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1 Introduction

Up to this day superstring amplitudes in ten-dimensional Minkowski space have never been

computed at genus higher than two. In this paper the low energy limit of the genus three

amplitude for four massless states in closed superstring theory is computed (including its

overall coefficient) using the pure spinor formalism [1, 2].

After the relatively straightforward pure spinor derivation of the two-loop amplitude1

in [4, 5], the natural question was how well the formalism would behave at higher genus.

It is well-known by now that, in order to compute general amplitudes at genus higher

than two the original BRST-invariant regulator of Berkovits [2] needs to be replaced by

a more complicated scheme proposed by Berkovits and Nekrasov in [6]. Nevertheless, for

four massless states at genus three one can still use the original regulator for the terms

1For the RNS derivation see the earlier works of D’Hoker and Phong, e.g. [3].
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considered in this paper since they are F-terms and these were shown in [7] to be unaffected

by the divergences which require the new regulator.

In addition to the regulator, there is one more point to consider though. As recently

emphasized by Witten [8], to compute multiloop scattering amplitudes it is not sufficient

to represent the external states by BRST-invariant vertex operators of definite conformal

weight. The unintegrated vertex may have at most a simple pole singularity with the b-

ghost whereas the integrated vertex must have no singularities at all. Unfortunately this is

not the case for the massless pure spinor vertex operators of [1, 2] and one would probably

need to use the vertices constructed in [9]. These vertices depend on the non-minimal

variables and therefore require the concomitant use of the Berkovits-Nekrasov regulator.

Luckily, we will show that the low energy limit (of order D6R4) of the genus-three

amplitude is not affected by these considerations because only the zero modes of the b-

ghost enter in the derivation. Any subtlety is deferred to terms of order D8R4 and higher.

With that in mind, one can proceed with the three-loop computation using the formal-

ism as described in [2]. And ever since the normalizations for the pure spinor measures were

determined in [10] and systematically used in [11], keeping track of the overall normalization

does not pose additional difficulties. In doing so, the precise normalization of the amplitude

at order D6R4 is obtained and we can compare it with a prediction for this interaction

made in 2005 by Green and Vanhove based on S-duality arguments [12]. We find that the

results agree if the prescription for the three-loop amplitude includes an extra factor 1/3

and we argue that there is a Z3 symmetry of genus-three surfaces which should explain it.

2 Definitions and conventions

The non-minimal pure spinor formalism action for the left-moving sector reads [2]

S =
1

2πα′

∫

Σg

d2z
(

∂xm∂xm + α′pα∂θ
α − α′wα∂λ

α − α′wα∂λα + α′sα∂rα
)

, (2.1)

where λα and λβ are bosonic pure spinors and rα is a constrained fermionic variable,

(λγmλ) = 0, (λγmλ) = 0, (λγmr) = 0. (2.2)

The fields in (2.1) have the following space-time dimensions [10]

[α′] = 2, [xm] = 1, [θα, λα, wα, sα] = 1/2, [pα, wα, λα, rα] = −1/2. (2.3)

The genus-g OPEs for the matter variables following from (2.1) are [13]

xm(z, z)xn(w,w) ∼ δmn G(z, w), pα(z) θ
β(w) ∼ δβαη(z, w), (2.4)

where the Green’s function G(z, w) is written in terms of the prime form E(z, w) and the

global holomorphic 1-forms wI(z) as [14]

G(zi, zj) = −α′

2
ln
∣

∣E(zi, zj)
∣

∣

2
+ α′π

(

Im

∫ zj

zi

wI

)

(ImΩ)−1
IJ

(

Im

∫ zj

zi

wJ

)

, (2.5)
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and satisfies 2
α′∂zi∂zjG(zi, zj) = 2πδ(2)(zi − zj)− πΩ(zi, zj), where

Ω(zi, zj) ≡
3

∑

I,J=1

wI(zi)(ImΩ)−1
IJ wJ(zj) , (2.6)

and ΩIJ is the period matrix which will be defined below. Furthermore,

η(zi, zj) = ηij ≡ − 2

α′
∂

∂zi
G(zi, zj). (2.7)

The Green-Schwarz constraint dα(z) and the supersymmetric momentum Πm(z) are

dα = pα − 1

α′ (γ
mθ)α∂xm − 1

4α′ (γ
mθ)α(θγm∂θ), Πm = ∂xm +

1

2
(θγm∂θ) (2.8)

and satisfy the following OPEs [15]

dα(z)dβ(w) ∼ − 2

α′
γmαβΠm

z − w
, dα(z)f(x(w), θ(w)) ∼

Dαf

z − w
,

dα(z)Π
m(w) ∼

γmαβ∂θ
β

z − w
, Πm(z)f(x(w), θ(w)) ∼ −α′

2

kmf

z − w
(2.9)

where Dα = ∂
∂θα + 1

2(γ
mθ)αkm is the supersymmetric derivative and f(x, θ) represents a

generic superfield. The b-ghost is given by [2] (see also [16, 17])

b = sα∂λα +
1

4(λλ)

[

2Πm(λγmd)−Nmn(λγ
mn∂θ)− Jλ(λ∂θ)− (λ∂2θ)

]

(2.10)

+
(λγmnpr)

192(λλ)2

[

α′

2
(dγmnpd) + 24NmnΠp

]

− α′

2

(rγmnpr)

16(λλ)3

[

(λγmd)Nnp − (λγpqrr)NmnNqr

8(λλ)

]

,

and satisfies {Q, b(z)} = T (z) where the BRST charge Q and the energy-momentum tensor

T (z) are

Q =

∮

(λαdα + wαrα), T (z) = − 1

α′∂x
m∂xm − pα∂θ

α + wα∂λ
α + wα∂λα − sα∂rα.

From (2.3) it follows that [Q] = [b] = [T ] = 0.

The massless vertex operators are given by V (z, z) = κV (θ)⊗ Ṽ (θ) eik·x and U(z, z) =

κU(θ)⊗ Ũ(θ) eik·x, where

V (z) = λαAα, U(z) = ∂θαAα +AmΠm +
α′

2
dαW

α +
α′

4
NmnFmn (2.11)

and Aα, A
m,Wα,Fmn are the N = 1 super-Yang-Mills superfields in ten dimensions satis-

fying [18]

DαAβ +DβAα = γmαβAm, DαAm = (γmW )α + kmAα

DαFmn = 2k[m(γn]W )α, DαW
β =

1

4
(γmn)α

βFmn. (2.12)

The space-time dimensions of the superfields and the vertex operators are

[Aα] = 1/2, [Am] = 0, [Wα] = −1/2, [Fmn] = −1, [V (z)] = [U(z)] = 1. (2.13)
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2.1 Integration on pure spinor space

The zero-mode measures for the non-minimal pure spinor variables in a genus-g surface

have space-time dimension zero and are given by [2, 10, 11]

[dλ]Tα1...α5
=cλ ǫα1...α16

dλα6. . . dλα16 [dw]=cw Tα1...α5
ǫα1...α16dwα6

. . . dwα16

[dλ]T
α1...α5=cλ ǫ

α1...α16dλα6
. . . dλα16

[dw]Tα1...α5
=cw ǫα1...α16

dwα6 . . . dwα16

[dr]=cr T
α1...α5ǫα1...α16

∂α6
r . . . ∂α16

r [dsI ]=cs Tα1...α5
ǫα1...α16∂sI

α6
. . . ∂sI

α16

[dθ]=cθ d
16θ [ddI ]=cd d

16dI . (2.14)

The normalizations are

cλ =

(

α′

2

)−2 1

11!

(

Ag

4π2

)11/2

cw =

(

α′

2

)2 (2π)−11

11! 5!
Z−11/g
g

cλ =

(

α′

2

)2 26

11!

(

Ag

4π2

)11/2

cw =

(

α′

2

)−2 (λλ)3

11! (2π)11
Z−11/g
g

cr =

(

α′

2

)−2 R

11!5!

