moduli space of the associated threefold, and G1 is the number of

−2 curve combinations that represent a degenerate elliptic fiber. The relation (2.21) is a

slight refinement of the relation determined in [21] to include tuned Weierstrass models; in

particular, when considering tuned (non-generic) elliptic fibrations over a given base the set

of −2 curves contributing to N−2 does not include certain −2 curves where ∆ vanishes to

some order, even if this −2 curve is not in a non-Higgsable cluster supporting a nonabelian

gauge group. We encounter an example of this in the following section.

2.6.1 Weierstrass models: some subtleties

As mentioned earlier, and also discussed in [20, 21], curves of self-intersection −2 must

be treated carefully when analyzing the Weierstrass monomials and corresponding Hodge
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numbers. −2 curves that do not carry vanishing degrees of f, g,∆ in most circumstances

are associated with special codimension one loci in Calabi-Yau moduli space, and indicate

additional elements of h2,1 that are not visible in the Weierstrass monomials for the model

with the −2 curve. To consistently distinguish different topological types of Calabi-Yau

threefolds, we should generally only consider the most generic bases in each moduli space

component, which have no −2 curves on which f, g,∆ do not vanish to some degree.

For example, the Weierstrass model describing the base β appearing in figure 2 has one

fewer parameter than expected for the given Calabi-Yau threefold, corresponding to a

contribution of N−2 = 1 in (2.21). The generic base for this threefold is given by blowing

up four completely generic points in F12, which gives four distinct (−1,−1) fibers; the base

β that contains a −2 curve in one fiber arises at limit points of the moduli space where

one of the blow-up points lies on the exceptional divisor produced by one of the other

blow-ups. The generic elliptic fibration over β thus lives on the same moduli space as the

generic elliptic fibration over the base with four (−1,−1) fibers. If, on the other hand,

we tune an SU(2) factor on the top −1 curve of the (−1,−2,−1) fiber, then the −2 curve

acquires a degree of vanishing of ∆ of at least 1, and it is fixed in place by the structure of

the singularity. This SU(2) factor cannot be tuned in the bulk of the moduli space of the

generic four-times blown up F12. In this situation, N−2 = 0, and it can be checked that

the C∗ Weierstrass model contains the correct number of monomials.4

Another subtlety that must be taken into account when computing the number of

free parameters for a Weierstrass model with given codimension one singularity types is

the appearance of each of the gauge group factors SU(2), SU(3) in two distinct ways in the

Kodaira classification. In a generic situation, in the absence of other gauge groups, an SU(2)

or SU(3) gauge group tuned by a Kodaira type III or IV singularity, as listed in table 1

is simply a special case of a type I2 or I3 singularity, and the complete set of degrees of

freedom needed to compute h2,1 should be computed by imposing only the latter conditions.

In other cases, however, such as in the context of non-Higgsable clusters, the type III or IV

singularity type may be forced by the structure of other gauge groups or divisors. In this

case the specified gauge group structure may not be possible with an In singularity type,

in which case there are no monomials associated with such additional freedom.

Finally, for those gauge algebra types that depend not only on the degrees of vanish-

ing of f, g,∆, but also on monodromy, the correct counting of degrees of freedom in the

Weierstrass model depends on the monodromy conditions. The monodromy conditions for

each of the gauge group choices in type IV, I∗0 , and IV ∗ Kodaira singlets are described

in [29, 30], and can easily be characterized in terms of the structure of monomials in the

Weierstrass model [44].

For all the models considered here, we have carried out an explicit construction of the

Weierstrass monomials, and confirmed that the appropriate geometric structure exists and

that the number of monomials properly matches the value of h2,1, when the proper shifts

according to −2 curves and automorphisms as described in (2.21) are taken into account.

4The fact that additional structure can appear associated with −2 curves also arises in a related context

in 4D heterotic theories based on elliptically fibered Calabi-Yau threefolds over bases containing these

curves [44].
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For all the models considered here, the blow-ups on the different fibers are independent,

since the gauge groups on S, S̃ do not change. This means that the monomial analysis can

be performed in a local chart around each fiber independently, without loss of generality.

2.6.2 Constraints on Weierstrass models: an example

As an example of the utility of the explicit Weierstrass monomial construction, we consider

a simple example of a situation in which the Zariski and anomaly analyses suggest that

a tuning may be possible, but it is ruled out by explicit consideration of the Weierstrass

model.

Consider again the base B2 = β depicted in figure 2. We can ask if an SU(2) can

be tuned through an I2 (0, 0, 2) singularity on the top −1 curve C of one of the (−1,−1)

fibers. (In fact, this analysis is equivalent for any such fiber on F12, since as discussed

above the analysis is essentially local on each fiber in this situation where there is no

change in the degree of vanishing of f, g,∆ on S, S̃.) The SU(2) that we might tune in this

fashion does not violate any conditions visible from the Zariski analysis, since we can take

∆ = 2C+10S+X, and still satisfy X ·D = 0 where D is the lower −1 curve connecting C

and S. (Note, however, that we cannot have a type III or IV SU(2) on C, since this would

force a vanishing of ∆ on D.) Tuning an SU(2) on C also does not present any problems

involving anomalies, since we have sufficient hypermultiplets to have an SU(2) with the

requisite 10 fundamental matter fields. This configuration is, however, ruled out by an

explicit Weierstrass analysis. In the toric language [20, 45], we can take F12 to have a toric

fan given by vectors vi ∈ N = Z2: v1 = (0, 1), v2 = (1, 0), v3 = (0,−1), v4 = (−1,−12).

The allowed Weierstrass monomials for the generic elliptic fibration over F12 are then

u ∈ N∗, 〈u, vi〉 ≥ −n with n = 4, 6 for f, g respectively. Taking a local coordinate system

where z = 0 on the fiber F associated with v2, and w = 0 on S̃, the allowed monomials

in f = fk,mzkwm, g = gk,mzkwm are those with k,m ≥ 0, 12(m− n) + (k − n) ≤ n; these

degrees of freedom are depicted in figure 3. The only monomial that keeps S from having a

(4, 6) singularity is the w7 term in g, so the coefficient g0,7 cannot vanish without breaking

the Calabi-Yau structure. Blowing up the point of intersection between F and S̃ adds the

vector v5 = (1, 1) to the toric fan, so we must remove the monomials u with 〈u, v5〉 < −n

from f, g; in the chosen coordinates, this amounts to removing all monomials such that

m+k < n, as depicted by the red diagonal line in the figure. With a change of coordinates

z = ζx, w = x, f = f̂x4, g = ĝx6, we have a local expansion around E,F ′ = F − E with

coordinate x = 0 on E. We can then expand

f̂(ζ, x) = f̂0(ζ) + f̂1(ζ)x+ · · · (2.22)

= (f̂0,0 + f̂1,0ζ + · · · f̂4,0ζ
4) + (f̂1,1ζ + f̂1,1ζ

2 + · · · f̂5,1ζ
5)x+ · · · (2.23)

ĝ(ζ, x) = ĝ0(ζ) + ĝ1(ζ)x+ · · · (2.24)

= (ĝ0,0 + ĝ1,0ζ + · · · ĝ6,0ζ
6) + (ĝ0,1 + ĝ1,1ζ + · · · ĝ7,1ζ

7)x+ · · · (2.25)

The condition that ∆ vanish at order x0 requires that 4f̂3
0 +27ĝ20 = 0, which we can satisfy

by setting f̂0(ζ) = −3α2, ĝ0(ζ) = 2α3 for some quadratic function α(ζ). The condition that
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∆ vanish at order x then requires that

2f̂2
0 f̂1 + 9ĝ0ĝ1 = 0 . (2.26)

This condition cannot, however, be satisfied when α 6= 0, without setting ĝ0,1 = 0, since

f̂1 contains no term of order ζ0. But ĝ0,1 = g0,7 = 0 forces g to vanish to degree 6 on S

so there would be a degree (4, 6) singularity on S, which is incompatible with the Calabi-

Yau structure. Thus, we cannot tune an I2 SU(2) singularity on C. Note that while the

coordinates ζ, x make this computation particularly transparent, the same result can be

derived directly in the z, w coordinates. In particular, this means that an SU(2) cannot be

tuned on the curve in question even if further points on the base are blown up.

