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1 Introduction and summary

Over the past few years, we have witnessed tremendous progress in computing partition

functions of supersymmetric gauge theories on compact manifolds in different dimensions

using localization techniques, depending on the geometry, these exact results encode dif-

ferent useful information. There are many exciting applications such as verifying field

theoretic IR dualities e.g. [1, 2], the correspondences with 2d CFTs on Riemann sur-

faces [3] or Chern-Simons theory on hyperbolic three manifolds [4, 5]; another interesting

class of physical observables which can be studied through these partition functions are

co-dimension two defects, which are BPS objects and, in four dimensions, usually called

“surface defects”. There are various possible surface defects. Generically along their two

dimensional world sheet S, part of the bulk 4d gauge group L Ď G is preserved ( L is called

“Levi Group”), and their presence can be encoded by the singularities in 4d gauge fields.

See for example [6–9] for recent discussions. As the gauge symmetry breaking occurs in the

transverse co-dimensions away from the surface defects, we can parameterize them using
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the spatially dependent vacuum expectation values of baryonic operators, which vanish at

the positions of the surface operators and the gauge symmetry is partially restored [10].

Perhaps the most well studied surface operators are non-abelian vortices in 4d N “ 2 su-

persymmetric gauge theories (or more precisely their IR limit) considered in [11, 12], where

the vortex world sheet can be readily deduced to be 2d N “ p2, 2q Gauged Linear Sigma

Model (GLSM). Moreover, we can break 4d N “ 2 supersymmetry down to N “ 1 by

introducing appropriate superpotential deformation, and vortices in the resultant theory

described by a 2d N “ p0, 2q GLSM are now dubbed “Heterotic vortices” [13, 14]. In

particular, the 4d bulk SUSY breaking pattern can also descend into the 2d vortex world

sheet, which we will review in this introduction momentarily.

A class of exact 4d partition functions particularly suitable for studying these surface

defects are superconformal indices of four dimensional N “ 1 and N “ 2 supersymmetric

field theories [16–19],1 which trace over the appropriate subset of Hilbert space obtained

from radial quantization depending on the choice of truncation condition. Although geo-

metrically due to the background fluxes for the global symmetries, we can regard them as

the twisted partition functions defined on S1 ˆ S3, we can absorb the twisting by deform-

ing S3 into three dimensional ellipsoid S3
b , so that we have trivially fibered S̃1 over S3

b .

Recall that the S3
b partition function for three dimensional N “ 2 gauge theories computed

in [20] can be readily factorized into two copies of K-theoretic vortex partition functions

on S1 ˆq D2 [21, 22],2 where the co-dimension two vortex particles now wrap along S1

and correspond to the saddle points in localization calculation. This picture helps us to

understand choice of superconformal indices. As another S̃1 is added, we turn the vortex

particles into the aforementioned non-perturbative surface defects wrapping on two torus,

which should again dominate the 4d superconformal indices. This lead us to relate the

residues in superconformal indices and the insertion of surface defects, as precisely done

in [10] for N “ 2 superconformal field theories, and further studied in [31, 32]. However,

it is clear from the prior discussion that we can extend this prescription to N “ 1 su-

persymmetric field, as observed recently in demonstrating their factorizability of N “ 1

superconformal indices [36, 37]. Moreover, thank to the recent progress on computing the

elliptic genera or 2d indices for 2d N “ p2, 2q and N “ p0, 2q gauge theories [8, 33–35],

given the explicit world sheet theories for the surface defects, we can confirm the expec-

tation by explicitly computing their elliptic genera and matching with the building blocks

of the bulk 4d indices. The systematic study of heterotic vortices in N “ 1 supersym-

metric gauge theories mentioned earlier provides us an excellent venue to explore such an

idea. This direction is especially interesting given the wealth of 4d N “ 1 IR dualities

which have been non-trivially verified through superconformal indices [27, 28]. Supposing

these 4d dual theories also admit surface defects preserving N “ p0, 2q supersymmetry in

their world sheets, we can investigate if there can also be new N “ p0, 2q dualities (or

combinations of dualities, see [26]) relating them.

1Superconformal index can also be defined for N “ 4 superconformal field theory which features promi-

nently in the non-trivial checks of AdS/CFT correspondence.
2One should however note that there are subtleties with the choice of integration contour and charge of

the matter fields to ensure factorization. See [22, 23] for more detailed discussions, also [24, 25] for explicit

Higgs branch localization computations.
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We will continue our introduction in this section, following [11–15] to review vortices

in 4d N “ 2 and N “ 1 supersymmetric gauge theories and their world sheet descriptions.

In section 2, we will explicitly compute the superconformal indices for four dimensional

N “ 2 and N “ 1 supersymmetric gauge theories related by superpotential deformation.

In particular, we extract the possible contributions from the vortices/surface defects cor-

responding to the residues in the contour integration. In section 3, we compute the elliptic

genera for the two dimensional N “ p2, 2q and N “ p0, 2q vortex world sheet theories given

in the previous section. Finally in section 4, we identify the 4d and 2d fugacity parameters

using superconformal algebras, and match precisely the elliptic genera of the vortex the-

ories with the residues of the 4d superconformal indices for arbitrary ranks of gauge and

flavor symmetry groups with appropriate R-charge assignment. From this we demonstrate

that 4d Seiberg duality descend to 2d vortex theory as the invariance under the “hopping

transformation”. Moreover, we also consider other N “ p0, 2q surface defects which are

unrelated to dynamical vortices, and compute their elliptic genera. Using these data we

generalize the Hori-Tong duality for N “ p2, 2q theories [38] to N “ p0, 2q setting. Mean-

while, combining with the hopping transformation, we also generalize the combination of

dualities shown in [8]. In the main text and appendix B, we discuss the factorization of

the 4d superconformal indices, which also helps illustrating their saddle points naturally

correspond to the surface defects, confirming the earlier matching.

1.1 Vortices in four dimensional N “ 2 gauge theory

We begin by considering four dimensional N “ 2 supersymmetric gauge theory with UpNcq

gauge group and Nf fundamental flavors. Each N “ 2 fundamental hypermultiplet can be

decomposed into two copies of N “ 1 chiral fields denoted as Qi
l and Q̃l

i which transform

respectively as pNc,Nf q and pNc,Nf q under the gauge and flavor symmetry group (1.3).

To such matter contents, we need to couple them with the N “ 1 UpNcq adjoint chiral

multiplet in the N “ 2 vector multiplet denoted as Al
k:

WN“2 “
?

2
NF
ÿ

i“1

Q̃ipA´ µiqQ
i, (1.1)

where we have also associated with each flavor a complex mass parameter µi. We can also

regard the complex mass parameters tµiu as the diagonal vevs of the adjoint scalar in the

background vector multiplet for the flavor symmetry, such that they satisfied
řNf
i“1 µi “

0. Finally, UpNcq gauge group contains a non-trivial Abelian factor which allows us to

further introduce FI parameter v2, and we denote the four dimensional complexified gauge

coupling as:

τ “
2πi

e2
`

θ

2π
. (1.2)

In the absence of complex mass parameters tµiu, this theory enjoys the following gauge

and global symmetries:

UpNcq ˆ SUpNf q ˆUp1qJ ˆUp1qr. (1.3)

The mass parameters break SUpNf q global symmetry group down to Up1qNf´1, while the

non-manifesting SUp2qR R-symmetry is broken down to Up1qJ by the FI parameter v2.
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Note also that in full quantum theory, in the massless limit, Up1qr symmetry is generically

anomalous and broken down to discrete Zp2Nc´Nf q subgroup for 2Nc ą Nf , but only pre-

served for the superconformal Nf “ 2Nc case.3 Only Up1qJ which is the Cartan subgroup

of the SUp2qR symmetry remains the non-anomalous R-symmetry.

We will take Nf ą Nc. In the absence of complex masses tµiu, we can have 2NcpNf ´

Ncq dimensional Higgs branch of vacua. Turning on complex masses such that µi " ν2

lift most of these branches, however we can still have isolated vacuum given by setting

Q̃l
i “ 0 and

alk “ diagpµ1, µ2, . . . , µNcq, (1.4)

Qi
l “ vδil , i “ 1, . . . , Nc; Qi

a “ 0, i “ Nc ` 1, . . . , Nf . (1.5)

Here alk is the complex scalar component in Al
k, and there are

Nf !
pNf´Ncq!Nc!

such isolated

vacua, corresponding to selecting Nc out of Nf mass parameters to satisfy (1.4). They

are called “root of Baryonic Higgs branch”, which represent the intersections between

Coulomb and Higgs branches. This can be seen from the symmetry breaking pattern

in (1.4) and (1.5):

UpNcq ˆ SUpNf q
µi
ÝÝÑ Up1qNc ˆUp1qNf´1 v2

ÝÝÑ SrUp1qNc ˆUp1qNf´Ncs. (1.6)

On the other hand if ν2 " µi, the symmetry breaking pattern becomes:

UpNcq ˆ SUpNf q
ν2
ÝÝÑ SrUpNcq ˆUpNf ´Ncqs

µi
ÝÝÑ SrUp1qNc ˆUp1qNf´Ncs. (1.7)

The condition (1.4) represents special loci on the Coulomb branch vacua, along which there

are additional Nc squarks becoming massless and condense to parameterize the remaining

Higgs branch.

The symmetry breaking patterns (1.6) and (1.7) tell us that the overall Up1q Ă UpNcq

is broken, and Higgs branch can support topological vortices charged under each of Nc

different diagonal Up1q subgroups, whose topological number can arise from the winding

number of the corresponding Qi
l with vevs vδil . The defining equations for vortices oriented

along x3 and x4 directions are given by:

1

e2
Fzz̄ “

Nf
ÿ

i“1

QiQ:i ´ v2

DzQ
i
l “

1

2
pD1 ´ iD2qQ

i
l “ 0, Q̃l

i “ 0, z “ x1 ` ix2. (1.8)

These equations can be obtained from usual Bogomol’nyi completing the square trick,

where the solutions are classified by the winding number k “ Tr
ş

F12
2π P Z

`. It is interesting,

however, to also consider the solution to (1.8) in so-called “singular gauge” [13], where Qi
l

do not wind asymptotically but the flux is supported by the singular gauge field profile:4

pAzq
l
k “ ´iz̄ap|z|q

ˆ

φlφ̄l
r

˙

ÝÑ pAϑq
l
k “ 2|z|2ap|z|q

ˆ

φlφ̄k
r

˙

. (1.9)

3If the complex masses are turned on, the Up1qr is explicitly broken down to Z2.
4Here r is a real parameter which will be identified with the complex combination of two dimensional

FI parameter.
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Here z “ |z|eiϑ, ap|z|q is a radial profile function with asymptotic behavior ap|z|q Ñ
1

2|z|2
, |z| Ñ 0 and ap|z|q Ñ 0, |z| Ñ 8, and φl P CNc defines the gauge orientation modes.

This precisely reproduces the desired singular behavior for the gauge field A „ αdϑ` . . .

corresponding to surface operator insertions at the origin (see for example [7] ). More

precisely, surface operators should be regarded as the infra-red limit of the dynamical

vortices. However, the four dimensional superconformal indices to be introduced shortly

are insensitive to such distinction while these co-dimension two defects will appear as simple

poles in the contour integration and give dominant contributions.

The two dimensional vortex world sheet theory preserves half of the four dimensional

N “ 2 supersymmetry and was first found in [11] (see also [12]) using explicit D-brane con-

struction. We can equivalently quantize and supersymmetrize the zero modes fluctuations

around the classical vortex solutions, namely translational and orientational zero modes,

plus their fermionic partners (see [13] for more details.). Either way, for winding number

k, the resultant theory is a N “ p2, 2q Upkq gauge theory with the vector multiplet Uα
β ,

plus matter contents of an adjoint chiral multiplet Zα
β , Nc fundamental chiral multiplets

Φa
α and Nf ´Nc anti-fundamental chiral multiplets Φ̃α

j . Finally, we can also combine the

two dimensional FI parameter r ą 0 and theta angle ϑ into a complex combination:

t “ ir `
ϑ

2π
, (1.10)

which can be identified with 4d complex coupling from explicit D-brane construction [11].

We will summarize their transformation properties under the gauge and global symme-

try group:

Upkq ˆ SUpNcq ˆ SUpNf ´Ncq ˆUp1qc ˆUp1qr ˆUp1qz (1.11)

in table 1. Here Up1qr and Up1qc simply descend from the four dimensional abelian global

symmetries (1.3), while Up1qz arises from the rotational symmetry of vortices in x1 ´ x2

plane. Furthermore, the complex mass parameters tµiu in 4d superpotential (1.1) become

the twisted masses for the N “ p2, 2q chiral multiplets, Φa
α and Φ̃α

j , and break the flavor

symmetry group down to its maximal torus. The discrete vacua of the vortex world volume

theory is given by

σαβ “ diagpµ1, µ2, . . . , µkq, Φ̃α
j “ 0, j “ Nc ` 1, . . . Nf (1.12)

Φl
α “

?
rδlα, l “ 1, . . . , k, Φl

α “ 0, l “ k, k ` 1, . . . , Nc. (1.13)

Here σαβ is the scalar component in the N “ p2, 2q Upkq vector multiplet Uα
β , and there

are Nc!
pNc´kq!k! such discrete vacua. For completeness, we will later compute the elliptic

genus of the N “ p2, 2q vortex world volume theory following [8], and we will demonstrate

they reproduce identical expression from the residues for the simple poles coming from the

hypermultiplets.