(

2π

Ag

)11/2

cs =

(

α′

2

)2 (2π)11/2R−1

2611! 5! (λλ)3
Z11/g
g

cθ =

(

α′

2

)4( 2π

Ag

)16/2

cd =

(

α′

2

)−4

(2π)16/2 Z16/g
g . (2.15)

where Ag =
∫

d2z
√
g is the area of the genus-g Riemann surface and

Zg =
1

√

det(2 ImΩ)
, g ≥ 1. (2.16)

The tensors Tα1...α5
and T

α1...α5 in (2.14),

Tα1α2α3α4α5
= (λγm)α1

(λγn)α2
(λγp)α3

(γmnp)α4α5
(2.17)

T
α1α2α3α4α5 = (λγm)α1(λγn)α2(λγp)α3(γmnp)

α4α5

are totally antisymmetric due to the pure spinor constraint (2.2) and satisfy T · T =

5! 26(λλ)3. As explained in [11], setting R2 =
√
2

216π
fixes the normalization of pure spinor

tree-level amplitudes to be same as in the RNS computations of [19].

Using the above measures and the results of [10] one can show that the integration

over an arbitrary number of pure spinors λα and λβ is given by

∫

[dλ][dλ]e−(λλ)(λλ)mλα1 · · ·λαnλβ1
· · ·λβn

=

(

Ag

2π

)11 12Γ(8 +m+ n)

Γ(11)
T α1...αn

β1...βn
, (2.18)

where T α1...αn

β1...βn
are the γ-matrix traceless tensors discussed in the appendix A and Γ(x) is

the gamma function. Using T α1...αp
α1...αp = 1 it follows that [11]

∫

[dλ][dλ](λλ)ne−(λλ) =

(

Ag

2π

)11Γ(8 + n)

7! 60
. (2.19)
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For an arbitrary superfield M(λ, λ, θ, r) we define

〈M(λ, λ, θ, r)〉(n,g) ≡
∫

[dθ][dr][dλ][dλ]
e−(λλ)−(rθ)

(λλ)3−n
M(λ, λ, θ, r) , (2.20)

which implies in particular that

〈(λ3θ5)〉(n,g) = 27R

(

2π

Ag

)5/2(α′

2

)2 Γ(8 + n)

7!
〈(λ3θ5)〉 , (2.21)

where (λ3θ5) ≡ (λγmθ)(λγnθ)(λγpθ)(θγmnpθ) and the pure spinor bracket 〈. . .〉 in the right-

hand side is normalized as 〈(λ3θ5)〉 = 1 [1]. The subscript g will be dropped whenever there

is no chance for confusion.

From (2.9) and (2.8) follows that

Πm(zi)Π
n
(zj) ∼

α′

2
ηmn

(

2πδ(2)(zi − zj)− πΩ(zi, zj)
)

. (2.22)

But using (2.22) directly leads to a mixing between left- and right-movers. Instead, one

can keep the two sectors separate by expanding Πm(z) = Π̂m(z) +
∑g

I=1Π
m
I wI(z) and

computing the holomorphic square with

Πm
I Π

n
J = −α′

2
ηmnπ (ImΩ)−1

IJ . (2.23)

Using this prescription, contributions containing a single Πm
I or Π

m
I vanish.

We use conventions where the (anti)symmetrization over n indices includes a factor of

1/n!, the generalized Kronecker delta is δα1...αn

β1...βn
≡ δ

[α1

β1
· · · δαn]

βn
and satisfies δα1...αn

α1...αn
=

(

d
n

)

where d = 10 or d = 16 for vector or spinor indices respectively. The integration over θ is

given by
∫

d16θ θα1 · · · θα16 = ǫα1...α16 and ǫα1...α11σ1...σ5ǫα1...α11β1...β5
= 11!5! δσ1...σ5

β1...β5
,

The partition of 3-loop dα zero-modes is denoted by (N1, N2, N3)d and indicates that

an expression contains NI factors of dIα. Furthermore, we define

(ǫ · T · dI) ≡ ǫα1...α16Tα1...α5
dIα6

· · · dIα16
, (λrdIdJ) ≡ (λγmnpr)(dIγmnpd

J). (2.24)

Two integrals frequently used in the next sections are summarized here,

∫

[ddI ](ǫ · T · dI) dIα1
dIα2

dIα3
dIα4

dIα5
= 11! 5! cd Tα1α2α3α4α5

(2.25)
∫

[ddI ](ǫ · T · dI) dIα1
dIα2

dIα3
(dIγmnpdI) = 11! 5! 96 cd (λγ

[m)α1
(λγn)α2

(λγp])α3
.

2.2 Four-point SYM amplitude and kinematics

In [11, 19] the amplitudes in the Neveu-Schwarz (NS) sector were written using the kine-

matic factor K defined as

K = Fmn
1 Fnm

2 F pq
3 F qp

4 + Fmn
1 Fnm

3 F pq
2 F qp

4 + Fmn
1 Fnm

4 F pq
2 F qp

3 (2.26)

−4
(

Fmn
1 Fnp

2 F pq
3 F qm

4 + Fmn
1 Fnp

3 F pq
2 F qm

4 + Fmn
1 Fnp

2 F pq
4 F qm

3

)
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where Fmn = kmen − knem is the field-strength. Since the amplitudes in the pure spinor

formalism are manifestly supersymmetric one can rewrite K as follows

K = −23 2880AYM
1234 s12s23 (2.27)

where AYM
1234 is the ten-dimensional SYM amplitude normalized as AYM

1234 = 〈V1E234〉 [20]

and sij = ki · kj are the Mandelstam invariants. Furthermore ki · ki = 0 is the massless

condition and k1m + · · ·+ k4m = 0 is the momentum conservation relation. In order to keep

the momentum expansion formulæ of section 4 legible, we use the following definitions [21],

σ2 =

(

α′

2

)2

(s212 + s213 + s214), σ3 =

(

α′

2

)3

(s312 + s313 + s314) (2.28)

and note that σ3 = 3(α′/2)3s12s13s14.

2.3 Riemann surfaces

A holomorphic field with conformal-weight one in a genus-g Riemann surface Σg can be

expanded in a basis of holomorphic one-forms as φ(z) = φ̂(z) +
∑g

I=1wI(z)φ
I and φI are

the zero modes of φ(z). If {aI , bJ} are the generators of the H1(Σg,Z) = Z
2g homology

group, the holomorphic one-forms can be chosen such that for I, J = 1, 2, . . . , g
∫

aI

wJ(z) dz = δIJ ,

∫

bI

wJ(z) dz = ΩIJ ,

∫

Σg

wI wJ d2z = 2 ImΩIJ (2.29)

where ΩIJ is the symmetric period matrix with g(g+1)/2 complex degrees of freedom [22]

and d2z = idz ∧ dz = 2 dRe(z)dIm(z). For the three-loop amplitude we define

∆(zi; zj ; zk) ≡ ǫIJKwI(zi)wJ(zj)wK(zk), (2.30)

∆m(zi, zj ; zk; zl) ≡ ǫIJK(Πw)mI (zi, zj)wJ(zk)wK(zl),

where (Πw)mI (zi, zj) ≡ Πm
I wI(zi)wI(zj), (no sum in I). It follows that ∆m(zi, zj ; zk; zl) is

symmetric in (ij) and antisymmetric in [kl] and satisfies

Πm
I wI(zi)∆(zj ; zk; zl) = ∆m(zi, zj ; zk; zl) + ∆m(zi, zk; zl; zj) + ∆m(zi, zl; zj ; zk) . (2.31)

Furthermore, the period matrix extends a lattice called the Jacobian variety [14, 22], J =

C
g/(Zg+ΩZg), which is invariant under the modular group Sp(2g,Z). And finally, we define

∫

Σ4

≡
∫ 4

∏

i=1

d2zi . (2.32)

2.3.1 Riemann surfaces of genus g = 1, 2, 3

It is well known that any Riemann surface of genus g = 1, 2 can be written as a hyperelliptic

curve, i.e they admit a 2-1 map f : Σg → CP 1 to the Riemann sphere [22]. For instance,

for genus g = 1 one has

y2 =
4
∏

i=1

(z − λi), g = 1 (2.33)

– 6 –
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and for genus g = 2 the curve is

y2 =
6
∏

i=1

(z − λi), g = 2, (2.34)

where the {λi ∈ C} are the branch points. Since PGL(2,C) is the automorphism group of

CP 1 three of the {λi} branch points in (2.33) and (2.34) can be fixed. Setting λ1 = 0, λ2 = 1

and λ3 = ∞ leads to

y2 = z(z − 1)(z − a), g = 1, (2.35)

y2 = z(z − 1)(z − a1)(z − a2)(z − a3), g = 2,

where the free complex parameters {a} and {a1, a2, a3} parameterise the g = 1 and g = 2

moduli space, respectively. The two equations in (2.35) are clearly invariant under the

Z2 symmetry y → −y, implying that the one- [23, 24] and two-loop [11, 25] amplitude

prescriptions must be multiplied by a symmetry factor 1/2.

