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1 Introduction

Type II string theory on R1,9−d × T d is extremely constrained by supersymmetry and du-

ality symmetries. The various formulations of the theory are conjectured to be related by

U-duality, an arithmetic Ed(d)(Z) subgroup of the split real form of the Lie group of type
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Ed [1]. In particular, the exact low energy expansion of the effective action is expected to ex-

hibit this symmetry [2–4]. However there is no non-perturbative formulation of superstring

theory that would permit to derive directly the low energy expansion of the amplitudes, and

one must use perturbative string theory [5–9] and eleven-dimensional supergravity [3, 10]

together with U-duality to derive their non-perturbative completion. One can deduce the

superstring effective action from the amplitude by inverse Legendre transform (up to field

redefinition ambiguities), which can then be expressed in the low energy limit as the super-

gravity 1PI generating functional computed with the complete (appropriately renormalised)

string theory Wilsonian effective action. The supersymmetric Wilsonian effective action

admits the following expansion in the reduced Newton constant κ2 in 10− d dimensions

S =
1

κ2
S(0) +κ2 d−2

8−dS(3)[E(0,0)] +κ2 d+2
8−dS(5)[E(1,0)] +κ2 d+4

8−dS(6)[E(0,1)] +

∞∑
n=7

κ2 d−8+2n
8−d S(n) , (1.1)

where S(0) is the supergravity classical action, and S(n+3)[E(p,q)] with 2p+3q = n is a ∂2nR4

type supersymmetric correction to the effective action depending on a function E(p,q) of

the scalar fields parametrizing the symmetric space Ed(d)/Kd [11];1 although starting from

n ≥ 5 one has independent corrections in ∂2n−2R5 and etcetera at higher orders [12].

It was shown in [13] that supersymmetry implies that the function E(0,0) characterising

S(3)[E(0,0)] in type IIB supergravity in ten dimensions is an eigenfunction of the Laplace

operator with eigenvalue −3
4 , consistently with the analysis carried out in [2]. As a conse-

quence, supersymmetry and duality invariance entirely determine the function E(0,0) in ten

dimensions. The constraints from supersymmetry have been computed for higher order

invariants [14] and the same conclusion holds for the ∇4R4 type corrections [10]. The

realisation of these functions as Eisenstein functions [2, 4] has been generalised in lower di-

mensions [15], and to higher order ∇6R4 type corections [16], leading to more developments

in lower dimensions [17, 18].

We start by considering R4 invariants in lower dimensions. We carry out this program

within the formalism of superforms in superspace developed in [19–21]. We concentrate in

a first section on R4 type invariants in N = 2 supergravity in eight dimensions. Computing

the complete invariant is out of reach, and we concentrate on the components of the

superform that carry the maximal R-symmetry weight representations, similarly as in [13,

22]. We find in this way that the function of the scalar fields must satisfy a tensorial second-

order differential equation consistent with the explicit Eisenstein function computed in [4].

We extend these results in dimension 6, 4 and 3 and show that the function defining

the R4 type invariant satisfies a unique tensorial second-order differential equation asso-

ciated to the minimal unitary representations of SO(5, 5), E7(7) and E8(8), respectively.

The function multiplying R4 must satisfy the constraint that its second-order derivative

vanishes when restricted to the Joseph ideal [23]

J (D,D) E(0,0) = 0 . (1.2)

1Here the functions E(p,q) are defined as in [11], up to the subtlety that they are not necessarily U-duality

invariant in our conventions when there is a non-trivial mixing with the 1PI generating functional.
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The relation between the minimal unitary representations and the R4 type threshold func-

tion has been argued from several perspectives [24–28] and it is in particular conjectured

that the function can be defined as the exceptional theta series associated to the mini-

mal unitary representation of Ed(d) [28]. Our results strongly support this conjecture by

showing that supersymmetry implies indeed (1.2), whose solutions with appropriate bound-

ary conditions define the minimal unitary representation of the corresponding exceptional

group. Using the harmonic superspace construction of the higher order invariants in the

linearised approximation [29–32], we extend these results to the ∇4R4 type invariants. In

four dimensions we also determine the equation satisfied by the function defining the ∇6R4

type invariant, relying on properties derived in [33] to fix the free coefficients. We find that

the threshold functions satisfy higher order differential equations attached to certain nilpo-

tent coadjoint orbits exhibiting their relation to next to minimal unitary representations

as proposed in [28].

We study the corresponding differential equations in some detail in six and four dimen-

sions, and find perfect agreement with the definition of the threshold functions as Eisenstein

series [11, 33–35]. We discuss in particular the two Eisenstein functions defining the ∇4R4

type correction in six dimensions [33], and show that these two functions are associated

to two independent invariants, and solve independent differential equations associated to

the two next to minimal nilpotent orbits of D5 (that both only include the closure of the

minimal nilpotent orbit in their topological closure). Working out the general solutions to

these differential equations, we extend the results of [34] on the structure of the Fourier

modes of these functions.

Because the R4 type corrections to the effective action are defined in the linearised

approximation as superspace integrals over half of the Grassmann coordinates [30], the

property that they only receive corrections from non-perturbative effects associated to 1/2

BPS instantons has been conjectured to be a consequence of supersymmetry [2]. The dif-

ferential equation that we find to be a consequence of supersymmetry implies indeed strong

restrictions on the possible perturbative corrections that the effective action can receive

in string theory, and moreover implies through the dependence on the scalar fields that

the non-perturbative corrections associated to instantons must also be 1/2 BPS by super-

symmetry. The generalisation of these results for ∇4R4 to only receive corrections from

(at least) 1/4 BPS instantons go through as well, in agreement with the analysis carried

out in [34], and the differential equation we propose for the ∇6R4 type invariant in four

dimensions implies that it can only receive corrections from (at least) 1/8 BPS instantons,

as expected from its harmonic superspace construction in the linearised approximation.

In this paper we distinguish the Wilsonian effective action that preserves local super-

symmetry from the 1PI generating functional satisfying to the quadratic BRST master

equation. In particular we show that the logarithmic contributions to the threshold func-

tions responsible for the constant right-hand-side in the Poisson equation satisfied by these

functions [36], do not appear in the Wilsonian effective action, but are consequences of

duality anomalies. We discuss this property in particular in eight dimensions, where the

R4 threshold gets one contribution associated to the chiral 1-loop U(1) anomaly similarly

as in four dimensions [37], whereas the second is associated to an incompatibility between
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supersymmetry and SL(3,R) duality invariance. We also exhibit that the ∇4R4 threshold

function in six dimensions satisfies a Poisson equation with a right-hand-side proportional

to the R4 threshold function, which is attributed to the duality transformation of the R4

superform insertion (i.e. form factor) in the supergravity 1PI generating functional. The

anomalies associated to the incompatibility between duality and supersymmetry Ward iden-

tities bypass the analysis carried out in [38] (although their possible existence was not over-

looked), but they can only arise by construction when the threshold function is constrained

to satisfy to the Laplace equation (i.e. with zero eigenvalue) from supersymmetry Ward

identities. Therefore such anomalies can only arise when the supergravity amplitude ex-

hibits a logarithm divergence [36], such that they do not affect the non-renormalisation the-

orems established in [39, 40] regarding the absence of logarithm divergence in N = 8 super-

gravity before seven-loop order based on the absence of E7(7) anomalies, consistently with

the factorisation of eight additional external momenta in the explicit 4-loop four-graviton

supergravity amplitude [41]. Our work does not give new insights on the ultra-violet be-

haviour of maximal supergravity amplitudes, but it does give predictions on the logarithmic

divergences of supersymmetric densities form factors. The integrated invariants are observ-

ables of the theory, and therefore the zero momentum limit of the associated form factors

are BRST invariant observables. Generalising the argument of [36] to these cases we find

that the supersymmetric R4 form factor should diverge at one loop in ∇4R4 in six dimen-

sions, and similarly that the ∇4R4 form factor should diverge at one loop in ∇6R4 in four

dimensions, whereas the R4 form factor must be finite until 4-loop order by supersymmetry.

The paper is organised in four sections devoted to the analysis of maximal supergravity

in eight, six, four and three dimensions, respectively. It is in eight dimensions that we

work out the supersymmetry constraints on the R4 type invariants in most detail. For

this purpose we start by deriving the superspace geometry, including cubic terms in the

fermions that are relevant to our analysis. The latter can be found in appendix C. From six

dimensions and below, the algebraic constraints on the consistent second-order differential

equations on Ed(d)/Kd are so strong that it is enough to work out the supersymmetry

constraints on the maximal R-symmetry weight terms of order sixteen in the fermion

fields to determine them. This is due to the property that (1.2) determines uniquely the

eigenvalue of the Laplace operator.

More generally we find that the differential equations satisfied by the scalar pre-factors

of the R4, ∇4R4 and ∇6R4 type invariants can be deduced from their harmonic superspace

construction in the linearised approximation, up to a potential free parameter that is fixed

for R4 and ∇4R4 in dimension lower than six. The harmonic variables parametrise a homo-

geneous space Kd/(U(1)×Hd) where the U(1) factor determines the G-analytic superfield

W as the component of the scalar field of highest U(1) weight. The harmonic superspace

integrands are therefore in one to one correspondence with the symmetric order n monomi-

als in the G-analytic superfield, that are associated to a set of irreducible representations

Rd,n,k of Kd. The algebraic restriction on the symmetric monomials of the G-analytic

superfield define a subspace of the vector space of monomials of a generic coset element.

Assuming that the non-linear invariants are in one to one correspondence with the har-

monic superspace integral invariants, the same restriction must hold on the jet space of nth
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order derivative acting on a generic function E defining these invariants, i.e.

DnE(p,q) ∈
∑
k

Rd,n,k . (1.3)

This assumption is justified in four dimensions by the complete classification of SU(2, 2|8)

chiral primary operators [31, 42], which proves that all supersymmetry invariants are re-

alised as harmonic superspace integrals. Although there is no theorem, is seems that all

supersymmetry invariants can indeed be defined as harmonic superspace integrals in the lin-

earised approximation in dimension lower than six.2 This U(1) factor lies inside a GL(1,C)

subgroup of the complexication of Kd that determines a graded decomposition of the com-

plex Lie algebra kd(C) as well as ed. The highest weight component of ed	kd(C) determines

a nilpotent element, that characterises a unique nilpotent orbit of the real Lie group Ed(d)

according to the Kostant-Sekiguchi correspondence [43]. It follows that a nilpotent element

Q satisfies an algebraic constraint that is such that

Q⊗n ∈
∑
k

Rd,n,k(C) . (1.4)

We conclude that the same algebraic constraint satisfied by the nilpotent element Q is

satisfied by the symmetrised product of derivatives acting on E(p,q). For the R4 type in-

variant, the relevant nilpotent orbit is always the minimal nilpotent orbit of Ed(d), and

the quadratic algebraic constraint is the Joseph ideal [23]. In general the solutions to

the corresponding differential equation with the appropriate boundary conditions define

the unitary representation associated to the corresponding nilpotent orbits. Because the

nilpotent orbits are classified by the Kd(C) weighted Dynkin diagram characterising the

subgroup GL(1,C), it is straightforward to read of the nilpotent orbit associated to a given

harmonic superspace in the classification [44]. For E6(6), E7(7), E8(8) the 1/2 BPS and 1/4

BPS couplings correspond to the minimal and next to minimal nilpotent orbits, which Kd

weighted Dynkin diagram carry zeros on the maximal semi-simple Hd subgroup Dynkin

diagram and 1 on the other nodes. The 1/8 BPS couplings correspond to the nilpotent

orbits which Kd weighted Dynkin diagram carry zeros on the maximal semi-simple Hd

subgroup Dynkin diagram and 2 on the other nodes.

2 N = 2 supergravity in eight dimensions

In this section we shall discuss the R4 type invariants in N = 2 supergravity in eight

dimensions, and prove that the R4 threshold function must satisfy differential equations

consistent with the explicit SL(2,Z)×SL(3,Z) threshold computed in [4]. We will consider

the problem in the superspace formulation of the theory, and we shall therefore compute the

geometrical tensors of N = 2 supergravity in superspace in a first subsection. Our strategy

is inspired from the idea proposed in [13] to concentrate on the fermion monomials of

maximal weight, as was used in [22] in eight dimensions. However we will go beyond this

2From seven dimensions and above there are counter examples, and one must at least consider Lorentzian

harmonics to cover all possible invariants [32].
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χ̄iα̇

λijkα

λ̄ijkα̇

χiα

F̄ ijab/Ḡ
−
abcd

H ij
abc

F ijab/G
+
abcd

ρiabα

ρ̄iabα̇

Rabcd

W̄

D̄i
α̇

Di
α

Lijkl

W

Figure 1. Structure of the supergravity supermultiplet in the linearised approximation. It includes

a chiral superfield W and a tensor superfield Lijkl related through their second derivative. The

symmetry with respect to the horizontal axe defines complex conjugation.

results, and show that the function satisfies a stronger equation than the Laplace equation

already exhibited in [4].

2.1 Supergravity in superspace

In order to determine supersymmetry invariants we shall use the superspace formalism. In

this section we will derive the structure of the supergeometry in eight dimensions, following

the same construction as in [45, 46]. The R-symmetry group is U(2), and is represented

such that the covariant derivatives Di
α, D̄α̇i have respectively weights 1 and −1 with respect

to the axial U(1), and the indices i correspond to the fundamental of SU(2), whereas α

and α̇ are respectively in the chiral and the anti-chiral Weyl representation of Spin(1, 7),

which are complex conjugate. The complete set of fields is depicted in figure 1.

The superspace coordinates zM include 8 bosonic spacetime coordinates and 32 Grass-

mann coordinates, and the associated vielbein EM
A decompose as EM

a, EM
α
i , EM

α̇i,

where a is the vector index of SO(1, 7). The graded commutator of two covariant derivatives

on a tensor Φ gives by definition(
DADB − (−1)ABDB DA

)
Φ = −TABCDCΦ−RABCD t(Φ)

D
C Φ , (2.1)

where TAB
C is the torsion, and the Riemman curvature RABC

D t
(Φ)
D

C is valued in the Lie

algebra so(1, 7)⊕ u(2), with appropriate generators t
(Φ)
D

C in the representation of the field

Φ. The consistency of the commutation relations implies the Bianchi identities

dωT
A = EB ∧RBA , dωRB

A = 0 , (2.2)

where dω is the covariant exterior derivative in superspace, with ωM B
A itself valued in

so(1, 7)⊕ u(2). The Bianchi identities read in components

DATBC
D + TAB

FTFC
D+ 	 = RABC

D+ 	 DARBCD
E + TAB

FRFCD
E+ 	 = 0 (2.3)

– 6 –
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where 	 denotes the sum over cyclic permutations of A,B,C. Moreover the internal

connexion in u(2) is determined from the Maurer-Cartan superform of scalar superfields

parametrizing the symmetric space SL(2,R)/SO(2)× SL(3,R)/SO(3), one complex super-

field T and five real superfields φµ. We represent SL(2,R) in terms of the SU(1, 1) matrices

V =

(
U UT

ŪT̄ Ū

)
, (2.4)

satisfying to

UŪ(1− T T̄ ) = 1 . (2.5)

The Maurer-Cartan form

dVV−1 =

(
−2ωu(1) P

P̄ 2ωu(1)

)
, (2.6)

defines the u(1) connexion and scalar momenta. Similarly one defines the SL(3,R) matrices

V∗ ijI = εikεjlVklI , (2.7)

with i = 1, 2 of the gauge group SU(2) and I = 1, 2, 3 of the rigid SL(3,R). We will not

provide an explicit parametrization of this matrix in terms of the five scalars φµ, because

this will not be required in our analysis. One decomposes the Maurer-Cartan form as

dVijI V−1
I
kl = Pij

kl − 2δ
(k
(i ωj)

l) . (2.8)

The momentum P and the su(2) connexion ωi
j are defined in this way as

Pijkl = dV(ij
I V−1

I kl) , ωi
j = −1

2
dVikI V−1

I
jk , (2.9)

where SU(2) indices are raised and lowered with the εij tensor. It follows from the Maurer-

Cartan equations that

dωP = 0 , dωP̄ = 0 , dωP
ijkl = 0 , (2.10)

and that the u(2) components of the Riemann tensor are determined as

Ru(1) = P ∧ P̄ , Rij = P iklm ∧ Pjklm . (2.11)

In components, these identities read

DAPB − (−1)ABDBPA + TAB
CPC = 0 , R

u(1)
AB = PAP̄B − P̄APB , (2.12)

DAP
ijkl
B − (−1)ABDBP

ijkl
A + TAB

CP ijklC = 0 RAB
i
j = 2P iklmA PBjklm − δijP klmnA PBklmn .

To complete the definition of superspace, we enforce the existence of superform field

strengths transforming in linear representations of SL(2,R)× SL(3,R). They are 6 1-form

potentials A1
I , A

2
I in the 2 ⊗ 3 that define the complex 2-forms F ij , 3 2-forms potentials

BI in the 3 that define the three form field strengths H ij and one 3-form potential C that

– 7 –
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defines a complex 4-form G and its complex conjugate, transforming together in the 2 of

SL(2,R) [47]. They satisfy to the Bianchi identities

dωF̄
ij = P ij pq ∧ F̄ pq + P̄ ∧ F ij ,

dωH
ij = −P ijkl ∧Hkl + F k(i ∧ F̄ j)k ,

dωḠ = P̄ ∧G+Hij ∧ F̄ ij . (2.13)

Here we allow ourselves to fix the Chern-Simons couplings Hij ∧ F̄ ij and F k(i∧ F̄ j)k, which

determine the respective normalisation of the fields with non-canonical kinetic terms. One

obtains in components

DAF̄
ij
BC + T E

AB F̄ ijEC + 	 = P ijA pqF̄
pq
BC + P̄AF

ij
BC + 	 ,

2DAH
ij
BCD + 3T E

AB H ij
ECD + 	 = −2P ijklA HBCD kl + 3F

k(i
ABF̄CD

j)
k + 	 ,

DAḠBCDE + 2T F
AB ḠFCDE + 	 = P̄AGBCDE + 2HABC ijF̄

ij
DE + 	 , (2.14)

where 	 states for the sum over alternated permutations of all tangent indices ABC . . . ,

such that the result is a graded antisymmetric tensor.

The solution to these superspace identities determines the covariant superfields of the

theory, which first components at θ = 0 (i.e. the pull back to the bosonic space embedded

in superspace) correspond to the supercovariant fields of the theory in components. By

construction, these fields satisfy to the equations of motion. In this paper we shall consider

the classical superspace solution solving the classical (two derivatives action) equations of

motion. Restricting ourselves to the classical superspace, one can use dimensional analysis

to determine the various components of the superfields. Moreover, the dimension-zero

components must necessarily be invariant tensors. It follows for example that the only

dimension-zero components of the torsion are

T i c
αβ̇j

= −i(γc)αβ̇δ
i
j , (2.15)

and its complex conjugate. One can use the same argument to restrict the decomposition of

the superforms, such that no more than two of the tangent indices AB . . . can be fermionic.

Moreover F̄ ij and Ḡ have an overall U(1) weight u = 2, whereas H ij is neutral. Using that

the dimension-zero component must be U(1) invariant, one gets the decompositions

F̄ ij =
1

2
Eb ∧ EaF̄abij + Eb ∧ Eαl F̄ lαbij + Eb ∧ Eα̇lF̄α̇lbij +

1

2
Eβ̇k ∧ Eα̇lF̄α̇lβ̇k

ij (2.16)

H ij =
1

6
Ec ∧ Eb ∧ EaHabc

ij +
1

2
Ec ∧ Eb ∧ Eαl H l

αbc
ij +

1

2
Ec ∧ Eb ∧ Eα̇lHα̇lbc

ij

+Ec ∧ Eβk ∧ E
α̇lHα̇l

k
βc
ij (2.17)

Ḡ=
1

24
Ed∧Ec∧Eb∧EaḠabcd+

1

6
Ed∧Ec∧Eb∧Eαi Ḡiαbcd+

1

4
Ed∧Ec∧Eβ̇j∧Eα̇iḠα̇iβ̇jcd

(2.18)

where we moreover used the property that Ḡα̇ibcd = 0. This last condition is true because

the only dimension 1/2 field of U(1) weight 1 is the fermion field with three symmetric

– 8 –
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SU(2) indices λijkα . In principle this property can be proved in general following [45, 46],

here we already assume the knowledge of the field content of N = 2 supergravity [47]. One

computes that the dimension-zero components of the form fields are

F̄α̇iβ̇j
kl = −2Cα̇β̇δ

k
(iδ

l
j) , H i

αβ̇jc
kl = −i (γc)β̇α ε

i(kδ
l)
j , Ḡα̇iβ̇jab = εij (γab)α̇β̇ . (2.19)

Indeed one straightforwardly checks that they are the only invariant tensors satisfying to

the appropriate symmetry properties, and the specific coefficients are determined modulo

an overall rescaling by the Bianchi identities (2.14), i.e.

Tγ̇k
i e
α He

j

βδ̇l
mn + Tγ̇k

j e
β He

i
αδ̇l

mn + Tδ̇l
i e
α He

j
βγ̇k

mn + Tδ̇l
j e
β He

i
αγ̇k

mn = F ijαβ
p(mF̄γ̇kδ̇l

n)
p ,

T i
αβ̇j

bḠbγ̇kδ̇la + 	jkl

β̇γ̇δ̇
= Ha

i
αβ̇j

pqF̄γ̇kδ̇l pq + 	jkl

β̇γ̇δ̇
, (2.20)

where the symbol 	jkl

β̇γ̇δ̇
indicates the sum over cyclic permutations of the three pairs of

indices. At dimension 1/2 one gets that there is no fermionic field of U(1) weight 5, such

that T in (2.4) must be a chiral superfield, i.e. D̄α̇iT = 0. Therefore, the scalar momenta

decompose into

P ijkl = EaP ijkla + EαmP
m ijkl
α + Eα̇mP ijklα̇m , P̄ = EaP̄a + Eα̇iP̄α̇i , (2.21)

with Pm ijkl
α and P ijklα̇m having dimension 1/2 and U(1) weight 1,−1, whereas P̄α̇i has

dimension 1/2 and U(1) weight 3. One computes that all components of U(1) weight 3 are

determined in terms of one single field χ̄iα̇, as

T i j γ̇kαβ = 2Cαβε
k(iχ̄j)γ̇ +

1

4
εij(γab)αβ(γab)γ̇β̇χ̄k

β̇
, (2.22)

F̄ iαb
kl = 2i(γb)

β̇
α εi(kχ̄

l)

β̇
, Ḡiαbcd = i (γbcd)

β̇
α χ̄i

β̇
, P̄α̇i = 2χ̄α̇i , (2.23)

using the Bianchi identities

T ijαβ
δ̇lT k d

δ̇lγ
+ 	ijk

αβγ = 0 , (2.24)

Tα̇i
j a
β F̄a

k mn
γ +Tα̇i

k a
γ F̄a

j mn
β +T jkβγ

δ̇lF̄δ̇lα̇i
mn = P̄α̇iF

jk
βγ
mn ,

T ijαβ
δ̇lHδ̇l

k
γa
mn + 	ijk

αβγ = F
ij p(m
αβ F̄ kγa

n)
p + 	ijk

αβγ ,

T ij δ̇lαβ Ḡδ̇lγ̇kab+T
i
αγ̇k

eḠe
j
βab+T

j
βγ̇k

eḠe
i
αab = P̄γ̇kG

ij
αβab+2Hγ̇k

i
α[a

pqF̄b]
j
βpq+2Hγ̇k

j
β [a

pqF̄b]
i
αpq .

In the same way one use the Bianchi identities to show that all the dimension 1/2 component

of U(1) weight 1 are determined in terms of a single field λijkα as

T i γ̇k

αβ̇j
=−3

4
δα̇
β̇
λikα j +

1

2
(γa)β̇α (γa)

βγ̇ λikβ j , T i j γαβ k = Cαβλ
γij

k −
1

2
δγ(βλ

ij
α)k ,

F̄α̇ib
kl =−i (γb)

β
α̇ λ kl

β i , H i
αbc

kl=
1

2
(γbc)

β
α λiklβ , P i jklmα =−εi(jλklm)

α . (2.25)

The computation goes on then at dimension 1, with new independent fields associated

to the scalar momenta Pa, P
ijkl
a and the field strengths F̄ ijab, H

ij
abc and Ḡabcd− , although
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it turns out that the sefldual component of the 4-form Ḡ is determined in terms of the

fermions as3

Ḡabcd = Ḡ−abcd −
1

8

(
λijkγabcdλijk

)
. (2.26)

This is consistent with the property that there is only one 3-form potential in eight-

dimensions, and its complex selfdual and anti-sefldual components transform in the funda-

mental of SL(2,R). From dimension 1 and beyond the solution to the constraints is rather

complicated, and we only display the dimension 1 and 3/2 components in appendix B

and C, respectively.

Now we need to discuss the definition of supersymmetry invariants in superspace.

In this section we will only consider the first corrections to the Wilsonian effective action,

therefore it is enough to consider corrections to the action that are invariant with respect to

supersymmetry subject to the classical equations of motion. In the superspace framework,

such a correction to the action is determined by a cohomology class in superspace, i.e.

a d-closed superform in classical superspace, defined modulo the addition of a d-exact

superform [20, 21]. A superform decomposes in tangent frame as

L =
1

8!
EH ∧ EG ∧ EF ∧ EE ∧ ED ∧ EC ∧ EB ∧ EA LABCDEFGH (2.27)

=

8∑
m,n,p=0
m+n+p=8

1

m!n!p!
Eβ̇pjp∧. . .∧Eβ̇1j1∧Eαnin ∧. . .∧E

α1
i1
∧Eam∧. . .∧Ea1La1...am i1α1

...

...
in
αn β̇1j1...β̇pjp

where each component will be referred to as L(m,n,p), and for an order κ2(`−1) correction

dim [L(8−p−q,p,q)] = 2 + 6`− 1

2
p− 1

2
q u [L(8−p−q,p,q)] = p− q , (2.28)

with u the U(1) weight. One understands that all bosonic indices are antisymmetrised

whereas fermionic indices are symmetrised in pairs αkik (respectively α̇kik). The condition

dL = 0 ensures that the pull-back of this closed form to the bosonic subspace

ι∗L=
8∑

m,n,p=0
m+n+p=8

1

m!n!p!
ψβ̇pjp∧. . .∧ψβ̇1j1∧ψαnin ∧. . .∧ψ

α1
i1
∧eam∧. . .∧ea1La1...am i1α1

...

...
in
αn β̇1j1...β̇pjp

∣∣
θ=0

(2.29)

is invariant with respect to supersymmetry, modulo a total derivative and the classical

equations of motion [20, 21]. In this form the components L(m,n,p)|θ=0 only depend on the

supercovariant field strengths and their supercovariant derivatives. dL = 0 decomposes in

tangent frame in

(dL)
(m,n,p)

= T(2,0,0)
(0,0,1)L(m-2,n,p+1) + T(2,0,0)

(0,1,0)L(m-2,n+1,p)

+T(1,1,0)
(0,0,1)L(m-1,n-1,p+1)+

(
D(1,0,0)+T(1,1,0)

(0,1,0)+T(1,0,1)
(0,0,1)

)
L(m-1,n,p)+T(1,0,1)

(0,1,0)L(m-1,n+1,p-1)

+T(0,2,0)
(0,0,1)L(m,n-2,p+1) +

(
D(0,1,0) + T(0,2,0)

(0,1,0) + T(0,1,1)
(0,0,1)

)
L(m,n-1,p)

3Note that in Minkowski signature γabcd
αβ = − i

24
εabcd

efghγefgh
αβ whereas Ḡ−abcd = i

24
εabcd

efghḠ−efgh.
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+
(
D(0,0,1) + T(0,1,1)

(0,1,0) + T(0,0,2)
(0,0,1)

)
L(m,n,p-1) + T(0,0,2)

(0,1,0)L(m,n+1,p-2)

+T(0,1,1)
(1,0,0)L(m+1,n-1,p-1) (2.30)

where we defined

D(1,0,0) ∼ Da , D(0,1,0) ∼ Di
α , D(0,0,1) ∼ D̄α̇i , (2.31)

and

T(0,1,1)
(1,0,0) ∼ T iαβ̇j

c ,

T(0,2,0)
(0,0,1) ∼ T ijαβ

γ̇k , T(0,2,0)
(0,1,0) ∼ T ijαβ

γ
k , T(0,1,1)

(0,0,1) ∼ T iαβ̇j
γ̇k ,

T(1,1,0)
(0,0,1) ∼ Tajβ

γ̇k , T(1,1,0)
(0,1,0) ∼ Tajβ

γ
k ,

T(2,0,0)
(0,0,1) ∼ Tabγ̇k , (2.32)

together with their complex conjugate, and such that the indices of uppercase grades are

understood to be contracted with indices of lowercase grades. Note that the components

Ta
j
β
c, Taβ̇j

c and Tab
c vanish. In this paper we will only consider the component

(dL)
(8,1,0)

= D(0,1,0)L(8,0,0) + T(1,1,0)
(0,0,1)L(7,0,1) +

(
D(1,0,0) + T(1,1,0)

(0,1,0)
)
L(7,1,0)

+T(2,0,0)
(0,0,1)L(6,1,1) + T(2,0,0)

(0,1,0)L(6,2,0) (2.33)

and its complex conjugate. We will indeed find out that these equations alone permit to

determine the differential constraints on the function of the scalar fields characterising the

d-closed superform.

2.2 The chiral R4 type invariant

As explained in [30], one can define an invariant from an arbitrary holomorphic functions

of the chiral superfield T ∼W in the linearised approximation

D̄16W̄ 4+n ∼ W̄n

((
t8 +

i

48
ε

)2

R4 + . . .