Note also that while this analysis rules out an SU(2) on the −1 curve C in question,

it is still possible to tune ∆ to vanish to second order on this curve. If f̂0 = ĝ0 = 0,

then (2.26) is automatically satisfied. This allows for the possibility of a (1, 1, 2) vanishing

of (f, g,∆) on C. Indeed, such a vanishing — which does not lead to any gauge group —

arises in some configurations for EFS CY threefolds, as we see below.

This kind of analysis can be used to check explicitly whether a Weierstrass model exists

for any given combination of gauge group tunings that satisfy the Zariski and anomaly

cancellation conditions. This is straightforward for the gauge groups that are imposed by

particular orders of vanishing of f, g, since this corresponds simply to setting the coefficients

of certain monomials in these functions to vanish. The analysis is more subtle, however,

for type In and I∗n singularities, such as the I2 example considered here, where vanishing

on ∆ requires more complicated polynomial conditions on the coefficients. For large n, the

algebra involved in explicitly imposing an In singularity can be quite involved. This is not

an issue for any of the threefolds considered in this paper, but presents a technical obstacle

to a systematic analysis for general h2,1. We return to this issue in section 4.1.2.

Finally, note that the fact that an SU(2) cannot be tuned on the top −1 curve of a

(−1,−1) fiber matches with the example described in section 2.6.1, where an SU(2) tuned

on the top curve of a (−1,−2,−1) fiber fixes the middle (−2) curve in place. The lower

−1 curve cannot be moved to a different location on the −12 curve S, which would remove

the −2 curve, since this would leave behind precisely the configuration we have just ruled

out. This confirms that this −2 curve does not represent a missing modulus and does not

contribute to N−2 in (2.21), even though it does not itself support a gauge group.

3 Systematic construction of EFS CY threefolds with large h2,1

We now systematically describe how all Calabi-Yau threefolds that are elliptically fibered

with section (EFS) and have h2,1 ≥ 350 are constructed by tuning gauge groups on

F12,F8,F7, and blow-ups thereof. We begin with the Hirzebruch surfaces and consider

all possible tunings that would give a threefold with h2,1 ≥ 350. For those tunings that

are possible by the Zariski and anomaly cancellation conditions we check the Weierstrass

models explicitly using the toric monomial method. For each set of valid Hodge numbers

we compare with the Kreuzer-Skarke database [23] of Hodge numbers for Calabi-Yau three-

folds realized as hypersurfaces in toric varieties using the Batyrev construction [46]. The
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g1,0

g0,1

f0,0

g0,0

Figure 3. Monomials in the generic Weierstrass model over F12 are of the form

fk,mzkwm, gk,mzkwm, and can be associated with points depicted above in the lattice N∗ dual

to the lattice N carrying the rays in the toric fan for F12. Circles denote monomials in f , and

dots denote monomials in g. Blowing up a generic point in F12 can be described in a local coor-

dinate system by setting all monomials below the red line to vanish. As described in the text, an

SU(2) gauge group cannot be tuned on the exceptional divisor from the blow-up without forcing

the monomial coefficient g0,7 to vanish, which makes it impossible to form a Calabi-Yau due to a

(4, 6) vanishing on the divisor S.

final results of our analysis are compiled in figure 4, and the full set of constructions is

listed in table 5.

3.1 Tuning models over F12

To systematically construct all Calabi-Yau threefolds that are elliptically fibered with sec-

tion, beginning with the largest value of h2,1 and preceding downward, we begin with the

generic elliptic fibration over F12. As described above and in [22], this Calabi-Yau threefold

has Hodge numbers (h1,1, h2,1) = (11, 491), and has the largest value of h2,1 possible for

any EFS CY threefold.

There are few ways available to tune an enhanced gauge group over the base B2 = F12.

The gauge algebra on the curve S with S · S = −12 is e8 and cannot be enhanced. Tuning

a gauge algebra on any fiber F would increase the degree of vanishing at the point S · F

beyond (4, 5, 10), which is not allowed since such a point lies on S and cannot be blown up

to give a valid base. The only option for tuning is on the curve S̃ = S + 12F , which has

self-intersection +12 (or on curves with a multiple of this divisor class, which would have

self-intersection ≥ 48). Tuning an su(2) factor on the curve S̃ gives 88 fundamental matter

fields, from table 4, so the Hodge numbers are (12, 318). A threefold with these Hodge

numbers is in the Kreuzer-Skarke database, but has h2,1 < 350, so we do not concern

ourselves further with it here. Tuning any larger gauge group factor reduces h2,1 still

further; for example, tuning an su(3) gives Hodge numbers (13, 229).

This example illustrates the basic paradigm: on curves of higher self-intersection, there

are fewer restrictions on the possible tunings, but more charged matter is required to fulfill
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untuned Weierstrass

+ SUH2L

+ SUH2L x SUH2L

+ SUH3L x SUH2L

+ G_2 x SUH2L

+ SUH2L x SUH2L x SUH2L

+ SUH2L x G_2 x SUH2L

H11, 491L

H12, 462L

H10, 376L

H19, 355L
H20, 350L

Figure 4. In this paper we explicitly construct all elliptically fibered Calabi-Yau threefolds with

section having h2,1 ≥ 350. The Hodge numbers of these threefolds are shown here, with the detailed

construction explained in the bulk of the text. Black points represent generic elliptic fibrations over

different bases B2, and colored points represent tuned Weierstrass models over these bases with

enhanced gauge groups. The three purple data points appear to be new Calabi-Yau manifolds

not found in the Kreuzer-Skarke database (see section 4.3.3). All elliptically fibered Calabi-Yau

threefolds with section are connected by geometric transitions associated with tuning Weierstrass

moduli over a particular base (“Higgsing/unHiggsing”) and/or blowing up and down points in the

base (corresponding to tensionless string transitions in the physical F-theory context). Note that

the point (10, 376), corresponding to generic elliptic fibrations over F7,F8, is connected to the other

threefolds shown through a sequence of blow-up and blow-down transitions on the base that pass

through the set of threefolds with smaller Hodge numbers h2,1 < 350. Note also that there are two

distinct constructions that give the Hodge numbers (19, 355); in addition to an untuned Weierstrass

model with generic gauge group G2 × SU(2) there is a tuning of the generic (15, 375) Weierstrass

model with a gauge group SU(2)× SU(3)× SU(2).
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anomaly cancelation conditions. As a rule of thumb, it is often easy to increase h1,1 via

tuning so long as one is willing to accept a large decrease in h2,1.

There is one other possibility that should be discussed here, and that is the possibility

of tuning an abelian gauge group factor. As shown in [47], any U(1) factor can be seen

as arising from a Higgsed SU(2) gauge group factor (which may be a subgroup of a larger

nonabelian group), under which some matter transforms in the adjoint representation.

The U(1) factor is associated with the divisor class C in the base that supports the SU(2)

gauge group after unHiggsing; to have an adjoint, irreducible curves in this divisor class

must have nonzero genus. In the case of B2 = F12, the divisor class C cannot intersect S

without producing a (4, 6) singularity, so it must be a multiple C = nS̃ of the curve of self-

intersection +12 in B2. For n = 2, the curve 2S̃ has genus g = 11, and the resulting SU(2)

model would have 11 adjoint matter fields and 128 fundamental matter fields. Although

this model should exist, it has a substantially reduced number of Weierstrass moduli corre-

sponding to uncharged matter fields, even after breaking of the SU(2) by a single adjoint.

Similarly, a discrete abelian group would involve further breaking of the U(1) that would

maintain a relatively small value of h2,1. Thus, while in principle it may be possible to

tune an abelian factor, for this base and the others considered here the resulting Calabi-

Yau threefold has relatively small h2,1, and we do not need to consider abelian factors in

constructing threefolds with h2,1 ≥ 350. We discuss abelian factors further in section 4.1.4.