Although not all Riemann surfaces of genus three are hyperelliptic, this surface is still

a special case. Every genus-three Riemann surface can be embedded in CP 2 as a quartic

curve, i.e.

GIJKLZ
IZJZKZL = 0, (2.36)

where ZI = (x, y, z) are the homogeneous coordinates of CP 2 [22]. This means a Rie-

mann surface of g = 3 is a global holomorphic section on the O(4) line bundle over CP 2.

The number of the global holomorphic sections on O(4) is given by the dimension of the

H0(CP 2,O(4)) Čech cohomology group, which is

h0(CP 2,O(4)) =

(

6

2

)

= 15. (2.37)

So, the number of free parameters in (2.36) is 15 − 1 = 14, where the number 1 accounts

for the fact that (2.36) is invariant under the scale symmetry ZI → tZI , t ∈ C
∗. Since the

automorphism group of CP 2 is PGL(3,C), which has dimension dim(PGL(3,C)) = 8, we

can fix 8 of the 14 free parameters. Therefore every Riemann surface of genus g = 3 depends

on 6 parameters and its algebraic curve (2.36) can be written, without loss of generality, as

xy3 + a1zy
3 + a2x

4 + a3x
3z + a4x

2z2 + a5xz
3 + a6z

4 = 0, (2.38)

where {ai} parameterise the moduli space. This curve is invariant under the Z3 symme-

try y → e2πin/3y, with n = 0, 1, 2, which implies that the three-loop scattering amplitude

prescription must be multiplied by the 1/3 factor.

2.3.2 Moduli space

The moduli space Mg is defined as the space of inequivalent complex structures on the

Riemann surface Σg. It is well known that its complex dimension is dimC(Mg) = 3g − 3,

for g > 1. We denote the complex coordinates on this space by τi for i = 1, . . . , 3g − 3.

– 7 –
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For genus two and three the dimension of the moduli space is the same as the dimension

of the period matrices, i.e., 3g − 3 = g(g + 1)/2 for g = 2, 3. So there is a one-to-one map

between inequivalent complex structures and inequivalent period matrices. This means

that for genus g = 2, 3 the scattering amplitude can be written in terms of the period

matrix instead of the moduli coordinates and Beltrami differentials. This rewriting can be

achieved using the identities [14]

∫

d2z wI(z)wJ(z)µi(z) =
δΩIJ

δτi
,

∫ 6
∏

j=1

d2τj

∣

∣

∣

∣

ǫi1...i6
δΩ11

δτi1
. . .

δΩ33

δτi6

∣

∣

∣

∣

2

=

∫ 3
∏

I≤J

d2ΩIJ ,

(2.39)

where the Beltrami differential is given by µz
iz = ∂zv

z
i and vzi (z, z) is a small complex

structure deformation.

However the factor
∏3

I≤J d
2ΩIJ is not invariant under the modular transformation

Sp(6,Z). In general, the Sp(2g,Z)-invariant measure for the genus-g moduli space is

dµg ≡ d2ΩIJ

(det ImΩIJ)g+1
, (2.40)

and this is precisely the measure that will be obtained from first principles in the next

section for genus g = 3.

The corresponding volume of the inequivalent period matrix space is given in [26]

Volg ≡
∫

Mg

dµg = 2g
2+1(2π)g(g+1)/2

g
∏

k=1

(k − 1)!

(2k)!
|B2k| , (2.41)

where B2k are the Bernoulli numbers and the extra 2g(g+1)/2 factor in (2.41) compared to

the original formula in [26] is due to a different convention for d2ΩIJ (see e.g. [19]). In

particular,

Vol1 =
2π

3
, Vol2 =

4π3

33 5
, Vol3 =

26π6

36 52 7
. (2.42)

2.4 The amplitude prescription

The prescription to compute the multiloop n-point closed-string amplitude was given in [2]

and it becomes

A3 =
1

3
κ4e4λ

∫

M3

6
∏

j=1

d2τj

∫

Σ4

∣

∣〈N (b, µj)U
1(z1) . . . U

4(z4)〉
∣

∣

2
, (2.43)

for three loops and four points. M3 is the fundamental domain of the genus-three Rie-

mann surface and the symmetry factor 1/3 has been argued for in the previous section.

The b-ghost insertion is

(b, µj) =
1

2π

∫

d2yjbzzµ
z
j z, j = 1, . . . , 6. (2.44)
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After the non-zero modes are integrated out using their OPEs, the pure spinor bracket

〈. . .〉 denotes the integration over the zero-modes2

〈. . .〉 =
∫

[dθ][dr][dλ][dλ]
3
∏

I=1

[ddI ][dsI ][dwI ][dwI ] (2.45)

and N is the BRST regulator discussed in [2] which can be written as

N =
3

∑

I=1

e−(λλ)−(wIwI)−(rθ)+(sIdI). (2.46)

After the integration over [ddI ][dsI ][dwI ][dwI ] is performed, the remaining variables

λα, λβ , θ
δ and rα have conformal weight zero and therefore are the same ones which need

to be integrated in the prescription of the tree-level amplitudes. Using the Theorem 1

from appendix A all correlators at this stage of the computation reduce to pure spinor

superspace expressions [27] whose component expansions can be straightforwardly com-

puted [28, 29]. In particular, the last correlator to evaluate is a combination of the zero

mode integration of tree-level pure spinor variables (2.21) and xm,

|〈(λ3θ5)〉(n,g)|2
〈

4
∏

j=1

eik
j ·xj〉

= (2π)10δ(10)(k)

√
2

27π6

(

α′

2

)−1(Γ(8 + n)

7!

)2

|〈(λ3θ5)〉|2 I(sij),

(2.47)

where δ(10)(k) ≡ δ(10)(
∑

i k
m
i ) and I(sij) is the Koba-Nielsen factor

I(sij) = exp

(

−
∑

i<j

sijG(zi, zj)

)

. (2.48)

Given the above conventions, the space-time dimension of the closed-string n-point

amplitude is independent of the genus; [Ag] = n(2+[κ]). One can show that unitarity [30]

requires κ2e−2λ =

(

α′

2

)−2√
228π7, so [κ] = −2 and the amplitudes are dimensionless.

3 The closed-string 3-loop amplitude

At genus three there are (16, 16, 16)d zero-modes of dα and (11, 11, 11)s zero-modes of

sα. The factor e(d
IsI) in the regulator (2.46) is the only source of sα zero-modes so the

integration over [dsI ] brings down (11, 11, 11)d zero-modes,

∫ 3
∏

I=1

[dsI ] e−(dIsI) =

(

α′

2

)6 (2π)33/2Z11
3

R3218(11! 5!)3(λλ)9

3
∏

I=1

(ǫ · T · dI) . (3.1)

The remaining (5, 5, 5)d must come from the b-ghosts and the external vertices. Since the

number of dα zero-modes from the external vertices and from each b-ghost can be at most

2The definition of the pure spinor bracket here should not be confused with the standard zero mode

integration 〈(λ3θ5)〉 = 1 of [1]. Since the context makes the distinction clear, we chose not to distinguish

the notation.

– 9 –



J
H
E
P
1
0
(
2
0
1
3
)
2
1
7

four and two respectively, there are only two possibilities for the b-ghosts: they provide

11 or 12 dα zero modes. Note that these possibilities lead to integrations over pure spinor

variables which can be regularized using the original procedure of Berkovits [2].

In the following we decompose the amplitude (2.43) according to the two different

b-ghost sectors as A3 = A11 +A12 and evaluate each sector in turn.