)
+ W̄n−1 (. . .) + . . .+ cnW̄

n−12χ̄16 (2.34)

where t8 is the standard tensor defined such that

t8F
4 = trF 4 − 1

4

(
trF 2

)2
, (2.35)

and the terms in Wn−k vanish if k > n. However the torsion component (2.22) implies that

the chiral vectors Eαi
M∂M do not close among themselves, and there is no chiral measure

in eight dimensions (as in type IIB supergravity [48]). Therefore one cannot directly rely

on the chiral superspace integral to define the non-linear invariant, but one can still extract

information from it as we are going to discuss.

Supposing for simplicity that the invariant is SL(3,R) symmetric, such that it only

depends on the scalar fields φµ through the covariant derivative Pa
ijkl and the definition
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of the field strengths, each component L(m,n,p) decomposes into several sub-components of

various U(1) weight multiplying Ū to the appropriate power

L(m,n,p) =
∑
q

Ū−2qL(q)

(m,n,p) . (2.36)

If one considers an invariant that reduces to (2.34) in the linearised approximation,

L(8,0,0)[T̄
n]
∣∣
k-point

= 0 | k < 4 + n , L(8,0,0)[T̄
n]
∣∣
(4+n)-point

∝ D̄16W̄ 4+n . (2.37)

one will have by construction

L(q)

(m,n,p)[T̄
n]
∣∣
n-point

∝ T̄n−qL(q)

(m,n,p)[T̄
q]
∣∣
q-point

. (2.38)

The covariance of the superspace constraints with respect to SL(2,R), implies that the

derivatives of a function must necessarily be Kähler covariant derivatives

D̄nF(T̄ , T )=

n−1∏
k=0

(
∂

∂T̄
−2k

T

1−T T̄

)
F(T̄ , T )=

(
∂

∂T̄
−2(n−1)

T

1−T T̄

)
· · ·
(
∂

∂T̄

)
F(T̄ , T ) .

(2.39)

Expanding in the number of fields, one can consider the term in DmD̄nF(T̄ , T ), as counting

for −m−n fields, such that the linearised invariant corresponds to the 4-point approxima-

tion. With this convention, one gets that the superform should take the form

L[F ] =
∑
m,n≥0

DmD̄nF(T̄ , T )L(m,n) , (2.40)

where the L(m,n) are SL(2,R) invariant. In the four-point approximation, one would there-

fore get

L[F ]
∣∣
4-point

=

12∑
n=0

D̄nF(T̄ , T )L(0,n)
∣∣
(4+n)-point

, (2.41)

where the L(0,n)
∣∣
(4+n)-point

are the SL(2,R) invariant components of the linearised invariant.

Let us consider this invariant more explicitly, without yet assuming the form (2.40).

The component L(8,0,0) is a Lorentz scalar that can be written as

Labcdefgh = εabcdefgh
∑
n,a

Ū−2nF a
n(T, T̄ ) Ia4n (2.42)

where Ia4n are SL(2) × SL(3) invariant monomials in the covariant superfields of U(1)

weight 4n and dimension 8, and F a
n(T, T̄ ) are functions (or more precisely (0, n)-tensors on

SU(1, 1)/U(1)) of the scalar T, T̄ that multiply them in the invariant. The independent

such monomials are labeled by the index a. In this section we shall consider the monomials

of maximal U(1) weight in order to simplify the computation. To check the possible terms,

it is convenient to consider the ratio of the U(1) weight by the dimension. The largest ratio

is for χ̄iα, that has u = 3 and dimension 1/2, and therefore the maximal U(1) weight term

is the unique χ̄16 monomial as in (2.34). We define its normalisation such that

I148 = χ̄16 ≡ χ̄1
1χ̄

1
2χ̄

1
3χ̄

1
4χ̄

1
5χ̄

1
6χ̄

1
7χ̄

1
8χ̄

2
1χ̄

2
2χ̄

2
3χ̄

2
4χ̄

2
5χ̄

2
6χ̄

2
7χ̄

2
8 , (2.43)
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The next field is the dimension 1 field P̄a that has u = 4, however, note that a term of

the form P̄aDFa
n can always be eliminated by adding a trivial cocycle to the superform

without modifying the invariant, and one can therefore disregard such terms. The next

important fields are therefore the dimension 1 field strength F̄ ijab, Ḡ
−
abcd of U(1) weight

2 and the dimension 1/2 field λijkα of U(1) weight 1. There is a unique monomial in

χ̄15 and three inequivalent monomials in χ̄14, two isovectors in the irreducible SO(1, 7)

representations
[

2
0 0

0

]
and

[
0

0 0
0

]
and one SU(2) singlet in the

[
0

0 1
0

]
. It is convenient to

define their normalisation from the Grassmann derivative of (2.43) as a function of ordinary

Grassmann variables (rather than fields)(
χ̄15
)j
α̇
≡ −εjk ∂

∂χ̄α̇k
(
χ̄16
)

(
χ̄14
)ij
ab
≡ εikεjl (γab)α̇β̇

∂

∂χ̄kα̇

∂

∂χ̄l
β̇

(
χ̄16
)

(
χ̄14
)
abcd
≡ (γabcd)α̇β̇

∂

∂χ̄jα̇

∂

∂χ̄β̇j

(
χ̄16
)

(
χ̄14
)
≡ ∂

∂χ̄jα̇

∂

∂χ̄α̇j

(
χ̄16
)

With these definitions, we write a general ansatz for the Ia44, as

I144 ≡ Ḡ−abcd
(
χ̄14
)abcd

,

I244 ≡ F̄
ij
ab

(
χ̄14
)ab
ij
,

I344 ≡ (γab)
αβλiklα λjβkl

(
χ̄14
)ab
ij

= (λλ)ijab
(
χ̄14
)ab
ij
,

I444 ≡ λijkα λαijk
(
χ̄14
)

= (λλ)
(
χ̄14
)
.

(2.44)

Note that we could also consider a term in (χ̄13)ijkaα λαijkP̄
a, but one can always remove such

a term by adding to the superform L a d-exact form dΨ with Ψ(7,0,0) equal to

Ψabcdefg = εabcdefg
hŪ−20G10(T, T̄ )(χ̄13)ijkhαλ

α
ijk , (2.45)

while affecting only therms in Ū−20. Therefore we will not consider such a term that would

not lead to any constraints by construction, since G10(T, T̄ ) is clearly arbitrary in Ψ(7,0,0).

One could also guess the appearance of a term in λ̄ijk
(
χ̄15
)α
k
, but there is no SU(2) singlet

such a monomial. Our ansatz for L(8,0,0) will therefore be

Labcdefgh = εabcdefgh

( 11∑
n=0,a

Ū−2nF a
n(T, T̄ )Ia4n

+ Ū−24F 1
12(T, T̄ )(χ̄16) + Ū−22F 1

11(T, T̄ )Ḡ−abcd
(
χ̄14
)abcd

+ Ū−22F 2
11(T, T̄ )F̄ ijab

(
χ̄14
)ab
ij

+ Ū−22F 3
11(T, T̄ ) (λλ)ijab

(
χ̄14
)ab
ij

+ Ū−22F 4
11(T, T̄ ) (λλ)

(
χ̄14
))

(2.46)

Writing down (2.33), one sees, however, that the equation dL = 0 also includes mixing

of L(8,0,0) with L(7,1,0), L(7,0,1), L(6,2,0), L(6,1,1), L(6,0,2), so we must also consider an ansatz

for these components. In the formalism in components (as opposed to superspace), this

amounts to distinguish the terms that are written in terms of supercovariant field strengths,

from the ones that carry naked gravitnino fields. Let us consider first L(7,1,0), which is a

spinor valued 7-form in the fundamental of SU(2) with U(1) weight u = 1. It can include

two irreducible representations of Spin(1, 7), the
[

0
1 0

1

]
and the

[
1

0 0
0

]
. The maximal U(1)

weight component one can get is u = 45, with the term
(
χ̄15
)i
α̇
. We shall only check terms
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up to order Ū−22 in dL = 0, and therefore this is the only term that will be relevant in our

computation, so we consider the ansatz

Labcdefgiα = εabcdefg
h

(
(γh) β̇

α Ū−22F 5
11(T, T̄ )

(
χ̄15
)i
β̇

+
10∑

n=0,a

Ū−2nF a
n(T, T̄ ) Ia4n+1

i
hα

)
(2.47)

with again other functions F a
n depending on T and T̄ . L(7,0,1) has U(1) weight −1, and

decomposes into the irreducible representations
[

1
1 0

0

]
and the

[
0

0 0
1

]
of Spin(1, 7), therefore

it cannot include terms in χ̄15 and the maximal U(1) weight terms one can have are in

Ū−22χ̄14λ and Ū−22χ̄13P̄ . Moreover most of the latter can be reabsorbed in a trivial cocycle

and lower U(1) weight terms such that one obtains the ansatz

Labcdefgα̇i = ε h
abcdefg

(
(γr)α̇βŪ

−22F 6
11(T, T̄ )(χ̄14)klhrλ

β
ikl+(γh

rs)α̇βŪ
−22F 7

11(T, T̄ ) (χ̄14)klrsλ
β
ikl

+Ū−22F 8
11(T, T̄ ) (χ̄13)α̇iP̄h +

10∑
n=0,a

Ū−2nF a
n(T, T̄ ) Ia4n−1hα̇i

)
(2.48)

The same idea holds for L(6,2,0), L(6,1,1) and L(6,0,2) of dimension 7, and of U(1) weight 2, 0

and −2, respectively. One checks that L(6,2,0) and L(6,1,1) carry at most terms in Ū−20,

whereas L(6,0,2) carries terms in Ū−22χ̄14, i.e.

Labcdefα̇iβ̇j = εabcdefgh

(
Cα̇β̇Ū

−22F 9
11(T, T̄ )(χ̄14)ghij + (γghrs)α̇β̇Ū

−22F 10
11(T, T̄ )(χ̄14)rsij

+ εij(γ
gh)α̇β̇Ū

−22F 11
11(T, T̄ )(χ̄14) + εij(γrs)α̇β̇Ū

−22F 12
11(T, T̄ )(χ̄14)ghrs

+

10∑
n=0,a

Ū−2nF a
n(T, T̄ )Ia4n−2

gh

α̇β̇ij

)
(2.49)

Considering the terms of maximal U(1) weight, (dL)(8,0,1) = 0 simplifies to

D(0,0,1)L(8,0,0) +D(1,0,0)L(7,0,1) = O(Ū−22) . (2.50)

The terms in Ū−24 in D(1,0,0)L(7,0,1) are computed using

Da

(
Ū−2nF a

n

)
= Ū−2(n+1)

(
D̄F a

n

)
P̄a + Ū−2(n−1)

(
1− T T̄

)2
(DF a

n)Pa , (2.51)

as

8D[aLbcdefgh]α̇i +O(Ū−22) (2.52)

= −εabcdefghŪ−24P̄ r
(

(γs)α̇βD̄F 6
11 (χ̄14)klrsλ

β
ikl+(γr

st)α̇βD̄F 7
11 (χ̄14)klstλ

β
ikl+D̄F

8
11 (χ̄13)α̇iP̄r

)
whereas D(0,0,1)L(8,0,0) does not depend on P̄a at this order, and we conclude that they must

cancel by themselves. However they do not, and the functions F a
11 must be holomorphic

forms for a = 6 , 7 , 8 . Going further in the analysis one would in fact conclude that they

vanish.
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Therefore we can consider the equation D(0,0,1)L(8,0,0) = 0 at this order in Ū . The order

Ū−26 term vanishes trivially

Dα̇iLabcdefgh = 2εabcdefghŪ
−26D̄F1

12 χ̄α̇i(χ̄
16) +O(Ū−24) = O(Ū−24) (2.53)

whereas the order Ū−24 terms give the equation

F 1
12D̄α̇i(χ̄

16) + 2
(
D̄F 1

11

)
Ḡ−abcdχ̄α̇i

(
χ̄14
)abcd

+ 2
(
D̄F 2

11

)
F̄ klab χ̄α̇i

(
χ̄14
)ab
kl

+ 2
(
D̄F 3

11

)
(λλ)klab χ̄α̇i

(
χ̄14
)ab
kl

+ 2
(
D̄F 4

11

)
(λλ) χ̄α̇i

(
χ̄14
)

= 0 . (2.54)

Solving this equation requires to consider the explicit derivative of the field χ̄iα computed

in appendix B

D̄α̇iχ̄
j

β̇
= −1

8
(γab)α̇β̇

(
F̄ j
ab i −

1

4

(
λiklγabλ

jkl
))

+
1

192
(γabcd)α̇β̇δ

j
i Ḡ
−
abcd −

1

4
λ̄α̇ki

jχ̄k
β̇

− Cα̇β̇

(
3

32
δji (λλ) +

1

2

(
χ̄kλ̄ki

j
))

. (2.55)

Using Fierz identities related to the uniqueness of (χ̄15)iα̇ and the property that the terms

in (χ̄16)λ̄ijkα̇ cancel by themselves because D(0,0,1)L(8,0,0) is in the fundamental of SU(2), one

computes that (2.54) is satisfied if and only if

D̄F 1
11 =

1

768
F 1

12 , D̄F 2
11 =

1

32
F 1

12 , D̄F 3
11 = − 1

128
F 1

12 , D̄F 4
11 = − 3

128
F 1

12 .

(2.56)

Therefore F a
11 are determined up to holomorphic forms

ca(T, T̄ ) = (1− T T̄ )−22c̃a(T ) , (2.57)

in terms of a single function F11 as

F 1
11 =

1

768
F11 , F 2

11 =
1

32
(F11+c2) , F 3

11 =− 1

128
(F11+c3) , F 4

11 =− 3

128
(F11+c4) ,

(2.58)

where we set c1 = 0, such that

F 1
12 = D̄F11 . (2.59)

Similarly, restricting ourselves to the terms of maximal U(1) weight, (dL)(8,1,0) = 0

simplifies to

D(0,1,0)L(8,0,0) +
(
D(1,0,0) + T(1,1,0)

(0,1,0)
)
L(7,1,0) = O(Ū−20) , (2.60)

where we used moreover that the terms of order Ū−22 of L(7,0,1) in (2.48) vanish. We start

with the terms of order Ū−24 that further reduce to

Di
αLabcdefgh + 8D[aL i

bcdefgh]α +O(Ū−22)

= εabcdefghŪ
−24(D̄F11)Di

α(χ̄16) + 8ε r
[bcdefgh (γr)

β̇
α Da]

(
Ū−22F 5

11

) (
χ15
)i
β̇

+O(Ū−22)

= εabcdefghŪ
−24

(
D̄F11D

i
α(χ̄16)− D̄F 5

11 (γr)α
β̇P̄r

(
χ15
)i
β̇

)
+O(Ū−22)

= O(Ū−22) . (2.61)
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The covariant derivative Dχ̄ is determined from (B.9) as

Di
αχ̄

j

β̇
=

1

2
(γa)αβ̇

(
−iεijP̄a +

(
χ̄kγaλ

ijk
))

+
3

4
λijkα χ̄β̇k , (2.62)

so once again the terms in (χ̄16)λijkα cancel by themselves and we get the constraint

D̄F 5
11 = − i

2
D̄F11 ⇒ F 5

11 = − i
2

(F11 + c5 ) . (2.63)

Now we must consider the order Ū−22 components of (2.60), however, the computation

involves many terms and we shall simplify the problem by neglecting all the terms that

depend explicitly on λijkα and P̄a. This permits in particular to neglect terms of order

Ū−20 in L(7,1,0) that we have not computed. Using this simplification, one obtains

Di
αLabcdefgh + 8D[aL i

bcdefgh]α + 8T[a|
i
αj
βL j

bcdefgh]β +O(Ū−20)

= εabcdefghŪ
−22

(
2(1− T T̄ )2DD̄F11 χ

i
α(χ̄16) +

1

768
F11(Di

αḠ
−
abcd)

(
χ̄14
)abcd

+
1

32
(F11+c2) (Di

αF̄
kl
ab)
(
χ̄14
)ab
kl

+
i

2
(F11+c5 )

(
(γr) β̇

α Dr

(
χ̄15
)i
β̇

+Tr
i
α
β
j (γr) β̇

β

(
χ̄15
)j
β̇

))
= O(Ū−20) . (2.64)

To carry out this computation we need the covariant derivative Di
α of both Ḡ−abcd and

F̄ ijab given in appendix C in (C.18) and (C.17), as well as the dimension 1 torsion Ta
j
β
γ
k

given in (B.11), for which we neglect all terms in λijkα and P̄a. Moreover, the equation

can only be satisfied modulo the classical equations of motion, and we must distinguish

in Daχ̄
i
α̇, its gamma trace that is equal to a polynomial in the other fields through the

Dirac equation (C.15). We will write (Daχ̄
i
α̇)′ its component projected to the irreducible

representation
[

1
1 0

0

]
of Spin(1, 7) (i.e. such that (γa)αβ̇(Daχ̄

i
β̇
)′ = 0). Combining all these

terms one obtains finally

Di
αLabcdefgh + 8D[aL i

bcdefgh]α + 8T[a|
i
αj
βL j

bcdefgh]β +O(Ū−20)

= εabcdefghŪ
−22

((
(1− T T̄ )2DD̄F11 + 132F11 +

315

4
c2 − 8c5

)
2χiα(χ̄16)

+

(
13i

192
c2 −

7i

288
c5

)
(γabc)αβ̇H

ij
abc

(
χ̄15
)β̇
j

+
i

192
c5 (γabc) β̇

α (Ddχ̄i
β̇
)′(χ̄14)abcd +

i

8
(c2 − c5 )(γa)αβ̇(Dbχ̄β̇j )′

(
χ̄14
)ij
ab

)
= O(Ū−20) . (2.65)

We conclude therefore that the harmonic forms c2 and c5 vanish as expected, and the

form F11 satisfies the differential equation

(1− T T̄ )2DD̄F11(T, T̄ ) = −132F11(T, T̄ ) . (2.66)

It is rather clear that if we had computed the terms in λijkα one would have obtained

similarly that c3 = c4 = 0, and we conclude therefore that
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Labcdefgh = εabcdefgh

(
Ū−24D̄F11(T, T̄ )(χ̄16)

+
1

128
Ū−22F11(T, T̄ )

(
1

6
Ḡ−abcd

(
χ̄14
)abcd

+ 4F̄ ijab
(
χ̄14
)ab
ij
− (λλ)ijab

(
χ̄14
)ab
ij
− 3 (λλ)

(
χ̄14
))

+
11∑

n=0,a

Ū−2nF a
n(T, T̄ )Ia4n

)
. (2.67)

It is important to note that this superform indeed reproduces the structure explained

in the beginning of this section, i.e. each covariant combination of fields multiplying

Ū−2nD̄nF is approximated by the linearised invariant as

D̄16W̄ 16
∣∣∣
W̄=0

∝ (χ̄16) , D̄15W̄ 15
∣∣∣
W̄=0

∝ 1

24
Ḡ−abcd

(
χ̄14
)abcd

+ F̄ ijab
(
χ̄14
)ab
ij
. (2.68)

The relation to the linearised invariant implies indeed that each covariant combination of

fields multiplying Ū−2nD̄nF must be of the form D̄n+4W̄n+4
∣∣
W̄=0

such that (similarly as

in [13])

F11(T, T̄ ) = D̄11F(T, T̄ ) , (2.69)

with F(T, T̄ ) the function multiplying the SL(2,R) invariant of type R4. Using (2.66), it

follows that F(T, T̄ ) satisfies itself to the equation

(1− T T̄ )2DD̄12F(T, T̄ ) = −132 D̄11F(T, T̄ ) . (2.70)

Using the commutation relations between D and D̄, one computes in general that

(1− T T̄ )2DD̄n+1F = −n(n− 1)D̄nF + (1− T T̄ )2D̄n+1DF
= −n(n− 1)D̄nF + D̄n ∆F , (2.71)

and therefore in particular that

(1− T T̄ )2D̄12DF(T, T̄ ) = 0 . (2.72)

At each order in Ū−2nD̄nF(T, T̄ ) one will get equations generalising the linearised

equations of the form

(1− T T̄ )2DD̄n+1F(T, T̄ ) = −n(n− 1) D̄nF(T, T̄ ) , (2.73)

where the coefficient is determined to be the unique one consistent with (2.70), therefore

we conclude that supersymmetry must imply eventually that the function F(T̄ ) is

anti-holomorphic.

There are two comments we would like to make on this computation, to be compared

with the computations carried out in components in [13, 22]. Here we implicitly used the

Dirac equation satisfied by χ̄iα̇ in several places, by removing the gamma trace appearing

in Daχ
i
α̇ when this term appeared explicitly, and when it appeared in the derivative of

the field strengths F̄ ijab and Ḡabcd. Indeed, in components one would consider instead the

supersymmetry variation of their potentials. One concludes that considering
∫
ι∗L as
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a correction to the effective action, the accordingly corrected covariant derivative Di
αχ

j
β

would be modified by terms of the form

Di
αχ

j
β = · · ·+ κ2 Ū−22D̄11F(T̄ )

(
a1(γ

ab)αβ(χ̄14)ijab + a2Cαβε
ij(χ̄14)

)
+ . . . , (2.74)

although we did not compute the coefficients explicitly. In components the correction to

the Lagrange density takes the form

ι∗L = e

(
Ū−24D̄12F(T̄ )(χ̄16) +

i

2
Ū−22D̄11F(T̄ )ψa

α
i (γa)αβ̇(χ̄15)β̇i

+
1

128
Ū−22D̄11F(T̄ )

(
1

6
Ḡ−abcd

(
χ̄14
)abcd

+ 4F̄ ijab
(
χ̄14
)ab
ij
− (λλ)ijab

(
χ̄14
)ab
ij
− 3 (λλ)

(
χ̄14
))

+ . . .

)
. (2.75)

where F̄ ij and Ḡ are supercovariant field strengths, that include respectively terms in

−2iea ∧ (ψ(iγaχ̄
j)) and iea ∧ eb ∧ ec ∧ (ψiγabcχ̄

i). There is therefore three different contri-

butions to the term in Ū−22D̄11F(T̄ )(ψaiγ
a(χ̄15)i), and they must all be there with their

respective coefficients.

2.3 The parity symmetric R4 type invariant

In the linearised approximation, the scalar fields φµ parametrizing SL(3,R)/SO(3) are

conveniently represented by an isospin 2 field Lijkl, such that the covariant derivative

Dp
αV ijI = −εp(iλjkl)α VklI , (2.76)

simplifies to

Dp
αL

ijkl = −εp(iλjkl)α , (2.77)

and similarly for the complex conjugate. As explained in [30], one can define an invariant

in the linearised approximation from an arbitrary holomorphic functions of the G-analytic

superfield

L1111 = u1
iu

1
ju

1
ku

1
lL
ijkl , (2.78)

as the harmonic integral of

(D2)8(D̄1)8(L1111)4+n∼(L1111)n
((
t8t8+

1

482
εε

)
R4+. . .

)
+. . .+cn(L1111)n−12(λ111)8(λ̄111)8 .

(2.79)

In this section we will repeat the computations of the last section to determine the de-

pendence of this invariant in the scalar fields φµ at the non-linear level. One can already

infer from the linearised analysis that the function of φµ must satisfy to the Laplace equa-

tion [49]. However, because the harmonic measure does not extend to the non-linear theory

this construction had no reason to give the correct answer. To start with we need to discuss

some properties of the differential operators on the symmetric space SL(3,R)/SO(3) that

are perhaps less standard than for the special Kähler space SU(1, 1)/U(1).
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Differential operators on SL(3,R)/SO(3). The superfield momentum P ijkl defined

in (2.8), (2.9) determines the vielbein Pµ
ijkl on SL(3,R)/SO(3) in function of φµ as

P ijkl = dφµPµ
ijkl . (2.80)

Considering φµ as coordinates rather than fields in this discussion, the Maurer-Cartan

equation

dPijkl + 4ω(i
p ∧ Pjkl)p = 0 ,

dωi
j + ωi

k ∧ ωkj =
1

2
Pikpq ∧ P jkpq , (2.81)

indeed gives the torsion free condition, and the definition of the constant Riemann tensor

on SL(3,R)/SO(3) in tangent frame. One defines accordingly the metric

Gµν(φ) = 2Pµ ijklPν
ijkl , (2.82)

and its inverse Gµν such that the inverse vielbein read

Eijkl
µ = Pν ijklG

µν . (2.83)

In these conventions one has

Pµ
pqrsEijkl

µ =
1

2
δpqrsijkl , Pµ

ijklEijkl
ν =

1

2
δν

µ , (2.84)

where we use the symmetrised Kronecker symbol

δi1i2...inj1j2...jn
≡ δ(i1

(j1
δi2j2 . . . δ

in)
jn) =

1

n!

(
δi1j1δ

i2
j2
. . . δinjn+ 	

)
. (2.85)

One defines the covariant derivative of a function and its subsequent covariant derivatives as

DijklE = Eijkl
µ∂µE

DijklDpqrsE = Eijkl
µ
(
∂µ (Epqrs

ν∂νE) + 4ωµ (p
tEqrs)t

ν∂νE
)

(2.86)

and etcetera. For a generic symmetric tensor, the covariant derivative is defined

accordingly as

DijklEi1i2...in = Eijkl
µ
(
∂µEi1i2...in + nωµ (i1

pEi2...in)p

)
, (2.87)

and one computes using (2.81) that

[Dijkl,Dpqrs]Ei1i2...in =
n

4
δpqrsijk)(i1

Ei2...in)(l −
n

8
δpqrsijkl Ei1i2...in . (2.88)

In particular

[Dijkl,Dpqrs]DtuvwE = δpqrsijk)(tDuvw)(lE −
1

2
δpqrsijkl DtuvwE , (2.89)

where the notation means that ijkl and tuvw are symmetrised in the first term of the

right-hand-side, and similarly in (2.88).
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The covariant derivative DijklDpqrsE of a function E decomposes into irreducible rep-

resentations of SU(2), as a singlet, an isospin 2 component and an isospin 4 component.

We want to consider as a differential equation the property that the isospin 2 component

is related to the first order derivative, i.e.

D(ij
pqDkl)pq Es = −4s− 3

12
DijklEs . (2.90)

This equation can be rewritten

DijpqDklpq Es = −4s− 3

12
DijklEs +

1

12
(εikεjl + εilεjk)Gs , (2.91)

for some function G to be determined. This equation implies that

∆ Es ≡ 2DijklDijkl Es = Gs . (2.92)

Because there is a unique scalar fourth order differential operator, one has the constraint

2DijpqDpqrsDrsklDklijE =
1

4
∆

(
∆ +

1

4

)
E , (2.93)

for any function E , and one can therefore deduce from (2.91) that

∆Gs =
2s(2s− 3)

3
Gs . (2.94)

For s 6= 0 or 3
2 , one obtains immediately that the function Es satisfies to

DijpqDklpqEs = −4s− 3

12
DijklEs +

s(2s− 3)

18
(εikεjl + εilεjk)Es , (2.95)

and in particular

∆Es =
2s(2s− 3)

3
Es . (2.96)

The reader might recognise at this point that this Poisson equation is satisfied by the

Eisenstein series

E[s0] ≡
∑
nI∈Z3

∗

(
VijInIV ij JnJ

)−s
, (2.97)

in the domain of absolute convergence of the series (i.e. for s > 3
2). One straightforwardly

computes that the function (VijInIV ij JnJ)−s indeed satisfies the quadratic equation (2.95)

for any vector nI ∈ R3
∗, and one concludes that for s > 3

2

DijpqDklpqE[s0] = −4s− 3

12
DijklE[s0] +

s(2s− 3)

18
(εikεjl + εilεjk)E[s0] . (2.98)

We are going to prove in this section that supersymmetry requires this equation to be

satisfied for the function E multiplying the R4 type term in the invariant for the value

s = 3
2 , consistently with the string theory computation [4]. However, the series actually

diverges for this value, and one must consider the regularised Eisenstein series [11]

Ê[ 320] = lim
ε→0

(
E[ 32+ε 0] −

2π

ε
+ 4π(1− γ)

)
. (2.99)
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By continuity, and because the constant term drops out when acted on by the covariant

derivative, one obtains that the regularised series satisfies the inhomogeneous equation

DijpqDklpqÊ[ 320] = −1

4
DijklÊ[ 320] +

π

3
(εikεjl + εilεjk) , (2.100)

consistently with [11]. Note that the constant term is indeed consistent with (2.94), because

for s = 3
2 the inhomogeneous term can in principe be any function satisfying to the Laplace

equation ∆G 3
2

= 0. However the constraint from supersymmetry is by construction a

homogeneous linear equation, and is in fact

DijpqDklpqE 3
2

= −1

4
DijklE 3

2
. (2.101)

The inhomogeneous term in (2.100) is due to the logarithm log(VijInIV ij JnJ) that satisfies

DijpqDklpq log
(
VrsInIVrs JnJ

)
= −1

4
Dijkl log

(
VrsInIVrs JnJ

)
−1

6
(εikεjl+εilεjk) , (2.102)

and which appears explicitly in the expansion of Ê[ 320] at large VijInIV ij JnJ (for any chosen

vector nI),

Ê[ 320] ∼ −2π log
(
VijInIV ij JnJ

)
+ . . . (2.103)

We shall explain that this logarithm term is associated to an anomaly, and does not appear

in the supersymmetric Wilsonian effective action.