3.2 Tuning models over F8 and F7

The generic elliptically fibered Calabi-Yau threefolds over the Hirzebruch bases F7 and

F8 have Hodge numbers (10, 376). The discussion of tuning over these bases is precisely

analogous to the preceding discussion for the base F12, and there are no tuned models over

these bases with h2,1 ≥ 350. Since 376 − 29 < 350, there are also no threefolds formed

over bases that are blow-ups of F7 or F8 that have h2,1 ≥ 350. The threefolds with Hodge

numbers (10, 376) over these bases are, however, continuously connected to the threefolds

over F12 and blow-ups thereof; for example, blowing up F8 at four generic points on the

curve S of self-intersection −8 gives a base that is equivalent to the one reached by blowing

up F12 at four generic points. It is not immediately clear whether the threefolds formed

from generic elliptic fibrations over F7 and F8 are equivalent. We discuss this issue further

in section 4.3.4.

3.3 Decomposition into fibers

To find further EFS CY threefolds with large h2,1 we must blow up one or more points in

the base B = F12 to get further bases over which a variety of Weierstrass models can be

tuned. We can blow up any point on F12 that does not lie on the curve S of self-intersection

−12. Any such point lies on a fiber F that intersects S and S̃ each at one point. After

blowing up one point we can blow up another point on the same fiber or on another fiber.

Until the number of blow-ups is large (> 12), blow-ups on distinct fibers do not interact,

so that we may analyze the sequence of blow-ups possible along one given fiber, and then

we can combine such sequences to construct threefolds involving the blow-ups of multiple

fibers. Along any given fiber, as long as each blow-up occurs at an intersection of curves
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of negative self-intersection or at the point of intersection of the fiber with S̃, we can use

toric methods for describing the monomials, as in section 2.6. After a sufficient number

of blow-ups, it is also possible to construct fibers that do not fit into the toric framework,

though we need to consider only one example of this in the analysis for threefolds with

h2,1 ≥ 350. For fibers that simply consist of a linear sequence of mutually intersecting

curves, such as those in figure 2, for convenience we label the curves C1, C2, . . ., with C1

the curve that intersects the −12 curve C (so we always have C1 · C1 = −1).

3.4 F12 blown up at one point (F
[1]
12)

We now consider the sequence of fiber geometries that can arise when we blow up consecu-

tive points in F12 that lie in a single fiber. Blowing up a generic point on F12 gives a toric

base with a single nontrivial fiber (−1,−1) containing curves C2, C1, as in the first step in

figure 2. As discussed in section 2.3, blowing up a point when no gauge groups are involved

leads to a shift in Hodge numbers of +1,−29. The generic elliptic fibration over the base

F12 with a single blow-up, which we denote F
[1]
12 , thus has Hodge numbers (12, 462).

For the base F
[1]
12 , as for F12, there is no place that we can tune a gauge group other

than the +11 curve; as described in section 2.6, tuning an su(2) factor on either −1 curve

raises the degree of vanishing of f, g on S to (4, 6), and is not possible. Any other tuning

on the −1 curves increases the degree of vanishing still further and is not allowed. The

model with an su(2) on the +11 curve is just the blow-up of the case with Hodge numbers

(12, 318) and has Hodge numbers (13, 301) (note that the number of fundamental matter

fields is reduced by 6 compared to the +12 curve in Fm).

3.5 Threefolds over the base F
[2]
12

Now consider blowing up a second point on F12 by blowing up a point on F
[1]
12 . If the second

point is a generic point that does not lie on the first blown-up fiber, we can take it to be

on a separate fiber. The shift in Hodge numbers just adds between the two fibers and is

then 2× (+1,−29), giving an EFS threefold with Hodge numbers (13, 433).

Now, consider which points in the (−1,−1) fiber can be blown up and give a consistent

model. We cannot blow up a point in C1 (the −1 curve intersecting the −12 curve), since

then it would become a −2 intersecting a −12, which is not allowed by the intersection rules

of [19]. A representative S̃′ of the (non-rigid) +11 class passes through each point on C2

(this is one of the degrees of freedom in waut in (2.21)), so without loss of generality we can

blow up any point in C2, and we get a fiber of the form (−1,−2,−1), which now connects

a +10 curve S̃′ to a −12 curve. In the absence of tuning, the corresponding Calabi-Yau

threefold simply lies in a codimension one locus in the moduli space of complex structures

of the threefold with Hodge numbers (13, 433) having two (−1,−1) fibers. Now, however,

we consider what can be tuned on the (−1,−2,−1) fiber. For the same reason, described

in the example in section 2.6, that we could not tune any gauge group on the upper −1 of a

(−1,−1) fiber, we cannot tune a gauge group on the −2 curve (C2). Thus, the only curve on

which we can tune any gauge group is the top −1 curve C3. It is easy to check that we can

tune an su(2) on this top curve, either by tuning a type I2 singularity or the more specialized

type III. This does not violate the Zariski or anomaly conditions, and explicit examination
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of the Weierstrass model shows that this configuration is allowed. From table 4, we see

that this tuning shifts the Hodge numbers by (+1,−17), giving a Calabi-Yau with Hodge

numbers (14, 416). No other Calabi-Yau with h2,1 ≥ 350 can be formed by tuning a gauge

group over F
[2]
12 . Some checking is needed, however, to confirm that no other gauge group

can be tuned on C3. From the analysis of section 2.6, the only allowed degrees of vanishing

on C2 are (0, 0, 1) or (1, 1, 2), so by the averaging rule the only way in which the degrees

of vanishing on C3 could give any larger gauge algebra than su(2) is for a type IV (2, 2, 4)

singularity carrying an su(3) gauge algebra. Expanding g = g0(w)+g1(w)ζ+ · · · in powers

of a coordinate ζ that vanishes on C3 (with w = 0 on S̃), the condition for an su(3) gauge

group at a type IV singularity is that g2 be a perfect square. The highest power of w

appearing in g2, however, is w7, corresponding to the single monomial of degree 5 in g

over S. If g2 is a perfect square then this coefficient would have to vanish, giving a (4, 6)

vanishing on S. Thus, there is only one possible tuning of F
[2]
12 , with a single su(2) on C3.

3.6 Threefolds over the base F
[3]
12

Now we consider blowing up a third point on F12. Unless all three points are on the same

fiber, we simply have a combination of the previously considered configurations. On the

twice blown up fiber (−1,−2,−1), we cannot blow up on C1 or C2, or we would have a

cluster that is not allowed in such close proximity to the −12 through the rules of [19]. So

we can only blow up on the initial −1 curve C3. As above, a representative of the +10

curve on F
[2]
12 passes through each point on C3, so a blow-up at any such point gives the

base F
[3]
12 with fiber (−1,−2,−2,−1). This is on the same moduli space as the Calabi-Yau

with Hodge numbers (14, 404) having three (−1,−1) fibers. We can, however, tune various

gauge groups on F
[3]
12 that fix the −2 structure in place. From the analysis of previous cases

we know that we cannot tune a gauge group on C1 or C2, and the only possible gauge

algebra on C3 is su(2). (Note that the argument from the previous section constraining

the gauge group on C3 remains valid even when additional points are blown up). By

the averaging rule, the largest possible vanishing orders of f, g,∆ that are possible on C4

are (3, 3, 6). A systematic analysis shows that we can tune the following gauge algebra

combinations on the initial (−1,−2) curves C4 and C3:

· ⊕ su(2) → (h1,1, h2,1) = (15, 399) (3.1)

su(2)⊕ · → (h1,1, h2,1) = (15, 387) (3.2)

su(2)⊕ su(2) → (h1,1, h2,1) = (16, 386) (3.3)

su(3)⊕ su(2) → (h1,1, h2,1) = (17, 377) (3.4)

g2 ⊕ su(2) → (h1,1, h2,1) = (17, 371) (3.5)

Note that in the last three cases, there is bifundamental matter. For example, in the

case (3.3) the shift in h2,1 corresponds to the net change in V − Hch. From table 4 we

would expect −5 − 17 = −22, but there is a bifundamental 2 × 2 from the intersection

between the −1 and −2 curves so that 4 of the matter hypermultiplets have been counted

twice, and the actual change to h2,1 is 404− 18 = 386.
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All of the tunings (3.1)–(3.5) give consistent constructions of EFS Calabi-Yau three-

folds. Note, however, that the threefold realized through (3.2) is not a generic threefold in

the given branch of the moduli space. For this construction, the curve C2 is a −2 curve

without vanishing degree for ∆. Thus, the threefold can be deformed by moving C1 to a

different point on S. This gives a C∗ base with a single (−1,−1) fiber and a (−1,−2,−1)

fiber with a single su(2) as can be tuned on F
[2]
12 . Checking the Hodge numbers, we see

that indeed the resulting model is equivalent to the blow-up of the (14, 416) threefold at a

generic point, so we do not list this construction separately in table 5.

