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1 Introduction

Up to this day superstring amplitudes in ten-dimensional Minkowski space have never been
computed at genus higher than two. In this paper the low energy limit of the genus three
amplitude for four massless states in closed superstring theory is computed (including its
overall coefficient) using the pure spinor formalism [1, 2].

After the relatively straightforward pure spinor derivation of the two-loop amplitude!
in [4, 5], the natural question was how well the formalism would behave at higher genus.
It is well-known by now that, in order to compute general amplitudes at genus higher
than two the original BRST-invariant regulator of Berkovits [2] needs to be replaced by
a more complicated scheme proposed by Berkovits and Nekrasov in [6]. Nevertheless, for
four massless states at genus three one can still use the original regulator for the terms

'For the RNS derivation see the earlier works of D’Hoker and Phong, e.g. [3].



considered in this paper since they are F-terms and these were shown in [7] to be unaffected
by the divergences which require the new regulator.

In addition to the regulator, there is one more point to consider though. As recently
emphasized by Witten [8], to compute multiloop scattering amplitudes it is not sufficient
to represent the external states by BRST-invariant vertex operators of definite conformal
weight. The unintegrated vertex may have at most a simple pole singularity with the b-
ghost whereas the integrated vertex must have no singularities at all. Unfortunately this is
not the case for the massless pure spinor vertex operators of [1, 2] and one would probably
need to use the vertices constructed in [9]. These vertices depend on the non-minimal
variables and therefore require the concomitant use of the Berkovits-Nekrasov regulator.

Luckily, we will show that the low energy limit (of order DSR?*) of the genus-three
amplitude is not affected by these considerations because only the zero modes of the b-
ghost enter in the derivation. Any subtlety is deferred to terms of order D8R?* and higher.

With that in mind, one can proceed with the three-loop computation using the formal-
ism as described in [2]. And ever since the normalizations for the pure spinor measures were
determined in [10] and systematically used in [11], keeping track of the overall normalization
does not pose additional difficulties. In doing so, the precise normalization of the amplitude
at order DSR* is obtained and we can compare it with a prediction for this interaction
made in 2005 by Green and Vanhove based on S-duality arguments [12]. We find that the
results agree if the prescription for the three-loop amplitude includes an extra factor 1/3
and we argue that there is a Z3 symmetry of genus-three surfaces which should explain it.

2 Definitions and conventions

The non-minimal pure spinor formalism action for the left-moving sector reads [2]

1 _ _ _ . _
S = / d*z (axmaxm + a'pa00% — &/ wa,ON* — WO\, + o/sa@ra) , (2.1)
Zg

2ma

where A% and Xﬂ are bosonic pure spinors and r, is a constrained fermionic variable,
M"A) =0, (M™A) =0, (M"r)=0. (2.2)
The fields in (2.1) have the following space-time dimensions [10]
[@]=2, "] =1, [0 w0 s =1/2, [pa,Wa,Aa,Ta] =—1/2. (2.3)
The genus-g OPEs for the matter variables following from (2.1) are [13]

xm(zvz) xn(w7w) ~ 57TG(Z7 w)v pa(z) Qﬁ(w) ~ 5577('2’ w)v (2'4)

where the Green’s function G(z,w) is written in terms of the prime form E(z,w) and the
global holomorphic 1-forms w;(z) as [14]

/ zZj Z4
Gz, %) = =5 n| E(zi, )| + o'm (Im/ Jw1> (Im Q)7 (Im/ ]wJ>, (2.5)



and satisfies %azigsz(zi, zj) = 2m6@) (2 — z;) — Tz, 2;), where

3

Nz, 25) = Z wi(z)(Im Q) 70, (Z;) (2.6)
1,J=1

and {277 is the period matrix which will be defined below. Furthermore,
2 0
n(zi, 25) = mij = _J%G(zi’zj)' (2.7)
The Green-Schwarz constraint d,(z) and the supersymmetric momentum I1"(z) are
1 1 1
do =Pa — J(’Yme)aaxm - H(’ymH)a(O’ym(%), I = ox™ + 5(97’”80) (2.8)

and satisfy the following OPEs [15]

my N
dal2)dg(w) ~ 5 T da(2)f (a(w), 0()) ~ 22T
m 068 o k™
Aol () ~ 222 17(2) (o), 6(w)) ~ ~ 5 2L (29)

where D, = % + £(7™0)aky, is the supersymmetric derivative and f(z,6) represents a

generic superfield. The b-ghost is given by [2] (see also [16, 17])

b= Oha + 4(;) (2117 (M) — N (\y™80) — J5(300) — (35%0)] (2.10)

o (rym@r) [()\ gy N ()\fypqrr)jymanr
2 16(AN)3 8(AN) ’

and satisfies {@, b(z)} = T'(z) where the BRST charge @ and the energy-momentum tensor
T(z) are

(Ay™Pr)
192(AN)2

!
[O;(d’ymnpd) n 24Nmnnp]

1 _
Q= %(Aada + W), T(z) = —aaxmaxm — Pa00% + wa, 0N +W*ONy — s¥Orq.

From (2.3) it follows that [Q] = [b] = [T] = 0.
The massless vertex operators are given by V(z,z) = sV (0) @ V(0) ¢** and U(z,z) =
kU(0) @ U(9) e**, where
o o
V(=) = AAay  U() = 00 Ao+ Apll™ + SdaW® + S N 7 (2.11)

and Ay, A™ W, F™ are the NV = 1 super-Yang-Mills superfields in ten dimensions satis-
fying [18]

DaA/g + DBAa = ’yo%Am, D A, = <7mW)a + kmAg
1
DT = 2k (Y)W )as D W8 = Z(/ym”)aﬁfmn. (2.12)

The space-time dimensions of the superfields and the vertex operators are

[Aa] = 1/27 [Am] =0, [Wa] = _1/2’ [an] =-1, [V(Z)] = [U(Z)] =L (2'13)



2.1 Integration on pure spinor space

The zero-mode measures for the non-minimal pure spinor variables in a genus-g surface
have space-time dimension zero and are given by [2, 10, 11]

[d)\] Tal"'a5 — O Eal"'awd)\aG' O [dw] =Cuw Tal...as Eal“'amd’wag L. dwa16

[d)] Tmm%:CX €M AN g - day [dW] T, .5 = C €0y ... AWC. . . dWE
drj=c T oy 1o 07° . 01 d5")= €4 Toy oy €005 . 000,
[d6]=c d'°6 [dd"] =cqd"d". (2.14)

The normalizations are
o \21 A, 11/2
o= (7) m(i) o= ()
e — o 2276 Ay R o — o (N3 Z-11/g
A 2 ) 11!\ 472 v 2 ) 11! (2m)11™e
a —2 R o 11/2 B 2 (27T)11/2R_1 le/g
= \2) ms\4, “ =

611151 (AN)3 ¢
o\ o 16/2
-=(3)(%) =

where A, = [ d?z,/g is the area of the genus-g Riemann surface and

2m)16/2 718/ (2.15)

IsH

|
7 N
vo| 2
N———

P

1
P — > 1. 2.16
7 /det(2Im Q) g (2.16)
The tensors Th, . os and 7777 in (2.14),
Toras0sasas = ()"Ym)m()"YH)az()‘Vp)as('Ymnp)az;as (2.17)
Ta1oc20c30¢4oc5 — (X’Ym)al (X'Yn)QQ(X'Yp)ag('Ymnp)a4a5

are totally antisymmetric due to the pure spinor constraint (2.2) and satisfy T - T =
5!26(AX)3. As explained in [11], setting R? = vZ fixes the normalization of pure spinor

— 216g
tree-level amplitudes to be same as in the RNS computations of [19].