To prove that (2.101) is indeed required by supersymmetry, we shall consider the terms

of maximal isospin. Because these terms will carry a large number of SU(2) indices, we

will use the short-hand notation

Dn[4n]E ≡ D(i1i2i3i4Di5i6i7i8 · · · Di4n−3i4n−2i4n−1i4n)E , (2.104)

and repeated representations will be understood to correspond to contracted indices, as for

example in

D12
[48]E(λ8)[24](λ̄8)[24]≡D(i1i2i3i4 · · · Di45i46i47i48)Eλ

(i1i2i3
1 · · ·λi22i23i24)

8 λ̄
(i25i26i27
1 · · · λ̄i46i47i48)

8 .

(2.105)

Using the commutation relations (2.88), one computes that in general

DijklDn[4n]E = Dn+1
ijkl[4n]E +

12n

4n+ 3
ε(i[1]εj[1]Dn−1

[4n−4]Dkl)
pqD[2]pqE

− 16n(n− 1)

(2n+ 1)(4n+ 3)
ε(i[1]εj[1]εk[1]Dn−2

[4n−8]Dl)[2]rD[1]
rpqD[2]pqE

− n(8n+ 5)(4n− 1)

(2n+ 1)(4n+ 3)(4n+ 1)
εi[1]εj[1]εk[1]εl[1]Dn−1

[4n−4]DpqrsD
pqrsE

− 8n(n− 1)(n− 2)

(2n+ 1)(4n+ 3)(4n+ 1)
εi[1]εj[1]εk[1]εl[1]Dn−3

[4n−12]D[2]
pqD[2]pqD[2]

rsD[2]rsE

−n(n− 1)(4n2 + 3n+ 2)

(4n+ 1)(4n+ 2)
εi[1]εj[1]εk[1]εl[1]Dn−1

[4n−4]E , (2.106)
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where Dn−k[4n−4k] and Dn+1
ijkl[4n] are respectively in the isospin 2(n− k) and 2n+ 2 irreducible

representations. Using this equation, one obtains that for a function Es satisfying to equa-

tion (2.95), one has moreover

DijklDn[4n]Es = Dn+1
ijkl[4n]Es −

n(4s− 3)

4n+ 3
ε(i[1]εj[1]Dnkl)[4n−2]Es

−n(2n− 1)(2n+ 1− 2s)(n− 1 + s)

(4n− 1)(4n+ 1)
εi[1]εj[1]εk[1]εl[1]Dn−1

[4n−4]Es , (2.107)

where Dn+1, Dn and Dn−1 are in the irreducible representations of maximal isospin 2n +

2, 2n and 2n− 2, respectively.

Constraining the superform. Similarly as for the chiral superform L[F ] discussed

in the last section, the linearised analysis suggests that the super-form L[E ] admits the

following expansion

L[E ] =
12∑
n=0

Dn[4n]E L
[4n] , (2.108)

where L[4n] are SL(2,R)× SL(3,R) invariant isospin 2n tensors superforms, that coincide

with the linearised invariant at 4 + n order in the fields

L[4n]
(8,0,0) ∝ (D8)[8](D̄

8)[8]L
4+n [16+4n]

∣∣∣
L=0

+O((5 + n)-points) . (2.109)

Using this general structure, one is led to a general ansatz for L(8,0,0)

− 1

8!
εabcdefghLabcdefgh[E ]

= D12
[48]E λ

8[24]λ̄8[24] + a2D11
[44]E F̄

[2]
ab λ

6ab[18]λ̄8[24] + a3D11
[44]E H

[2]
abc(λ

7[21]γabcλ̄7[21])

+ a2D11
[44]E F

[2]
ab λ̄

6ab[18]λ8[24] + a4D11
[44]E εijP

[3i]
a (λ7[21]γaλ̄7[20j])

∣∣
[42]

+ b1D11
[44]E εijεklλ

8[ik22]λ̄8[jl22] + b2D11
[44]E λ

8[22]
ab λ̄8ab[22]

+ b3D11
[44]E λ

6ab[18](λ̄9[25]γabχ̄
[1]) + b4D11

[44]E (λ7[21]γaλ̄7[21])(χ̄[1]γaχ
[1])

+ b5D11
[44]E(λ7[21]γabcλ̄7[21])(χ̄[1]γabcχ

[1])+b6D11
[44]E λ̄

6ab[18](λ9[25]γabχ
[1])+D10

[40]E · · · (2.110)

and similarly for L(7,1,0)

1

7!
εabcdefghLbcdefghiα[E ] = c1D11

[44]Eλ
8[i23]γa

αβ̇
λ̄7β̇[21] + εijD11

[j43]E
(
c2λ

8[24] λ̄7a[19]
α (2.111)

+c3λ
8abcd[22]γbcdαβ̇λ̄

7β̇[21] + c4λ
8ab[22]γbαβ̇λ̄

7β̇[21] + c5λ
8[22]
bc γabc

αβ̇
λ̄7β̇[21]

)
+D10

[40]E · · ·

and its complex conjugate. Note that this ansatz is completely general provided one re-

places each derivative term Dn[4n]E by a generic isospin 2n tensor Ea[4n], and the computation

we shall carry out does not require such an assumption. It particular, there is no candidate

monomial in the fields of odd isospin at this order, and we did not avoid such terms in the

ansatz. It will turn out to be enough to look at terms of isospin 24 in dL[E ] = 0 to determine

the properties of the function E , and because L(7,1,0) only contributes at this order through a
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space-time derivative, one can neglect the contribution from L(7,1,0) if one disregards terms

including the momentum P ijkla . At this order dL[E ] = 0 simplifies drastically to

Di
α

(
− 1

8!
εabcdefghLabcdefgh[E ]

)
=O(D11E) , D̄α̇i

(
− 1

8!
εabcdefghLabcdefgh[E ]

)
=O(D11E) .

(2.112)

Moreover, the superform being real, these two equations are equivalent. Restricting

ourselves to the components of Di
αL(8,0,0) of isospin 24, the components of isospin 22 of

L(8,0,0) only contribute through the derivative of their tensor Ea[44], and therefore only mix

with the isospin component E[48]λ
8[24]λ̄8[24] through the covariant derivative acting on the

fermions, but for the terms that are themselves in λ8λ̄8. It follows that most of these

contributions simply constrain these tensors to satisfy to

DijklEa[44] ∝ Eijkl[44] + . . . (2.113)

in agreement with the ansatz (2.110). Computing these terms one would determine the

coefficients ak and bk for k ≥ 3 in (2.110), but one would not get any constraint on the

function E . The only terms constraining the function itself are the ones in λ9λ̄8, and we

will therefore focus on the restricted ansatz

− 1

8!
εabcdefghLabcdefgh[E ]=D12

[48]Eλ
8[24]λ̄8[24]+E1[44]εijεklλ

8[ik22]λ̄8[jl22]+E2[44]λ
8[22]
ab λ̄8ab[22]+· · ·

(2.114)

where we do not assume that the two other SO(3) tensors are also derivatives of the same

function. At this point we need to precise the normalisation of the fermionic monomials(
λ8
)(i1i2...i24) ≡ λ

(i1i2i3
1 λi4i5i62 . . . λ

i22i23i24)
8 ,

(
λ̄8
)(i1i2...i24) ≡

((
λ8
)(i1i2...i24)

)∗
,(

λ8
)(i1i2...i22)

ab
≡ λj(i1i2γ λγ i3i4j

(
λ6
)i5...i22)

ab
,

(
λ̄8
)(i1i2...i22)

ab
≡
((
λ8
)(i1i2...i22)

ab

)∗
,(

λ6
)(i1i2...i18)

ab
≡ 1

4
(γab)

αβ 1

6!
ε γ...ζ
αβ λ(i1i2i3

γ . . . λ
i16i17i18)
ζ . (2.115)

The first contribution comes from(
Di
αD12

[48]E
)
λ8[24]λ̄8[24] (2.116)

Using (2.106) one obtains

Dp
αD12

[48]E = −2εpiλjklα DijklD12
[48]E

= −2εpiλjklα

(
D13
ijkl[48] +

48

17
ε(i[1]εj[1]D11

[44]Dkl)
pqD[2]pq

−704

425
ε(i[1]εj[1]εk[1]D10

[40]Dl)[2]rD[1]
rpqD[2]pq + εi[1]εj[1]εk[1]εl[1](· · · )

)
E , (2.117)

and using the property that the maximal isospin monomial in λ9 is of isospin 25
2 , one gets

that the isospin 24 contribution in D13
[52]E cancels out such that(

Di
αD12

[48]E
)
λ8[24]λ̄8[24] = −96

17
εj[1]εk[1]D11

[44]Dlr
pqD[2]pqE εi(jλklr)α λ8[24]λ̄8[24] + . . . (2.118)
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where we neglect the terms of lower isospin. Using the covariant derivatives computed in

appendix B

Di
αλ̄

jkl

β̇
=(γa)αβ̇

(
−iP ijkla +

1

2
(λp(ijγaλ̄

kl)
p)−εi(j(χkγaχ̄l))

)
+
i

12
(γabc)αβ̇ε

i(jH
kl)
abc−

3

4
λpi(jα λ̄

kl)

β̇ p

Di
αλ

jkl
β =−1

4
(γab)αβε

i(j
(
F̄
kl)
ab + (χ̄pγabλ̄

kl)p)
)

+
1

4
λpi(jα λ

kl)
β p −

1

2
Cαβ(λp(ijλkl)p)

+(γa)αβ̇χ̄
α̇iλ̄β̇ jkl(γa)α̇β (2.119)

and concentrating on the terms in λ9λ̄8, one obtains after using Fierz identities

Di
α

(
D12

[48]E λ
8[24]λ̄8[24] + E1[44] εijεklλ

8[ik22]λ̄8[jl22] + E2[44] λ
8[22]
ab λ̄8ab[22]

)
= −12

17
εj[1]εk[1]D11

[44]

(
Dlr[2]E + 4DlrpqD[2]pqE

)
εi(jλklr)α λ8[24]λ̄8[24]

−2

(
672

47
D12

[jklr44]E +DjklrE1[44]

)
εi(jεmpεnqλ

klr)
α λ8[mn22]λ̄8[pq22]

−2

(
19

184
D12

[jklr44]E +DjklrE2[44]

)
εi(jλklr)α λ

8[22]
ab λ̄8ab[22] + . . . (2.120)

These three combinations being linearly independent, one concludes that

E1[44] = −672

47
D11

[44]E , E2[44] = − 19

184
D12

[44]E , (2.121)

assuming that there is no inhomogeneous term satisfying to

D(i1i2i3i4Gi5i6i7...i4n) = 0 . (2.122)

One can indeed convince oneself that there is no solution to this differential equation,

which defines 4n + 1 independent first order equations for only 4n − 3 variables, i.e. 4

more equations at each order, equivalently as

DijklG = 0 , (2.123)

which only solution is a constant. Because there is no higher rank symmetric tensor, there

is no solution for n > 1. The most important equation is the constraint

D11
(i1i2i3i4...i44

(
Di45i46i47i48)E + 4Di45i46klDi47i48)klE

)
= 0 . (2.124)

It follows from the structure of the linearised invariants that the terms of lower isospin

will be all related, such that they will satisfy to similar equations of the form

Dn(i1i2i3i4...i4n
(
Di4n+1i4n+2i4n+3i4n+4)E + 4Di4n+1i4n+2

klDi4n+3i4n+4)klE
)

= 0 . (2.125)

such that one gets eventually

D(ij
pqDkl)pqE = −1

4
DijklE , (2.126)
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as in (2.101). Let us prove now that (2.101) must indeed be strictly satisfied. Because of

equation (2.126), the complete superform admits an expansion in derivatives of E as

L[E ] = EL+DijklE Lijkl +D(ijklDpqrs)E Lijklpqrs + . . . (2.127)

Expanding dL[E ] = 0 in the same way, one gets

EdL+
1

5
∆E Pijkl ∧ Lijkl = 0 (2.128)

but because ∆E is necessarily a solution to the Laplace equation, i.e. ∆2E = 0, the two

terms must vanish independently. One deduces from the linearised analysis that Lijkl

carries terms of the form

Lijkl ∼ t8t8R3
(
λ(ijkρl) +H(ijHkl) + F̄ (ijF kl)

)
+ . . . (2.129)

and Pijkl ∧ Lijkl does not vanish, so we conclude that supersymmetry indeed requires

∆E = 0 , (2.130)

and therefore (2.101) is satisfied. Using this constraint, the tensor superforms L[4n] satisfy

to the differential equation

dωL[4n]− 6n

4n+3
P [2]

ij∧L[4n−2]ij+2P [4] ∧ L[4n−4]− 2n(n+1)(2n+3)(2n+1)

(4n+ 5)(4n+ 3)
Pijkl∧L[4n]ijkl=0

(2.131)

and the equation we have checked explicitly in this section is the λ9λ̄8 component of

dωL[48] − 24

17
P [2]

ij ∧ L[46]ij + 2P [4] ∧ L[44] = 0 . (2.132)

Note moreover that this equation must satisfy the consistency condition

d 2
ωL[4n] = −2nP [1]ijk ∧ Pijkl ∧ L[4n−1]l . (2.133)

One finds that the general solution to

dωL[4n] + 2P [4] ∧ L[4n−4] = anP
[2]
ij ∧ L[4n−2]ij + bnPijkl ∧ L[4n]ijkl (2.134)

satisfying to (2.133) is determined up to an integration constant s, as

dωL[4n] + 2P [4] ∧ L[4n−4]

=
2n(4s−3)

4n+ 3
P [2]

ij∧L[4n−2]ij+
(n+1)(2n+1)(2n+3−s)(2n+2s)

(4n+ 5)(4n+ 3)
Pijkl∧L[4n]ijkl . (2.135)

One recognises that the coefficients are the same as in (2.107), and therefore they are

the equations satisfied by a closed superform L[Es] associated to a function Es satisfying

to (2.95) in general. Equation (2.135) defines by construction a representation of sl3
through the definition of the coset generators on the infinite sum ⊕∞n=0(4n + 1), which

corresponds to the unitary representation of SL(3,R) on the set of functions satisfying

to (2.95), with appropriate boundary conditions.
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2.4 Anomalies

We have proved in this section that the function multiplying R4 in the supersymmetry

invariant is the sum of a harmonic function of the complex scalar T and a function of the

SL(3,R)/SO(3) scalars solution to the quadratic equation (2.101). However, the string

theory threshold function appearing in the four-graviton amplitude [4] does not solve these

equations strictly, and solve inhomogeneous equations (2.100) [11]. The contributions re-

sponsible for these inhomogeneous terms come from the non-analytic component of the

amplitudes, and are only captured by the supergravity 1-loop 1PI generating functional

Γ1-loop. Therefore these terms do not appear in the string theory Wilsonian effective action

S =
1

κ2
S(0) + S(3) + κ

4
3S(5) + κ2S(6) +O(κ

10
3 ) (2.136)

invariant with respect to local supersymmetry, but only in the 1PI effective action

Γ =
1

κ2
S(0) +

(
S(3) + Γ1-loop

)
+κ

4
3S(5) +κ2

(
S(6) +

[
S(3) · Γ1-loop] + Γ2-loop

)
+O(κ

10
3 ) (2.137)

satisfying to the BRST master equation.

The discussion of the inhomogeneous term in the Laplace equation on SL(2,R)/SO(2)

is very similar to the one of N = 4 supergravity in four dimensions [37]. The complex

superform L[F(T )] discussed in section 2.2 admits by construction the R4 type terms

L[F(T )] = F(T )

(
e t8t8R

4 − 1

482
εabcdefghR

ab ∧Rcd ∧Ref ∧Rgh

− i

24

(
Ra

b ∧Rbc ∧Rcd ∧Rda −
1

4
Rab ∧Rab ∧Rcd ∧Rcd

))
+ . . . . (2.138)

In this discussion it will be convenient to consider the upper complex half plan coordinate

τ = i
1− T
1 + T

, (2.139)

that transforms with respect to SL(2,R) as (with ad− bc = 1)

τ→ aτ + b

cτ + d
. (2.140)

For the specific choice F(T ) = τ, the imaginary part of the superform (2.138) coincides

with the dimensional reduction of the R4 type invariant in eleven dimensions on T 3, where

the imaginary part of τ defines the T 3 volume modulus and its real part the pull-back of

the 3-form potential on T 3. This exhibits by consistency with gauge invariance in eleven

dimensions that one must have

Re
[
L[i]

]
=

1

24

(
Ra

b ∧Rbc ∧Rcd ∧Rda −
1

4
Rab ∧Rab ∧Rcd ∧Rcd

)
, (2.141)

where Rab is the Riemann tensor superform. One can prove this property directly in eight

dimensions by studying the structure of the superform similarly as in [37] in N = 4 super-

gravity in four dimensions, although we will only report on this analysis in a forthcoming

paper.
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It follows from [4] that the complete string theory Wilsonian action includes non-

perturbative corrections in M-theory corresponding to Euclidean M2 branes wrapping T 3

such that the associated contribution to the Wilsonian effective action is

S(1) = − 3

(2π)4

∫
ι∗Re

[
L[log η(τ)]

]
. (2.142)

The logarithm of the Dedekind eta function admits the expansion

− i log η(τ) =
π

12
τ −

∞∑
n=1

∑
r|n

1

r

 e2πinτ , (2.143)

in which the first term appears in the dimensional reduction of the eleven-dimensional

R4 type invariant on T 3 whereas the contributions in e2πinτ are associated to M2 branes

wrapping altogether n times T 3. This function is not SL(2,Z) invariant, i.e.

log η

(
aτ + b

cτ + d

)
= log η(τ) +

1

2
log(cτ + d) + iπ

b̃

12
, (2.144)

where b̃ is an integer, and therefore the S(3) correction to the Wilsonian action is not duality

invariant. However, the supergravity theory admits a U(1) anomaly in eight dimensions

such that the supergravity 1-loop effective action is not SL(2,R) invariant, and neither does

it preserve SL(2,Z). Using the family index theorem [50] for the chiral fields χiα, λ
ijk
α , G+

abcd

and ρab
i
α, one computes the anomaly to the axial U(1) current conservation as in [51]

∂µJ
µ
9 = − (2× (−3) + 4× (1))

7p 2
1 − 4p2

5760
+ (−2)

−p 2
1 + 7p2

90
− (−2)

289 p 2
1 − 988

5760

=
1

8

(
p 2

1 − 4p2

)
=

1

8(2π)4

(
trR4 − 1

4
(trR2)2

)
. (2.145)

Strictly speaking, the fermions contribute to the anomaly for the gauge axial U(1), but

one can compensate for it [52] by introducing a correction to the effective action defined

in term of the holomorphic function

log (U(1 + T ))→ log (U(1 + T ))− 2iα+ log (c τ + d) , (2.146)

such that the supergravity 1-loop 1PI generating functional transforms with respect to

SL(2,R) as

Γ1-loop → Γ1-loop +
3

2(2π)4

∫
ι∗Re

[
L[log(cτ + d)]

]
. (2.147)

It follows that the sum of the 1PI supergravity effective action and the string theory

Wilsonian effective action Γ transforms with respect to SL(2,Z) as

Γ→ Γ− 2πb̃
1

12(4π)4

∫ (
trR4 − 1

4
(trR2)2

)
. (2.148)
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Therefore the complete effective action is indeed duality invariant in the eight-dimensional

Minkowski background. It is a non-trivial consistency check that the same Pontryagin

classes combination defining the U(1) anomaly (2.145) also supports the M5 brane gravi-

tational anomaly [53], and it follows that on a general Riemmanian spin manifold

1

12(4π)4

∫ (
trR4 − 1

4
(trR2)2

)
= −2Â+

σ

4
, (2.149)

where Â is the integral roof genus and σ is the signature. If one were to consider grav-

itational instanton corrections, SL(2,Z) invariance would require the effective action Γ

to be invariant modulo 2π, and therefore the corresponding geometry to admit a signa-

ture multiple of four. This potential Z4 obstruction is identical to the tadpole cancelation

requirement studied on Calabi-Yau 4-folds in [54].

Note that the real part of the anomalous variation is the variation of a local functional

because

log Im
[aτ + b

cτ + d

]
= log Im[τ]− 1

2
log (c τ + d)− 1

2
log (c τ̄ + d) , (2.150)

and the t8t8R
4 threshold depends on the duality invariant function [4]

Ê[1](τ) = −π log
(
Im(τ) |η(τ)|4

)
. (2.151)

The log of the dilaton is responsible for the inhomogeneous term in the Laplace equation

∆Ê[1](τ) = π . (2.152)

Similarly, the regularised SL(3,R) Eisenstein function Ê[ 320] includes a logarithm

term (2.103) that cannot be part of the Wilsonian effective action by supersymmetry.

To understand this, let us define the BRST-like nilpotent operator defining the sl3 action

δsl3 VijI = VijJCJ I , δsl3 CJ
I = −CJKCKI , (2.153)

where CJ
I is a constant anticommuting traceless matrix. The non-trivial consistent

anomaly for the sl3 Ward identities are in one to one correspondence with the su(2) anoma-

lies in the bosonic theory [38]. Therefore there is no anomaly for the rigid SL(3,R) in the

theory independently of supersymmetry. However, one must take care that a potential

naively trivial anomaly can be removed by a local counter-term without violating super-

symmetry Ward identities themselves. Consider for example the variation of the logarithm

function

δsl3 log
(
VijInIV ij JnJ

)
= CJ

I 2VijJnIV ij KnK
VklLnLVkl PnP

. (2.154)

By construction it satisfies equation (2.101), and therefore one can define the supersym-

metry invariant

AIJ ≡
∫
ι∗L
[

2VijJnIV ij KnK
VklLnLVkl PnP

]
, (2.155)

which satisfies by construction to the Wess-Zumino consistency condition

δsl3
(
CJ

IAIJ
)

= 0 . (2.156)
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However it cannot be eliminated by adding a supersymmetric counter-term because the

logarithm function itself does not satisfy to (2.101). In this case one cannot compute

the coefficient of the anomaly using the family index theorem because it is not related

to a chirality anomaly, and one would need in fact to compute the soft limit of the 1-

loop six point amplitude to compute the explicit coefficient. Nonetheless it is a consistent

correction, and the string theory computation [4] indicates that it indeed appears.

The appearance of these two anomalies is directly related to the appearance of a log-

arithm singularity in the four-point scattering amplitudes at 1-loop [55]. The relation

between the logarithm of the dilaton and the logarithmic divergence is explained in string

theory [36]. Rather naively, one can understand this property in field theory by noting

that supersymmetry determines the power of the dilaton multiplying the R4 type invari-

ant counter-term in function of the dimension. Assuming the existence of some kind of

supersymmetric regularisation valid at 1-loop order, one would naturally get an invariant

counter-term in
1

ε
e−εφt8t8R

4 (2.157)

such that the finite term in ε would define the anomaly [37].

3 N = (2, 2) supergravity in six dimensions

In six dimensions, the Lorentz group is SU∗(4) and the internal symmetry of maxi-

mal supergravity is Sp(2) × Sp(2). The scalar fields parametrise a symmetric space

SO(5, 5)/(SO(5)× SO(5)) through SO(5, 5) matrices VijI , Vı̂̂I satisfying to

ηIJVijIVklJ =
1

2
ΩikΩjl −

1

2
ΩilΩjk −

1

4
ΩijΩkl , VijIV ijJ − Vı̂̂IV ı̂̂J = ηIJ ,

ηIJVı̂̂IVk̂l̂
J = −1

2
Ωı̂k̂Ω̂l̂ +

1

2
Ωı̂l̂Ω̂k̂ +

1

4
Ωı̂̂Ωk̂l̂ , ηIJVı̂̂IVı̂̂J = 0 , (3.1)

that are antisymmetric symplectic traceless in the pairs of Sp(2) indices ij and ı̂̂, and

I = 1, 10 is in the vector representation of SO(5, 5), such that ηIJ is the SO(5, 5) metric and

ΩikΩ
jl = δji is the Sp(2) symplectic matrix, and respectively is Ωı̂̂ for the second Sp(2).

Recall that the gamma matrices in five dimensions are such that both the conjugation

charge matrix Ωij and the gamma matrices are antisymmetric. They define the momenta

and the sp(2)⊕sp(2) connexion through the coset decomposition of the Maurer-Cartan form

dφµPµ
ijı̂̂ = dV ijI V -1

I
ı̂̂ = −ηIJdV ijI V ı̂̂J ,

dφµωµ
i
j =−dV ikI V -1

Ijk=−ηIJdV ikI VjkJ , dφµωµ
ı̂
̂=−dV ı̂k̂I V -1

I̂k̂
=ηIJdV ı̂k̂I V̂k̂

J . (3.2)

The covariant derivative Dijı̂̂ is defined in the [0, 1] × [0, 1] of Sp(2) × Sp(2), i.e.

antisymmetric symplectic traceless in both pairs of indices, such that

dωT (φ) = 2dφµPµ
ijı̂̂Dijı̂̂ T (φ) (3.3)

for any Sp(2) × Sp(2) tensor function of φµ. The Dirac fermion fields are χi̂k̂α and χ̄α ijk̂

that are also symplectic traceless in the [1, 0]× [0, 1] and [0, 1]× [1, 0] respectively, and

P ijı̂̂ = EaPa
ijı̂̂ + 2Eα[iχj ]̂ı̂α − 1

2
ΩijΩklE

αkχl̂ı̂α + 2E [̂ı
αχ̄

α ij̂] − 1

2
Ωı̂̂Ωk̂l̂E

k̂
αχ̄

α ijl̂ . (3.4)
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Here we write χ and χ̄ for convenience, but recall that they are both symplectic

Majorana-Weyl and not complex conjugate. The only non-vanishing dimension-zero

torsion components are

T iα
j
β
a = −iΩijσaαβ , Tαı̂ β̂ a = −iΩı̂̂σaαβ , (3.5)

where α = 1 to 4 is in the fundamental of SU∗(4) and σaαβ = 1
2ε
αβγδσaγδ. One computes

that the non-zero dimension 1/2 components of the torsion are

T iα
j
β
k̂
γ = εαβγδχ̄

δ ijk̂ ,

T iα
β̂ γk = δβαχ̄

γ ik̂ − 1

2
δγαχ̄

β ik̂ ,

Tαı̂ β̂ γk = εαβγδχkı̂̂δ ,

T iα
β̂k̂
γ = δβαχ

i̂k̂
γ −

1

2
δβγχ

i̂k̂
α .

(3.6)

We refer to [56, 57] for the complete set of fields of the theory.

3.1 The R4 type invariant

Let us recall in a first step the structure of the linearised R4 type invariants. The relevant

harmonic variables parametrise Sp(2)/U(2) with the split 4 ∼= 2(−1) ⊕ 2(1). We define

uri, ur i such that

Ωijurius j = 2δrs , uriur j = Ωij . (3.7)

The linearised superfield Lijı̂̂ satisfies

DαkLijı̂̂ = 2Ωk[iχ̄α j ]̂ı̂ +
1

2
Ωijχ̄αkı̂̂

Dk̂
αL

ijı̂̂ = 2Ωk̂[̂ıχ̂]ijα +
1

2
Ωı̂̂χk̂ijα (3.8)

The superfield

W = u1
iu

2
ju

1̂
ı̂u

2̂
̂L

ijı̂̂ , (3.9)

is then G-analytic, i.e.

ur̂ ı̂D
ı̂
αW = 0 , uriD̄

αiW = 0 . (3.10)

One can then define linearised invariants of the form∫
d8θd8θ̄duF [0,n]

u F
[0,n]
û W 4+n (3.11)

where F
[0,n]
u is the 2n order monomial in the harmonic variables in the corresponding [0, n]

representation of Sp(2), i.e.

F i1j1,i2j2,...injnu = εr1s1ur1
i1us1

j1εr2s2ur2
i2us2

j2 · · · εrnsnurn inusnjn , (3.12)

and respectively is F
[0,n]
û for the second Sp(2) factor. Equivalently, one can think of this

invariant in the superaction formalism [58] as being obtained from∫
d8θ[0,4]d

8θ̄[0,4]L
4+n [0,4+n],[0,4+n]

∼ Ln [0,n],[0,n]t8t8R
4 + · · ·+ Ln−12 [0,n−12],[0,n−12]χ8 [0,4],[0,8]χ̄8 [0,8],[0,4] . (3.13)
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However the corresponding measure does not exist at the non-linear level, and the G-

analicity condition (3.10) admits obstructions, e.g.

uriu
s
jT

i
α
j
β
k̂
γ = εαβγδχ̄

δ rsk̂ , uriu
ŝ
̂T

i
α
β̂ γk = δβαχ̄

γ rkŝ − 1

2
δγαχ̄

β rkŝ . (3.14)

The structure of the linearised invariant nonetheless suggests that the non-linear invariant

admits an expansion in the derivatives of a function E of the scalar fields in the [0, n]×[0, n].

The only term in a ER4 type invariant involving the twelfth derivative of the function

E in the maximal highest weight representation is

D12
[0,12],[0,12]E χ

8 [0,4],[0,8]χ̄8 [0,8],[0,4] , (3.15)

which means that each of the two sets of Sp(2) indices are symmetrised according to the

Young tableau , with all symplectic traces projected out. The covariant derivative

of this term gives two contributions that cannot be compensated by other terms

D[1,0],[0,0]
α

(
D12

[0,12],[0,12]E χ
8 [0,4],[0,8]χ̄8 [0,8],[0,4]

)
∼ D13

[0,13],[0,11]E χ
9 [1,3],[0,9]
α χ̄8 [0,8],[0,4] +D13

[2,11],[2,11]E χ
9 [1,4],[2,7]
α χ̄8 [0,8],[0,4] + . . . (3.16)

Counting the number of independent equations as in the last section for SL(3,R), one can

convince oneself that the equations

D11
[0,11],[0,11]D

2
[0,2],[0,0] E

∣∣∣
[0,13],[0,11]

= 0 , D11
[0,11],[0,11]D

2
[2,0],[2,0] E

∣∣∣
[2,11],[2,11]

= 0 , (3.17)

imply respectively that

D2
[0,2],[0,0]E = 0 , D2

[2,0],[2,0]E = 0 . (3.18)

It will be more convenient in the following to write the derivative Dijı̂̂ in terms of vector

indices of SO(5)× SO(5), i.e.

