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1 Introduction

Type II string theory on RM~% x T¢ is extremely constrained by supersymmetry and du-
ality symmetries. The various formulations of the theory are conjectured to be related by
U-duality, an arithmetic Fjy4)(Z) subgroup of the split real form of the Lie group of type



E; [1]. In particular, the exact low energy expansion of the effective action is expected to ex-
hibit this symmetry [2-4]. However there is no non-perturbative formulation of superstring
theory that would permit to derive directly the low energy expansion of the amplitudes, and
one must use perturbative string theory [5-9] and eleven-dimensional supergravity [3, 10]
together with U-duality to derive their non-perturbative completion. One can deduce the
superstring effective action from the amplitude by inverse Legendre transform (up to field
redefinition ambiguities), which can then be expressed in the low energy limit as the super-
gravity 1PI generating functional computed with the complete (appropriately renormalised)
string theory Wilsonian effective action. The supersymmetric Wilsonian effective action
admits the following expansion in the reduced Newton constant x? in 10 — d dimensions

d—
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where S is the supergravity classical action, and ST*?[£, ] with 2p+3¢ = n is a 9*"R*
type supersymmetric correction to the effective action depending on a function &, , of
the scalar fields parametrizing the symmetric space Ey(q)/Kq [1 1];' although starting from
n > 5 one has independent corrections in 9" 2R® and etcetera at higher orders [12].

It was shown in [13] that supersymmetry implies that the function &£y ¢y characterising
S®[E0.0)] in type IIB supergravity in ten dimensions is an eigenfunction of the Laplace
operator with eigenvalue —%, consistently with the analysis carried out in [2]. As a conse-
quence, supersymmetry and duality invariance entirely determine the function &£, in ten
dimensions. The constraints from supersymmetry have been computed for higher order
invariants [14] and the same conclusion holds for the V4*R?* type corrections [10]. The
realisation of these functions as Eisenstein functions [2, 4] has been generalised in lower di-
mensions [15], and to higher order V6 R* type corections [16], leading to more developments
in lower dimensions [17, 18].

We start by considering R* invariants in lower dimensions. We carry out this program
within the formalism of superforms in superspace developed in [19-21]. We concentrate in
a first section on R* type invariants in N/ = 2 supergravity in eight dimensions. Computing
the complete invariant is out of reach, and we concentrate on the components of the
superform that carry the maximal R-symmetry weight representations, similarly as in [13,
22]. We find in this way that the function of the scalar fields must satisfy a tensorial second-
order differential equation consistent with the explicit Eisenstein function computed in [4].

We extend these results in dimension 6, 4 and 3 and show that the function defining
the R* type invariant satisfies a unique tensorial second-order differential equation asso-
ciated to the minimal unitary representations of SO(5,5), Er(;) and Egs), respectively.
The function multiplying R* must satisfy the constraint that its second-order derivative
vanishes when restricted to the Joseph ideal [23]

j(D, D) 8(070) — 0 . (12)

'Here the functions Ep,q are defined as in [11], up to the subtlety that they are not necessarily U-duality
invariant in our conventions when there is a non-trivial mixing with the 1PI generating functional.



The relation between the minimal unitary representations and the R* type threshold func-
tion has been argued from several perspectives [24-28] and it is in particular conjectured
that the function can be defined as the exceptional theta series associated to the mini-
mal unitary representation of Eg) [28]. Our results strongly support this conjecture by
showing that supersymmetry implies indeed (1.2), whose solutions with appropriate bound-
ary conditions define the minimal unitary representation of the corresponding exceptional
group. Using the harmonic superspace construction of the higher order invariants in the
linearised approximation [29-32], we extend these results to the V4R* type invariants. In
four dimensions we also determine the equation satisfied by the function defining the V6 R*
type invariant, relying on properties derived in [33] to fix the free coefficients. We find that
the threshold functions satisfy higher order differential equations attached to certain nilpo-
tent coadjoint orbits exhibiting their relation to next to minimal unitary representations
as proposed in [28].

We study the corresponding differential equations in some detail in six and four dimen-
sions, and find perfect agreement with the definition of the threshold functions as Eisenstein
series [11, 33-35]. We discuss in particular the two Eisenstein functions defining the V4R*
type correction in six dimensions [33], and show that these two functions are associated
to two independent invariants, and solve independent differential equations associated to
the two next to minimal nilpotent orbits of D5 (that both only include the closure of the
minimal nilpotent orbit in their topological closure). Working out the general solutions to
these differential equations, we extend the results of [34] on the structure of the Fourier
modes of these functions.

Because the R* type corrections to the effective action are defined in the linearised
approximation as superspace integrals over half of the Grassmann coordinates [30], the
property that they only receive corrections from non-perturbative effects associated to 1/2
BPS instantons has been conjectured to be a consequence of supersymmetry [2]. The dif-
ferential equation that we find to be a consequence of supersymmetry implies indeed strong
restrictions on the possible perturbative corrections that the effective action can receive
in string theory, and moreover implies through the dependence on the scalar fields that
the non-perturbative corrections associated to instantons must also be 1/2 BPS by super-
symmetry. The generalisation of these results for V4R* to only receive corrections from
(at least) 1/4 BPS instantons go through as well, in agreement with the analysis carried
out in [34], and the differential equation we propose for the V6R* type invariant in four
dimensions implies that it can only receive corrections from (at least) 1/8 BPS instantons,
as expected from its harmonic superspace construction in the linearised approximation.

In this paper we distinguish the Wilsonian effective action that preserves local super-
symmetry from the 1PI generating functional satisfying to the quadratic BRST master
equation. In particular we show that the logarithmic contributions to the threshold func-
tions responsible for the constant right-hand-side in the Poisson equation satisfied by these
functions [36], do not appear in the Wilsonian effective action, but are consequences of
duality anomalies. We discuss this property in particular in eight dimensions, where the
R* threshold gets one contribution associated to the chiral 1-loop U(1) anomaly similarly
as in four dimensions [37], whereas the second is associated to an incompatibility between



supersymmetry and SL(3,R) duality invariance. We also exhibit that the V*R* threshold
function in six dimensions satisfies a Poisson equation with a right-hand-side proportional
to the R* threshold function, which is attributed to the duality transformation of the R*
superform insertion (i.e. form factor) in the supergravity 1PI generating functional. The
anomalies associated to the incompatibility between duality and supersymmetry Ward iden-
tities bypass the analysis carried out in [38] (although their possible existence was not over-
looked), but they can only arise by construction when the threshold function is constrained
to satisfy to the Laplace equation (i.e. with zero eigenvalue) from supersymmetry Ward
identities. Therefore such anomalies can only arise when the supergravity amplitude ex-
hibits a logarithm divergence [36], such that they do not affect the non-renormalisation the-
orems established in [39, 40] regarding the absence of logarithm divergence in ' = 8 super-
gravity before seven-loop order based on the absence of E7(7) anomalies, consistently with
the factorisation of eight additional external momenta in the explicit 4-loop four-graviton
supergravity amplitude [41]. Our work does not give new insights on the ultra-violet be-
haviour of maximal supergravity amplitudes, but it does give predictions on the logarithmic
divergences of supersymmetric densities form factors. The integrated invariants are observ-
ables of the theory, and therefore the zero momentum limit of the associated form factors
are BRST invariant observables. Generalising the argument of [36] to these cases we find
that the supersymmetric R* form factor should diverge at one loop in V4R* in six dimen-
sions, and similarly that the V*R* form factor should diverge at one loop in VOR?* in four
dimensions, whereas the R* form factor must be finite until 4-loop order by supersymmetry.

The paper is organised in four sections devoted to the analysis of maximal supergravity
in eight, six, four and three dimensions, respectively. It is in eight dimensions that we
work out the supersymmetry constraints on the R* type invariants in most detail. For
this purpose we start by deriving the superspace geometry, including cubic terms in the
fermions that are relevant to our analysis. The latter can be found in appendix C. From six
dimensions and below, the algebraic constraints on the consistent second-order differential
equations on Ey g /K, are so strong that it is enough to work out the supersymmetry
constraints on the maximal R-symmetry weight terms of order sixteen in the fermion
fields to determine them. This is due to the property that (1.2) determines uniquely the
eigenvalue of the Laplace operator.

More generally we find that the differential equations satisfied by the scalar pre-factors
of the R*, VAR* and VOR* type invariants can be deduced from their harmonic superspace
construction in the linearised approximation, up to a potential free parameter that is fixed
for R* and V*R* in dimension lower than six. The harmonic variables parametrise a homo-
geneous space K;/(U(1) x Hy) where the U(1) factor determines the G-analytic superfield
W as the component of the scalar field of highest U(1) weight. The harmonic superspace
integrands are therefore in one to one correspondence with the symmetric order n monomi-
als in the G-analytic superfield, that are associated to a set of irreducible representations
Rgn . of K5. The algebraic restriction on the symmetric monomials of the G-analytic
superfield define a subspace of the vector space of monomials of a generic coset element.
Assuming that the non-linear invariants are in one to one correspondence with the har-
monic superspace integral invariants, the same restriction must hold on the jet space of n'®



order derivative acting on a generic function £ defining these invariants, i.e.

D Ey € Y Rami- (1.3)
P

This assumption is justified in four dimensions by the complete classification of SU(2,2|8)
chiral primary operators [31, 42], which proves that all supersymmetry invariants are re-
alised as harmonic superspace integrals. Although there is no theorem, is seems that all
supersymmetry invariants can indeed be defined as harmonic superspace integrals in the lin-
earised approximation in dimension lower than six.? This U(1) factor lies inside a GL(1, C)
subgroup of the complexication of K, that determines a graded decomposition of the com-
plex Lie algebra €4(C) as well as ¢g. The highest weight component of ¢;S€4(C) determines
a nilpotent element, that characterises a unique nilpotent orbit of the real Lie group Fy g
according to the Kostant-Sekiguchi correspondence [43]. It follows that a nilpotent element
Q satisfies an algebraic constraint that is such that

Q®n c Z Rd,n,k(c) . (1.4)
k

We conclude that the same algebraic constraint satisfied by the nilpotent element Q is
For the R* type in-
variant, the relevant nilpotent orbit is always the minimal nilpotent orbit of FEjyy4), and

satisfied by the symmetrised product of derivatives acting on &, .
the quadratic algebraic constraint is the Joseph ideal [23]. In general the solutions to
the corresponding differential equation with the appropriate boundary conditions define
the unitary representation associated to the corresponding nilpotent orbits. Because the
nilpotent orbits are classified by the Ky(C) weighted Dynkin diagram characterising the
subgroup GL(1, C), it is straightforward to read of the nilpotent orbit associated to a given
harmonic superspace in the classification [44]. For Eg), E7(7), Eg(s) the 1/2 BPS and 1/4
BPS couplings correspond to the minimal and next to minimal nilpotent orbits, which Ky
weighted Dynkin diagram carry zeros on the maximal semi-simple H,; subgroup Dynkin
diagram and 1 on the other nodes. The 1/8 BPS couplings correspond to the nilpotent
orbits which K; weighted Dynkin diagram carry zeros on the maximal semi-simple Hy
subgroup Dynkin diagram and 2 on the other nodes.

2 N = 2 supergravity in eight dimensions

In this section we shall discuss the R* type invariants in N' = 2 supergravity in eight
dimensions, and prove that the R* threshold function must satisfy differential equations
consistent with the explicit SL(2, Z) x SL(3, Z) threshold computed in [4]. We will consider
the problem in the superspace formulation of the theory, and we shall therefore compute the
geometrical tensors of N' = 2 supergravity in superspace in a first subsection. Our strategy
is inspired from the idea proposed in [13] to concentrate on the fermion monomials of
maximal weight, as was used in [22] in eight dimensions. However we will go beyond this

2From seven dimensions and above there are counter examples, and one must at least consider Lorentzian
harmonics to cover all possible invariants [32].
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Figure 1. Structure of the supergravity supermultiplet in the linearised approximation. It includes
a chiral superfield W and a tensor superfield L% related through their second derivative. The
symmetry with respect to the horizontal axe defines complex conjugation.

results, and show that the function satisfies a stronger equation than the Laplace equation
already exhibited in [4].

2.1 Supergravity in superspace

In order to determine supersymmetry invariants we shall use the superspace formalism. In
this section we will derive the structure of the supergeometry in eight dimensions, following
the same construction as in [45, 46]. The R-symmetry group is U(2), and is represented
such that the covariant derivatives D?, Dg; have respectively weights 1 and —1 with respect
to the axial U(1), and the indices ¢ correspond to the fundamental of SU(2), whereas o
and & are respectively in the chiral and the anti-chiral Weyl representation of Spin(1,7),
which are complex conjugate. The complete set of fields is depicted in figure 1.

M include 8 bosonic spacetime coordinates and 32 Grass-

The superspace coordinates z
mann coordinates, and the associated vielbein Ejp4 decompose as Ejy %, Evg, En,
where a is the vector index of SO(1, 7). The graded commutator of two covariant derivatives

on a tensor ® gives by definition

(DaDp— (=1)*PD Da) ® = —Tap’De® — RapcP 11¢ @, (2.1)
where T4 g% is the torsion, and the Riemman curvature Ragc? tgb)c is valued in the Lie

)C

algebra so(1,7) @ u(2), with appropriate generators tgb in the representation of the field

®. The consistency of the commutation relations implies the Bianchi identities
d,T4 = EP A Rp?, dyRgd =0, (2.2)

where d, is the covariant exterior derivative in superspace, with wy; g itself valued in
50(1,7) @ u(2). The Bianchi identities read in components

DATBCD +TABFTFCD+ o= RABCD—I- O DARBCDE +TABFRFCDE+ O =0 (2.3)



where (O denotes the sum over cyclic permutations of A, B,C. Moreover the internal
connexion in u(2) is determined from the Maurer-Cartan superform of scalar superfields
parametrizing the symmetric space SL(2,R)/SO(2) x SL(3,R)/SO(3), one complex super-
field T" and five real superfields ¢*. We represent SL(2, R) in terms of the SU(1, 1) matrices

U UT
V‘(Uf (7)’ 24
satisfying to
UU(1-TT)=1. (2.5)
The Maurer-Cartan form
ayy-! = <_2g(1) 205(1)) ’ (2.6)

defines the u(1) connexion and scalar momenta. Similarly one defines the SL(3, R) matrices
yriil — €ik€leklI , (2.7)

with ¢ = 1,2 of the gauge group SU(2) and I = 1,2,3 of the rigid SL(3,R). We will not
provide an explicit parametrization of this matrix in terms of the five scalars ¢", because
this will not be required in our analysis. One decomposes the Maurer-Cartan form as

dVijI V_ljkl = Pijkl — 25((fwj)l) . (2.8)

The momentum P and the su(2) connexion w;? are defined in this way as
B : 1 L
Py =dVu;' Vi, w!= —§dV¢kI vk, (2.9)

where SU(2) indices are raised and lowered with the ;; tensor. It follows from the Maurer-
Cartan equations that

d,P =0, d,P =0, d, PR =, (2.10)
and that the u(2) components of the Riemann tensor are determined as
R =pPAP, R, = PR™ A P, (2.11)
In components, these identities read

DaPg — (—1)"PDpPa+TapCPo =0, RY}) = PyPg— PsPp, (2.12)

DAPY* — (—1)ABDpPM + Tap®PI* = 0 Rap'; = 2P Pgjjm — 65P5™ Ppjiyn -

To complete the definition of superspace, we enforce the existence of superform field
strengths transforming in linear representations of SL(2, R) x SL(3,R). They are 6 1-form
potentials AL, A% in the 2 ® 3 that define the complex 2-forms F% 3 2-forms potentials
B! in the 3 that define the three form field strengths H*” and one 3-form potential C' that



defines a complex 4-form G and its complex conjugate, transforming together in the 2 of
SL(2,R) [47]. They satisfy to the Bianchi identities

d,F = P NFP 4 PAFY
d,HY = —PI A Hyy + FFOA R
d,G = PANG+ H;; NFY. (2.13)

Here we allow ourselves to fix the Chern-Simons couplings H;; A Fi and F* A F9),. which
determine the respective normalisation of the fields with non-canonical kinetic terms. One

obtains in components
DAFgC+TABEng+ O = ngqupgqc’—i—PAFgC_'_ O’
2D H Yo +3Tap PHipp + O

—2lejleBCD Kl + 3F]A€%F0Dj)k + O,
DaGpepr +2T45 " Grope + O = PaGpepr + 2HapcijFlp+ O, (2.14)

where OO states for the sum over alternated permutations of all tangent indices ABC ...,
such that the result is a graded antisymmetric tensor.

The solution to these superspace identities determines the covariant superfields of the
theory, which first components at # = 0 (i.e. the pull back to the bosonic space embedded
in superspace) correspond to the supercovariant fields of the theory in components. By
construction, these fields satisfy to the equations of motion. In this paper we shall consider
the classical superspace solution solving the classical (two derivatives action) equations of
motion. Restricting ourselves to the classical superspace, one can use dimensional analysis
to determine the various components of the superfields. Moreover, the dimension-zero
components must necessarily be invariant tensors. It follows for example that the only
dimension-zero components of the torsion are

T;Bjc = —i(yc)aﬁﬁé ) (2.15)
and its complex conjugate. One can use the same argument to restrict the decomposition of
the superforms, such that no more than two of the tangent indices AB ... can be fermionic.
Moreover F/ and G have an overall U(1) weight u = 2, whereas H% is neutral. Using that
the dimension-zero component must be U(1) invariant, one gets the decompositions

_..1 o o 1 L g
Fi = §Eb ANE®Fy + E° N ECFLT + EP A E¥ Fap 7 + §E5k NEYE, 5.7 (2.16)
1 1 1 . .
HY = <E° A E° A E“H a7 + SN E°ANEPHL, Y + S BN E* A EY Hygp o
+E° A B N B Hyb (2.17)
1

_ _ 1 _ 1 L
G=—F'NENE°ANE*G gpeq+ EEd/\EC/\Eb/\E?Gl bcd‘i‘ZEd/\Ec/\Eﬁj/\Ech‘m'Bjcd

ﬂ «
(2.18)

where we moreover used the property that Ggipeq = 0. This last condition is true because
the only dimension 1/2 field of U(1) weight 1 is the fermion field with three symmetric



SU(2) indices /\gk In principle this property can be proved in general following [45, 46],
here we already assume the knowledge of the field content of N' = 2 supergravity [47]. One
computes that the dimension-zero components of the form fields are

F

g = —20,50580 . HY M = i (70) 5, € R8) . Gl = i (an)g - (2:19)

afjc

Indeed one straightforwardly checks that they are the only invariant tensors satisfying to
the appropriate symmetry properties, and the specific coefficients are determined modulo
an overall rescaling by the Bianchi identities (2.14), i.e

Tiet,°H, me” + T, HeZ 9 Tél;eHe’ﬁvkm” + Télﬂ coik F p(mF st .,
i b ]kl i gkl
ng bekéla + @ = Hq, Z ; F@;ﬂsl gt 06 50 (2.20)

where the symbol ng% indicates the sum over cyclic permutations of the three pairs of
indices. At dimension 1/2 one gets that there is no fermionic field of U(1) weight 5, such
that T in (2.4) must be a chiral superfield, i.e. Dg;T = 0. Therefore, the scalar momenta
decompose into
ikl ikl ikl jkl 5 5 Yi B

PY EaPU + E> P CLI EamP;Jm , P=FE'P,+ E*Py;, (2.21)
with Pt 7% and Péﬁil having dimension 1/2 and U(1) weight 1,—1, whereas Ps; has
dimension 1/2 and U(1) weight 3. One computes that all components of U(1) weight 3 are
determined in terms of one single field Y%, as

o1
T‘évk = 20,5 I 4 st (Yab)ap (Y ab)vﬂxg’ (2.22)
LM = Qi(’Yb)a%i(kig ; bed = i (’chd)aﬁ 9227 Pii = 2Xai » (2.23)

using the Bianchi identities

©j 81 kd ijk
Ty Ty, F 4+ oaﬁ,y 0, (2.24)
Tmf@,“F kmn . kap ﬂ mn T]k‘”F& =P, -Fj’“m”
¥ [e%) ’

5l k ik k 17k
Tz] H&Fyamn + Olajﬁfy _ F;]Bp( nyan)p + 0257 ,

6l . . . . _ .
T2 G s+ T Gty Thsn Getray = PG+ 2Hsk (" Fiypg+ 2Hsih (o Fiapa -

In the same way one use the Bianchi identities to show that all the dimension 1/2 component

of U(1) weight 1 are determined in terms of a single field A\Z* as
T Yk 5a>\zk L . By \ik TV Y — C. o\ 1 5T \Y
L T 2(7 )i (Va)”" NG afk = YaBt Tk T 503 Na)k 0
_ . 1 . . "
Fdibkl _ <7b) B )‘ﬁ L &bckl _ 5 ('ch)aB \ikL : P(;Jklm _ _E.Z(J)\]gllm) . (2.25)

The computation goes on then at dimension 1, with new independent fields associated
M and the field strengths £, H and Gupeq , although

to the scalar momenta P,, P; b Hobe



it turns out that the sefldual component of the 4-form G is determined in terms of the

fermions as®

Gabed = Gpog — é (Aijk')’abcd)\ijk> : (2.26)
This is consistent with the property that there is only one 3-form potential in eight-
dimensions, and its complex selfdual and anti-sefldual components transform in the funda-
mental of SL(2,R). From dimension 1 and beyond the solution to the constraints is rather
complicated, and we only display the dimension 1 and 3/2 components in appendix B
and C, respectively.