Using the above measures and the results of [10] one can show that the integration
over an arbitrary number of pure spinors A* and \s is given by

(2.18)

_ o — - A\ 12T(8 + m +n)
_(>\>‘) myay . \Qn . — g Q1...0p
/[d)\] [N~ OV XA xRy N, (27T> F) @ian,

where gllg‘:: are the y-matrix traceless tensors discussed in the appendix A and I'(x) is

the gamma function. Using Tﬁ}ig =1 it follows that [11]

B 11 n
/ [AN][dN] (AN) e~ ON = (?;) F(f';fo) . (2.19)



For an arbitrary superfield M (X, X, 0, r) we define

e—()\X)—(TG)
] *7M()‘7)‘707T) ) (220)

(MO0, = [N

which implies in particular that

21 /2 of T(8+n)
3p5 _ 97 =N = 39°
g =271 () (5 ) T e, (2.21)
where (A30°) = (Ay™0)(My"0) (AYP0) (04smnp0) and the pure spinor bracket (.. .) in the right-
hand side is normalized as ((A\26°)) = 1 [1]. The subscript g will be dropped whenever there
is no chance for confusion.

From (2.9) and (2.8) follows that

O[/

I ()T (2) ~ ™ (27“5(2)(% — ) — 7z, zj)) . (2.22)

But using (2.22) directly leads to a mixing between left- and right-movers. Instead, one
can keep the two sectors separate by expanding II"(z) = II™(z) + > Mwr(z) and
computing the holomorphic square with

Oé/

P = —5 ™" (Im Q) (2.23)

Using this prescription, contributions containing a single II7* or ﬁ}n vanish.

We use conventions where the (anti)symmetrization over n indices includes a factor of
1/nl, the generalized Kronecker delta is 05! 5" = 5};1{1 ---5;:] and satisfies 610" = (Z)
where d = 10 or d = 16 for vector or spinor indices respectively. The integration over 6 is
given by fleH O - 0N = X116 gand €31 MITLT5e 118,85 = 1115! 5;11:::25,

The partition of 3-loop d, zero-modes is denoted by (N, N2, N3)4 and indicates that
an expression contains Ny factors of d/,. Furthermore, we define
dI . dI

(e-T-dl) = evr-oer, Lorodh o (rdld?)y = (™) (d ymnpd”). (2.24)

1...Qx5

Two integrals frequently used in the next sections are summarized here,

a1 Yas%asz%aysYas

/[ddf](e.:r’.df)df dl dl dl dl_ = 1115 cq Tayapasasas (2.25)

a1 a2 T as

/[ddf](e-T-df)df dl dl (d'y™Pdly = 1115196 cg (AY™)ay M) ey (A as -

2.2 Four-point SYM amplitude and kinematics
In [11, 19] the amplitudes in the Neveu-Schwarz (NS) sector were written using the kine-
matic factor K defined as
K = F"EyFHER + it FREYUREP + R ERT Y EIP (2.26)
—A(F"FyPFYUR™ + FESPEYE]™ + FIM EPFPIRT™)



where Fi = kmen — knepn, is the field-strength. Since the amplitudes in the pure spinor
formalism are manifestly supersymmetric one can rewrite K as follows

K = —232880 A, 512523 (2.27)

where AT}, is the ten-dimensional SYM amplitude normalized as AY3Y, = (ViFEaz4) [20]
and s;; = k' - kJ are the Mandelstam invariants. Furthermore k - k' = 0 is the massless
condition and k!, + --- + k2% = 0 is the momentum conservation relation. In order to keep
the momentum expansion formule of section 4 legible, we use the following definitions [21],

o\ o\’
o = <2> (sio + 873 + 570), 03 = <2> (s12 + 515 + 514) (2.28)

and note that o3 = 3(a’/2)3s12513514.

2.3 Riemann surfaces

A holomorphic field with conformal-weight one in a genus-g Riemann surface ¥, can be
expanded in a basis of holomorphic one-forms as ¢(z) = ¢(z) + >S9 wi(2)¢! and ¢! are
the zero modes of ¢(z). If {ar,bs} are the generators of the Hi(X,,7Z) = Z?9 homology

group, the holomorphic one-forms can be chosen such that for I,J =1,2,...,¢g
/ ’U)J(Z)dZ:(;[J, /wJ(Z)dZ:Q[J, / wWr Wy d2222ImQ[J (2.29)
ar br Eg

where Q77 is the symmetric period matrix with g(¢g+1)/2 complex degrees of freedom [22]
and d?z = idz A dz = 2dRe(z)dIm(z). For the three-loop amplitude we define

Az 255 21) = EIJK’LU[(Zi)’U)J(Zj)wK(Zk), (2.30)
A" (23, 255 215 21) = eUK(Hw)}"(zi,zj)wj(zk)wK(zl),
where (ITw)7*(2;, z;) = HP'wr(2;)wr(25), (no sum in I). It follows that A™(z;, zj; 25 21) is
symmetric in (ij) and antisymmetric in [kl] and satisfies

7 wr(2:) Azs; 25 21) = A" (24, 255 215 21) + A" (24, 205 215 25) + DA™ (24, 205 255 21) - (2.31)

Furthermore, the period matrix extends a lattice called the Jacobian variety [14, 22], J =
CY9/(Z9+079), which is invariant under the modular group Sp(2g, Z). And finally, we define

/24 = /iljd%. (2.32)

2.3.1 Riemann surfaces of genus g =1,2,3

It is well known that any Riemann surface of genus g = 1, 2 can be written as a hyperelliptic
curve, i.e they admit a 2-1 map f : ¥, — CP! to the Riemann sphere [22]. For instance,
for genus g = 1 one has

y? = H(z — i), g=1 (2.33)



and for genus g = 2 the curve is

y? = H(z -X\),  g=2 (2.34)

where the {\; € C} are the branch points. Since PGL(2,C) is the automorphism group of
CP? three of the {)\;} branch points in (2.33) and (2.34) can be fixed. Setting \; = 0, Ay = 1
and A3 = oo leads to

z(z=1)(z — a), g=1, (2.35)
2(z—=1)(z —a1)(z — a2)(z — a3), g=2,

y?
y?
where the free complex parameters {a} and {a1, a2, a3z} parameterise the g =1 and g = 2
moduli space, respectively. The two equations in (2.35) are clearly invariant under the
Zo symmetry y — —y, implying that the one- [23, 24] and two-loop [11, 25] amplitude
prescriptions must be multiplied by a symmetry factor 1/2.