1.2 Vortices in four dimensional N “ 1 gauge theory

We can further break four dimensional N “ 2 supersymmetry down to N “ 1. One

common way is to add a deformation superpotential for the adjoint chiral field A to (1.1)
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to obtain:

WN“1 “
?

2
NF
ÿ

i“1

Q̃ipA´ µiqQ
i `WpAq (1.14)

where WpAq for the time being is an arbitrary holomorphic function for the adjoint scalar

in vector multiplet A. Adding WpAq, the Higgs branch solutions get modified into [13]:

Qi
l “ siδ

i
l , Q̃l

i “ s̃iδli,

Nf
ÿ

i“1

|si|
2 ´ |s̃i|

2 “ v2, i “ 1, . . . , Nf , (1.15)

alk “ diagpµ1, µ2, . . . , µNcq,

Nf
ÿ

i“1

sis̃
i “

BWpx “ µlq

Bx
, l, k “ 1, . . . Nc. (1.16)

Furthermore, in order to have topologically stable vortex solutions, it is crucial to impose

s̃i “ 0 which restricts the complex mass parameter µl for given l “ 1, 2, . . . , Nc to coincide

with one of the critical points of Wpxq, i.e.

BWpx “ µlq

Bx
“ 0. (1.17)

This implies that to have non-trivial vortices charged under all Nc Up1q subgroups of UpNcq,

we need to have
BWpxq
Bx

“ λNc

Nc
ź

l“1

px´ µlq (1.18)

which ensures (1.16) is satisfied. We can also consider Ŵpxq of lower degrees, which will

allow vortices to be charged only under some of Nc Up1q subgroups. We can consider a

particular interesting deformation, given by [40]:

WpAq “ µ

2
TrpA2q, (1.19)

and let us also turn off tµiu for the time being. If µ " ΛN“2, where ΛN“2 is the N “

2 strong coupling scale, we can integrate out Φ to obtain an effective potential. More

precisely, the one loop running of the non-Abelian SUpNcq Ă UpNcq gives Λ
3Nc´Nf
N“1 “

µNcΛ
2Nc´Nf
N“2 . Therefore, when we take µ Ñ 8 and ΛN“2 Ñ 0 while keeping fixed ΛN“1,

the physics between ΛN“1 and µ can be described by N “ 1 SQCD. Below ΛN“1, the

deformed theory becomes strongly coupled and flows to an interacting infra-red fixed point

exhibiting Seiberg duality [1]. Furthermore, one can restore the complex mass parameters

and shift Al
k to Al

k ´ µkδ
l
k in (1.19) to ensure the existence of vortex permitting vacua.5

We will return to this deformation later when we consider the duality between the vortex

world volume theories.

Moreover, we should note that the N “ 1 superpotential explicitly breaks the

Up1qr ˆUp1qJ global symmetry inherited from the N “ 2 theory. However, for a given

ŴpAq, it can still preserve a Up1q symmetry from the linear combination of Up1qr and

5The quantum RG flow from N “ 2 to N “ 1 theory and the moduli space have also been analyzed in

details in [41].
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Up1qJ . Although, in full quantum theory, such a Up1q symmetry can still suffer chiral

anomaly, if the deformed theory flow to an interacting infra-red fixed point, such as N “ 1

SQCD in conformal window discussed earlier, N “ 1 superconformal symmetry still de-

mands an Up1qR symmetry to exist, which will arise from the linear combination of global

abelian symmetries.

Turning to the vortex world volume theory under such a deformation, from the vari-

ations under N “ 1 supercharges we can deduce that provided the condition (1.17) is

satisfied, the BPS vortex solutions can only be compatible with the chiral N “ p0, 2q su-

persymmetry [13]. We can also see this from the vortex world volume. Let us decompose

the field contents of the previous N “ p2, 2q vortex theory into N “ p0, 2q fields, such

that an N “ p2, 2q vector multiplet is decomposed into an N “ p0, 2q vector multiplet

plus an N “ p0, 2q chiral multiplet, and an N “ p2, 2q chiral multiplet is decomposed

into an N “ p0, 2q chiral multiplet plus an N “ p0, 2q Fermi multiplet. Now if we denote

the N “ p0, 2q adjoint chiral multiplet which makes up the N “ p2, 2q Upkq vector mul-

tiplet as Σα
β , it contains σαβ as its scalar component. The four dimensional superpotential

in (1.14) now descends to superpotential ŴpΣq for Σα
β , and explicitly breaks the world

sheet supersymmetry from N “ p2, 2q to N “ p0, 2q. As in the bulk 4d theory, the su-

persymmetric vacuum of the deformed vortex theory can only exist if we supplement the

conditions in (1.12) and (1.13) with the following condition:

BŴpx “ µαq

Bx
“ 0, (1.20)

for α equals to one of 1, 2, . . . , k. Clearly the twisted mass parameters tµαu are subset of

tµlu entering (1.18), which implies that the 4d condition (1.18) is sufficient to ensure (1.20)

satisfied. In table 2, we summarize the symmetry group and field contents for the resultant

N “ p0, 2q vortex world volume theory, and we will also compute its elliptic genus to

demonstrate that we can indeed reproduce it from the N “ 1 superconformal index.

2 4d N “ 2 and N “ 1 superconformal indices

In this section, we explicitly compute the four dimensional superconformal indices for the

N “ 2 and N “ 1 supersymmetric gauge theories discussed in the previous section, they

will be used later to match with the elliptic genera of the vortex world volume theories.

2.1 4d N “ 2 superconformal index

The four-dimensional N “ 2 superconformal index was introduced in [16, 17], and it is

defined to be a twisted partition function on S3 ˆ S1. Such a index counts the states that

are annihilated by a chosen supercharge Q “ Q̃1´. Following [18], it is defined by:

IN“2pai; p, q, tq “ Trp´1qF ph34´rqh12´rtR`reiβδN“2
ź

i

afii . (2.1)

Here j1,2 label the Cartan charges of the isometry group SUp2q1ˆSUp2q2 of S3 Ă S1ˆS3,

such that h12 ” j2`j1 and h34 ” j2´j1 define respectively the rotational generators on 12

– 7 –



J
H
E
P
1
0
(
2
0
1
4
)
0
0
4

and 34 planes, while pR, rq are the Cartan charges of SUp2qR ˆ Up1qr R-symmetry which

are part of SUp2, 2|2q superconformal algebra. The trace in (2.1) is taken over states of the

radially quantized conformal theory on S3, and only the states satisfying the projection

condition:

δN“2 ” 2tQ,Q:u “ E ´ 2j2 ´ 2R` r “ 0 (2.2)

can contribute to (2.1), where E denotes the conformal dimension. In this paper we will

also take the fugacity parameters to satisfy

|p|, |q|, |t|, |pq{t| ă 1, |ai| “ 1. (2.3)

As a result, the N “ 2 superconformal index is independent of the radius of S1 denoted

by β. The complex numbers p, q and t are the fugacity parameters for these symmetry

generators commuting with Q and one another, as well as taiu, the fugacity parameters

for the additional flavor symmetries with the generators tfiu. These fugacity parameters

also serve as regulators truncating the otherwise infinite number of states satisfying the

condition (2.2).

For an N “ 2 theory which admits weakly coupled Lagrangian description represented

at UV fixed point that can be driven to an interacting IR fixed point by relevant pertur-

bation along the RG flow, its N “ 2 superconformal index can be computed from certain

matrix integral whose integrand is determined by the plethystic exponential of so-called

“single particle indices”. Explicit computations have been done in e.g. [8, 18, 19]. For

example, for a free hypermultiplet which transform as representation ∆ labeled by a set of

fugacity parameters tzRju under global symmetry group G, the index is

IN“2
H pz; p, q, tq “

ź

RjP∆

8
ź

r,s“0

1´ z¯Rjp
r`1qs`1t´1{2

1´ z˘Rjp
rqst1{2

“:
ź

RjP∆

Γ
´

z˘Rj t
1{2; p, q

¯

. (2.4)

Notice that in writing down (2.4), we have also set the R-charges to be pR, rq “ p1{2, 0q

as required by the scalar field in a free theory which has scaling dimension E “ 1. Here

we have also introduced the notation Γpx˘; p, qq “ Γpx; p, qqΓpx´1; p, qq, while Γpx; p, qq is

elliptic gamma function defined in appendix A, where we also collect most of the definitions

and identities for elliptic gamma and theta functions used in the main text.

We can also consider the N “ 2 vector multiplet contribution to the superconformal

index, in particular for the gauge group UpNcq:

IN“2
V “

κNc4

Nc!

¿

TNc

Nc
ź

l“1

dzl
2πizl

śNc
l,k“1 Γ

´

zl
zk

pq
t ; p, q

¯

śNc
l‰k Γp zlzk ; p, qq

, κ4 “ pp; pq8pq; qq8Γppq{t; p, qq (2.5)

where tzlu are the fugacity parameters for UpNcq gauge group, and the numerator comes

from the adjoint chiral multiplet with pR, rq “ p0,´1q such that its scaling dimension again

takes the free field value 1. Furthermore, TNc denotes the Nc dimensional unit torus. To

introduce matter contents into pure Yang-Mills theory, we can gauge the flavor and other

global symmetries of a free hypermultiplet, and this amounts to insert (2.4) into (2.5) and

– 8 –
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perform the integration over the corresponding fugacity parameters. Combining various

contributions, we can now write down (2.1) for the four dimensional N “ 2 supersymmetric

gauge theory with UpNcq gauge theory with Nf fundamental hypermultiplets:

IN“2
4D “

κNc4

Nc!

¿

TNc

Nc
ź

l“1

dzl
2πizl

śNc
l,k“1 Γ

´

zl
zk

pq
t ; p, q

¯

śNc
l‰k Γp zlzk ; p, qq

Nf
ź

i“1

Nc
ź

l“1

Γ

˜

ˆ

zl
ai

˙˘?
t; p, q

¸

(2.6)

Here tzlu and taiu are fugacities for UpNcq gauge and SUpNf q flavor global symmetry,

while the SUpNf q fugacities satisfy
śNf
i“1 ai “ 1, and we can obtain UpNcq gauge group

from SUpNcq by further gauging Up1qB global symmetry.

Strictly speaking, the Up1qr charge assignments r for various fields in (2.6) should

be treated as UV assignments and are only non-anomalous for Nf “ 2Nc as noted earlier

when the theory is conformal, the expression in (2.6) should merely be regarded as a twisted

partition function on S1 ˆ S3 to study the flow between the fixed points. However, as will

be discussed in more details in next subsection for N “ 1 theories, if the theory does flow

to an IR fixed point, generically with different matter contents from the UV theory, there

should be a new non-anomalous Up1qr as demanded by N “ 2 superconformal algebra

which emerges from the mixing of UV Up1qr with other abelian global symmetries such as

flavor symmetry. In particular, for our later purpose of comparing the residues of (2.6)

with the elliptic genus of the N “ p2, 2q vortex theory, it is not necessary to restrict to

Nf “ 2Nc, and we will see the same R-charge anomaly in vortex theory, and the exact

matching can be achieved with the redefinition of flavor fugacity parameters.

Now let us consider the simple poles from the hypermultiplets in (2.6) located at:

zl “ ailt
1{2pnilqmil , l “ 1, 2, . . . , Nc, nil , mil ě 0 (2.7)

where 1 ď il ď Nf corresponding to selecting Nc out of Nf possible flavor fugacity param-

eters, and there are
Nf !

pNf´Ncq!Nc!
such possible choices. This choice of pole condition (2.7)

corresponds to picking up the simple poles from the anti-fundamental chirals in the N “ 2

hypermultiplet, and they are located inside the unit circle for the range of our fugacity

parameters (2.3). The presence of these simple poles (2.7) which correspond to localization

on the Higgs branch is ensured by the N “ 2 superpotential (1.1), which prevents Φ and

Q{Q̃ simultaneously pick up expectation values. As we will see later the residues of these

simple poles correspond to the elliptic genus of the dynamical vortex/surface operators on

the Higgs branch, for which we expect the results should be symmetrical under exchanging

fundamental and anti-fundamental accompanying with changing the sign of FI-parameter.

We can implement this by deforming the contour to include the circle at infinity to enclose

the simple poles outside the unit circle at zl “ ailt
´1{2p´nilq´mil instead, which correspond

to fundamental chirals. We expect the insertion of appropriate FI term contribution into

the superconformal index cure the asymptotic behavior at infinity, see [36] for recent discus-

sion on this issue. Indeed, assuming the contributions from the infinity vanishes, explicitly

calculation shows that exchanging the simple poles from fundamental and anti-fundamental

amounts to al Ø 1{al in the final expression to be presented next.

– 9 –



J
H
E
P
1
0
(
2
0
1
4
)
0
0
4

When the complex mass parameters tµiu vanish, we can regard this condition (2.7)

as generalization of the quantization condition considered in [29, 30] for the instanton

partition functions in Ω background. As discussed in [10], the physical interpretation

for the simple poles in N “ 2 superconformal index indicates certain new flat directions

open up, as parameterized by the vevs of tower of new light spatial-dependent baryonic

operators and their holomorphic derivatives. This new tower precisely corresponds to the

insertion of two distinct sets of surface operators, and the holomorphic derivates with

respect to z “ x1 ` ix2 and w “ x3 ` ix4 yield the quantized angular momenta carried by

them, as indicated by integer power of fugacity parameters pp, qq in (2.7). Furthermore,

as both gauge and global symmetries are now partially broken, the residues evaluated at

these simple poles compute the index based on the residual super (conformal) symmetries

preserved by these surface defects.