Now we need to discuss the definition of supersymmetry invariants in superspace.
In this section we will only consider the first corrections to the Wilsonian effective action,
therefore it is enough to consider corrections to the action that are invariant with respect to
supersymmetry subject to the classical equations of motion. In the superspace framework,
such a correction to the action is determined by a cohomology class in superspace, i.e.
a d-closed superform in classical superspace, defined modulo the addition of a d-exact
superform [20, 21]. A superform decomposes in tangent frame as

L= %EH NESANEFNEEANEP ANEC ANEB ANEA Lagcpercn (2.27)
8
=> i EPviv p. . NEP NESP N NERENE™™ A ANE™ Loy a0 iy o
mmp=
mA-n'tp=8

where each component will be referred to as L, ,,), and for an order 2= correction

. 1 1
dim [£(8—p—q,p,q)] =2+60— §p - §q U [E(S—p—q,pyq)] =P—4q, (2'28)

with u the U(1) weight. One understands that all bosonic indices are antisymmetrised
whereas fermionic indices are symmetrised in pairs ayiy (respectively dyir). The condition
dL = 0 ensures that the pull-back of this closed form to the bosonic subspace

8

* L= Bpi B1j Qn Q1 A ,0m a 11 i | .
L= E i !Q/) pIp N AP 1/\¢in A.. ./\1,Z)i1 ANeY™A. .. Ne 1£a1...ama}1,..anﬁljlmﬂpjp’9:0
9 9. :O
e =8
(2.29)

is invariant with respect to supersymmetry, modulo a total derivative and the classical
equations of motion [20, 21]. In this form the components L, ,|o=0 only depend on the
supercovariant field strengths and their supercovariant derivatives. d£ = 0 decomposes in
tangent frame in

(d‘c)(m,n,p) = T200) """ Limanprt) + T200) " Lima s p)
+T(1,1,0)(0’0’1)£(m-1,n-1,p+1)+(D(1,0,0)+T(1,1,0)(071’0)+T(1,0,1)(0’0’1))L(7IL»1,7L,p>+ﬂ1,0,1)(O’I’O)E(m-l,nﬂ,p-l)
020 " Limnzpin + (Do) + Tio,20 " 4+ Tio1,0 ") Limnrp)

3Note that in Minkowski signature yaped®”® = —ﬁsabedefgh'ygfgho‘ﬁ whereas G';bcd = ﬁsabcdefghée_fgh-

~10 -



+ (D<o,o,1> + T<0,1,1>(0’1’0) + T(o,o,2><0’0’1>) Limmp1) + T(o,o,z)<0’1’0)£<m,n+1,p-2>
+T(0,1,1)(l’o’o)ﬁ(mﬂ,n&,p&) (2.30)

where we defined
D(1,0,0) ~ Da> D(0,1,0) ~ DQ 5 D(0,0,1) ~ Ddi 5 (2-31)
and

T<07171)(1’0’0) ~ Ti e

apgj
0,0,1 ij vk 0,1,0 1] 0,0,1 i Ak
T(0,2,0)( )~ Tagﬁf 5 T(0,2,0)< )~ Taﬁz; 5 T(o,l,l)( )~ Tolégj7 )
0,0,1 | Ak 0,1,0 j
T(1,1,0)( )~ Taj@7 5 T(1,1,0)( )~ Ta?gz 5

Too009 ™ ~ Tup* (2.32)

together with their complex conjugate, and such that the indices of uppercase grades are
understood to be contracted with indices of lowercase grades. Note that the components
Ta/]@,‘c7 T, A jc and T,3¢ vanish. In this paper we will only consider the component

(dﬁ)(&l,o) = D(O,I,O)E(S,O,O) + 11(1,1,0)(0’0’1)»6(7,0,1) + (D(l,o,o) + 11(1,1,0)(0’1’0)) [1(7,1,0)
1200 " Lis11) + Tiz00) " Li62.0) (2.33)

and its complex conjugate. We will indeed find out that these equations alone permit to
determine the differential constraints on the function of the scalar fields characterising the
d-closed superform.

2.2 The chiral R* type invariant

As explained in [30], one can define an invariant from an arbitrary holomorphic functions
of the chiral superfield T' ~ W in the linearised approximation

. 2
DSyt W"((ts + 4186) RY+ .. ) W) WIS (2.34)

where tg is the standard tensor defined such that
1
tsF = Pt — o (wF?)” (2.35)

and the terms in W"~* vanish if & > n. However the torsion component (2.22) implies that
the chiral vectors EiO‘M Opr do not close among themselves, and there is no chiral measure
in eight dimensions (as in type IIB supergravity [48]). Therefore one cannot directly rely
on the chiral superspace integral to define the non-linear invariant, but one can still extract
information from it as we are going to discuss.

Supposing for simplicity that the invariant is SL(3,R) symmetric, such that it only
depends on the scalar fields ¢* through the covariant derivative P,“*" and the definition
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of the field strengths, each component L, , ) decomposes into several sub-components of
various U(1) weight multiplying U to the appropriate power

‘C(m,n,p) = Z U_2q[’§fr)z,n,p) . (236)
q

If one considers an invariant that reduces to (2.34) in the linearised approximation,

5(8,070) [TTL] ‘k-point — 0 | k < 4 + n 5 ﬁ(g’o’o) [T’I’L] | (4+n)-p01nt X D16W4+n . (2.37)

one will have by construction

£(q)

(m,n,p)

[Tn] | x Tn—qE(Q)

n-point (m,n,p) [Tq] ’ (2.38)

g-point *

The covariance of the superspace constraints with respect to SL(2,R), implies that the
derivatives of a function must necessarily be Kéhler covariant derivatives

n—1
= = 0 T — 0 T 0 _
D'F(T, T)= — 2k N F(T,T)==—=—-2(n-1)——= )= | F(T,T).
1) kE[O<8T 1—TT> T.1) (aT (n )1—TT> <8T> T.7)
(2.39)
Expanding in the number of fields, one can consider the term in D"D"F (T, T), as counting

for —m — n fields, such that the linearised invariant corresponds to the 4-point approxima-
tion. With this convention, one gets that the superform should take the form

LIF]l= ) D™D"F(T,T)L™", (2.40)

m,n>0

where the £™™ are SL(2, R) invariant. In the four-point approximation, one would there-

fore get
12

'q]:m-point - Z@nf(T’T)E(M)
n=0

(44+n)-point ’ (241)

where the £ ‘ 4
(4+n)-point
Let us consider this invariant more explicitly, without yet assuming the form (2.40).

are the SL(2, R) invariant components of the linearised invariant.

The component L) is a Lorentz scalar that can be written as

Eabcdefgh = Eabcdefgh Z U_an;;(Tv T) IZn (242)

n,a

where Zf are SL(2) x SL(3) invariant monomials in the covariant superfields of U(1)
weight 4n and dimension 8, and F2(T, T) are functions (or more precisely (0, n)-tensors on
SU(1,1)/U(1)) of the scalar T, T that multiply them in the invariant. The independent
such monomials are labeled by the index a. In this section we shall consider the monomials
of maximal U(1) weight in order to simplify the computation. To check the possible terms,
it is convenient to consider the ratio of the U(1) weight by the dimension. The largest ratio
is for x¢,, that has u = 3 and dimension 1/2, and therefore the maximal U(1) weight term
is the unique x'® monomial as in (2.34). We define its normalisation such that

Tis = X' = X1X0X3XaXa X6 X7 X8 X1 Xo X3 X1 XEXe X X3 » (2.43)
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The next field is the dimension 1 field P, that has u = 4, however, note that a term of
the form P,DF® can always be eliminated by adding a trivial cocycle to the superform
without modifying the invariant, and one can therefore disregard such terms. The next
important fields are therefore the dimension 1 field strength F ;i, G;bcd of U(1) weight
2 and the dimension 1/2 field AY* of U(1) weight 1. There is a unique monomial in
X' and three inequivalent monomials in y'#4, two isovectors in the irreducible SO(1,7)
representations [ooé} and [oog] and one SU(2) singlet in the {o lg]. It is convenient to
define their normalisation from the Grassmann derivative of (2.43) as a function of ordinary

Grassmann variables (rather than fields)

j 0 _ o 0 ,_
(Xls)fi = _gjk aonk (216) (X14)abcd (’Yabcd) TW (Xlﬁ)
_14v\ij ; o 0 ,_

(XM)an = gtkgil (’Yab)aﬁ W@X (Xlﬁ) ()ZM) = 883 ( )
B

With these definitions, we write a general ansatz for the Zj,, as

= _ _ abed i i a ] (= a
Ii‘l = abed (X14) ) Ij = ('Yab)aﬁAZkl)‘] kl (214); = ()‘A)ajb (X14)i; ’ (2 44)
I44 - Fab (214)?; ’ Z4 = )‘Z]k)‘mk ( ) - ()‘)‘) (214) :

Note that we could also consider a term in (X13)” k)\z y P, but one can always remove such

a term by adding to the superform £ a d-exact form d¥ with ¥, ,,, equal to

\Ilabcdefg = Eabcdefg OQIO(T T)( 13);55 ijk s (245)

while affecting only therms in U~2°. Therefore we will not consider such a term that would
not lead to any constraints by construction, since Gy (T T) is clearly arbitrary in Wir0.0-
One could also guess the appearance of a term in \“* ( ) but there is no SU(2) singlet
such a monomial. Our ansatz for L, will therefore be

11
»Cabcdefgh = Z‘:abcdefgh< Z Uﬁ2n"rﬁ(T) T)Iztlln

n=0,a
ab

bed
)ac .

+ U F (T, T)(X'°) + U2 FL (T, T)G e (5614 + U2 Fi(T, T)Eg (9214)

+ U 2FN(LT) QNG (R)5] + U 2F (1.T) W) (>214)> (246)

Writing down (2.33), one sees, however, that the equation d£ = 0 also includes mixing
of Liso0) With L7160, Li7.0.1)s L6:2,0)s L6.1,1)s L6,0,2), 50 we must also consider an ansatz
for these components. In the formalism in components (as opposed to superspace), this
amounts to distinguish the terms that are written in terms of supercovariant field strengths,
from the ones that carry naked gravitnino fields. Let us consider first £, ), which is a
spinor valued 7-form in the fundamental of SU(2) with U(1) weight v = 1. It can include
two irreducible representations of Spin(1,7), the {1 o‘l’] and the {o oi:l. The maximal U(1)

weight component one can get is u = 45, with the term ()’(15);. We shall only check terms
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up to order U~22 in dL = 0, and therefore this is the only term that will be relevant in our
computation, so we consider the ansatz

Eabcdefgfy = Eabcdefgh<(7h) ﬁU 22"r5 (T T) ( 15 + Z U~ QH‘FQ(T T) I4n+1 ha> (2'47)

n=0,a

with again other functions F2 depending on T' and T. L ,,, has U(1) weight —1, and
decomposes into the 1rredu01ble representations {1 o ] and the [ } of Spin(1, 7), therefore
it cannot include terms in ¥'° and the maximal U(1) weight terms one can have are in
U223\ and U~22x13 P. Moreover most of the latter can be reabsorbed in a trivial cocycle
and lower U(1) weight terms such that one obtains the ansatz

Labedefgii = Eabcdefgh<(7r)d5022f161 (T, T)(x")in )‘zﬁkz"'(’Yh MapU 2F(T,T) (x 14)%/\&1

10
LT RETT) (Pl + S O FAT, T IE, h> (2.48)

n=0,a

The same idea holds for L 2,0), L6.1,1) and L .2y of dimension 7, and of U(1) weight 2, 0

and —2, respectively. One checks that L, and L, carry at most terms in U2

U22 cl4

whereas L2 carries terms in , L.e.

’Cabcdefazﬂj = Eabede fgh <C U 22‘7:11(T T)( 14)g]h + (Vghrs)d30_22flul)(Ta T)( 14):;

+ i (V") 50 P FI T T)(XM) + €6 (W) g U2 FH(T, T ()90
10
2n Ta
+ Y UM FNT.T)IE, ] e ) (2.49)

n=>0,a

Considering the terms of maximal U(1) weight, (dL) 1) = 0 simplifies to
D01y Ls.00) + Diro.yLirony = O(U ). (2.50)
The terms in U~* in Dy, ¢0)L(701) are computed using
D, (U2 F2) = U2+ (DF2) P+ U2V (1 = TT)* (DF?) P, (2.51)
as
8D(uLycde fonjai + O(U??) (2.52)

= _Sabcdefgh0_24-PT<(’YS)O¢5D]:6 ( 14)kl)‘fkl+(’77” )aﬂD‘Fll( 14)kl)\fkl+@ffl (X13)dipr>
whereas D 1)L s,0,0) does not depend on P, at this order, and we conclude that they must
cancel by themselves. However they do not, and the functions F}f;, must be holomorphic

forms for a = 6,7, 8. Going further in the analysis one would in fact conclude that they
vanish.
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Therefore we can consider the equation D 1)L s,0,0) = 0 at this order in U. The order
U~26 term vanishes trivially

Ddi‘cabcdefgh = 25abcdefghU_26@f112 Xdi(im) + O(U_24) = 0(0_24) (253)

whereas the order U~2* terms give the equation

abed ab

FiyDai(x'°) + 2 (DFLL) GpeaXa (X14) +2(DF}) FH S (214)1{1
+2(DF)) Ok Xai (744 + 2 (DF) (W) Xai (M) = 0. (2.54)

Solving this equation requires to consider the explicit derivative of the field x!, computed
in appendix B

_ 1 1 4 1 3 1. .
Daixy = —g(’Yab)dg (Fabij 1 (Aikl'YabAjkl)> + @(V(me)ag(;fGabcd 4>\dkijxg
3 o
—C,. (3255(»\) 5 <X’“>\kﬂ>) . (2.55)
Using Fierz identities related to the uniqueness of (¥!°)% and the property that the terms

in ()’(16)5\gk cancel by themselves because D 1)L, is in the fundamental of SU(2), one
computes that (2.54) is satisfied if and only if

_ _ 1 _ _
fol 768f12’ D]:121 = 3*2}—11% D]:fl 128]:12’ D]:ﬁ 128]:12
(2.56)
Therefore F7, are determined up to holomorphic forms
co(T,T) = (1 = TT)"%2¢,(T), (2.57)
in terms of a single function Ji; as
1
(2.58)
where we set ¢; = 0, such that
Flo =DFi1. (2.59)
Similarly, restricting ourselves to the terms of maximal U(1) weight, (dC)s10 = 0
simplifies to
D(O,I,O)E(S,O,O) + (D(1,0,o) + T(1,1,0)<0’1’0>) »C(7,1,0) = O(Uim) ) (2‘60)
where we used moreover that the terms of order U 22 of L7001y in (2.48) vanish. We start

with the terms of order U~2* that further reduce to
D!, Lapede o + 8DjaLyegegnts + OU2)
= Catede fon U™ (DF11) DL(X') + 8¢y por’ (w)a” Day (U72FF) (%) + O(U2)
= CabedefghlU ! <75f11 D:(x'9) - DF}, (1) P, (x”’);) +OU %)
=0(U™™). (2.61)
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The covariant derivative DY is determined from (B.9) as

_ 1 3
Dixs = 50 0 (=i Pu+ (1) ) + TA7 X5, (2.62)

so once again the terms in (Xlﬁ)Agk cancel by themselves and we get the constraint
_ 7 - 1
DF}, = —57)?11 = Fi = -5 (Fi1 +cs) . (2.63)

Now we must consider the order U~22 components of (2.60), however, the computation
involves many terms and we shall simplify the problem by neglecting all the terms that
depend explicitly on A9F and P,. This permits in particular to neglect terms of order

U2 in L71,0) that we have not computed. Using this simplification, one obtains
. . . . 0
D, Labede foh + 8DiaLyciergnn + 8Tialns” Lrege fgh]g +0O(U™)

_ _ _ _ abed
= EabedefghlU 22 (2(1 — TT)*DDF11 X5 (x'%) + @}"11(17 G (X

b L e (DLF 1 ()5 + (f11+c5)((7’“)jDT (%) + 10 Cars (215)‘2))
=00 2). (2.64)

To carry out this computation we need the covariant derivative D! of both G_, abed and
F i given in appendix C in (C.18) and (C.17), as well as the dimension 1 torsion T’ ﬁk

given in (B.11), for which we neglect all terms in A4 and P,. Moreover, the equation
can only be satisfied modulo the classical equations of motion, and we must distinguish
in Da)_gfjé, its gamma trace that is equal to a polynomial in the other fields through the
Dirac equation (C.15). We will write (DyX%)" its component projected to the irreducible
representation [1 o;] of Spin(1,7) (i.e. such that (fy“)aB(DaX%)’ = 0). Combining all these
terms one obtains finally

D}, Labedefgh + 8DiaLicge ponten + 8Ttali” Lhode panp + OT )
= gabcdefghU—ﬂ((u — TT)*DDFy; + 132F11 + %az — 8c5> 2x%(x19)
+ (g3 gce ) O Nupti ()]
#3050 DR (b + ez = ex) ), (D) ()3
— o). (265)

We conclude therefore that the harmonic forms ¢, and c¢s; vanish as expected, and the
form 71 satisfies the differential equation

(1—TT)*DDF(T,T) = —132 F11 (T, T) . (2.66)

It is rather clear that if we had computed the terms in )\ijk one would have obtained
similarly that ¢; = ¢, = 0, and we conclude therefore that
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Labedefgh = Eabedefgh <U2475]:11(T7 T)(x")

L g Ay (Lo (orayabe Fij (o14\a ij (o14ya _
+ 550 (1) (6Gabcd (X + AF ()2 = ONE, (M5 =3 (x”))

+ ) T FAT, T)ijn). (2.67)

It is important to note that this superform indeed reproduces the structure explained
in the beginning of this section, i.e. each covariant combination of fields multiplying
U—?"D"F is approximated by the linearised invariant as

abed ab

+FY (M

v

o B o 1 -
D16W16 x (X16)7 D15W15 ) x ﬂGabcd (X14)

2.68
W=0 W=0 ( )

The relation to the linearised invariant implies indeed that each covariant combination of
fields multiplying U ~2"D"F must be of the form D”+4W"+4‘W:0 such that (similarly as
in [13])

Fu(T,T) =DM F(T,T), (2.69)

with F(T,T) the function multiplying the SL(2, R) invariant of type R*. Using (2.66), it
follows that F(T,T) satisfies itself to the equation

(1-TT)*DD2F(T,T) = 132D F(T, T). (2.70)
Using the commutation relations between D and D, one computes in general that

= —n(n - 1)D"F + D" AF, (2.71)

and therefore in particular that
(1-TT)*D*DF(T,T)=0. (2.72)

At each order in U2"D"F(T,T) one will get equations generalising the linearised
equations of the form

(1-TT)*DD"M F(T,T) = —n(n — 1) D"F(T,T), (2.73)

where the coefficient is determined to be the unique one consistent with (2.70), therefore
we conclude that supersymmetry must imply eventually that the function F(T) is
anti-holomorphic.

There are two comments we would like to make on this computation, to be compared
with the computations carried out in components in [13, 22]. Here we implicitly used the
Dirac equation satisfied by Xé in several places, by removing the gamma trace appearing
in Daxfi when this term appeared explicitly, and when it appeared in the derivative of
the field strengths F ;{) and Ggpeq. Indeed, in components one would consider instead the
supersymmetry variation of their potentials. One concludes that considering [.*L as
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a correction to the effective action, the accordingly corrected covariant derivative Déxé

would be modified by terms of the form
Dindy = -+ + 2T 2DUF(T) (axy™)ap(X )5, + 0:Cape (M) +..., (274)

although we did not compute the coefficients explicitly. In components the correction to
the Lagrange density takes the form

* 7 — 247 ™ (= U =99 & af.a = 3
VL= e<U HDRF(T)(X'0) + ST 2DV F(T)thad (7") 05 (X°)°

[\

1 — o= (1o 14\ abed —ii /_14y\ab ij /_14\ab _
+ @U FDUAT) <6Gabcd (x') ARy, (X14)ij - (Mg (X14)ij —3(W) (X14)>

+) (2.75)

where F¥ and G are supercovariant field strengths, that include respectively terms in
—2ie® A (PUy,x?)) and ie® A e® A e A (YiyapeX’). There is therefore three different contri-
butions to the term in U~22DILF(T) (a7 (x'°)"), and they must all be there with their
respective coefficients.

2.3 The parity symmetric R* type invariant

In the linearised approximation, the scalar fields ¢" parametrizing SL(3,R)/SO(3) are
conveniently represented by an isospin 2 field L¥* such that the covariant derivative

Dryul — _cpliyiky,, T (2.76)

simplifies to
DP Lk — _gp(iyikD) (2.77)

and similarly for the complex conjugate. As explained in [30], one can define an invariant
in the linearised approximation from an arbitrary holomorphic functions of the G-analytic
superfield

L uliuljulkullLijkl’ (2.78)

as the harmonic integral of

(DZ)B(Dl)S(L1111)4+nN (Lllll)”<<fgt8+1ee> R4+. ) >+ ) ._}_cn(Lllll)n712(>\111)8(5\111)8 )

482

(2.79)
In this section we will repeat the computations of the last section to determine the de-
pendence of this invariant in the scalar fields ¢* at the non-linear level. One can already
infer from the linearised analysis that the function of ¢* must satisfy to the Laplace equa-
tion [49]. However, because the harmonic measure does not extend to the non-linear theory
this construction had no reason to give the correct answer. To start with we need to discuss
some properties of the differential operators on the symmetric space SL(3,R)/SO(3) that
are perhaps less standard than for the special Kéhler space SU(1,1)/U(1).
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Differential operators on SL(3,R)/SO(3). The superfield momentum P%* defined
n (2.8), (2.9) determines the vielbein P,“* on SL(3,R)/SO(3) in function of ¢* as

PR — qoh p, ik (2.80)

Considering ¢* as coordinates rather than fields in this discussion, the Maurer-Cartan

equation
dPijkl + 4w(ip VAN ijl)p =0,
. , 1 ;
dw;? + wik ANwy! = §Pikpq A Pikpa ) (2.81)

indeed gives the torsion free condition, and the definition of the constant Riemann tensor
on SL(3,R)/SO(3) in tangent frame. One defines accordingly the metric

Guv(¢) = 2By i P7H (2.82)
and its inverse G* such that the inverse vielbein read
Eiji* = PyijaG* . (2.83)
In these conventions one has

. 1
pqrs kl v __ \4
Pupquzgkl 75%% , P B = 55

v (2.84)

where we use the symmetrised Kronecker symbol

i19.0n — (i1 ¢4 in) i1 <1 in
6]1J22 Jn T 5(]15.72 "5jn) n (531512 6jn+ O) : (2.85)

One defines the covariant derivative of a function and its subsequent covariant derivatives as

Dii€ = Eiju"ou€
Dijlepqrsg - Ei]kl (au( pqrs 8\,8) +4Wu qrs 8\,5) (2'86)

and etcetera. For a generic symmetric tensor, the covariant derivative is defined
accordingly as

Dijiiirig...in = Bijet" (OuEirin...in + 1wy (i, €y iv)p) (2.87)
and one computes using (2.81) that

n
[Dijkt, PP\ Eyiy. iy = 15539;)5@151'2...@'")(1 55%85211'2...% : (2.88)

In particular

[Dijkla quTs]Dtuqu 55(1]:)8(,51)71,1110)(15 5qulsptuvw5 ) (289)

where the notation means that ijkl and tuvw are symmetrised in the first term of the
right-hand-side, and similarly in (2.88).
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The covariant derivative D;;xDpgrs€ of a function £ decomposes into irreducible rep-
resentations of SU(2), as a singlet, an isospin 2 component and an isospin 4 component.
We want to consider as a differential equation the property that the isospin 2 component
is related to the first order derivative, i.e.