3.1 12 dα zero-modes from the b-ghosts

In this sector there is no chance for OPE singularities between the b-ghosts and the ex-

ternal vertices and therefore (b, µ) is still a well-defined measure [8]. To see this note

that if six b-ghosts provide twelve dα zero modes, each one of them must pick the term

(λγmnpr)(dγmnpd)/(192(λλ)
2) in (2.10). The zero-mode part of each (dγmnpd)(y) factor is

(d1γmnpd
1)w1(y)w1(y) + 2(d1γmnpd

2)w1(y)w2(y) + 2(d1γmnpd
3)w1(y)w3(y)

+ (d2γmnpd
2)w2(y)w2(y) + 2(d2γmnpd

3)w2(y)w3(y) + (d3γmnpd
3)w3(y)w3(y),

and a short computation using (2.39) gives,

∫ 6
∏

j=1

d2τj

∣

∣

∣(b, µj)
∣

∣

∣

2
= c2b1

∫

d2ΩIJ

∣

∣

∣

∣

B(4,4,4)

(λλ)12

∣

∣

∣

∣

2

, (3.2)

where cb1 = (α
′

2 )
6 23

(27 3π)6
and

B(4,4,4) ≡ (λrd1d1)(λrd1d2)(λrd1d3)(λrd2d2)(λrd2d3)(λrd3d3). (3.3)

Note that B(4,4,4) is totally symmetric in the zero-mode labels (123). Since wI and wI

appear only in the regulator N their integration is straightforward

∫ 3
∏

I=1

[dwI ][dwI ] e−(wIwI) =
(λλ)9

(2π)33
Z−22
3 . (3.4)

Defining (if B(p,q,r) does not contain an index m one omits it altogether on both sides)

Dm
(p+11,q+11,r+11) ≡

∫ 3
∏

I=1

[ddI ](ǫ · T · dI)Bm
(p,q,r) (3.5)

and gathering the above results,

A12 =

√
2 2−101κ4e4λ

π42 313(11! 5!)6

(

α′

2

)24 ∫ d2ΩIJ

Z22
3

∫

Σ4

∣

∣

∣

〈

D(15,15,15)U
1U2U3U4

〉

(−9)

∣

∣

∣

2
〈

4
∏

j=1

eik
j ·xj〉

.

(3.6)

The only non-vanishing contribution to the integral in (3.6) contains three dα from the

external vertices,

U1U2U3U4 =

(

α′

2

)4
[

(dW12)(dW3)(dW4) η12 + (dW13)(dW2)(dW4) η13

+(dW14)(dW2)(dW3) η14 + (dW23)(dW1)(dW4) η23 (3.7)
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+(dW24)(dW1)(dW3) η24 + (dW34)(dW1)(dW2) η34
]

+

(

α′

2

)3 3
∑

I=1

Πm
I wI(z1)A

1
m(dW 2)(dW 3)(dW 4) + (1 ↔ 2, 3, 4) ,

where Wij denotes the BRST block [31],

Wα
ij =

1

4
(γpqWj)

αFpq
i + (kj ·Ai)W

α
j − (i ↔ j) . (3.8)

Since now only the zero modes contribute, each dα(zi) becomes dIαwI(zi). Note that

D(15,15,15)d
I
αd

J
βd

K
γ wI(zi)wJ(zj)wK(zk) = D(15,15,15)d

1
αd

2
βd

3
γ∆(zi; zj ; zk) because the only

non-vanishing contribution has (1, 1, 1)d zero-modes and
∏3

I=1[dd
I ](ǫ · T · dI) is totally

antisymmetric in the zero-mode labels [123]. Thus,

D(15,15,15)(dWij)(dWk)(dWl) = (11! 5! )3963 c3d Tij,k,l(λ, λ, r)∆(zj ; zk; zl)

D(15,15,15)(dWi)(dWj)(dWk)A
m
l = (11! 5!)3963 c3d L

m
ijkl(λ, λ, r)∆(zj ; zk; zl) (3.9)

where

Tij,k,l(λ, λ, r) = (λγabcr)(λγdefr)(λγghir)(λγmnpr)(λγqrsr)(λγtuvr)

×(λγadefmλ)(λγbghitλ)(λγuqrsnλ)(λγcWij)(λγ
pWk)(λγ

vWl) ,

Lm
ijkl(λ, λ, r) = (λγabcr)(λγdefr)(λγghir)(λγmnpr)(λγqrsr)(λγtuvr) (3.10)

×(λγadefmλ)(λγbghitλ)(λγuqrsnλ)(λγcWi)(λγ
pWj)(λγ

vWk)A
m
l .

As shown in the appendix A, it is always possible to rewrite the λ
n
λn+3 dependence

in (3.10) as (λλ)nλ3 when performing the zero mode integrals and therefore we write

Tij,k,l(λ, λ, r) = (λλ)6Tij,k,l(λ, r) and drop the (λ, r) arguments from now on. Note that

Tij,k,l is antisymmetric in [ij] and [kl] and Lm
ijkl is antisymmetric in [ijk].

Plugging the above results in (3.6) and using the identity (2.31) together with the

definitions Mij,k,l = s−1
ij Tij,k,l, Xij = (α′/2)sijηij yields

A12 =
√
2π6

223 37
κ4e4λ

(

α′

2

)6
∫

d2ΩIJ

Z−10
3

∫

Σ4
〈|K12|2

〉

(−3)

〈
∏4

j=1 e
ikj ·xj〉

(3.11)

where

K12 = M12,3,4∆(z2; z3; z4)X12 +M13,2,4∆(z3; z2; z4)X13 +M14,2,3∆(z4; z2; z3)X14

+M23,1,4∆(z3; z1; z4)X23 +M24,1,3∆(z4; z1; z3)X24 +M34,1,2∆(z4; z1; z2)X34

+∆m(z1, z2; z3; z4)
[

Lm
1342 + Lm

2341

]

+∆m(z1, z3; z2; z4)
[

Lm
1243 + Lm

3241

]

+∆m(z1, z4; z2; z3)
[

Lm
1234 + Lm

4231

]

+∆m(z2, z3; z1; z4)
[

Lm
2143 + Lm

3142

]

+∆m(z2, z4; z1; z3)
[

Lm
2134 + Lm

4132

]

+∆m(z3, z4; z1; z2)
[

Lm
3124 + Lm

4123

]

. (3.12)

3.2 11 dα zero-modes from the b-ghosts

By not using the Siegel-gauge vertex operators of [9] one could in principle face problems

with the consistency condition for (b, µ) discussed in [8]. However, in the low energy limit

discussed here, this potential complication can be ignored since the only contribution comes

from terms in which the b ghost does not have singular OPEs.3 To see this note that one

3We are grateful to Nathan Berkovits for discussions and for his comments on the draft at this point.
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possibility to obtain 11 dα zero modes out of six b-ghosts is given by

b6 −→ (λλ)−12

(192)6

(

α′

2

)6
[

(λγmnpr)(dγmnpd)
]6

, (3.13)

where one of the dα(yi) is the non-zero-mode part d̂α(yi) and contracts through the

OPE (2.9) with an external vertex (yi denotes the position of the corresponding b-ghost).

However this term is of order D8R4 and there are no inverse powers of Mandelstam invari-

ants coming from the integration over the vertex positions since there are no simple pole

singularities among them [32], as they must contribute the four remaining dα zero modes.

The claim that (3.13) leads to terms of order D8R4 is easy to verify. The external vertices

contribute W 4 superfields, the OPE between d̂α(y) and one superfield W β gives DαW
β and

each rα from (3.13) counts as a covariant derivative Dα because of the factor e−(rθ) in the

regulator N . This gives kinematic terms proportional to 〈D7
αW

4〉 = 〈k3W 3F〉 = k4F 4
mn

whose holomorphic square is D8R4. The other possibilities of b-ghost singularities are simi-

larly analyzed. Therefore the terms which might be affected by the issues pointed out in [8]

do not affect the leading order terms D6R4 and will not be considered in the following.

When the b-ghosts have no singularities with the vertices and contribute 11 zero-modes

of dα, one possibility is

b6 −→ (λλ)−13

16(192)5

(

α′

2

)6

(rγqrsr)(λγ
qd)N rs

[

(λγmnpr)(dγmnpd)
]5
, (3.14)

but it vanishes upon integration over [dw] because
∫

[dw][dw]wαe
−(wIwI) = 0. The other

possibility is

b6 −→ (λλ)−11

2(192)5

(

α′

2

)5

(λγqd)Π
q
[

(λγmnpr)(dγmnpd)
]5

(3.15)

where the Πm(y) field is proportional to its zero modes ΠI
mwI(y). In this case the

integration over the positions of the b-ghosts can be carried out,
∫ 6

∏

j=1

d2τj

∣

∣

∣(b, µj)
∣

∣

∣

2
= c2b2

∫

d2ΩIJ

∣

∣

∣

∣

1

(λλ)11

(

Π1
mBm

(3,4,4) +Π2
mBm

(4,3,4) +Π3
mBm

(4,4,3)

)

∣

∣

∣

∣

2

(3.16)

where cb2 = 22(α′/2)5

4π (27 3π)5
= 48(α′/2)−1 cb1 and

Bm
(3,4,4) = +2(λγmd1)(λrd1d2)(λrd1d3)(λrd2d2)(λrd2d3)(λrd3d3)

−(λγmd2)(λrd1d1)(λrd1d3)(λrd2d2)(λrd2d3)(λrd3d3)

+(λγmd3)(λrd1d1)(λrd1d2)(λrd2d2)(λrd2d3)(λrd3d3) , (3.17)

while B(4,3,4) and B(4,4,3) are obtained from B(3,4,4) by swapping d1α ↔ d2α and d1α ↔ d3α,

respectively. Furthermore, note that B(3,4,4) is symmetric under d2α ↔ d3α.