Picking the contour enclosing all the non-negative integral value of tnil , milu in the

contour integration of (2.6), the result is:

IN“2
4D “

`

Γppqt ; p, qq
˘Nc

Nc!

ÿ

tilu,tikuĂtiu

ź

αPtilu

ź

jPtilu

Γ
´

aj
aα

; p, q
¯

Γ
´

aj
aα

pq
t ; p, q

¯

ˆ
ÿ

tnil ,milě0u

´pq

t

¯pNf´2Ncq
řNc
l“1 nilmil`2

řNc
l“1 nil

řNc
k“1mik

ˆ
ź

αPtilu,βPtiku

nβ´1
ź

r“0

∆

ˆ

aβ
aα

pr´nα ; q,
pq

t

˙

ź

jPtilu

ź

αPtilu

nα
ź

r“1

∆

ˆ

aj
aα

p´r; q,
pq

t

˙

ˆ
ź

αPtilu,βPtiku

mβ´1
ź

s“0

∆

ˆ

aβ
aα

qs´mα ; p,
pq

t

˙

ź

jPtilu

ź

αPtilu

mα
ź

s“1

∆

ˆ

aj
aa

q´s; p,
pq

t

˙

. (2.8)

Here tilu ” til : l “ 1, 2, . . . Ncu, ti : i “ 1, 2, . . . , Nfu and tilu is the complement of

subset tilu, and the function ∆px; q, tq is the ratio of θpx; qq defined in (A.3), which was

first introduced in [8]. We see that the expression above is in almost factorizable form into

exclusively nil and mil dependence, as given by the last two lines above, in fact we will

explicitly demonstrate later that they correspond to the elliptic genera for two distinct sets

of surface defects inserted in orthogonal x1,2 and x3,4 planes, and they interact through

the following non-factorizable term in the summation:

´pq

t

¯pNf´2Ncq
řNc
l“1 nilmil`2

řNc
l“1 nil

řNc
k“1mik

, (2.9)

Clearly if either nil “ 0 or mil “ 0 for all l “ 1, 2, . . . , Nc, the non-factorizable factor above

vanishes identically, while for generic non-vanishing tnilu and tmilu and superconformal

limit Nf “ 2Nc, clearly we see that we can have factorizable form if we impose:

Nc
ÿ

l“1

nil “
Nc
ÿ

l“1

mil . (2.10)
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For Nf ă 2Nc we need to in addition impose

Nc
ÿ

l“1

nilmil “ 0, (2.11)

i.e. tnilu and tmilu are two orthogonal Nc dimensional vectors with non-negative entries, for

example, we can have tnilu “ p1, 0, 1, 0, . . . , 0q and tmilu “ p0, 2, 0, 0, . . . , 0q. As individual

nil and mil can be interpreted as the topological charges carried by surface operators

under l-th Up1q Cartan subgroup of UpNcq, we can ensure factorization if they are charged

under different Up1qs and with equal total topological charges. Let us now consider the

combination where tmilu vanish, and the remaining summation gives:

IN“2
tnilu,0

“
ÿ

tnilě0u

ź

αPtilu,βPtiku

nβ´1
ź

r“0

∆

ˆ

aβ
aα

pr´nα ; q,
pq

t

˙

ź

jPtilu

ź

αPtilu

nα
ź

r“1

∆

ˆ

aj
aα

p´r; q,
pq

t

˙

. (2.12)

The other copy can be obtained by exchanging the fugacity parameters p and q, and tnilu

and tmilu. We will later demonstrate that (2.12) precisely coincides with the elliptic genus

of the 2d N “ p2, 2q vortex world sheet theory discussed earlier, after the identification of

2d and 4d parameters.

Here we also consider N “ 2 quiver gauge theory with gauge group SUpNcq ˆ UpNcq

with fugacity parameters tzlu and tz̃lu such that
śNc
l“1 zl “ 1 and bi-fundamental hy-

permultiplet joining them, for which the corresponding N “ 2 superconformal index is

given by:

IN“2
Quiver “

κNc´1
4

Nc!

κNc4

Nc!

¿

TNc´1

Nc´1
ź

l“1

dzl
2πizl

śNc
l,k“1Γ

´

zl
zk

`

pq
t

˘

; p, q
¯

śNc
l‰k Γ

´

zl
zk

; p, q
¯

¿

TNc

Nc
ź

l“1

dz̃l
2πiz̃l

śNc
l,k“1Γ

´

z̃l
z̃k

`

pq
t

˘

; p, q
¯

śNc
l‰k Γ

´

z̃l
z̃k

; p, q
¯

ˆ

Nc
ź

k,l“1

Γ

˜

ˆ

z̃l
zk

h

˙˘?
t; p, q

¸

Nf
ź

i“1

Nc
ź

l“1

Γ

˜

ˆ

ãj
z̃l

ỹ

˙˘?
t; p, q

¸

Γ

˜

ˆ

zl
aj

y

˙˘?
t; p, q

¸

. (2.13)

Here the first line contains the N “ 2 vector multiplet contributions from the SUpNcq ˆ

UpNcq quiver gauge group; the second line contains the bi-fundamental hypermultiplets

transforming as pNc, N̄cq under UpNcqˆSUpNcq, and additional Nf fundamental and anti-

fundamental hypermultiplets charged respectively under UpNcq and SUpNcq gauge groups.

Finally the parameters taiu and tãiu correspond to the SUpNf qAˆSUpNf qB flavor fugacities

satisfying
śNf
i“1 ai “

śNf
i“1 ãi “ 1, and h, y and ỹ are fugacity parameters for Up1q global

symmetry rotating individual hypermultiplet. In this case, we would like to consider the

topological vortices arising from Higgsing the UpNcq gauge group, and this corresponds to

considering the simple poles inside the unit circle:

z̃l “ zlh
´1t1{2pnlqml , l “ 1, 2, . . . , Nc, nl, ml ě 0, (2.14)
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and superconformal index (2.13) reduces to

IN“2
Quiver “

κNc´1
4

Nc!

¿

TNc´1

Nc´1
ź

l“1

dzl
2πizl

śNc
l,k“1 Γ

´

zl
zk

`

´
pq
t

˘

; p, q
¯

śNc
l‰k Γ

´

zl
zl

; p, q
¯

Nc
ź

l“1

Nf
ź

i“1

Γ

˜

ˆ

zl
ai

y

˙˘?
t; p, q

¸

ˆ
ÿ

tnlu,tmlu

´pq

t

¯´Nc
řNc
l“1 nlml`2

řNc
l“1ml

řNc
k“1 nl

ˆ

Nf
ź

i“1

Nc
ź

l“1

Γ

˜

ˆ

ãi
zl
pht´1{2ỹqp´nlq´ml

˙˘?
t; p, q

¸

ˆ

Nc
ź

l,k“1

«

nk´1
ź

r“0

∆

ˆ

zk
zl
pr´nl ; q,

´pq

t

¯

˙mk´1
ź

s“0

∆

ˆ

zk
zl
ps´ml ; p,

´pq

t

¯

˙

ff

(2.15)

If we set all tmlu vanish, Nf “ Nc and x “ ht´1{2ỹ, we recover the equation (6.4) of [8]

for the insertion of surface operators into N “ 2 superconformal field theory, through such

systematic higgsing of quiver gauge group. This is the first evidence that the residues in

superconformal index precisely yield the elliptic genus of the corresponding surface defects.

2.2 4d N “ 1 superconformal index

We can also analogously introduce the four dimensional N “ 1 superconformal index from

the SUp2, 2|1q superconformal algebra, which is given by [39]:

IN“1pai; p, qq “ Trp´1qF ph34`
r̃
2 qh12`

r̃
2 eiβδN“1

ź

i

afii , (2.16)

such that the index only counts the protected states satisfying the projection condition:

δN“1 “ tQ,Q:u “ E ´ 2j2 ´
3

2
r̃ “ 0, (2.17)

where r̃ denotes the N “ 1 R-charge. One should note that while in free UV fixed point

we can assign R-charge to free field to be 2{3 so that it has scaling dimension E “ 1, the

Up1qR charge denoted as r̃ entering (2.16) should be the non-anomalous one appearing at

the infra-red fixed point. The Up1qR Ă SUp2, 2|1q appearing in the IR fixed point arises

from mixing with other global symmetries, i.e.

r̃ “ r̃0 `
ÿ

i

s̃ifi, (2.18)

where r̃0 is the UV Up1qR charge and the real coefficients tsiu are determined through

a-maximization principle [42]. Substituting back into (2.16), we obtain

IN“1pai; p, qq “ Trp´1qF ph34`
r̃0
2 qh12`

r̃0
2

ź

i

´

aippqq
s̃i
2

¯fi
, (2.19)

so the computation for the superconformal index can still be performed with UV R-charge

assignments when the definition of flavor fugacity parameters are shifted as ai Ñ aippqq
si{2.

See [43] for more detailed discussion on this issue.
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More explicitly, for an N “ 1 chiral multiplet transforming as the representation ∆

labeled by fugacity parameters tzRju under symmetry group G and carries Up1qR charge

r̃, its contribution to (2.16) is given by:

IN“1
χ pz; p, qq “

ź

RjP∆

Γ
´

ppqq
r̃
2 zRj ; p, q

¯

. (2.20)

From the inversion identity for elliptic gamma function (A.4), we can also deduce that if the

superpotential contains complex mass term „ µiQ̃iQ
i for a pair of N “ 1 fundamental and

anti-fundamental chiral multiplets, their contributions precisely cancel each other. Finally

we can also write down the N “ 1 vector multiplet contribution to (2.16) for UpNcq

gauge group:

IN“1
V “

pp; pqNc8 pq; qq
Nc
8

Nc!

¿

TNc

Nc
ź

l“1

dzl
2πizl

Nc
ź

l‰k

1

Γ
´

zl
zk

; p, q
¯

“
pp; pqNc8 pq; qq

Nc
8

Nc!

¿

TNc

Nc
ź

l“1

dzl
2πizl

Nc
ź

ląk

θpzl{zk; qqθpzk{zl; pq, (2.21)

where the theta function is defined in (A.2) and we have used the identity:

Γpx; p, qqΓpx´1; p, qq “
1

θpx; pqθpx´1; qq
. (2.22)

Directly combining all contributions, we can evaluate the N “ 1 superconformal index for

various theories.

As we mostly consider breaking the four dimensional N “ 2 supersymmetry to N “ 1

supersymmetry via superpotential WpAq in this work, we would like to relate the N “ 1

and N “ 2 superconformal indices (2.16) and (2.1) by identifying their parameters. First

we notice from the projection conditions (2.2) and (2.17),6 for the two different indices to

count the same set of states, we need to identify their R-charges as:

r̃ “
2

3
p2R´ rq. (2.23)

Next let us consider the superconformal limit Nf “ 2Nc and µi “ 0 in (2.6), and add the

relevant mass term deformation (1.19) to such a UV fixed point. This drives the theory

to N “ 1 SQCD but now with an additional quartic superpotential „ µ´1QQ̃QQ̃ after

integrating out the adjoint field Aa
b due to the N “ 2 superpotential (1.1). As noted in [39]

that if we set t “ ppqq1{2 in the N “ 2 superconformal index, the adjoint chiral multiplet

contribution in the numerator now becomes unity using the inversion identity (A.4), while

the remaining hypermultiplet becomes a pair of N “ 1 fundamental and anti-fundamental

chiral multiplets with Up1qR-charge r̃A “ 1{2. Notice this reflects the quartic superpotential

6As explained in [39] there are in fact two inequivalent choices for the N “ 1 superconformal choices

called “left-handed” and “right-handed”, corresponding to the different choices of supercharges and counting

only anti-chiral and chiral multiplet contribution. Here we selected the right-handed index in (2.16) in order

to match the choice of supercharge made in (2.1).
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being marginal, and it is also non-anomalous charge assignment at the IR fixed point which

differs from the UV free field R-charge value of 2{3.

We propose that this reduction of the fugacity parameters should be a special case for

the general supersymmetry breaking superpotential given by ŴpAq “ µK`1

K`1 TrpAK`1q, and

we can impose its effect by setting:

t “ ppqq
K
K`1 . (2.24)

The numerator in superconformal index (2.6) now reduces instead to that of an N “ 1

adjoint chiral multiplet with Up1qR charge r̃A “
2

K`1 , while the remaining hypermultiplets

become pairs of N “ 1 fundamental and anti-fundamental chiral multiplet with r̃f “
K
K`1 , these charge assignments descend from the charge constraint imposed by the N “ 2

superpotential (2.27). For Nf “ 2Nc, these Up1qR charge assignments are again non-

anomalous, such that the anomaly free condition:

Nf “
Nf pr̃f ` r̃afq

2
`Ncr̃A. (2.25)

is identically satisfied, the resultant expression precisely corresponds to the N “ 1 super-

conformal index for the electric theory of Kutasov-Schwimmer dualities with Nf “ 2Nc [2],

subjected to additional marginal N “ 2 superpotential deformation (1.1). For Nf ă 2Nc,

the effective theory obtained from integrating out Al
k only serves the intermediate step

in the RG flow, and the R-charge assigned to fundamental and anti-fundamental chiral

multiplets obtained from imposing (2.24) can be regarded as r̃0 which can mix with flavor

symmetries, while the R-charge for the integrated out Al
k is freezes at r̃A “

2
K`1 as it does

not mix with flavor symmetries. When the theory flows further to the deep infra-red fixed

point, the anomalous UV Up1qR charge K
K`1 of the fundamental and anti-fundamental

are modified to the non-anomalous Up1qR charge r̃f “ 1 ´ 2
K`1

Nc
Nf

through flavor symme-

try mixing.