Dab̂ =
1

4
(γa)

ij(γb̂)
ı̂̂Dijı̂̂ , Pµ

ab̂ =
1

4
(γa)ij(γ

b̂)ı̂̂Pµ
ijı̂̂ , (3.19)

such that

Dab̂
µPµ

cd̂ =
1

2
δcaδ

d̂
b̂
, Pµ

ab̂Dab̂
ν =

1

2
δν

µ . (3.20)

Take care that we use the same letter a for the internal SO(5) vector representation, as

for the Lorentz vector representation. There should be no confusion however, because we

shall now on only use a as an SO(5) vector index. More explicitly, (3.18) read

DaĉDbĉ E =
1

5
δabDcd̂D

cd̂ E , D[a
[ĉDb]d̂] E = 0 . (3.21)

Altogether with the similar equation obtained using Dαı̂L(6,0,0) instead, i.e.

DcâDcb̂ E =
1

5
δâb̂Dcd̂D

cd̂ E . (3.22)
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The first equation implies that D 2
10E = 1

10110∆E in the vector representation, with the

normalisation ∆ = 2Dab̂D
ab̂. Using the spinor representation

1

2
Dab̂γ

aγ b̂
1

2
Dcd̂γ

cγd̂ E =
1

4
Dab̂D

ab̂ E +
1

4
γabγĉd̂D[a

[ĉDb]d̂] E , (3.23)

and the second equation is equivalent to D 2
16E = 1

8116∆ E in the Majorana-Weyl represen-

tation of so(5, 5). Using the relations between the Casimir operators

trD 2
16 = 2trD 2

10 , trD 4
16 = −trD 4

10 +
3

4

(
trD 2

10

)2
+ 3trD 2

10 , (3.24)

one proves that

∆

(
∆ +

15

2

)
E = 0 . (3.25)

We can moreover fix this ambiguity by considering the general structure of the d-closed

superform L[E ]. Similarly as in the preceding section, (3.21), (3.22) imply that the

symmetric traceless tensors D(a1
(â1 . . .Dan)′

ân)′E define a complete base of the independent

tensors one can obtain from the function E and its covariant derivatives, such that the

superform L[E ] expands as

L[E ] = EL+DaâE Laâ +

12∑
n=2

Da1 â1 . . .Dan ânE La1...an â1...ân , (3.26)

where each La1...an â1...ân is symmetric traceless in the indices a1 . . . an and â1 . . . ân. De-

composing dL[E ] = 0 in the base of D(a1
(â1 . . .Dan)′

ân)′E , one obtains equations of the form

dωLa1...an â1...ân = −2P (a1
(â1 ∧ L

a2...an)′
â2...ân)′ +AnPb

b̂ ∧ La1...anbâ1...ânb̂ , (3.27)

where An are constants that remain to be determined and the first term is understood to

be symmetric traceless in both sets of indices, i.e.

P (a1
(â1∧L

a2...an)′
â2...ân)′≡P (a1

(â1∧L
a2...an)

â2...ân)−
n−1

2n+1
δ(â1â2P

(a1|b̂∧La2...an)
â3...ân)b̂

− n−1

2n+1
δ(a1a2Pb(â1∧L

a3...an)b
â2...ân)+

(
n−1

2n+1

)2

δ(a1a2δ(â1â2Pb
b̂∧La3...an)b

â3...ân)b̂ . (3.28)

Using the Maurer-Cartan equation

dωab + ωac ∧ ωcb = P aĉ ∧ Pbĉ , dωâ
b̂ + ωâ

ĉ ∧ ωĉb̂ = Pcâ ∧ P cb̂ , (3.29)

one obtains the integrability condition

d 2
ωLa1...an â1...ân = −nP (a1|ĉ ∧ Pbĉ ∧ La2...an)b

â1...ân − nPb(â1 ∧ P
bĉ ∧ La1...an â2...ân)ĉ , (3.30)

that determines the An uniquely such that

dωLa1...an â1...ân = −2P (a1
(â1 ∧ L

a2...an)′
â2...ân)′ +

(n+ 1)2(2n+ 3)

2(2n+ 5)
Pb

b̂ ∧ La1...anbâ1...ânb̂ .

(3.31)
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Using (3.21), (3.22) altogether with this equation, and in particular

dL =
3

10
Pa

â ∧ Laâ , (3.32)

one obtains that dL[E ] = 0 if and only if

∆E = −15

2
E , (3.33)

consistently with [33]. For completeness we give the equations satisfied by E in

Sp(2)× Sp(2) representations

Ωp̂r̂Ωq̂ŝDijp̂q̂Dklr̂ŝE = − 3

10

(
ΩikΩjl − ΩilΩjk −

1

2
ΩijΩkl

)
E ,

ΩprΩq̂ŝDip̂q̂Dkrl̂ŝE = −15

16
ΩikΩ̂l̂ E ,

ΩprΩqsDpqı̂̂Drsk̂l̂E = − 3

10

(
Ωı̂k̂Ω̂l̂ − Ωı̂l̂Ω̂k̂ −

1

2
Ωı̂̂Ωk̂l̂

)
E . (3.34)

but it will be more convenient in the following to write them as

D 2
10E = −3

4
110E , D 2

16E = −15

16
116E . (3.35)

By construction (3.31) defines a representation of so(5, 5), which corresponds to the unitary

representation of SO(5, 5) on the set of functions satisfying to (3.35) with appropriate

boundary conditions. This turns out to be the minimal unitary representation of SO(5, 5)

as we are going to exhibit in the next section.

3.2 Minimal unitary representation

Let us solve these differential equations in the parabolic gauge associated to the decom-

pactification limit. In this case one considers the decomposition

so(5, 5) ∼= 10
(−2) ⊕ (gl1 ⊕ sl5)(0) ⊕ 10(2) . (3.36)

The representative in the vector representation can be written

V10 =

(
e2φv-1

J
a e2φv-1

K
a aKJ

0 e−2φva
J

)
. (3.37)

Here both a and I run from 1 to 5, and correspond respectively to SO(5) and SL(5)

indices. We shall not consider a specific gauge for the SL(5)/SO(5) representative va
I .

The associated momentum is

P10 =

(
2dφδab − P ab

1
2e

4φv-1
I
av-1

J
b daIJ

−1
2e

4φv-1
Iav

-1
Jb da

IJ −2dφδba + Pa
b

)
. (3.38)

The metric on the symmetric space is

trP 2 = 40dφ2 + 2P abPab +
1

2
e8φM -1

IKM
-1
JLda

IJdaKL , (3.39)
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where M IJ = va
Iva J and the coordinates on the symmetric space SL(5)/SO(5) are defined

such that

P abµ Dabν =
1

2
δν

µ , P abµ Dcdµ =
1

4

(
δac δ

b
d + δadδ

b
c −

2

5
δabδcd

)
. (3.40)

The corresponding differential operator is

D10 =

(
1
20∂φδ

a
b −Dab e−4φvaIvbJ∂IJ

−e−4φva
Ivb

J∂IJ − 1
20∂φδ

b
a +Dab

)
. (3.41)

The repeated action of the covariant derivative on a function, which we write formally as

a square even if the left derivative includes a connexion component, reads

D 2
10 =

((
1

202
∂ 2
φ + 1

10∂φ

)
δab +DacDcb−

(
1
10∂φ+ 3

4

)
Dab+e−8φvaIvcJvb

Kvc
L∂IJ∂KL . . .

2e−4φv(a
Ivc JDb)c∂IJ . . .

)
.

(3.42)

We shall also consider the derivative operator in the spinor representation. The coset

representative is then

V16 =

 e5φ 1√
2
e5φaKL e5φ 1

8εKPQRSa
PQaRS

0 eφv[a
Kvb]

L eφv[a
Rvb]

S 1
2
√

2
εRSKPQa

PQ

0 0 e−3φv-1
K
a

 . (3.43)

The associated momentum is

P16 =


5dφ 1

2
√

2
e4φv-1

I
cv-1

J
ddaIJ 0

1
2
√

2
e4φv-1

I av
-1
J bda

IJ dφδcdab + 2δ
[c
[aPb]

d] 1
4
√

2
εabcefe

4φv-1
I
ev-1

J
fdaIJ

0 1
4
√

2
εacdefe4φv-1

I ev
-1
J fda

IJ −3dφδac − P ac

 .

(3.44)

The derivative operator reads

D16 =


1
8∂φ

1√
2
e−4φvcIvdJ∂IJ 0

1√
2
e−4φva

Ivb
J∂IJ

1
40δ

cd
ab∂φ + 2δ

[c
[aDb]

d] 1
2
√

2
εabcefe

−4φveIvfJ∂IJ

0 1
2
√

2
εacdefe−4φve

Ivf
J∂IJ − 3

40δ
a
c ∂φ −Dac

 ,

(3.45)

and acting twice on a function gives

D 2
16 =

 1
64∂

2
φ + 1

4∂φ + 1
2e
−8φM IKMJL∂IJ∂KL√

2e−4φ
(

3
40va

Ivb
J∂φ + v[a

IvcJDb]c + 3
4va

Ivb
J
)
∂IJ

1
4e
−8φv-1

P
aεPIJKL∂IJ∂KL

(3.46)

√
2e−4φ

(
3
40v

cIvdJ∂φ + v[cIveJDed] + 3
4v

cIvdJ
)
∂IJ

1
4e
−8φv-1

Pcε
PIJKL∂IJ∂KL

Acdab Cc,ab
Ca,cd Ba

c

 ,
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where

Acdab = δcdab

(
1

402
∂ 2
φ +

1

10
∂φ

)
+ 2δ

[c
[aDb]

eDed] + 2D[a
[cDb]d] +

1

10
δ

[c
[aDb]

d]∂φ +
1

2
δ

[c
[aDb]

d]

+e−8φ

(
1

2
δcdabM

IKMJL + va
Ivb

JvcKvdL − 2δ
[c
[avb]

Ive
Jvd]KveL

)
∂IJ∂KL

Ca,cd = −
√

2e−8φve
Ivf

J

(
1

80
εacdef∂φ +

1

2
εaefg[cDgd] +

1

4
εcdefgDga +

1

8
εacdef

)
∂IJ

Ba
b = δab

(
9

402
∂ 2
φ +

3

20
∂φ

)
+DacDcb +

3

4
Dab

(
1 +

1

5
∂φ

)
+e−8φ

(
1

2
δabM

IKMJL − vbIvcJvaKvcL
)
∂IJ∂KL . (3.47)

We can now solve equations (3.35). Let us consider in a first place solutions that do not

depend on aIJ . To solve these equations, we shall use the existence of functions E[s000] on

SL(5)/SO(5) satisfying to

DacDcbE[s000] =
3(4s− 5)

20
DabE[s000] +

2s(2s− 5)

25
δbaE[s000](

2δ
[c
[aDb]

eDed]+2D[a
[cDb]d]

)
E[s000] =

4s− 5

20
2δ

[c
[aDb]

d]E[s000] +
3s(2s− 5)

25
δcdab E[s000] (3.48)

Here the notation we use is to exhibit that the corresponding Eisenstein function of SL(5)

E[s000] =
∑
nI∈Z5

∗

(
nIv-1

I
av-1
Jan

J
)−s

, (3.49)

do satisfy to these differential equations (whenever the series (3.49) converges), as can

straightforwardly be checked on their generating character (nIv-1
I
av-1
Jan

J)−s.

Solving the spinorial equation D 2
16E = −15

161E one finds the solution

E = c0e
−10φ + e−6φE[ 32 000] + e−10φE[ 52 000] (3.50)

Solving then the vector equation D 2
10E = −3

41E one gets that the last function is not

solution. For the Fourier modes ∝ eiqIJa
IJ

one gets directly from the spinor equation the

1/2 BPS constraint

εIJKLP qIJqKL = 0 (3.51)

and defining

Z2 = 2M IKMJLqIJqKL (3.52)

one obtains the two solutions

E±q =
e−6φ

√
Z2
e∓e

−4φ
√
Z2+iqIJa

IJ
. (3.53)

Requiring a convergent behaviour in the large radius limit e−2φ →∞, the generic solution

takes the form

E =

∫
SL(5)

SL(2)×SL(3)nR2×3

dµ(q) F (q)
e−6φ

√
Z2
e−e

−4φ
√
Z2+iqIJa

IJ
+ e−6φE[ 32 000][G(p)] , (3.54)
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such that it is determined by a function F (q) of seven variables, the general solution E[ 32 000]

being itself determined by a function G(p) of four variables. These functions are not square

integrable on SO(5, 5)/(SO(5)× SO(5)) because the Fourier mode of momentum qIJ does

not depend on the flat directions of qIJ in SL(5,R) and the integral diverges as the infinite

volume of SL(2)/SO(2)×SL(3)/SO(3)nR2×3. Nonetheless these solutions match precisely

the solution obtained from the spherical vector of the minimal unitary representation of

SO(5, 5) in [25]. One should be able to factor out the infinite volume such that these

functions are square integrable with respect to an appropriate measure, to show that the

minimal representation of SO(5, 5) is indeed unitary.

We see that supersymmetry constrains each component of the Eisenstein function

defining the R4 coupling, in perfect agreement with the explicit form of this function [25]

E[ 03
2
0 0

0

]=
2π2

3
e−10φ+e−6φE[ 32 000]+4π

∑
q∈Z10

q×q=0

∑
n|qIJ

n

e−6φ

√
Z2
e−2πe−4φ

√
Z2+2πiqIJa

IJ
. (3.55)

3.3 Relation to BPS instantons

The differential equations (3.35) implies a non-renormalisation theorem such that the in-

stantons that contribute to the R4 type correction in the effective action are 1/2 BPS. To

see this, let us consider a supergravity instanton determined by the scalar fields only. In this

case we consider the Euclidean theory for which the SO(5, 5) symmetry requires to consider

a non-compact complex real form of the divisor group, i.e. SO(5, 5)/SO(5,C). This real

form is suggested in six Euclidean dimensions because there is no self-dual 3-form in Eu-

clidean signature, and the five 3-form field strengths must decompose into complex selfdual

and complex-antiselfdual in the complex five dimensional representation of SO(5,C) and is

complex conjugate. In this case the instanton can decouple from gravity and the metric is

chosen to be flat. The scalar fields then lie in a nilpotent subgroup, which is characterised by

the number of preserved supersymmetries. For a 1/2 BPS solution, one splits Sp(4,C) into

sp(4,C) ∼= (3C)(−1) ⊕ (gl1(C)⊕ sl2(C))(0) ⊕ (3C)(1) . (3.56)

The fundamental representation in which lies the supersymmetry spinor parameters then

decomposes as

4C
∼= (2C)(−

1
2 ) ⊕ (2C)(

1
2 ) (3.57)

such that the grad 1/2 components carries the preserved half of supersymmetries. The

coset component of SO(5, 5) decomposes accordingly such that

(5× 5)R ∼= 1(−2) ⊕ (3⊕ 3)(−1)

R ⊕
(
C⊕ (3⊗ 3)R

)(0) ⊕ (3⊕ 3)(1)R ⊕ 1(2) (3.58)

The grad 2 component contains a single Lie algebra element that squares to zero in

both the vector and the spinor representation. Defining the scalar fields with such a

generator, the solution automatically preserves one half of supersymmetry because the

Dirac spinors χ, χ̄ do not carry a grad 5/2 component within this decomposition. The

associated function is then simply a harmonic function on R6. More explicitly, the 1/2
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BPS instanton with a charge qIJ satisfying to the condition εIJKLP qIJqKL = 0 defines a

rank 2 antisymmetric tensor

Zab = v◦a
Iv◦b

JqIJ , (3.59)

where the zero subscript indicates that this is the asymptotic value of the scalar at infinity.

One can normalise it such that

Jab =
Zab√

1
2ZcdZ

cd
. (3.60)

This tensor is a non-degenerate symmetric tensor J ij = 1
2J

abγab
ij in the spinor repre-

sentation, that determines the preserved supersymmetry as the ones associated to spinor

parameters satisfying to

εiα = J ijε
j
α . (3.61)

We consider the Euclidean Lagrangian density for which the scalars with negative kinetic

terms have been dualised to 4-form potential BIJ ,

Hµ
IJ =

1

24e
εµνσρκλ∂νBσρκλ IJ , (3.62)

and that reduces to a sum of squares plus a total derivative as follows

1

e
L= 20∂µφ∂µφ+ P abµ P

µ
ab +

1

2
e−8φva

Ivb
JHµ

IJv
aKvbLHµKL (3.63)

=
(

2∂µφ δ
ab − P abµ − e−4φJc(avb)Ivc

JHµIJ

)(
2∂µφ δab − Pµab − e

−4φJc(avb)
Ivc

JHµ
IJ

)
+

1

2
e−8φ

(
δac δ

b
d−JaeJceδbd−

1

2
JabJcd

)
va
Ivb

JvcKvdLHµ
IJHµKL+∂µ

(
e−4φJabva

Ivb
JHµ

IJ

)
Cancelling the squares gives the equation

d
(
e4φv-1

I
av-1

J
bJab

)
= ?HIJ . (3.64)

One obtains the solution

e4φv-1
I
av-1

J
bJab = e4φ◦v-1

◦ I
av-1
◦ J

bJab −
κ2

4π3

qIJ
r4

, (3.65)

HIJ =
κ2

4π3
qIJdΩ5 , (3.66)

which action is determined by the total derivative term and gives

S = e−4φ◦
√

2v◦ aIv◦ bJqIJvaK◦ vbL◦ qKL . (3.67)

The other equations require the scalars to be constant in the directions preserving Jab,

such that the scalar fields are determined by equation (3.65) up to constant flat directions.

The Noether charge associated to these solutions satisfies the nilpotency condition

Q 2
10 = 0 , Q 2

16 = 0 . (3.68)
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Equation (3.35) defines a quantised version of these algebraic equations. Moreover, the

form of the associated Fourier mode is characteristic of an instanton correction

∼ e−10φ

S
e−2πS+2πiqIJa

IJ
. (3.69)

It is therefore legitimate to believe that the next coupling in ∇4R4 will be a function

satisfying to differential equations defining a quantisation of the algebraic equations

associated to 1/4 BPS instantons. In so(5, 5), the next to minimal nilpotent orbit is not

unique, and there are in fact three disconnected orbits connected to the minimal orbit

associated to 1/2 BPS instantons. The two isomorphic smallest orbits are obtained by

relaxing the nilpotency condition in the vector representation

Q 3
10 = 0 , Q 2

16 = 0 . (3.70)

In this case however, the instanton cannot be defined in the standard Euclidean formu-

lation of the theory, and one must consider a real form of the divisor group that allows

for an independent decomposition of the two factors. This is incompatible with the

representation of the SO(5, 5) symmetry on the 3-form field strengths, and recovering the

symmetry would require some analytic continuation of the Euclidean path integral in such

a background. One can consider for example the coset SO(5, 5)/(SO(1, 4)× SO(4, 1)) such

that only one Sp(1, 1) factor decomposes as

sp(1, 1) ∼= 3(−2) ⊕ (gl1 ⊕ su(2))(0) ⊕ 3(2) . (3.71)

In this case the instanton can be described within the scalar fields valued in the Rieman-

nian symmetric space R∗+ × SO(4, 4)/(SO(4) × SO(4)) coupled to eight 4-forms in the 8

of SO(4, 4).

The two orbits correspond to the choice of Sp(1, 1) factor. The coset component then

decomposes as

5⊗ 5′ ∼= 5′
(−2) ⊕ (3⊗ 5′)(0) ⊕ 5′

(2)
, (3.72)

and a representative of the nilpotent orbit is a generic (time-like vector) element of the

5′(2) component.4 The associated solution preserves one half of the chiral (respectively

antichiral) supercharges, depending on the choice of Sp(1, 1) factor. Note that in the

decomposition of the vector representation, with a of SO(5)′ and â of SO(5), the charge

satisfies moreover

Qa
ĉQbĉ = 0 , (3.73)

although Q 2
10 6= 0.

The third orbit is obtained by relaxing the nilpotency condition in the spinor repre-

sentation

Q 2
10 = 0 , Q 3

16 = 0 . (3.74)

4A space-like vector corresponds to a solution that violates the BPS bound, and which is therefore

unphysical.
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In this case one can consider the standard formulation of the Euclidean theory with coset

SO(5, 5)/SO(5,C) and the decomposition

sp(4,C) ∼= (1C)(−2) ⊕ (2C)(−1) ⊕ (gl1(C)⊕ sl2(C))(0) ⊕ (2C)(1) ⊕ (1C)(2) . (3.75)

The fundamental representation in which lies the spinor then decomposes as

4C
∼= (1C)(−1) ⊕ (2C)(0) ⊕ (1C)(1) (3.76)

such that the grad 1 component carries the preserved quarter of supersymmetries. The

coset component of SO(5, 5) decomposes accordingly such that

(5× 5)R ∼= (2⊗ 2)(−2)

R ⊕ (2⊕ 2)(−1)

R ⊕
(
R⊕ (2⊗ 2)C

)(0) ⊕ (2⊕ 2)(1)R ⊕ (2⊗ 2)(2)R (3.77)

and a representative of the nilpotent orbit is a generic (time-like SO(1, 3) vector) element of

(2⊗ 2)(2)R . The associated instanton preserves one quarter of supersymmetry (one quarter

chiral and one quarter antichiral).

3.4 The ∇4R4 type invariants

We shall consider in a first place the linearised ∇4R4 invariants. There are three 1/4

BPS measures one can define in the linearised approximation [32], although none of them

extends to the non-linear level as one straightforwardly checks using (3.6).

The chiral invariant. The first two ∇4R4 type invariants are parity conjugate, and we

shall only discuss the first. It can be defined in the linearised approximation by considering

harmonic variables with respect to one Sp(2) factor only [32], such that the superfield

W ij = u1̂
ı̂u

2̂
̂L

ijı̂̂ , (3.78)

satisfies the G-analyticity condition

ur̂ ı̂D
ı̂
αW

ij = 0 . (3.79)

One can again define linearised invariants∫
d8θd16θ̄duF

[0,n+2k]
û (W ijWij)

4+kWn[0,n] ∼
∫
d8θ[0,4]d

16θ̄L4+2k [0,0],[0,4+2k]Ln [0,n],[0,n] .

(3.80)

Now there are more representations allowed, and this suggests that one must consider the

(n+ 2k)th derivative of the defining function in all representations [0, n]× [0, n+ 2k]. This

is consistent with the property that

D2
[2,0],[2,0]E = 0 , D2

[0,2],[0,0]E = 0 , (3.81)

proposed as a quantisation of the corresponding 1/4 BPS condition in the last section.

Matching the linearly independent invariant to the independent linearised invariants, one
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concludes that the complete invariant associated to a function E must admit the following

expansion

L[E ](2,0) =
12∑
n=0

8−n/2∑
k=0

Dn+2k
[0,n],[0,n+2k]E L

[0,n],[0,n+2k]
(2,0)

∼ E∇4R4 + · · ·+D16
[0,12],[0,16]E H

4 [0,0],[0,4]χ8 [0,4],[0,8]χ̄8 [0,8],[0,4] + . . . (3.82)

Decomposing dL[E ](2,0) = 0 in the base of Dn+2k
[0,n],[0,n+2k]E , one obtains that

dωLa1...an â1...ân+2k
= −2P (a1

(â1 ∧ L
a2...an)′

â2...ân+2k)′ −
2n+ 2

2n+ 5
Pb(â1 ∧ L

a1...an)′b
â2...ân+2k)′

+ 2An,kP
(a1|b̂ ∧ La2...an)′

â1...ân+2k)′b̂ +Bn,kPb
b̂ ∧ La1...anbâ1...ân+2k b̂

, (3.83)

where the two first coefficients are determined by the decomposition

DaâD(a1
(â1Da2 â2 · · · Dan)′

ânDb1 ân+1Db1ân+2 · · · Dbk
ân+2k−1Dbk|ân+2k)′E

= D(a
(âDa1 â1Da2 â2 · · · Dan)′

ânDb1 ân+1Db1ân+2 · · · Dbk
ân+2k−1Dbk|ân+2k)′E

+
n

2n+ 3
δa(a1Da2

(â2 · · · Dan)′
ânDbâDbâ1Db1 ân+1Db1ân+2 · · · Dbk

ân+2k−1Dbk|ân+2k)′E

+O(Dn+2k−1E) . (3.84)

Checking the consistency condition

d 2
ωLa1...an â1...ân+2k

(3.85)

= −nP (a1|ĉ ∧ Pbĉ ∧ La2...an)b
â1...ân+2k

− (n+ 2k)Pb(â1 ∧ P
bĉ ∧ La1...an â2...ân+2k)ĉ ,

one gets the three independent equations

An,k =
(n+ 2k + 1)(2n+ 4k + 3)

(n+ 2k)(2n+ 4k + 5)
An−1,k

n+ 2

2n+ 7
Bn,k =

n+ 1

2n+ 5

(n+ 2k + 1)(2n+ 4k + 3)

(n+ 2k)(2n+ 4k + 5)
Bn+1,k−1

Bn,k = 2
n+ 1

2n+ 5
An,k +

(n+ 1)(2n+ 3)(n+ 2k + 1)

2(2n+ 5)
, (3.86)

that admit the general solution

An,k =
(n+ 2k + 1)(2k + 2s− 3)(2k + 5− 2s)

4(2n+ 4k + 5)
,

Bn,k =
2(n+ 1)(n+ 2k + 1)(n+ k + s)(n+ k + 4− s)

(2n+ 5)(2n+ 4k + 5)
. (3.87)

However assuming the expansion of the invariant (3.82), L[0,n],[0,n+2k]
(2,0) only exist for k ≥ 0

and therefore An,−1 must vanish by consistency. We get therefore s = 5
2 or 3

2 , which define

the same solutions for An,k and Bn,k. We conclude that the function E must satisfy to
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DaâD(a1
(â1Da2 â2 · · · Dan)′

ânDb1 ân+1Db1ân+2 · · · Dbk ân+2k−1Dbk|ân+2k)
′
E

= D(a
(âDa1 â1Da2 â2 · · · Dan)′

ânDb1 ân+1Db1ân+2 · · · Dbk ân+2k−1Dbk|ân+2k)
′
E

+
n

2n+ 3
δa(a1Da2

(â2 · · · Dan)′
ânDbâDbâ1Db1 ân+1Db1ân+2 · · · Dbk ân+2k−1Dbk|ân+2k)

′
E

−k(k−1)(n+2k)

2n+4k+3
δâ(ân+1Da(ân+2D(a1

(â1 · · · Dan)′
ânDb2 ân+3Db2ân+4 · · · Dbk ân+2k−1Dbk|ân+2k)

′
E

−n(n+ 2k)(2n+ 2k + 1)(2n+ 2k + 3)

4(2n+ 3)(2n+ 4k + 3n)

× δa(a1δ
â(â1Da2 â2 · · · Dan)′

ânDb1 ân+1Db1ân+2 · · · Dbk ân+2k−1Dbkân+2k)
′
E . (3.88)

and in particular

DaâDbb̂E = D(a
(âDb)′ b̂)

′E +
1

5
δabDc(âDcb̂)

′E − 3

20
δabδ

âb̂E , (3.89)

such that

DaĉDbĉE = −3

4
δabE . (3.90)

Considering more generally a function Es satisfying to

D 2
16Es =

s(s− 4)

4
116Es , (3.91)

one computes using the property that D10 can be realised from D16 through a commutator

with the SO(5, 5) gamma matrices, that

D 3
10Es = (s− 1)(s− 3)D10Es . (3.92)

This equation is only consistent with the second equation in (3.81) if s = 5
2 or 3

2 , such that

one gets indeed that any non-trivial solution to (3.81) must solve (3.90).

The function defining the closed superform (3.82) satisfies therefore to an equation

compatible with the function defining the R4 type invariant, consistently with the expected

properties of the effective action in type II string theory [11, 33]. Solving this spinor

differential equation (3.91) for s = 5
2 one finds the solution (3.50) for qIJ = 0, and the

complex solution

Eq = F(τA1(q))
e−6φ

√
Z2
e−e

−4φ
√
Z2+iqIJa

IJ
, (3.93)

and its complex conjugate, where the upper complex half plan variable τA1(q) parametrises

the vA1(q) component of va
I in the SL(2) subgroup of the stabiliser SL(2)×SL(3)nR2×3 ⊂

SL(5) of qIJ . One computes moreover that(
D 2

10 +
3

4
110

)
Eq =

(
−DabF(τA1(q)) iJ (a

cDb)cF(τA1(q))

iJ(a
cDb)cF(τA1(q)) −DabF(τA1(q))

)
e−10φe−e

−4φ
√
Z2 ,

(3.94)

with Jab defined as in (3.60), which plays the role of a complex structure such that

iJ(a
cDb)cF(τA1(q)) = DabF(τA1(q)) (3.95)
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for a holomorphic function and (3.90) is satisfied. The generic solution to these differential

equations is therefore supported on a space of eight variables

E [F ] =

∫
R+

dQ

∫
SL(5)

SL(2)×SL(3)nR2×3

dµ(q) F (q,Q) eiQτA1(q)
e−6φ

√
Z2
e−e

−4φ
√
Z2+iqIJa

IJ
, (3.96)

and defines the smallest of the two next to minimal unitary representations of SO(5, 5).