Taking into account that cb2 = 48(α′/2)−1 cb1 and using the definition (3.5) leads to

the following expression for A11,

A11 =

√
2 2−93κ4e4λ

π42 311(11! 5!)6

(

α′

2

)22 ∫ d2ΩIJ

Z22
3

∫

Σ4

〈

4
∏

j=1

eik
j ·xj〉

(3.18)

×
∣

∣

∣

〈

(Π1
mDm

(14,15,15) +Π2
mDm

(15,14,15) +Π3
mDm

(15,15,14))U
1U2U3U4

〉

(−8)

∣

∣

∣

2
.
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Each external vertex U i contribute through the term (α′/2)(dW i)(zi) and the integration

over the d zero-modes can be carried out by using the following formulae,

Dm
(14,15,15)(d

1W 1)(d1W 2)(d2W 3)(d3W 4) = +(11! 5!)3962c3d S
m
1234(λ, λ, r)

Dm
(15,14,15)(d

2W 1)(d2W 2)(d1W 3)(d3W 4) = −(11! 5!)3962c3d S
m
1234(λ, λ, r) (3.19)

Dm
(15,15,14)(d

3W 1)(d3W 2)(d1W 3)(d2W 4) = +(11! 5!)3962c3d S
m
1234(λ, λ, r)

where

Sm
1234(λ, λ, r) = S

(1)m
1234 (λ, λ, r) + S

(2)m
1234 (λ, λ, r)− S

(2)m
1243 (λ, λ, r) (3.20)

and

S
(1)m
1234 (λ, λ, r) = 2 (λγmγa1λ)(λγm1n1p1r)(λγm2n2p2r)(λγm3n3p3r)(λγm4n4p4r)(λγm5n5p5r)

×(λγa2m1n1p1m3λ)(λγa3m2n2p2m5λ)(λγn3m4n4p4n5λ)

×(W 1γa1a2a3W 2)(λγp3W 3)(λγp5W 4)

S
(2)m
1234 (λ, λ, r) = 96 (λγmγm3λ)(λγm1n1p1r)(λγm2n2p2r)(λγm3n3p3r)(λγm4n4p4r)(λγm5n5p5r)

×(λγm1m2n2p2m5λ)(λγn3m4n4p4n5λ)

×(λγn1W 1)(λγp1W 2)(λγp3W 3)(λγp5W 4) . (3.21)

Note from the definition (3.19) that Sm
1234(λ, λ, r) is symmetric in the particle labels

(12) and antisymmetric in [34]. The explicit expression for S
(1)
1234(λ, λ, r) is symmetric

in (12) and antisymmetric in [34] whereas S
(2)
1234(λ, λ, r) is symmetric in (12), so (3.20)

indeed has the required symmetries. According to the procedure of appendix A we write

Sm
1234(λ, λ, r) = (λλ)6Sm

1234(λ, r) and drop the arguments (λ, r) in the following.

After expanding dα(z) = d̂α(z)+dIαwI(z) and using (3.19) together with the symmetry

properties of Sm
1234 it is a matter of bookkeeping the permutations to arrive at

(Π1
mDm

(14,15,15)+Π2
mDm

(15,14,15)+Π3
mDm

(15,15,14))U
1U2U3U4 =

(

α′

2

)4

(11!5!)3 962 c3d (λλ)
6K11

(3.22)

where

K11 =+Sm
1234∆

m(z1, z2; z3; z4) + Sm
1324∆

m(z1, z3; z2; z4) + Sm
1423∆

m(z1, z4; z2; z3)

+Sm
2314∆

m(z2, z3; z1; z4)+Sm
2413∆

m(z2, z4; z1; z3)+Sm
3412∆

m(z3, z4; z1; z2) . (3.23)

Finally,

A11 = κ4e4λ
√
2π6

22537

(

α′

2

)6∫ d2ΩIJ

Z−10
3

∫

Σ4

〈
∣

∣K11

∣

∣

2〉(−2)

〈

4
∏

j=1

eik
j ·xj〉

. (3.24)

Therefore from (3.11) and (3.24) the three-loop amplitude A3 = A12 +A11 becomes

A3 = κ4e4λ
√
2π6

22337

(

α′

2

)6∫

M3

d2ΩIJ

(det(2 ImΩ))5

∫

Σ4

[

〈|F|2〉(−3) + 〈|T |2〉(−3)

]

〈

4
∏

j=1

eik
j ·xj〉

(3.25)
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where (2.16) has been used,

F = +M12,3,4∆(z2; z3; z4)X12 +M13,2,4∆(z3; z2; z4)X13 +M14,2,3∆(z4; z2; z3)X14

+M23,1,4∆(z3; z1; z4)X23 +M24,1,3∆(z4; z1; z3)X24 +M34,1,2∆(z4; z1; z2)X34

T = + Tm
1234∆

m(z1, z2; z3; z4) + Tm
1324∆

m(z1, z3; z2; z4) + Tm
1423∆

m(z1, z4; z2; z3)

+ Tm
2314∆

m(z2, z3; z1; z4) + Tm
2413∆

m(z2, z4; z1; z3) + Tm
3412∆

m(z3, z4; z1; z2) (3.26)

and (the other Tm
ijkl follow from relabelling),

Tm
1234 = Lm

1342 + Lm
2341 +

5

2
Sm
1234 . (3.27)

The factor 5 in (3.27) is due to 〈. . .〉(−2) = 5〈. . .〉(−3) and follows from (2.21). The factor

1/2 accounts for the different overall normalizations of (3.24) and (3.11).

After using (2.47) the three-loop amplitude (3.25) becomes

A3 = (2π)10δ(10)(k)
κ4e4λ

23139 52 72

(

α′

2

)5∫

M3

d2ΩIJ

(det(2 ImΩ))5

∫

Σ4

[

〈|F|2〉+ 〈|T |2〉
]

I(sij) .
(3.28)

3.3 The low energy limit D6R4

Since the superfields in F and T have component expansions terms of order k4F 4
mn and

k3F 4
mn one might naively expect that only 〈|T |2〉 in (3.25) contributes to the low energy

limit of order D6R4. However the integration by parts identities of appendix B show that,
∫

Σ4

〈|F|2〉I(sij) = −π

(

α′

2

)

〈K〉
∫

Σ4

Ω12∆(z2; z3; z4)∆(z1; z3; z4) +O(α′2)

= −36π

(

α′

2

)

〈K〉 det(2 ImΩ) +O(α′2) (3.29)

where

K =
|T23,1,4|2

s23
+

|T24,1,3|2
s24

+
|T34,1,2|2

s34
+

|T12,3,4|2
s12

+
|T13,2,4|2

s13
+

|T14,2,3|2
s14

(3.30)

is such that 〈K〉 is also of order D6R4.

The low energy limit of
∫

Σ4
|T |2 I(sij) can be obtained by dropping the Koba-Nielsen

factor and carrying out the integrations using Riemann’s relation (2.29) in the form,
∫

Σ4

∆m(z1, z2; z3; z4)∆
n
(z1, z2; z3; z4) = −12πηmn

(

α′

2

)

det(2 ImΩ),

∫

Σ4

∆m(z1, z2; z3; z4)∆
n
(z1, z3; z2; z4) = +12πηmn

(

α′

2

)

det(2 ImΩ),

∫

Σ4

∆m(z1, z2; z3; z4)∆
n
(z3, z4; z1; z2) = 0 . (3.31)

Since every integral in
∫

Σ4
|T |2 can be obtained from relabellings of (3.31) using the sym-

metries of ∆m(z1, z2; z3; z4), straightforward algebra gives
∫

Σ4

|T |2 = −36π

(

α′

2

)

det(2 ImΩ)L · L̃ , (3.32)
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where

L · L̃ =
1

3

6
∑

i,j=1

MijLi · L̃j (3.33)

and Mij is the symmetric 6× 6 matrix

Mij =



















1 −1 1 −1 1 0

−1 1 −1 −1 0 1

1 −1 1 0 −1 1

−1 −1 0 1 −1 −1

1 0 −1 −1 1 −1

0 1 1 −1 −1 1



















,

and we defined the set Lm
i = {Tm

1234, T
m
1324, T

m
1423, T

m
2314, T

m
2413, T

m
3412}.