More explicitly, let us now write down the N “ 1 superconformal index for the theory

deformed by the superpotential WpAq:

IN“1
4D “

pp; pqNc8 pq; qq
Nc
8

Nc!

¿

TNc

Nc
ź

l“1

dzl
2πizl

Nc
ś

l,k“1

Γ
´

ppqq
r̃A
2
zl
zk

; p, q
¯

Nc
ś

l‰k

Γ
´

zl
zk

; p, q
¯

ˆ

NF
ź

i“1

Nc
ź

l“1

Γ

ˆ

zl
ai
ppqq

r̃f
2 ; p, q

˙

Γ

ˆ

ai
zl
ppqq

r̃af
2 ; p, q

˙

. (2.26)

From the perspective of the UV Lagrangian, while the value of r̃A depends on the precise

superpotential deformation, the Up1qR charge assignment here needs to satisfy:

r̃A ` r̃f ` r̃af “ 2. (2.27)

We can interpret this condition on Up1qR charges of different N “ 1 chiral fields as being

preserved by the explicit UV N “ 2 superpotential (1.1), even though these assignments
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are generically anomalous and need to be modified to non-anomalous values at IR fixed

point. The contour integral in (2.26) has the simple poles at the following values:

zl “ ailppqq
r̃af{2pnilqmil , nil , mil ě 0, (2.28)

which again correspond to saddle points on Higgs branch, and we expect their residues to

be matched with the elliptic genus of N “ p0, 2q vortex theory to be presented in the next

section. After performing similar calculation as in the N “ 2 case, the final expression is

given by:

IN“1
4D “

ÿ

tilu,tikuĂtiu

ź

αPtilu

ź

jPtilu

Γ
´

aj
aα

; p, q
¯

Γ
´

aj
aα
ppqqr̃A{2; p, q

¯ (2.29)

ˆ
ÿ

tnil ,milě0u

”

ppqqr̃A{2
ıpNf´2Ncq

řNc
l“1 nilmil`2

řNc
l“1 nil

řNc
k“1mil

ˆ
ź

αPtilu,βPtiku

ź

jPtilu

»

–

nβ´1
ź

r“0

θ
´

aβ
aα
ppqqr̃A{2pr´nα ; q

¯

θ
´

aβ
aα

pr´nα ; q
¯

nα
ź

r“1

θ
´

aj
aα
ppqqr̃A{2p´r; q

¯

θ
´

aj
aα

p´r; q
¯

fi

fl

ˆ
ź

αPtilu,βPtiku

ź

jPtilu

»

–

mβ´1
ź

r“0

θ
´

aβ
aα
ppqqr̃A{2qr´mα ; p

¯

θ
´

aβ
aα

qr´mα ; p
¯

mα
ź

r“1

θ
´

aj
aα
ppqqr̃A{2q´r; p

¯

θ
´

aj
aα

q´r; p
¯

fi

fl

which can also be recovered directly from (2.8) by setting t “ ppqq1´r̃A{2, and we notice

that the factorization conditions are the same as given in (2.10) and (2.11). In the next

section, we will also compute explicitly the elliptic genus for the N “ p0, 2q vortex world

sheet theory obtained from the deformation of N “ p2, 2q theory described earlier [13, 14],

and demonstrate that it precisely coincides with the second and third lines above after

identifications of parameters.

3 2d N “ p2, 2q and N “ p0, 2q elliptic genera for vortex world sheet

theories

Let us now introduce the superconformal indices for 2d N “ p2, 2q and N “ p0, 2q gauge

theories, which are twisted partition function on T 2 ” S1ˆS1 or “elliptic genus”. Beginning

with N “ p2, 2q depending on the boundary conditions, we can define this quantity in

two different ways such that it counts only NSNS or RR sector. However, if the theory

considered flows to an IR superconformal fixed point, we expect the two definitions can be

related up to a pre-factor via spectral flow. Here we follow [8, 35] to choose right moving

supercharge G ” G´R in the N “ p2, 2q superconformal algebra so that the elliptic genus

only counts the NSNS sector:

IN“p2,2qpai; q, yq “ Trp´1qF qHLyJL
ź

i

afii , (3.1)

where the HL and JL denote the left-moving conformal dimension and left-moving Up1qR-

symmetry generator, commuting with a chosen supercharge G. The parameter q “ e2πiτ̂
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where τ̂ “ τ̂1`iτ̂2 is the complex structure modulus of T 2, while y is the fugacity parameter

for JL, and taiu are the fugacity parameters for the remaining flavor symmetries. The trace

is taken over the states satisfying the condition:

δN“p2,2q “ tG,G:u “ 2HR ´ JR “ 0, (3.2)

where HR and JR are respectively right-moving counterparts of HL and JL. The choice of

G “ G´R in defining (3.1) will be justified when we consider how N “ p2, 2q and N “ p0, 2q

superconformal algebras can be embedding into those of 4d N “ 2 and N “ 1 respectively.

Notice that at the fixed point, N “ p2, 2q superconformal algebra dictates that there

should be two non-anomalous Up1q R-symmetries, and they should again come from the

linear combinations of UV R-symmetries and other flavor symmetries.

We can analogously define the elliptic genus for the 2d N “ p0, 2q gauge theory,

preserving only the the right-moving supersymmetries, which is enhanced to N “ p0, 2q

superconformal symmetries when the theory flows to an infra-red fixed point. The main

distinction now is that the R-symmetry is only present in the right-moving sector, so the

definition for superconformal index becomes

IN“p0,2qpai; qq “ Trp´1qF qHL
ź

i

afii , (3.3)

where the HL is still the left-moving conformal dimension which commutes with the su-

percharge, and the index only counts the states satisfying:

δN“p0,2q “ tG,G:u “ 2HR ´ JR “ 0. (3.4)

In next section we will embed 2d N “ p2, 2q or N “ p0, 2q superconformal algebra re-

spectively into 4d N “ 2 or N “ 1 superconformal algebras, this allows us to precisely

identify the fugacity parameters for the 2d and 4d theories, and demonstrate the residue

of 4d superconformal indices indeed reduce to the elliptic genera of 2d vortex theories.

3.1 N “ p2, 2q and N “ p0, 2q vortex partition functions

Let us now compute the elliptic genus for the N “ p2, 2q k-vortex world sheet theory

considered in section 1.1. We first summarize below the transformation properties of the

matter contents under the gauge and global symmetry group in table 1. The elliptic genus

for N “ p2, 2q Upkq gauge theory with these matter contents is given by:7

IN“p2,2q “
κk2
k!

¿ k
ź

α“1

dxα
2πixα

k
ś

α,β

∆
´

xα
xβ

1
d
t
q ; q, t

¯

k
ś

α‰β

∆
´

xα
xβ

; q, t
¯

(3.5)

ˆ

k
ź

α“1

«

Nc
ź

l“1

∆

ˆ

c
xα
al

´q

t

¯Rf

; q, t

˙NF´Nc
ź

j“1

∆

ˆ

c
bj
xα

´q

t

¯Raf

; q, t

˙

ff

7The special case of Nf “ 2Nc has been computed in [8].
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Φ Φ̃ Z

UpkqG k k̄ adj.

SUpNcqA Nc 1 1

SUpNF ´NcqB 1 NF ´Nc 1

Up1qc 1 1 0

Up1qr Rf Raf ´1

Up1qz 0 0 ´1

Table 1. Field contents of N “ p2, 2q vortex world volume theory.

where k denotes total vortex number, κ2 “
pq;qq28
θpt,qq , c and d denote the fugacity parameters

for global Up1qc and Up1qZ respectively, and we have rewritten the fugacity parameter

for the left-moving R-symmetry as y “ q1{2{t. We have also used the function ∆px; q, tq

defined in (A.3), where the first ratio corresponds to contributions from N “ p2, 2q vector

multiplet and adjoint chiral multiplet Zα
β , and the remainder come from the fundamental

and anti-fundamental N “ p2, 2q chiral multiplets. Notice that under the shift xα Ñ qxα,

the integral is invariant up to an overall factor ptqNf´2Nc , which implies that integrand is

only an elliptic function of xα for Nf “ 2Nc, and signals the breaking down of Up1qr as

generated by JL to discrete subgroup Z2Nc´Nf , and we should again regard (3.5) formally

as a twisted partition function on S1 ˆ S1. In fact, this symmetry breaking pattern is

precisely inherited from the bulk 4d N “ 2 theory, and we also expect the parameters Rf

and Raf to take the non-anomalous values if the theory flows to infra-red fixed point when

mixes with other global abelian symmetries. When we consider the simple poles from the

N “ p2, 2q adjoint chiral multiplet, they can be classified by length Nc partitions of k, i.e.

tn̂lu such that
řNc
l“1 n̂l “ k, and we can split txαu into Nc different sets:

xl,γl “ al

„

c
´q

t

¯Rf

´1

d̃γl , d̃ “ d
´q

t

¯

, γl “ 0, 1 . . . n̂l ´ 1. (3.6)

When we evaluate the residues at each of these simple poles, each of them corresponds to

a Higgs vacuum of the N “ p2, 2q vortex theory. The 2d N “ p2, 2q vortex world volume

theory now reduces into:

IN“p2,2q “
ÿ

tn̂lu

Nc
ź

l,k“1

n̂l´1
ź

γl“0

n̂k´1
ź

γk“0

∆
´

d̃γl´γk´1 al
ak

; q, t
¯

∆
´

d̃γl´γk alak ; q, t
¯ (3.7)

ˆ

Nc
ź

l,k“1

n̂l´1
ź

γl“0

∆

ˆ

d̃γl
al
ak

; q, t

˙ Nc
ź

l“1

NF´Nc
ź

j“1

n̂l´1
ź

γl“0

∆

ˆ

c2 bj
al

´q

t

¯Rf`Raf

d̃´γl ; q, t

˙

“
ÿ

tn̂lu

Nc
ź

l,k“1

n̂l´1
ź

γl“0

∆

ˆ

al
ak

d̃γl´n̂k ; q, t

˙ Nc
ź

l“1

NF´Nc
ź

j“1

n̂l´1
ź

γl“0

∆

ˆ

c2 bj
al

´q

t

¯Rf`Raf

d̃´γl ; q, t

˙

.

Notice that in our calculation we have also introduced an additional global symmetry Up1qc
as discussed earlier, which can be generated from appropriate linear combinations of h34,
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Q Λ Q̃ Λ̃ ϕ ϕΛ φ

UpkqG k k k̄ k̄ adj. adj. adj.

SUpNcqA Nc Nc 1 1 1 1 1

SUpNF´NcqB 1 1 NF ´Nc NF ´Nc 1 1 1

Up1qZ ´hf
λ
2 p1´ hfq

λ
2 ´haf

λ
2 p1´ hafq

λ
2

λ
2 ´ 1 λ´ 1 λ

2

Up1qR 2hfp1´λq RQ`2λ´1 2hafp1´λq RQ̃`2λ´1 2pλ´1q 4λ´3 2λ

Table 2. Field contents of N “ p0, 2q vortex world volume theory, RQ “ 2hfp1 ´ λq and RQ̃ “

2hafp1´ λq.

r and R. However, its fugacity parameter c merely appears as a spectator in the elliptic

genus computation, and we can absorb it by overall shift of flavor fugacity parameters.

As a direct extension, we can also compute the elliptic genus for N “ p0, 2q vortex

theory, which can be viewed as a descendant of the N “ p2, 2q vortex theory as 4d case

discussed earlier. The breaking of supersymmetry is done by turning on the superpotential

for adjoint scalar in N “ p2, 2q vector multiplet. Recall that, in 4d theories, we incorporate

the effect of SUSY breaking superpotential by setting t “ ppqq1´
r̃A
2 , and the transformation

properties of the matter fields under the residual R-symmetry are related by a single

parameter r̃A. This inspires us to consider the resultant N “ p0, 2q vortex theory whose

matter contents have global symmetry transformation properties related by one parameter

λ as listed in table 2. In particular, notice that λ enters the charge assignments for both

Up1qZ and Up1qR, respectively labeled by fugacity parameters d and q1{2, indicating that

we are only having one independent global Up1q symmetry. The elliptic genus for the

N “ p0, 2q vortex theory with these field contents can be written down as:

IN“p0,2q
E “ pq, qq2k

¿ k
ź

α“1

dxα
2πixα

k
ś

α‰β

θ
´

xα
xβ

; q
¯

k
ś

α‰β

θ
´

rd
λ
2 qλsxαxβ ; q

¯

k
ź

α,β“1

θ
´

1
dq rd

λ
2 qλs2 xαxβ ; q

¯

θ
´

1
dq rd

λ
2 qλsxαxβ ; q

¯ (3.8)

ˆ

k
ź

α“1

»

–

Nc
ź

l“1

θ
´

xα
al

d
´hfλ

2 qhfp1´λqrd
λ
2 qλs; q

¯

θ
´

xα
al

d
´hfλ

2 qhfp1´λq; q
¯

NF´Nc
ź

j“1

θ
´

bj
xα

d
´hafλ

2 qhafp1´λqrd
λ
2 qλs; q

¯

θ
´

bj
xα

d
´hafλ

2 qhafp1´λq; q
¯

fi

fl.