The real function e−10φE[ 52 000] does not solve the vector equation (3.90), but one can define

the two functions

E±5
2

(n,m) = e−10φ nKmK(
nIM -1

IJn
J
) 5

2

± e−6φn
KM -1

KLa
LPmP(

nIM -1
IJn

J
) 5

2

, (3.97)

which solve both (3.91) for s = 5
2 and E+

5
2

(n,m) solves (3.90) whereas

DcâDcb̂ E
−
5
2

(n,m) = −3

4
δâb̂ E

−
5
2

(n,m) . (3.98)

To prove that we note that their sum vanishes for nImI = 0 whereas their difference is

then obtained from the character generating e−6φE[ 32 000] by an infinitesimal duality trans-

formation of parameter qIJ = −qJI such that mI = qIJn
J , i.e.

δ
(
e−4φM IJ

)
= qKLe

−4φMK(IaJ)L , δ
(
nIe4φM -1

IJn
J
)− 3

2
= −3

2
e−6φn

IM -1
IJa

JKqKLn
L(

nPM -1
PQn

Q
) 5

2

,

(3.99)

and therefore satisfies by construction to (3.35) as does e−6φE[ 32 000]. When nImI 6= 0 the

two functions are independent, and one straightforwardly checks that this scalar product

is not involved in equation (3.91), and is only relevant in (3.90) through(
D 2

10 +
3

4
110

)
E±5

2

(n,m) (3.100)

=
nInJ

2

(
−5v-1

I
av-1
Jb + δabM

-1
IJ ±(5v-1

I
av-1
J
b − δabM -1

IJ)

±(5v-1
Iav

-1
Jb − δabM -1

IJ) −5v-1
Iav

-1
J
b + δbaM

-1
IJ

)
e−10φ nPmP(

nKM -1
KLn

L
) 5

2

,

which is then only satisfied by E+
5
2

(n,m). The linear term in the axion is in contradiction

with duality invariance, but the explicit dependence in the (naked) axion drops out in the

real invariant

L[E+
5
2

(n,m)](2,0) + L[E−5
2

(n,m)](0,2) (3.101)

because the two chiral invariants coincide for a function satisfying to (3.35). One checks

indeed in the linearised analysis that the superforms L[0,n],[0,n]
(2,0) satisfy to

L[0,n],[0,n]
(2,0) = L[0,n],[0,n]

(0,2) . (3.102)

Assuming that they satisfy to the same equation at the non-linear level, one obtains that

terms linear in the axion cancel out in the expansion (3.82). The term in L[0,n],[0,n+2k]
(2,0) for
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k ≥ 1 involve the operator (3.100) such that they do not depend explicitly on the (naked)

axion aIJ . This structure is similar to the one associated to the invariant Re[L[ln(η)]] in

eight dimensions, for which the axion a only appears polynomially through
∫
a
(
p2 − 1

4p
2

1

)
.

Although in this case there is no topological coupling in the axion, and the supersymmetry

invariant only depends on the function E+
5
2

(n,m) + E−5
2

(n,m) and its covariant derivatives.

The general solution is therefore compatible with the regularised Eisenstein series

Ê
[

05
2
0 0

0

]
appearing in the ∇4R4 coupling [11, 33], but we should take care however, that

the Eisenstein function E
[

0
s0 0

0

]
diverges at s = 5

2 . Note that this function is generated by

a specific character, and any covariant differential equation satisfied by the character is

also satisfied by the Eisenstein function provided the series converges. Using this property

one computes that it satisfies to

D 2
16E

[
0

s0 0
0

] =
s(s− 4)

4
116E[ 0

s0 0
0

] . (3.103)

One can use this property to constrains the Fourier modes of this function. Altogether

with the constant terms computed in [11], we conclude that this Eisenstein function

admits the expansion

E[ 0
s0 0

0

] = e−4sφE[s000] +
π2s− 5

2 (s− 3)

sin(πs) Γ(s)Γ(s− 3
2)

ζ(2s− 4)

ζ(2s− 3)
e4(s−4)φE[4−s000]

+ 16
∑
q∈Z10

q×q=0

µs(q)E[s− 3
2

](vA1(q))
e−8φ

4
√
Z2
Ks−2(2πe−4φ

√
Z2)e2πiqIJa

IJ
(3.104)

for some undetermined measure µs(q). Using this expression, one recovers the singular limit

E[ 05
2

+ε0 0
0

] =
2

ε
E[ 03

2
0 0

0

] + Ê[ 05
2

+ε0 0
0

] +O(ε) , (3.105)

provided µ 5
2
(q) =

∑
n|qIJ n is the same measure as for s = 3

2 .

Using the limit we compute that

D 2
16Ê

[
05

2
0 0

0

] = −15

16
116Ê[ 05

2
0 0

0

] +
1

2
116E[ 03

2
0 0

0

] , (3.106)

which is not strictly the supersymmetry equation. The logarithms of the moduli appearing

in the regularised Eisenstein function are in fact coming from the non-analytic component

of the effective action, as we shall discuss at the end of this section.

The parity symmetric invariant. The third class of invariants can be obtained in the

linearised approximation using harmonic variables parametrising Sp(2)/(U(1)×Sp(1)) with

the decomposition 4 ∼= 1(−2) ⊕ 2(0) ⊕ 1(2) [32]. We define accordingly ui, ūi, u
r
i such that

Ωijuiūj = 2 , Ωijuriu
s
j = εrs , uiūj + εrsu

r
iu
s
j = Ωij , (3.107)

and respectively for the second Sp(2) factor. One can then define the G-analytic superfield

W rŝ = uiu
r
juı̂u

ŝ
̂L

ijı̂̂ , (3.108)
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that satisfies

uiD̄
α iW rŝ = 0 , uı̂D

ı̂
αW

rŝ = 0 . (3.109)

Using this superfield one can define the class of invariants∫
d12θd12θ̄duF [2k,0]

u F
[2k,0]
û (W rŝWrŝ)

2+k(usiu
r̂
̂Wsr̂)

n[n,0],[n,0]

∼
∫
d12θ[4,0]d

12θ̄[4,0] L
4+2k [4+2k,0],[4+2k,0]Ln [0,n],[0,n] , (3.110)

where F
[n+2k,0]
u is the degree n + 2k monomial in ūi in the corresponding representation.

The set of representations involved is again different, and suggests in this case that one

must consider the (n + 2k)th derivative in all the representations [2k, n] × [2k, n]. This is

now consistent with the property that

D2
[0,2],[0,0]E = 0 , D2

[0,0],[0,2]E = 0 , (3.111)

proposed as a quantisation of the corresponding 1/4 BPS condition in the last section. So

such invariant will have the generic form

L[E ](1,1) =

12∑
n=0

8−n/2∑
k=0

Dn+2k
[2k,n],[2k,n]E L

[2k,n],[2k,n]
(1,1)

= E∇4R4 + · · ·+D16
[4,12],[4,12]E F

4 [4,0],[4,0]χ8 [0,4],[0,8]χ̄8 [0,8],[0,4] + . . . (3.112)

The form of the linearised invariant therefore strongly suggests that the function E must

satisfy to equation (3.111). In principle one could check this explicitly on the terms

multiplying D16
[4,12],[4,12]E , but this computation is rather involved and we shall not carry

it out in this paper. Note moreover that the 1/4 BPS condition discussed in the preceding

section also requires Q 3
16 = 0, and considering the expansion (3.112) requires also that

D[a
[âDbb̂Dc]ĉ] Es = −s− 2

24
εabcdeε

âb̂ĉd̂êDdd̂D
e
êEs , (3.113)

for some s to be determined, such that there is no new independent term in the gradient

expansion of the function Es. Using the commutation relation one computes that in general

εabdefDcĉDdâDeb̂Df ĉ = εc
abefDeâDf b̂ + εabdefDdâDeb̂Df ĉDcĉ , (3.114)

such that (3.113) and (3.111) are only compatible if

DaĉDbĉEs =
s(s− 4)

4
δabEs . (3.115)

Using these equations and the compatibility condition with (3.24) one concludes that

D 2
10Es =

s(s− 4)

4
110Es ,

D 3
16Es = −3(s− 2)

4
D 2

16Es +
13s(s− 4) + 24

16
D16Es +

15s(s− 2)(s− 4)

64
116Es . (3.116)
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It remains now to determine the value of s. To do so we note that the linearised invariants

in the [0, n], [0, n] representation are all identical because they have the same 1/2 BPS

harmonic integral form∫
d8θd16θ̄duF

[0,n]
û (W ijWij)

4Wn[0,n] =

∫
d12θd12θ̄duF [n,0]

u F
[n,0]
û (W rŝWrŝ)

4(usiu
r̂
̂Wsr̂)

n[n,0],[n,0]

=

∫
d8θd8θ̄duF [0,n]

u F
[0,n]
û (∂µW∂µW )2Wn . (3.117)

This suggests that the associated superforms are also identical at the non-linear level

L[0,n],[0,n]
(1,1) = L[0,n],[0,n]

(2,0) = L[0,n],[0,n]
(0,2) . (3.118)

But this is only possible if the differential equations are compatible and therefore if s = 3.

The value s = 3 is indeed consistent with [33], as we are going to see.

We shall now discuss the solutions of these equations for s = 3. Solving (3.116) requires

the introduction of another class of SL(5) Eisenstein functions satisfying to

DacDcbE[00s0] = −4s− 5

20
DabE[00s0] +

3s(2s− 5)

25
δbaE[00s0] . (3.119)

We checked this equation explicitly on a generating character of these Eisenstein functions.

Note that these functions do not satisfy to any quadratic differential equation in the 10 of

SL(5) as does E[s000]. This equation is only strictly satisfied by the corresponding Eisenstein

functions when they are convergent series.

Solving equation (3.116) for a function independent of aIJ one finds the solution

c1e
−30φ + e−18φE[− 1

2 000] + c2e
−10φ + e−10φE[00 5

2 0] + e−6φE[00 1
2 0] + e−6φE[ 32 000] . (3.120)

All the corresponding Eisenstein functions, but E[− 1
2 000] and E[00 1

2 0], do appear in the decom-

pactification limit of the regularised Eisenstein function Ê
[

0
00 0

3

]
according to [33]. However

the M-theory limit also corresponds to the same decomposition of SO(5, 5), with the oppo-

site chirality, and the Eisenstein functions E[− 1
2 000] and Ê[0200] solving the same differential

equation as E[00 1
2 0] do appear in this limit [33]. We expect the cubic equation in (3.116) to

distinguish these two cases, such that E[− 1
2 000] and E[00 1

2 0] would only solve (3.116) for s = 1.

The sign of the terms involving the ε tensor depend on the chirality, and the corresponding

equation in the parabolic gauge also depends on the specific embedding.

Let us now consider the Fourier modes. Note that the condition εIJKLP qIJqKL = 0

was coming from the quadratic equation in the spinor representation, and therefore does

not hold in this case. It is therefore convenient to define the two functions

Z2 = 2Zab(q)Z
ab(q) , Z4 = Zab(q)Z

bc(q)Zcd(q)Z
da(q)− 1

4

(
Zab(q)Z

ab(q)
)2

, (3.121)

with

Zab(q) = va
Ivb

JqIJ . (3.122)

The off-diagonal equation

Z(a
c(q)Db)cEq = 0 (3.123)
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requires that the Fourier modes only depends on the SL(5)/SO(5) scalars through the

central charge Zab(q). Using these variables, one can rewrite the remaining differential

equation as

Zac(q)Z
cd(q)Zde(q)Z

eb(q)

(
−32

5
∂Z4 −

12

5
Z4∂

2
Z4

+
4

5
Z2∂Z2∂Z4 + 4∂ 2

Z2
− 2

5
∂Z4∂φ

)
Eq

+Zac(q)Z
bc(q)

(
31

10
Z2∂Z4 −

3

5
∂Z2 +

8

5
Z2Z4∂

2
Z4

+
1

5
(4Z4 − Z 2

2 )∂Z2∂Z4 −
8

5
Z2∂

2
Z2

+
1

10
Z2∂Z4∂φ −

1

5
∂Z2∂φ

)
Eq

+δba

(
56

25
Z4∂Z4 +

24

25
Z2∂Z2 +

16

25
Z 2

4 ∂
2
Z4

+
16

25
Z2Z4∂Z2∂Z4 +

4

25
Z 2

2 ∂
2
Z2

+
2

25
Z4∂Z4∂φ +

1

25
Z2∂Z2∂φ +

1

202
∂ 2
φ +

1

10
∂φ

)
Eq

= −3

4
δba Eq (3.124)

This provides three independent second-order equations. One finds the solution

Eq =
e−6φ√

1
2Z2 +

√
Z4 +

√
1
2Z2 −

√
Z4

e
−e−4φ

(√
1
2
Z2+
√
Z4+

√
1
2
Z2−
√
Z4

)
. (3.125)

Note that for a 1/2 BPS charge one has

Z4 =
1

4
Z 2

2 , (3.126)

and one recovers the same form of the Fourier coefficients as for E
[

03
2
0 0

0

]
. The term

e−4φ

(√
1

2
Z2 +

√
Z4 +

√
1

2
Z2 −

√
Z4

)
(3.127)

is the action associated to a 1/4 BPS instanton. Considering the central charge in the

spinor representation 1
2Zabγ

ab
i
k, the eigenvalues are

±
√

1

2
Z2 +

√
Z4 ±

√
1

2
Z2 −

√
Z4 (3.128)

and the BPS bound is defined by the largest. In fact they all define solutions to the

equation (3.124), but only (3.125) admits a convergent behaviour in the large radius limit

because the others exhibit exponential growth in the asymptotic. The generic solution with

a convergent behaviour at infinity is therefore supported on a set of functions depending

on ten variables

E [F ] =

∫
d10q F [q]

e−6φ√
1
2Z2 +

√
Z4 +

√
1
2Z2 −

√
Z4

e
−e−4φ

(√
1
2
Z2+
√
Z4+

√
1
2
Z2−
√
Z4

)
+iqIJa

IJ

,

(3.129)

corresponding the other next to minimal unitary representation of SO(5, 5).
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We should also consider the contribution of the 1/2 BPS instantons. But because the

solution is then singular by property of the function, one must rather consider the solution

for a generic s. Because this class of Eisenstein functions is associated to the decomposition

of SO(5, 5) we use, the generating character of the function E
[

0
00 0

s

]
restricted to the Cartan

subgroup is simply e−10sφ. We computed that Es = e−10sφ is a solution to the two equations

in (3.116), and it follows that the Eisenstein function E
[

0
00 0

s

]
also solves them when the

series converges. Note that for a rank one Fourier modes (i.e. q × q = 0), the off-diagonal

equation (3.123) is not strong enough to impose that the solution only depends on Z2,

and the function can also depend on the components of va
I in the SL(3) subgroup of the

stabiliser SL(2)×SL(3)nR2×3 ⊂ SL(5) of qIJ , which we shall write vA2(q). For a 1/2 BPS

charge qIJ one finds the solution to the quadratic equation in (3.116)

Eq = e−2(7−s)φE[s− 3
2 0](vA2(q))Z

2s−9
12

2 Ks− 5
2
(e−4φ

√
Z2) + c1e

−2(13−3s)φZ
2s−7

4
2 Ks− 7

2
(e−4φ

√
Z2)

(3.130)

together with the conjugate solution obtained by the substitution s → 4 − s. We did

not check the cubic equation on these functions, and one cannot determine at this level

which of these solutions actually appear in the Fourier expansion of E
[

0
00 0

s

]
, but the first

solution depending on the SL(3) Eisenstein function admits the appropriate limit to define

the singular structure of the regularised Eisenstein function Ê
[

0
00 0

3

]
[33]

Ê[ 0
00 0

3

] = lim
ε→0

(
E[ 0

00 0
3+ε

] − 45

4ε
E[ 03

2
0 0

0

]
)
. (3.131)

Indeed

e−2(4−ε)φE[ 32+ε 0](vA2(q))Z
2ε−3
12

2 K 1
2

+ε(2πe
−4φ
√
Z2) =

π

ε

e−6φ

√
Z2
e−2πe−4φ

√
Z2 +O(ε0) . (3.132)

In particular, we conclude that the 1/2 BPS instanton contributions to the ∇4R4 coupling

in string theory combine into

1

2
Ê[ 05

2
0 0

0

] +
4

45
Ê[ 0

00 0
3

] (3.133)

=
∑
q∈Z10

q×q=0

∑
n|qIJ

n

(4Ê[1](vA1(q))+2Ê[ 32 0](vA2(q))
) e−6φ

√
Z2
e−2πe−4φ

√
Z2+2πiqIJa

IJ
+. . .

It is rather striking that this combination of Ê[1] and Ê[ 32 0] is precisely the one that defines

the R4 coupling in eight dimensions [11], for which the respective 1
ε poles cancel out.

The non-analytic terms. Similarly as Ê
[

05
2
0 0

0

]
, Ê

[
0

00 0
3

]
does not strictly satisfy to the

supersymmetry equation (3.116), but rather to

D 2
10Ê

[
0

00 0
3

] = −3

4
110Ê[ 0

00 0
3

] +
45

8
110E[ 03

2
0 0

0

] . (3.134)
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A ∇4R4 invariant does not have the right dimension to appear as a counterterm for loga-

rithmic divergences in supergravity, and the non-analytic component of the effective action

responsible for these corrections to the differential equations satisfied by the threshold func-

tions must also include massive states contributions. From the supergravity perspective,

this comes from the property that ∇4R4 has the correct dimension to be a counterterm for

the 1-loop divergence of an R4 invariant operator defined as an insertion. If we consider

the low energy expansion of the effective action, the leading non-analytic components will

match the supergravity effective action, but the next order correction will include the in-

sertion of the exact R4 string theory coupling. Schematically, the amplitude is determined

by the supergravity path integral of the string theory Wilsonian effective S

exp (iW [J ]) =

∫
Dϕ exp

(
i

κ2

(
S0 + κ3S3 + κ5S5 + . . .

)
+ i

∫
Jϕ

)
, (3.135)

such that the corresponding Legendre transform decomposes as

Γ[ϕ] =
1

κ2
S0 + Γ1-loop + κS3 + κ2Γ2-loop + κ3

(
S5 +

[
S3 · Γ

]
1-loop

)
+ . . . (3.136)

If one considers the perturbative string theory contribution as depicted in [33], one finds

indeed a logarithm correction of the form

1

2
Ê[ 05

2
0 0

0

] +
4

45
Ê[ 0

00 0
3

] = e−3φs

(
· · ·+ φse

2φsE[ 03
2
0 0

0

] + . . .

)
, (3.137)

where the overall e−3φs corresponds to the Weyl rescaling to Einstein frame. According

to the analysis displayed in [36], one understands that this logarithm of the dilaton comes

from a logarithm of the Mandelstam variable s in the effective action. We see therefore

that the tree-level and one-loop corrections to the R4 coupling in string theory contribute

respectively to a one-loop and a 2-loop correction to ln(s)s2R4 in the effective action. In

supergravity, this implies that the local operator L[E 3
2
](2,2) defining an arbitrary R4 type

invariant, admits a logarithmic divergence at 1-loop, renormalised by a local operator of

the form L[E 3
2
](1,1) defining a ∇4R4 type invariant, for the same function E 3

2
.

The consistency of this argument requires that the anomalous term in E
[

03
2
0 0

0

]
in the

two supersymmetry equations associated to the two independent invariants define the same

unique invariant, itself associated to the 1-loop divergence of the corresponding R4 type

invariant. Equivalently, the cancelation of the 1
ε divergence in the combination

lim
ε→0

(
1

4
L
[
E+[

05
2

+ε0 0
0

]]
(2,0)

+
4

45
L
[
E[ 0

00 0
3−ε

]]
(1,1)

+
1

4
L
[
E−[

05
2

+ε0 0
0

]]
(0,2)

)
(3.138)

requires that for a function E 3
2

satisfying the 1/2 BPS quadratic equation (3.35), the three

invariants must be identical, i.e.

L[E 3
2
](2,0) = L[E 3

2
](0,2) = L[E 3

2
](1,1) . (3.139)

The corresponding expansions in derivatives of the function E 3
2

are indeed of the same form

in that case because of the quadratic equations satisfied by E 3
2
, and these invariants are

indeed identical provided (3.118) is satisfied.
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4 N = 8 supergravity in four dimensions

We will now discuss the case of N = 8 supergravity in four dimensions [45, 59]. The

R-symmetry group is then SU(8) and the Lorentz group SL(2,C). In this section i = 1

to 8 is an SU(8) index. The same construction permits to determine the properties of the

function defining the R4 type invariant, and we will propose a conjecture for the equations

satisfied by the functions defining the ∇4R4 and ∇6R4 type invariants.

4.1 The R4 type invariant

One can define the linearised R4 type invariants in the linearised approximation by us-

ing harmonic variables in SU(8)/S(U(4) × U(4)) as in [60]. One obtains that the scalar

superfield

W = u1
iu

2
ju

3
ku

4
lW

ijkl , (4.1)

is G-analytic with respect to (with r = 1 to 4 and r̂ = 5 to 8)

uriD
i
αW = 0 , uir̂D̄α̇iW = 0 , (4.2)

such that∫
d8θd8θ̄duF [0,0,0,n,0,0,0]

u W 4+n

∼Wn [0,0,0,n,0,0,0]R4 + · · ·+Wn−12 [0,0,0,n−12,0,0,0]χ8 [0,0,0,6,0,0,0]χ̄8 [0,0,0,6,0,0,0] . (4.3)

Although the harmonic measure does not extend to the non-linear theory, it suggests

strongly that the non-linear invariant admits the expansion

L[E ] = EL+DijklELijkl +

12∑
n=2

Dn[0,0,0,n,0,0,0]E L
[0,0,0,n,0,0,0] . (4.4)

As in the preceding section, we will concentrate on the term with the maximal number of

derivative carrying the highest weight SU(8) representation. Using representation theory

and power counting, one obtains that the maximal weight term can only be the monomial

in χ8χ̄8 because one needs 48 open indices to get this representation. To show that this

monomial exists and is unique, one can use the harmonic projection

χr̂α ≡ εr̂ŝt̂ûuiŝuj t̂u
k
ûχα ijk , χ̄α̇ r = εrstuu

s
iu
t
ju
u
kχ̄

ijk
α̇ , (4.5)

which define 8 + 8 fermionic variables. The maximal monomial is therefore χ8χ̄8, and by

definition of the harmonic variables, it has maximal U(1) weight such that it is in the

[0, 0, 0, 12, 0, 0, 0] representation of SU(8), of Young tableau . To consider the

action of the covariant derivatives on such monomial, we need to consider the independent

terms in χ9

χ[0,0,1,0,0,0,0]
α χ8 [0,0,0,6,0,0,0] ∼ χ9 [0,1,0,5,1,0,0]

α + χ9 [1,0,0,5,0,1,0]
α + χ9 [0,0,0,5,0,0,1]

α . (4.6)

Using the first term (of maximal weight), one gets the two possible combinations

χ9 [0,1,0,5,1,0,0]
α χ̄8 [0,0,0,6,0,0,0] = (χ9

αχ̄
8)[0,1,0,11,1,0,0] + (χ9

αχ̄
8)[1,0,0,11,0,1,0] + . . . , (4.7)
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which will both appear in the derivative of D12Eχ8χ̄8 as

Di
α

(
D12

[0,0,0,12,0,0,0]E χ
8 [0,0,0,6,0,0,0]χ̄8 [0,0,0,6,0,0,0]

)
= D13

[0,1,0,11,0,1,0]E (χi 9α χ̄
8)[0,1,0,11,1,0,0] +Di 13

[0,1,0,11,0,1,0]E (χ9
αχ̄

8)[1,0,0,11,0,1,0] + . . . . (4.8)

The only other way to get χ9 in the [0, 1, 0, 5, 1, 0, 0] representation is through

χ[0,0,1,0,0,0,0]
α χ8 [1,1,0,4,1,0,0] ∼ χ9 [0,1,0,5,1,0,0]

α + χ9 [1,0,0,5,0,1,0]′
α + . . . , (4.9)

where the prime states that the [1, 0, 0, 5, 0, 1, 0] is not necessarily the same, because there

exists two such combinations of χ9. Therefore one should also consider terms like

D12
[0,1,0,10,0,1,0]E χ̄

8 [0,0,0,6,0,0,0]
(
χ8 [0,0,0,6,0,0,0] + χ8 [1,1,0,4,1,0,0]

)
. (4.10)

However [0, 0, 1, 0, 0, 0, 0]× [0, 1, 0, 10, 0, 1, 0] does not contain the [0, 1, 0, 11, 1, 0, 0], so such

terms can only be used to compensate for the [1, 0, 0, 11, 0, 1, 0] in (4.8).

For completeness, less us stress that terms involving bosons with a maximal number

of open SU(8) indices

D13
[0,0,0,11,0,0,0]E F

[0,1,0,0,0,0,0]
αβ χ6αβ[0,0,0,5,0,0,0]χ̄8 [0,0,0,6,0,0,0] + C.C , (4.11)

and

D13
[1,0,0,11,0,0,1] E P

αβ̇ [0,0,0,1,0,0,0]χ7 [1,0,0,5,0,0,0]
α χ̄

7 [0,0,0,5,0,0,1]

β̇
, (4.12)

could not mix with the terms we have been considering. Moreover the second can be

eliminated by the addition of a total derivative, up to the addition of lower derivative

terms in D12E .

We conclude that there is nothing that can compensate for the first term in (4.8), and

the function E must therefore satisfy to the equation

D13
[0,1,0,11,0,1,0]E = 0 . (4.13)

Up to lower derivative terms in E in lower weight representations, this equation can be

reduced to

D11
[0,0,0,11,0,0,0]D

2
[0,1,0,0,0,1,0]E = 0 . (4.14)

The derivative operator D11
[0,0,0,11,0,0,0] includes all components (Dijkl)11 (without summa-

tion over the indices), and its kernel is the constant tensor. We conclude that the function

E must satisfy to the quadratic equation

D2
[0,1,0,0,0,1,0]E = 0 , (4.15)

or more explicitly (with the definition ∆ ≡ 1/3DijklDijkl)

1

24
εijpqrstuDklpqDrstuE =

3

28
δijkl∆E . (4.16)

Using the relation

[Dijkl,Dpqrs]Dtuvw = −24δijklqrs][tDuvw][p + 3δijklpqrsDtuvw , (4.17)
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one obtains the equality between the two quartic invariants

DijklDklpqDpqrsDrsij =
1

12

(
DijklDijkl

)2
+ 6DijklDijkl . (4.18)

Using this property one can conclude that E satisfies

∆2E = −42∆E . (4.19)

The same argument as for SO(5, 5) in the preceding section would permit to show that the

only consistent solution satisfies ∆E = −42 E , consistently with the analysis of [33]. Using

the explicit form of the differential equation of the next section, one computes indeed that

there is no non-trivial solution to (4.16) satisfying to the Laplace equation ∆E = 0. We

conclude that E satisfies to

1

24
εijpqrstuDklpqDrstuE = −9

2
δijklE . (4.20)

4.2 Minimal unitary representation

It is convenient to analyse Equation (4.20) considering an explicit coset representative in

E7(7)/SUc(8) in the parabolic gauge
[

0
0 0 0 0 0 1

]
relevant to the decompactification limit. In

this case we have

V =


e3φ 0 0 0

0 eφVij
I 0 0

0 0 e−φV -1
I
ij 0

0 0 0 e−3φ




1 aJ 1
2 tJKLa

KaL 1
3 tKLPa

KaLaP

0 δJI tIJKa
K 1

2 tIKLa
KaL

0 0 δIJ aI

0 0 0 1

 ,

(4.21)

where Vij
I is a representative of E6(6)/Spc(4) in the fundamental representation, and tIJK

is the invariant symmetric tensor of E6(6).

The decomposition

dV V−1 = P +B (4.22)

in coset and subgroup components gives

P =


3dφ 1

2e
2φV -1

I
kldaI 0 0

1
2e

2φV -1
I ijda

I dφδklij + Pij
kl

√
2e2φΩj][kV

-1
I l][i 0

0
√

2e2φΩj][kV -1
I
l][i −dφδijkl − P

ij
kl

1
2e

2φV -1
I
ijdaI

0 0 1
2e

2φV -1
I klda

I −3dφ

 , (4.23)

where all the antisymmetrisations are understood to be projected to the symplectic traceless

component

X[ij] =
1

2
Xij −

1

2
Xji −

1

8
ΩijΩ

klXkl , (4.24)

and δklij = δ
[k
[i δ

l]
j] −

1
8ΩijΩ

kl. The symplectic matrix Ωij satisfies

ΩikΩjk = δij (4.25)
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and we raise and lower Sp(4) indices as

Xi = ΩijX
j , Xi = XjΩ

ji . (4.26)

The metric on the coset space E7(7)/SUc(8) is defined as

ds2 =
1

6
trP 2 = 12dφ2 +

1

3
PijklP

ijkl + e4φV -1
I ijV

-1
J
ijdaIdaJ , (4.27)

and its inverse

g−1 =
1

12
∂ 2
φ +

1

3
DijklDijkl + e−4φVij

IV ij J∂I∂J . (4.28)

Accordingly, we have

DijklµPµ
pqrs = 3δpqrsijkl , DijklµPν

ijkl = 3δ
µ

ν , (4.29)

on the symmetric space E6(6)/Spc(4). The reader should take care that we use the

same notation for the differential operator Dijkl, that is associated to the 42 variables

of E6(6)/Spc(4) in this subsection, whereas it was used for the 70 variables of E7(7)/SUc(8)

in the preceding one.