The final case (3.5) is of particular interest, as it appears to give a Calabi-Yau threefold

that did not arise in the complete classification by Kreuzer and Skarke of threefolds based

on hypersurfaces in toric varieties. In this case there is a matter field charged under the g2⊕

su(2) transforming in the (7, 122) (half-hypermultiplet in the fundamental of su(2)), which

raises h2,1 by 7: 404− 5− 35 + 7 = 371. Given the apparent novelty of this construction,

for this particular threefold we spell out some of the details of the Weierstrass monomial

calculation that we have performed as a cross-check. After requiring that (f, g,∆) vanish

to degree (2, 3, 6) on the (−1)-curve C4 and (2, 2, 4) on the adjacent (−2)-curve C3 (∆

must vanish to degree 4 on C3 and to degree 2 on C2, by the averaging rule), the number

of Weierstrass monomials in f, g becomes

Wf = 125, Wg = 260 . (3.6)

With waut = 1+(9+1) = 11, N−2 = G1 = 0, we have then h2,1 = 125+260−11−3 = 371,

in agreement with the expectation from anomaly cancellation. It is also straightforward

to check that this set of Weierstrass monomials does not impose any unexpected (4, 6)

vanishing on curves or points in the base which would invalidate the threefold construction.

Because a (2, 3, 6) tuning is ambiguous, we consider the possible monodromies associated

with the gauge group on C4, which can be analyzed in terms of monomials in a local

coordinate system. Expanding f =
∑

i f̂iζ
i and g =

∑

i ĝiζ
i in a coordinate ζ that vanishes

on C4, the monodromy that determines the choice of gauge algebra g2, so(7) or so(8) is

determined by the form the polynomial containing the leading order terms in ζ from the

Weierstrass equation

x3 + f̂2x+ ĝ3 , (3.7)

where the coefficients f̂2 and ĝ3 are functions on the −1 curve C4 only of the usual coordi-

nate w, which vanishes on S̃. The monodromy condition that selects the gauge group can

be found from the factorization structure of (3.7),

x3 +Ax+B (generic) ⇒ g2

(x−A)(x2 +Ax+B) ⇒ so(7) (3.8)

(x−A)(x−B)(x+ (A+B)) ⇒ so(8) . (3.9)

From an analysis similar to that described in section section 2.6 (which can also be read

off directly from figure 3, noting that the monomials ζjwk correspond to zj+3(n−k)wk, for

n = 4, 6 for f, g respectively), we find that f̂2, ĝ3 have the form

f̂2(w) = f̂2,0 + f̂2,1w + f̂2,2w
2 + f̂2,3w

3 + f̂2,4w
4
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ĝ3(w) = ĝ3,0 + ĝ3,1w + ĝ3,2w
2 + ĝ3,3w

3 + ĝ3,4w
4 + ĝ3,5w

5 + ĝ3,6w
6 + ĝ3,7w

7 . (3.10)

The w7 term in g3 corresponds to the monomial w7 with coefficient g0,7 in the original

z, w coordinates, which as discussed above cannot be tuned to zero since this would force

a (4, 6, 12) singularity on S. This implies, however, that (3.7) cannot have a nontrivial fac-

torization. Any tuning of an so(7) gauge algebra, for example, must, upon expanding (3.8),

yield f̂2 = B − A2, which would imply that A must be no more than quadratic and B no

more than quartic (a higher-order cancellation with A cubic and B sextic is not possible

since this would lead to 9th order terms in g). This means, however, that ĝ3 = AB could be

at most of order six; in other words, this factorization cannot be achieved without tuning

the w7 term in ĝ3 to zero. A similar argument demonstrates that an so(8) cannot be tuned

on C4, but it is clear already that any tuning of so(8) involves at least the restrictions of

so(7) on the monomials in question, hence the impossibility of so(7) implies the impossi-

bility of so(8). Thus, the presence of the w7 term in g guarantees that the monodromy

associated with a Kodaira type I∗0 singularity over C4 must give an g2 gauge algebra, as

in (3.5).

The upshot of this analysis is that the tuning (3.5) seems to give a threefold with Hodge

numbers (17, 371) while no tuning beyond g2 is possible on C4. Some possible subtleties

in the interpretation of the (17, 371) threefold are discussed in section 4.3.3.

One other issue that should also be explained explicitly is the reason that it is not

possible to tune an su(3) algebra on C4 without tuning a gauge group on C3. It is straight-

forward to check using monomials that tuning g to vanish to order 2 on C4 forces g to also

vanish to order 2 on C3, so a type IV (2, 2, 4) vanishing on C4 forces a type III (1, 2, 3)

vanishing at least on C3, which must always be associated with a nonabelian gauge group.

And tuning a (0, 0, 3) vanishing on C4 produces at least a (0, 0, 2) vanishing on C3 by the

averaging rule, but by checking monomials we can verify that no vanishing is imposed on

f or g on C3 so again tuning an su(3) on C4 necessarily imposes at least an su(2) on C3.

This completes the classification of possible tuning structures that are possible on F
[3]
12 ;

the resulting Calabi-Yau threefolds are tabulated in table 5.

3.7 Threefolds over the base F
[4]
12

At the next stage, again we can only blow up on the first −1 curve (C4) in the

(−1,−2,−2,−1) fiber in F
[3]
12 , since for example a −12 curve cannot be connected by a

−1 curve to a (−2,−3) cluster so we cannot blow up on the second (−2) curve C3. Again,

the Calabi-Yau threefold F
[4]
12 over the base with the resulting (−1,−2,−2,−2,−1) fiber is

in the same moduli space as the one with four (−1,−1) fibers and has Hodge numbers (15,

375). But there are an increasing number of possible gauge groups that can be tuned on

the initial three curves C5, C4, and C3.

All of the analysis performed for tunings on C4–C1 in F
[3]
12 holds for tunings on these

same curves in F
[4]
12 . Thus, each of the gauge groups tuned over F

[3]
12 can be tuned in a

parallel fashion on F
[4]
12 . The only difference is that C4 is now a −2 curve, so the gauge

groups on that curve have reduced matter content and the change in Hodge numbers from

the tuning decreases accordingly. For example, while tuning an su(2) ⊕ su(2) on C4 and
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C3 over F
[3]
12 shifts the Hodge numbers by (∆h1,1,∆h2,1) = (+2,−18) as discussed above,

the shift for the same gauge group tuning on F
[4]
12 is (+2,−6) since there are 6 fewer matter

fields in the fundamental 2 representation of the su(2) over C4. We can also confirm

directly that none of the allowed tunings on C4–C1 impose any mandatory vanishing

condition on C5. Thus, the tunings (3.3)–(3.5) can all be done in a similar fashion, giving

another set of threefolds tabulated in table 5, including another apparently new threefold

not in the CY database at (18, 363). Note that the tuning (3.1) of a single su(2) on C3 in

F
[4]
12 gives a threefold on the same moduli space as the blow-up at a generic point of this

tuning on F
[3]
12 , with Hodge numbers (16, 370).

Finally, we can consider tuning a gauge group on C5 in combination with any other

gauge groups on the other curves. As in the analysis in the previous section, if no gauge

group is tuned on C3, the threefold is non-generic since the curve C1 can be moved on

S. By the averaging rule, tuning an su(2) on both C3 and C5 will also force an su(2)

on C4. An su(2) can be tuned on C5, along with su(2) factors on C4, and C3, giving

a threefold with Hodge numbers (18, 356). Enhancement of the su(2) on C4 to su(3)

is then still possible, which yields a threefold with the Hodge numbers (19, 355). Note

that these Hodge numbers are identical to those of a generic fibration over a five-times

blown up F12 (discussed below); this provides the first example of a situation where two

apparently distinct constructions produce threefolds with identical Hodge numbers. The

possible relationship between such models is discussed in section 4.3.4. Finally, the middle

su(3) (on C4) can again be enhanced to g2, yielding a model with Hodge numbers (19, 353),

another new construction that does not appear in the Kreuzer-Skarke database. There are

also a number of possible configurations where su(3) and larger gauge groups are tuned

on C5, but since C5 is a −1 curve and gauge groups tuned on such divisors carry more

matter, these all give threefolds with smaller Hodge numbers h2,1 < 350. One such tuning

that is worth mentioning, however, is given by imposing the condition that ∆ vanish to

degree 4 on C5. This can be arranged, giving for example a model with gauge group

sp(2) ⊕ su(2) and Hodge numbers (20, 340), which arises in the Kreuzer-Skarke database.