Again if we consider the shift xα Ñ qxα, we notice that the integrand above picks up an

overall factor r´d
λ
2 qλsNf´2Nc . This again implies the breaking of certain linear combina-

tion of global Up1q symmetries with fugacity parameter d
λ
2 qλ down to discrete ZNf´2Nc .

However, if the theory flows to a superconformal fixed point, there needs to be an non-

anomalous Up1q R-symmetry completing the N “ p0, 2q superconformal algebra. We can

again perform the contour integration as in the N “ p2, 2q case, where the simple poles are

classified by length Nc partitions of k i.e. tn̂lu such that
řNc
l“1 n̂i “ k:

xl,γl “ ald
hfλ

2 qhfpλ´1qd̃γi , d̃ “ d
q

d
λ
2 qλ

, γl “ 0, 1 ¨ ¨ ¨ n̂l ´ 1. (3.9)
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Summing up all the residues, the corresponding 2d N “ p0, 2q elliptic genus reduces to:

IN“p0,2q
E “

ÿ

tn̂lu

Nc
ź

l,k“1

n̂l´1
ź

γl“0

n̂k´1
ź

γk“0

θ
´

d̃γl´γk alak ; q
¯

θ
´

d̃γl´γk alak rd
λ
2 qλs; q

¯ˆ

Nc
ź

l,k“1

n̂l´1
ź

γl“0

n̂k´1
ź

γk“0

θ
´

d̃γl´γk´1 al
ak
rd

λ
2 qλs; q

¯

θ
´

d̃γl´γk´1 al
ak

; q
¯

ˆ

Nc
ź

l,k“1

n̂l´1
ź

γl“0

θ
´

d̃γlrd
λ
2 qλs alak ; q

¯

θ
´

d̃γl alak ; q
¯

ˆ

Nc
ź

l“1

NF´Nc
ź

j“1

n̂l´1
ź

γl“0

θ
´

bj
al

d̃´γld´
phf`haf qλ

2 qphf`hafqp1´λqrd
λ
2 qλs; q

¯

θ
´

bj
al

d̃´γld´
phf`haf qλ

2 qphf`hafqp1´λq; q
¯

“
ÿ

tn̂lu

Nc
ź

l,k“1

n̂l´1
ź

γl“0

θ
´

d̃γl´n̂krd
λ
2 qλs alak ; q

¯

θ
´

d̃γl´n̂k alak ; q
¯

ˆ

Nc
ź

l“1

NF´Nc
ź

j“1

n̂l´1
ź

γl“0

θ
´

bj
al

d̃´γld´
phf`haf qλ

2 qphf`hafqp1´λqrd
λ
2 qλs; q

¯

θ
´

bj
al

d̃´γld´
phf`haf qλ

2 qphf`hafqp1´λq; q
¯ . (3.10)

Interestingly, we notice that as its 4d counterparts, we can recover (3.10) from (3.7) by

setting t “ d
λ
2 qλ, also setting pRf ; Rafq “ phf ; hafq. In the next section, we will also compare

this expression with the residues obtained from the N “ 1 superconformal index (2.29).

Here we would like to obtain the elliptic genus for the vortex world sheet theory that

would arise from the 4d N “ 1 superconformal index of Seiberg/Kutasov-Schwimmer

magnetic dual theories plus deformation (1.1). First, we note that the additional gauge

singlet meson chiral fields proposed by these dualities are merely spectators which do not

enter the contour integration, this allows us to recycle the calculation earlier and change

the rank of 4d gauge group as Nc Ñ Ñc “ KNf ´ Nc. Now similar discussion tells

us that the resultant 2d vortex theory obtained here possesses flavor symmetry group

SUpÑcqˆSUpNf ´ Ñcq, which sets constraint: Nf ´ Ñc ě 0 or Nc ě pK´1qNf . Moreover,

we also need Nf ě Nc for the vortex theory to exist in the deformed electric theory. As a

result, we conclude that we need K “ 1 for vortices to exist in both deformed electric and

magnetic theories.8 For this case Ñc “ Nf ´Nc, we are effectively considering the vortices

in 4d N “ 1 SQCD with UpÑcq and Nf flavors, plus superpotential (1.1), the elliptic genus

of the corresponding N “ p0, 2q vortex theory can be written down analogously as:9

IN“p0,2q
M “ pq, qq2k

¿ k
ź

α“1

dxα
2πixα

śk
α‰β θ

´

xα
xβ

; q
¯

k
ś

α‰β

θ
´

rd
λ
2 qλsxαxβ ; q

¯

k
ź

α,β“1

θ
´

1
dq rd

λ
2 qλs2 xαxβ ; q

¯

θ
´

1
dq rd

λ
2 qλsxαxβ ; q

¯ (3.11)

ˆ

k
ź

α“1

»

—

—

–

Nf´Nc
ź

j“1

θ

ˆ

xα
b̃j

d
´h1fλ

2 qh
1
fp1´λqrd

λ
2 qλs; q

˙

θ

ˆ

xα
b̃j

d
´h1

f
λ

2 qh
1
fp1´λq; q

˙

Nc
ź

l“1

θ

ˆ

ãl
xα

d
´h1afλ

2 qh
1
afp1´λqrd

λ
2 qλs; q

˙

θ

ˆ

ãl
xα

d
´h1

af
λ

2 qh
1
afp1´λq; q

˙

fi

ffi

ffi

fl

.

8Another way to view this constraint is for the Higgs branches to exist in both electric and magnetic

theories, which are needed for the dynamical vortices to exist.
9Here we have also assumed the same topological charge k.
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Similar calculation as before yields the following summation over the residues:

IN“p0,2q
M “

ÿ

tn̂1ju

Nf´Nc
ź

i,j“1

n̂1i´1
ź

γi“0

θ
´

d̃γi´n̂
1
j rd

λ
2 qλs b̃i

b̃j
; q
¯

θ
´

d̃γi´n̂
1
j b̃i
b̃j

; q
¯ (3.12)

ˆ

Nc
ź

l“1

NF´Nc
ź

j“1

n̂1j´1
ź

γj“0

θ

ˆ

ãl
b̃j

d̃´γld´
ph1f`h

1
af qλ

2 qph
1
f`h

1
afqp1´λqrd

λ
2 qλs; q

˙

θ

ˆ

ãl
b̃j

d̃´γld´
ph1

f
`h1

af
qλ

2 qph
1
f`h

1
afqp1´λq; q

˙ .

The vacua are now classified by length NF´Nc partitions of k i.e. tn̂1ju s.t.
řNF´Nc
j“1 n̂1i “ k.

4 Matching 2d and 4d indices and new 2d dualities

From the calculations in the last two sections, we found that the 2d and 4d superconfor-

mal indices share almost identical functional forms. In this section, on the other hand,

we match them precisely by identifying the 2d and 4d fugacity parameters through their

superconformal algebras. We will also rewrite the integrands in 4d superconformal indices

into exponential form, and demonstrate that it can be factorized into two copies of four di-

mensional twisted superpotential on T 2ˆR2 considered in [45]. The natural fixed points in

the localization computation correspond to surface operators wrapping on two intersecting

T 2s. We then consider the elliptic genera for the N “ p0, 2q vortex theories in a pair of 4d

N “ 1 supersymmetirc theories connected by the Seiberg duality, and verify that they are

related through a new N “ p0, 2q duality, similar to non-abelian “Hopping transition”. For

comparison, we also present the Seiberg like duality directly for the 2d N “ p0, 2q world

volume theory.

4.1 Embedding 2d superconformal algebras into 4d

Let us begin our discussion by recalling some basic facts about superconformal algebras

used in computing 4d superconformal indices and 2d elliptic genera following [8, 19, 39],

and their connections. For N “ 2 superconformal index, it counts the states which have

vanishing value for one of the following eight combinations of conserved quantities:

δ1˘ “ E ˘ ph12 ´ h34q ´ 2R´ r, δ2˘ “ E ˘ ph12 ´ h34q ` 2R´ r,

δ̃1 9̆ “ E ˘ ph12 ` h34q ´ 2R` r, δ̃2 9̆ “ E ˘ ph12 ` h34q ` 2R` r, (4.1)

where we have used 2j1 “ h12 ´ h34 and 2j2 “ h12 ` h34. Choosing a projection condition

from above is equivalent to choosing a supercharge used in localization computation. Sim-

ilarly for N “ 1 superconformal index, we have the the following four possible choices of

projection conditions:

δL˘ “ E ˘ ph12 ´ h34q `
3

2
r̃, δR˘ “ E ˘ ph12 ` h34q ´

3

2
r̃. (4.2)

Recall in section 2, we started from selecting δ̃1´ in (2.2) to compute N “ 2 superconformal

index and then broke supersymmetry down to N “ 1, for which consistency from the
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angular momentum requires us to choose δR´ from (4.2)10 and the subsequent identification

of R-charges (2.23) at superconformal fixed point.

We next consider the four possible projection conditions in the computation of elliptic

genus of N “ p2, 2q vortex theory, which are given by:

δ
N“p2,2q
R˘ “ 2HR ˘ JR, δ

N“p2,2q
L˘ “ 2HL ˘ JL. (4.3)

Finally for the elliptic genus of N “ p0, 2q vortex theory, there are two possible projection

conditions:

δ
N“p0,2q
R˘ “ 2HR ˘ JR. (4.4)

As in the 4d cases, we need to consistently pick the projection conditions (3.2) and (3.4)

while the theories involved are again related by superpotential deformation. In order to

match the 4d/2d fugacity parameters with respect to these projection conditions, there are

two equivalent ways to identify the conserved quantities in 4d N “ 2 and 2d N “ p2, 2q

theories following [8], i.e.

E ´ h12 “ 2HR, 2R´ r` h34 “ JR, (4.5)

E ´ h34 “ 2HR, 2R´ r` h12 “ JR. (4.6)

They precisely correspond to two complementary ways to insert co-dimension two defects

into two orthogonal planes x1,2 and x3,4. Let us consider first the surface operator in x1,2

plane with identification given by (4.5), where h12 now descends as the angular momen-

tum in the 2d world sheet of the surface defect labeled by q while the transverse angular

momentum h34 now mixes with pR, rq to give the 2d Up1qR generator JR. Finally from

parameter counting, we also need another 2d fugacity parameter d to be generated by the

linear combination R ` h34 and we denote this symmetry as Up1qz. Simple algebra then

shows that modulo additional flavor symmetries, we can identify the 2d and 4d fugacity

parameters as:

q “ q, d “
p2

t
, t “

pq

t
. (4.7)

Now if we compare the expressions in (2.12) and (3.7), we can identify them precisely by

setting:11

nα “ n̂l, aα “ al, ajp
´1 “ bj

´q

t

¯Rf`Raf

(4.8)

and noticing that α P tilu and j P tilu, l “ 1, . . . , Nc. We can make similar identification

for the other set of surface operators inserted in x3,4 plane by exchanging p Ø q. Conse-

quently, we have thus successfully confirmed that for arbitrary pNc, Nf q, the theta-function

dependent parts of the residues of N “ 2 superconformal indices reduce to two copies of

the elliptic genus of the N “ p2, 2q vortex world sheet theory.

We can also perform analogous analysis to match the fugacity parameters in 4d N “ 1

superconformal index and 2d N “ p0, 2q elliptic genus, where we need additional 2d fugacity

10Note that we exchanged the left and right handiness from [39], in order to have consistent notation

between 2d and 4d.
11We have set the fugacity for Up1qc symmetry c to 1.
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parameter e which is generated by h34 `
r̃
2 from the parameter counting. As a result,

we have:

q “ q, e “
p

q1{2
. (4.9)

Now if we recall that we implemented the effect of 4d supersymmetry breaking superpoten-

tial by setting t “ ppqq1´
r̃A
2 , (4.7) tell us the analogous 2d effect is to setting t “ d

λ
2 qλ as

noted earlier. Furthermore, to match the residues in one of the last two lines of integrated

N “ 1 superconformal index (2.29) with the N “ p0, 2q elliptic genus (3.10), we need to

further identify the parameters:

λ “
r̃A

1` r̃A
2

, (4.10)

along with the following:12

nα “ n̂l, aα “ al, ajp
´1 “ bjd

´
phf`haf qλ

2 qphf`hafqp1´λq (4.11)

where α P tilu and j P tilu, l “ 1, . . . , Nc. Again we have shown that for arbitrary pNf , Ncq,

provided the R-charge constraint from superpotential (2.27) is satisfied, the theta function

dependent parts of the residue of N “ 1 superconformal index coincide with two copies of

the elliptic genus of the N “ p0, 2q vortex theory.

Let us now recall that to have precise 4d N “ 1 Seiberg duality, we also need to assign

non-anomalous Up1qR charges to the matter fields in the electric and magnetic theories,

and this constraint can be satisfied simultaneously in the presence of deformation (1.1)

if Nf “ 2Nc or Ñc “ Nc. In such a limit, the elliptic genera for the N “ p0, 2q vortex

theories in deformed electric/magnetic theories, (3.10) and (3.12), are mapped into each

other under tal; bju Ø t1{ãl; 1{b̃ju transformation, and we see that the statement of N “ 1

4d Seiberg duality now descends down to their N “ p0, 2q vortex theories as the invariance

of its elliptic genus under “hopping” along the quiver nodes, as illustrated in figure 1. We

can also regard this as a statement that the “self-adjointness” of the difference operator,

corresponding to the insertion of vortices into 4d N “ 2 superconformal index, still holds

under the breaking down to N “ 1.