Therefore the low energy limit of the closed-string three-loop amplitude is given by

A3 = −(2π)10δ(10)(k)

(

α′

2

)6
〈

K + L · L̃
〉

κ4e4λ
π

22937 52 72

∫

M3

d2ΩIJ

(det(2 ImΩ))4

= −(2π)10δ(10)(k)

(

α′

2

)6
〈

K + L · L̃
〉

κ4e4λ
πζ6

235 310 53 72
(3.34)

where the integral is 2−12Vol3 and we used ζ6 = π6/945. A long calculation gives [28]

〈

K + L · L̃
〉

= −235 37 53 72 (s312 + s313 + s314)KK (3.35)

irrespective of whether it is for type IIA or IIB, confirming the theorem of [7].

Therefore

A3 = (2π)10δ(10)(k)κ4e4λ
π ζ6
33

(

α′

2

)6

(s312 + s313 + s314)KK (3.36)

is low energy limit of the type IIA and IIB three-loop amplitude.

4 Perturbative calculations versus S-duality predictions

We first review the one- and two-loop comparisons between S-duality predictions and per-

turbative amplitude calculations of [19, 21] using our conventions. After that we extend

their analysis to include the three-loop result (3.36). We will find that the amplitude we

computed in (3.36) agrees with the prediction of Green and Vanhove [12].

4.1 One- and two-loops

The closed-string massless four-point amplitudes at genus 0, 1 and 2 computed in [11]

(including their overall coefficients) are given by (see also [19]),

A0 = (2π)10δ(10)(k)

(

α′

2

)3

KK κ4e−2λ

√
2

216π5
B0(sij) (4.1)
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A1 = (2π)10δ(10)(k)

(

α′

2

)3

KK κ4
1

214π2

∫

M1

d2τ

τ22
B1(sij |τ)

A2 = (2π)10δ(10)(k)

(

α′

2

)3

KK κ4e2λ
√
2

215

∫

M2

d2ΩIJ

(det(ImΩ))3
B2(sij |Ω)

where4 [19, 21],

B0(sij) =
Γ(−α′s12/2)Γ(−α′s13/2)Γ(−α′s14/2)

Γ(1 + α′s12/2)Γ(1 + α′s13/2)Γ(1 + α′s14/2)
(4.2)

=
3

σ3
+ 2ζ3 + ζ5σ2 +

2

3
ζ23σ3 + · · ·

B1(sij |τ) =

∫ 4
∏

i=2

d2zi
τ2

I(sij) = 23
(

1 +
ζ3
3
σ3 + · · ·

B2(sij |Ω) =

∫

Σ4

|Y|2
(det(ImΩ))2

I(sij) = 27σ2 + · · ·

Plugging in the volume of the moduli spaces (2.42) one obtains the following low energy

expansions,

A0 = (2π)10δ(10)(k)

(

α′

2

)3

KK κ4e−2λ

√
2

216π5

[

3

σ3
+ 2ζ3 + ζ5σ2 +

2

3
ζ23σ3 + · · · (4.3)

A1 = (2π)10δ(10)(k)

(

α′

2

)3

KK κ4
1

210 3π

[

1 +
ζ3
3
σ3 + · · · (4.4)

A2 = (2π)10δ(10)(k)

(

α′

2

)3

KK κ4e2λ
√
2π3

26 33 5

[

σ2 + · · · (4.5)

The SL(2,Z)-duality predictions for the perturbative effective action are [12, 35–37]

Sα′3

= C1

∫

d10x
√−gR4

(

2ζ3e
−2φ +

2π2

3

)

, (4.6)

Sα′5

= C2

∫

d10x
√−g D4R4

(

2ζ5e
−2φ +

8

3
ζ4e

2φ

)

, (4.7)

Sα′6

= C3

∫

d10x
√−g D6R4

(

4ζ23e
−2φ + 8ζ2ζ3 +

48

5
ζ22e

2φ +
8

9
ζ6e

4φ

)

. (4.8)

where the precise definitions of R4, D4R4 and D6R4 and the constants C{1,2,3} will not

be needed in the following discussion since only the ratios of the interactions at different

loop orders will be important.

Matching the ratios of the α′3 interactions at one-loop and tree-level leads to a

relation between eφ and eλ,

√
224π4e2λ

3ζ3
=

e2φπ2

3ζ3
→ e2φ = e2λ

√
224π2, (4.9)

4B0(sij) here is
1

2π
C(s, t, u) from [11]. Furthermore, see [33] for a recent attempt to evaluate non-leading

terms at two-loops and [34] for an elegant way to rewrite the tree-level expansion.
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where the left-hand side follows from the amplitudes while the right-hand side from the

effective action (4.6). Now one can compare the S-duality predictions for the amplitudes

at order α′5 and α′6 (denoted with a Latin capital Aα′n

) and the perturbative results.

For the α′5 interaction, the ratio between the two-loop and tree-level interactions in

the effective action (4.7) is 4ζ4
3ζ5

e4φ and leads to the prediction

Aα′5

2 = Aα′5

0

211π4ζ4
3ζ5

e4λ = (2π)10δ(10)(k)κ4e2λ
(

α′

2

)3

KK

√
2ζ4

25 3π
σ2 , (4.10)

which agrees with the two-loop perturbative calculation (4.5) (recall that ζ4 = π4/90).

For the α′6 interaction, the ratio between the one-loop and tree-level terms following

from the effective action (4.8) is 2ζ2/ζ3e
2φ = ζ2/ζ3

√
225π2e2λ and implies

Aα′6

1 = (2π)10δ(10)(k)

(

α′

2

)3

KK κ4
ζ2ζ3
293π3

σ3 , (4.11)

which agrees with the one-loop perturbative calculation (4.4), in accord with the analysis

of [21].

4.2 Three-loops

Similarly, the ratio between the three-loop and tree-level terms of (4.8)

2ζ6
9ζ23

e6φ =

√
2214π6ζ6
9ζ23

e6λ =
Aα′6

3

Aα′6

0

predicts the following three-loop amplitude

Aα′6

3 = (2π)10δ(10)(k)

(

α′

2

)3

KK κ4e4λ
πζ6
33

σ3 , (4.12)

in complete agreement with the first principles perturbative calculation (3.36).
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A A general formula for integration of pure spinors

Component expansions of a general ghost-number-three pure spinor superspace expression

of the form λα1 . . . λαn+3λβ1
. . . λβn

fβ1...βn
α1...αn+3

(θ, r) can be computed most conveniently by

first rewriting it in the form (λλ)nλα1 . . . λα3fα1...α3
(θ, r). Doing that allows the straight-

forward application of the formula (2.21) and the identities listed in the appendix of [38].

The case n = 1 was discussed in [39], now the solution for general n will be presented.

Let T α1...αn

β1...βn
denote a SO(10)-invariant tensor which is symmetric and γ-traceless in

both sets of indices. When n is even there is (n/2 + 1)-dimensional basis [40],

T α1...αn

β1...βn
=

n/2
∑

k=0

c
(n)
k T

(n)
k , (A.1)

T
(n)
k = δ

(α1

(β1
· · · δαn−2k

βn−2k
(γ · γ)αn−2k+1αn−2k+2

βn−2k+1βn−2k+2
· · · (γ · γ)αn−1αn)

βn−1βn)
,

and (γ · γ)α1α2

β1β2
≡ γα1α2

m γmβ1β2
. Imposing the γ-traceless condition leads to a recurrence

relation for the coefficients c
(n)
k [41] and the normalization condition Tα1...αn

α1...αn
= 1 relates

the coefficient c
(n)
0 with the dimension of the pure spinor representation Nn ≡ dim([0000n]),

c
(n)
k+1 = −(n− 2k)(n− 2k − 1)

8(k + 1)(n− k + 2)
c
(n)
k , c

(n)
0 = 1/Nn , (A.2)

where5

Nn =
1

302400
(n+ 7)(n+ 6)(n+ 5)2(n+ 4)2(n+ 3)2(n+ 2)(n+ 1) (A.3)

= 16, 126, 672, 2772, 9504, 28314 . . .