A more detailed exploration of these and other models with h2,1 < 350 is left to further

work. This completes the summary of threefolds based on tuning of F
[4]
12 .

3.8 Five blow-ups

At this stage the story becomes even more interesting. We can blow up the fiber

(−1,−2,−2,−2,−1) again at an arbitrary point on C5 to get (A) F
[5]
12 with a result-

ing (−1,−2,−2,−2,−2,−1) fiber. We can also, however, blow up in two other ways.

We can blow up the point of intersection between C5 and C4 giving a chain (B)

(−2,−1,−3,−2,−2,−1). Alternatively, we can blow up a generic point in the curve C4,

giving the fiber (C) shown in figure 5. In the latter case, the fiber and associated base no

longer have a toric description. Let us consider these three cases in turn:

(A) This is the straightforward generalization of the previous examples, F
[5]
12 has

Hodge numbers (16, 346), and is on the same moduli space as the base with five (−1,−1)

fibers. There are a variety of tunings, which all have h2,1 < 350 and which therefore for

the present purposes we omit. It bears mentioning that tunings on the multiple −2 curves
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Figure 5. Blowing up on the top −2 curve (C4) on a (−1,−2,−2,−2,−1) chain results in a divisor

structure giving a non-toric base, with a (−3,−2,−2) non-Higgsable cluster (case (C) in the text).

In the limit of moduli space where the intersection points of the two −1 curves with the −3 curve

coincide, the fiber becomes (−2,−1,−3,−2,−2,−1) and the base becomes toric (case (B)).

in this base give a rich variety of possible threefolds, and it is at this point that larger

algebras such as f4 and e6 can be tuned.

(B) In this case, as discussed in [20], the appearance of the non-Higgsable cluster

(−3,−2) requires a non-Higgsable gauge algebra g2 ⊕ su(2). The associated rank 3 gauge

algebra with 17 vector multiplets and 8 charged matter multiplets raise the Hodge numbers

of this base to (19, 355). There are various tunings on C6, but all go below h2,1 = 350,

except for a single su(2) on C6 that gives a standard shift to a threefold with Hodge numbers

(19, 355) + (1,−5) = (20, 350). Note that without tuning, the initial −2 curve in this fiber

represents an extra Weierstrass modulus, so this is not a generic configuration, as discussed

in the following case. Note also, however, that the analysis of section section 2.4 shows that

no gauge group can be tuned on the −1 curve C5 since it is adjacent to a non-Higgsable

cluster that is not a single −3 curve.

(C) In this non-toric case we again have the same non-Higgsable cluster as in the

previous case, and the same Hodge numbers (19, 355). In this case there are also no

tunings possible. This construction represents the generic class of threefolds of which the

untuned model (B) above represents a codimension one limit. The final blow-up of a point

in C4 in this non-toric construction can be taken to approach the point which was blown

up to form C5 in F
[4]
12 , producing the −2 curve found in (B).

3.9 More blow-ups

Further blow-ups raise the Hodge number h2,1 below 350. As the number of blow-ups

increases, the number of fiber configurations also increases. We leave a systematic analysis

of tuned models over further blown up bases for further work.

4 Conclusions

In this paper we have initiated a systematic analysis of the set of all elliptically fibered

Calabi-Yau threefolds, starting with those having large Hodge number h2,1. These Calabi-

Yau threefolds fit together into a single connected space, with the continuous moduli spaces
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h11 h21 Base K-S # (∆h11, ∆h21) Fiber Gextra

11 491 F12 1 (0,0) 0

12 462 F12 2 (1,−29) 11

13 433 F12 4 2 × (1,−29) 2×(11)

14 416 F12 2 (3,−75) 121 su(2)

14 404 F12 6 3 × (1,−29) 3×(11)

15 399 F12 1 (4,−92) 1221 su(2)

15 387 F12 4 (1, -29) + (3, -75) 11 + 121 su(2)

16 386 F12 1 (5,−105) 1221 su(2)⊕ su(2)

17 377 F12 3 (6,−114) 1221 su(3)⊕su(2)

10 376 F8 2 (0, 0) 0

F7 (0, 0) 0

15 375 F12 9 4 × (1,−29) 4×(11)

17 371 F12 0 (6,−120) 1221 g2 ⊕ su(2)

16 370 F12 3 (1,−29) + (4,−92) 11 + 1221 su(2)

17 369 F12 1 (6,−122) 12221 su(2)⊕ su(2)

18 366 F12 2 (7,−125) 12221 su(3)⊕ su(2)

18 363 F12 0 (7,−128) 12221 g2 ⊕ su(2)

16 358 F12 7 2 × (1, -29) + (3,−75) 2× (11)+121 su(2)

17 357 F12 2 (1,−29) + (5,−105) 11+ 1221 su(2)⊕ su(2)

18 356 F12 1 (7,−135) 12221 su(2)⊕ su(2)⊕ su(2)

19 355 F12 3 (8,−136) 213221 g2 ⊕ su(2)

(generically non-toric)

F12 3 (8,−136) 12221 su(2)⊕ su(3)⊕ su(2)

19 353 F12 0 (8,−138) 12221 su(2)⊕ g2 ⊕ su(2)

20 350 F12 1 (9,−141) 213221 su(2)⊕ g2 ⊕ su(2)

Table 5. Table of all possible Calabi-Yau threefolds that are elliptically fibered with section and

have h21 ≥ 350. For each pair of Hodge numbers, the number of distinct constructions found

by Kreuzer and Skarke giving these Hodge numbers is listed (0= new construction). The data

for explicit construction through a tuned elliptic fibration over a blow-up of F12 is given for each

threefold. In each case, the fiber types and extra tuned gauge groups (beyond those forced from the

structure of the original Hirzebruch base — e8 in all cases except the (10, 376) CY’s) is indicated.

Each fiber is given by a sequence of the (negative of the) self-intersection numbers of the curves

in the fiber; underlined curves carry tuned gauge group factors, while overlined curves carry gauge

group factors associated with non-Higgsable clusters.
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associated with different topologies connected together through transitions between singu-

lar points in the different components of the moduli space. This structure is clearly and

explicitly described in the framework of Weierstrass models. In principle, the approach

taken here could be used to classify all EFS CY threefolds. There are, however, a number

of practical and technical limitations to carrying out this analysis for the set of all threefolds

with arbitrary Hodge numbers given the current state of knowledge. We describe these

issues in section 4.1. A similar analysis could in principle be carried out for Calabi-Yau

fourfolds, though in this context there are even larger unresolved mathematical questions,

discussed in section 4.2. Some other comments on future directions are given in section 4.3.

4.1 Classifying all EFS Calabi-Yau threefolds

In order to classify the complete set of EFS Calabi-Yau threefolds, some specific technical

problems that begin to arise at smaller Hodge numbers need to be resolved. The primary

outstanding issues seem to be the following 4 items:

General bases. A systematic means for explicitly enumerating the complete set of pos-

sible bases B2, including bases that are neither toric nor “semi-toric” has not yet been

developed.

Tuning classical groups. A general rule for determining when the gauge groups SU(N),

SO(N), and Sp(N) can be tuned on a given divisor is not known.

Codimension two singularities. A complete classification of codimension two singu-

larities and associated matter representations has not yet been realized.

Extra sections and abelian gauge group factors. There is no general approach

available yet for determining when an elliptic fibration of arbitrary Mordell-Weil rank can

be tuned over a given base B2.

We describe these issues in some further detail and summarize the current state of

understanding for each issue in the remainder of this section. If all these issues can be re-

solved, it seems that the complete classification and enumeration of EFS CY threefolds may

be a problem of tractable computational complexity, as discussed further in section 4.1.1.