Although not all Riemann surfaces of genus three are hyperelliptic, this surface is still
a special case. Every genus-three Riemann surface can be embedded in CP? as a quartic

curve, i.e.
Grixr2'z? 75z =, (2.36)

where Z! = (z,y,2) are the homogeneous coordinates of CP? [22]. This means a Rie-
mann surface of g = 3 is a global holomorphic section on the O(4) line bundle over CP?.
The number of the global holomorphic sections on O(4) is given by the dimension of the
H°(CP?,0(4)) Cech cohomology group, which is

RO(CP2, 0(4)) = (g) 15, (2.37)

So, the number of free parameters in (2.36) is 15 — 1 = 14, where the number 1 accounts
for the fact that (2.36) is invariant under the scale symmetry Z! — tZ! t € C*. Since the
automorphism group of CP? is PGL(3,C), which has dimension dim(PGL(3,C)) = 8, we
can fix 8 of the 14 free parameters. Therefore every Riemann surface of genus g = 3 depends
on 6 parameters and its algebraic curve (2.36) can be written, without loss of generality, as

zy® + a2y + asat + aza®z + anr?2? + asz2® + agzt =0, (2.38)

where {a;} parameterise the moduli space. This curve is invariant under the Zjz symme-

2min/3

try y — e y, with n = 0, 1,2, which implies that the three-loop scattering amplitude

prescription must be multiplied by the 1/3 factor.

2.3.2 Moduli space

The moduli space M, is defined as the space of inequivalent complex structures on the
Riemann surface ¥,. It is well known that its complex dimension is dimc(My) = 3g — 3,
for g > 1. We denote the complex coordinates on this space by 7; for i =1,...,3g9 — 3.



For genus two and three the dimension of the moduli space is the same as the dimension
of the period matrices, i.e., 3¢ — 3 = g(g + 1)/2 for g = 2,3. So there is a one-to-one map
between inequivalent complex structures and inequivalent period matrices. This means
that for genus g = 2,3 the scattering amplitude can be written in terms of the period
matrix instead of the moduli coordinates and Beltrami differentials. This rewriting can be
achieved using the identities [14]

[z = 52, / Hd 5

5911 6@33

1

/Hd Q17

1<J
(2.39)
where the Beltrami differential is given by uZ, = 9,07 and v7(z,%z) is a small complex

’ 57'7;6

structure deformation.
However the factor H?S ;d?Qp; is not invariant under the modular transformation
Sp(6,Z). In general, the Sp(2g, Z)-invariant measure for the genus-g moduli space is

du, = 2.40
Hg (det Im Q[J)g+1’ ( )

and this is precisely the measure that will be obtained from first principles in the next
section for genus g = 3.

The corresponding volume of the inequivalent period matrix space is given in [26]

g
Volgz/ dpg = 29" 1 (2m)900 D)/ H \sz\ (2.41)

g

where By, are the Bernoulli numbers and the extra 29(971/2 factor in (2.41) compared to
the original formula in [26] is due to a different convention for d?Q;; (see e.g. [19]). In
particular,

2m 473 2676
Voll — ?, V012 — Ta - V013 - W .

o (2.42)

2.4 The amplitude prescription

The prescription to compute the multiloop n-point closed-string amplitude was given in [2]
and it becomes

A= gt [ Hdaj [1wemve. vel, e

for three loops and four points. Msj is the fundamental domain of the genus-three Rie-
mann surface and the symmetry factor 1/3 has been argued for in the previous section.
The b-ghost insertion is

1 .
(b, 1) = %/d@jbuujz, j=1,...,6. (2.44)



After the non-zero modes are integrated out using their OPEs, the pure spinor bracket
(...) denotes the integration over the zero-modes?

3
(..)= / [d6][dr][dA][dN] H [dd")[ds"][dw!][dw"] (2.45)
and N is the BRST regulator discussed in [2] which can be written as

N Z )\)\) (7‘9)+( Idl)' (246)

After the integration over [dd!|[ds'][dw!][dw!] is performed, the remaining variables
AQ,XB, 9 and r, have conformal weight zero and therefore are the same ones which need
to be integrated in the prescription of the tree-level amplitudes. Using the Theorem 1
from appendix A all correlators at this stage of the computation reduce to pure spinor
superspace expressions [27] whose component expansions can be straightforwardly com-
puted [28, 29]. In particular, the last correlator to evaluate is a combination of the zero
mode integration of tree-level pure spinor variables (2.21) and 2™

4 o o\ ) \2
|((A305)>(nvg)|2<1;[1eikj'w]> = (27r)10(5(10)(k)27\/7i<2> (F(87T)> [{OAP07)) 12 Z(s45),

(2.47)
where §(19) (k) = 619(3°, k) and Z(s;;) is the Koba-Nielsen factor

Z(sij) —exp< Zs” zz,z]> (2.48)

1<j

Given the above conventions, the space-time dimension of the closed-string n-point
amplitude is independent of the genus; [A4] = n(2+[x]). One can show that unitarity [30]

-2
requires ke = <O§/> V22877, so [k] = —2 and the amplitudes are dimensionless.

3 The closed-string 3-loop amplitude

At genus three there are (16,16,16); zero-modes of d, and (11,11,11)s zero-modes of
s®. The factor e@'s") in the regulator (2.46) is the only source of s* zero-modes so the
integration over [ds’] brings down (11,11, 11)4 zero-modes,

gy (o 6 (or)33/2z1 3
/H [ds']e=(@s) = <2> R3218(11!5!)33(AX)9 Il;[l(eT-df). (3.1)

The remaining (5, 5,5)y must come from the b-ghosts and the external vertices. Since the

number of d, zero-modes from the external vertices and from each b-ghost can be at most

2The definition of the pure spinor bracket here should not be confused with the standard zero mode
integration ((A\*0°)) = 1 of [1]. Since the context makes the distinction clear, we chose not to distinguish
the notation.



four and two respectively, there are only two possibilities for the b-ghosts: they provide
11 or 12 d,, zero modes. Note that these possibilities lead to integrations over pure spinor
variables which can be regularized using the original procedure of Berkovits [2].