The inverse vielbein on E7(7)/SUc(8) are defined as

D =


1
4∂φ

1
2e
−2φV kl I∂I 0 0

1
2e
−2φVij

I∂I
1
12∂φδ

kl
ij +Dijkl

√
2e−2φΩj][kVl][i

I∂I 0

0
√

2e−2φΩj][kV l][i I∂I − 1
12∂φδ

ij
kl −D

ij
kl

1
2e
−2φV ij I∂I

0 0 1
2e
−2φVkl

I∂I −1
4∂φ

 . (4.30)

We compute the different components of the differential equation D2E = −9
21E to give(

1

16
∂ 2
φ +

9

8
∂φ +

1

4
e−4φVij

IV ij J∂I∂J

)
E = −9

2
E (4.31)(

1

2
e−2φV pq I∂IDpqkl + e−2φV kl I∂I

(
2 +

1

6
∂φ

))
E = 0 (4.32)

1

4
e−4φV -1

I
ijtIJK∂J∂K E = 0 (4.33)(( 1

122
∂ 2
φ +

11

24
∂φ

)
δklij +DijpqDklpq +Dijkl

(
1 +

1

6
∂φ

)
+e−4φ

(
δ

[k
[i Vj]p

IV l]p J + V[i
[k IVj]

l] J
)
∂I∂J

)
E = −9

2
δklij E (4.34)

√
2e−2φ

(
V p[i IDpj]kl − V p[k IDpl]ij

)
∂IE = 0 (4.35)

The differential operator D clearly commutes with ∂I , such that we can decompose the

solution into Fourier modes eiqIa
I
. Let us consider in a first place the zero modes qI = 0.

In this case equation (4.31) implies that

E0(φ, V ) = e−6φE5(V ) + e−12φE ′5(V ) . (4.36)

By representation theory, the term in Dijkl in equation (4.34) cannot mix with the others,

such that the function E ′5(V ) must be a constant. One finds that the function e−12φ is
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indeed a solution to the complete differential equation D2E = −9
21E . In order to define a

solution, the other function E5(V ) must satisfy to the equation

DijpqDklpqE5 = −2δklij E5 , (4.37)

which is nothing but the supersymmetry constraint of the five dimensional R4 threshold.

Taking its trace, one obtain indeed the Poisson equation [33]

∆E6(6)
E5 =

1

3
DijklDijklE5 = −18 E5 . (4.38)

Let us consider now the non-trivial Fourier modes. Equation (4.33) implies that

tIJKqJqK = 0 (4.39)

which is the expected equation for a 1
2 -BPS scalar instanton. Equation (4.35) is very

constraining, and implies that Eq(φ, V ) only dependent on the E6(6)/Spc(4) coordinates

through the invariant mass of the charge qI . So we define

Zij(q) = Vij
IqI , |Z(q)|2 = Zij(q)Z

ij(q) , (4.40)

such that Eq(φ, V ) = Eq(φ, |Z(q)|). Because qI is a rank one vector [61],

Zik(q)Z
jk(q) =

1

8
δji |Z(q)|2 . (4.41)

Equation (4.32) determines the dependence in |Z(q)| in terms of the one in φ, such that

one obtains an ordinary differential equation. There are two solutions to this system

Eq(φ, V ) =
e−6φ

|Z(q)|3
(

1± e−2φ|Z(q)|
)
e∓e

−2φ|Z(q)| . (4.42)

To check consistency, we use

DijklZpq(q)=3

(
δ[ij
pqZ

kl](q)−Ω[ijδk[pZq]
l](q)− 1

4
ΩpqΩ

[ijZkl](q)− 1

12
Ω[ijΩkl]Zpq(q)

)
, (4.43)

to compute that for a function Eq(φ, |Z|2)

DijpqDklpqEq(φ, |Z|2) =
2

3

(
Zij(q)Z

kl(q) + Z[i
[k(q)Zj]

l](q)
)(

2|Z(q)|2 ∂2E
∂|Z|22 + 5

∂E
∂|Z|2

)
+

1

36
δklij |Z(q)|2

(
10|Z(q)|2 ∂2E

∂|Z|22 + 73
∂E
∂|Z|2

)
, (4.44)

and

DijklEq(φ, |Z|2) =

(
2Zij(q)Z

kl(q)− 4Z[i
[k(q)Zj]

l](q)− 1

6
δklij |Z(q)|2

)
∂E
∂|Z|2

. (4.45)

The generic solution with appropriate boundary conditions is therefore supported by a

function of seventeen variables F (q),

E [F,G]=

∫
E6(6)

Spin(5,5)nR16

d17q F (q)
e−6φ

|Z(q)|3
(
1+e−2φ|Z(q)|

)
e−e

−2φ|Z(q)|+iqIaI +e−6φE5[G] , (4.46)
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where the additional function E5[G] is a generic solution to (4.37) supported by a function

G of eleven variables. The representation of E7(7) on this space of functions is its minimal

unitary representation.

We conclude that supersymmetry on its own already constrains the function E to

have the expected structure for the string theory effective action, and using the explicit

coefficients computed in [33] one gets the form of the Eisenstein series

E[ 03
2

0 0 0 0 0 ] (4.47)

=
2π2

3
e−12φ+e−6φE[ 03

2
0 0 0 0 ] +

∑
q∈Z27|q×q=0

µ(q)
e−6φ

|Z(q)|3
(
1+2πe−2φ|Z(q)|

)
e−2πe−2φ|Z(q)|+2πiqIa

I
.

The Fourier modes coincide with the analysis of [28, 35].

4.3 ∇4R4 and ∇6R4 type invariants

In the linearised approximation, the ∇4R4 type invariant can be obtained from a harmonic

superspace integral based on SU(8)/S(U(2) × U(4) × U(2)) harmonic variables [60], and

the G-analytic superfield

W rs = u1
iu

2
ju
r
ku

s
lW

ijkl , (4.48)

with r = 3 to 6 of SU(4). W rs is therefore an SO(6) vector, one the most general integrand

is a monomial in a symmetric traceless tensor of SO(6)∫
d12θd12θ̄duF [0,k,0,n,0,k,0]

u r1s1...rnsn (εrstuW
rsW tu)2+kW (r1|(s1W r2s2 . . .W rn)|sn) (4.49)

suggesting that the non-linear invariant admits an expansion

L[E ] =
∑
n,k

Dn+2k
[0,k,0,n,0,k,0]E L

[0,k,0,n,0,k,0] . (4.50)

Consistently with this structure, the function E must satisfy to the constraints

D3
[0,2,0,0,0,0,0]E = 0 , D3

[0,0,0,0,0,2,0]E = 0 , D3
[1,0,0,0,0,0,1]E = 0 . (4.51)

The two first define a condition on the differential operator to the third power in the funda-

mental of E7(7), whereas the last corresponds to a constraints on the differential operator

to the third power in the adjoint representation. Indeed, the harmonic decomposition also

defines the graded decomposition of e7(7) associated to the next to minimal nilpotent orbit,

for which the Lie algebra representative satisfies Q 3
56 = 0 and Q 3

133 = 0.

It turns out that the eigenvalue of the Laplace operator is determined by these equa-

tions by consistency. Indeed, assuming that E satisfy to the equations

∆E = λE , D 3
56E = aD56E , D 3

133E = bD133E , (4.52)

and using the Casimir identities

trD 2
133 = 3trD 2

56 , trD 4
133 =

1

6

(
trD 2

56

)2
,

trD 6
133 = −2trD 6

56 +
5

288

(
trD 2

56

)3
+

23

6

(
trD 2

56

)2
+ 492 trD 2

56 , (4.53)
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one computes that the unique solutions are

λ = −42 , a = −9

2
, b = −14 ,

λ = −60 , a = −9 , b = −20 . (4.54)

The first solution corresponds to the constraint satisfied by the R4 threshold, and we

conclude that the second solution is the relevant one for the ∇4R4 threshold, consistently

with [33]. So E 5
2

must satisfy to the Poisson equation

∆E 5
2

= −60E 5
2
, (4.55)

and

DijpqDpqrsDrsklE 5
2

= −9DijklE 5
2
, Dt[ijkDqtrsDl]prs|[1,0,0,1,0,0,1]E 5

2
= 0 , (4.56)

for the superform L[E 5
2
] to be closed.

The ∇6R4 type invariant can be defined from a harmonic superspace integral based

on SU(8)/S(U(1)×U(6)×U(1)) harmonic variables [60], and the G-analytic superfield

W rst = u1
iu
r
ju
s
ku

t
lW

ijkl , (4.57)

with r = 2 to 7 of SU(6). In this case the measure extends to the complete theory [62].

The number of possible representations of SU(8) becomes rather large, but they are still

self-adjoint by construction. It follows that the constraints

D3
[0,2,0,0,0,0,0]E(0,1) = 0 , D3

[0,0,0,0,0,2,0]E(0,1) = 0 , (4.58)

still apply, although the second one is not satisfied. Using the closure diagram of E7(7) [63],

one finds that there is not a unique next to next to minimal nilpotent orbit. However the

condition Q 3
56 = 0 rules out the dimension 54 orbit. The nilpotent orbit associated to the

harmonic decomposition is in fact not the next one of dimension 64 that would also satisfy

to Q 4
133 = 0, but the following one of dimension 66. Using harmonic superspace, one finds

indeed a non-vanishing integral in the representation [2, 0, 0, 0, 0, 0, 2] by integrating the

square of the quartic SU(6) invariant monomial in W rst with the appropriate function of

the harmonic variables. Therefore the superform expansion must include terms as

L[E(0,1)] = E(0,1)L+DijklE(0,1)Lijkl + · · ·+D4
[2,0,0,0,0,0,2]E(0,1)L

[2,0,0,0,0,0,2] + . . . (4.59)

and the corresponding component of D 4
133E(0,1) acting on the su(8) adjoint does not vanish.

The determination of the eigenvalue of the Laplace operator does not follow straight-

forwardly from a group theory argument in that case, and one must moreover consider the

corrections to the supersymmetry transformations at this order. Nonetheless, relying on

the known Poisson equation satisfied by the function according to [33], we find that the

function must moreover satisfy to

DijpqDpqrsDrsklE(0,1) = −9DijklE(0,1) −
1

2
E 3

2
DijklE 3

2
, (4.60)
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Figure 2. Closure diagram of nilpotent orbits of E7(7) of dimension smaller than 76.

which is consistent with

∆E(0,1) = −60 E(0,1) − E 2
3
2

. (4.61)

Let us now analyse these equations in the parabolic gauge as in the preceding section.

We shall only analyse the solution for qI = 0, and for the homogenous equation in the

fundamental representation. After some computations one obtains(
1

64
∂ 3
φ +

21

32
∂ 2
φ +

9

2
∂φ −

1

4
DijklDijkl

)
E 5

2
= −9× 1

4
∂φE 5

2
(4.62)(

δklij

(
1

123
∂ 3
φ +

5

96
∂ 2
φ +

1

6
∂φ+

1

6
DijklDijkl

)
+DijpqDklpq

(
1

4
∂φ−

15

4

)
+DijpqDpqrsDrskl +Dijkl

(
1

48
∂ 2
φ +

27

24
∂φ +

7

2

))
E 5

2
= −9

(
1

12
δklij ∂φ +Dijkl

)
E 5

2

where we recall that Dijkl states for the covariant derivative on E6(6)/Spc(4) in these expres-

sions. One finds indeed that the decompactification limit of the corresponding Eisenstein

series [33]

E[ 05
2

0 0 0 0 0 ] =
8ζ(8)

15π
e−24φ +

π

3
e−12φE[ 03

2
0 0 0 0 ] +

1

2
e−6φE[ 05

2
0 0 0 0 ] +O(e−e

−2φ
) (4.63)

associated to the ∇4R4 correction is a solution provided

DijpqDpqrsDrsklE[ 05
2

0 0 0 0 ]+
4

3
DijklE[ 05

2
0 0 0 0 ] =

25

4

(
DijpqDklpq+

70

27
δklij

)
E[ 05

2
0 0 0 0 ] . (4.64)

The latter equation must therefore define the differential equation satisfied by the function

defining the ∇4R4 type invariant in five dimensions, and is indeed consistent with the

associated Poisson equation [33].
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For qI 6= 0, one computes straightforwardly that the equations D 3
56E = −9D56E implies

moreover

tIJKqIqJqK = 0 . (4.65)

For E[ 05
2

0 0 0 0 0 ] this is consistent with the property that the next to minimal unitary repre-

sentation is defined on functions of 26 variables. Note that the sum of two vectors satisfying

to tIJKqJqK = 0 necessarily satisfies (4.65), such that the complete function E(0,1) is sup-

ported on Fourier modes satisfying to this same constraint (4.65). Where by E(0,1) we mean

the function appearing in the ∇6R4 type invariant we discuss in this paper, and not the

complete function appearing in the four-graviton amplitude. We will explain in another

publication that there is in fact a second class of ∇6R4 type invariants associated to the

dimension 54 nilpotent orbit, and which admits generic Fourier modes in the decompactifi-

cation limit. The unitary representation on which E(0,1) is supported is, however, defined on

functions of 33 variables, therefore the Fourier modes must depend on a non-trivial func-

tion of the scalar fields vB4(q) parametrizing the subgroup Spin(4, 5) ⊂ E6(6) stabilizing

qI [61]. Because 33− 26 = 7 we expect the function E(vB4(q)) to satisfy a differential equa-

tion restring effectively its dependence on seven variables. This suggests that the relevant

function on SO(4, 5)/(SO(4)× SO(5)) should satisfy to the following differential equation

associated to a coadjoint SO(4, 5) orbit of dimension 14, i.e.

D 2
16E[s000](vB4(q)) =

s(2s− 7)

8
116E[s000](vB4(q)) . (4.66)

We note moreover that the solution to (4.56) is also a solution to the homogeneous equation

associated to (4.60), therefore the restriction of the Fourier mode function to the case in

which the function on SO(4, 5) is a constant must also be solution. We conclude that the

correct value of s must be s = 7
2 . This is precisely the value for which the Eisenstein series

diverges in 1
2s−7 , and one concludes that the exact ∇6R4 threshold function Ê(0,1) should

rather satisfy to a corrected equation of the form

DijpqDpqrsDrsklÊ(0,1) = −9DijklÊ(0,1)−
1

4
Dijkl

(
E[ 03

2
0 0 0 0 0 ]

)2
+ξDijklE[ 05

2
0 0 0 0 0 ] , (4.67)

for some number ξ. This implies accordingly that the E 5
2
∇4R4 type superform form factor

diverges at 1-loop into the three-level E 5
2
∇6R4 type superform form factor, defined with

the same function.

5 N = 16 supergravity in three dimensions

In three dimensions the only propagating degrees of freedom are the scalar fields parametriz-

ing the symmetric space E8(8)/Spinc(16) [64], such that the Maurer-Cartan form

dV V−1 =

(
−1

4ΓpqA
Bωpq

1
4ΓklACP

C

1
4Γij

BCPC −2δ
[k
[i ωj]

l]

)
, (5.1)

defines the scalar momentum PA in the Majorana-Weyl representation of the R-symmetry

group Spin(16), whereas the fermion fields χαȦ are defined in the opposite chirality
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Majorana-Weyl representation. Solving the superspace constraints [65] the momentum

decomposes as

PA = EaPAa + Eαi ΓiAȦχα Ȧ . (5.2)

The metric on the symmetric space is defined as

ds2 =
1

30
tr P248

2
= PAP

A , (5.3)

and the covariant derivative satisfies

[DA,DB]DC = − 1

16
ΓijABΓijC

DDD . (5.4)

5.1 The R4 type invariant

The argumentation proposed in the last section in four dimensions extends to N = 16

supergravity in three dimensions. In this case the equivalent of the R4 type invariant,

i.e. (∇P )4 type invariant in practice, admits a superspace construction in the linearised

approximation based on harmonic variables in SO(16)/U(8) [66]. The linearised superfield

WA as a chiral spinor of Spin(16) decomposes into

128+
∼= 1(−4) ⊕ 28

(−2) ⊕ 70(0) ⊕ 28(2) ⊕ 1(4) , (5.5)

and the G-analytic superfield W is in the weight 4 singlet of SU(8), i.e. an SO(16) pure

spinor. The Dirac fermion χαȦ decomposes accordingly as a Majorana-Weyl spinor of

opposite chirality into

128− ∼= 8
(−3) ⊕ 56

(−1) ⊕ 56(1) ⊕ 8(3) , (5.6)

and we write χrα the U(1) weight 3 component, with r = 1 to 8 of SU(8). The linearised

invariant∫
d16θduF

[
0

00000 0
n

]
u W 4+n∼(Wn)

[
0

00000 0
n

]
(∇P )4+. . .+(Wn−12)

[
0

00000 0
n-12

]
(χ16)

[
0

00000 0
12

]

(5.7)

suggests the expansion of the non-linear closed superform in

L[E ] =
12∑
n=0

Dn[ 0
00000 0

n

]E L
[

0
00000 0

n

]
. (5.8)

The superconformal symmetry OSp(16|4,R) of the linearised theory [67] suggests that

all the supersymmetry invariants are defined by harmonic superspace integrals in the lin-

earised approximation, such that the harmonic superspace integrals are indeed in bijective

correspondence with the independent non-linear invariants. One confirms this property

by looking at the monomial in the fermions of maximal weight. Using the harmonic de-

composition, one gets directly that the 2× 8 fermions χrα to the sixteenth power carries a

U(1) weight 48, just as does W 12. Considering the action of the covariant derivative Di
α,

one cannot include one more χrα, so the only non-trivial term appears to include instead
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a weight 1 fermion χrstα . Projecting out the corresponding representations in Di
αL[E ](3,0)

using the harmonic variables, one gets

D(1)
αr

(
D12(−48)E(χ16)(48) +D12(−46)

st E(χ15)β(45)
u χstu(1)β + . . .

)
∼ D13(−48)

rstu E χstu(1)(χ16)(48) + . . .

(5.9)

where the two terms in the first line contribute to two independent terms in the second

∼ D(0)

rstu(D(−4))12 and ∼ D(−2)

[rs D
(−2)

tu] (D(−4))11, such that they cannot compensate each other.

To deduce the Spin(16) covariant expressions associated to these terms, we note that the

rank p antisymmetric tensor representation of SO(16) admits as a highest weight compo-

nent of weight p the rank p antisymmetric tensor in the anti-fundamental of SU(8). We

conclude that χstu(1)(χ16)(48) is in the highest weight component of the
[

0
00001 0

11

]
represen-

tation, whereas D13(−48)

rstu is in the lowest weight component of the
[

0
00010 0

11

]
, such that this

expression corresponds to

Di
α

(
D12[

0
00000 0

12

]E (χ16)

[
0

00000 0
12

])
∼ D13[

0
00010 0

11

]E (χ17)

[
0

00001 0
11

]
+ . . . (5.10)

There is no other contribution that could cancel this term, because the next terms of

maximal weight are in the
[

0
00010 0

10

]
E and carry a maximal weight component in D12 (−44)

rstu E
whereas

D(1)
αrE ∼ D(−2)

rs E χs (3)
α +D(0)

rstuE χstu (1)
α + . . . (5.11)

and they cannot contribute to terms inD13 (−48)

rstu E . We conclude similarly as in the preceding

sections that the function E must satisfy to the differential equation

D11[
0

00000 0
11

]D2[
0

00010 0
0

]E = 0 . (5.12)

Using the property that the Dn differential operator of maximal weight in the
[

0
00000 0

n

]
has no kernel, one obtains that the function E must satisfy to the quadratic equation

Γijkl ABDADB E = 0 . (5.13)

Using SO(16) Fierz identities

DADB =
1

128

(
δAB(D2)+

1

4!
ΓijklAB (DΓijklD)+

2

8!
ΓijklmnpqAB (DΓijklmnpqD)

)
+

1

2
[DA,DB] ,

ΓijΓ[n]Γij =−4(n−6)(n−10)Γ[n] , ΓijklΓ[n]Γijkl=16
(
(n−8)4−22(n−8)2+42

)
, (5.14)

and the commutation relation (5.4), one computes that

Γijkl ABDADB Γijkl
CDDCDD = 672DADA

(
DBDB + 120

)
. (5.15)

Moreover, (5.13) implies as a consistency condition that the third derivative of the function

E restricted to the
[

0
01000 0

1

]
must also vanish, i.e.(

5 Γkl A(BΓijkl
CD) + 14 Γij

A(BδCD)
)
DBDCDD E = 0 . (5.16)
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Using (5.13) in this equation one obtains

14 Γij
ABDB

(
DCDC + 120

)
E = 0 , (5.17)

such that if E is canceled by the Laplacian, it must necessarily be a constant, and super-

symmetry indeed implies

∆E = −120E , (5.18)

consistently with [33].

Using these equations, one computes that the covariant derivative in the adjoint rep-

resentation

D248 =

(
0 1

4ΓklACDC
1
4Γij

BCDC 0

)
, (5.19)

satisfies

D248

2
+ 151248 = −

(
DADB 0

0 0

)
. (5.20)

This equation defines a quantization of the algebraic equation

Q248

2
= −

(
QAQ

B 0

0 0

)
, (5.21)

for a Majorana-Weyl pure spinor of Spin∗(16), which is a representative of the minimal

nilpotent orbit of E8(8) [68]. The solutions to the differential equation (5.13) with appro-

priate boundary conditions define the minimal unitary representation of E8(8), and are

supported on functions depending on 29 variables as explained in [25, 26].

5.2 The ∇4R4 type invariant

The (∇2P )4 type invariant can be defined in harmonic superspace [66] in the linearised

approximation using harmonic variables parametrizing SO(16)/(SO(8) × U(4)) such that

the Majorana-Weyl representations decomposes as

128± ∼= 8(−2)

± ⊕ (4⊗ 8∓)(−1) ⊕ (6⊗ 8±)(0) ⊕ (4⊗ 8∓)(1) ⊕ 8(2)

± , (5.22)

such that the weight 2 scalar superfield W r in the chiral spinor representation of Spin(8)

is G-analytic. One defines the invariant∫
d24θduF

[
0

000k0 0
n

]
u r1r1...rn (W rWr)

2+kW (r1W r2 . . .W rn) (5.23)

∼(Wn+2k)

[
0

000k0 0
n

]
(∇2P )4+. . .+(Wn+2k−16)

[
0

000k0 0
n-16

]
(χ16)

[
0

00000 0
12

]
(P 4)

[
0

00000 0
4

]
,

which suggests the following expansion of the superform defining the invariant at the non-

linear level

L[E ] =
∑
n,k

Dn+2k[
0

000k0 0
n

]E L
[

0
000k0 0

n

]
. (5.24)
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Assuming that all (∇2P )4 type invariants are defined in this way, this shows that the

function must have covariant derivatives restricted to these representations. This is the

case if and only if he function E satisfies the cubic equation (5.16). Moreover, acting with

one more derivative on this equation one obtains using the Fierz rearrangements

1

72
(DΓijklpqrsD) (DΓpqrsD)

=
(
DΓ[ij

pqD
) (
DΓkl]pqD

)
+ (DΓijklD) (9(DD) + 872) ,(

DΓ[ijΓ
pqD

) (
DΓkl]pqD

)
=
(
DΓ[ij

pqD
) (
DΓkl]pqD

)
− 2 (DΓijklD) ((DD) + 360)

= −1

2

(
DΓ[ij

pqD
) (
DΓkl]pqD

)
− 1

2
(DΓijklD) ((DD)−24)− 1

48
(DΓijklpqrsD) (DΓpqrsD)

= −6 (DΓijklD) ((DD) + 152) , (5.25)

that

Γ[ij
A
E

(
5 Γpq E(BΓkl]pq

CD) + 14 Γkl]
E(BδCD)

)
DADBDCDD

= −16 Γijkl
ABDADB

(
DCDC + 180

)
, (5.26)

such that the function must then either satisfy to the quadratic equation (5.13) or to

∆E = −180E . (5.27)

The two equations being incompatible, supersymmetry requires that the function defining

the (∇2P )4 type invariant satisfies (5.27), consistently with [33]. Using the latter, (5.16)

simplifies to

Γkl ABΓijkl
CDDBDCDD = −168 Γij

ABDB . (5.28)

Using this equation and (5.27) one computes that

D248

3
=

(
0 −3ΓklACDC

−31
2 Γij

BCDC 0

)
, (5.29)

which defines the quantisation of the algebraic equation Q248

3
= 0 defining the next to mini-

mal nilpotent orbit of E8(8) [68]. We conclude that the solutions to (5.28) with appropriate

boundary conditions define the next to minimal unitary representation of E8(8) associated

to the next to minimal coadjoint orbit.
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A Conventions in eight dimensions

The SU(2) invariant tensors εij and εij are defined respectively such that

εij ≡

(
0 1

−1 0

)
, εij ≡

(
0 −1

1 0

)
, εijε

jk = δki , εijεjk = δik . (A.1)

One raises and lower the SU(2) indices according to the rules

χi
kl... = εijχ

jkl... ,
∂

∂χi
χj = δji ,

∂

∂χi
χj = δij ,

∂

∂χi
= −εij ∂

∂χj
, (A.2)

The conventions for the SO(1, 7) invariant tensors are pletely antisymmetric tensor with

the local metric are taken to be:

ε01234567 = 1 , η00 = −1 , η11 = η22 = · · · = 1 , (A.3)

and we define the antisymmetric Kronecker delta tensors

δb1b2...bna1a2...an ≡ δ
[b1
[a1
δb2a2 . . . δ

bn]
an] . (A.4)

We decompose the spinor representation into the Weyl representation of positive chirality

with undotted indices and negative chirality with dotted indices, which are complex con-

jugate. We use the octonionic representation such that the charge conjugation matrix is

the identity, and we have the following relations

(γa)α̇α = − i

7!
εabcdefgh(γbcdefgh)α̇α

(γab)α̇β̇ = − i

6!
εab cdefgh(γcdefgh)α̇β̇

(γabc)α̇α =
i

5!
εabcdefgh(γdefgh)α̇α

(γabcd)α̇β̇ =
i

4!
εabcd efgh(γefgh)α̇β̇

(γabcdefgh)α̇β̇ = iεabcdefghCα̇β̇

Cαβ = δαβ

(γab)αβ = −(γab)βα

(γabcd)αβ = (γabcd)βα

(γa)αα̇ =
i

7!
εabcdefgh(γbcdefgh)αα̇

(γab)αβ =
i

6!
εab cdefgh(γcdefgh)αβ

(γabc)αα̇ = − i

5!
εabcdefgh(γdefgh)αα̇

(γabcd)αβ = − i

4!
εabcd efgh(γefgh)αβ

(γabcdefgh)αβ = −iεabcdefghCαβ

Cα̇β̇ = δα̇β̇

(γab)α̇β̇ = −(γab)β̇α̇

(γabcd)α̇β̇ = (γabcd)β̇α̇

(A.5)

B Dimension 1 solution to the superspace Bianchi identities

In this appendix we give the dimension 1 Bianchi identities of N = 2 supergravity in eight

dimensions and solve them. The result are ordered in function of the U(1) weight.
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B.1 Dimension 1 Bianchi identities

The components of dωT = R of dimension 1 and U(1) weight 4, 3 and 0 are

3D i
(αT

jk δ̇l
βγ) + 3T ij

(αβ
ε
mT

mk δ̇l
εγ) + 3T ij β̇m

(αβ T k δ̇l
β̇mγ)

= 0

2T i α̇k
c(α T j d

α̇kβ) = Rij d
αβc

3D i
(αT

jk δ
βγ) l + 3T ij ε

(αβ mT
mk δ
εγ) l + 3T ij β̇m

(αβ T k δ
β̇mγ) l

=
3

4
R ij

(αβcd(γ
cd) δ

γ) δ
k
l + 3R ij k

(αβ lδ
δ
γ)

D̄α̇iT
jk δ̇l
βγ +2D j

(βT
k δ̇l
γ)α̇i +T jk β̇mβγ T δ̇l

β̇mα̇i
+T jk εβγ mT

m δ̇l
ε α̇i

+2T j β̇m
α̇i(β T k δ̇l

ε̇mγ) + 2T j ε
α̇i(β mT

mk δ̇l
ε γ) + T j e

α̇i(β T k δ̇l
e γ) =

1

4
Rjkβγ ab(γ

ab) δ̇
α̇ δ

l
i +Rjk l

βγi δ
δ̇
α̇

T i γ
cα kT

k d
γβ̇j

+ T γ̇k

cβ̇j
T i d
γ̇kα = Ri d

αβ̇jc
(B.1)

2D i
(αT

j δ
β)γ̇k l + D̄γ̇kT

ij δ
αβ l + T ij ε

αβ mT
m δ
ε γ̇k l + T ij β̇m

αβ T δ
β̇mγ̇k l

+ 2T i ε
γ̇k(α mT

mj δ
ε β) l + 2T i β̇m

γ̇k(α T j δ

β̇mβ) l
+ 2T i e

γ̇k(α T j δ
eβ) l

=
1

2
R i
γ̇k(α cd(γ

cd) δ
β) δ

j
l + 2R i

γ̇k(αδ
δ
β)δ

j
l + 2R i j

γ̇k(α lδ
δ
β) (B.2)

The Bianchi identity for the 2-form field strength F̄ decomposes in components of U(1)

weight 4, 2 and 0 as

2Di
(αF̄

j mn
β)a +T ij ε

αβ l F̄
l mn
εa +T ij ε̇l

αβ F̄mnε̇la = 2P i mnpq
(α F̄ jβ)a pq + P̄aF

ij mn
αβ

Di
αF̄

mn
β̇ja

+ D̄β̇jF̄
i mn
αa + T i ε

αβ̇j l
F̄ l mnεa + T i ε̇l

αβ̇j
F̄mnε̇la + T i e

αβ̇j
F̄mnea + T i ε̇l

aα F̄mn
ε̇lβ̇j

= P i mnpqα F̄β̇ja pq + Pmnpq
β̇j

F̄ iαa pq + P̄β̇jF
i mn
αa

2D̄(α̇iF̄
mn
β̇j)a

+ T ε
α̇iβ̇j l

F̄ l mnεa + T ε̇l
α̇iβ̇j

F̄mnε̇la + 2T ε̇l
a(α̇i F̄mn

ε̇lβ̇j)