4s — 3
Diij" Diiypg €5 = =5 Pijuis (2.90)
This equation can be rewritten
g 4s — 3 1
D;™ Diipq Es = —TDijkzgs + ﬁ(akajz + eagin)Gs (2.91)

for some function G to be determined. This equation implies that
A& = 2Dy DM & = ;. (2.92)

Because there is a unique scalar fourth order differential operator, one has the constraint

g 1 1
QDiququrSDrslekl”g == EA <A + 4> ga (293)

for any function £, and one can therefore deduce from (2.91) that

_ 2s5(2s — 3)

AG,
g 3

G . (2.94)

For s £ 0 or %, one obtains immediately that the function &, satisfies to

4s — 3 s(2s — 3
DiquDklpqgs = — 19 Dijklgs + (18)(6ik€jl + z’:‘ilé‘jk)(c;s , (2.95)
and in particular
25(2s — 3
AE, = S(‘;) g, . (2.96)

The reader might recognise at this point that this Poisson equation is satisfied by the
FEisenstein series
B = Y. Vi'nVi7n,) ", (2.97)
nreZ3
in the domain of absolute convergence of the series (i.e. for s > %) One straightforwardly
computes that the function (V;;7n;V% /n ;)= indeed satisfies the quadratic equation (2.95)
for any vector n; € R2, and one concludes that for s > %

45 -3 s5(2s -3
TpijklE[sO] + (18)(€ik<€jz + €igjk) Elso) - (2.98)

We are going to prove in this section that supersymmetry requires this equation to be

D" Dripg Ers0) = —

satisfied for the function £ multiplying the R* type term in the invariant for the value
3
2
diverges for this value, and one must consider the regularised Eisenstein series [11]

s = 3, consistently with the string theory computation [4]. However, the series actually

e—0

A . 27
E[%O} = lim (E[%Jrso} — ? + 471'(1 — ’y)) . (299)
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By continuity, and because the constant term drops out when acted on by the covariant
derivative, one obtains that the regularised series satisfies the inhomogeneous equation

. 1 - ™
Di;" Dripg Ey30) = — 4 PisuiErgo) + g(EikEj[ + €iugik) » (2.100)

consistently with [11]. Note that the constant term is indeed consistent with (2.94), because
for s = % the inhomogeneous term can in principe be any function satisfying to the Laplace
equation AQ% = 0. However the constraint from supersymmetry is by construction a
homogeneous linear equation, and is in fact

1

Di*"Dripg€y = =7

4 Diiw€y - (2.101)

The inhomogeneous term in (2.100) is due to the logarithm log(V;; n V% 7n ) that satisfies

1
~(eikejitengir), (2.102)

Dyjit log (Ves'n V™ n ) — 5

1
Diqupklpq IOg (Vrslnlvrs J”J) = —Z
and which appears explicitly in the expansion of E[ 30] at large Vij] nyV% 7 n; (for any chosen
vector ny),

Ejgg) ~ —2mlog (Vi 'n V97 ny) + ... (2.103)

We shall explain that this logarithm term is associated to an anomaly, and does not appear
in the supersymmetric Wilsonian effective action.

To prove that (2.101) is indeed required by supersymmetry, we shall consider the terms
of maximal isospin. Because these terms will carry a large number of SU(2) indices, we
will use the short-hand notation

DEi€ = Diiriginia Di

i5i6i7ig

.D.

14n—3%4n—214n—1%4n)

£, (2.104)

11121314

and repeated representations will be understood to correspond to contracted indices, as for
example in

. D,

D[48]E()\8) 4 (;\8)[24] = D( 145146147748

(i11213 122123124) v (125026127 N 946%47148)
JEA AL Al Y ,

(2.105)

iniizis "
Using the commutation relations (2.88), one computes that in general

12n
n n+1
DijiDisn)€ = Diam€ + 7 n 35(1[11%[119[4” 4 Pen™ Pajpq€

16n(n —1) 2 .
~@n + 1) @n + 3) SR Plan=g Po o Py ™ Prajp€
~ n@n+5)(4n—1) '

(2n + 1)(dn + 3)(4n + 1)1
8n(n—1)(n —2)
T @n+ 1)(dn +3)(4n + 1)5i[1}5j[1]5k[1]51[1} [4n 12]
n(n —1)(4n® + 3n + 2) el
T nt Dan+2) CSERIEN Py

&jmer1E) Dl g Ppars DPI*E

Di9)" DiajpgDra) *Digjrs€

£, (2.106)

- 21 —



where D[4n 4K]
representations. Using this equation, one obtains that for a function &, satisfying to equa-

and ng Ki[dn) aT€ respectively in the isospin 2(n — k) and 2n + 2 irreducible
tion (2.95), one has moreover

N _— n(4s — 3) n
Diju Dy Es = D”Jigl[m}g T Tan 3 Ul 1 Pkplan—2%s

n2n—=1)2n+1-2s)(n—1+s)
(An—1)(4n +1)

e merniy Dy s> (2.107)

where D"t D" and D™~ ! are in the irreducible representations of maximal isospin 2n +
2, 2n and 2n — 2, respectively.

Constraining the superform. Similarly as for the chiral superform L[F] discussed
in the last section, the linearised analysis suggests that the super-form L£[€] admits the
following expansion

ZD[M]SE‘*” (2.108)

where £ are SL(2,R) x SL(3,R) invariant isospin 2n tensors superforms, that coincide
with the linearised invariant at 4 4+ n order in the fields

L oc (D) (D8) g L1647 1 O((5 + n)-points) . (2.109)

L=0

Using this general structure, one is led to a general ansatz for L g o

1 abedefgh
— ge L

_ D{lZ]S AS24IN8124] | D[“]S F[Z])\6ab[18])\8[24] 4 a3D[44]S g

abc

+aQ,D[H}gF[Q]/\6ab[18])\8[24]_’_a4fD[ WEeiiP PRI, a/\7[20J])|[42]

abedefgh [5]

()\7[21] abcA7[21])

+ 519[44]5 gZJEkZA8[1k22])\8[.7122] 1 by D[ WEXN [22} )\Sab[22}
+ 1)31)[ }g )\6ab[18]()\9[25]%bx[1]) + b4D[ }g ()\7[21] a)\7[21])( ])
+ b5D[1414]5()\7[21}'}/(1120)\7[21])(X[l]’Yach[ })erﬁp[ll]g)\csab[m]()\g 251 oy ])+D[40]5 (2.110)

and similarly for £,

1 . _
ﬁeadeefghLbcdefghg[g] _ 61D[44]5)\8[z23],ya )\7,8[21] + 5”1)[ 43](9(02)\8[24] )\’Zxa[lg] (2111)

g ABabed(22] Yredd AR ¢y )\8(1()[22]76&5 AR 4 A £22] 7Zbﬁc ;\76[21}) D€ -+

and its complex conjugate. Note that this ansatz is completely general provided one re-

places each derivative term D[ & by a generic isospin 2n tensor 5[ and the computation

an] 4n)
we shall carry out does not require such an assumption. It particular, there is no candidate
monomial in the fields of odd isospin at this order, and we did not avoid such terms in the
ansatz. It will turn out to be enough to look at terms of isospin 24 in dL[€] = 0 to determine

the properties of the function &£, and because L o) only contributes at this order through a

- 29 —



space-time derivative, one can neglect the contribution from L, ) if one disregards terms
including the momentum P*. At this order dL[€] = 0 simplifies drastically to

. 1 _ 1
DZx < 8‘ abcdefg Eabcdefgh [5]> :O(Dllg) ’ Ddi <_8'6abcdefgh£abcdefgh [5]> :O(Dllg) )
(2.112)
Moreover, the superform being real, these two equations are equivalent. Restricting
ourselves to the components of D? L0 of isospin 24, the components of isospin 22 of

Ls,0,0) only contribute through the derivative of their tensor &, ,,, and therefore only mix

[24] 8[24]

[44]
with the isospin component &g A8 through the covariant derivative acting on the
fermions, but for the terms that are themselves in A3X\8. It follows that most of these

contributions simply constrain these tensors to satisfy to
Dijri€yg) X Eijriaa) + - - (2.113)

in agreement with the ansatz (2.110). Computing these terms one would determine the
coefficients ay and by for £ > 3 in (2.110), but one would not get any constraint on the
function £. The only terms constraining the function itself are the ones in A°X%, and we
will therefore focus on the restricted ansatz

_ é cabedefgh Labedefon|€] = D[1428] £B[24138024] 1 5@ S ABlik22) 38[j122] | 5[1 p )\2)22] asabl22] | .
(2.114)

where we do not assume that the two other SO(3) tensors are also derivatives of the same

function. At this point we need to precise the normalisation of the fermionic monomials

()\8)(i1i2-.-i24) = )\(iligi3>\i4i51'6 o )\igzi23ig4) : (5\8)(i1i2---i24) _ ((AS) (i1i2...ig4)>* ,
()\S)Sblw -i22) = )\’Y(lez)\'Y 1314 ()\6);5;) .i22) , ()\8)((;112 .i22) — <(>\8)§Lll)112122))* ’
()\6)226”2 i18) = i('}/ab)aﬁ él a,B’Y C)\(lezlg “A216i17i18)' (2.115)

The first contribution comes from
(DZ D}; ]5) AS[24138024] (2.116)
Using (2.106) one obtains
PDli€ = —2e" N Dyju Dy €

. 48
kl 13 11
= 2" (%WS] + 17 E6E 1 Plag Py Dizjpg

704
~ o5 S 1%k Do Py Py Plagpg + Eipyjmerpu e (- )> £,(2.117)
and using the property that the maximal isospin monomial in \Y is of isospin %, one gets

that the isospin 24 contribution in D[1532]5 cancels out such that

i 96 i<
(DaDiyE) NN = e 4y Dy DU Dig€ EUNININEA 4 (2118)
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where we neglect the terms of lower isospin. Using the covariant derivatives computed in

appendix B
i yjkl a - pij 1 [PVISY i(j - i abe iG kD) 3\ pi(i vkl
Da; _(7/>aB(}Z}ZJM'Fz(Ap(]VaAk”p)—€(J(xkvax”) 15 (7)o ol = S AEONY,
iyJ L 4 i(G ( gkl . 3 L pi(j (M 1 ij
DX = — 3" )ase v (Fab) + (Xp”rab/\kl)p)> + 72 NG — §Ca/3()\p( IN,)
F(1 ) ap XN () e (2.119)

and concentrating on the terms in A?\®, one obtains after using Fierz identities
D!, (D[1428] £ A8241\824] 5[14 4] €ijERI \Blik22] \8[5122] 5[31 g )\igjzz] Xgab[22]>
_%53'[1]%[1}9[142} (Diy )€ + 4Dy Dy £ild \kir) \824] 38(24]
—2 <672 [jkzr44}5 + ,D]klrg[44}> WU peng AR \BImn22] 38lpa22]

-2 <184D[gk1r44}5 + ,Djklrg[244}> gi(j)\l;m)\igm] a8abl22] 4 (2.120)

These three combinations being linearly independent, one concludes that

672 19
1 11 2 12
€=~ D€ = 14 Dliac (2.121)

assuming that there is no inhomogeneous term satisfying to
D(iyinigisYisigir...izm) = 0- (2.122)

One can indeed convince oneself that there is no solution to this differential equation,
which defines 4n 4+ 1 independent first order equations for only 4n — 3 variables, i.e. 4
more equations at each order, equivalently as

Dijrg =0, (2.123)

which only solution is a constant. Because there is no higher rank symmetric tensor, there
is no solution for n > 1. The most important equation is the constraint

kil
D(1i11i2i3i4...i44 (Di45i46i47i48)5 + 4Di45i46 Di47i48)/€lg) =0. (2'124)

It follows from the structure of the linearised invariants that the terms of lower isospin
will be all related, such that they will satisfy to similar equations of the form

kl
D81i2i3i4...i4n (Di4n+1i4n+2i4n+3i4n+4)g + 4Di4n+1i4n+2 Di4n+3i4n+4)k:l€) =0. (2'125)

such that one gets eventually

1
Diij" Priype€ = — 7 Pijia€ (2.126)
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as in (2.101). Let us prove now that (2.101) must indeed be strictly satisfied. Because of
equation (2.126), the complete superform admits an expansion in derivatives of £ as

LIE] = EL + Diju€ L* + D11 Dpgrs)€ Lokpars 4 (2.127)

Expanding d£[€] = 0 in the same way, one gets
1 g
EdL + ZAE P A LI =0 (2.128)

but because AE is necessarily a solution to the Laplace equation, i.e. A2 = 0, the two
terms must vanish independently. One deduces from the linearised analysis that L7
carries terms of the form

LR~ tots B3 (A“J”fpl) + HOIER) 4 F“J’F“)) . (2.129)
and Pjji A L% does not vanish, so we conclude that supersymmetry indeed requires
AE =0, (2.130)

and therefore (2.101) is satisfied. Using this constraint, the tensor superforms £147] satisfy
to the differential equation

2n(n+1)(2n+3)(2n+1)

6n Iy
d,clnl — T plal A pln=2lii | o pla] A plin—d]
i + @n+5)(4n + 3)

P ALk
An+3 ki

(2.131)
and the equation we have checked explicitly in this section is the AYA8 component of

AL — 22 PRl A L1054 9l A £ = o (2.132)
Note moreover that this equation must satisfy the consistency condition
a2t = —on pltliok A py, A cin=1E (2.133)
One finds that the general solution to
d L) o pH A plin=] — o PRl A pln=200 4 g Py A L1 (2.134)
satisfying to (2.133) is determined up to an integration constant s, as

d £ 4 o pll A glin—4]
_ 2n(4873)P[2]i'/\£[4"72}ij+ (n+1)(2n+1)(2n+3—s)(2n+2s)
4n + 3 J (4n + 5)(4n + 3)

Py ALBMIRE - (9135)

One recognises that the coefficients are the same as in (2.107), and therefore they are
the equations satisfied by a closed superform L[&;] associated to a function &, satisfying
to (2.95) in general. Equation (2.135) defines by construction a representation of sl3
through the definition of the coset generators on the infinite sum @72 (4n+ 1), which
corresponds to the unitary representation of SL(3,R) on the set of functions satisfying
to (2.95), with appropriate boundary conditions.
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2.4 Anomalies

We have proved in this section that the function multiplying R* in the supersymmetry
invariant is the sum of a harmonic function of the complex scalar T" and a function of the
SL(3,R)/SO(3) scalars solution to the quadratic equation (2.101). However, the string
theory threshold function appearing in the four-graviton amplitude [4] does not solve these
equations strictly, and solve inhomogeneous equations (2.100) [11]. The contributions re-
sponsible for these inhomogeneous terms come from the non-analytic component of the
amplitudes, and are only captured by the supergravity 1-loop 1PI generating functional
I'1100p- Therefore these terms do not appear in the string theory Wilsonian effective action

1
S = 559 4 50 4 £350) 4 25O 4 O(k'5) (2.136)
K
invariant with respect to local supersymmetry, but only in the 1PI effective action
1
D= 1504 (89 4 Ty 4 658D 482 (59 4 [S© - Tyiy] 4 Tarey) +O(¥) (2137

satisfying to the BRST master equation.

The discussion of the inhomogeneous term in the Laplace equation on SL(2,R)/SO(2)
is very similar to the one of N' = 4 supergravity in four dimensions [37]. The complex
superform L[F(T)] discussed in section 2.2 admits by construction the R* type terms

1
L[F(T)] = F(T) (e tgtg R — g2 Cobede o R A R4 A R A R9M
) 1
- 214 (Rab ARy AR ARy — S Ray AR™ N Rog 1 RCd>) o (2.138)

In this discussion it will be convenient to consider the upper complex half plan coordinate

1-T
=l 2.139
e (2.139)
that transforms with respect to SL(2,R) as (with ad — bc = 1)
at+b
. 2.140
ct+d ( )

For the specific choice F(T') = 1, the imaginary part of the superform (2.138) coincides
with the dimensional reduction of the R* type invariant in eleven dimensions on 73, where
the imaginary part of t defines the 72 volume modulus and its real part the pull-back of
the 3-form potential on 7. This exhibits by consistency with gauge invariance in eleven
dimensions that one must have
, 1 1

Re[L[i] = (Rab ARy AR A Ry™ — B R™ A Reg A RCd) : (2.141)
where Ry is the Riemann tensor superform. One can prove this property directly in eight
dimensions by studying the structure of the superform similarly as in [37] in N' = 4 super-
gravity in four dimensions, although we will only report on this analysis in a forthcoming

paper.
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It follows from [4] that the complete string theory Wilsonian action includes non-
perturbative corrections in M-theory corresponding to Euclidean M2 branes wrapping 7°
such that the associated contribution to the Wilsonian effective action is

S = — (2i)4 /L*Re [L[logn(7)]] - (2.142)

The logarithm of the Dedekind eta function admits the expansion

o

. T 1 in
—idlogn(r) = 37~ Z Z . eminT (2.143)

n=1 \ rln

in which the first term appears in the dimensional reduction of the eleven-dimensional
R* type invariant on T whereas the contributions in e?™™7 are associated to M2 branes
wrapping altogether n times 7. This function is not SL(2,7) invariant, i.e.

logn (Z;ig) = logn(t) + %log(c’c—i-d) —i—iﬂ'%, (2.144)
where b is an integer, and therefore the S correction to the Wilsonian action is not duality
invariant. However, the supergravity theory admits a U(1) anomaly in eight dimensions
such that the supergravity 1-loop effective action is not SL(2, R) invariant, and neither does
it preserve SL(2,Z). Using the family index theorem [50] for the chiral fields x?,, Ak Gl
and pgl,, one computes the anomaly to the axial U(1) current conservation as in [51]

Tp2 — 4dpy —pP 4 Tpa 289 p2 — 988
(1)) ——— ) — (-2)—

wo_ _ _
Opdf = —(2x(=3)+4x 760 + (-2 50 =60
1
= ] (1012 - 4292)
S S 1(trR2)2 (2.145)
8(2m)* 4 ' ’

Strictly speaking, the fermions contribute to the anomaly for the gauge axial U(1), but
one can compensate for it [52] by introducing a correction to the effective action defined
in term of the holomorphic function

log (U(1+T)) = 1log (U(1+1T)) — 2icc + log (ct+d) , (2.146)

such that the supergravity 1-loop 1PI generating functional transforms with respect to
SL(2,R) as
3 .
1—‘l—loop — Fl—loop + m / 2 Re [E[log(CT + d)]] . (2147)

It follows that the sum of the 1PI supergravity effective action and the string theory
Wilsonian effective action I' transforms with respect to SL(2,7Z) as

-1 1
T —27b—— 4 Z(trR?*)?) . 2.14
T = 2mh o / (trR L) ) (2.148)
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Therefore the complete effective action is indeed duality invariant in the eight-dimensional
Minkowski background. It is a non-trivial consistency check that the same Pontryagin
classes combination defining the U(1) anomaly (2.145) also supports the M5 brane gravi-
tational anomaly [53], and it follows that on a general Riemmanian spin manifold

1/ <trR4 — i(trR2)2> = 24+ % : (2.149)

12(4m)4

where A is the integral roof genus and o is the signature. If one were to consider grav-
itational instanton corrections, SL(2,7Z) invariance would require the effective action T
to be invariant modulo 27, and therefore the corresponding geometry to admit a signa-
ture multiple of four. This potential Z; obstruction is identical to the tadpole cancelation
requirement studied on Calabi-Yau 4-folds in [54].

Note that the real part of the anomalous variation is the variation of a local functional
because

b 1 1
loglm[at+d} = log Im|[t] — ilog (ct+d)— ilog (cT+d), (2.150)

and the tgtg R? threshold depends on the duality invariant function [4]
Epy(t) = —log (Im(t) [n(7)|*) . (2.151)
The log of the dilaton is responsible for the inhomogeneous term in the Laplace equation
AEp(t) = . (2.152)

Similarly, the regularised SL(3,RR) Eisenstein function EA[%O} includes a logarithm
term (2.103) that cannot be part of the Wilsonian effective action by supersymmetry.
To understand this, let us define the BRST-like nilpotent operator defining the sl3 action

&yt =vle,t, o, = - ek, (2.153)

where Cj! is a constant anticommuting traceless matrix. The non-trivial consistent
anomaly for the sl3 Ward identities are in one to one correspondence with the su(2) anoma-
lies in the bosonic theory [38]. Therefore there is no anomaly for the rigid SL(3,R) in the
theory independently of supersymmetry. However, one must take care that a potential
naively trivial anomaly can be removed by a local counter-term without violating super-
symmetry Ward identities themselves. Consider for example the variation of the logarithm

function 3
QVZ‘]‘JTL[VZ] Kng
Vlenkal PnP '

By construction it satisfies equation (2.101), and therefore one can define the supersym-

2 Z..J ij K
AHz/ﬁc[ Vij iV nK} (2.155)

55[3 log (Vijfmvij JnJ) = CJI (2.154)

metry invariant

VlenLVkl PnP

which satisfies by construction to the Wess-Zumino consistency condition

5 (CyT A7) = 0. (2.156)
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However it cannot be eliminated by adding a supersymmetric counter-term because the
logarithm function itself does not satisfy to (2.101). In this case one cannot compute
the coefficient of the anomaly using the family index theorem because it is not related
to a chirality anomaly, and one would need in fact to compute the soft limit of the 1-
loop six point amplitude to compute the explicit coefficient. Nonetheless it is a consistent
correction, and the string theory computation [4] indicates that it indeed appears.