When m = n−1 is odd, the tensor T α1...αm

β1...βm
can be obtained from (A.1) by contracting

a pair of indices; T α1...αm

β1...βm
= T α1...αmαm+1

β1...βmαm+1
.

The explicit expressions for the first few tensors read as follows,

T α1

β1
=

1

16
δα1

β1
,

T α1α2

β1β2
=

1

126

[

δ
(α1

β1
δ
α2)
β2

− 1

16
(γ · γ)α1α2

β1β2

]

, (A.4)

T α1...α3

β1...β3
=

1

672

[

δ
(α1

β1
· · · δα3)

β3
− 3

20
δ
(α1

(β1
(γ · γ)α2α3)

β2β3)

]

,

T α1...α4

β1...β4
=

1

2772

[

δ
(α1

β1
· · · δα4)

β4
− 1

4
δ
(α1

(β1
δα2

β2
(γ · γ)α3α4)

β3β4)
+

1

160
(γ · γ)(α1α2

(β1β2
(γ · γ)α3α4)

β3β4)

]

.

Using the integration formula of [10, 11] and the above γ-traceless tensors it follows that6

∫

[dλ][dλ]e−(λλ)(λλ)mλα1 · · ·λαnλβ1
· · ·λβn

=

(

Ag

2π

)11 12Γ(8 +m+ n)

Γ(11)
T α1...αn

β1...βn
. (A.5)

5Nn can be obtained from (1 + t)(1 + 4t+ t2)(1− t)−11 = 1 +
∑

n≥1
Nnt

n [42, 43].
6Note that all numbers in (A.5) have a geometrical meaning. The number 8 is the ghost anomaly (the

first Chern class of the projective pure spinor space), 11 is the complex dimension of the pure spinor space

and 12 is the degree of the projective pure spinor space [10, 42].
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To see this it is enough to check that the right-hand side of (A.5) has the same symmetries

of the left-hand side and it is correctly normalized.

Let us define the tensor T
αβγ;σ1...σ5 by [44]

λαλβλγT
αβγ;σ1...σ5 = T

σ1...σ5 , (A.6)

where T
σ1...σ5 is given in (2.17). Since one can take T

αβγ;σ1...σ5 to be γ-traceless in the

(αβγ) indices it follows from (A.4) that

T α1α2α3

β1β2β3
T
β1β2β3;σ1...σ5 =

1

672
T
α1α2α3;σ1...σ5 . (A.7)

Theorem 1. Let f(λn+3, λ
n
, θ) be a general superfield with ghost-number +3, then

〈

f(λn+3, λ
n
, θ)

〉

(m,g)
=

〈

(λλ)nf̂(λ3, θ5)
〉

(m,g)
(A.8)

where

f̂(λ3, θ5) = 672λβ1λβ2λβ3 T σ1...σn+3

β1...βn+3
f
β4...βn+3

σ1...σn+3;δ1...δ5
θδ1 . . . θδ5 .

Proof. Integrating the right-hand side of (A.8) over [dr] and [dθ] using the measures

of (2.14) and the definition (2.20) yields

r.h.s. = 11! 5! crcθ

∫

[dλ][dλ]e−(λλ) 672(λλ)n+m−3λβ1λβ2λβ3 λγ1λγ2λγ3

× T
γ1γ2γ3;δ1...δ5T σ1...σn+3

β1...βn+3
f
β4...βn+3

σ1...σn+3;δ1...δ5
.

Given that the T tensors are normalized such that T α1...αp

β1...βp
= 1 the integration over the

pure spinors λ and λ using (A.5) leads to

r.h.s. = 11! 5! crcθ

(

Ag

2π

)11 Γ(8 +m+ n)

302400
672T β1β2β3

γ1γ2γ3 T
γ1γ2γ3;δ1...δ5T σ1...σn+3

β1...βn+3
f
β4...βn+3

σ1...σn+3;δ1...δ5

= 11! 5! crcθ

(

Ag

2π

)11 Γ(8 +m+ n)

302400
T
β1β2β3;δ1...δ5T σ1...σn+3

β1...βn+3
f
β4...βn+3

σ1...σn+3;δ1...δ5
(A.9)

where (A.7) has been used in the second line. However it is easy to show that the evaluation

of the left-hand side of (A.8) is equal to (A.9), finishing the proof.

For completeness, note that T
αβγ;σ1...σ5 defined in (A.6) is proportional to the pure

spinor correlator 〈λαλβλγθσ1 . . . θσ5〉(n,g). Indeed, a short computation shows that

〈λαλβλγθσ1 . . . θσ5〉(n,g) =
(

α′

2

)2( 2π

Ag

)5/2Γ(8 + n)

302400

R

672
T
αβγ;σ1...σ5 . (A.10)

As a consistency check, multiplying both sides by γmαδ1γ
n
βδ2

γpγδ3(γmnp)δ4δ5 recovers (2.21),

〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉(n,g) =
(

α′

2

)2( 2π

Ag

)5/2

27R
Γ(8 + n)

7!

where we used that T
αβγ;δ1...δ5γmαδ1γ

n
βδ2

γpγδ3(γmnp)δ4δ5 = 5160960 [45].
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As an example, the function f(λ4, λ, θ) ≡ λα1λα2λα3λα4λβ1
fβ1
α1α2α3α4

(θ) can be easily

rewritten according to the Theorem 1 by using

672λσ1λσ2λσ3T α1α2α3α4

σ1σ2σ3β1
=

2

33

[

{

δα1

β1
λα2λα3λα4 + (α1 ↔ α2, α3, α4)

}

(A.11)

− 1

12
(λγm)β1

{

γα1α2
m λα3λα4 + γα1α3

m λα2λα4 + γα1α4
m λα2λα3

+γα2α3
m λα1λα4 + γα2α4

m λα1λα3 + γα3α4
m λα1λα2

}

]

.

A.1 Factoring (λλ)6 from Lm

1234
(λ, λ, r) and T12,3,4(λ, λ, r)

Because of the constraint (2.2) the definition (3.10) can be written as

Lx
1234(λ, λ, r) = (λγaγbγcr)(λγdefr)(λγadefmλ)(λγnγmγpr)(λγqrsr)(λγnqrsuλ)

×(λγtγuγvr)(λγghir)(λγtghibλ)
[

(λγcW1)(λγ
pW2)(λγ

vW3)A
x
4

]

(A.12)

Applying the identity (λγmnpr)(λγ
amnpbλ) = 48(λλ)(λγaγbr)− 48(λγaγbλ)(λr) and using

the pure spinor constraint gives

Lx
1234(λ, λ, r) = −483(λλ)3(λγdγar)(λγgγer)(λγbγir) (A.13)

×(λγaγcγbr)(λγcW1)(λγ
eγfγdr)(λγfW2)(λγ

iγhγgr)(λγhW3)A
x
4

where we also renamed indices. Using

(λγmγpγnr)(λγpW 2) = −(λγpγnr)(λγmγpW 2)− (λγpγmλ)(rγnγpW 2), (A.14)

in the last three factors and doing straightforward algebra yields,

Lx
1234(λ, λ, r) = 483 8(λλ)5Q

[

(A.15)

+(λγaγdr)(λγcγer)(λγbγfr)(rγabW 1)(rγdeW 2)(λγcfW 3)

+(λγaγdr)(λγcγer)(λγbγfr)(rγabW 1)(λγdeW 2)(rγcfW 3)

+(λγaγdr)(λγcγer)(λγbγfr)(λγabW 1)(rγdeW 2)(rγcfW 3)

−(λγcγer)(λγbγfr)(λγaγdλ)(rγabW 1)(rγdeW 2)(rγcfW 3)

+(λγcγer)(λγaγdr)(λγbγfλ)(rγabW 1)(rγdeW 2)(rγcfW 3)

+(λγaγdr)(λγbγfr)(λγcγeλ)(rγabW 1)(rγdeW 2)(rγcfW 3)
]

+483 8(λλ)6(λγaγdr)(λγcγer)(λγbγfr)(rγabW 1)(rγdeW 2)(rγcfW 3)

It is easy to check that (A.15) is totally antisymmetric in [123] as required. The terms

proportional to (λλ)5Q will be rewritten using (A.11) and we identified (λr) = Q because

of the factor e−(rθ) in N . Despite the explicit appearance of the BRST charge in some

terms, they are not BRST-trivial because of the remaining factor λ. However, since Q2 = 0

and the difference between (λγaγdr) and (λγadr) is proportional to Q, one can replace

all factors of (λγaγdr) by (λγadr). Doing this replacement is also allowed in the last

term because there are no factors of λα, so the BRST charge vanishes in the cohomology.
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Similarly, (λγaγdλ) can be substituted by (λγadλ) since the difference is BRST-trivial due

to the resulting factor of Q(λλ)6. Therefore (A.15) becomes

Lx
1234(λ, λ, r) = 483 8

(

F123 + F312 + F231 −G123 −G312 −G231 +H123

)

Ax
4 (A.16)

where

F123 = (λλ)5Q(λγadr)(λγcer)(λγbfr)(rγabW 1)(rγdeW 2)(λγcfW 3) , (A.17)

G123 = (λλ)5Q(λγcer)(λγbfr)(λγadλ)(rγabW 1)(rγdeW 2)(rγcfW 3) , (A.18)

H123 = (λλ)6(λγadr)(λγcer)(λγbfr)(rγabW 1)(rγdeW 2)(rγcfW 3) . (A.19)

It is not difficult to show that H123 is totally antisymmetric in [123] whereas F123 and

G123 are antisymmetric in [12].