We can also understand the structure of the 4d superconformal index and the matching

with 2d elliptic genus by rewriting the integrand in (2.6) into manifestly factorizable form.

While relegating most of the calculation details in a self-contained appendix B, we present

the final result here:

IN“2 “
κNc4

Nc!

ż Nc
ź

l“1

dσl exp
´

´i
π

3
Frtσlu, tmius

¯

ˆ

Nc
ź

l,k“1

ź

sPZ
exp

ˆ 8
ÿ

m“0

Bmplog qqm´1

m!

”

´ Li2´m

´

e2
?

2πb∆
¯

` Li2´m

´

e2πbpσk´σl`
s
ε
´2∆qq

¯

´Li2´m

´

e2πbpσk´σl`
s
ε qq

¯ ı

˙

12Here we have also related the fugacity parameters as e “ d1´
λ
2 q´λ.
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Figure 1. The hopping transformation of the N “ p0, 2q vortex theory.

ˆ

Nf
ź

i“1

Nc
ź

l“1

ź

sPZ
exp

ˆ 8
ÿ

m“0

Bmplog qqm´1

m!

”

Li2´m

´

e2πbp´σl`mi`∆qq
¯

´ Li2´m

´

e2πbp´σl`miqq
¯

´Li2´m

´

e2πb∆q
¯

` Li2´m

´

e2πbp´σl`mi`ipb´1´Jq` s
ε qq

¯

´Li2´m

´

e2πbp´σl`mi`ipb´1´Jq` s
ε
´2∆qq

¯ ı

˙*

ˆtb Ñ b´1u. (4.12)

In above, we have defined the following parameters:

q “ e2πib2 , zl “ e2πiσl , ai “ e2πimi , ε “
r̃1

r3
,

p “ e´2πεb, q “ e´2πε{b,
?
t “ e´2πεJ , ∆ “

1

4πiε
log

pq

t
(4.13)

and the phase factor Frtσlu, tmius is defined to be

Frtσlu, tmius “

Nc
ÿ

l,k“1

pB33rεpσl ´ σk ` 2∆qs ´B33rεpσl ´ σkqsq

´

Nc
ÿ

l“1

Nf
ÿ

i“1

pB33rεpσl ´mi ` iJ ` 2∆qs ´B33rεpσl ´mi ` iJqsq (4.14)
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with the function B33rxs “ B33px|1, iεb, iε{bq defined in (B.13). Other than the phase factor

Fptσlu; tmiuq, we have factorized the integrand into purely b and 1{b dependent pieces

under the changes of variables (4.13). It is explained in more details in appendix B that

due to the presence of background fluxes which deform S3 into three dimensional ellipsoid

S3
b , we can regard the 4d superconformal indices as the partition functions on S̃1 ˆ S3

b ,

where S̃1 is a trivially fibered circle over S3
b , whose radius r̃1 depends on the 3d deformation

parameter b as defined in (B.2). Now we recall from [21, 22] that the partition function

on S3
b [20] can be factorized into two copies of twisted partition functions on S1 ˆq D2,

glued together by the so-called “S-fusion” mapping b Ñ 1{b or q “ e2iπb2 Ñ q̃ “ e2iπ{b2 . It

has been explicitly shown in [23–25] that each copy of partition function on S1 ˆq D2 can

be reproduced by summing over BPS vortices (anti-vortices) wrapping along S1, which is

sometimes called “Higgs branch” localization as the fixed points now precisely correspond to

these vortices on Higgs branch. Now adding another trivially fibered S̃1, we are promoting

the the world volumes of vortices into a pair of two tori, whose complex structure modulus

can be given by either p “ e´2πεb or q “ e´2πε{b, namely the surface operators which we

have been dealing with. Note that the two different surface operators actually intersect

on a common S̃1, and we expect their interaction giving rise to the non-factorizable phase

factor Fptσlu; tmluq, as in the Abelian case where such a factor (proportional to pq
t ) can

be generated by Chern-Simons like interaction between “linked vortices” [10]. It would be

interesting to understand the origin of this phase factor in the non-Abelian theories better,

as it is responsible for the non-factorizable factors (2.9) encountered in the earlier section.

4.2 Hori-Tong duality for N “ p0, 2q theory

Here we also consider the Seiberg-like duality in two dimensions, focusing on the the-

ories with two supercharges, i.e 2d N “ p0, 2q theories and their elliptic genera. For

original Seiberg-like duality in N “ p2, 2q theories (sometimes also known as Hori-Tong

Duality [38]), there are generally singlet meson fields appear in the dual magnetic theo-

ries. However, here as in the 2d vortex theories discussed earlier, we introduce polynomial

superpotential for the N “ p2, 2q vector multiplets in these theories and break supersym-

metry explicitly down to N “ p0, 2q. We will see that similar duality still holds and there

are additional “meson Fermi multiplets” appearing in the resultant dual magnetic theory.

Starting from the electric theory whose matter contents and their symmetry properties are

listed in table 3, denoting the fugacity for flavor symmetries SUpNqA ˆ SUpNqB ˆ Up1qc
as pal, bl, cq, we can write down the index:

IN“p0,2q
E “ Ikpa, b, c; qq

“ pq, qq2M
¿ M
ź

α“1

dxα
2πixα

M
ś

α‰β

θ
´

xα
xβ

; q
¯

M
ś

α,β“1

θ
´

xα
xb
rd

λ
2 qλs; q

¯

(4.15)

ˆ

M
ź

α“1

N
ź

l“1

θ
´

cxαald
´hfλ

2 qhfp1´λqrd
λ
2 qλs; q

¯

θ
´

c
blxα

d
´hafλ

2 qhafp1´λqrd
λ
2 qλs; q

¯

θ
´

cxαald
´hfλ

2 qhfp1´λq; q
¯

θ
´

c
blxα

d
´hafλ

2 qhafp1´λq; q
¯
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Q QΛ Q̃ Q̃Λ φ

UpMqG M M M M adj.

SUpNqA N N 1 1 1

SUpNqB 1 1 N N 1

Up1qc 1 1 1 1 0

Up1qZ ´hf
λ
2 p1´ hfq

λ
2 ´haf

λ
2 p1´ hafq

λ
2

λ
2

Up1qR 2hfp1´ λq RQ ` 2λ´ 1 2hafp1´ λq RQ̃ ` 2λ´ 1 2λ

Table 3. Field contents of N “ p0, 2q electric theory, where RQ “ 2hfp1´λq and RQ̃ “ 2hafp1´λq.

By taking the poles from the the fundamental chiral multiplets, we evaluate the residue at

which the poles satisfy the following condition, by picking M out of the N possible choices:

xα “
1

calα
d
hfλ

2 qhfpλ´1q, α “ 1, 2 ¨ ¨ ¨M. (4.16)

Here we again use the notations of tlαu and tlαu to denote the chosen part and its comple-

ment. The contour integration now reduces to a summation of residues at simple poles:

IN“p0,2q
Electric “

ÿ

tlαu

M
ź

α‰β

θ
´

alβ
alα

; q
¯

θ
´

alβ
alα
rd

λ
2 qλs; q

¯

M
ź

α“1

ź

jPtlαu

θ
´

aj
alα
rd

λ
2 qλs; q

¯

θ
´

aj
alα

; q
¯ (4.17)

ˆ

M
ź

α“1

N
ź

k“1

θ
´

c2 alα
bk

d
´phf`haf qλ

2 qphf`hafqp1´λqrd
λ
2 qλs; q

¯

θ
´

c2 alα
bk

d
´phf`haf qλ

2 qphf`hafqp1´λq; q
¯

“
ÿ

tlαu

ź

sPtlαu

N
ź

k“1

θ
´

c2 as
bk

d
´phf`haf qλ

2 qphf`hafqp1´λqrd
λ
2 qλs; q

¯

θ
´

c2 as
bk

d
´phf`haf qλ

2 qphf`hafqp1´λq; q
¯

ź

sPtlαu

ź

rPtlαu

θ
´

ar
as
rd

λ
2 qλs; q

¯

θ
´

ar
as

; q
¯ .

To make it more symmetrical to read off the duality, one can use a theta function identity

θpzq; qq “ θpz´1; qq to rewrite the first factor above into (for fixed subscript k):

ź

sPtlαu

θ
´

c2 as
bk

d
´phf`haf qλ

2 qphf`hafqp1´λqrd
λ
2 qλs; q

¯

θ
´

c2 as
bk

d
´phf`haf qλ

2 qphf`hafqp1´λq; q
¯

“

N
ź

l“1

θ
´

c2 al
bk

d
´phf`haf qλ

2 qphf`hafqp1´λqrd
λ
2 qλs; q

¯

θ
´

c2 al
bk

d
´phf`haf qλ

2 qphf`hafqp1´λq; q
¯

ˆ
ź

rPtlαu

θ
´

1
c2
bk
ar

d
phf`haf qλ

2 qphf`hafqpλ´1q`1; q
¯

θ
´

1
c2
bk
ar

d
phf`haf qλ

2 qphf`hafqpλ´1q`1rd´
λ
2 q´λs; q

¯ . (4.18)
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Now we can consider the elliptic genus for the dual magnetic theory, also obtained from the

superpotential deformation, we first consider changing the rank of gauge group N Ñ N´M

to obtain:

IN´M pã, b̃, c̃; qq “
ÿ

tlαu

ź

rPtlαu

N
ź

l“1

θ
´

c̃2 ãr
b̃l

d
´phf`haf qλ

2 qphf`hafqp1´λqrd
λ
2 qλs; q

¯

θ
´

c̃2 ãr
b̃l

d
´phf`haf qλ

2 qphf`hafqp1´λq; q
¯

ˆ
ź

rPtlαu

ź

sPtlαu

θ
´

ãs
ãr
rd

λ
2 qλs; q

¯

θ
´

ãs
ãr

; q
¯ (4.19)

Now by applying the identity (4.18), we can write down the relation for these two theories:

IN“p0,2q
Electric “ IM pa, b, c; qq (4.20)

“

¨

˚

˝

N
ź

l,k“1

θ
´

1
c̃2

b̃l
ãk

d
phf`haf qλ

2 qphf`hafqpλ´1q`1; q
¯

θ
´

1
c̃2

b̃l
ãk

d
phf`haf qλ

2 qphf`hafqpλ´1q`1rd´
λ
2 q´λs; q

¯

˛

‹

‚

IN´M pã, b̃, c̃; qq“IN“p0,2q
Magnetic

where ãl :“ 1{al b̃l :“ 1{bl c̃2 :“ c´2dpphf`hafq´
1
2
qλqp2phf`hafq´1qpλ´1q. On the right hand

side, the extra ratio now corresponds to the singlet chiral meson fields Mk
l and “mesonic

Fermi multiplets Mk
Λ,l”, while the symmetry properties of the fields in this theory are now

summarized in table 4. The duality relation (4.20) tells us that the N “ p0, 2q UpMq

gauge theory is dual to UpN ´ Mq gauge theory with the same number N of matter

fields plus additional singlet meson fields. As only fermionic superpotential couplings are

allowed in N “ p0, 2q theory, we expect the existence of superpotential coupling of the

form WpM, q, q̃q „ qiMij q̃Λ,j ` qiMΛ,ij q̃j ` qΛ,iMij q̃j and the R-charge assignment above

reflect this, as each term in the superpotential now summed up to 1. Furthermore, such

a N “ p0, 2q superpotential can also be deduced by decomposing the N “ p2, 2q meson

superpotential into p0, 2q components. We have thus generalized the Hori-Tong duality to

the N “ p0, 2q theories via superpotential deformation.

4.3 Coupling N “ p0, 2q duality to 4d theory

In the previous sections, we have demonstrated how to obtain 2d surface operators which

can be interpreted as the IR limit of dynamical vortices, from the residue of 4d supercon-

formal indices. Moreover, from the residues for the quiver gauge theories, we can embed

this class of surface defects to 4d gauge theory by gauging their flavor symmetries to be-

come part of the 4d gauge group. However we can also apply the gauging procedure to

couple other surface defects which do not correspond to IR limit of dynamical vortices, but

rather appear as the boundary conditions for the bulk fields on two out of four dimensions,

as done in [8] for coupling 2d N “ p2, 2q gauge theories to 4d N “ 2 Superconformal

QCD. In particular, this allows us to beautifully re-interpret 2d Hori-Tong duality involv-

ing N “ p2, 2q SQCD as the invariance of the corresponding surface defects under the

generalized S-duality transformation of bulk 4d N “ 2 superconformal field theories, and
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q qΛ q̃ q̃Λ φ M MΛ

UpN´MqG̃ N´M N´M N´M N´M adj. 0 0

SUpNqA N N 1 1 1 N N

SUpNqB 1 1 N N 1 N N

Up1qc 1 1 1 1 0 -2 -2

Up1qZ ´
hfλ
2

p1´hfqλ
2 ´

hafλ
2

p1´hafqλ
2

λ
2

phf`haf´1qλ
2

phf`hafqλ
2

Up1qR 2hfp1´λq RQ`2λ´1 2hafp1´λq RQ̃`2λ´1 2λ RM RM`2λ´1

Table 4. Field contents of N “ p0, 2q magnetic theory, RM “ 2phf ` haf ´ 1qpλ´ 1q.

we can combined the actions of hopping transformation and Hori-Tong duality to relate

three distinct N “ p2, 2q theories. Here we would like to couple the theories involved in

the generalized 2d N “ p0, 2q Hori-Tong duality discussed in the last section, to the 4d

N “ 1 gauge theory, which can be reproduced by SUSY breaking superpotential from

N “ 2 superoconformal QCD. We will see that the aforementioned connections among

three distinct N “ p2, 2q theories still survives under such superpotential deformation.