The appearance of these two anomalies is directly related to the appearance of a log-
arithm singularity in the four-point scattering amplitudes at 1-loop [55]. The relation
between the logarithm of the dilaton and the logarithmic divergence is explained in string
theory [36]. Rather naively, one can understand this property in field theory by noting
that supersymmetry determines the power of the dilaton multiplying the R?* type invari-
ant counter-term in function of the dimension. Assuming the existence of some kind of
supersymmetric regularisation valid at 1-loop order, one would naturally get an invariant

counter-term in 1
—e “Ptgtg R (2.157)
€

such that the finite term in € would define the anomaly [37].
3 N = (2,2) supergravity in six dimensions

In six dimensions, the Lorentz group is SU*(4) and the internal symmetry of maxi-
mal supergravity is Sp(2) x Sp(2). The scalar fields parametrise a symmetric space
SO(5,5)/(SO(5) x SO(5)) through SO(5,5) matrices V;;1, V;;! satisfying to

1 1 1 - I
n1Vii V! = §Qiijz — §Qilek — ZQiijl , Vi1V vy v =l
1 1 1
TUJVijIVI%ZJ = —59%937 + §Qifle% + ZQ@ijlA, nIJV@jIV@jJ =0, (3.1)

that are antisymmetric symplectic traceless in the pairs of Sp(2) indices ij and j, and
I = 1,10 is in the vector representation of SO(5, 5), such that 77 is the SO(5, 5) metric and
Q0 = 67 is the Sp(2) symplectic matrix, and respectively is Q;; for the second Sp(2).
Recall that the gamma matrices in five dimensions are such that both the conjugation
charge matrix ;; and the gamma matrices are antisymmetric. They define the momenta
and the sp(2)@®sp(2) connexion through the coset decomposition of the Maurer-Cartan form
d¢upuzjij — dvzjf V}MM — _nIJdvijI Vij'],
doHe’s = =V Vi =~V Vi dgtuy =~V VL =0 dvM VT (3.2)
The covariant derivative D;;;; is defined in the [0,1] x [0,1] of Sp(2) x Sp(2), i.e.
antisymmetric symplectic traceless in both pairs of indices, such that
d T(¢) = 2d¢" Py Dijo T(9) (3.3)
for any Sp(2) x Sp(2) tensor function of ¢*. The Dirac fermion fields are Y% and @ ijk
that are also symplectic traceless in the [1,0] x [0, 1] and [0, 1] x [1, 0] respectively, and

P = AP, 4 gpeliydlii §Q’JQ,€1E°"“XZ] + 2Bl Wil - EQUQMEQXQ . (3.4)
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Here we write xy and x for convenience, but recall that they are both symplectic
Majorana-Weyl and not complex conjugate. The only non-vanishing dimension-zero

torsion components are
Tl = —iQ0%,,  T¥F = —iQlg*P (3.5)

where a = 1 to 4 is in the fundamental of SU*(4) and ¢®®% = £*#795% 5. One computes
that the non-zero dimension 1/2 components of the torsion are

L es B PPN 5 kis
o5y = caproX”" T = Y, (3.6)
o T 1 AL B3k i 1 - .

TRt = x0T — Soax ™, T = daxi* = Sohxd"

We refer to [56, 57] for the complete set of fields of the theory.

3.1 The R? type invariant

Let us recall in a first step the structure of the linearised R* type invariants. The relevant
harmonic variables parametrise Sp(2)/U(2) with the split 4 = 209 @ 2. We define
u”;, ur; such that

Qijuriusj = 2(575” y u’"iurj = Qij . (3.7)

The linearised superfield L% satisfies

Dok iy — QQk[z‘Xaj]ij I %Qijiakij

DELI = 20 1+ S0 (Y (3.8)
The superfield o
W = uhiu?jutiu?; L9 (3.9)
is then G-analytic, i.e.
uDEW =0, W DYW =0. (3.10)

One can then define linearised invariants of the form

/ d*0d®0du FOm F Oy A (3.11)

where Fqﬂo’”] is the 2n order monomial in the harmonic variables in the corresponding [0, n]
representation of Sp(2), i.e.

F:iljl,iZj%minjn _ 5rlslurli1u51j15T282ur2i2u32j2 gl inus Jn 7 (3'12)

and respectively is ngo,n] for the second Sp(2) factor. Equivalently, one can think of this
invariant in the superaction formalism [58] as being obtained from

/ ), 4d°0)g 4 L7 047044

~ LPOnLOn Rt L pro 1200 12)0n-12], 8[041,08) 808104 (313)
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However the corresponding measure does not exist at the non-linear level, and the G-
analicity condition (3.10) admits obstructions, e.g.

s - o s 1 N
uriusz;I]B’li _ Eaﬁ’yéngSky uriuszgéﬁjwk — 5527 rks _ §5(Z>Z,Brks ) (314)

The structure of the linearised invariant nonetheless suggests that the non-linear invariant
admits an expansion in the derivatives of a function £ of the scalar fields in the [0, n] x [0, n].

The only term in a £R* type invariant involving the twelfth derivative of the function
£ in the maximal highest weight representation is

[0,12],[0,12]¢ X X ) .

which means that each of the two sets of Sp(2) indices are symmetrised according to the
Young tableau B, with all symplectic traces projected out. The covariant derivative
of this term gives two contributions that cannot be compensated by other terms

DILOL00] (D[IO%HHOJ?}S S 04L08] 8 [0,8],[0,4])
~ D[lo%l?)},[o,n}g ol OB DA 0A D[12%11]7[2,11]5 Xal BTGB OS0A 1 (3.16)

Counting the number of independent equations as in the last section for SL(3,R), one can

convince oneself that the equations

=0, (3.17)

11 2
0, Dio111,0,11) Pizog 2,0 € Al

11 2 _
Dio111,0,11) Pjo.21, 0,0 € sl =

imply respectively that
D€ =0,  Dhopof =0 (3.18)

It will be more convenient in the following to write the derivative D;j;;; in terms of vector

indices of SO(5) x SO(5), i.e.

1 o 1 A
Dy =1 (0)" ()" Dijig, A = ()i ()i B (3.19)
such that .1 A 1
d d b
DR = S0, RUD,Y = 5o (3.20)

Take care that we use the same letter a for the internal SO(5) vector representation, as

for the Lorentz vector representation. There should be no confusion however, because we
shall now on only use a as an SO(5) vector index. More explicitly, (3.18) read

DDy = 264D, D, DDyl =0 3.21

a heC = g abt g ) [a” 0] — Y- ( : )

Altogether with the similar equation obtained using Daiﬁ(G,oyo) instead, i.e.

c 1 cd
DD, E = 55&396 Dele. (3.22)
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The first equation implies that D3E = %]lloAS in the vector representation, with the

normalisation A = QDQED“Z;. Using the spinor representation

1 . 1 )
“DDPE Z’yab’yé DDyl €, (3.23)

1 b1 d
5P 5Py E =
and the second equation is equivalent to D%E = %]llﬁA £ in the Majorana-Weyl represen-
tation of s0(5,5). Using the relations between the Casimir operators

3
trD§ =2trDf,,  trDyf = —trDy{ + 1 (trD2)% 4+ 30D, (3.24)

one proves that

A<A+125)8:0. (3.25)

We can moreover fix this ambiguity by considering the general structure of the d-closed
superform L[€]. Similarly as in the preceding section, (3.21), (3.22) imply that the
symmetric traceless tensors D, @ .Dan)/&")’ & define a complete base of the independent
tensors one can obtain from the function £ and its covariant derivatives, such that the
superform L[£] expands as

12
LIE|=EL+ DS ELYS + Y Doy ... Do, E L5, (3.26)

n=2
where each L%, 5 is symmetric traceless in the indices a;...ay, and a; ...a,. De-
composing dL[E] = 0 in the base of D(al(dl .. .Dan)/&”)’g, one obtains equations of the form

dw/:'almanal.“&n — _2P(a1(&1 A Eaz...an)/d}“&n)/ —|—AnPbg A£a1...anb (3.27)

a1...anb?
where A,, are constants that remain to be determined and the first term is understood to
be symmetric traceless in both sets of indices, i.e.

pla o A£a2---an)’&2m&n), = pla (o /\£a2.--an)& . p(a1|l;/\£a2.--an)

@3...0;m)b
n—1
2n+1

2 .
5(a1a2Pb(&l /\Eagman)b&Q...&n) + ( ) 5(a1a26(&1&2Pbb/\’ca&“an)bdg...&n)?) . (328)

Using the Maurer-Cartan equation
dw®y + we AW = P% A Py, dwdb + Waé A w@b =P;i A pe , (3.29)
one obtains the integrability condition

dfﬁal”'a"& an = —nP(allé A Pye N\ ﬁaQ"'a”)balman — TLPb([ll AN 1Dbé A L‘al"'a"d}”&n)é , (3.30)

1eee
that determines the A, uniquely such that

(n+1)2(2n + 3)

L, Pl;/\ﬁal'“a"b
2::ln) 22n+5) "

dwcalmand1...&n — _2P(a1 (&1 A£a2"'a")/d

at...anb”

(3.31)
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Using (3.21), (3.22) altogether with this equation, and in particular

3 .
dL = —P,* N LY, 3.32
10 ( )
one obtains that d£[€] = 0 if and only if
15
A€ = —?5, (3.33)
consistently with [33]. For completeness we give the equations satisfied by & in

Sp(2) x Sp(2) representations

fn 3 1
QpTQquijﬁ(jDklr@g = _E (Qiijl - Qilek - 2Qiijl> 87
——. 15
r~Os 3 1
WO Dpgis D, i€ = — 15 (Qafg%‘ — Q82 — Q%Qz;i> €. (3.34)

but it will be more convenient in the following to write them as

1
D2E = —%11105, D2E = —1—21165. (3.35)

By construction (3.31) defines a representation of s0(5, 5), which corresponds to the unitary
representation of SO(5,5) on the set of functions satisfying to (3.35) with appropriate
boundary conditions. This turns out to be the minimal unitary representation of SO(5,5)
as we are going to exhibit in the next section.

3.2 Minimal unitary representation

Let us solve these differential equations in the parabolic gauge associated to the decom-
pactification limit. In this case one considers the decomposition

50(5,5) = 1077 & (gl; @ sl5)© @ 102 (3.36)

The representative in the vector representation can be written

62¢U-}a 62¢U'[1(a aKJ
= . 3.37
VlO ( 0 6_2¢’Ua‘] ( )

Here both a and I run from 1 to 5, and correspond respectively to SO(5) and SL(5)

indices. We shall not consider a specific gauge for the SL(5)/SO(5) representative v, .

The associated momentum is

2 a_ pa 1 _4¢,,-1a,,-1b 3, 1J
—5e*%v v da —2d¢d, + P,
The metric on the symmetric space is
1
trP? = 40d¢? + 2P Py, + §e8¢M;}(M;,1Ldaf Tda®L (3.39)
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where M!/ = v,7v*’ and the coordinates on the symmetric space SL(5)/SO(5) are defined
such that

1 1 2
PPDyy" = 55{1, PPDeg* = 1 <5g53 + 3460 — 55abacd> : (3.40)

The corresponding differential operator is

D %8(255? — D%, 6_4%“[@1"]81] (3 41)
10 = a . .
—e 4¢Ualvb‘]ajj —2—106¢5Z + Dab

The repeated action of the covariant derivative on a function, which we write formally as
a square even if the left derivative includes a connexion component, reads

D120: ((2[1)28¢2+11()8¢) 5g+'DacDCb_ (%%Jr%) Dab+€_8¢vaIUCJUbKUC 81J8KL “on ) ‘
26_4¢U(a11}c JDb)Cé)U ..
(3.42)
We shall also consider the derivative operator in the spinor representation. The coset
representative is then

e5(1) %e&ﬁaKL €5¢%5KPQRSGPQGRS
V16 = 0 €¢’U[aKvb]L €¢’U[ava]ST\1/§8RSKpQCLPQ . (3.43)
0 0 6*3%‘}(&
The associated momentum is
5d¢ 2\[ 4‘%1 v 1dda” 0
Pig= | 5i5e"vi,v),da’’ depoct + 25[[0Pb]d1 TosCabeese!?vicv i dal’
0 Tt v vy pdal’ —3dgde — P
(3.44)
The derivative operator reads
%845 % _4¢UCIU‘U8[] 0
Dy = %e“*%ﬁvﬂ@u 410 (55(;8(;5 + 2(5{5’1)1)] d) ﬁsabcefe_‘l‘%dvf‘]au s
0 27\1/5 acdefe—4¢UeIUfJ81J —%538(15 _ Dac
(3.45)

and acting twice on a function gives

1 02 16¢ + 16_8¢M[KMJL81J8KL
D= | v2e 4¢( Ova Ty 0g + v v Dy + 2va’vy”) O1 (3.46)
6—8¢U 1a PIJKLaIJaKL

4
\[6 ( UCIUdJa¢ + U[d eJD d] + 3el dJ) 1y ief&ﬁU}DCEPIJKLaIJaKL
d
Agb Cc,ab )
Ca,cd Ba
c
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where
ed _ sed ey eqy d ey d L dlery d Lfer d
Al = o <402 0F + Oa¢> + 20Dy “De + 2D Dy + 012Dy 0, + 56,0y
1
e8¢ (25%MIKMJL T o, IUvacK drL 25{ v ]IU J K, eL> dr70K1

1 1 1 1
C¥d = —\/2e7 8%y, 'Uf (805“def8¢ + ieaefg[cng] + Zacdengga + 85“Cdef> Ory
3

9 3 1
Bg = 5? <402 8¢ + 08¢> +Da0ch + Zpab <1 + 56¢>

1
+€_8¢ (2(5?M]KM‘]L UbI’U JvaK ) 8]J8KL . (3.47)
We can now solve equations (3.35). Let us consider in a first place solutions that do not

depend on a!’. To solve these equations, we shall use the existence of functions Els000) ON
SL(5)/SO(5) satisfying to

DD By = * B0+ 2B
(25[[21351);” +2D[a[cDb}d]) By = 2= 525[[2231)}@ Evoo + 35(255_5)5;% Bl (3.48)
Here the notation we use is to exhibit that the corresponding Eisenstein function of SL(5)
Eleooo] = Z (nIU'Ilav:}an‘]) - (3.49)

nleZs

do satisfy to these differential equations (whenever the series (3.49) converges), as can

straightforwardly be checked on their generating character (n’ vi vy, n’)=s.
Solving the spinorial equation D€ = ——]15 one finds the solution
E=coe % 4e 6‘Z’E 3000 T 6_10¢E So00] (3.50)
Solving then the vector equation D105 = —%115 one gets that the last function is not

solution. For the Fourier modes o €17¢"” one gets directly from the spinor equation the
1/2 BPS constraint

€IJKLPqIJqKL =0 (3.51)
and defining
Zy = 2M"™ M7 qr 9K, (3.52)
one obtains the two solutions
—6¢ _ )
gr="— 7 OV tiarsel! (3.53)

Requiring a convergent behaviour in the large radius limit e=2? — oo, the generic solution
takes the form

—6¢

- sus19) £ iﬁeﬂ%m*"q"’“ +e % E3,,[G )], (3.54)
SL(2) xSL(3)xR2X3 2
SL(2) xSL(3)x R2X3
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such that it is determined by a function F'(q) of seven variables, the general solution E, 3 000]
being itself determined by a function G(p) of four variables. These functions are not square
integrable on SO(5,5)/(SO(5) x SO(5)) because the Fourier mode of momentum gr; does
not depend on the flat directions of ¢y in SL(5, R) and the integral diverges as the infinite
volume of SL(2)/SO(2) x SL(3)/SO(3) x R?*3. Nonetheless these solutions match precisely
the solution obtained from the spherical vector of the minimal unitary representation of
SO(5,5) in [25]. One should be able to factor out the infinite volume such that these
functions are square integrable with respect to an appropriate measure, to show that the
minimal representation of SO(5,5) is indeed unitary.

We see that supersymmetry constrains each component of the Eisenstein function

defining the R* coupling, in perfect agreement with the explicit form of this function [25]

27‘1’2 10 6_6¢ —4¢ ; 1J
=" —10¢ —6¢ —2me VZa+2miqr ja

E[%ooz]_ e e By g AT Do N . (3.55)

qeZ10 nlary

gxq=0

3.3 Relation to BPS instantons

The differential equations (3.35) implies a non-renormalisation theorem such that the in-
stantons that contribute to the R* type correction in the effective action are 1/2 BPS. To
see this, let us consider a supergravity instanton determined by the scalar fields only. In this
case we consider the Euclidean theory for which the SO(5, 5) symmetry requires to consider
a non-compact complex real form of the divisor group, i.e. SO(5,5)/SO(5,C). This real
form is suggested in six Euclidean dimensions because there is no self-dual 3-form in Eu-
clidean signature, and the five 3-form field strengths must decompose into complex selfdual
and complex-antiselfdual in the complex five dimensional representation of SO(5,C) and is
complex conjugate. In this case the instanton can decouple from gravity and the metric is
chosen to be flat. The scalar fields then lie in a nilpotent subgroup, which is characterised by
the number of preserved supersymmetries. For a 1/2 BPS solution, one splits Sp(4, C) into

sp(4,C) = (3¢) 7Y @ (g1, (C) D sl (C) Y @ (3¢) ™. (3.56)

The fundamental representation in which lies the supersymmetry spinor parameters then
decomposes as
4¢ = (2¢) 7P @ (2¢)Y (3.57)

such that the grad 1/2 components carries the preserved half of supersymmetries. The
coset component of SO(5,5) decomposes accordingly such that

Bx5r=212a B3y e (CoBe3r) e Bo3)y 1@ (3.58)

The grad 2 component contains a single Lie algebra element that squares to zero in
both the vector and the spinor representation. Defining the scalar fields with such a
generator, the solution automatically preserves one half of supersymmetry because the
Dirac spinors x, x do not carry a grad 5/2 component within this decomposition. The
associated function is then simply a harmonic function on RS. More explicitly, the 1/2
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LIKLP o carer, = 0 defines a

BPS instanton with a charge qr; satisfying to the condition &
rank 2 antisymmetric tensor

Zap = anI'UobJQIJa (359)

where the zero subscript indicates that this is the asymptotic value of the scalar at infinity.
One can normalise it such that

Z,
Jop = ——tb (3.60)
\/ %chZCd
This tensor is a non-degenerate symmetric tensor J“ = %J“b'yabij in the spinor repre-

sentation, that determines the preserved supersymmetry as the ones associated to spinor
parameters satisfying to

e, = J' e, . (3.61)
We consider the Euclidean Lagrangian density for which the scalars with negative kinetic

terms have been dualised to 4-form potential By,

1
Hi; = %5”VJPHA3uBapmA I (3.62)

and that reduces to a sum of squares plus a total derivative as follows

1 1

—L=200"40,¢ + PPl + ie—S%QIWJH;‘JUGKubLHuKL (3.63)
— (20,00" — P — g 0 Hy ) (2006 60 — Pl — €00 oy o Y, )

1 _ 1 _
+§€ 8¢ (6?53—J“6J0652—2Jachd) UalvvaCdeLH}‘JHMKL+BM (e 4¢J“bvaIUbJH}LJ>

Cancelling the squares gives the equation

d (€4¢U_}av_5bjab) =*H;;. (364)
One obtains the solution
2
R = (3.65)
(2
Hrj = —=qr;dQ 3.66
17 = 57, (3.66)

which action is determined by the total derivative term and gives

S = e_4¢° \/21}0 alvo quUngngqKL . (3.67)

The other equations require the scalars to be constant in the directions preserving Jgp,
such that the scalar fields are determined by equation (3.65) up to constant flat directions.
The Noether charge associated to these solutions satisfies the nilpotency condition

Q120 =0, Q126 =0. (3~68)
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Equation (3.35) defines a quantised version of these algebraic equations. Moreover, the
form of the associated Fourier mode is characteristic of an instanton correction

—10¢
e ; IJ
~ e 27rS+27rzq1Ja . (369)

S

It is therefore legitimate to believe that the next coupling in V*R* will be a function
satisfying to differential equations defining a quantisation of the algebraic equations
associated to 1/4 BPS instantons. In so0(5,5), the next to minimal nilpotent orbit is not
unique, and there are in fact three disconnected orbits connected to the minimal orbit
associated to 1/2 BPS instantons. The two isomorphic smallest orbits are obtained by
relaxing the nilpotency condition in the vector representation

Qip =0, Q%=0. (3.70)

In this case however, the instanton cannot be defined in the standard Euclidean formu-
lation of the theory, and one must consider a real form of the divisor group that allows
for an independent decomposition of the two factors. This is incompatible with the
representation of the SO(5,5) symmetry on the 3-form field strengths, and recovering the
symmetry would require some analytic continuation of the Euclidean path integral in such
a background. One can consider for example the coset SO(5,5)/(SO(1,4) x SO(4,1)) such
that only one Sp(1,1) factor decomposes as

sp(1,1) =232 @ (gl @ su(2))” @ 3@, (3.71)

In this case the instanton can be described within the scalar fields valued in the Rieman-
nian symmetric space R% x SO(4,4)/(SO(4) x SO(4)) coupled to eight 4-forms in the 8
of SO(4,4).