Let us rewrite the superfield F123 using the Theorem 1. Since the γ-matrix traceless

tensors are normalized such that T α1...αn
α1...αn

= 1, the factor (λλ)5 is inert under the application

of the theorem and one can use (A.11) directly. Furthermore, all terms which still contain

an explicit BRST charge after using (A.11) will be BRST-trivial because of the factor

(λλ)6. So in fact only four terms in (A.11) are non-vanishing when applied to F123. After

straightforward algebra and discarding BRST-exact terms,

F123 =
2

33
(λλ)6

[

−(λγadr)(λγcer)(λγbfr)(rγabW 1)(rγdeW 2)(rγcfW 3)

−1

4
(λγder)(λγafr)(λγbcr)(rγabW 3)(rγcdW 1)(rγefW 2)

+
1

4
(λγder)(λγafr)(λγbcr)(rγabW 3)(rγcdW 2)(rγefW 1)

]

(A.20)

which implies that F123 = − 1
11H123 (and similarly G123 =

1
11H123). Plugging these results

into (A.16) and taking into account the total antisymmetry of Hijk one finally obtains

L123 = (483 40/11)H123. Identical manipulations apply to T12,3,4, so

Lm
1234(λ, λ, r) =

483 40

11
(λλ)6(λγafr)(λγbcr)(λγder)(rγabW 1)(rγcdW 2)(rγefW 3)Am

4 ,

T12,3,4(λ, λ, r) =
483 40

11
(λλ)6(λγafr)(λγbcr)(λγder)(rγabW12)(rγ

cdW3)(rγ
efW4) .(A.21)

Similar manipulations can be used in Sm
1234(λ, λ, r) but for historic reasons we computed the

five covariant derivatives before rewriting it with the factor (λλ)6. The resulting expression

is not particularly illuminating and was therefore omitted.

B Integration by parts

Noting that one can replace ∆(zj ; zk; zl)X1j by ∆(z1; zk; zl)X1j in (3.26) because

UiUj ∼ (dWij)(zj)ηij = (dWij)(zi)ηij it is straightforward to show that the identities

which eliminate X1i and X1j are given by

∆(1, 3, 4)∆(2, 3, 4)X12X12 = ∆(1, 3, 4)∆(1, 3, 4)(X23 +X24)(X23 +X24)

+∆(1, 3, 4)∆(2, 3, 4)s12Ω̃21 −∆(1, 2, 4)∆(1, 3, 4)s23Ω̃32

+∆(1, 2, 3)∆(1, 3, 4)s24Ω̃42 ,
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∆(1, 3, 4)∆(1, 2, 4)X12X13 = (X23 +X24)(−X23 +X34)∆(1, 3, 4)∆(1, 2, 4)

+s23Ω̃23∆(1, 3, 4)∆(1, 2, 4) ,

∆(1, 3, 4)∆(1, 2, 4)X12X23 =
[

(X23 +X24)X23 − s23Ω̃23

]

∆(1, 3, 4)∆(1, 2, 4) ,

∆(1, 3, 4)∆(1, 2, 3)X12X34 = (X23 +X24)X34∆(1, 3, 4)∆(1, 2, 3), (B.1)

where we used that

∂iXji = sijΩ̃ji, ∂iXji = sijΩ̃ij , ∂iXij = −sijΩ̃ji, ∂iX ij = −sijΩ̃ij , (B.2)

and defined Ω̃ij = (α′/2)πΩ(zi, zj). All other identities needed to write |F|2 in a basis of

integrals follow from the above by relabelling. Applying them together with

Ω̃ij∆(j, k, l)∆(i, k, l) = Ω̃ji∆(i, k, l)∆(j, k, l) , (B.3)

implies that |F|2 is equal to

+ |C32,1,4|2(X23X23 − s23Ω̃23)∆(1, 3, 4)∆(1, 2, 4) (B.4)

− |C24,1,3|2(X24X24 − s24Ω̃24)∆(1, 3, 4)∆(1, 2, 3)

+ |C34,1,2|2(X34X34 − s34Ω̃34)∆(1, 2, 4)∆(1, 2, 3)

+ C32,1,4C̃24,1,3X23X24∆(1, 2, 4)∆(1, 3, 4) + C32,1,4C̃34,1,2X23X34∆(1, 3, 4)∆(1, 2, 4)

+ C24,1,3C̃32,1,4X24X23∆(1, 3, 4)∆(1, 2, 4) + C24,1,3C̃34,1,2X24X34∆(1, 3, 4)∆(1, 2, 3)

+ C34,1,2C̃32,1,4X34X23∆(1, 2, 4)∆(1, 3, 4) + C34,1,2C̃24,1,3X34X24∆(1, 2, 4)∆(1, 3, 4)

+ s12Ω̃12|M12,3,4|2∆(2, 3, 4)∆(1, 3, 4)− s13Ω̃13|M13,2,4|2∆(2, 3, 4)∆(1, 2, 4)

+ s14Ω̃14|M14,2,3|2∆(2, 3, 4)∆(1, 2, 3) + s23Ω̃23|M23,1,4|2∆(1, 3, 4)∆(1, 2, 4)

− s24Ω̃24|M24,1,3|2∆(1, 3, 4)∆(1, 2, 3) + s34Ω̃34|M34,1,2|2∆(1, 2, 4)∆(1, 2, 3)

where we defined (the others follow from relabelling)

C24,1,3 ≡ M24,1,3 +M14,2,3 +M12,3,4. (B.5)

The α′-expansion of the above integrals has not been derived but one can argue from

the results of [46] that ηijηij − Ω̃ijs
−1
ij and ηijηik have no kinematic poles. Therefore

the leading-order contribution from (B.4) is given by the Ω̃ij terms and it follows from

relabelling of integration variables that they are all equal to ±
∫

Ω̃12∆(2, 3, 4)∆(1, 3, 4)

(the sign is easy to obtain). Thus the low energy limit of |F|2 in (3.25) corresponds to7

−
√
2π7

223 37
κ4e4λ

(

α′

2

)7 ∫ d2ΩIJ

Z−10
3

∫ 4
∏

i=1

d2ziΩ12∆(2, 3, 4)∆(1, 3, 4)
〈

K
〉

(−3)

〈

4
∏

j=1

eik
j ·xj〉

(B.6)

where we used Ω̃12 = π(α′/2)Ω12 and defined,

K =
|T23,1,4|2

s23
+

|T24,1,3|2
s24

+
|T34,1,2|2

s34
+

|T12,3,4|2
s12

+
|T13,2,4|2

s13
+

|T14,2,3|2
s14

. (B.7)

7The minus sign compensates the “convention” ikm → km in the Koba-Nielsen factor.
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B.1 Open superstring

In the case of the open superstring it is not difficult to argue that the corresponding low

energy limit is

K(open) =
T23,4,1 + T41,2,3

s23
+

T34,1,2 + T12,3,4

s34
. (B.8)

The component expansion of (B.8) provides a good consistency check for the methods of [28]

since one recovers the α′3 interaction of the open superstring tree-level amplitude [47, 48],

〈T23,4,1 + T41,2,3〉
s23

+
〈T34,1,2 + T12,3,4〉

s34
= 1344 · 40 · 483 · 2880AYM

1234s12s13s23. (B.9)
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