To do so, we need to first apply 2d/4d fugacity parameter mapping q “ q, d
λ
2 qλ “

ppqq
r̃A
2 and to identify one of the 2d flavor fugacity al with the parameter zl, i.e. IElectric “

IM pa “ z, b “ b, cq. Insetting this into N “ 1 superconformal index for the superpotential

deformed theory (2.26), we also need to change the gauge group from UpNq to SUpNq,

also set Nf “ 2N and impose the R-charge constraint (2.27). Without ambiguity and

for simplicity, we drop pp; qq in elliptic gamma function, denoting Γpz; p, qq “ Γpzq we

thus obtain:

I2d´4d “
κN´1

N !

¿

TN´1

N´1
ź

l“1

dzl
2πizl

N
ś

l,k“1

Γ
´

ppqq
r̃A
2
zl
zk

¯

N
ś

l‰k“1

Γ
´

zl
zk

¯

(4.21)

ˆ

N
ź

l,k“1

Γ

ˆ

zl
ak
ppqq

r̃fa
2

˙

Γ

ˆ

ak
zl
ppqq

r̃afa
2

˙

Γ

ˆ

zl
bk
ppqq

r̃fb
2

˙

Γ

ˆ

bk
zl
ppqq

r̃afb
2

˙

ˆ
ÿ

tlαu

ź

sPtlαu

N
ź

k“1

θ

ˆ

c2 zs
bk
qphf`haf qppqq

r̃Ap1´phf`haf qq
2 ; q

˙

θ
´

c2 zs
bk
qphf`haf qppqq

´r̃Aphf`haf q

2 ; q
¯

ź

sPtlαu

ź

rPtlau

θ
´

zr
zs
ppqq

r̃A
2 ; q

¯

θ
´

zr
zs

; q
¯

where α “ 1, 2, ¨ ¨ ¨ k and κ “ pp, qq8pq, qq8. After some efforts, it will be proved interesting

for us to choose pc2 “ q´phf`hafqppqq
r̃Aphf`hafq`r̃fb

2 . As a result, the first term in the second
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line can be absorbed into elliptic gamma function:

I2d´4d “
κN´1

N !

¿

TN´1

N´1
ź

α“1

dzα
2πizα

N
ś

α,β“1

Γ
´

ppqq
r̃A
2
zα
zβ

¯

N
ś

α‰β

Γ
´

zα
zβ

¯

N
ź

α,β“1

Γ

ˆ

zα
aβ
ppqq

r̃fa
2

˙

Γ

ˆ

aβ
zα
ppqq

r̃afa
2

˙

ˆ
ÿ

tαlu

N
ź

β“1

»

–

ź

sPtαlu

Γ

ˆ

zs
bβp

ppqq
r̃b
2

˙

Γ

ˆ

bβp

zs
ppqq

r̃afb
2

˙

ź

rPtαlu

Γ

ˆ

zr
bβ
ppqq

r̃fb
2

˙

Γ

ˆ

bβ
zr
ppqq

r̃afb
2

˙

fi

fl

ˆ
ź

sPtαlu

ź

rPtαlu

θp zrzs ppqq
r̃A
2 ; qq

θp zrzs ; qq
. (4.22)

After changing the dummy variable z̃s ” p´1zs and z̃r ” zr, we can readily write down the

final expression:

I2d´4d “
κN´1

N !

¿

TN´1

N´1
ź

α“1

dzα
2πizα

N
ś

α,β“1

Γ
´

ppqq
r̃A
2
z̃α
z̃β

¯

N
ś

α,β“1

Γ
´

z̃α
z̃β

¯

(4.23)

ˆ

N
ź

α,β“1

Γ

ˆ

z̃α
aβ
ppqq

r̃fa
2

˙

Γ

ˆ

aβ
z̃α
ppqq

r̃afa
2

˙

Γ

ˆ

z̃α
bβ
ppqq

r̃fb
2

˙

Γ

ˆ

bβ
z̃α
ppqq

r̃afb
2

˙

ˆ

N
ź

α,β“1

θ

ˆ

aβ
pz̃α
ppqq

1´r̃fa
2 ; q

˙

θ

ˆ

aβ
pz̃α
ppqq

r̃afa
2 ; q

˙

ÿ

tαlu

N
ź

r,β“1

θ

ˆ

z̃r
aβ
ppqq

1´r̃afa
2 ; q

˙

θ

ˆ

z̃r
aβ
ppqq

r̃fa
2 ; q

˙

ź

sPtαlu

ź

rPtαlu

θ
´

z̃s
z̃r
ppqq

r̃A
2 ; q

¯

θ
´

z̃s
z̃r

; q
¯ .

Comparing with (4.20), (4.23) represents the same 4d theory as (4.21) but now coupled

with a different 2d degree of freedom which is actually the magnetic theory for Hori-Tong

duality with the flavor fugacity identification shown in the argument:

I2d “

¨

˚

˚

˝

N
ź

α,β“1

θ

ˆ

aβ
pz̃α
ppqq

1´r̃fa
2 ; q

˙

θ

ˆ

aβ
pz̃α
ppqq

r̃afa
2 ; q

˙

˛

‹

‹

‚

IN´M

¨

˝ã “ z̃, b̃ “ a, c̃ “
ppqq

r̃fa
`r̃Aphf`hafq

4

q
hf`haf

2

; q

˛

‚

“ IN“p0,2q
Magnetic

¨

˝ã “ z̃, b̃ “ a, c̃ “
ppqq

r̃fa
`r̃Aphf`hafq

4

q
hf`haf

2

; q

˛

‚. (4.24)

However, from the Hori-Tong duality (4.20), the coupled 2d magnetic theory also dual to

a electric theory whose elliptic genus given as follows:

I 1N“p0,2qElectric “ IM

¨

˝a “
1

z̃
, b “

1

a
, c “

q
1´phf`haf q

2

ppqq
r̃fa
`r̃Ap1´phf`haf qq

4

˛

‚ (4.25)
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SU(N)Z SU(N)ASU(N)B

U(k)

Friday, April 19, 13

SU(N)Z SU(N)ASU(N)B

U(N -k)

Friday, April 19, 13

U(k)

SU(N)Z SU(N)ASU(N)B

Friday, April 19, 13

Hopping

Friday, April 19, 13

A Z B A Z B

N-M

A Z B

M

M

Figure 2. An N “ p0, 2q generalization of combined action of “Hopping” and Hori-Tong duality.

We conclude that the three equivalent 2d-4d coupled theories present above can be con-

nected by the combination of N “ p0, 2q generalization of the N “ p2, 2q Hori-Tong duality

and “Hopping transformation” considered in [8], as illustrated in figure 2.
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A Identities for elliptic gamma function and theta function

Here we review some useful identities for the elliptic gamma function and theta function

for the use in the main text, they are defined as:

Γpx; p, qq “
ź

r,sě0

1´ x´1pr`1qs`1

1´ xprqs
, (A.1)

θpz; pq “
8
ź

l“0

p1´ zplqp1´ z´1pl`1q. (A.2)
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We can also define the following ratio between theta functions as

∆px; q, tq “
θpxt; qq

θpx; qq
. (A.3)

The gamma function inherits an inverse property from its ratio form:

Γpppqqr̃{2x; p, qq “ Γ´1px´1ppqq1´r̃{2; p, qq, (A.4)

while similar property for theta function can be found in [8]. These elliptic gamma and

theta functions share an elegant relation, obtained by inserting a p (or q) into the gamma

function argument:

Γppz; p, qq “ θpz; qqΓpz; p, qq (A.5)

which can be generalized into for m, n ě 0:

Γ pxpnqm; p, qq

Γ px; p, qq
“

1

p´xqmn
1

p
mnpn´1q

2 q
mnpm´1q

2

ˆ

n´1
ź

r“0

θ pxpr; qq
m´1
ź

s“0

θ pxqs; pq . (A.6)

while the same method can be applied to the case shifted by negative integer. As widely

used in the main text, we also write down the residues for elliptic gamma function at

x “ p´mq´n, m, n “ 0, 1, 2, . . . :

Resx“p´mq´n rΓpx; p, qqs “
p´1qmnp

nmpm`1q
2 q

mnpn`1q
2

pp; pq8pq; qq8

m
ź

r“1

1

θpp´r; qq

n
ź

s“1

1

θpq´s; pq
. (A.7)

B Factorization and rewriting integrand into twisted superpotential

B.1 Factorization of elliptic gamma function

Here we will use various identities for elliptic gamma function and double sine function given

in [44] to rewrite the integrands in the 4d superconformal index into almost factorizable

form. In appropriate limit the factorizable product reduces to the twisted superpotential

obtained from compactifying 4d N “ 2 supersymmetric gauge theory on T 2ˆR2 [45]. Let

us first recall from [46] that due to the background flux for the global symmetries, the

metric on S1 ˆ S3 is actually deformed into S̃1 ˆ S3
b , i.e. a b-dependent rescaled S̃1 tof

radius r̃1, trivially fibered over a three dimensional ellipsoid S3
b . We can also relate the 4d

fugacity parameters p, q and z with the 3d deformation parameter b, 3d radius r3, and the

radius of S̃1 r̃1 as:

p “ e2πir̃1ω1 ; q “ e2πir̃1ω2 ; z “ e2πir̃1u (B.1)

r̃1 “
2

b` 1
b

r1; ω1 “ ibr´1
3 ; ω2 “ ib´1r´1

3 (B.2)

as |p|, |q| ă 1 and |z| “ 1, here we take b to be real and positive. Now using the definition

given in [44] and above, the elliptic gamma function can now be written as:

Γpe2πir̃1u; e2πir̃1ω1 , e2πir̃1ω2q (B.3)

“
exp

“

´iπ
3 B33pr̃1u|1, r̃1ω1, r̃1ω2q

‰

Γ3pr̃1u|1, r̃1ω1, r̃1ω2qΓ3p1´ r̃1u|1,´r̃1ω1,´r̃1ω2q

Γ3 p1` r̃1pω1 ` ω2 ´ uq|1, r̃1ω1, r̃1ω2qΓ3pr̃1pu´ ω1 ´ ω2q|1,´r̃1ω1,´r̃1ω2q
,
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where various functions are given by:

Γ3px|Ω1, Ω2, Ω3q “

8
ź

n1,n2,n3“0

px` n1Ω1 ` n2Ω2 ` n3Ω3q
´1, (B.4)

B33px|Ω1, Ω2, Ω3q “
x3

Ω1Ω2Ω3
´

3pΩ1`Ω2`Ω3q

2Ω1Ω2Ω3
x2 `

ř3
i“1 Ω2

i ` 3pΩ1Ω2 ` Ω1Ω3 ` Ω2Ω3q

2Ω1Ω2Ω3
x

´
1

4

pΩ1 ` Ω2 ` Ω3qpΩ1Ω2 ` Ω1Ω3 ` Ω2Ω3q

Ω1Ω2Ω3
. (B.5)

Substituting back into the definition (B.3) and re-arranging, we obtain that:

Γpe2πr̃1u; e2πir̃1ω1 , e2πir̃1ω2q “ exp

„

´iπ

3
B33pr̃1u|1, r̃1ω1, r̃1ω2q



(B.6)

ˆ

˜

8
ź

l“0

8
ź

m,n“0

p1`l´r̃1u`pm`1qr̃1ω1`pn`1qr̃1ω2qˆpl`r̃1u´p1`mqr̃1ω1´p1`nqr̃1ω2q

pl`r̃1u`mr̃1ω1`nr̃1ω2q ˆ p1` l ´ r̃1u´mr̃1ω1 ´ nr̃1ω2q

¸

.

Now we can regard the infinite product over “l” as coming from the KK mode running

around the additional S̃1 fiber. For each fixed l, there actually exists a copy of double-sine

function, and “l” itself can be read as mass of KK mode. Excluding the overall phase

factor, we can see this by multiplying all the factors above by ´ipr3{r̃1q to obtain:

8
ź

m,n“0

´

´i1`l
r̃1

r3 ` iur3 ` pm` 1qb` pn` 1qb´1
¯´

i lr̃1 r3 ` iur3 ` pm` 1qb` pn` 1qb´1
¯

´

´i lr̃1 r3 ´ iur3 `mb` nb´1
¯´

i1`l
r̃1

r3 ´ iur3 `mb` nb´1
¯ .