The two orbits correspond to the choice of Sp(1, 1) factor. The coset component then
decomposes as

505 =57 ¢ 325)0 a5, (3.72)

and a representative of the nilpotent orbit is a generic (time-like vector) element of the
5/ component.? The associated solution preserves one half of the chiral (respectively
antichiral) supercharges, depending on the choice of Sp(1,1) factor. Note that in the
decomposition of the vector representation, with a of SO(5)" and a of SO(5), the charge

satisfies moreover
Qa“Qpc =0, (3.73)

although Q120 # 0.
The third orbit is obtained by relaxing the nilpotency condition in the spinor repre-
sentation

4A space-like vector corresponds to a solution that violates the BPS bound, and which is therefore

unphysical.
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In this case one can consider the standard formulation of the Euclidean theory with coset
SO(5,5)/SO(5,C) and the decomposition

5p(4,C) = (1) @ (2¢)7 @ (gh(C) @ 5(C)"” @ (2¢)™ © (1e)®. (3.75)
The fundamental representation in which lies the spinor then decomposes as
4c = (10)7V @ (20)” @ (1) (3.76)

such that the grad 1 component carries the preserved quarter of supersymmetries. The
coset component of SO(5,5) decomposes accordingly such that

BxBrR=222)5"e2e2)i e (Re(222)c)” @ 2a2)y e (202)8 (3.77)

and a representative of the nilpotent orbit is a generic (time-like SO(1, 3) vector) element of
2® 5)%. The associated instanton preserves one quarter of supersymmetry (one quarter
chiral and one quarter antichiral).

3.4 The V*R* type invariants

We shall consider in a first place the linearised V*R?* invariants. There are three 1/4
BPS measures one can define in the linearised approximation [32], although none of them
extends to the non-linear level as one straightforwardly checks using (3.6).

The chiral invariant. The first two V*R* type invariants are parity conjugate, and we
shall only discuss the first. It can be defined in the linearised approximation by considering
harmonic variables with respect to one Sp(2) factor only [32], such that the superfield

W = oL (3.78)
satisfies the G-analyticity condition
w3 DLW = 0. (3.79)
One can again define linearised invariants

/ d80d1GduF O (g, Yol / 8610 d\BL 2K 00L042K Ol 0]

(3.80)
Now there are more representations allowed, and this suggests that one must consider the
(n + 2k)™ derivative of the defining function in all representations [0,n] x [0, 7 + 2k]. This
is consistent with the property that

D[22 0],[270}5 =0, D[Qoz],[o,o]g =0, (3.81)

proposed as a quantisation of the corresponding 1/4 BPS condition in the last section.
Matching the linearly independent invariant to the independent linearised invariants, one
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concludes that the complete invariant associated to a function £ must admit the following

expansion
12 8—n/2
+2k [0,n],[0,n+2K]
‘C <2 0) — Z Z Dﬁ) n],[0,n+2k] SE(Q,O)
n=0 k=0
Decomposing dL[E] s, = 0 in the base of D%tf}k[o ntor &r One obtains that
an) 2n 42 an)'b
d Eal anal an+2k = —2P(a1 (&1 A LQQ a ) &2.“dn+2k)/ — mpb(&l VAN ,Cal a ) &2~~~&n+2k)/
b ) b weapb
+ 2An7kP(a1| A [02--0 ) a1 o )'b + Bn,ka A La1--a s (3.83)
where the two first coefficients are determined by the decomposition
Dad D(al (d1Da2d2 ... 'Dan),&n'Dbldn+1be1&n+2 . 'Dbk&n+2k_lpbk|&"+2k)/8
— D(a(é Daldlpa2d2 . ,Dan),&nDbldn+1Dbldn+2 .. ,Dbkdn+2k71’l)bk|dn+2k)/g
_|-2 7:_ 35 (a Da2(d2 ... ’Dan)ldnbe&rDmebl&n+1Db1&n+2 .. 'Dbk&"”’“‘lDb’“‘&"*?k)’g
+O(D"2R1ey (3.84)
Checking the consistency condition
d2£a1 anal T (385)

= —nPlle A p A £020n)b — (n+ 2k) Pya, A PP A Lo

&1...an+2k az.. an+2k)c’
one gets the three independent equations

(n+2k+1)(2n + 4k + 3)

Ak = n—
ok (n+ 2k)(2n + 4k + 5) Lk
n+2 n+1 (n+2k+1)2n+4k +3)
Bn,k = Bn—i—l,kz—l
2n+7 2n+5 (n+2k)(2n + 4k +5)
n+1 (n+1)2n+3)(n+2k+1)
B, =2 A, , 3.86
i 45 " * 2(2n +5) (3:86)
that admit the general solution
A (n+ 2k +1)(2k +2s — 3)(2k + 5 — 2s)
mk = 4(2n + 4k + 5) ’
2 1 2 1 4 —
B, — m+1)(n+2k+1)(n+k+s)(n+k+ s). (3.87)
’ (2n +5)(2n + 4k + 5)
However assuming the expansion of the invariant (3.82), EE(Q) Q] 0nt2k] only exist for k > 0

and therefore A, _; must vanish by consistency. We get therefore s = g or %, which define

the same solutions for A, , and By, ;. We conclude that the function £ must satisfy to
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~ . ~ ~ . . . . /
Dy Dig, V1 Dy, -+ Dy 347 Dy, Pt PP+ . Dy Gnsak—r POilanian)’ g

~ ~ ~ ~ ~ ~ ~ A ’
_ D(a(a Dalal DQQ az | . Dan)/a"Dln an+1'Db1an+2 . Dbk an+2k—1Dbk|an+2k) £

n a an a a Qn Qn An42k—1 Gntor)
+m6a(alpa2( 2. D, Dy, Db 1Dy, +1b1ant2 . Dy, Gt Dbklantar) ¢
k(k—1)(n+2k) ;4 " - . . . . _ ,
. 5a(an+1Da(an+2D (@1...p |, @np, Gntspbainia .. P, Gni2k—1Dbklant2r) g
In+4k+3 (a1 an) b2 by
n(n+2k)(2n + 2k + 1)(2n + 2k + 3)

4(2n + 3)(2n + 4k + 3n)
X 60,(0«16&(&1,2)(12 b2 Dan)'anb1 dwr+1Db1&"’+2 s Dbk ﬁ"+2k71Dbkan+2k)/8 . (388)

and in particular

~ 7 ~ 2\’ 1 ~ 2\ 3 7
Do Dy’E = D, " Dy V'€ + géabpdapcb) £ - ?Oaabéabe, (3.89)
such that 3
DoDyeE = ~ 0 - (3.90)
Considering more generally a function & satisfying to
—4
D& = Mnlﬁgm (3.91)

one computes using the property that D1y can be realised from D1g through a commutator
with the SO(5,5) gamma matrices, that

D2E = (s —1)(s — 3)Dyfs. (3.92)
This equation is only consistent with the second equation in (3.81) if s = % or %, such that
one gets indeed that any non-trivial solution to (3.81) must solve (3.90).

The function defining the closed superform (3.82) satisfies therefore to an equation
compatible with the function defining the R?* type invariant, consistently with the expected
properties of the effective action in type II string theory [11, 33]. Solving this spinor
differential equation (3.91) for s = 5 one finds the solution (3.50) for ¢;; = 0, and the
complex solution
ﬂe*€_4¢\/72+iQIJaI']
7 )
and its complex conjugate, where the upper complex half plan variable 74, ;) parametrises
the vy, () component of v, in the SL(2) subgroup of the stabiliser SL(2) x SL(3) x R?*3 C
SL(5) of grj. One computes moreover that

<D120 + 3]110> &g = < i “DF(Tayg) i DV F (Tay(g)) ) 106 —e VT,

Eq = F(Tay(q) (3.93)

4 JaPoyeF (Tar()  —Da"F(Tas(q)
(3.94)
with J,; defined as in (3.60), which plays the role of a complex structure such that
iJ(a“DryeF (Tay(q) = DanF (Tay(q)) (3.95)
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for a holomorphic function and (3.90) is satisfied. The generic solution to these differential
equations is therefore supported on a space of eight variables

. —6¢ .

E[F] :/ dQ SL<5)du(q) F(q, Q) eZQTAl(fI) eﬁeie 4¢J72+lq1Ja1J’ (396)
R+ SL(2) xSL(3)xR2X3 2

and defines the smallest of the two next to minimal unitary representations of SO(5,5).

The real function eilod’E[%

the two functions

000

; does not solve the vector equation (3.90), but one can define

K Kpp1 oLP
Ef(n,m) = 6710¢&K5 e il < WZP (3.97)
: (nfMpyn’)? (nfMpyn’)?
which solve both (3.91) for s = 5 and €7 (n,m) solves (3.90) whereas
2
c o— 3 —
DD Eé’g (n,m) = 716&5 E% (n,m). (3.98)

To prove that we note that their sum vanishes for nfm; = 0 whereas their difference is

then obtained from the character generating 6*6¢E[ 3 by an infinitesimal duality trans-

000]

formation of parameter qr; = —qy such that m; = qryn’, i.e.
3 Inr1 ,JK L
- 3 n' M7a n
1) <e*4¢MU> = qKL€74¢MK(IaJ)L, ) (nle4¢Mf]n‘7) ? = —5676(15 L qKLé ,
(nPM;QnQ> :
(3.99)

When nimy # 0 the
two functions are independent, and one straightforwardly checks that this scalar product

and therefore satisfies by construction to (3.35) as does 6_6¢E[% 000]"

is not involved in equation (3.91), and is only relevant in (3.90) through

3
(D120 + 4]110> &5 (n,m) (3.100)
2
_ nfn’ —5ufevt, + 00M;,  £(5uptuit — 6 M) 100 nPmp
2\ =0vrvg, — daMiy)  —Supvs” + daMyy (nf Mz nt)?

which is then only satisfied by €5 (n,m). The linear term in the axion is in contradiction

2
with duality invariance, but the explicit dependence in the (naked) axion drops out in the
real invariant

£[5§(”7 m)] o + 'C[gg_(”’ m)] 0.2 (3.101)
because the two chiral invariants coincide for a function satisfying to (3.35). One checks
indeed in the linearised analysis that the superforms 4230”}’[“’"] satisfy to

Lo _ ontion (3,102

Assuming that they satisfy to the same equation at the non-linear level, one obtains that

[07n]7[07n+2k}
Lo,

terms linear in the axion cancel out in the expansion (3.82). The term in for
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k > 1 involve the operator (3.100) such that they do not depend explicitly on the (naked)
axion a”/. This structure is similar to the one associated to the invariant Re[£[In(n)]] in
eight dimensions, for which the axion a only appears polynomially through [ a (p — ipf).
Although in this case there is no topological coupling in the axion, and the supersymmetry
invariant only depends on the function £F (n,m) + £5 (n,m) and its covariant derivatives.

The general solution is therefore conpatible WQith the regularised Eisenstein series
EA[;O og] appearing in the V4#R* coupling [11, 33], but we should take care however, that
the Eisenstein function F [so og] diverges at s = g Note that this function is generated by
a specific character, and any covariant differential equation satisfied by the character is
also satisfied by the Eisenstein function provided the series converges. Using this property
one computes that it satisfies to
s(s —4)

D2E; 1= —~——116E; 7. (3.103)

[50 oy ] 4 [ 500 ]
One can use this property to constrains the Fourier modes of this function. Altogether
with the constant terms computed in [11], we conclude that this Eisenstein function

admits the expansion

25—2 _ _
T2 (s —3) ¢(2s 4)64(3—4)

E; =€ ""E 0+ ? Ba—so00
[5“0] o0l sin(mrs) T(s)D(s — 3)¢(25 - 3) soocl
_8¢
e _ i 1J
+16 E:;M@qk%mﬂmgﬁi;x%e%wap2WN (3.104)
2
qulO
gxq=0

for some undetermined measure p5(q). Using this expression, one recovers the singular limit

2 .
Er, g=-Er, g+E, +0(, (3.105)
|:;+60001| € [ZOOO} |:;+eooo}
provided ps(q) = _,,,, 7 is the same measure as for s = 3.
2
Using the limit we compute that
- 15 - 1
DAE;, o1 =——NigEr, o+ s16Er, .o, (3.106)
[3000} 16 [3000] 2 {zooo]

which is not strictly the supersymmetry equation. The logarithms of the moduli appearing
in the regularised Eisenstein function are in fact coming from the non-analytic component
of the effective action, as we shall discuss at the end of this section.

The parity symmetric invariant. The third class of invariants can be obtained in the
linearised approximation using harmonic variables parametrising Sp(2)/(U(1) x Sp(1)) with
the decomposition 4 =2 12 @ 2 ¢ 1® [32]. We define accordingly w;, @;, u"; such that

Qij’u,i’L_l,j =2, Qiju’"iusj =e*, uit; + 6Tsuriu8j = Qij , (3.107)
and respectively for the second Sp(2) factor. One can then define the G-analytic superfield

W™ = wu” juzu’; L9 (3.108)
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that satisfies
wD¥'W™ =0, DLW =0. (3.109)

Using this superfield one can define the class of invariants
/ 1204220 du 1240 F{[L%,o] (W5 T, ) 24 (s 5,01 0]

N / 0120, 010128 g L2 12K 0L5200] £ (0.0} (0] (3.110)

where Fz[Ln+2k’0] is the degree n + 2k monomial in %; in the corresponding representation.
The set of representations involved is again different, and suggests in this case that one
must consider the (n + 2k)*™ derivative in all the representations [2k,n] x [2k,n]. This is
now consistent with the property that

D[20,2],[0,0}5 =0, D[Qo,o],[o,z]g =0, (3.111)

proposed as a quantisation of the corresponding 1/4 BPS condition in the last section. So
such invariant will have the generic form

2 (2k.n] (26,1
n-+2k 2k,n],[2k,n
Elan =3 D Phinprn€ £
n=0 k=0

The form of the linearised invariant therefore strongly suggests that the function £ must
satisfy to equation (3.111). In principle one could check this explicitly on the terms
multiplying D[4 19,4, 12}5 , but this computation is rather involved and we shall not carry
it out in this paper. Note moreover that the 1/4 BPS condition discussed in the preceding
section also requires Ql% = 0, and considering the expansion (3.112) requires also that

s—2
24

D[a[&Dbb'Dc} ¢l SS = — Eabcdegabédépddpeégs y (3113)
for some s to be determined, such that there is no new independent term in the gradient
expansion of the function &. Using the commutation relation one computes that in general

eI DD DD = eI DD + eI D ADLIDS D (3.114)
such that (3.113) and (3.111) are only compatible if

s(s —4)

D, Dyl = I

SapEs - (3.115)

Using these equations and the compatibility condition with (3.24) one concludes that

—4
D2, = 8’(84)111055,
_3(s—2)

. 13s(s —4) + 24D1655 n 15s(s — 2)(s — 4)

D3.E,
16 16 64

D2Es +

116Es. (3.116)
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It remains now to determine the value of s. To do so we note that the linearised invariants
in the [0,n],[0,n] representation are all identical because they have the same 1/2 BPS
harmonic integral form

/d89d16§duF£O,n}(WijWij)ALWn[O,n] _ /d12€d12§duF£n,0]F;gn,0](WT§WT§)4(usiufjwsf,)n[n,o],[nﬁ]
= / d*0d30duF O FO™ (0, worw 2w . (3.117)
This suggests that the associated superforms are also identical at the non-linear level

£[O,n],[0,n} _ E[O,n],[o,n] _ L‘Eg:g],[(),n] . (3118)

(1,1) (2,0)

But this is only possible if the differential equations are compatible and therefore if s = 3.
The value s = 3 is indeed consistent with [33], as we are going to see.

We shall now discuss the solutions of these equations for s = 3. Solving (3.116) requires
the introduction of another class of SL(5) Eisenstein functions satisfying to

4s — 5
20

3s(2s —5)
25

DaCch E[oom] = - Dab E[oow] + 62 E[OOSO] . (3119)
We checked this equation explicitly on a generating character of these Eisenstein functions.
Note that these functions do not satisfy to any quadratic differential equation in the 10 of
SL(5) as does Ej,000- This equation is only strictly satisfied by the corresponding Eisenstein
functions when they are convergent series.

Solving equation (3.116) for a function independent of a/” one finds the solution

c1e 4 eTE g+ e 4 e E s+ e E g + e P B (3.120)

ooo] *

All the corresponding Eisenstein functions, but E_1,,,; and E;

7@000

oolops do appear in the decom-
pactification limit of the regularised Eisenstein function E[ 000 ;} according to [33]. However
the M-theory limit also corresponds to the same decomposition of SO(5,5), with the oppo-

site chirality, and the Eisenstein functions F, 1, and E[ozoo] solving the same differential

7@000

equation as F 1 do appear in this limit [33]. We expect the cubic equation in (3.116) to
distinguish these two cases, such that E_ Looo] and E,, Lo would only solve (3.116) for s = 1.

The sign of the terms involving the € tensor depend on the chirality, and the corresponding
equation in the parabolic gauge also depends on the specific embedding.

Let us now consider the Fourier modes. Note that the condition el/ELF

qr79xL = 0
was coming from the quadratic equation in the spinor representation, and therefore does

not hold in this case. It is therefore convenient to define the two functions

2= 220020, 7= Zu()7"(0) 2:a(0)2(0) — | (Zu(@)2(@)),  (3121)

with
Zap(q) = v vs" a1 - (3.122)

The off-diagonal equation
Z(a“()Dyyebq = 0 (3.123)
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requires that the Fourier modes only depends on the SL(5)/SO(5) scalars through the
central charge Z,,(¢q). Using these variables, one can rewrite the remaining differential
equation as

32 12 4 2
Zac(q)ch(q)Zde(q)Zeb(q) <—58Z4 — 324854 + 5Z2822824 + 48222 — 58248¢> 5q

31 3 8 1 8
+Zae(q) Z%(q) (1022324 5822 + 522248224 + 5(4Z4 ~ 7Z,2)02,07, — 5Z23222

—I— Z28248¢ 0220¢> &I

16 4
+(5b (25 Z4824 —|— 55 ZQ@Z2 —I— Z428Z4 + 52224322824 + 222822
2 2407,00 + — 2502,0 02+ —d, )&,
574070 T 55 2202, “202 RTY ¢>
3
= —153 & (3.124)

This provides three independent second-order equations. One finds the solution

—6¢ -
e e o (V32 VZat\[§20-VT) (3.125)
V32 + VTt 32 - VT
Note that for a 1/2 BPS charge one has
Lo
Zy = ZZQ , (3.126)

and one recovers the same form of the Fourier coefficients as for E[ ERS og}. The term

1 1
6_4¢ <\/2Z2 + Z4 + \/222 — \/ Z4> (3.127)

is the action associated to a 1/4 BPS instanton. Considering the central charge in the
spinor representation %Zab*y“bik , the eigenvalues are

1 1
+ \/QZQ + 2y x \/222 — /2y (3128)

and the BPS bound is defined by the largest. In fact they all define solutions to the
equation (3.124), but only (3.125) admits a convergent behaviour in the large radius limit
because the others exhibit exponential growth in the asymptotic. The generic solution with
a convergent behaviour at infinity is therefore supported on a set of functions depending
on ten variables

5[F] /leqF e 69 _ef4¢(\/%ZQ+\/Z*4+\/%Z2_\/Z*4)+Z-(HNU
\/ ZQ+\/Z4+\/ 7o —/7s

)

(3.129)
corresponding the other next to minimal unitary representation of SO(5,5).
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We should also consider the contribution of the 1/2 BPS instantons. But because the
solution is then singular by property of the function, one must rather consider the solution
for a generic s. Because this class of Eisenstein functions is associated to the decomposition
of SO(5, 5) we use, the generating character of the function £ [ 00 og] restricted to the Cartan
subgroup is simply e~1%5?. We computed that & = e =105 is a solution to the two equations
in (3.116), and it follows that the Eisenstein function E[oo og] also solves them when the
series converges. Note that for a rank one Fourier modes (i.e. ¢ x ¢ = 0), the off-diagonal
equation (3.123) is not strong enough to impose that the solution only depends on Zj,
and the function can also depend on the components of v,’ in the SL(3) subgroup of the
stabiliser SL(2) x SL(3) x R**3 C SL(5) of g7, which we shall write v, ). For a 1/2 BPS
charge ¢ one finds the solution to the quadratic equation in (3.116)

25—9 25—7
& = 6—2(7—5)¢E[s_%0] (UAz(q))Z2TKs—g(€_4¢ Z3) + C16_2(13_35)¢Z2T Ks—g(€_4¢ Z)
(3.130)
together with the conjugate solution obtained by the substitution s — 4 —s. We did
not check the cubic equation on these functions, and one cannot determine at this level
which of these solutions actually appear in the Fourier expansion of E[ 0000 ], but the first
solution depending on the SL(3) Eisenstein function admits the appropriate limit to define
the singular structure of the regularised Eisenstein function E[oo og] [33]

. 45
Er oy =lim <E - B ) . (3.131)
[0003] e—0 [0003+€] 4e [7000]
Indeed
“2-9op 2,7 K, (e T) = T VT L 0. (3.132
€ [%+50](UA2(q)) 2 %+e( e 2) - ; ZQe + (6 ) ( . )

In particular, we conclude that the 1/2 BPS instanton contributions to the V*R* coupling
in string theory combine into

1. 4.
“Br, o +—B 3.133
37 (2003 T35 0o (3.133)

iO
2

- - 6_6¢ —2mwe—4¢ migryal’
= Z Z n <4E[1](UAl(q))+2E[%o](UAz(q))) \/7—26 2 VZrtamiaelty

qeZ10 nlars
gxq=0

It is rather striking that this combination of E[I] and E[% o is precisely the one that defines
the R* coupling in eight dimensions [11], for which the respective % poles cancel out.