4.1.1 General bases

As discussed in section 2.3, the set of possible bases is constrained by the set of allowed

non-Higgsable clusters of intersecting divisors with negative self-intersection [19], and a

complete enumeration of all bases with toric and semi-toric (C∗) structure has been com-

pleted [20, 21]. In principle, there is no conceptual obstruction to explicitly enumerating

the finite set of possible bases B2 that support an elliptically fibered CY threefold, but

in practice this becomes rather difficult since the intersection structure can become rather

complicated as more points are blown up. For bases with smaller values of h2,1 than those

considered here, there are more ways in which points can be blown up without preserving

a toric or C∗ structure. This leads to increasingly complicated branching structures in the

set of intersecting divisors. It is a difficult combinatorial problem to track the new divisors
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of negative self intersection that may appear as non-generic points are blown up in a base

that has no C∗ symmetry. For example, new curves of negative self intersection may appear

from curves of positive or vanishing self intersection that pass through multiple blown up

points; in more extreme cases, a set of points may be blown up that lie on a highly singular

codimension one curve, complicating the divisor intersection structure. A related issue is

that the number of generators of the Mori cone of effective divisors can become large —

indeed, for the del Pezzo surface dP9 formed by blowing up P 2 at 9 generic points, the

cone of effective divisors is generated by an infinite family of distinct −1 curves.

While the combinatorics of this problem may seem forbidding, several pieces of evidence

suggest that a complete enumeration may be a tractable problem. The analysis of C∗ bases

in [21] shows that allowing certain kinds of branching and corresponding loops in the web of

effective rigid divisors (associated with multiple fibers intersecting S, S̃) does not dramat-

ically increase the range of possible bases;5 the full set of C∗ bases is several times larger

than the number of toric bases (∼ 160,000 vs. ∼60,000), but not exponentially larger. It

also seems that as the complexity of C∗ bases increases, the range and complexity of non-C∗

structures that can be added by further blow-ups decreases. Further work in this direction

is in progress, but it seems likely that the total number of possible bases may not exceed the

number already identified as toric or C∗-bases by more than one or two orders of magnitude.

4.1.2 Tuning In and I∗

n
codimension one singularities

As described in section 2.4, section 2.5, and section 2.6, though the intersection structure of

divisors, Zariski-type decomposition, and 6D anomalies can strongly restrict which gauge

groups can be tuned over any given configuration of curves, these conditions are necessary

but not sufficient, and to verify that a valid threefold with given structure exists a more

direct method such as an explicit Weierstrass construction is needed. For gauge algebras

such as e7 and e8 that are realized by tuning coefficients in f and g to get the desired

Kodaira singularity types, it is fairly straightforward to confirm that Weierstrass models

with the desired properties can be constructed. For algebras like g2, e6, or f4 that involve

monodromy but are still realized by tuning f, g, it is also possible to check the Weierstrass

model directly by considering the set of allowed monomials in the specific model; examples

of this were described in section 3. There are some types of gauge algebra, however, namely

those realized by Kodaira type In and I∗n, where the tuning required is on the discriminant

∆ and not directly on f, g. This leads to a more difficult algebra problem, since as n

becomes larger, the set of required conditions become complicated polynomial conditions

on the coefficients of f, g, rather than linear conditions as arise in all other cases.

An example of this kind of difficulty arises in considering the tuning of a Kodaira type

In singularity giving an su(n) gauge algebra over a simple curve of degree one in the base

B2 = P2. In this case, anomaly cancellation conditions restrict the rank of the group so

that n ≤ 24. But explicit construction of the models for large n is algebraically somewhat

complicated. In this case, f is a polynomial of degree 12 in local coordinates z, w in the

base, and g is a polynomial of degree 18. If we consider a curve C defined by the locus

5Some simple branching structures of this kind are also encountered in the classification of 6D super-

conformal field theories [48].
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where z = 0, we can expand f, g,∆ in the form e.g. f = f12(w) + f11(w)z + · · · + f0z
12,

where fm is a polynomial of degree m in w. An explicit analysis of su(n) models in this

context was carried out in [43], and Weierstrass models for these theories were found for

n ≤ 20, n = 22, and n = 24, but no models were identified for n = 21, 23. Similarly,

in [49], Weierstrass models for elliptic fibrations over bases B2 = F1,F2 with Kodaira type

In singularities over the curves S of self-intersection −1,−2 in these bases were analyzed.

Anomaly considerations suggest that in each case there are enough degrees of freedom to

tune an I15 singularity, but solutions were only found algebraically up to n = 14.

In general, such algebraically complicated problems arise whenever one attempts to

tune an In or I∗n singularity. For a complete classification and enumeration of all elliptically

fibered Calabi-Yau threefolds with section, either a direct method is needed for constructing

a solution for the resulting set of polynomial equations on the coefficients of f, g, or some

more general theorem is needed stating when this algebra problem has a solution. This

problem is also in some cases apparently intertwined with the issue of determining the

discrete part of the gauge group, associated with torsion in the Mordell-Weil group, as

discussed in section 4.1.4.

4.1.3 Codimension two singularities

The possible singularity types at codimension two are not completely classified. In most

simple cases, a local rank one enhancement of the gauge algebra gives matter that can

be simply interpreted [29, 33, 50]. For example, at a point where an In singularity locus

crosses a (0, 0, 1) component of the discriminant locus ∆ there is an enhancement to In+1

corresponding to matter in the fundamental representation of the associated su(n). In other

cases, however, the singularities can be more complicated. Despite much recent progress in

understanding codimension two singularities and associated matter content [31, 43, 51–57],

there are still many aspects of codimension two singularities, even for Calabi-Yau three-

folds, that are still not well understood or completely classified. In principle, however,

there should be a systematic way of relating codimension two singularity types to repre-

sentation theory in the same way that the Kodaira-Tate classification relates codimension

one singularity types to Lie algebras.

One particular class of codimension two singularities that is not as yet systematically

understood or classified are cases where the curve C that supports a Kodaira type singu-

larity is itself singular. For simple singularity types, such as an intersection between two

curves — which gives bifundamental matter — or a simple intersection of the curve with

itself — which for su(n) gives an adjoint representation or a symmetric + antisymmetric

representation — the connection between representation theory and geometric singularities

is understood [42, 43]. For more exotic singularity types of C, however, there is as yet no

full understanding. Analysis of anomalies in 6D theories [37] indicates that for any given

representation R, there is a corresponding singularity that contributes to the arithmetic

genus of the curve C through

gR =
1

12
(2λ2CR + λBR − λAR) , (4.1)
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where the anomaly coefficients AR, BR, CR are defined through (2.16). For example, the

20 “box” representation of SU(4) should correspond to a singularity with arithmetic genus

contribution 3 on the curve C; while a potential realization of this representation through

an embedding of an A3 singularity into a D6 singularity was suggested at the group theory

level in [43], the explicit geometry of the associated singularity has not been worked out.

Without a general theory for this kind of singularity structure, a complete classification of

EFS CY threefolds will not be possible.

4.1.4 Mordell-Weil group and abelian gauge factors

One of the trickiest issues that needs to be resolved for a complete classification of EFS

Calabi-Yau threefolds to be possible is the problem of determining when additional non-

trivial global sections of an elliptic fibration over a given base B2 can be constructed, and

explicitly constructing them when possible. The construction of an explicit Weierstrass

model depends on the existence of a single global section. Using the fiber-wise addition

operation on elliptic curves (which corresponds to the usual addition law on T 2), the set of

global sections forms a abelian group known as the Mordell-Weil group. The Mordell-Weil

group contains a free part Zk of rank k, and can also have discrete torsion associated with

sections for which a finite multiple gives the identity (0 section). The rank of the Mordell-

Weil group determines the number of abelian U(1) factors in the corresponding 6D gauge

group [14]. In recent years there has been quite a bit of progress in understanding the role

of the Mordell-Weil group and U(1) factors in F-theory constructions and corresponding

supergravity theories [47, 58–74]. We review briefly here some of the parts of this story

relevant for constructing EFS CY threefolds, and summarize some outstanding questions.