In the following we decompose the amplitude (2.43) according to the two different
b-ghost sectors as A3 = A1 + A1 and evaluate each sector in turn.

3.1 12 d, zero-modes from the b-ghosts

In this sector there is no chance for OPE singularities between the b-ghosts and the ex-
ternal vertices and therefore (b, p) is still a well-defined measure [8]. To see this note
that if six b-ghosts provide twelve d, zero modes, each one of them must pick the term
(ANY™Pr) (dYmnpd) /(192(AN)?) in (2.10). The zero-mode part of each (dymnpd)(y) factor is

(dl’)/mnpdl)wl (y)wl (y) + 2(d17mnpd2)wl (y)w2 (y) + 2(d17mnpd3)w1 (y)wi’) (y)
+ (P Yimnpd® ) w2 () w2 (y) + 2(d*Yimnpd® w2 (1) w3 (y) + (A Ymnpd® )ws (y)ws(y),

and a short computation using (2.39) gives,

g 2 2 By |?
/jl;[ld Tj‘(b, uj)‘ :cbl/d Uil | (3.2)
where ¢, = (%)Gﬁ and
By = (Ard'd" ) (Ard' d®) (Ard' &) (Ard®d®) (Ard®d®) (Ard®d®). (3.3)

Note that By 44 is totally symmetric in the zero-mode labels (123). Since w! and w!
appear only in the regulator A their integration is straightforward

wlw! 2)?
/ H [dw”][dw'] e~ (™) = ((;7?))33 Z3%. (3.4)

does not contain an index m one omits it altogether on both sides)

Defining (if By, q.r)

] I
D(p+11,q+11r+11) —/Hdd e-T-d")Bg (psa,r) (35)

and gathering the above results,
2 4 o
ikd.xd
(15,15,15)U1U2U3U4>(_9)’ <H o't )
Jj=1

\[2 101 .4 4N 24 d2QIJ
A D
eI
(3.6)

The only non-vanishing contribution to the integral in (3.6) contains three d, from the

external vertices,

/

4
U1U2UsUy = (Z) [(dW12)(dW3)(dWy) 12 + (dW13) (dW2) (dWa) 113
+(dWi4) (dW2) (dW3) mia + (dWa3) (dW1)(dWa) n23 (3.7)

,10,



+(dWay) (dW1)(dW3) 24 + (dWs4) (dW1) (dW2) 134]
N3 3
+ <O;> S I wr () AL (dW2) (dW?) (W) + (1 5 2,3,4),
I=1

where W;; denotes the BRST block [31],
(&3 1 (o] « . .

Wi = W) F + (k- AWS = (i & J) - (3-8)

Since now only the zero modes contribute, each d,(z;) becomes d.w;(z;). Note that

D15,15,15)dbdjd5 wi (zi)w (2))wic (zk) = D(15,15,15)dad3d3 A(zi; 253 z1,) because the only

non-vanishing contribution has (1,1,1)g zero-modes and [[5_,[dd"|(e - T - d') is totally
antisymmetric in the zero-mode labels [123]. Thus,

D15.15.15) (dWi5) (dWy) (dW;) = (11151)96% ¢ T

(A A ) Az 25 21)
D(15,15,15) (dW3) (dW;) (dWi ) A" = (1115!)%967 ¢ Lilt, (A, A

T)A (255 255 21) (3.9)
where
Tijea (A A1) = @) () ) (™) oy 1) (W)
X (Ay TR (APIRER) (A TS X) (A Wi ) P W) (A W)
LA X 1) = o r) oy %) ey 9M7) (™) oy @) Oy (3.10)
XN PN Q7 0) (A W) P W) (A Wi AT
As shown in the appendix A, it is always possible to rewrite the AAmt3 - dependence
in (3.10) as (A\)"A3 when performing the zero mode integrals and therefore we write
Tijki(A A1) = (AN)T;; 50 (A,7) and drop the (A, r) arguments from now on. Note that
Tij k., is antisymmetric in [ij] and [kl] and L7}, is antisymmetric in [ijk].
Plugging the above results in (3.6) and using the identity (2.31) together with the
definitions M;j k1 = Siileij,k,la Xij = (O//Q)Sijmj yields

Arp = ¥;§7H4€4A< ) fdz?foj f24<\K12|2>(_3)<H?:1 S (3.11)

where
K12 = Mi234A(22; 235 22) X12 + M3 2,4A(23; 22; 24) X13 + Mi1a,230 (245 22; 23) X14
+Moas1,4A (235 215 24) Xog + Moa1 30 (245 215 23) Xoa + Msa1,2A(24; 215 22) X3a
+A™ (21, 225 235 24) [ L3ap + Ligar ] + A™ (21, 235 225 22) [ L343 + L1 |
+A™ (21, 245 295 23) [ L334 + Lifya1] + A™ (22, 235 215 24) [ L3145 + L3140
+A™ (29, 24 21; 23) [Lo134 + Liige] + A™ (23, 245 21; 22) [ L3124 + LYi3)- (3.12)
3.2 11 d, zero-modes from the b-ghosts

By not using the Siegel-gauge vertex operators of [9] one could in principle face problems
with the consistency condition for (b, ) discussed in [8]. However, in the low energy limit
discussed here, this potential complication can be ignored since the only contribution comes
from terms in which the b ghost does not have singular OPEs.? To see this note that one

3We are grateful to Nathan Berkovits for discussions and for his comments on the draft at this point.
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possibility to obtain 11 d, zero modes out of six b-ghosts is given by

N\—12 /\ 6
(?12)2)6 <2> [OY™7) ()] (3.13)

b —s

where one of the du(y;) is the non-zero-mode part do(y;) and contracts through the
OPE (2.9) with an external vertex (y; denotes the position of the corresponding b-ghost).
However this term is of order D8R?* and there are no inverse powers of Mandelstam invari-
ants coming from the integration over the vertex positions since there are no simple pole
singularities among them [32], as they must contribute the four remaining d, zero modes.
The claim that (3.13) leads to terms of order D®R* is easy to verify. The external vertices
contribute W4 superfields, the OPE between cza(y) and one superfield W# gives D,W# and
each 7, from (3.13) counts as a covariant derivative D, because of the factor e=(") in the
regulator NV. This gives kinematic terms proportional to (DI W*) = (B3W3F) = k1FL
whose holomorphic square is D® R*. The other possibilities of b-ghost singularities are simi-
larly analyzed. Therefore the terms which might be affected by the issues pointed out in [8]
do not affect the leading order terms DSR* and will not be considered in the following.