= 2Pmnpq(α̇i F̄β̇j)apq+P
mnpq
a F̄α̇iβ̇jpq+2P̄(α̇iF

mn
β̇j)a

(B.3)

The Bianchi identity for the 3-form field strength decomposes in components of U(1) weight

2 and 0 as

2D i
(αH

j mn
β)ab + 4T i ε̇l

a](α H j mn
ε̇lβ)[b + T ij ε

αβ lH
l mn
εab + T ij ε̇lαβ Hmn

ε̇lab

= −2P i mnpq
(α Hj

β)ab pq + F
ij p(m
αβ F̄

n)
ab p + 4F

i p(m
a](α F̄

j n)
β)[b p (B.4)

Di
αH

mn
β̇jab

+ D̄β̇jH
i mn
αjab + T i ε

αβ̇j l
H l mn
εab + T i ε̇l

αβ̇j
Hmn
ε̇lab + T i ε̇l

αβ̇j
Hmn
ε̇lab + T i e

αβ̇j
Hmn
eab

+2T i ε
a]α lH

l mn
εβ̇j[b

+ 2T ε̇l
a]β̇j

H i mn
ε̇lα[b

=−P i mnpqα Hβ̇jab pq−P
mnpq

β̇j
H i
αab pq−2Pmnpq[a H i

αβ̇jb] pq
+2F

i p(m
[aα F̄

n)

β̇jb] p
+2F

p(m

[aβ̇j
F̄
i n)
αb] p (B.5)

The Bianchi identity for the 4-form field strength Ḡ decomposes in components of U(1)

weight 4, 2 and 0 as follows

2D i
(αḠ

j
β)abc + T ij ε

αβ l Ḡ
l
εabc = 3P̄[aG

ij
αβbc] + 6H i pq

ab](α F̄ jβ)[c pq

D̄β̇jḠ
i
αabc + T i ε

αβ̇j l
Ḡlεabc + T i e

αβ̇j
Ḡeabc + 3T i ε̇l

[aα Ḡε̇lβ̇jbc]

= 3Hpq

β̇j[ab
F̄ iαc] pq + 3H i pq

α[abF̄β̇jc] pq + 3H i pq

αβ̇j[a
F̄bc] pq

T ε
α̇iβ̇j l

Ḡlεabc + 6T ε̇l
a](α̇i Ḡε̇lβ̇j)[bc = 2P̄(α̇iGβ̇j)abc +Hpq

abcF̄α̇iβ̇j pq + 6Hpq
ab](α̇iF̄β̇j)[c pq (B.6)
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The dimension 1 components of dωP̄ = 0 of respective U(1) weight 6, 4 and 2 read

T ij ε̇lαβ P̄ε̇l = 0

Di
αP̄β̇j + T i e

αβ̇j
P̄e + T i ε̇l

αβ̇j
P̄ε̇l = 0

2D̄(α̇iP̄β̇j) + T i ε̇l
α̇iβ̇j

P̄ε̇l = 0 (B.7)

And similarly the components of dωP
ijkl = 0 of dimension 1 and respective U(1) weight 2

and 0 are

2D i
(αP

j pqrs
β) + T ij β̇lαβ P pqrs

β̇l
+ T ij ε

αβ lP
l pqrs
ε = 0

Di
αP

pqrs

β̇j
+ D̄β̇jP

i pqrs
α + T i β̇l

αβ̇j
P pqrs
β̇l

+ T i ε
αβ̇j l

P l pqrsε + T i e
αβ̇j

P pqrse = 0 (B.8)

B.2 Dimension 1 solution

The only component of U(1) weight 4 is the covariant derivative of the fermion field χ̄

Di
αχ̄

j

β̇
=

1

2
(γa)αβ̇

(
iεijP̄a + (χ̄kγaλ

ijk)
)

+
3

8
λijkα χ̄β̇ k . (B.9)

From weight 2 and above, there are more components, and for convenience we will define the

following basis of bilinear in the fermions in irreducible representations of SU(2)×Spin(1, 7)

(λλ) ≡ λijkλijk ,

(λλ)ijkl ≡ λm(ijλkl)m ,(
χ̄λ̄
)ij
ab
≡ χ̄kγabλ̄ijk ,(

χ̄λ̄
)ijkl
ab
≡ χ̄(iγabλ̄

jkl) ,

(λλ)abcd ≡ λ
ijkγabcdλijk ,

(λλ)ijklabcd ≡ λ
m(ijγabcdλ

kl)
m ,(

χ̄λ̄
)ij
abcd
≡ χ̄kγabcdλ̄ijk ,

(λλ)ijab ≡ λ
iklγabλ

j
kl ,(

χ̄λ̄
)ij ≡ χ̄kλ̄ijk ,(

χ̄λ̄
)ijkl ≡ χ̄(iλ̄jkl) .

(B.10)

The corresponding torsion component is

T i β̇j
aα = (γbcd) β̇

α εij
(
i

24
Ḡ−abcd −

i

576
(λλ)abcd

)
+(γ bc

a ) β̇
α

(
i

24
F̄ ijcd +

i

48

(
χ̄λ̄
)ij
cd

+
i

12
(λλ)ijcd

)
+(γb) β̇

α

(
5i

12
F̄ ijab +

i

12

(
χ̄λ̄
)ij
ab

+
i

3
(λλ)ijab

)
. (B.11)

The (0, 2, 0) Riemann curvature component decomposes into the so(1, 7) part

Riα
j
βc
d = Cαβ

(
5

6
F̄ d ij
c +

2

3

(
χ̄λ̄
) d ij

c
+

1

6
(λλ) d ij

c

)
+(γ dab

c )αβ

(
1

12
F̄ ijab +

1

6

(
χ̄λ̄
)ij
ab

+
1

24
(λλ)ijab

)
+(γab)αβε

ij

(
1

4
Ḡ−abc

d − 1

96
(λλ)abc

d

)
, (B.12)

the su(2) part

Ri j kαβ l = P i kmnpα P jβ lmnp −
1

2
δkl P

i mnpq
α P jβ mnpq , P i jklmα = −εi(jλklm)

α , (B.13)
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and the u(1) part that vanishes. The covariant derivative of the fermion fields of U(1)

weight 2 are

Di
αλ

jkl
β = Cαβ

(
−
(
χ̄λ̄
)ijkl − 15

32
(λλ)ijkl +

3

4
εi(j

(
χ̄λ̄
)kl))

+
1

1536
(γabcd)αβ (λλ)ijklabcd

+(γab)αβ

(
−1

4
εi(jF̄

kl)
ab −

1

128
εi(j (λλ)

kl)
ab +

1

16
εi(j

(
χ̄λ̄
)kl)
ab

+
1

4

(
χ̄λ̄
)ijkl
ab

)
, (B.14)

D̄α̇iχ̄
j

β̇
= Cα̇β̇

(
− 3

32
δji (λλ)− 15

32

(
χ̄λ̄
) j

i

)
+ (γabcd)α̇β̇

(
1

192
δji Ḡ

−
abcd +

1

1536

(
χ̄λ̄
) j

abcd i

)
+(γab)α̇β̇

(
−1

8
F̄ j
ab i −

1

64

(
χ̄λ̄
) j

ab i
+

1

32
(λλ) j

ab i

)
. (B.15)

In our notations, the field F̄ab and Habc coincide with the corresponding (respectively

(2, 0, 0) and (3, 0, 0)) components of their associated superforms, whereas the (4, 0, 0) com-

ponent of the 4-form superform decomposes into a complex selfdual part Ḡabcd and a

complex antiselfdual part bilinear in the fermions, i.e.

Ḡabcd = Ḡ−abcd −
1

8

(
λijkγabcdλijk

)
. (B.16)

We now consider the U(1) invariant components, with the following basis of bilinear in the

fermions in irreducible representations of SU(2)× Spin(1, 7)(
λλ̄
)ijkl
abc
≡λm(ijγabcλ̄

kl)
m ,(

λλ̄
)ij
a
≡λkl(iγaλ̄j)kl ,

(χχ̄)ijabc≡χ
(iγabcχ̄

j) ,

(χχ̄)a≡χ
iγaχ̄i ,

(
λλ̄
)ijkl
a
≡λm(ijγaλ̄

kl)
m ,(

λλ̄
)
abc
≡λijkγabcλ̄ijk ,

(χχ̄)ija ≡χ
(iγaχ̄

j) ,

(
λλ̄
)ij
abc
≡λkl(iγabcλ̄

j)
kl ,(

λλ̄
)
a
≡λijkγaλ̄ijk ,

(χχ̄)abc≡χ
iγabcχ̄i .

(B.17)

The corresponding component of the torsion is

T i β
aα j = (γbc) β

α δij

(
− i

64

(
λλ̄
)
abc

+
i

16
(χχ̄)abc

)
+(γ bcd

a ) β
α δij

(
− i

192

(
λλ̄
)
bcd

+
i

48
(χχ̄)bcd

)
+(γ b

a ) β
α

(
− i

16

(
λλ̄
)i
b j

+
i

12
(χχ̄)ib j

)
+ (γ b

a ) β
α δij

(
− i

96

(
λλ̄
)
b

+
i

8
(χχ̄)b

)
+δβα

(
− 5i

16

(
λλ̄
)i
a j

+
5i

12
(χχ̄)ia j

)
+ δβαδ

i
j

(
− 5i

96

(
λλ̄
)
a
− 5i

8
(χχ̄)a

)
+(γ bcd

a ) β
α

(
− 1

36
H i
bcd j +

i

96

(
λλ̄
)i
bcd j

+
i

24
(χχ̄)ibcd j

)
+(γbc) β

α

(
−1

6
H i
abc j +

i

32

(
λλ̄
)i
abc j

+
1

8
(χχ̄)iabc j

)
, (B.18)

and the (0, 1, 1) component of the Riemman curvature in so(1, 7) is

Ri d
αβ̇jc

= (γa)αβ̇δ
i
j

(
1

16

(
λλ̄
) d

ac
− 1

4
(χχ̄) d

ac

)
+ (γa d

c )αβ̇

(
1

8

(
λλ̄
)i
a j
− 1

6
(χχ̄)ia j

)
+(γabe)αβ̇εabe

fgh d
c

(
− 1

108
H i
fgh j +

i

288

(
λλ̄
)i
fgh j

+
i

72
(χχ̄)ifgh j

)
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+(γabe)αβ̇εabe
fgh d

c δ
i
j

(
− i

576

(
λλ̄
)
fgh

+
i

144
(χχ̄)fgh

)
+(γa)αβ̇

(
−2i

3
H d i
ac j −

1

8

(
λλ̄
) d i

ac j
− 1

2
(χχ̄) d i

ac j

)
+(γa d

c )αβ̇δ
i
j

(
1

48

(
λλ̄
)
a

+
1

4
(χχ̄)a

)
. (B.19)

whereas its component in u(1) and su(2) are

Ri
αβ̇j

= −2χiαχ̄β̇j ,

Ri k
αβ̇j l

= P i kmnpα Pβ̇j lmnp −
1

2
δkl P

i mnpq
α Pβ̇j mnpq , P i jklmα = −εi(jλklm)

α . (B.20)

The covariant derivative of the fermion λ is

D̄iα̇λ
jkl
α = (γa)α̇α

(
iP jkl
ai − 13

32

(
λλ̄
) jkl

ai
+

3

64
δ

(j
i

(
λλ̄
)kl)
a

+ δ
(j
i (χχ̄)kl)a

)
+(γabc)α̇α

(
− 1

64

(
λλ̄
) jkl

abci
− i

12
δ

(j
i H

kl)
abc −

1

128
δ

(j
i

(
λλ̄
)kl
abc

)
. (B.21)

C Dimension 3/2 solution to the superspace Bianchi identities

In the core of the paper we use the dimension 1/2 covariant derivative of the dimension

1 fields and the equation of motion of the fermion field χ̄, which we derive from the

dimension 3/2 Bianchi identities and the algebra of the covariant derivatives in this

appendix. We do not derive the expression of the dimension 3/2 Riemann curvature that

we do not need in this paper.

C.1 Dimension 3/2 Bianchi identities

The components of dimension 3/2 of dωP̄ = 0 of respective U(1) weight 5 and 3 are

Di
αP̄a + T i β̇lαa P̄β̇l = 0 ,

D̄α̇iP̄a −DaP̄α̇i + T β̇l
α̇ia P̄β̇l = 0 , (C.1)

whereas the dimension 3/2 component of dωP
ijkl = 0 is

Di
αP̄

jklm
a −DaP̄

i jklm
α + T i β̇pαa P jklm

β̇p
+ T i β

αa pP
p jklm
β = 0 . (C.2)

The Bianchi identity for the 2-form field strength F̄ gives at this dimension the following

equations of U(1) weight 3 and 1

Di
αF̄

jk
ab +2D[aF̄

i jk
b]α +2T i γ

α[a l F̄
l jk
γb] + 2T i β̇l

α[a F̄ jk
β̇lb]

= 2P jklm[a F̄ i
b]α lm + P i jklmα F̄ab lm + 2P̄[aF

i jk
b]α

D̄α̇iF̄
jk
ab +2D[aF̄

jk
b]α̇i+2T γ

α̇i[a l F̄
l jk
γb] + 2T β̇l

α̇i[a F̄ jk
β̇lb]

+ T β̇l
ab F̄

jk

β̇lα̇i

= 2P̄[aF
jk
b]α̇i+P̄α̇iF

jk
ab +2P jklm[a F̄b]α̇i lm+P jklmα̇i F̄ab lm(C.3)
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The Bianchi identity for the 4-form field strength Ḡ gives the following equations of re-

spective U(1) weight 3 and 1

Di
αḠabcd + 4D[aḠ

i
bcd]α + 4T i γ

α[a l Ḡ
l
γbcd] = 4Hjk

[abcF̄
i

d]α jk + 6H i jk
α[abF̄cd] jk

D̄α̇iḠabcd + 4T γ
α̇i[a l Ḡ

l
γbcd] + 6T β̇l

[ab Ḡβ̇lα̇icd] = P̄α̇iGabcd + 4P̄[aGbcd]α̇i

+4Hjk
[abcF̄d]α̇i jk + 6Hjk

α̇i[abF̄cd] jk (C.4)

The Bianchi identity for the 3-form field strength gives the following equation of U(1)

weight 1

Di
αH

jk
abc − 3D[aH

i jk
bc]α + 3T i γ

α[a lH
l jk
γbc] + 3T i β̇l

α[a Hjk

β̇lbc]
+ 3T β̇l

[ab H i
β̇lαc]

= −P i jkpqα Habc pq − 3P jkpq[a H i
bc]α pq − 6F

p(j
[ab F̄

i k)
c]α p + 6F

i p(j
α[a F̄

k)
bc] p (C.5)

We will also make use of the following commutation relations between the covariant deriva-

tives acting of the fermions, ordered with respect to their U(1) weight from 5 to 1{
Di
α, D

j
β

}
χ̄kγ̇=−T ij ε

αβ lD
l
εχ̄

k
γ̇ − T

ij β̇l
αβ D̄β̇lχ̄

k
γ̇ −

1

4
Rijαβcd(γ

cd) δ̇
γ̇ χ̄

k
δ̇
−Rij k

αβ lχ̄
l
δ̇{

Di
α, D

j
β

}
λpqmγ =−T ij ε

αβ lD
l
ελ
pqm
γ − T ij β̇lαβ D̄β̇lλ

pqm
γ − 1

4
Rijαβcd(γ

cd) δ
γ λ

pqm
δ − 3R

ij (p
αβ lλ̄

qm)l

δ̇{
Di
α, D̄β̇j

}
χ̄kγ̇=−T i ε

αβ̇j l
Dl
εχ̄

k
γ̇ − T i δ̇l

αβ̇j
D̄δ̇lχ̄

k
γ̇ − T i e

αβ̇j
Deχ̄

k
γ̇

−1

4
Ri
αβ̇jcd

(γcd) δ̇
γ̇ χ̄

k
δ̇
−Ri k

αβ̇j l
χ̄lγ̇ − 3Ri

αβ̇j
χ̄kγ̇{

D̄α̇i, D̄β̇j

}
χ̄kγ̇=−T ε

α̇iβ̇j l
Dl
εχ̄

k
γ̇ − T δ̇l

α̇iβ̇j
D̄δ̇lχ̄

k
γ̇ −

1

4
Rα̇iβ̇jcd(γ

cd) δ̇
γ̇ χ̄

k
δ̇
−R k

α̇iβ̇j l
χ̄l
δ̇{

Di
α, D̄β̇j

}
λpqmγ =−T i ε

αβ̇j l
Dl
ελ
pqm
γ − T i δ̇l

αβ̇j
D̄δ̇lλ

pqm
γ − T i e

αβ̇j
Deλ

pqm
γ

−1

4
Ri
αβ̇jcd

(γcd) δ
γ λ

pqm
δ − 3R

i (p

αβ̇j l
λqm)l
γ −Ri

αβ̇j
λpqmγ{

Di
α, D

j
β

}
λ̄pqmγ̇ =−T ij ε

αβ lD
l
ελ̄
pqm
γ̇ −T ij δ̇lαβ D̄δ̇lλ̄

pqm
γ̇ − 1

4
Rijαβcd(γ

cd) δ̇
γ̇ λ̄

pqm

δ̇
−3R

ij (p
αβ lλ̄

qm)l
γ̇ (C.6)

C.2 Dimension 3/2 solution

The number of linearly independent dimension 3/2 monomials in the fields is rather large,

and we find it convenient to define the following basis in irreducible representations of

SU(2), and filtrated with respect to Spin(1, 7) irreducible representations, such that the

larger representations are not irreducible. It is indeed convenient to keep the gamma traces

rather than to remove them systematically. The elements of U(1) weight 5 are(
Ḡχ̄
)i
α̇
≡ Ḡ−abcd

(
γabcdχ̄i

)
α̇
,(

F̄ χ̄
)i
α̇
≡ F̄ ijab

(
γabχ̄j

)
α̇
,(

χ̄χ̄λ̄
)i
α̇
≡
(
χ̄χ̄
)jk
ab

(
γabλ̄ijk

)
α̇
,(

χ̄λλ
)i
α̇
≡
(
γabχ̄j

)
α̇

(
λλ
)i
ab j

,(
χ̄λλ

)i
aα
≡
(
γbχ̄j

)
α

(
λλ
)i
ab j

,

(
F̄ χ̄
)i
aα
≡ F̄ ijab

(
γbχ̄j

)
α
,(

χ̄χ̄λ̄
)i
aα
≡
(
χ̄χ̄
)jk
ab

(
γbλ̄ijk

)
α̇
,(

χ̄λλ
)i
A α̇
≡ χ̄iα̇

(
λλ
)
,(

χ̄λλ
)i
A aα

≡
(
γbcdχ̄iα̇

)
α

(
λλ
)
abcd

.

(C.7)
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where we use the bilinear in the fermions defined in (B.10). Solving equation (C.1) one gets

Di
αP̄a = (γa)

α̇
α

(
i

12

(
F̄ χ̄
)i
α̇

+
i

96

(
Ḡχ̄
)i
α̇

+
7i

48

(
χ̄χ̄λ̄

)i
α̇
− i

24

(
χ̄λλ

)i
α̇

)
+

2i

3

(
F̄ χ̄
)i
aα
− i

3

(
χ̄χ̄λ̄

)i
aα
− i

12

(
χ̄λλ

)i
aα
− i

288

(
χ̄λλ

)i
A aα

(C.8)

From U(1) weight 3 and below the number of monomials increases considerably, and we

shall display them in increasing order of the number of fields. At the linear level we have

the covariant derivative of the fermion field χ̄, but because it satisfies the Dirac equation,

we distinguish its irreducible component (Daχ̄
i
α̇)′ from the gamma trace that is equal to

a sum of monomials in the fields. Here the prime states for the projection to the
[

1
1 0

0

]
irreducible representation of Spin(1, 7). The list of bilinear in the fields is

(
P̄ λ̄
)ijk
α
≡ P̄a

(
γaλ̄ijk

)
α
,(

F̄ λ
)i
α
≡ F̄ jkab

(
γabλijk

)
α
,(

F̄ λ
)ijk
α
≡ F̄ l(iab

(
γabλ

jk)
l

)
α
,(

Ḡλ
)ijk
aα̇
≡Ḡ−abcd

(
γbcdλijk

)
α̇
,(

P 4χ̄
)ijk
α
≡P ijkla

(
γaχ̄l

)
α
,(

Hχ̄
)i
α
≡H ij

abc

(
γabcχ̄j

)
α
,(

Hχ̄
)i
abcα̇
≡H ij

abcχ̄α̇ j ,(
Hχ̄
)ijk
abα
≡H(ij

abc

(
γcχ̄k)

)
α
,

(
P̄ λ̄
)ijk
aα̇
≡ P̄aλ̄ijkα̇ ,(

F̄ λ
)i
aα̇
≡ F̄ jkab

(
γbλijk

)
α̇
,(

F̄ λ
)ijk
aα̇
≡ F̄ l(iab

(
γbλ

jk)
l

)
α̇
,(

Ḡλ
)ijk
abcdα
≡Ḡ−abcdλ

ijk
α ,(

P 4χ̄
)ijk
aα̇
≡P ijkla χ̄α̇ l ,(

Hχ̄
)i
aα̇
≡H ij

abc

(
γbcχ̄j

)
α̇
,(

Hχ̄
)ijk
α
≡H(ij

abc

(
γabcχ̄k)

)
α
,

(
F̄ λ
)i
abα
≡ F̄ jkab λ

i
α jk ,(

F̄ λ
)ijk
abα
≡ F̄ l(iab λ

jk)
α l ,(

Hχ̄
)i
abα
≡H ij

abc

(
γcχ̄j

)
α
,(

Hχ̄
)ijk
aα̇
≡H(ij

abc

(
γbcχ̄k)

)
α̇
.

(C.9)

Finally we must also consider the cubic terms in the fermions. We list in a first place the

monomials in χχ̄2

(
χχ̄χ̄

)i
α
≡ χiα

(
χ̄χ̄
)
,(

χχ̄χ̄
)i
aα̇
≡
(
γbcdχi

)
α

(
χ̄χ̄
)
abcd

,(
χχ̄χ̄

)i
abα
≡ χjα

(
χ̄χ̄
)i
ab j

,(
χχ̄χ̄

)ijk
α
≡
(
γabχ(i

)
α

(
χ̄χ̄
)jk)

ab
,(

χχ̄χ̄
)ijk
abα
≡ χ(i

α̇

(
χ̄χ̄
)jk)

ab
.

(
χχ̄χ̄

)i
A α
≡
(
γabχj

)
α

(
χ̄χ̄
)i
ab j

,(
χχ̄χ̄

)i
A aα̇

≡
(
γbχj

)
α

(
χ̄χ̄
)i
ab j

,(
χχ̄χ̄

)i
abcdα

≡ χiα
(
χ̄χ̄
)
abcd

,(
χχ̄χ̄

)ijk
aα̇
≡
(
γbχ(i

)
α̇

(
χ̄χ̄
)jk)

ab
,

(C.10)

where we use definition (B.10) for the bilinear in χ̄ as well as

(
χ̄χ̄
)
abcd
≡ χ̄iγabcdχ̄i ,

(
χ̄χ̄
)
≡ χ̄iχ̄i . (C.11)
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Then we define the basis of three-linear in χ̄λλ̄(
χ̄λλ̄

)i
α
≡
(
γaχ̄i

)
α

(
λλ̄
)
a
,(

χ̄λλ̄
)i
B α
≡
(
γabcχ̄i

)
α

(
λλ̄
)
abc
,(

χ̄λλ̄
)i
aα̇
≡ χ̄iα̇

(
λλ̄
)
a
,(

χ̄λλ̄
)i
B aα̇

≡
(
γbcχ̄i

)
α̇

(
λλ̄
)
abc
,(

χ̄λλ̄
)i
abα
≡
(
γcχ̄i

)
α

(
λλ̄
)
abc
,(

χ̄λλ̄
)i
abcα̇
≡ χ̄iα̇

(
λλ̄
)
abc
,(

χ̄λλ̄
)ijk
α
≡
(
γaχ̄(i

)
α

(
λλ̄
)jk)

a
,(

χ̄λλ̄
)ijk
B α
≡
(
γabcχ̄(i

)
α

(
λλ̄
)jk)

abc
,(

χ̄λλ̄
)ijk
aα̇
≡ χ̄(i

α̇

(
λλ̄
)jk)

a
,(

χ̄λλ̄
)ijk
B aα̇

≡
(
γbcχ̄(i

)
α̇

(
λλ̄
)jk)

abc
,(

χ̄λλ̄
)ijk
abα
≡
(
γcχ̄(i

)
α

(
λλ̄
)jk)

abc
.

(
χ̄λλ̄

)i
A α
≡
(
γaχ̄j

)
α

(
λλ̄
)i
a j
,(

χ̄λλ̄
)i
C α
≡
(
γabcχ̄j

)
α

(
λλ̄
)i
abc j

,(
χ̄λλ̄

)i
A aα̇

≡ χ̄jα̇
(
λλ̄
)i
a j
,(

χ̄λλ̄
)i
C aα̇

≡
(
γbcχ̄j

)
α̇

(
λλ̄
)i
abc j

,(
χ̄λλ̄

)i
A abα

≡
(
γcχ̄j

)
α

(
λλ̄
)i
abc j

,(
χ̄λλ̄

)i
A abcα̇

≡ χ̄jα̇
(
λλ̄
)i
abc j

,(
χ̄λλ̄

)ijk
Aα
≡
(
γaχ̄l

)
α

(
λλ̄
)ijk
a l
,(

χ̄λλ̄
)ijk
C α
≡
(
γabcχ̄l

)
α

(
λλ̄
)ijk
abc l

,(
χ̄λλ̄

)ijk
A aα̇

≡ χ̄lα̇
(
λλ̄
)ijk
a l
,(

χ̄λλ̄
)ijk
C aα̇

≡
(
γbcχ̄l

)
α̇

(
λλ̄
)ijk
abc l

,(
χ̄λλ̄

)ijk
A abα

≡
(
γcχ̄l

)
α

(
λλ̄
)ijk
abc l

,

(C.12)

where we use the following definitions(
λλ̄
)
a
≡ λijkγaλ̄ijk ,(

λλ̄
)ij
a
≡ λkl(iγaλ̄j)kl ,(

λλ̄
)ijkl
a
≡ λm(ijγaλ̄

kl)
m ,

(
λλ̄
)
abc
≡ λijkγabcλ̄ijk ,(

λλ̄
)ij
abc
≡ λkl(iγabcλ̄

j)
kl ,(

λλ̄
)ijkl
abc
≡ λm(ijγabcλ̄

kl)
m .

(C.13)

Finally, the list of three-linear in λ3 is(
λλλ

)i
α
≡ λikjβ λβ lmj λαklm ,(

λλλ
)ijk
α
≡ λijkα

(
λλ
)
,(

λλλ
)ijk
abα
≡ λl(ijα

(
λλ
)k)

ab l
,

(
λλλ

)i
abα
≡ λijkβ

(
λlmj γabλklm

)
,(

λλλ
)ijk
A α
≡
(
γabcdλijk

)
α

(
λλ
)
abcd

,(
λλλ

)ijk
aα̇
≡
(
γbλl(ij

)
α̇

(
λλ
)k)

ab l
,

(C.14)

where we use again (B.10).