For a single U(1) factor (rank 1 Mordell-Weil group), a general form for the correspond-

ing Weierstrass model was described by Morrison and Park in [62]. It was shown in [47]

that a Weierstrass model with a single section of this type can always be tuned so that the

global section, corresponding to a nontrivial four-cycle in the total space of the Calabi-Yau

threefold, becomes “vertical” and is associated with a codimension one Kodaira type sin-

gularity giving a nonabelian gauge group factor in the 6D theory with matter in the adjoint

representation. From the point of view of this paper, this means that any model with a rank

one Mordell-Weil group can be constructed by first tuning an SU(2) or higher-rank non-

abelian group on a curve of nonzero genus, and then Higgsing the group using the adjoint

matter to give a residual U(1) gauge group factor. This should in principle make it possible

to systematically construct all Calabi-Yau threefolds with rank one Mordell-Weil group.

For higher rank, the story becomes more complicated. Elliptic fibrations with Mordell-

Weil groups of rank two and three can be realized by constructing threefolds where the fiber

is realized in different ways from the Weierstrass form (1.1) [75, 76]. Explicit constructions

of Weierstrass models for general classes of threefolds with rank two and three Mordell-Weil

group were identified in [66–68] and [72] respectively, but there is no general construction

for models with Mordell-Weil rank higher than three. CY threefolds with much larger

Mordell-Weil rank have been constructed; it was shown in [21], in particular, that for

certain C∗ bases there is an automatic (“non-Higgsable”) Mordell-Weil group of higher

rank, with ranks up to k = 8. It must be possible to construct an elliptically fibered
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Calabi-Yau threefold over the base P2 with Mordell-Weil rank seven; this follows from the

explicit construction in [43] of an SU(8) model with adjoint matter (with an I8 singularity

on a cubic curve), which can be Higgsed to give U(1)7 (though the explicit Higgsed model

has not been constructed). It is also possible that an SU(9) model with adjoint matter may

exist on P2, which would give a Mordell-Weil rank of 8. It is not known whether all higher

rank Mordell-Weil groups can be constructed by Higgsing higher rank nonabelian gauge

groups; this would mean that the results of [47] or a single section could be generalized to

an arbitrary number of sections, so that all global sections could simultaneously be tuned

to vertical sections without changing h1,1. If this were true, it would lead to a systematic

approach to constructing all EFS CY threefolds with arbitrary Mordell-Weil rank, but

more work is needed to understand this structure for higher rank models. It is also known

that the Mordell-Weil rank cannot be arbitrarily high; for example, anomaly cancellation

conditions in 6D impose the constraint that the rank satisfies k ≤ 17 when the base is

P2 [60], and this constraint can probably be strengthened considerably.

Beyond the rank of the Mordell-Weil group, which affects the Hodge numbers of the

threefold formed by a particular Weierstrass model through (2.1), the torsion part of the

Mordell-Weil group is also as yet incompletely understood. For a complete classification

of EFS CY threefolds from Weierstrass models, a better understanding is needed of

what kinds of torsion in the Mordell-Weil group are possible and how they can be tuned

explicitly in Weierstrass models. In particular, while the Kodaira type dictates the Lie

algebra of the corresponding 6D theory, the gauge group G may take the form
∏

iGi/Γ

where Gi are the associated simply connected groups and Γ is a discrete subgroup dictated

by the torsion in the Mordell-Weil group. We have not studied this discrete structure in

this work, but understanding it is necessary for a full classification of EFS CY threefolds.

A systematic discussion of Mordell-Weil torsion is given in [34]. Some examples of

Mordell-Weil groups with torsion are given, for example, in [47].

4.2 Classifying all EFS Calabi-Yau fourfolds

The methods of this paper can be used to analyze elliptically fibered Calabi-Yau manifolds

of higher dimensionality, though there are more serious technical and conceptual obstacles

to a complete classification of fourfolds or higher. Elliptically fibered Calabi-Yau fourfolds

are of particular interest for F-theory compactifications to the physically relevant case of

four space-time dimensions.

The classification of minimal bases B2 that support EFS Calabi-Yau threefolds, which

formed the starting point of the analysis here of EFS CY3s with large h2,1, depended upon

the mathematical analysis of minimal surfaces and Grassi’s result for minimal surfaces

that support an elliptically fibered CY threefold. The analogous results for fourfolds are

less well understood. In principle, the mathematics of Mori theory [77] can be used to

determine the minimal set of threefold bases that support EFS Calabi-Yau fourfolds,

but this story appears to be somewhat more complicated than the case of complex base

surfaces. For fourfolds, the set of possible transitions associated with tuning Weierstrass

models include blowing up curves as well as divisors, which further complicates the process

of analyzing the set of bases, even given the set of minimal bases. Some basic aspects of
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these transitions are explored in [75, 78, 79]. At least in the toric context, however, an

analysis of CY fourfolds along the lines of this paper seems tractable. There has been

some exploration of the space of Calabi-Yau fourfolds with a toric description [75, 80–83],

and a complete enumeration of toric bases B3 with a P1 bundle structure that support

elliptic fibrations for F-theory models with smooth heterotic duals was carried out in [44],

along with a complete classification of non-toric threefold bases with this structure. A

systematic analysis using methods analogous to [19, 20] of the space of all toric bases that

support elliptically fibered CY fourfolds seems tractable, if computationally demanding.

Note that since over many bases there are a vast number of different tunings, classifying

the bases and associated generic Weierstrass models is a much more tractable problem

than a complete classification of CY fourfold geometries.

4.3 Further directions

The analysis initiated in this paper can in principle be continued to substantially lower

values of h2,1 before any of the issues described in section 4.1 become serious problems.

Even outside the set of toric and C∗ bases, the number of ways that the Hirzebruch surfaces

Fm with large m can be blown up is fairly restricted. Algebraic problems with In and

I∗n, nontrivial Mordell-Weil groups, and exotic matter content are all issues that become

relevant only at lower values of h2,1. Further work in this direction is in progress, which

may both reveal more about the structure of elliptically fibered Calabi-Yau threefolds and

may also help provide specific situations in which the issues described in section 4.1 can be

systematically addressed. There are a number of more general conceptual issues that can

be addressed in the context of this program, which we discuss briefly here.

4.3.1 Hodge number structures

The approach taken here, which in principle can systematically identify all elliptically

fibered Calabi-Yau threefolds that admit a global section, is complementary to methods

involving toric constructions that have been used in many earlier studies of the global space

of CY threefolds. The systematic analysis by Kreuzer and Skarke [23] of CY threefolds that

can be realized as hypersurfaces in toric varieties through the Batyrev construction [46]

gives an enormous sample of Calabi-Yau threefolds whose Hodge numbers have clear struc-

ture and boundaries. The analysis of elliptically fibered threefolds through Weierstrass

models groups the threefolds according to the base B2 of the elliptic fibration, and both

simplifies the classification and enumeration of models and enables the systematic study of

non-toric elliptically fibered CY threefolds. The fact, observed in [21, 22], that generic ellip-

tic fibrations over both toric bases and a large class of non-toric bases span a similar range

of Hodge numbers, with similar substructure and essentially the same boundary, suggests

that these sets of threefolds are not just a small random subset, but may in some sense be

a representative sample of all Calabi-Yau threefolds. In [84], Candelas, Constantin, and

Skarke used the Batyrev construction and the method of “tops” [85] to analyze Calabi-

Yau threefolds with an elliptic (K3) fibration structure and identified certain patterns in

the set of associated Hodge numbers. Some of these patterns are clearly related to the

transitions described through Weierstrass models as blow-ups and tuning of gauge groups.
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For example, the characteristic shift by Hodge numbers of (+1,−29) is clearly seen from

the Weierstrass based analysis as the set of blow-up transitions between distinct bases B2.

Similarly, shifts such as (+1,−17) can be seen as arising from transitions on the full three-

fold geometry associated with tuning an su(2) algebra on a −1 curve, etc. In [84], another

structure noted is the classification of fibrations into “E8,” “E7,” etc. types based on the

way in which the elliptic fiber degenerates along the base. These correspond precisely in

the Weierstrass/base picture to the families of threefolds that can be realized by blowing

up points and tuning additional gauge groups over the bases F12,F8, etc..