The non-analytic terms. Similarly as E‘[go 0° }, E‘{ 000 ;’] does not strictly satisfy to the
supersymmetry equation (3.116), but rather to

+45]110E[;000] . (3134)

2 7 _ 3.
DIOE[ = 4]110E[000§] 3

o
000
})
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A V*R?* invariant does not have the right dimension to appear as a counterterm for loga-
rithmic divergences in supergravity, and the non-analytic component of the effective action
responsible for these corrections to the differential equations satisfied by the threshold func-
tions must also include massive states contributions. From the supergravity perspective,
this comes from the property that V*R* has the correct dimension to be a counterterm for
the 1-loop divergence of an R* invariant operator defined as an insertion. If we consider
the low energy expansion of the effective action, the leading non-analytic components will
match the supergravity effective action, but the next order correction will include the in-
sertion of the exact R* string theory coupling. Schematically, the amplitude is determined
by the supergravity path integral of the string theory Wilsonian effective S

exp iW[J]) = /Dgpexp <KZQ (So + k>S5 + K*S5 +...) +i/J<p> , (3.135)
such that the corresponding Legendre transform decomposes as
1
Plie] = 580 + Crsoop + 13 + K710y + 5% (S5 [S5 T, )+ (3.136)

If one considers the perturbative string theory contribution as depicted in [33], one finds
indeed a logarithm correction of the form

g + 4E[oo o] = ¢35 ( ot ¢862¢SE[
3

27 [2003] " 45 ]+) (3.137)

2 o

where the overall e3%s corresponds to the Weyl rescaling to Einstein frame. According
to the analysis displayed in [36], one understands that this logarithm of the dilaton comes
from a logarithm of the Mandelstam variable s in the effective action. We see therefore
that the tree-level and one-loop corrections to the R* coupling in string theory contribute
respectively to a one-loop and a 2-loop correction to ln(s)82R4 in the effective action. In
supergravity, this implies that the local operator E[E% J2.2) defining an arbitrary R* type
invariant, admits a logarithmic divergence at 1-loop, renormalised by a local operator of
the form L€ 3 ](1.1) defining a VAR? type invariant, for the same function £ 8-

The consistency of this argument requires that the anomalous term in E{ 3000 ] in the
two supersymmetry equations associated to the two independent invariants define the same
unique invariant, itself associated to the 1-loop divergence of the corresponding R* type
invariant. Equivalently, the cancelation of the % divergence in the combination

. 1 I 4 1 B
lgr(-:l) <4£ l:E[ %-%—eo og]i| (2,0) + RL |:E[ 000 Sié]] (1,1) + ZE |:E{ %-%—eo OZ]] (0,2)> (3138)

requires that for a function &3 satisfying the 1/2 BPS quadratic equation (3.35), the three
2
invariants must be identical, i.e.

E[f‘:g](m) = E[E%](w) = 5[53]0,1) . (3.139)

The corresponding expansions in derivatives of the function £3 are indeed of the same form
2
in that case because of the quadratic equations satisfied by &3, and these invariants are
2
indeed identical provided (3.118) is satisfied.
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4 N = 8 supergravity in four dimensions

We will now discuss the case of N' = 8 supergravity in four dimensions [45, 59]. The
R-symmetry group is then SU(8) and the Lorentz group SL(2,C). In this section i = 1
to 8 is an SU(8) index. The same construction permits to determine the properties of the
function defining the R?* type invariant, and we will propose a conjecture for the equations
satisfied by the functions defining the V4R* and VOR* type invariants.

4.1 The R? type invariant
One can define the linearised R* type invariants in the linearised approximation by us-
ing harmonic variables in SU(8)/S(U(4) x U(4)) as in [60]. One obtains that the scalar
superfield
W = uliu2ju3ku4lWijkl s (4.1)

is G-analytic with respect to (with 7 =1 to 4 and 7 =5 to 8)

uTinl W = 0, ui,aDo'ﬂ' W =0 > (4.2)
such that

/ d89d8§duF£0,0,0,n,0,0,0} W4+n

~ W 0001000 pd 4| pn—12(0,0,00-120,0,0], 8[0,00,6,0,0,0118[0.006000] (4 3)

Although the harmonic measure does not extend to the non-linear theory, it suggests
strongly that the non-linear invariant admits the expansion
12
LIE] = EL + DigrEL™ + Y "D 0000 L0000 (4.4)
n=2
As in the preceding section, we will concentrate on the term with the maximal number of
derivative carrying the highest weight SU(8) representation. Using representation theory
and power counting, one obtains that the maximal weight term can only be the monomial
in x®¥® because one needs 48 open indices to get this representation. To show that this
monomial exists and is unique, one can use the harmonic projection

Péta, i § ok . st u gk
U §u]£u aXaijk Xar = Epstul U ;U EXE (4-5)

Xh=e¢
which define 8 + 8 fermionic variables. The maximal monomial is therefore x®x®, and by
definition of the harmonic variables, it has maximal U(1) weight such that it is in the
[0,0,0,12,0,0,0] representation of SU(8), of Young tableau

action of the covariant derivatives on such monomial, we need to consider the independent

To consider the

terms in y”

0,0,1,0,0,0,0] . 8[0,0,0,6,0,0,0 9[0,1,0,5,1,0,0 9[1,0,0,5,0,1,0 9[0,0,0,5,0,0,1
X I8l e xdl L+ X! N O

Using the first term (of maximal weight), one gets the two possible combinations

Xg[o,1,o,5,1,o,o]>zs [0,0,0,6,0,0,0] _ (Xzis)[o,l,o,n,l,o,()] + (XaXS)[LO,O,lLO,LO} +..., (4.7)
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which will both appear in the derivative of D2Ex3y® as
i 12 810,0,0,6,0,0,0] =8[0,0,0,6,0,0,0
Dy, (D[o,o,o,m,o,o,o}gx [ ]X [ ]>
13 19 -81[0,1,0,11,1,0,0 i13 9 —81[1,0,0,11,0,1,0
= D[0,1,0,11,0,1,0}5 (Xa X )[ I+ Df0,1,0,11,0,1,0}5 (XaX )[ I+ -(4.8)

The only other way to get x° in the [0,1,0,5,1,0,0] representation is through

0,0,1,0,0,0,0] ,,8(1,1,0,4,1,0,0 910,1,0,5,1,0,0 911,0,0,5,0,1,0)/
N ]\ 8 o0l V] Vg

X -, (4.9)

where the prime states that the [1,0,0,5,0,1,0] is not necessarily the same, because there
exists two such combinations of x?. Therefore one should also consider terms like

12 -810,0,0,6,0,0,0 810,0,0,6,0,0,0 811,1,0,4,1,0,0
D[O,l,O,lO,O,l,O]gX [777777](X [777777}+X [777777]) . (4'10)

However [0,0,1,0,0,0,0] x[0,1,0,10,0, 1, 0] does not contain the [0,1,0,11,1,0, 0], so such
terms can only be used to compensate for the [1,0,0,11,0,1,0] in (4.8).

For completeness, less us stress that terms involving bosons with a maximal number
of open SU(8) indices

D[10370’0711701070]5F(L%LO,U,O,O,O]X6a6[0,070,5,0,0,0]XS [0,0,0,6,0,0,0] L C.C, (4.11)
and .
D[11%0,0,11,0,0,1] £ pop [0’0’0’1’0’0’0]X2[1’0’0’5’0’0’O]X;[0’0’0’5’0’0’1] : (4.12)

could not mix with the terms we have been considering. Moreover the second can be
eliminated by the addition of a total derivative, up to the addition of lower derivative
terms in D'2€.

We conclude that there is nothing that can compensate for the first term in (4.8), and
the function £ must therefore satisfy to the equation

3
D[10,1,0,11,0,1,o]5 =0. (4.13)

Up to lower derivative terms in £ in lower weight representations, this equation can be
reduced to

11 2
Di0,0,0,11,0,0.0P}0,1,000,1,0€ = 0- (4.14)
The derivative operator D[lolo 0,11,0,0,0] includes all components (Djjx)'! (without summa-

tion over the indices), and its kernel is the constant tensor. We conclude that the function
&€ must satisfy to the quadratic equation

D[20,1,0,0,0,17o]5 =0, (4.15)

or more explicitly (with the definition A =1/3 Dijleijkl)
1 3

525 """ Dhipg Drstn€ = %5;;%5. (4.16)
Using the relation
(D% Dpors| Dy = —2467" D + 36Uk D (4.17)
y Ppgrs| Htuvw qrs|[t uvw|[p pgrs Htuvw 5 .
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one obtains the equality between the two quartic invariants

1

Dijkl DklqupquDrsij = ﬁ

k) ikl
(DWDW ) + 6Dy DR (4.18)
Using this property one can conclude that £ satisfies
A28 = —42AE. (4.19)

The same argument as for SO(5,5) in the preceding section would permit to show that the
only consistent solution satisfies AE = —42 &, consistently with the analysis of [33]. Using
the explicit form of the differential equation of the next section, one computes indeed that
there is no non-trivial solution to (4.16) satisfying to the Laplace equation AE = 0. We
conclude that £ satisfies to

1 .. 9 ..
ﬂs”mrsmpk,pqpmtug = —55,35. (4.20)

4.2 Minimal unitary representation

It is convenient to analyse Equation (4.20) considering an explicit coset representative in
E7(7)/SU(8) in the parabolic gauge [,.8,..] relevant to the decompactification limit. In
this case we have

e39 0 0 0 1 o’ %tJKLaKaL %tKLpaKaLaP
Y — 0 6¢V;‘]‘I 0 0 0 (5}] t[JKCLK %tIKLaKaL
0 0 e ®Viyd 0 0 0 &4 al ’
0 0 0 e3¢ 0 0 0 1
(4.21)

where V;;! is a representative of FEg(6)/Sp.(4) in the fundamental representation, and ¢k
is the invariant symmetric tensor of Egg).
The decomposition
vV '=P+B (4.22)

in coset and subgroup components gives

3do $e20V-1 Kl gal 0 0
p | 2V rigda!  dodl P V2 Vi 0 (4.23)
0 \/§€2¢Q]] [kV'lj e —dgb&,zjl — Pwkl %62(}5‘/'1[” dal ’
0 0 120V adal —3d¢
where all the antisymmetrisations are understood to be projected to the symplectic traceless
component
1 1 1 Kl
Xij) = 5Xij — 5Xji — Q" X, (4.24)
2 2 8
and 5%1 = (5%?5;] - %Qiijl. The symplectic matrix €;; satisfies
Q* Q= o (4.25)
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and we raise and lower Sp(4) indices as
X; = QX7 X" = X,;Q0. (4.26)

The metric on the coset space Fr(7)/SU.(8) is defined as

1 1 . %
ds? = gtrP2 = 12d¢? + gPijklP”kl + eV VY da da? (4.27)
and its inverse 1 1
g1 = 02 + Dy DI + e VIV 510, (4.28)

Accordingly, we have
Dijut PP = 36087, Dy R/VH =34, (4.29)

on the symmetric space Eg)/Sp.(4). The reader should take care that we use the
same notation for the differential operator D;j;;, that is associated to the 42 variables
of Eg6)/Sp.(4) in this subsection, whereas it was used for the 70 variables of Fy(7)/SU.(8)
in the preceding one.

The inverse vielbein on E7(7)/SU.(8) are defined as

105 se 20V Ig; 0 0
D— %e_Q‘ﬁVian[ %aﬁﬁ(slkjl + Dijkl \/56_2(1)91'][’?%} [ilal 0 (4.30)
- 0 V2e 20Qillkyllil g, — 19,67 — DYy dem20Vii 1, '
0 0 %672¢Vk116] —%&b
We compute the different components of the differential equation D?& = —%]15 to give
1 9 1 iy 9
— O+ S0s+ e YV, IVIT905) € = —ZE 4.31
(16¢+8¢+4e J 197 2 (431)
1 1
<2€—2¢qulaﬂ)qul 420y kg, <2 n 68¢>> E=0 (4.32)
1 ,
Z€_4¢V_1]ZJ7§IJK6J8K5 =0 (4.33)
1 1 ki kl Kl 1
9

e (5U€V.] IyllpJ ‘/[i[kl‘/j]l]J> 618J>5 =

i Vil SHE  (4.34)

2
o2 <Vp['i 1D, ol Ippl}ij) 91 =0 (4.35)

The differential operator D clearly commutes with J;7, such that we can decompose the
solution into Fourier modes €% . Let us consider in a first place the zero modes qr = 0.
In this case equation (4.31) implies that

Eo(p, V) = e 92&5(V) + e 1206L(V). (4.36)

By representation theory, the term in Dijkl in equation (4.34) cannot mix with the others,
such that the function (V) must be a constant. One finds that the function e~!2¢ is
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indeed a solution to the complete differential equation D% = —%]15 . In order to define a
solution, the other function & (V') must satisfy to the equation

DijpgD"P1Es = —201/E5 (4.37)

which is nothing but the supersymmetry constraint of the five dimensional R* threshold.
Taking its trace, one obtain indeed the Poisson equation [33]

1
AES(G) & = mleUkZ&E —18¢&5. (4.38)
Let us consider now the non-trivial Fourier modes. Equation (4.33) implies that
t"%qrqx =0 (4.39)

which is the expected equation for a %—BPS scalar instanton. Equation (4.35) is very
constraining, and implies that £,(¢,V) only dependent on the FEgg)/Sp.(4) coordinates
through the invariant mass of the charge q;. So we define

Zij(a) = Vij'ar, 12 = Zij(9)27(q) (4.40)
such that (¢, V) = &(#,|Z(q)|). Because gr is a rank one vector [61],
. 1.
Zin(a) 27 () = 2012 (a) . (4.41)

Equation (4.32) determines the dependence in |Z(g)| in terms of the one in ¢, such that

one obtains an ordinary differential equation. There are two solutions to this system
e 69

Eg(p, V) = ZP (1 + e—2¢|Z(Q)|) eFe 1zl (4.42)

To check consistency, we use
g 1 g 1
D Zpq(q) =3 (5[212“1( )95 2, (q >—4quﬂ[wz’f”<q>—mﬂ[m’“”zpm) . (4.43)

to compute that for a function &,(¢, |Z|?)

Diins D*WIE (¢, Z)?) = 2 (Z"(q)Zkl(q)—i—Z»[k(q)ZAl](q)) 21 Z(q)2 02E 45 o€
ijpgq a\P; 3\ [d Jl 8|Z|22 PIVAE
%€ o€
kl 2 2
365U\Z(q)\ <10\Z(q)\ A2 +738|Z|2) , (4.44)
and
1 o€

DyE,(6.12%) = (225(02°(0) 12,40 2,0) - GI1Z@F) 57 (449

The generic solution with appropriate boundary conditions is therefore supported by a
function of seventeen variables F(q),

—6¢

1Z(q)|?

Eo (o) <1+e—2¢|Z(q)De—efwlZ(q)Hiqu+6—6¢55 (], (4.46)
Spin(5,5)xR16

E[F.G) = / g F(q)
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where the additional function &5[G] is a generic solution to (4.37) supported by a function
G of eleven variables. The representation of E7(7) on this space of functions is its minimal
unitary representation.

We conclude that supersymmetry on its own already constrains the function £ to
have the expected structure for the string theory effective action, and using the explicit
coefficients computed in [33] one gets the form of the Eisenstein series

E[ (4.47)

(4]
3 }
200000

2
=2ie*12¢+e*6¢E . +Z <1+27Te*2¢’\Z(q)D6*2“6_24’|Z(q)\+2ﬂiq1a’.

3 [20
qez27| xq=0

The Fourier modes coincide with the analysis of [28, 35].

4.3 V4R* and VOR? type invariants

In the linearised approximation, the V4R? type invariant can be obtained from a harmonic
superspace integral based on SU(8)/S(U(2) x U(4) x U(2)) harmonic variables [60], and
the G-analytic superfield

W' = ulu® ju” s Wk (4.48)
with 7 = 3 to 6 of SU(4). W' is therefore an SO(6) vector, one the most general integrand
is a monomial in a symmetric traceless tensor of SO(6)

/d120d129du FiUTkigln gnksg} (ErstuwrsWtU)2+kw(T1‘(sl Wrs2 WT'n)|Sn) (449)
suggesting that the non-linear invariant admits an expansion
+2k 0,k,0,n,0,k,0
LIE) =Y Dt oo LOHOmOR0 (4.50)
n,k

Consistently with this structure, the function £ must satisfy to the constraints
3 3 3
D[o,z,o,o,o,o,o]g =0, D[o,o,o,o,o,z,o]g =0, D[l,O,O,O,O,O,l]g =0. (4-51)

The two first define a condition on the differential operator to the third power in the funda-
mental of Fr ), whereas the last corresponds to a constraints on the differential operator
to the third power in the adjoint representation. Indeed, the harmonic decomposition also
defines the graded decomposition of e7(7) associated to the next to minimal nilpotent orbit,
for which the Lie algebra representative satisfies Q536 =0 and Qfg?) = 0.

It turns out that the eigenvalue of the Laplace operator is determined by these equa-
tions by consistency. Indeed, assuming that £ satisfy to the equations

AE =X, DIEE=aDsE,  DPsE = bDy3sE, (4.52)
and using the Casimir identities
tI‘D1233 - 3tI‘D526, tI‘D133 - (tI‘D56) 3

6
trD 55 = 2trD56—|— (trD56) (trD%) +492trD2; (4.53)
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one computes that the unique solutions are

A= —42, a:—g, b=—14,
A= -60, a=-9, b=-20. (4.54)

The first solution corresponds to the constraint satisfied by the R* threshold, and we
conclude that the second solution is the relevant one for the V*R* threshold, consistently
with [33]. So &5 must satisfy to the Poisson equation

2

AE; = —60E; , (4.55)

5
2
and

DiququTSDrsklg = _9Dijklg% ) Dt[ijkpthSDl]prs

1001,001€5 =0, (4.56)

5
2

for the superform L[€ 5 ] to be closed.

The VOR* type invariant can be defined from a harmonic superspace integral based
on SU(8)/S(U(1) x U(6) x U(1)) harmonic variables [60], and the G-analytic superfield

Wrst _ uliurjuskuthijkl , (457)

with » = 2 to 7 of SU(6). In this case the measure extends to the complete theory [62].
The number of possible representations of SU(8) becomes rather large, but they are still
self-adjoint by construction. It follows that the constraints

3 3
Diy2,0,0000¢00 =0, Dp00020E0n =0, (4.58)

still apply, although the second one is not satisfied. Using the closure diagram of E;(7) [63],
one finds that there is not a unique next to next to minimal nilpotent orbit. However the
condition Q5% = 0 rules out the dimension 54 orbit. The nilpotent orbit associated to the
harmonic decomposition is in fact not the next one of dimension 64 that would also satisfy
to Q43 = 0, but the following one of dimension 66. Using harmonic superspace, one finds
indeed a non-vanishing integral in the representation [2,0,0,0,0,0,2] by integrating the
square of the quartic SU(6) invariant monomial in W"$! with the appropriate function of
the harmonic variables. Therefore the superform expansion must include terms as

LIEo ) = Eon L+ Dijuion L7 + - + Dé,o,o,o,o,o,z}5<0,1)£[2’0’0’0’0’0’2] +... (4.59)

and the corresponding component of D43€, acting on the su(8) adjoint does not vanish.

The determination of the eigenvalue of the Laplace operator does not follow straight-
forwardly from a group theory argument in that case, and one must moreover consider the
corrections to the supersymmetry transformations at this order. Nonetheless, relying on
the known Poisson equation satisfied by the function according to [33], we find that the
function must moreover satisfy to

1
Dijpg D" Drsii€0,1) = —IDijiio,1) — 553771]%15% , (4.60)
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Figure 2. Closure diagram of nilpotent orbits of E7(7) of dimension smaller than 76.

which is consistent with
Aoy = —60E01) — 5%2 : (4.61)

Let us now analyse these equations in the parabolic gauge as in the preceding section.
We shall only analyse the solution for q; = 0, and for the homogenous equation in the
fundamental representation. After some computations one obtains

1 9. 1
0 02 + 05— —
(64¢+2¢+2¢ 4

(5 < 38 —l— 8 —|—78¢—|—*3Dijle” )—f—DiquD q<af —>

. 1
DijleUkl>€g = -9 x 18055% (4.62)

5
2

7 7

where we recall that D;;i; states for the covariant derivative on Egg)/Sp.(4) in these expres-
sions. One finds indeed that the decompactification limit of the corresponding Eisenstein
series [33]

8¢(8) o246 T 126 1 o6
E = E . *E
[ + 3¢ B ) 5

%ogooo] 157 000

F080s] TOETT) (463)

associated to the VAR?* correction is a solution provided

4
+*,DijklE[

%ogoo] 3

25 70

Dijpg D7 D" E 30800]7 4 (DZJquklqurz?é’le) [50800] (464)

The latter equation must therefore define the differential equation satisfied by the function
defining the V4R?* type invariant in five dimensions, and is indeed consistent with the
associated Poisson equation [33].
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For qr # 0, one computes straightforwardly that the equations D€ = —9D56E implies
moreover
K qrq7q = 0. (4.65)

For E[3 08000] thisis consistent with the property that the next to minimal unitary repre-
sentation is defined on functions of 26 variables. Note that the sum of two vectors satisfying
to t1'5 g gk = 0 necessarily satisfies (4.65), such that the complete function &, ,, is sup-
ported on Fourier modes satisfying to this same constraint (4.65). Where by £y ;) we mean
the function appearing in the VOR?* type invariant we discuss in this paper, and not the
complete function appearing in the four-graviton amplitude. We will explain in another
publication that there is in fact a second class of VOR?* type invariants associated to the
dimension 54 nilpotent orbit, and which admits generic Fourier modes in the decompactifi-
cation limit. The unitary representation on which & ) is supported is, however, defined on
functions of 33 variables, therefore the Fourier modes must depend on a non-trivial func-
tion of the scalar fields vp,(,) parametrizing the subgroup Spin(4,5) C FEjg) stabilizing
qr [61]. Because 33 — 26 = 7 we expect the function £(vp,(,)) to satisfy a differential equa-
tion restring effectively its dependence on seven variables. This suggests that the relevant
function on SO(4,5)/(SO(4) x SO(5)) should satisfy to the following differential equation

associated to a coadjoint SO(4,5) orbit of dimension 14, i.e.

s(2s = 7)

g L16Ee0 (VB4(q)) - (4.66)

D% Eloooo (vB,(q)) =

We note moreover that the solution to (4.56) is also a solution to the homogeneous equation

associated to (4.60), therefore the restriction of the Fourier mode function to the case in

which the function on SO(4,5) is a constant must also be solution. We conclude that the

correct value of s must be s = % This is precisely the value for which the Eisenstein series
1

diverges in 5-—, and one concludes that the exact VOR* threshold function E(o,n should

rather satisfy to a corrected equation of the form

. . 1 2
DijpgDP"*DrspiEo,1) = —9IDjjri o) — ZDz‘jkl (E[ Soo o]) +§Dijk1E[ 500

2
20

» (467)

3
2O o0o0o0

for some number £. This implies accordingly that the £5 V4R?* type superform form factor
2

diverges at 1-loop into the three-level £5 VOR?* type superform form factor, defined with
2
the same function.