When the b-ghosts have no singularities with the vertices and contribute 11 zero-modes
of d,, one possibility is

()13

7\ 6
16(192)5<O;> (rYgrsT) (ANYId)NT* [(/\ m”pr)(dfymnpd)]S, (3.14)

S —
but it vanishes upon integration over [dw] because [[dw][dw|wae™ P = 0. The other
possibility is
) ~H °
e (5 ) o [ )] (3.15

where the II™(y) field is proportional to its zero modes II/ wy(y). In this case the

po —s

integration over the positions of the b-ghosts can be carried out,

/Hd%j b W ‘ —ch/dQQU T

where ¢, = M&# =48(a’/2)"t ¢p, and

2
(Hl B(344)+H B(434)+H B(443)) (3.16)

B 44y = +2(00™d" ) Ard' d®) (Ard' d*) (Ard®d?) (Ard*d®) (Ard®d?)
— (™ d®) (rd dh) Ord d) Ord?d?) (rd?d) (rd®d?)
+ (™ d3) (Ard dh ) (Ard d?) (rd?d?) (rd?d®) (Mrd®d?) (3.17)
while By 34y and B4 43) are obtained from B34 4) by swapping dl « d? and d}, < d3,
respectively. Furthermore, note that B3 44) is symmetric under d? < d3.

Taking into account that c,, = 48(a//2)~! ¢, and using the definition (3.5) leads to
the following expression for Aqq,

59-03,404N 7 o/ \22 20) a0
Ay = V2278t (o CRUP) (™) (3.18)
T2 311111516\ 2 7Z22
PO 3 P =1

2
X ) <(H71an4,15,15) + Hng?iL5,l4,l5) + H;D&,m,m))U1U2U3U4>(_8)’ :
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Each external vertex U’ contribute through the term (a//2)(dW?)(z;) and the integration
over the d zero-modes can be carried out by using the following formulae,

Dﬁ4715715)(dIWI)(d1W2)(d2W3)(d3W4) = +(11!5!)296%¢3 ST, (N, A\, 1)
D{lls 1q15) (@WH(@W) (@ W) (@W?) = —(1115!)%96%¢] S350 (A A7) (3.19)
D?{5715714)(d3W1)(d3W2)(d1W3)(d2W4) = +(11!5!)296%¢3 ST, (N, A, 1)
where
ST\ A1) = S{ht (A7) + SRR 1) = S LX) (3.20)
and

S£2é4 (/\7)‘7T) =2 ()\7 Y 1)‘)O"lemplr)()‘7m2n2p2r)()‘7m3n3p3r)(A7m4n4p47a)()‘7m5n5p57”)
(AR@2MTAPIMS \) (A3 M2N2P2IMG ) ) ((\~M3MANAPATS ) )
(Wy@ra2asy72) M Ps W 3) (Ao W)
SE22&4 (A A1) =96 (MY Y™ N) (AMimanapy ) (Mmanaps ) (Mmanaps ) (AMmanaps ™) (MmsnspsT)
X ()\,Ym1m2n2p2m5 )\) ()\,)/ngm4n4p4n5 )\)
X (AW P (AP W) (AP W) (3.21)

X

X

Note from the definition (3.19) that Si3,4(A\,A,7) is symmetric in the particle labels
(12) and antisymmetric in [34]. The explicit expression for S{QM(A,X, ) is symmetric
in (12) and antisymmetric in [34] whereas S%@(A,X, r) is symmetric in (12), so (3.20)
indeed has the required symmetries. According to the procedure of appendix A we write
S (A A1) = (AN)8ST2,, (A, r) and drop the arguments (A, r) in the following.

After expanding dy(2) = dy(2) +dLw(z) and using (3.19) together with the symmetry

properties of S35, it is a matter of bookkeeping the permutations to arrive at

I\ 4
(I, (14,15,15) + 11 mD{15,14,15) +11; mD (15,15 14))U1U2U3U4 = (% (11151)% 96 ¢ (AX)°KC1a
2
(3.22)

where

ICi1 = 457534 A" (21, 225 233 24) + ST304 A (21, 23; 22; 24) + SThoz A (21, 245 225 23)
+59514A™ (22, z3; 213 24) + 55413 AT (22, 24; 215 23) + 55410 A (23, 245 215 22) . (3.23)

Finally,

V2718 a'\® [ a2y, 2 . ikd
Ay = ke 92537 (2> / Z3—10 /2 <‘K11‘ >(—2)<| | € > (3:24)
4 j=1

Therefore from (3.11) and (3.24) the three-loop amplitude Az = A1 + A1 becomes

4
Az = rte ;/2;; ()/ 3(detzl;§12éljg))5 /24 [<\}_’2>( ’7-’ } H w x]

J=1
(3.25)
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where (2.16) has been used,

F = + Mi234A(22; 235 24) X12 + Mi32.4A(23; 225 24) X13 + Mia2, 30 (245 225 23) X14
+Moaz 1 4A(23; 215 24) Xog + Mos 1,30 (245 215 23) Xoa + Mz 120243 215 22) X34
T = + T534A™ (21, 22; 235 24) + T304 A™ (21, 235 225 24) + T{}o3 A™ (21, 245 225 23)

+ To514A™ (22, 23; 215 24) + T3 A" (22, 245 215 23) + Tay10A™ (23, 245 21; 22)  (3.26)

and (the other 777, follow from relabelling),

5
T934 = L340 + L34y + 55177534- (3.27)

The factor 5 in (3.27) is due to (...)(_2) = 5(...)(—3) and follows from (2.21). The factor
1/2 accounts for the different overall normalizations of (3.24) and (3.11).
After using (2.47) the three-loop amplitude (3.25) becomes

4 4N

K'e o'\’ 2
Ay = @5 st (5) [ s o 1) + 07 2.
(3.28)

3.3 The low energy limit D R*

Since the superfields in F and 7 have component expansions terms of order k*F* = and
k*F3, one might naively expect that only (|7|?) in (3.25) contributes to the low energy
limit of order DSR*. However the integration by parts identities of appendix B show that,

L FBTs0) = =n(G )10 [ oAz 2 (eri3552) + Ol

= —36m (i) (KC) det(2Tm Q) + O(a?) (3.29)

where
Tosaal>  |Toansl®  [Tsai12®  |Ti2sal®>  |Tiz24l®  [Tiaos|?
o = Tosnal” | [Toansl” | [Thanol” | [Thosal” | [Tis2al” | Tiaasl
523 524 34 512 513 S14
is such that (K) is also of order DSR*.
The low energy limit of f24|T|QI (sij) can be obtained by dropping the Koba-Nielsen

(3.30)

factor and carrying out the integrations using Riemann’s relation (2.29) in the form,

/

A™ (21, z9; 23; 24)Zn(21,§2; Z3;Z4) = —12an™" (02[> det(2Im Q),

Pl
/
A" (21, 20 231 24) A (21, 733 723 Za) = +127m0™" (Z) det(2Im ),
P
Am(zl,ZQ;23;24)Zn(§3,§4;§1;§2) =0. (3.31)
P