(B.7)

Comparing with the double-sine definition:

sbpcb ` zq “
8
ź

m,n“0

pm` 1qb` pn` 1qb´1 ´ iz

mb` nb´1 ` iz
, cb “

i

2

ˆ

b`
1

b

˙

(B.8)

we have:

8
ź

l“0

sb

ˆ

cb `
1` l

r̃1
r3 ´ ur3

˙

sb

ˆ

cb ´
l

r̃1
r3 ´ ur3

˙

“
ź

lPZ
sb

ˆ

cb `
l

r̃1
r3 ´ ur3

˙

. (B.9)

As a result, the elliptic Gamma function can now be written as infinite product of double

sine functions:

Γpe2πir̃1u; e2πir̃1ω1 , e2πir̃1ω2q “ exp

„

´iπ

3
B33pr̃1u|1, r̃1ω1, r̃1ω2q



ź

lPZ
sb

ˆ

cb `
l

r̃1
r3 ´ ur3

˙

(B.10)

As both vector and chiral/hypermultiplet contributions to the 4d superconformal indices

can all be expressed in terms of elliptic gamma function Γpx; p, qq, while their 3d counter-

parts are expressed in terms of double sine function sbpxq [20], up to an overall phase, we

can therefore regard 4d superconformal index as constructed from summing over infinite

number of 3d fields on the ellipsoid S3
b , each labeled by KK mode number l P Z.
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On the other hand, we here recall that double-sine function sbpxq can be further de-

composed into two copies of “holomorphic blocks” [21, 22] which are partition function

defined on S1 ˆq D2 where q “ e2πib2 is the complex structure modulus of the bound-

ary two torus. The two holomorphic blocks are then glued together via S-fusion rule,

S : q “ e2πib2 Ñ q̃ “ e2πi{b2 as:

sbpcb ´ zq “ e
´iπ
2
pz´cbq

2
8
ź

r“0

1` e2πib2pr` 1
2
qe2πbpcb´zq

1` e2πib´2p´r´ 1
2
qe2πb´1pcb´zq

“ e
´iπ
2
pz´cbq

2
||pe´2πbzq; qq8||

2
S

(B.11)

where px; qq8 “
ś8
r“0p1´xqrq is the Pochhammer symbol. So again double sine functions

sbp˘cb´ zq factorize into purely q and q̃ dependent parts up to an overall phase, for which

one can further shows that this phase can also be factorized by the following identity for

general case:

i#C# exp

„

´
1

2 log q

ˆ

pa¨Xq2`piπ `
log q

2
qbpa¨Xq

˙

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
θpp´q

1
2 qbqxa; qq8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

S
, x “ exppXq

(B.12)

where C and # denote some constant and integer which depends on different ways of

factorization and can be absorbed by ||pq; qq8||
2
S “ ´

2π
log qC2. For more details and sub-

tleties about factorization, we refer interested readers to [21–23]. On the other hand, let us

now focus on the overall phase factor in (B.10). By explicitly using the relations in (B.1)

and (B.2), we can factorize B33 into purely b and 1{b dependence, with ε ” r̃1{r3 and

r̃1u ” ũ:

B33pũ|1, ibε, ib´1εq “ ´ε´2

„

ũ3 ´
3

2
ũ2 `

1

2
ũ´

ε2

2
p1` ũq



(B.13)

´ε´2

„

´
3

2
iεbũ2 `

3

2
piεb´ ε2b2qũ´

1

4

`

iεb´ 2ε2b2 ´ iε3pb3 ` bq
˘



´ε´2

„

´
3

2
iεb´1ũ2 `

3

2
piεb´1 ´ ε2b´2qũ´

1

4

`

iεb´1 ´ 2ε2b´2 ´ iε3pb´3 ` b´1q
˘



.

We conclude that the elliptic Gamma function is factorizable into purely b and 1{b depen-

dent parts, and each part also contains infinite number of KK modes along S̃1, where we

can regard the total factorized products as two copies of partition function for a 4d field

defined on D2 ˆ T 2 glued together via S-fusion.

B.2 Rewriting N “ 2 superconformal index into twisted superpotential

After general discussion in previous section, we perform the concept concretely by consid-

ering N “ 2 SQCD as the case we did in section 2:

IN“2
4D “

κNc4

Nc!

¿

TNc

Nc
ź

α“1

dzα
2πizα

śNc
α,β“1 Γ

´

zα
zβ

pq
t ; p, q

¯

śNc
α‰β Γp zαzβ ; p, qq

Nf
ź

i“1

Nc
ź

α“1

Γ
´

zα
ai

?
t; p, q

¯

Γ
´

zα
ai

pq
?
t
; p, q

¯ . (B.14)
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Now substituting the redefinition of parameters in (4.13) and applying (B.10), we can

rewrite the contour integral into following alternative form:

IN“2
4D “

κNc4

Nc!

¿

TNc

Nc
ź

α“1

dzα
2πizα

Nc
ź

α,β“1

«

e
´iπ
3 rB33pσα´σβ`2εcb´iεJqq´B33pσα´σβqs (B.15)

ˆ

8
ź

l“´8

sb
`

´cb ` 2iJ ` ε´1pl ´ σα ` σβq
˘

sb pcb ` ε´1pl ´ σα ` σβqq

ff

ˆ

Nf
ź

i“1

Nc
ź

α“1

«

e
´iπ
3
rB33pσα´mi`iεJq´B33pσα´mi`2εcb´iεJqs

ˆ

8
ź

l“´8

sb
`

cb ´ iJ ` ε´1 pl ´ σα `miq
˘

sb p´cb ` iJ ` ε´1 pl ´ σα `miqq

ff

.

Let us pause here to discuss what we want to identify as the “holomorphic parameters”

and the “anti-holomorphic parameters”. Recall that we have two complementary ways to

insert a two torus T 2 into four dimensions corresponds to two different parameter matching

conditions (4.5) and (4.6), which give the matching of 2d and 4d fugacity parameters (4.7)

and its counterpart under pØ q exchange:

p “ p, t “
pq

t
, d1 “

q2

t
. (B.16)

These inspire us to consider the following two sets of combinations of parameters in the holo-

morphic copy and anti-holomorphic copy respectively, which are exchanged under b Ø b´1:

Holomorphic : pib, cb ´ iJ, ib´1 ´ iJq, (B.17)

Anti´ holomorphic : pib´1, cb ´ iJ, ib´ iJq, (B.18)

For simplicity, in the following, we define ∆ “ cb´iJ and factorize the integrand into blocks

characterized by above two categories of parameters. We focus on the double-sine function

part first. Contribution from the vector multiplet, accompanied by (B.11) and (B.12), can

be regulated into S-fusion of two holomorphic blocks. Furthermore, to rewrite them into

the twisted superpotential form, we use the identity:

pqz; qq8 Ñ exp

˜

1

log q

8
ÿ

m“0

Bmplog qqm

m!
Li2´mpzq

¸

as q Ñ 1´. (B.19)

Skipping the calculation details, we have the vector multiplet contributions:

Nc
ÿ

α,β“1

ÿ

lPZ
log

«

sb
`

´cb ` 2iJ ´ σα ` σβ ` ε´1l
˘

sb pcb ´ σα ` σβ ` ε´1lq

ff

“

Nc
ÿ

α,β“1

ÿ

lPZ

8
ÿ

m“0

1

log q

Bmplog qqm

m!

„

´ Li2´m

´

e2
?

2πb∆
¯

` Li2´m

´

e2πbp´σα`σβ`
l
εq´2∆q

¯

´Li2´m

´

e2πbp´σα`σβ`
l
εqq

¯



` pb Ñ b´1q (B.20)
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and the same goes for the contributions from hypermultiplets:

Nc
ÿ

α“1

NF
ÿ

i“1

ÿ

lPZ
log

«

sb
`

cb ´ iJ ´ σα `mi `
l
ε

˘

sb
`

´cb ` iJ ´ σα `mi `
l
ε

˘

ff

“

Nc
ÿ

α“1

NF
ÿ

i“1

ÿ

lPZ

8
ÿ

m“0

ˆ

1

log q

Bmplog qqm

m!

„

Li2´m

´

e2πbp´σα`mi`∆qq
¯

´Li2´m

´

e2πbp´σα`miqq
¯

´ Li2´m

´

e2πb∆q
¯

`Li2´m

´

e2πbp´σα`mi`ipb´1´Jq` l
εqq

¯

´ Li2´m

´

e2πbp´σα`mi`ipb´1´Jq` l
ε
´2∆qq

¯

˙

`pb Ñ b´1q. (B.21)

It is interesting to note that in (B.20) and (B.21), we can further split into l independent

and dependent pieces, representing purely 3d degrees of freedom and KK modes along

the S̃1. However, the factorization property above does not manifest when we consider the

term consists of B33 function which encodes the additional degree of freedom when ellipsoid

S3
b is trivially fibered by S̃1. To make it more explicit, we shall follow the dictionary (B.17)

and (B.18) and write down following expressions:

Nc
ź

α,β“1

exp

ˆ

´iπ

3

„

B33 pε rσα ´ σβ ` 2cb ´ 2iJsq ´B33 pε rσα ´ σβsq

˙

“

Nc
ź

α,β“1

exp

ˆ

´iπ∆

„

8

3
ε∆2`2εpσα´σβq

2´ 2p1´2εcbq∆`

ˆ

!
ε´1´ b2ε´b´2ε

3
` p2cb ´ εq

̇˙

“

Nc
ź

α,β“1

exp

ˆ

´ iπ∆

„

8

3
ε∆2 ` 2εpσα ´ σβq

2 ´ 2∆`
ε´1

3
´ ε

`

ˆ

´b2ε

3
` 2iεb∆` ib

˙

`

ˆ

´b´2ε

3
` 2iεb´1∆` ib´1

˙˙

(B.22)

and

Nc
ź

α“1

NF
ź

i“1

exp

ˆ

´iπ

3
rB33 pε rσα ´mi ` iJsq ´B33 pε rσα ´mi ` 2cb ´ iJsqs

˙

“

Nc
ź

α“1

NF
ź

i“1

exp

ˆ

´iπ∆

„

8ε

3
∆2` 4ε∆pσα ´miq ` 2εpσα ´miq

2´ 2∆´2pσα ´miq `
ε´1

3
´ ε

`εpJ ´ ibq2 ` p2ε∆` 2εpσα ´miq ´ 1qpJ ´ ibq `
2

3
εb´2

`εpJ ´ ib´1q2 ` p2ε∆` 2εpσα ´miq ´ 1qpJ ´ ib´1q `
2

3
εb2

˙

. (B.23)

By this way, we can still identify part of them as product of holomorphic and anti-

holomorphic block while the non-factorizable terms are extracted now. Note that they

have a common dependence on ∆ “ 1
4iπε log pq

t , this reflects the fact that in (2.8) the non-

factorizable term comes out as power of pq
t . Without further discussions for the time being,
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we treat it simply as a “gluing factor” to glue up two copies of D2 ˆ T 2 under S-fusion.

Combine all factors and we can get the factorized twisted superpotential form:

IN“2“
κNc4

Nc!

ż Nc
ź

α“1

dσα

Nc
ź

α,β“1

exp

ˆ

´iπ∆

„

8

3
ε∆2 ` 2εpσα ´ σβq

2 ´ 2∆`
ε´1

3
´ ε

˙

ˆ

Nc
ź

α“1

NF
ź

i“1

exp

ˆ

´iπ∆

„

8ε

3
∆2`4ε∆pσα´miq`2εpσα´miq

2´2∆´2pσα´miq`
1

3ε
´ε

˙

ˆ

$

&

%

Nc
ź

α,β“1

exp

ˆ

´iπ∆

„

´b2ε

3
` 2iεb∆` ib

˙

ˆ

Nc
ź

α“1

NF
ź

i“1

exp

ˆ

´iπ∆

„

εpJ ´ ib´1q2` p2ε∆` 2εpσα ´miq ´ 1qpJ´ib´1q `
2

3
εb2

˙

ˆ

Nc
ź

α,β“1

ź

lPZ
exp

ˆ 8
ÿ

m“0

Bmplog qqm´1

m!

„

´ Li2´m

´

e2
?

2πb∆
¯

`Li2´m

´

e2πbpσβ´σα`
l
ε
´2∆qq

¯

´ Li2´m

´

e2πbpσβ´σα`
l
εqq

¯

˙

ˆ

Nf
ź

i“1

Nc
ź

α“1

ź

lPZ
exp

ˆ 8
ÿ

m“0

Bmplog qqm´1

m!

„

Li2´m

´

e2πbp´σα`mi`∆qq
¯

´Li2´m

´

e2πbp´σα`miqq
¯

´ Li2´m

´

e2πb∆q
¯

`Li2´m

´

e2πbp´σα`mi`ipb´1´Jq` l
εqq

¯

´Li2´m

´

e2πbp´σα`mi`ipb´1´Jq` l
ε
´2∆qq

¯

˙*

ˆtb Ñ b´1u. (B.24)

For consistency, it can be checked that by taking the limit ε Ñ 0, we can recover the 3d

results on two copies of D2 ˆ S1 [23] while KK-modes with non-zero “l” decoupled, and,

up to a divergence, the non-factorizable terms reduce to the form of (B.12), becoming

factorizable as we expect. Moreover we can consider the degenerate limit such that b Ñ 0,

while keeping fixed b
ε and εJ , along with the tbσαu and tbmiu. In this case, when we

remove the 1{b dependent pieces in the last line above, and only keep m “ 0 term in the

summation, up to overall phase, we recover the form of twisted superpotential for 4d N “ 2

gauge theory with the identical gauge group and matter contents reduced on T 2ˆR2 with
b
ε being the complex structure modulus of T 2. We can also consider the complementary

limit of b´1 Ñ 0, and keep other corresponding quantities fixed to recover the other copy

of reduction on T 2 ˆR2 with complex structure of T 2 being 1
εb .
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