5 N = 16 supergravity in three dimensions

In three dimensions the only propagating degrees of freedom are the scalar fields parametriz-
ing the symmetric space Egs)/Spin.(16) [64], such that the Maurer-Cartan form

Wyl - _%quABwpq iFMAcPC 5.1)
\ 10yP9Pe —25[[fwj]l] ’ '

defines the scalar momentum P4 in the Majorana-Weyl representation of the R-symmetry
group Spin(16), whereas the fermion fields x_ ,; are defined in the opposite chirality
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Majorana-Weyl representation. Solving the superspace constraints [65] the momentum
decomposes as

PA = EOPA + EQ Ty 4. (5.2)
The metric on the symmetric space is defined as

1

ds® = %trPgig = PPt (5.3)
and the covariant derivative satisfies
1 ..
D4, Dp]Dc = _ErlJABFijCDDD. (5.4)

5.1 The R* type invariant

The argumentation proposed in the last section in four dimensions extends to N' = 16
supergravity in three dimensions. In this case the equivalent of the R* type invariant,
i.e. (VP)* type invariant in practice, admits a superspace construction in the linearised
approximation based on harmonic variables in SO(16)/U(8) [66]. The linearised superfield
W4 as a chiral spinor of Spin(16) decomposes into

128, =109 328" 700 @ 28 1™, (5.5)

and the G-analytic superfield W is in the weight 4 singlet of SU(8), i.e. an SO(16) pure
spinor. The Dirac fermion x,; decomposes accordingly as a Majorana-Weyl spinor of
opposite chirality into

128 =8 356" ¢ 56" & 8%, (5.6)

and we write x7, the U(1) weight 3 component, with » = 1 to 8 of SU(8). The linearised
invariant

4]

/dlﬁeduFu[ oeeee ofl]w4+n~ (WTL) [ 00000 °n} (VP)4+ . '_’_(anlg) [ 000000 ] (X16) [ 00000 01"2]

(5.7)
suggests the expansion of the non-linear closed superform in
12 .
el = o f e 58)
n=0 "

The superconformal symmetry OSp(16]4,R) of the linearised theory [67] suggests that
all the supersymmetry invariants are defined by harmonic superspace integrals in the lin-
earised approximation, such that the harmonic superspace integrals are indeed in bijective
correspondence with the independent non-linear invariants. One confirms this property
by looking at the monomial in the fermions of maximal weight. Using the harmonic de-
composition, one gets directly that the 2 x 8 fermions x7, to the sixteenth power carries a
U(1) weight 48, just as does W'2. Considering the action of the covariant derivative D,
one cannot include one more x7,, so the only non-trivial term appears to include instead
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t

a weight 1 fermion x7*f. Projecting out the corresponding representations in D% L[€] 3.0,

using the harmonic variables, one gets

Dgz (D12(—48)5(X16)(48) +D§t2(746)5(xl5)§(45 gtu 1) +. ) igzt(u48)£ stu(l)(Xlﬁ)(48) 4.,

(5.9)
where the two terms in the first line contribute to two independent terms in the second
~ DY (D)2 and ~ D[( 2>Déu]2 (D-9)11 such that they cannot compensate each other.
To deduce the Spin(16) covariant expressions associated to these terms, we note that the
rank p antisymmetric tensor representation of SO(16) admits as a highest weight compo-
nent of weight p the rank p antisymmetric tensor in the anti-fundamental of SU(8). We

conclude that ™™ (x16)*) is in the highest weight component of the [00001 ol"l} represen-

—48)

tation, whereas D3

rstu 15 in the lowest weight component of the [ooo100 5, |, such that this

expression corresponds to

S T

o o
00000 0O 00010 0
12 11

There is no other contribution that could cancel this term, because the next terms of

12 (- 44)5

maximal weight are in the [ooo100 5 |€ and carry a maximal weight component in D,

whereas
DRE ~ DLPEN + D, E XM +. (5.11)

rstu

13 (—48)

ot €. We conclude similarly as in the preceding

and they cannot contribute to terms in D
sections that the function £& must satisfy to the differential equation

DH ]Dfoomoo]g =0. (5.12)

o
00000 0
11

Using the property that the D™ differential operator of maximal weight in the {ooooo os]
has no kernel, one obtains that the function £ must satisfy to the quadratic equation

PUMABD  Dp € =0. (5.13)

Using SO(16) Fierz identities

1
PaPp =158 (5AB D)+ Al 8!

T i = —4(n—6)(n—10)T,, TV, Tijn=16 ((n—8)*—22(n—8)+42) , (5.14)

1
'kal (DLij1D)+ |F” imnp q(DPz’jkzmnqu)> +3 [Da, Dsl,

and the commutation relation (5.4), one computes that
TMABD Dy TP DeDp = 672DAD* (DpDP +120) . (5.15)

Moreover, (5.13) implies as a consistency condition that the third derivative of the function
&€ restricted to the [01000 oi] must also vanish, i.e.

(5 PRABD, L CD) 114 rijA<350D)) DpDcDp € =0. (5.16)
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Using (5.13) in this equation one obtains
14T;;*8Dg (DD +120) € =0, (5.17)

such that if £ is canceled by the Laplacian, it must necessarily be a constant, and super-
symmetry indeed implies
A€ = —-120&, (5.18)

consistently with [33].
Using these equations, one computes that the covariant derivative in the adjoint rep-

resentation
0 1M 4 DY
D, = 4 , 5.19
satisfies
DADB 0
D, + 150, =—| 4 . (5.20)
0 0
This equation defines a quantization of the algebraic equation
B
0
ins = _< QAOQ 0 ) ) (5.21)

for a Majorana-Weyl pure spinor of Spin*(16), which is a representative of the minimal
nilpotent orbit of Fg(g) [68]. The solutions to the differential equation (5.13) with appro-
priate boundary conditions define the minimal unitary representation of Fg), and are
supported on functions depending on 29 variables as explained in [25, 26].

5.2 The V4R* type invariant

The (V2P)? type invariant can be defined in harmonic superspace [66] in the linearised
approximation using harmonic variables parametrizing SO(16)/(SO(8) x U(4)) such that
the Majorana-Weyl representations decomposes as

128. =28, 0 (4R8:) V2 (628:L) Y 042 8:)" ¢8Y (5.22)

such that the weight 2 scalar superfield W in the chiral spinor representation of Spin(8)
is G-analytic. One defines the invariant

/ d*49du Fu[ Z?ﬁf’_ﬁ] (WIW,) e e ) (5.23)
~ (Wn+2k) |: oooko 02} (v2p)4+' ) .+(Wn+2k‘_16) [ oooko 071—016] (X16) |: 00000 0102:| (P4) [ 00000 OZ]

9

which suggests the following expansion of the superform defining the invariant at the non-
linear level

oooko o
n

LIE] = ZD’[”% o]gﬂ“”“ﬂ. (5.24)
n,k
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Assuming that all (V2P)?* type invariants are defined in this way, this shows that the
function must have covariant derivatives restricted to these representations. This is the
case if and only if he function £ satisfies the cubic equation (5.16). Moreover, acting with
one more derivative on this equation one obtains using the Fierz rearrangements

% (DLijkipgrs D) (DIPY°D)
= (DI';;7*D) (DTyyypeP) + (DLt D) (9(DD) 4 872)
(DF [ijrpqp) (Drkl]pqp)
= (DI';;7*D) (DTyyypeP) — 2 (DTijD) ((DD) + 360)
= 5 (DI9D) (DY D) ~ J (DT D) ((PD)~24)~ 1o (Dlgu1pqrs D) (DTPD)
= —6 (DI';juD) ((DD) + 152) , (5.25)

that
Ty e (5 rPa BT, ) OD) 4 14 Fk,]E(Bacm) DaDEDcDp
= 16Ty PDsDp (DD +180) (5.26)
such that the function must then either satisfy to the quadratic equation (5.13) or to

AE = —180€ . (5.27)

The two equations being incompatible, supersymmetry requires that the function defining
the (V2P)? type invariant satisfies (5.27), consistently with [33]. Using the latter, (5.16)
simplifies to

THABT 0 CPDpDeDp = —168T,;PDp . (5.28)

Using this equation and (5.27) one computes that

3 0 —30*% D¢
D, = , 5.29
248 ( o 321 Fij BCDC 0 ( )

which defines the quantisation of the algebraic equation ins = 0 defining the next to mini-
mal nilpotent orbit of Fgg) [68]. We conclude that the solutions to (5.28) with appropriate
boundary conditions define the next to minimal unitary representation of Fgg) associated
to the next to minimal coadjoint orbit.
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A Conventions in eight dimensions

The SU(2) invariant tensors ¢;; and £ are defined respectively such that

y 1 -1 , y ,
ev = (_01 0> ) €ij = <(1) 0 ) ; 15677 = oF e =0}, . (A1)

One raises and lower the SU(2) indices according to the rules

Kl... _ . jkl... J _— £ ) %)
7 =& ) : = 0; ’ a. =0; y A — €75
X o o T ox. Y OXi ox?

(A.2)

The conventions for the SO(1,7) invariant tensors are pletely antisymmetric tensor with
the local metric are taken to be:

€01234567 = 1, mo=-1, mi=mnp=--=1, (A.3)
and we define the antisymmetric Kronecker delta tensors

ghibz.bn — 5[b1 b2 5bn]

a1az...an [ar”az2 """ Yan] *

(A.4)

We decompose the spinor representation into the Weyl representation of positive chirality
with undotted indices and negative chirality with dotted indices, which are complex con-
jugate. We use the octonionic representation such that the charge conjugation matrix is
the identity, and we have the following relations

()50 — _% £ pon (e 530 (72)% = %Eabc dofqn (7T 9 Y0
(y24)38 = _égadeefgh<70def gh s () = é!eabcdefgh(fdef gy
(,yabc)dca _ é gabcdefgh(,yde fgh)o'a)z (fyabC)ad - _%Eabc o fgh(,ydefgh)ad
(b _ 4ilgabcd efgh(,yefgh)dg (abedyals _ _%eabcd (T (A5
(bedefohyad _ j abedefoh (yabedefghyal — _jgabedefgh ol
Caﬁ — §ob Cdﬁ — 5d5
(y#)28 = —(ob)Pe (y#)3% = —(yob)Pe

abcd)aﬁ — (,yabcd)ﬁa

(f}/ (,Yabcd)dﬁ _ (,Yabcd)ﬁd

B Dimension 1 solution to the superspace Bianchi identities

In this appendix we give the dimension 1 Bianchi identities of N' = 2 supergravity in eight
dimensions and solve them. The result are ordered in function of the U(1) weight.

— 62 —



B.1 Dimension 1 Bianchi identities

The components of d, T = R of dimension 1 and U(1) weight 4,3 and 0 are

i ik Ol ij & qmk 6l ij Bmm kol _
3D(QTM) +3Taﬁme) +3T(a6 TBmw) =0
o - g
2T T = Rl
i ik 8 ije mmks ij Bm ks _3 ij
3D(Th0y1 + 3T g m Tyt + 3T Loy 1 = 7R (apeal?

ik bl Jk 81 ik fm ol ik e 4l

cd\ 05k ij k o6
),7) 6l +3R(O¢B 15'7)

AT 4P T A 4 o o Tk B T Jer B i RIE ()00} + RIS oL
Toa iy + T, Tona = Ry (B
2D(2Té)ﬁk(l5 + D%Tgﬁ L+ Ta% Tk + Tazé BmTBmyki
+ 2T, fnT?Zﬁ)i + QTMC(; BmTané)él + 2T eTelg) !
= %R&k(ia ca(V) 50 + 2Rsp (o030 + 2Ry 103 (B2)

The Bianchi identity for the 2-form field strength F decomposes in components of U(1)
weight 4,2 and 0 as

2D F T TFL + T S P = 2P ") 4 PR
DgFg]%Z + Dy FLm + T ij;pgamn + T 4 TR 4T 4 epmn Lt élﬁggz
= Py P R+ Py
2Dl A+ T TEL™ 4 Ty SFE + 2T, 5 PR
= 2P g gt PP E g 2P i, (B.3)

The Bianchi identity for the 3-form field strength decomposes in components of U(1) weight
2 and 0 as

2D HL AT A T L T

B)ab eB)lb
- _QP(imnqug)ab pa F;%p(mpazlo +4F, (;p(mpg)[gl)p (B.4)
DY HY, 4 Dy HAfo + Ty SHLR™ + T S T2, S + T2, €I
2T THLP + 2T, 3 S H o
= pimnpa Hyop o Pg;npq H 2 P[Zmpq H; gt pa 2 F[a(i p(m Fij]n )p+ 2F [Z (BZLF;H"; (B.5)

The Bianchi identity for the 4-form field strength G' decomposes in components of U(1)

weight 4,2 and 0 as follows
Nel ij Al  _ ap (i
2D(201G,3)abc + Ta,B l Gsabc = 3P[aGaﬁbc} + 6Hab}( e pa
DB] Glaabc + T;Bj ;:Gleabc =+ T;BjeGeabc + 3T[aZ(J{ElGE.lijC]

1 pg J
a F,B

= 3HY! Tt po +3H 030 po + 3HLE Fiel g

Bjlab ac] pg alab™ Bjc] pg
el Ly = P, . (7. ra o Dq nl
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The dimension 1 components of d, P = 0 of respective U(1) weight 6,4 and 2 read
T2 Py =0
S .
DgPﬁ] + TZ . ,eP + T;BJE P;=0
2D i Py + T;iﬁjelpél =0 (B.7)

And similarly the components of d,, PY* = 0 of dimension 1 and respective U(1) weight 2
and 0 are

2D(aPJ)pq7’S + TU Blppqrs + T’LJ €Pl pars —

i ppqrs M) . i pqrs /Bl pqrs i€ lpq'rs i e ppqrs __
DGPET™ 4 Dy PaP* + 10, PRI 4 T7 SPEPIS 4 17, PP =0 (B.S)
B.2 Dimension 1 solution

The only component of U(1) weight 4 is the covariant derivative of the fermion field y

1

YA 7 1 3 K]
Dax; =5 0"ap (WP + (xmaA]"”)> + A]’“xgk (B.9)

From weight 2 and above, there are more components, and for convenience we will define the
following basis of bilinear in the fermions in irreducible representations of SU(2) x Spin(1, 7)

(AN) = AR\,

=\ 1y _— yikl j
(AN IR = \m(id \KD) (AN aed = A7 Vabed i ()\/\)afb = ARy N
ijkl m(ij kl) S\ ki
(XS\)lb = Py, ()\f\)abcd = A" Yabed A (_ )\')kl = ):k , (B.10)
i (X)\)ajbcd X ’Yabcd)\k ) ()Z)\)U = >—<(Z/\]kl) )

(N5 =X,

The corresponding torsion component is

T8 Bi — (bedy Boii (Lo
ax (7 )a € 24Gabcd 576 (A)\)abcd

by (L L (ga A\
e >a(4cd+48(x) O
LY} i
Fi 4+ X g B.11
+(7 )a (12 ab 12 ( A A)\ ab ( )
The (0,2,0) Riemann curvature component decomposes into the so(1,7) part
5 — s 2 d 11 1
iJ d di J dzg
c — « *F J ~
Raﬁ = C, B <6 c +3 3 ( )c 6 >
F0 s 15 F 4 £ (N5 + 57 (N
e s\ 137 T
+(v*)ape” lam a1 o, (B.12)
(&3 4 abc 96 abc ’

the su(2) part

Ri‘ékl _ Pi kminJ
@ «@

J
Blmnp 51 Pl map

B mnpq Poiéjklm = _Ei(j/\t];lm) ’ (B.13)
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and the u(1) part that vanishes. The covariant derivative of the fermion fields of U(1)
weight 2 are

DA = Cu (= (0™ = 22 oW+ 220 ()0 +

o 1 i(7 =kl 1 ili kl 1 i(i =7\ Kkl 1 Y\ 1jkl
+(v")ag <—4€ (JFab) ~ 125° v ()‘)‘)ab) T 16° v (Xk)ab) T (XA) oy ) , (B.14)

1

abe 15kl
R(V b d)aﬁ ()‘A)a]bcd

_ 4 3 1 .- 1 B ,
) = . _ - abedy J (o~ - J
Dalxﬁ Caﬂ < 3261 ()\)\) 39 (X)\) ) + (’Y )Ocﬂ <19252 Gabcd + 1536 (X)\)abcdl >
1 o 1, -
ab J -
ol —=F,." — — (xA AA . B.1
+(7 )aﬂ < 8 abi 64 (X )abz 32 ( )abz ) ( 5)

In our notations, the field F;, and H,. coincide with the corresponding (respectively
(2,0,0) and (3,0,0)) components of their associated superforms, whereas the (4,0,0) com-
ponent of the 4-form superform decomposes into a complex selfdual part Ggpeg and a
complex antiselfdual part bilinear in the fermions, i.e.

_ 1/
Gaved = G oy — 3 (A jk’Yabcd/\ijk) : (B.16)

We now consider the U(1) invariant components, with the following basis of bilinear in the
fermions in irreducible representations of SU(2) x Spin(1,7)

(AN e =AM,
(}\)\)U :)\kl(i,yaj\j)kl ,
(

()\)\)ukl — \m(ij )\kl)m ’ ()\;\) i]éczkkl(i,yabcj\j)m ’
(AN e = A abe A (AN), =AThy A, (BAT)

)
XX) ope =X Yabe X _
(o (07 =x

(XX) 0 = X"VaXi »

ij —

=xCax? (XX) abe =X Vabe Xi -

The corresponding component of the torsion is
7265 = (00285 (= 57 W)+ 15 000 + (0000 (105 O 55 (00
00 (=55 O + 15 0003, ) + a8 (=g (), + & 000
182 (=6 O, + 35 000, ) + 0285 (-5 (W), = 5 (0 )
+0a8 (= gt + 55 Oty + 57 000 )
+(’ch)a6 (_é (ibcj + é ()\S\)ibcj + é (XX)Zbcj) ) (B.18)
and the (0,1,1) component of the Riemman curvature in so(1,7) is

R = 070 (15 O, = § 000 + 05 (5 O = § 000l )

1 . ) —\i ) ;
abey . fgh d ) z —\1%
+(r"") g pCave’ " <_108Hfghj + 288 ()‘)‘)fghj + 79 (X0 fgn J'>
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2 4 | N L\ a
+(7a)a,3 (_SHaC l] é (A)\)ac 7’] - 5 (Xx)ac Z])
a d 7 1 3 1 =
+(1%Dap% {75 N a+ 7 (004 ) - (B.19)
whereas its component in u(1) and su(2) are
i i
Rog = ~2XaXg
T §5fpémnpqpéj g DA = = U™ (B.20)
The covariant derivative of the fermion A is
_ . . ikl 13 < ikl 3 j <\ Kkl j _
Dia Al = (v")se (P =35 O+ 30 (W), + 67 (xx)ii”)

1 N ikl 1 (J kD) 1 €] 3\ Kkl
abey | J U \J

C Dimension 3/2 solution to the superspace Bianchi identities

In the core of the paper we use the dimension 1/2 covariant derivative of the dimension
1 fields and the equation of motion of the fermion field x, which we derive from the
dimension 3/2 Bianchi identities and the algebra of the covariant derivatives in this
appendix. We do not derive the expression of the dimension 3/2 Riemann curvature that
we do not need in this paper.