Since every integral in f24 |T|? can be obtained from relabellings of (3.31) using the sym-
metries of A™(z1, z9; 23; 24), straightforward algebra gives

/
/Z IT|? = —367T<C;> det(2ImQ) L - L, (3.32)
4
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where

6
| .
LoL=g) Myl L (3.33)
and M;; is the symmetric 6 X 6 matrix

1-1 1-1 1 0
-1 1-1-1 0 1
1-1 1 0-1 1
-1-1 0 1-1-1{"
1 0-1-1 1-1
01 1-1-1 1

Mij =

and we defined the set L] = {11534, 11554, 143+ 198145 Tot13: Tag1a}-

Therefore the low energy limit of the closed-string three-loop amplitude is given by

As =~ 500 (L) (4 £ Eyuted o T / A
5T 2 93T [ (det(2Tm Q)

o 6 B 7T<6
= —(271')105(10) (k‘) <2> <IC =+ E . £> /i4€4>\ W (334)

where the integral is 2712 Vols and we used (g = 7°/945. A long calculation gives [28]
(K+L-L)=-23"557%(s3, + sty + s1,) KK (3.35)

irrespective of whether it is for type IIA or IIB, confirming the theorem of [7].
Therefore

7\ 6
A = (2m) 105010 () e %%;6 (C;) (535 + 535+ s34) KK (3.36)

is low energy limit of the type IIA and IIB three-loop amplitude.

4 Perturbative calculations versus S-duality predictions

We first review the one- and two-loop comparisons between S-duality predictions and per-
turbative amplitude calculations of [19, 21] using our conventions. After that we extend
their analysis to include the three-loop result (3.36). We will find that the amplitude we
computed in (3.36) agrees with the prediction of Green and Vanhove [12].

4.1 One- and two-loops

The closed-string massless four-point amplitudes at genus 0, 1 and 2 computed in [11]
(including their overall coefficients) are given by (see also [19]),

_on V2

2165

Ag = (2n)10610) (k) (";)31(}(,{46 Bo(sij) (4.1)
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Ay = (2)105010) (, KK ! T o
1= ( ﬂ) ( ) /i 2147[_2 ./\/117—722 1(81]‘7—)

O[
2
0/>3KK 12 V2 A
2

215 M, (det(Im €2))3 Ba(sij]€Y)

Ay = (2m)105019) (k) (

where? [19, 21],

[(—a's12/2)T(—a's13/2)T(—a’s14/2)
D1+ o's12/2)0(1 + &’s13/2)1(1 + &'s14/2)

3 2
=f+2C3+C502+§C§03+"'

d?z;
s = [TTE5 20 =21+ S -

2
Baloulf2) = /2 (detgn'l e L) =202+

Plugging in the volume of the moduli spaces (2.42) one obtains the following low energy

Bo(sij) =

expansions,
3

_ 10 £(10 N 4 o V2 [3 2 9
Ag = (2m)10510) (k) <2> K 5165 [03 + 2+ Go2 + 5430'3 +-0 (43)
Ar = (2m)0600) (k) (< SK* L [ (4.4)

1= e 2 Moolg |t T3 '
/IN\3 3

_ 10 £(10) a = 4 on V2T

Ay = (2m)19500) (k) <2) KE r'e? 5o [02+ (4.5)

The SL(2,Z)-duality predictions for the perturbative effective action are [12, 35-37]

I 2 2
got — Cy /dmx\/—g R <2<36_2¢ + g) , (4.6)
597 = ¢y / dPz/—g D*R* (2¢5e—2¢ + §¢462¢> , (4.7)
a’® 10 614 2 —2¢ 48 2¢ 8 4¢
S =Cs [ d7z/—gD°R*| 4¢5e™ "% + 8(2(3 + 5 Qe + §<6€ . (4.8)

where the precise definitions of R*, D*R* and DSR* and the constants Ci1,2,37 will not
be needed in the following discussion since only the ratios of the interactions at different
loop orders will be important.
Matching the ratios of the o/ ® interactions at one-loop and tree-level leads to a
relation between e? and e,
V22Urie2N o202

_ 2¢ _ 2Af 4,2
= — e =eV22 17, 4.9
3¢3 3¢3 (49)

*Bo(si;) here is ;= C(s,t,u) from [11]. Furthermore, see [33] for a recent attempt to evaluate non-leading

terms at two-loops and [34] for an elegant way to rewrite the tree-level expansion.
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where the left-hand side follows from the amplitudes while the right-hand side from the
effective action (4.6). Now one can compare the S-duality predictions for the amplitudes
at order o/® and o’ (denoted with a Latin capital A“m) and the perturbative results.

For the a'® interaction, the ratio between the two-loop and tree-level interactions in
the effective action (4.7) is %e‘m’ and leads to the prediction

/5 52874 10 (10 o (&N — V20
A% = -/48 3C5 & = (277') 5( )(k) K € <2> KK 25371’ 0'2, (410)

which agrees with the two-loop perturbative calculation (4.5) (recall that ¢4 = */90).

For the o/® interaction, the ratio between the one-loop and tree-level terms following
from the effective action (4.8) is 2¢a/(3€?? = (3/(3v/22°72€?* and implies

16 O[, 3 —
A9 Z (27)195010) (1 (2) KK 2%%3 oy (4.11)

which agrees with the one-loop perturbative calculation (4.4), in accord with the analysis
of [21].

4.2 Three-loops
Similarly, the ratio between the three-loop and tree-level terms of (4.8)
/6
26 oo _ V221G on _ AT
9¢3 93 A

predicts the following three-loop amplitude
o8 10 5(10) o\ 4 ax TG6

in complete agreement with the first principles perturbative calculation (3.36).
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A A general formula for integration of pure spinors

Component expansions of a general ghost-number-three pure spinor superspace expression
of the form A% ... X+3)\g ... Az, §};;:53+3(9,r) can be computed most conveniently by
first rewriting it in the form (AX)"A% ... A% f,  ,.(0,7). Doing that allows the straight-
forward application of the formula (2.21) and the identities listed in the appendix of [38].
The case n = 1 was discussed in [39], now the solution for general n will be presented.

Let 775 3" denote a SO(10)-invariant tensor which is symmetric and v-traceless in
both sets of 1nd1ces When n is even there is (n/2 + 1)-dimensional basis [40],

n/2

al om ch ’ (A1)

(n) _ 5(111 ... 502k Qp 2k 4100 —2k42 Qn—10n)

k (Bl Bn 2k ("}/ 7)5n 2k+1ﬁn 2k+2 (,.Y ’Y)ﬁ*n lﬁn)

Qo2 — a0

and (v - '7)/3152 Tm

relation for the coefficients c](gn) [41] and the normalization condition Tj! " = 1 relates
(n)

the coefficient ¢, ’ with the dimension of the pure spinor representation N,, = dim([0000n]),

Y5 g,- 1mposing the v-traceless condition leads to a recurrence

m __(n=26)(n—2k—1) m) () _
S R T s K (4.2)

where®
N = 3021400 (n+7)(n+06)(n+5)*(n+4)*(n+3)*(n+2)(n +1) (A.3)

= 16,126,672,2772,9504, 28314 . ..