One structure that is manifest in the Hodge numbers of Calabi-Yau threefolds, however,

which is not as transparent from the Weierstrass point of view is the mirror symmetry

of the set of threefolds, which exchanges the Hodge numbers h1,1 and h2,1. From the

Batyrev point of view, mirror symmetry has a simple interpretation in terms of the dual

polytope defining a toric variety used to construct a Calabi-Yau manifold. From the point of

view of Weierstrass models of elliptic fibrations over fixed bases, however, it seems harder

to understand, for example, how a blow-up transition with change in Hodge numbers

(+1,−29) is related to a sequence of blow-ups that give a shift (+29,−1) and typically

generate a full chain of divisors in the base associated with a gauge group factor E8 ×

F 2
4 × (G2 × SU(2))2 [20, 22]. Understanding how these two different approaches of toric

constructions based on reflexive polytopes and Weierstrass models on general bases can be

brought together to improve our understanding of mirror symmetry and the structure of

Hodge numbers for CY threefolds is an exciting direction for further work.

4.3.2 General Calabi-Yau’s with large Hodge numbers

The results presented here add to a growing body of evidence that the set of elliptically

fibered CY threefolds with section may provide a useful guide in studying general Calabi-

Yau threefolds, and may in fact dominate the set of possible Calabi-Yau threefolds. While

there is as yet no clear argument that places any bound on the Hodge numbers of a general

Calabi-Yau threefold, several pieces of empirical evidence seem to suggest that the CY

threefolds with the largest Hodge numbers may in fact be those that are elliptically fibered.

In this paper we have shown that all Hodge numbers for known Calabi-Yau manifolds that

have h2,1 ≥ 350 are realized by elliptically fibered threefolds. It seems natural to speculate

that the threefolds constructed here may constitute all Calabi-Yau threefolds (elliptically

fibered or not) that lie above this bound. The results of [22] suggest that more generally, the

outer boundary of the set of Hodge numbers for possible CY threefolds may be realized in

a systematic way by elliptically fibered threefolds, and further empirical evidence from [84]

also suggests that a large fraction of the models in the Kreuzer Skarke database with large

Hodge numbers are elliptically fibered. Since the methods of this paper do not depend on

toric geometry, it seems that this set of observations is not an artifact of the toric approach,

but rather that those threefolds constructed using toric methods form a good sample, at

least of those threefolds that admit elliptic fibrations. Other independent approaches to

constructing Calabi-Yau manifolds have recently given further supporting evidence for the

dominance of elliptically fibered manifolds in the set of Calabi-Yaus. In [86, 87], the

complete set of Calabi-Yau fourfolds constructed as complete intersections in products of
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projective spaces were constructed. From almost one million distinct constructions it was

found that 99.95% admit at least one elliptic fibration; a similar analysis finds that 99.3% of

threefolds that are complete intersections admit an elliptic fibration [88]. Taken together,

these results suggest that it may be possible to prove that all Calabi-Yau threefolds have

Hodge numbers that satisfy the inequality h1,1 + h2,1 ≤ 491 + 11 = 502. Some initial

exploration of one approach to finding such a bound from the point of view of the conformal

field theory on the superstring world sheet has been undertaken in [89, 90].

4.3.3 New Calabi-Yau threefolds

In this paper we have identified three apparently new Calabi-Yau threefolds, with Hodge

numbers (17, 371), (18, 363), and (19, 353). We have performed a number of checks to

confirm that these models are consistent, which all work out, so naively these appear to

represent a new set of Calabi-Yau threefolds. Continuing the analysis of this paper to lower

Hodge numbers generates an increasingly large number of other new threefolds, particularly

as the bases involved themselves become non-toric. There are several questions that might

be studied related to the Hodge numbers found here that apparently describe new Calabi-

Yau threefolds. One question is why these models do not appear in the Kreuzer-Skarke

database. In particular, the new threefolds identified here are elliptic fibrations over toric

bases, so we might expect in principle that they should appear in the Batyrev construction.

One possible explanation may be that the structure of the tuned g2 gauge algebra that

is common to all these constructions somehow takes the full space outside the context of

hypersurfaces in toric varieties even though the base is still toric.

Another possible explanation for why they these new threefolds do not appear in the

Kreuzer-Skarke database, however, may be related to the fact that they arise from tuning

moduli in other Calabi-Yau threefolds that have the same value of h1,1 (the threefolds

with Hodge numbers (17, 377), (18, 366), and (19, 355) respectively), associated with the

enhancement of su(3) to g2. This means that the geometric transitions associated with

these tunings are less dramatic than the other tunings and blow-ups since they do not

actually change the dimension of H1,1. One possible scenario is that these apparently

new Calabi-Yau threefolds may actually represent special loci in the moduli spaces of the

corresponding su(3) structure threefolds, and might not actually represent topologically

distinct Calabi-Yau manifolds. This situation might be analogous to the tuning of moduli

in a base to give a −2 curve at a codimension one space in the moduli space, which changes

the structure of the Mori cone but not the topology of the manifold. Further study of the

detailed structure of these apparently new threefold constructions goes beyond the methods

developed in this paper but should in principle be able to clarify this issue.

It would also be interesting to analyze the mirrors of these apparently new threefolds.

A cursory check indicates that it is difficult to construct the threefolds with the mirror

Hodge numbers where h1,1 and h2,1 are exchanged from tuned Weierstrass models as elliptic

fibrations. This suggests either that the mirrors may not be elliptically fibered or that the

second explanation given above is correct and that these are not actually topologically

distinct Calabi-Yau threefolds. The former scenario would indicate that the dominance

of elliptic fibrations may be asymmetric in the Hodge numbers. Further understanding of
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these issues and construction of additional new Calabi-Yau threefolds using these methods

are an interesting direction for further work.

4.3.4 Uniqueness and equivalence of Calabi-Yau threefolds

Another difficult problem on which the methods of this paper may be able to shed some

light is the question of when two Calabi-Yau threefolds, given by different data, are

identical. In the Kreuzer-Skarke database there are many examples of Hodge numbers

for which multiple toric constructions provide CY threefolds, as illustrated in table 5. A

priori, it is difficult to tell when these threefolds represent the same complex manifold.

Wall’s theorem [91] states that when the Hodge numbers, triple intersection numbers,

and first Pontryagin class of the threefolds are the same the spaces are the same as real

manifolds, but even this does not guarantee that two manifolds live in the same complex

structure moduli space. The problem of telling whether two sets of triple intersection

numbers given in different bases are equivalent is also by itself a difficult computational

problem. Thus, it is difficult to tell whether two Calabi-Yau manifolds given, for example,

by the toric data in the Kreuzer-Skarke list, are identical.

The methods of this paper provide an approach that can resolve this kind of question

in some cases. When the construction of an elliptically fibered Calabi-Yau threefold over

a given base with specified Hodge numbers can be shown to be unique (up to moduli

deformation) using the Weierstrass methods implemented here, this guarantees that any

two CY threefolds that are both elliptically fibered and share these Hodge numbers must

be identical as complex manifolds. In particular, with the exceptions of the Hodge number

pairs (10, 376) and (19, 355), for all the Hodge numbers found in this paper with h2,1 > 350,

there was a unique EFS CY threefold construction. It follows that any EFS CY threefolds

with these Hodge numbers should be geometrically identical as Calabi-Yau manifolds. As

an example, consider the elliptically-fibered Calabi-Yau threefold with Hodge numbers (12,

462). There are two distinct toric constructions of threefolds with these Hodge numbers

in the Kreuzer-Skarke database. Both admit elliptically fibrations. As we have proved

here in section 3.4, however, there is a unique construction of such a CY threefold, which

is realized by considering the generic elliptic fibration over a base F
[1]
12 given by blowing

up the Hirzebruch surface F12 at any point not lying on the −12 curve S. In principle,

continuing this kind of argument to lower Hodge numbers might be able to significantly

constrain the number of possible distinct Calabi-Yau threefolds that can be realized using

known constructions. In principle this line of reasoning can also be applied at a more

refined level by computing the triple intersection numbers for the manifolds in question.

This approach may be able to distinguish some pairs of elliptic fibration constructions

with identical Hodge numbers, such as the two constructions found here for threefolds

with Hodge numbers (19, 353), or the generic elliptic fibrations over F7 and F8, which both

have Hodge numbers (10, 376). Of course, however, many CY threefolds are likely to

admit multiple distinct elliptic fibrations (as found for fourfolds in [87]), so in some cases

apparently distinct constructions of elliptic fibrations will still give equivalent Calabi-Yau

threefolds. We leave further exploration of these interesting questions to future work.
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