Within this basis, one computes the Dirac equation for the fermion field χ̄, solving the

Bianchi identities displayed in section C.1, such that

Daχ̄
i
α̇ = (Daχ̄

i
α̇)′ +

(
γa
) α

α̇

(
− i

64

(
F̄ λ
)i
α

+
1

96

(
Hχ̄
)i
α
− 3i

16

(
χχ̄χ̄

)i
α
− i

32

(
χχ̄χ̄

)i
A α

+
5i

256

(
χ̄λλ̄

)i
α

+
5i

128

(
χ̄λλ̄

)i
A α

+
i

1536

(
χ̄λλ̄

)i
B α

+
i

768

(
χ̄λλ̄

)i
C α

+
i

32

(
λλλ

)i
α

)
(C.15)

The covariant derivative of the scalar momentum gives

D̄iα̇P̄a =

(
2(Daχ̄α̇i)

′ − 1

6

(
Hχ̄
)
aα̇i

+
i

48

(
χχ̄χ̄

)
aα̇i

+
i

6

(
χχ̄χ̄

)
A aα̇i

+
i

12

(
χ̄λλ̄

)
aα̇i

− i
2

(
χ̄λλ̄

)
A aα̇i

)
+
(
γa
) α

α̇

(
− i

32

(
F̄ λ
)
αi
− 5

144

(
Hχ̄
)
αi

+ i
(
χχ̄χ̄

)
αi
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− i

48

(
χχ̄χ̄

)
A αi

+
23i

384

(
χ̄λλ̄

)
αi
− 3i

64

(
χ̄λλ̄

)
A αi
− 7i

768

(
χ̄λλ̄

)
B αi

− 7i

384

(
χ̄λλ̄

)
C αi

+
i

16

(
λλλ

)
αi

)
, (C.16)

whereas the covariant derivative of F̄ is

Di
αF̄

jk
ab

= εi(j(γab)
β
α

(
− 1

144

(
F̄ λ
)k)

β
− i

216

(
Hχ̄
)k)

β
− 1

3

(
χχ̄χ̄

)k)

β
+

7

24

(
χχ̄χ̄

)k)

A β
− 35

576

(
χ̄λλ̄

)k)

β

+
13

288

(
χ̄λλ̄

)k)

A β
− 23

3456

(
χ̄λλ̄

)k)

B β
+

25

1728

(
χ̄λλ̄

)k)

C β
− 5

24

(
λλλ

)k)

β

)
+εi(j(γ[a)

α̇
α

(
−4i(Db]χ̄

k)
α̇ )′ +

2

9

(
F̄ λ
)k)

b]α̇
− i

9

(
Hχ̄
)k)

b]α̇
− 1

72

(
χχ̄χ̄

)k)

b]α̇
− 17

9

(
χχ̄χ̄

)k)

A b]α̇

−13

36

(
χ̄λλ̄

)k)

b]α̇
− 7

18

(
χ̄λλ̄

)k)

A b]α̇
+

1

24

(
χ̄λλ̄

)k)

B b]α̇
− 1

12

(
χ̄λλ̄

)k)

C b]α̇

)
+εi(j

(
1

18

(
F̄ λ
)k)

abα
+

4i

9

(
Hχ̄
)k)

abα
− 1

9

(
χ̄λλ̄

)k)

abα
− 2

9

(
χ̄λλ̄

)k)

A abα
+

1

9

(
λλλ

)k)

abα

)
+(γab)

β
α

(
− 1

12

(
F̄ λ
)ijk
β
− i

9

(
Hχ̄
)ijk
β
− 1

4

(
χχ̄χ̄

)ijk
β

+
5

48

(
χ̄λλ̄

)ijk
β
− 7

24

(
χ̄λλ̄

)ijk
A β

− 7

288

(
χ̄λλ̄

)ijk
B β

+
5

144

(
χ̄λλ̄

)ijk
C β
− 1

8

(
λλλ

)ijk
β

+
1

2304

(
λλλ

)ijk
A β

)
+(γ[a)

α̇
α

(
−2i

(
P̄ λ̄
)ijk
b]α̇
− 1

3

(
F̄ λ
)ijk
b]α̇
−4i

(
P 4χ̄

)ijk
b]α̇

+
1

12

(
Ḡλ
)ijk
b]α̇

+
i

3

(
Hχ̄
)ijk
b]α̇

+
7

3

(
χχ̄χ̄

)ijk
b]α̇

+
1

12

(
χ̄λλ̄

)ijk
b]α̇
− 5

6

(
χ̄λλ̄

)ijk
A b]α̇

+
1

8

(
χ̄λλ̄

)ijk
B b]α̇

− 1

4

(
χ̄λλ̄

)ijk
C b]α̇

− 1

4

(
λλλ

)ijk
b]α̇

)
−5

6

(
F̄ λ
)ijk
abα
− 4i

3

(
Hχ̄
)ijk
abα
− 1

6

(
χ̄λλ̄

)ijk
abα
− 1

3

(
χ̄λλ̄

)ijk
A abα

− 1

3

(
λλλ

)ijk
abα

(C.17)

and the one of Ḡ−

Di
αḠ
−
abcd = (γ[a)

α̇
α

(
−16i

3

(
Hχ̄
)i
bcd]α̇

−
(
χ̄λλ̄

)i
bcd]α̇

+ 2
(
χ̄λλ̄

)i
A bcd]α̇

)
− 2
(
χχ̄χ̄

)i
abcdα

+(γ[abc)
α̇
α

(
−4i(Dd]χ̄

i
α̇)′ +

(
F̄ λ
)i
d]α̇

+
5i

3

(
Hχ̄
)i
d]α̇

+
1

24

(
χχ̄χ̄

)i
d]α̇

+
1

3

(
χχ̄χ̄

)i
A d]α̇

+
1

12

(
χ̄λλ̄

)i
d]α̇

+
1

2

(
χ̄λλ̄

)i
A d]α̇

+
1

8

(
χ̄λλ̄

)i
B d]α̇

− 1

4

(
χ̄λλ̄

)i
C d]α̇

)
+(γabcd)

β
α

(
−1

8

(
F̄ λ
)i
β
− 11i

72

(
Hχ̄
)i
β
− 1

24

(
χχ̄χ̄

)i
A β
− 1

96

(
χ̄λλ̄

)i
β

− 1

16

(
χ̄λλ̄

)i
A β
− 1

192

(
χ̄λλ̄

)i
B β

+
1

96

(
χ̄λλ̄

)i
C β

)
+(γ[ab)

β
α

(
4i
(
Hχ̄
)i
cd]β

+
3

4

(
χ̄λλ̄

)i
cd]β
− 3

2

(
χ̄λλ̄

)i
A cd]β

)
. (C.18)

We shall finally consider the components of U(1) weight 1, for which the number of

independent elements is the largest. Similarly as for χ̄ we define (Daλ
ijk
α )′ as the irreducible
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representation component of the covariant derivative of the fermion λ in the
[

0
1 0

1

]
, and ρ̄iabα̇

as the component of the Rarita-Schwinger field strength in the irreducible representation[
1

0 1
0

]
, all other components of the Rarita-Schwinger field strength being equal to monomials

in the other fields through the Rarita-Schwinger equation. We define in a first place the

bilinear combinations

(
P̄χ
)i
α̇
≡ P̄a

(
γaχi

)
α̇
,(

F̄ λ̄
)i
α̇
≡ F̄ jkab

(
γabλ̄ijk

)
α̇
,(

F̄ λ̄
)i
abα̇
≡ F̄ jkab λ̄

i
α̇ jk ,(

F̄ λ̄
)ijk
aα
≡ F̄ l(iab

(
γbλ̄

jk)
l

)
α
,(

F̄ λ̄
)ijklm
α̇

≡ F̄ (ij
ab

(
γabλ̄klm)

)
α̇
,(

Ḡλ̄
)ijk
α̇
≡ Ḡ−abcd

(
γabcdλ̄ijk

)
α̇
,(

Hλ
)i
α̇
≡ Hjk

abc

(
γabcλijk

)
α̇
,(

Hλ
)i
abα̇
≡ Hjk

abc

(
γcλijk

)
α̇
,(

Hλ
)ijk
α̇
≡ H l(i

abc

(
γabcλ

jk)
l

)
α̇
,(

Hλ
)ijk
abα̇
≡ H l(i

abc

(
γcλ

jk)
l

)
α̇
,(

Hλ
)ijklm
α̇

≡ H(ij
abc

(
γabcλklm)

)
α̇
,(

P 4λ
)i
α̇
≡ P ijkla

(
γaλijk

)
α̇
,(

P 4λ
)ijk
α̇
≡ P lm(ij

a

(
γaλlm

k)
)
α̇
,(

P 4λ
)ijklm
α̇

≡ Pn(ijk
a

(
γaλn

lm)
)
α̇
,(

Fχ̄
)i
α̇
≡ F ijab

(
γabχ̄j

)
α̇
,(

Fχ̄
)i
abα̇
≡ F ijabχ̄α̇ j ,(

Fχ̄
)ijk
aα
≡ F (ij

ab

(
γbχ̄k)

)
α
,(

Gχ̄
)i
aα
≡ G+

abcd

(
γbcdχ̄i

)
α

(
P̄χ
)i
aα
≡ P̄aχiα ,(

F̄ λ̄
)i
aα
≡ F̄ jkab

(
γbλ̄ijk

)
α
,(

F̄ λ̄
)ijk
α̇
≡ F̄ l(iab

(
γabλ̄l

jk)
)
α̇
,(

F̄ λ̄
)ijk
abα̇
≡ F̄ l(iab λ̄

jk)
α̇ l ,(

F̄ λ̄
)ijklm
aα

≡ F̄ (ij
ab

(
γbλ̄klm)

)
α
,(

Ḡλ̄
)ijk
abα̇
≡ Ḡ−abcd

(
γcdλ̄ijk

)
α̇
,(

Hλ
)i
aα
≡ Hjk

abc

(
γbcλijk

)
α
,(

Hλ
)i
abcα
≡ Hjk

abcλ
i
α jk ,(

Hλ
)ijk
aα
≡ H l(i

abc

(
γbcλ

jk)
l

)
α
,(

Hλ
)ijk
abcα
≡ H l(i

abcλ
jk)
α l ,(

Hλ
)ijklm
aα

≡ H(ij
abc

(
γbcλklm)

)
α
,(

P 4λ
)i
aα
≡ P ijkla λα ijk ,(

P 4λ
)ijk
aα
≡ P lm(ij

a λ
k)
α lm ,(

P 4λ
)ijklm
aα

≡ Pn(ijk
a λlm)

α n ,(
Fχ̄
)i
aα
≡ F ijab

(
γbχ̄j

)
α(

Fχ̄
)ijk
α̇
≡ F (ij

ab

(
γabχ̄k)

)
α̇(

Fχ̄
)ijk
abα̇
≡ F (ij

ab χ̄
k)

β̇(
Gχ̄
)i
abcdα̇

≡ G+
abcdχ̄

i
α̇

(C.19)
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Then comes the base of three-linear in the fermions, starting with the terms in χχ̄λ

(
χχ̄λ

)i
α̇
≡
(
χχ̄
)jk
a

(
γaλjk

i
)
α̇
,(

χχ̄λ
)i
aα
≡
(
χχ̄
)jk
a
λiα jk ,(

χχ̄λ
)i
abα̇
≡
(
χχ̄
)jk
abc

(
γcλjk

i
)
α̇
,(

χχ̄λ
)ijk
α̇
≡
(
χχ̄
)
a

(
γaλijk

)
α̇
,(

χχ̄λ
)ijk
B α̇
≡
(
χχ̄
)
abc

(
γabcλijk

)
α̇
,(

χχ̄λ
)ijk
aα
≡
(
χχ̄
)
a
λijkα ,(

χχ̄λ
)ijk
B aα
≡
(
χχ̄
)
abc

(
γbcλijk

)
α
,(

χχ̄λ
)ijk
abα̇
≡
(
χχ̄
)
abc

(
γcλijk

)
α̇
,(

χχ̄λ
)ijk
abcα
≡
(
χχ̄
)
abc
λijkα ,(

χχ̄λ
)ijklm
α̇

≡
(
χχ̄
)(ij
a

(
γaλklm)

)
α̇
,(

χχ̄λ
)ijklm
aα

≡
(
χχ̄
)(ij
a
λklm)
α ,

(
χχ̄λ

)i
A α̇
≡
(
χχ̄
)jk
abc

(
γabcλjk

i
)
α̇
,(

χχ̄λ
)i
A aα
≡
(
χχ̄
)jk
abc

(
γbcλjk

i
)
α
,(

χχ̄λ
)i
abcα
≡
(
χχ̄
)jk
abc
λiα jk ,(

χχ̄λ
)ijk
A α̇
≡
(
χχ̄
)l(i
a

(
γaλl

jk)
)
α̇
,(

χχ̄λ
)ijk
C α̇
≡
(
χχ̄
)l(i
abc

(
γabcλl

jk)
)
α̇
,(

χχ̄λ
)ijk
A aα
≡
(
χχ̄
)l(i
a
λ
jk)
α l ,(

χχ̄λ
)ijk
C aα
≡
(
χχ̄
)l(i
abc

(
γbcλl

jk)
)
α
,(

χχ̄λ
)ijk
A abα̇

≡
(
χχ̄
)l(i
abc

(
γcλl

jk)
)
α̇
,(

χχ̄λ
)ijk
A abcα

≡
(
χχ̄
)l(i
abc
λ
jk)
α l ,(

χχ̄λ
)ijklm
A α̇

≡
(
χχ̄
)(ij
abc

(
γabcλklm)

)
α̇
,(

χχ̄λ
)ijklm
A aα

≡
(
χχ̄
)(ij
abc

(
γbcλklm)

)
α
,

(C.20)

where we have used the basis of bilinear defined in section B.2. For the terms in χ̄λ̄2 we

give the following basis

(
χ̄λ̄λ̄

)i
α̇
≡ χ̄iα̇

(
λ̄λ̄
)
,(

χ̄λ̄λ̄
)i
B α̇
≡
(
γabχ̄j

)
α̇

(
λ̄λ̄
)i
ab j

,(
χ̄λ̄λ̄

)i
abα̇
≡
(
γcdχ̄i

)
α̇

(
λ̄λ̄
)
abcd

,(
χ̄λ̄λ̄

)i
abcdα̇

≡ χ̄iα̇
(
λ̄λ̄
)
abcd

,(
χ̄λ̄λ̄

)ijk
A α̇
≡
(
γabcdχ̄l

)
α̇

(
λ̄λ̄
)ijk
abcd l

,(
χ̄λ̄λ̄

)ijk
aα
≡
(
γbχ̄(i

)
α

(
λ̄λ̄
)jk)

ab
,(

χ̄λ̄λ̄
)ijk
A abα̇

≡ χ̄(i
α̇

(
λ̄λ̄
)jk)

ab
,(

χ̄λ̄λ̄
)ijklm
A α̇

≡
(
γabcdχ̄(i

)
α̇

(
λ̄λ̄
)jklm)

abcd
,(

χ̄λ̄λ̄
)ijklm
aα

≡
(
γbχ̄n

)
α

(
λ̄λ̄
)ijklm
ab n ,

(
χ̄λ̄λ̄

)i
A α̇
≡
(
γabcd

) β̇

α̇
χ̄i
β̇

(
λ̄λ̄
)
abcd

,(
χ̄λ̄λ̄

)i
aα
≡
(
γbχ̄j

)
α

(
λ̄λ̄
)i
ab j

,(
χ̄λ̄λ̄

)i
A abα̇

≡ χ̄jα̇
(
λ̄λ̄
)i
ab j

,(
χ̄λ̄λ̄

)ijk
α̇
≡ χ̄lα̇

(
λ̄λ̄
)ijk
l
,(

χ̄λ̄λ̄
)ijk
B α̇
≡
(
γabχ̄(i

)
α̇

(
λ̄λ̄
)jk)

ab
,(

χ̄λ̄λ̄
)ijk
abα̇
≡
(
γcdχ̄l

)
α̇

(
λ̄λ̄
)ijk
abcd l

,(
χ̄λ̄λ̄

)ijklm
α̇

≡ χ̄(i
α̇

(
λ̄λ̄
)jklm)

,(
χ̄λ̄λ̄

)ijklm
B α̇

≡
(
γabχ̄n

β̇

)
α̇

(
λ̄λ̄
)ijklm
ab n ,

(C.21)

where we use

(
λ̄λ̄
)
≡ λ̄ijkλ̄ijk ,(

λ̄λ̄
)ijkl≡ λ̄m(ij λ̄kl)m ,

(
λ̄λ̄
)
abcd
≡ λ̄ijkγabcdλ̄ijk ,(

λ̄λ̄
)ijkl
abcd
≡ λ̄m(ijγabcdλ̄

kl)
m ,

(
λ̄λ̄
)ij
ab
≡ λ̄kl(iγabλ̄j)kl ,(

λ̄λ̄
)ijklmn
ab

≡ λ̄(ijkγabλ̄
lmn) .

(C.22)
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Finally we define the basis of three-linear in λ2λ̄ to be(
λλλ̄

)i
α̇
≡
(
λλ
)ijkl

λ̄α̇ jkl ,(
λλλ̄

)i
aα
≡
(
λλ
)ijkl
abcd

(
γbcdλ̄jkl

)
α
,(

λλλ̄
)i
abα̇
≡
(
λλ
)jk
ab
λ̄iα̇ jk ,(

λλλ̄
)ijk
α̇
≡
(
λλ
)
λ̄ijkα̇ ,(

λλλ̄
)ijk
B α̇
≡
(
λλ
)l(i
ab

(
γabλ̄l

jk)
)
α̇
,(

λλλ̄
)ijk
aα
≡
(
λλ
)
abcd

(
γbcdλ̄ijk

)
α
,(

λλλ̄
)ijk
B aα
≡
(
λλ
)l(i
ab

(
γbλ̄l

jk)
)
α
,(

λλλ̄
)ijk
abα̇
≡
(
λλ
)l(i
ab
λ̄
jk)
α̇ l ,(

λλλ̄
)ijk
abcdα̇

≡
(
λλ
)
abcd

λ̄ijkα̇ ,(
λλλ̄

)ijklm
α̇

≡
(
λλ
)n(ijk

λ̄
lm)
α̇ n ,(

λλλ̄
)ijklm
B α̇

≡
(
λλ
)np(ijkl
ab

(
γabλ̄np

m)
)
α̇
,(

λλλ̄
)ijklm
A aα

≡
(
λλ
)(ij
ab

(
γbλ̄

klm)

β̇

)
α
,

(
λλλ̄

)i
A α̇
≡
(
λλ
)jk
ab

(
γabλ̄jk

i
)
α̇
,(

λλλ̄
)i
A aα
≡
(
λλ
)jk
ab

(
γbλ̄jk

i
)
α
,(

λλλ̄
)i
abcdα̇

≡
(
λλ
)ijkl
abcd

λ̄α̇ jkl ,(
λλλ̄

)ijk
A α̇
≡
(
λλ
)lm(ij

λ̄
k)
α̇ lm ,(

λλλ̄
)ijk
C α̇
≡
(
λλ
)ijklmn
ab

(
γabλ̄lmn

)
α̇
,(

λλλ̄
)ijk
A aα
≡
(
λλ
)lm(ij

abcd

(
γbcdλ̄

k)
lm

)
α
,(

λλλ̄
)ijk
C aα
≡
(
λλ
)ijklmn
ab

(
γbλ̄lmn

)
α
,(

λλλ̄
)ijk
A abα̇

≡
(
λλ
)ijklmn
ab

λ̄α̇ lmn ,(
λλλ̄

)ijk
A abcdα̇

≡
(
λλ
)lm(ij

abcd
λ̄
k)
α̇ lm ,(

λλλ̄
)ijklm
A α̇

≡
(
λλ
)(ij
ab

(
γabλ̄klm)

)
α̇
,(

λλλ̄
)ijklm
aα

≡
(
λλ
)n(ijk

abcd

(
γbcdλ̄n

lm)
)
α
,(

λλλ̄
)ijklm
B aα

≡
(
λλ
)np(ijkl
ab

(
γbλ̄np

m)
)
α
,

(C.23)

where we use definition (B.10) together with the following ones(
λλ
)ijkl
abcd
≡ λm(ijγabcdλ

kl)
m ,

(
λλ
)ijklmn
ab

≡ λ(ijkγabλ
lmn) . (C.24)

Now we can use this basis to write down the solution to the Bianchi identities. The Dirac

equation of λ gives the following decomposition

Daλ
ijk
α = (Daλ

ijk
α )′ +

(
γa
) β̇

α

(
− i

32

(
F̄ λ̄
)ijk
β̇

+
i

768

(
Ḡλ̄
)ijk
β̇

+
1

96

(
Hλ
)ijk
β̇

− i

192

(
χχ̄λ

)ijk
C β̇
− 7

64

(
χ̄λ̄λ̄

)ijk
β̇

+
i

3072

(
χ̄λ̄λ̄

)ijk
A β̇
− 3i

256

(
χ̄λ̄λ̄

)ijk
B β̇

+
i

16

(
Fχ̄
)ijk
β̇

+
5i

64

(
χχ̄λ

)ijk
β̇

+
5i

32

(
χχ̄λ

)ijk
A β̇
− i

384

(
χχ̄λ

)ijk
B β̇

+
3i

64

(
λλλ̄

)ijk
A β̇
− 11i

1280

(
λλλ̄

)ijk
B β̇

+
i

128

(
λλλ̄

)ijk
C β̇

)
(C.25)

The covariant derivative of the scalar momentum P ijkl yields

Di
αP

jklm
a

= εi(j
(
γa
) β̇

α

(
i

160

(
F̄ λ̄
)ijk)

β̇
+

i

256

(
Ḡλ̄
)ijk)

β̇
+

1

160

(
Hλ
)ijk)

β̇
− i

16

(
Fχ̄
)ijk)

β̇
+

3i

64

(
χχ̄λ

)ijk)

β̇

− 33i

160

(
χχ̄λ

)ijk)

A β̇
− 7i

384

(
χχ̄λ

)ijk)

B β̇
− 19i

960

(
χχ̄λ

)ijk)

C β̇
− 21i

64

(
χ̄λ̄λ̄

)ijk)

β̇
+

i

1024

(
χ̄λ̄λ̄

)ijk)

A β̇

− 13i

1280

(
χ̄λ̄λ̄

)ijk)

B β̇

i

64

(
λλλ̄

)ijk)

β̇
+

57i

320

(
λλλ̄

)ijk)

A β̇
+

83i

6400

(
λλλ̄

)ijk)

B β̇
+

i

1920

(
λλλ̄

)ijk)

C β̇

)
+εi(j

(
− i

5

(
F̄ λ̄
)klm)

aα
+

1

20

(
Hλ
)klm)

aα
+
i

2

(
χχ̄λ

)klm)

aα
− i

5

(
χχ̄λ

)klm)

A aα
+

i

20

(
χχ̄λ

)klm)

aα
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− i

1152

(
λλλ̄

)klm)

aα
+

i

480

(
λλλ̄

)klm)

A aα
− 11i

200

(
λλλ̄

)klm)

B aα
+

i

120

(
λλλ̄

)klm)

C aα
− (Daλ

klm)
α )′

)
+
(
γa
) β̇

α

(
i

24

(
F̄ λ̄
)ijklm
β̇

− 1

36

(
Hλ
)ijklm
β̇

+
i

12

(
χχ̄λ

)ijklm
β̇

+
i

24

(
χχ̄λ

)ijklm
A β̇

− 35i

96

(
χ̄λ̄λ̄

)ijklm
β̇

+
5i

4608

(
χ̄λ̄λ̄

)ijklm
A β̇

− 7i

96

(
χ̄λ̄λ̄

)ijklm
B β̇

+
17i

32

(
λλλ̄

)ijklm
β̇

+
31i

1920

(
λλλ̄

)ijklm
A β̇

− i

64

(
λλλ̄

)ijklm
B β̇

)
+
i

3

(
F̄ λ̄
)ijklm
aα

− 1

12

(
Hλ
)ijklm
aα

+
i

3

(
χχ̄λ

)ijklm
aα

+
i

6

(
χ̄λ̄λ̄

)ijklm
aα

− i

192

(
λλλ̄

)ijklm
aα

+
29i

480

(
λλλ̄

)ijklm
A aα

+
i

16

(
λλλ̄

)ijklm
B aα

. (C.26)

The 3/2 dimensional component of the torsion is

T α̇i
ab =

(
γab
)α̇β̇( i

21

(
P̄χ
)i
β̇
− 1

56

(
F̄ λ̄
)i
β̇

+
5i

504

(
Hλ
)i
β̇

+
i

24

(
P 4λ

)i
β̇

− 1

28

(
Fχ̄
)i
β̇
− 1

56

(
χχ̄λ

)i
β̇

+
11

1008

(
χχ̄λ

)i
A β̇

+
1

672

(
χ̄λ̄λ̄

)i
β̇

− 1

32256

(
χ̄λ̄λ̄

)i
A β̇
− 1

96

(
χ̄λ̄λ̄

)i
B β̇
− 1

224

(
λλλ̄

)i
β̇
− 11

2688

(
λλλ̄

)i
A β̇

)
+
(
γ[a

)α̇β(−2i

3

(
P̄χ
)i
b]β

+
1

6

(
F̄ λ̄
)i
b]β
− i

12

(
Hλ
)i
b]β
− i

3

(
P 4λ

)i
b]β

+
1

3

(
Fχ̄
)i
b]β

+
1

36

(
Gχ̄
)i
b]β

+
1

6

(
χχ̄λ

)i
b]β
− 1

12

(
χχ̄λ

)i
A b]β

+
1

12

(
χ̄λ̄λ̄

)i
b]β

+
1

576

(
λλλ̄

)i
b]β

+
1

32

(
λλλ̄

)i
A b]β

)
+ ρ̄α̇iab (C.27)

where we have defined the projection to the irreducible representation
[

1
0 1

0

]
to be ρ̄.

We will now give the fermionic covariant derivative of the field strength Ḡ−, F̄ and H

having U(1) weight 1. We get

D̄α̇iḠ
−
abcd=

(
γabcd

) β̇

α̇

(
−2i

7

(
P̄χ
)
β̇i

+
3

28

(
F̄ λ̄
)
β̇i
− 9i

112

(
Hλ
)
β̇i

+
3i

28

(
P 4λ

)
β̇i

+
1

21

(
Fχ̄
)
β̇i
− 5

84

(
χχ̄λ

)
β̇i
− 13

252

(
χχ̄λ

)
A β̇i
− 1

112

(
χ̄λ̄λ̄

)
β̇i

+
73

16128

(
χ̄λ̄λ̄

)
A β̇i
− 1

48

(
χ̄λ̄λ̄

)
B β̇i

+
3

112

(
λλλ̄

)
β̇i

+
1

896

(
λλλ̄

)
A β̇i

)
+
(
γ[abc

) β

α̇

(
−
(
F̄ λ̄
)
d]βi

+i
(
Hλ
)
d]βi
− 4

3

(
Fχ̄
)
d]βi

+
2

3

(
χχ̄λ

)
A d]βi

+
1

3

(
χ̄λ̄λ̄

)
d]βi

)
+
(
γ[ab

) β̇

α̇

(
−6ρ̄cd]β̇i − 3

(
F̄ λ̄
)
cd]β̇i

+ 3i
(
Hλ
)
cd]β̇i
− 4
(
Fχ̄
)
cd]β̇i

+ 2
(
χχ̄λ

)
cd]β̇i

+
1

4

(
χ̄λ̄λ̄

)
cd]β̇i

+
(
χ̄λ̄λ̄

)
A cd]β̇i

)
+

1

12

(
χ̄λ̄λ̄

)
abcdα̇i

, (C.28)

and

D̄iα̇F̄
jk
ab
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=δ
(j
i

(
2ρ̄

k)
abα̇+

5

6

(
F̄ λ̄
)k)

abα̇
− 4i

9

(
Hλ
)k)

abα̇
+

20

9

(
Fχ̄
)k)

abα̇
+

2

9

(
χχ̄λ

)k)

abα̇
− 1

24

(
χ̄λ̄λ̄

)k)

abα̇
+

1

9

(
χ̄λ̄λ̄

)k)

A abα̇

)
−1

2

(
F̄ λ̄
)jk
abα̇ i

+
2i

3

(
Hλ
)jk
abα̇ i
− 2

3

(
Fχ̄
)jk
abα̇ i

+
1

3

(
χχ̄λ

)jk
abα̇ i

+
2

3

(
χχ̄λ

)jk
A abα̇ i

+
1

3

(
χ̄λ̄λ̄

)jk
abα̇ i

+δ
(j
i

(
γ[a

) β

α̇

(
8i

3

(
P̄χ
)k)

b]β
+

1

3

(
F̄ λ̄
)k)

b]β
− i

18

(
Hλ
)k)

b]β
+

2i

3

(
P 4λ

)k)

b]β
+

8

9

(
Fχ̄
)k)

b]β
− 1

9

(
Gχ̄
)k)

b]β

+
1

3

(
χχ̄λ

)k)

b]β
+

1

9

(
χ̄λ̄λ̄

)k)

b]β
− 1

288

(
λλλ̄

)k)

b]β
− 1

16

(
λλλ̄

)k)

A b]β

)
+
(
γ[a

) β

α̇

(
− i

6

(
Hλ
)jk
b]β i

+ 2i
(
P 4λ

)jk
b]β i
− 2

3

(
Fχ̄
)jk
b]β i
− 1

3

(
χχ̄λ

)jk
b]β i
− 2
(
χχ̄λ

)jk
A b]β i

−1

6

(
λλλ̄

)jk
b]β i

+
1

96

(
λλλ̄

)jk
A b]β i

− 3

40

(
λλλ̄

)jk
B b]β i

+
1

3

(
λλλ̄

)jk
C b]β i

− 2i(Db]λ
jk
β i)
′
)

+δ
(j
i

(
γab
) β̇

α̇

(
2i

21

(
P̄χ
)k)

β̇
− 1

28

(
F̄ λ̄
)k)

β̇
− 13i

756

(
Hλ
)k)

β̇
+

i

21

(
P 4λ

)k)

β̇

− 1

63

(
Fχ̄
)k)

β̇
− 5

42

(
χχ̄λ

)k)

β̇
− 43

756

(
χχ̄λ

)k)

A β̇
+

1

366

(
χ̄λ̄λ̄

)k)

β̇

− 5

5376

(
χ̄λ̄λ̄

)k)

A β̇
+

1

144

(
χ̄λ̄λ̄

)k)

B β̇
+

11

336

(
λλλ̄

)k)

β̇
+

31

1344

(
λλλ̄

)k)

A β̇

)
+
(
γab
) β̇

α̇

(
− 1

16

(
F̄ λ̄
)jk
β̇ i

+
1

384

(
Ḡλ̄
)jk
β̇ i

+
5i

144

(
Hλ
)jk
β̇ i
− 1

24

(
Fχ̄
)jk
β̇ i

+
11

96

(
χχ̄λ

)jk
β̇ i

− 7

16

(
χχ̄λ

)jk
A β̇ i

+
1

576

(
χχ̄λ

)jk
B β̇ i

+
1

288

(
χχ̄λ

)jk
C β̇ i

− 7

32

(
χ̄λ̄λ̄

)jk
β̇ i

+
1

1536

(
χ̄λ̄λ̄

)jk
A β̇ i

+
23

384

(
χ̄λ̄λ̄

)jk
B β̇ i

− 1

48

(
λλλ̄

)jk
β̇ i
− 3

32

(
λλλ̄

)jk
A β̇ i

+
13

640

(
λλλ̄

)jk
B β̇ i

− 3

64

(
λλλ̄

)jk
C β̇ i

)
,(C.29)

and finally

Di
αH

jk
abc

=
(
γabc

) β̇

α

(
− i

64

(
F̄ λ̄

)ijk
β̇

+
3i

512

(
Ḡλ̄
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