When m = n—1 is odd, the tensor Z,‘llgm can be obtained from (A.1) by contracting
. .. L Ql.e.Om 1o QmQmt1 m
a pair of indices; BiBo = T 81 Brcmss ®

The explicit expressions for the first few tensors read as follows,

1

ar _ 75

B1 16 P’
(63Ke% 1 [e5Ke%
18 = 26[ s (’Y 7)511522] (A-4)
ay..3 __ 1 aq as) 3 (a1 azas)
b1 = 672 [6 U8 T 206(51 (7'7)52/33) ’
1.4 1 (1 4) (o1 s azay) 1 (1o azay)
BiBs = o77a [561 0, — 15(131 %V Nausa) T 16007 Migis 0 Vs |

Using the integration formula of [10, 11] and the above v-traceless tensors it follows that®

A, )“ 1208+ m+n)_ g o

21 T(11) piip (AD)

IR DR AR R, (

° Ny can be obtained from (1+#)(1+4t +t*)(1 — )" =143, o, Nat" [42, 43].

5Note that all numbers in (A.5) have a geometrical meaning. The number 8 is the ghost anomaly (the
first Chern class of the projective pure spinor space), 11 is the complex dimension of the pure spinor space
and 12 is the degree of the projective pure spinor space [10, 42].
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To see this it is enough to check that the right-hand side of (A.5) has the same symmetries
of the left-hand side and it is correctly normalized.
Let us define the tensor 777" by [44]

Nadghy T8 — 7127 (A.6)

where T7"7 is given in (2.17). Since one can take TPro1-05

(o) indices it follows from (A.4) that

to be ~-traceless in the

a1asasB1B2B83;01...05 _ 1 X1 Q203,01...05
T 61828 L = sl : (A7)

Theorem 1. Let f(A"3, X", 0) be a general superfield with ghost-number +3, then

(FOM2N0)) gy = (ONF(N2,67) (A.8)

where
F(N3,0%) = 672 AP NP2 \Is TT1-Onts Bubnis o goy - gds

1.-Bn+3 4 01...0n+3;01...05

Proof. Integrating the right-hand side of (A.8) over [dr] and [df] using the measures
of (2.14) and the definition (2.20) yields

rhs. = 11!5! ¢ / [dA][dN]e= OV 672(AN) 3B AP AP X X X

FY1Y27Y3501++-05 4-01...0n+3 pB4-.-Bnts
xT Tg1---5n+3 fU1---0n+3;51---55'

Given that the 7 tensors are normalized such that Tg;g: = 1 the integration over the

pure spinors A and \ using (A.5) leads to

11
r.h.s. = 11150 ¢ <Ag> F(8+—m+n)6727’515263?'7172%351~~557-01--.0n+3 fﬁ4--ﬂn+3

o2 302400 Y1723 1--Bnts /01...0n43;61...65
A\ T(8 + M + 1) —818285:61...05 01..0mss pBafin
= 1115! CrCo <27T> 302400 T Taiﬁnig fO’f...O'n:;;(SL..(;g) (A,Q)

where (A.7) has been used in the second line. However it is easy to show that the evaluation
of the left-hand side of (A.8) is equal to (A.9), finishing the proof. O

For completeness, note that TP191% Jofined in (A.6) is proportional to the pure
spinor correlator (A*AZ\7071 . 075) (n,g)- Indeed, a short computation shows that

N2 5/2
ayByvpot o5 _ o 2m F(8+n) R —apyior..05
(ACNZAT0°L .6 >(n,g) (2> <Ag> 302400 7672T . (A.10)

As a consistency check, multiplying both sides by Verdy 73527553 (Ymnp)ss05 Tecovers (2.21),

o 2 . 5/2 n
(M"Y (A" 0) (ML) (01mnph)) (n,g) = <2> <,249> 27RP(874!F)

where we used that Taﬁ%él“'%fym 73627563 (Yimnp)ss0, = 5160960 [45].

ady
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As an example, the function f(A%, X, 0) = A@1 A 2\ % )5 fﬁ}amm(e) can be easily
rewritten according to the Theorem 1 by using

672 A\TENT2 \T3 T HLazesad — 33 {05/ A92A%NY 4 (1 ¢ a2, a3,04) } (A.11)

01020331

R /\7 {,Ymaz AXB )\ ,),041043 AX2 )\ ,),a1a4)\a2 23
m m

+,ya2a3 A N\X ,yazoa; AMN\XB ,ya3a4 A1 )\az}
m m N

A.1 Factoring (AX)® from L7%;, (A, A, ) and Ti2,3.4(X, A, 7)
Because of the constraint (2.2) the definition (3.10) can be written as
D0 1) = (0"br) () O 40 3) (™ ) Gy ) O )
X (A 4y r) Ay M) (At9hib ) (A W) (AP W) (M Ws) AT (A.12)

Applying the identity (AMypnpr) (AP PPN) = 48(AN) (Ay270r) — 48(Ay44PA)(Ar) and using
the pure spinor constraint gives

Lipss (A A1) = =483 (AX)3 (M @y 1) (My97°r) (MyPy'r) (A.13)
X (A AT AT Yy 7 0r) Ay W) Wy oy 97) (A" T3 ) A

where we also renamed indices. Using
A"y ) (AP W2) = —(MPy"r) (AP W2) = (AP ) (ry P W2), (A.14)

in the last three factors and doing straightforward algebra yields,

(W Ar) = 4838(AX)5Q[ (A.15)
YY) Y ) (W ) (W) (W) T )
+<Av“vdr><mwer>< Tr) (ry W QoW 2) (ry W)
YY) My ) (A ) ey W) (W) (ry T W)

—(Myer) (M r)(AvavdA)(r CWH (W) (ry W)

) (A T)(Avbvf Ny W (ry W) (ry W)

+(A* ’Vdr)()\’v V) ANy W (ry W) (T W)
+48% 8(AN)° (M) (M eT)(M Tr)(ry W (W) (T w?)