C.1 Dimension 3/2 Bianchi identities
The components of dimension 3/2 of d,P = 0 of respective U(1) weight 5 and 3 are
Dzypa + Téaﬂlpfj’l = 07

Dm'pa — Dapo'ﬂ' +T. BIPBI =0, (Cl)

aia
whereas the dimension 3/2 component of d, P¥* = 0 is

D!, pikm _ p, piikim o Tgaﬁppg’;lm + T, APy = 0. (C.2)

aa p

The Bianchi identity for the 2-form field strength F gives at this dimension the following
equations of U(1) weight 3 and 1

DiFI* oD, By 1R ot YRR 4ot ARk

Jo [a 1™ 0] ala B
- QP[ZlklmFb]Ci imt P(ijklmpab Im + QP[an}j:u]k
N.. ik ik v il jk Bl ik Bl =ik
Deily +2D1a b4t 2 500 1 Foip + 250 Frpy + Tar Ty
= 2P, P+ PaiFly +2PL" Fyjai tm+ P2 Fa tm (C.3)
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The Bianchi identity for the 4-form field strength G gives the following equations of re-
spective U(1) weight 3 and 1

alab

o . S G o= -
DiGlabed + 4Tdi[a 7 vabcd] - 6T[abﬁléﬁ'zaicd] = PsiGapea + 4P 0 Gbed)ai
T T
+AHT Fajai ji + 6H g Fea ji (C-4)

The Bianchi identity for the 3-form field strength gives the following equation of U(1)

weight 1
i rrik ijk i 1 jk i Blrrik Blyr i
D&Hébc - 3D[aHbc]a] + 3Ta[a’lyH~/lzc} + 3Ta[a H,élbc] + 3T[ab HBZQC]

= — P Hape pg — 3P, Hyepe, pg — 6F[’; Y Fc];

)+ 6EPIRR - (C5)

ala b p

We will also make use of the following commutation relations between the covariant deriva-
tives acting of the fermions, ordered with respect to their U(1) weight from 5 to 1

i i\ ki el ok i BlA . <k L i dy 6k gk =
{Déw Dfﬂ} X5=—Tap 1Dy — Tap” DXy — 7Rapea(7*)5'X5 — Rag 1Xs
o i o 1 . o
_ ! Bl dy § ij (p ygm)l
{Dzom D],@} NI = =T DA™ — T D gy NI — ZRgﬁcd(’Yc ), A5 = B3R5
i T —k_ i 1k i Sl <k i —k
{Da Dy} dli= =T iD= 70D = 11Dy
1

i cdy 6ok i kool i ok
~ 4 Tapiea VX — By X5 — 3R 5%

[6%)

_ _ o 1 .
k_ 1k Slm. =k L ) dy §-k k -l
{Ddi> Dﬁ'j} Xy——T ﬂ'jalDaXy - Tmﬂ'j D(;ZX& - 4Rd,~5]~cd(’YC )ﬁ X Rdi,b"j 1X5

. — . l . (;l — .
{ DL, Dy, xem =1, plypam — 71 LD Az T <D

1 ) cd\ d\pgm i (pyqm)l ) pgm
1 flapieaV ) X BB AT RN
N g _ o 1 . . o
(i D3} R 1 DL Dy e LR, ot SRR 03 (o)

C.2 Dimension 3/2 solution

The number of linearly independent dimension 3/2 monomials in the fields is rather large,
and we find it convenient to define the following basis in irreducible representations of
SU(2), and filtrated with respect to Spin(1,7) irreducible representations, such that the
larger representations are not irreducible. It is indeed convenient to keep the gamma traces
rather than to remove them systematically. The elements of U(1) weight 5 are

(GX)4 = Capea (V"X 4 L
e “ FY)' = FY(y'y;
(FO)L = B30, () = F 0750
(;O_(;\)Z = (X)Z)]k (’Yabj\i~k) (XXA)O,OC = (XX)ab (’7 )\jk)d’ (C 7)
& ab k) é i i :
()Z)\)\)i. = (7‘“’5(]') . ()‘)‘)ib ' (X’\A)A a — Xa (A)‘) ;
& e abj’ _ i cd—i
_ N i (X)\)\)A aa = (’yb dXd)a()\A)abcd
(X)\)\)aa = ('7 X )a()\)\)abj’
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where we use the bilinear in the fermions defined in (B.10). Solving equation (C.1) one gets

i D ? = _\1 /) = _\i 71 =\ )
DLy = G (15 (PR + g5 (05 + 15 (o) = 57 (W)}
21, — i T, =\ ) T, i
+§(Fx)aa - g(XX)\)aa - E(X)\)\)aa B @(XA)\)A ao (CS)

From U(1) weight 3 and below the number of monomials increases considerably, and we
shall display them in increasing order of the number of fields. At the linear level we have
the covariant derivative of the fermion field Y, but because it satisfies the Dirac equation,
we distinguish its irreducible component (DyX%)" from the gamma trace that is equal to
a sum of monomials in the fields. Here the prime states for the projection to the {1 o;]
irreducible representation of Spin(1, 7). The list of bilinear in the fields is

(PX)7*= P, (XY

Ha Ze 0 PA) = P,
PR,
@ ab IR ik
=\\k__ =i/ _abyjk) ( )aa F ( )\Jk)d’ i
(F)\) _Fb (’7 )\l )a’ ( )z]k =, ( bAjk‘)) ( )\)aba ab a]k’
ijk__ ~— cd\ii ac v ijk (i Jk
(G)\) . Gab d( ’ d)\ ]k)a ’ (G)\)Z]k =G~ ) d)\z]k (F)\) , Fag) A]al) )
4 N\tk_ pijkl (. a- abcda abc _
(P ) _PJ (’7 Xl)a ( )Z]k: PZJleal, ( )ab%_Hajbc(ry XJ)a’
(HX),=H3.(v*X)) . U (e (HY) o =H ("xM),,
H 1,] - ( )aa abc(7 Xj)d’
( X)abca abe X j s ( )ZJk_H i ( abe — k))
(Hx)l]k —H(;)j (,ycxk)) X )
aba abc
(C.9)

Finally we must also consider the cubic terms in the fermions. We list in a first place the
monomials in y x>

(xxv)., = X4 (xx) »

(X0 o = (77, () 004 o = (7)o (W 5
ace abed ’ _ _\i i __\i
(D) = (0! (X0 4 s = (%) (X0 4y (©.10)
aba T & ab j N\ P ’
(xfoz)” * = (vx), (2% 0% et = X2 (KW
= b S S
(XX o = X5 ()2 ’ (00 = (X9) 4 (2002
aba — Xé ab
where we use definition (B.10) for the bilinear in x as well as
(XX) gpeq = X VabedXi s (XX) =X'%i- (C.11)
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Then we define the basis of three-linear in YA\

(N = (), (AN
(AN ZE = (yex ) (N7,

(M) = XE )Y
()5 = (73,000
(M), = (X9, (V)52

aba abc ®

where we use the following definitions
()\5\)(1 = Aijk’}/aj\ijk s

(AN = Ay )
(A)\)Zﬂkl _ Am(z Akl)

m

Finally, the list of three-linear in \? is
(M) = PYEPYALD Wwa
(AN 7E = 2TF ()
(AMN)E = NG Oa)h)

where we use again (B.10).

(X)\j\)l a = fyaxj)a(Aj\)ij ’

ha =
(M) e = (%), OV

%

(XA)\)A aé = Xjﬂé (Aj\)a] ’
(X)\)\)C’ ac = (rybcxj)o} ()\5\) Zbcj ’
(

(X)) g = 'Vcij)a()‘j‘)ibcj ’
(X)‘)‘)A abcd — on:z(Aj‘)fzbcj ’
(W) = (X)), (W)
(V) = () ()
(D) Foe = X))
(x )\)\)gkaa = (v"x'), ()‘A)Z]b’f:l’
(X A)\)Ziba = (vx), ()‘/\);]biZ’

(Aj\)abc = )‘ijk’)/abcj\ijk: )
(A2 = Ay N
(AN ZFE = Nl NED

abc

(W) e = N I
()\)\)\)Uk E( abcd)\z‘jk) ()\)\)

ijk i
(AN = (2167) (N8,

abed ’

(C.12)

(C.13)

(C.14)

Within this basis, one computes the Dirac equation for the fermion field y, solving the

Bianchi identities displayed in section C.1, such that

Da)Zioy = (Daxio'c), + ('VG)da <_64(F>‘)
2 ()

256 128

2L N+

N ST, g ) ;
o o (0L - 6 (XXX)a 5 (W)
T i
1536 "M 5 768 768 (X

The covariant derivative of the scalar momentum gives

Dis P, = <2(DaXé¢i)/ -

7

1,
6 (HX) adi +

— ) Z.
— (XXX)adZ- + *(XXX)A wi T 15

30 ) + () (=5 (P = 15 (0, 8008).
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1 __ 231 3, < T, <
_@(XXX)AQ’L 384( XA ) _GZ(XA)\)AOM'_@(X)\)\)BONL

7o, <
)t (m)m) , (C.16)

whereas the covariant derivative of F' is

DZ ij

a” ab
. 1 -k Locoy®) o T ook
= "0 (vap),” (‘m(F N3 - 216(HX)5) 3(XXX)B)+ﬂ(XXX)A)B 576( )

13 k) 23 \k) 25 k) k)
s (O = 7235 (D)1 + 123 (DD, = 7,005 )

it & . _k 2 =\\k _ T, _\k 17, _\k
+¢'U(Va)a <_4Z(Db}Xa))/ + §(F)‘)b])a - §(HX)b])d - ﬁ(XXX)b])a - g(XXX)A)b]a
13 vk 1 1\k L, 1\
36 2 (AN ]) (X)‘)‘)A)b]d + ;(X)‘)‘)B)b}d - (X)‘)‘)C)b}dc>
; 4, -k L, 1\k
e (PN, + 5 (10, — § (N5, = S (N + 5 (A,

1 o vigk &, _\ijk 1 ik ik 1
e (5 (FPVE* = S (DS~ {00+ (0 -

+

51 (N

)\)\)”k 2 )”’“ (AAA)”’“+(AM)”’“>

288 ( 144 ( 2304

o (2P (FA) i (PO 15 OV § (10t

ijk

XX 44
1 iik iik ik _ ijk ik
o (N = o+ ; SO0 24~ 3 (N, — )

5

— ijk AU gk ijk ijk ijk
_E(F)‘)a]ba B g(HX)ana B ( )\)‘)a]ba ( )\)‘)/{aba - (/\)\/\)a]boz (017)

and the one of G~

(
1
4

i A af 160, -\ R
DaGabcd = (fy[a)a <_3(Hx)bcd]a (X)\A)b d] & + 2(X>\)\)A bed)c > - 2(XXX)abcda
: . » N o, i 1 i 1 i
+(Vabe)a” (—42<Dd]><a)’ + (FN) s+ 5 (HX) g+ 57 (0000) e+ 5 (000 4

1, . <\ 1 1
+E(X)‘)‘)d]' (X)‘)‘)Ad] T3 (X)‘)‘)Bd] 4(X)‘)‘)Cd]

1, - 112 \i 1 1, -
+(’7abcd)a6 <_8(F)\)f3 - W(HX)/g 2 (XXX)A 8 %(X)‘)‘)ﬁ
1 - 1
=76 (s = 355 () 5 + g5 (W) )
3 —\i 3
+(’Y[ab)a <4Z(HX) cdp T (X)\)‘)cd} (X)‘)‘)Acd]ﬂ> (C.18)

We shall finally consider the components of U(1) weight 1, for which the number of
independent elements is the largest. Similarly as for xy we define (Da)\sz)’ as the irreducible
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representation component of the covariant derivative of the fermion A in the [1 0® } , and ﬁzba

as the component of the Rarita-Schwinger field strength in the irreducible representation

[ o1l ] , all other components of the Rarita-Schwinger field strength being equal to monomials

in the other fields through the Rarita-Schwinger equation. We define in a first place the

bilinear combinations

(PX) = Pa(r"X') 4

(FN) = Fiy ("N o
(Fj‘)aba = Fgf ZOé]k'?
(Fj\)z]k — FZ(Z( b)\l]k))a’
F(”( ab;\klm))d :
(G;\)”k = éabcd( adeS\ijk)o} ’

(HA);, = Hp (YN0,
(H)‘)aba = szzfc( ]k)d )
(HN)F" = H (" NY)..
() e, = Hape (VA) 1

(H)\)wklm — H(;)Jc( abC)\klm)) .

(P'A), = PR (v Aijn) 4
(P4)\)”k le(”( “Aim ))a’
(P4)\)”klm = Pn(”k( “A lm))a’
(FX)a = Fap ("% o
FX) e = abXdJ ’
(o e,
(GX)W = G:{bcd (+"X").,

71—

_S\)z]k — Fl(z( ab;\ljk))d’

GS\)Uk = Gabcd( cdj\ijk)o}’

aba

(HN) o = Hip. ("Nt o
(HA)abca = Habc Oé]k ’
(HN) Y = Hyp (A™),,
(H)\)’L]k Hl(bz )\jkl) (Clg)
abcaw T TTabc” ol
(H)\)Zflm = H((Z’IL)]C( bC)\k:lm))a 7
(P*N)0 = PN i
(P4)\)ZJ: _ le(’bj)\a)lm’
<P4)\)ijklm = Pn(z]kAZnTz ’
(FX),0 = Fah(4"%).

(F}Z)ijk — F(ij( abgk))d
(Fx)”k _ F(ZJXZ)

aba T T a

(GX) abeda — Gabcdxd



Then comes the base of three-linear in the fermions, starting with the terms in yyA

()5 = (02 (AT 4 (N 4= ()2 (N8
(XX 0 = (6R)2 N e (XN 4 g0 = (XX) e (PN .
(xxk)abf(x e (VN 4 (xxk)abmz(x )7(bc o g
(N = (xx), (A7) . () 15 = 00 (M)
(XN 3 = (00) g (72X o ()25 = () e (M) o
(XN = () M () 1= (0L A (C.20)
(NZE = (%) o (1PN, (N 25 o = () e (FPNT)
(XX)\)aboz (0X) e (7 C/\Z]k) (XX)\)Z’ZME(XX)ZZC(’YCM )
(N e = () N () Fen = () X

(o)™ = ()" (A (o) 37 = (o) G (7 exk)
(o™ = () A (N o = (0 0N,

where we have used the basis of bilinear defined in section B.2. For the terms in yA? we
give the following basis

(X/\A) *XOZ (5\5\) ’ abc 6 =T (Y
I (AN 4= ()3 X5 (ON) e
(XA)\)Ba:(7 X])a(A)\)abj’ b—j
()_(A)\)Z _ (")/Cd>_(1) (—5\) (XA)\) = (’7 X )a(A)\)abJ
aba — o abcd’ I ¢
Y V\? i /XN (X)\)\)Aaba_xja()\)\)ab]
(X)‘)‘)abcddzxd(AA)abcd’ ik 1 /~~\ijk
ik _ (abed o1y ()R ( A)‘) Xa()‘)‘)z ’
(XM =0 GOV . o o (C.21)
()z/\)\)mk:(,},bi(z) ;\/—\)jk) (X)‘)‘)Ej;azha (2) ()\)\)ab ’
ao e ab ’ ijk P ijk
(—)\)\)Uk =5 z(;\;\)]k‘) (XA)\)a]ba_ (’7 X l) ()\)\)a]bcdl ’
A aba T Mo ab _ igklm _ _(i /x )\ Jjklm
( x;\)l]klm: (’}/adeX(i) (Xj\)jklm) ( )\)\) J =Xa (>\)\)j )
Aa — & abed 7’ _ ijklm _ (_ab_n T\ ijkim
(= o) (e, (P0G e
where we use
T S5 S L O,
(AN IH = XmGIRRD,, - (R) 9 = X o AW0,,  (AR) ™ = 30y 3l
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Finally we define the basis of three-linear in A%\ to be

(AL = ()72 (AN 4= N2 (000
Vi ijkl cd~
(A0 = (V) g (07 Nka) 5 (AN} = (N (257,
T\? ik~ D
(M) e = (AN 2526 e (AN s = ON) N it
(AN 7E = (AN)ATE (AN :(A)\)lm(”)\a .
S\ ijk i/ aby 4 ) igklmn /g
(W)= (W) () . (AN = )™ (D) .
(W)= () e (7R5) . O 0= OV (N0 o
\ijk (3 i i7klmn :
(M) = O, AL = N5 (),
(AMN)ZE = ()N N7 = ()2 X
S\ijk Nijk D m(e
()\)\)\)a]bcdoz:()\A)abcd)\df ? (A)\A)/{ZbcdaE(A)\)fzbc(dj (]ilm’
) iikim n(ijk 1 ijklm ) a m
(AAR) 7K = (An) "R m) (AMN) M = (AN) W (abyEim))
1\ jklm np(ijkl /1 a m ijklm 3 c m
O3 =N 0™ s AN = (W) (8) .
W)= O, 005 ™), W) B = QN (0™,

where we use definition (B.10) together with the following ones

IR = A g A ()R = Nk Nl (C.24)

()\)\) abed

Now we can use this basis to write down the solution to the Bianchi identities. The Dirac
equation of A\ gives the following decomposition

ijk _ ijky/ Bl 1 Ay ijk | i ijk |
DaAa - (D(l)\oz ) + (fya)a < 32 (F)\)ﬁ 768 (G)\) 96

) mk 7 ijk ijk 31 ijk
~ g5 (0N &'y — g (AN +3072( N5~ 256( )55

)

16
43 ()\A)\)”k

ijk b}
5Tyl

(AN 5 + m()\)\)\)”k> (C.25)

ijk i

114
1280

_ ijk ijk
FX) )\)/{5 384( )‘)éﬁ

The covariant derivative of the scalar momentum P7* yields

Dgpgklm
il g ijk ijk 1 ijk i \ijk) | S, \ijk
=c"(%),, <160(F/\)5J )+ﬁ(G)‘>BJ uﬁ(fﬂ)] )—E(FX)/'; )+@(Xx>\)gj)

33t ,  _ \ijk) 7o, \igk) 191 vagk)y 210, <<\ igk) T _vvyigk)
160 VN 351 (0N 55~ g0 (N e = G (NG + 3557 (W
132 ()ZS\)\)WC) ') ()\)\)\)ij) 571

. 2 AN YR
1280 B 564 +320( Vst

83t
6400

z]k) zgk)
(AN 2 +—1920(MA) >

iG(_Foapykim) L km) G km) G \kim) G ki)
#e0 (<L ER 4+ 5 (N + SO0 = 0o + 5 (v
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o kim) | & kim)  1li o ovkim) 1 kim) klm)y/
1152 ()\)\)\> + 480 ()\A)\)A aa 200 (A)\A)B ax + 120 ()\A)\)C ac (Da)\a ) )

B 1 mvvijkim 1 ijklm. 1, _\nijklm T, _ Nijklm 39T, _<<yijkim
00 (G (P = 45 o 3+ S (o) 457 - 2 ()

51 _<xyijkim (1 SN FRm 171 igktm _ 314 ijklm ijklm
s (W) = s () 5"+ (AM)J 1920()\)\)\)]5 ——(M)\)] >

+£(F5\)z]klm . i (HA)ljklm + g(X)Z)\)l]klm + 6( )\A)ijlm

3 ac ac

_ﬁ (AM)Z]W + @(/\M)Z’ZT (MA)gk,fZL : (C.26)

The 3/2 dimensional component of the torsion is

51

T = () (57 (P} = 55 (F0 + o (BN + 5 (P
s (P - ;ﬁw- + T (x w‘ + 73 (O}
o (N~ (A 5 — 5o (M)} — S (W), >
#0)" (=5 (PO + (s — 15 (Vs = 5 (P + (0,
+3%(G_)i} é(XX)‘)b]B 112(XX/\)Ab]B 1(X)‘/\)}
576(MA)] + 5 (MA) })+ﬁgg (C.27)

where we have defined the projection to the irreducible representation {o 1§] to be p.
We will now give the fermionic covariant derivative of the field strength G~, F and H
having U(1) weight 1. We get

_ : 2 - 32

D= (=3 (P03 o (FR) = 35 () 5+ S (P
L) 2o u)w—%z(ﬂ)m
s OO 4~ 35 0 g s+ 15 M)+ 535 ) 45,
(i) ,ﬁ( () d]ﬁ.+i(H)\)d] o5 (FR) gt 2 (0 4 g3 (W), m)
vr)a (6 =3 g+ 31 (HN) gy = 4P s+ 200
"’i(X;\S‘) d)Bi (X)‘/\)Acd]ﬁ'z) +%()_<5\5‘)abcddi’ (C.28)
and
DisFyy
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5, —- 20 2, _\k 1 k
_5@( ek 2 (PR (N5t 2 (FR) st 2 (0N B o (W) gt 5 (% wm)
1 i 21 2 ik 1, ik 2 1, —— ik
_§(F)‘)ibaz + 7(H)\)abocz - §(Fx)ibm‘ + g(XX)‘)iba'i +3 ( X)\)Aabaz g(X/\)\)(]zbdi

3
; 88, = \k o\ k i Ky | 20 8 N
+07 () 4 (3( Xy *(F N)ija s N)ygs + 5 (P Wity o (F Digs = (Gx)b})ﬂ

YV \k
(X)‘A) b})ﬁ 288 ()‘/\)\) b]),B 16 (A)‘A)A)b],8>

2

Lo
+3
ﬁ 'l ik 1 3 i 3 ik
+(7[a)a <_6(H)\)b]ﬁ +2 (P4/\) bBi g(FX)Z],Bz‘ - g(XX)‘)Z},@i - 2(XX)‘)]Ab]ﬁz‘
_1
6

_ 1
(XX)‘)b]ﬁ 9

—\ ik 1 -\ ik . 1

4 (20, = \k 1 -k 134 1 k
+00 Gu),” (5 (POY - %m); - ﬁm) D <P4A>;

21
X)\)\)

L 5o 43 o, 1

63 )5 — g ad) 756( XA +366(
N O N Ko 11 K 31 k)
5376 M) s +144( ) +336(A)\)\) 1331 MM 6)

+om)a (- 550 +§<w> +m<m>z 24(Fx) ;;< —Ay:f;

7 —\\Jk 1 jk _ gk 7 . 1 jk

23 _<<\jk 3 13 3
+384( A)Bﬂz—@()\)\)\) l—ﬁ(MA)AﬁZ 640()\/\)\)352 64(/\)\/\) ),(0.29)
and finally
DLH?Y

abe
. 8 T =vyijk 3, m<vigk 11 ijk 3t ijk ijk
= Gune) (=g (PN + S5O0 = 15 (N = (0T + 1 (o)

i, _\\ijk 7 ijk 9, _ \ijk i _tyyidk T _syyigk
77( A)Xﬁiﬁ(xx/\)] +128(XXA)557@(X)\A)[; 6144( )\)‘),Zﬁ

29
512

_~vv\ijk 15¢ T\ ijk 71¢ ijk. ijk
290 (AN — 2L AN - R o) S () )

B iG 1,- k) T =\ k) 1 k) 3t k) 230 k)
om0 (<P = N = s (0] - (PN - Se(r)f - 168<w>

S ) - B L o 3
112 (N 5 — 336 (N5 + 556 (A4 +48( D) +56 (W) 1344 (W) )

3 i 3 i 3t N\ %] 3t — N\ id 31 %
o), (8(m) 23 Pyt B, - Bt - 2 ean s

a5 (MWN)15 - 1;8 (W)t —(AM)”km - §(D4Ag”“)’>

" 96 Ac]B 2
o) "< (2P (N4 15 (60 5+ 00N s+ 1000 = 5 (01, )
B (31, =m5vidk | 3t 5yyidk N 31, _\\ijk %, _\\ijk 31 _tyy\ijk
o) (5 ER 5 @0, - 30 + 5 bon) iy = 5 o) s + 5§ (001

+(1a), e (20(FN)Y + 4i (Fy) +i(XRN) ) + T ONN) )5 + 317 )
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1 k) 1 ijk 7 e} <\ ijk
+65 v (H)\)abca + §(H)\)ajbco¢ - 176(’}#)04 ()\A)\) a]bch : (030)
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