It is easy to check that (A.15) is totally antisymmetric in [123] as required. The terms
proportional to (AX)® Q will be rewritten using (A.11) and we identified (Ar) = Q because
of the factor e in A. Despite the explicit appearance of the BRST charge in some
terms, they are not BRST-trivial because of the remaining factor \. However, since Q? = 0
and the difference between (Ay*y%r) and (\y*r) is proportional to @, one can replace
all factors of (Ayy%r) by (Ay?¥r). Doing this replacement is also allowed in the last
term because there are no factors of Ay, so the BRST charge vanishes in the cohomology.
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Similarly, (Ay*y%X) can be substituted by (Ay?¢)) since the difference is BRST-trivial due
to the resulting factor of Q(AX)®. Therefore (A.15) becomes

Lisg4( A A 1) = 48° 8(Fia3 + Fi12 + Fhsgy — Giog — Gz — Gasy + Hias) Af (A.16)

where
Fias = (AN)QM“Ir) (M r) (M r) (ry ™ W (my ™ W) WPy, (A7)
Giaz = (AN’ QMYr) (M) Ay IN) (ry W) (ry W 2 (ry T W3) (A.18)
Hios = ()\X)G()\’y“dr)()\'ycer)(/\'ybfr)(r’y“le)(r’ydeWQ)(rfych?’). (A.19)

It is not difficult to show that Hja3 is totally antisymmetric in [123] whereas Fijo3 and
G123 are antisymmetric in [12].

Let us rewrite the superfield Fio3 using the Theorem 1. Since the y-matrix traceless
tensors are normalized such that 711 = 1, the factor (AN)? is inert under the application
of the theorem and one can use (A.11) directly. Furthermore, all terms which still contain
an explicit BRST charge after using (A.11) will be BRST-trivial because of the factor
(AN)S. So in fact only four terms in (A.11) are non-vanishing when applied to Fio3. After

straightforward algebra and discarding BRST-exact terms,
Fio3 = %(AX)G — (A ) A r) M) (ry W) (ry W) (ry T )
LT O DY O () (W) W)
%(Mder)(ky”f ) () (ry W) (W) (T W) (A.20)

which implies that Fiog3 = —1—11H123 (and similarly Gpo3 = 1—11H123). Plugging these results
into (A.16) and taking into account the total antisymmetry of H;j; one finally obtains
L123 = (48340/11)Hy23. Identical manipulations apply to T123.4, 5O

m < 48340, — a c e a . . .
Lisz4(A A r) = 11 (AN ) (Y ) Ay %er) (ry®@ W) (ry W 2) (ry S W3 AT
4840

Tiz3a(N\ A1) = ANV 1) (APer) Ay ™) (ry ™ Waa) (ry“ W) (ry W) . (A.21)
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Similar manipulations can be used in SJ3,,(\, A, ) but for historic reasons we computed the
five covariant derivatives before rewriting it with the factor (AX)®. The resulting expression
is not particularly illuminating and was therefore omitted.

B Integration by parts

Noting that one can replace A(zj;zi;21)X1; by A(z1;2k;2)X1; in (3.26) because
UiUj ~ (dWij)(zj)nij = (dWi;)(2i)ns; it is straightforward to show that the identities
which eliminate Xi; and Ylj are given by

A(1,3,4)A(2,3,4) X 19X 12 = A(1,3,4)A(1,3,4)(Xo3 + Xog)(Xa3 + Xo4)
+A(1,3,4)A(2,3,4) 519091 — A(1,2,4)A(1, 3, 4) 523030
+A(17 27 3)Z(1> 3) 4)524042 B
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A(1,3,4)A(1,2,4)X12X13 = (Xo3 + Xoa)(—Xo3 + X34)A(1,3,4)A(1,2,4)
+593003A(1,3,4)A(1,2,4) ,
A(1,3,4)A(1,2,4) X 15X 03 = [(X23 + X2)X a3 — 523923] (1,3,4)A(1,2,4),
A(1,3,4)A(1,2,3) X 12X 34 = (Xo3 + X24) X34A(1,3,4)A(1, 2, 3), (B.1)
where we used that
0 Xji = 5:;Qji, 0 Xji = 5ijVj, 0iXyj = —5i;Qi, 0 Xij = —5;Qij (B.2)

and defined Q;; = (o//2)7Q(2;,2;). All other identities needed to write |F|? in a basis of
integrals follow from the above by relabelling. Applying them together with

QAL kDAL k1) = QAL kDA, kD) (B.3)

implies that |F|? is equal to

|C32.1.4]% (X3 X 23 — 523Q023) A(1, 3,4)A(1,2,4) (B.4)
1Coa.1.3|% (X204 X 04 — 524Q024)A(1,3,4)A(1,2,3)
+ Csa1,2/* (X34 X 34 — 534Q34)A(1,2,4)A(1,2,3)
+ C32,1,4C24,1,3X23 X 24A(1,2,4)A(1,3,4) + C321,4C541,2X23 X 34A(1,3,4)A(1,2,4)
+ Co41,3C32.1.4X24 X 23A(1,3,4)A(1,2,4) + C2413C3412X24 X 34A(1, 3,4)A(1,2,3)
+ C341,2032,1,4 X34 X 23A (1,2, 4)A(1, 3,4) + Cs4,1,2C241,3X34 X 24A(1,2,4)A(1, 3, 4)
+ 51902 | Mio g a|*A(2,3,4)A(1, 3,4) — s13Q13| Mi32,4[2A(2,3,4)A(1,2,4)
+ 514014 M14.23|A(2,3,4)A(1,2,3) + 593003 Mag 1 4|*A(1,3,4)A(1,2,4)
— 5940004 | Maa 1 3|2 A(1,3,4)A(1,2,3) + 534034 | Msa1 22 A(1,2,4)A(1,2,3)
where we defined (the others follow from relabelling)
Cos1,3 = Mos13+ Mgz + Mi23a. (B.5)

The o’-expansion of the above integrals has not been derived but one can argue from
the results of [46] that 7;;7;; — Qijs;jl and 7;;7;;, have no kinematic poles. Therefore
the leading-order contribution from (B.4) is given by the §2;; terms and it follows from
relabelling of integration variables that they are all equal to + [ ngA(2,3,4)Z(1,3,4)
(the sign is easy to obtain). Thus the low energy limit of |F|? in (3.25) corresponds to”

V2T d*Q -« ! ikl i
- 2237;7 4e4A< > / 7z f[;’/Hd?zZQuA (2,3,9)5(1,3,4)(K) _y ([ *") (B.6)
j=1

where we used Q5 = 7(a//2)Q2 and defined,

Tos14?  |Toa1sl?  |Tza12l?  |Tiosal®?  |Tisoal® |Tisos|?
K:' 23,14 +| b4,1,3] +| 54,12 +| 12,3,4] +| 13,2,4] +| 14,2,3]

(B.7)
523 524 534 512 513 S14

"The minus sign compensates the “convention” k™ — k™ in the Koba-Nielsen factor.
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B.1 Open superstring

In the case of the open superstring it is not difficult to argue that the corresponding low
energy limit is

j(open) _ T5341 +Ta123 n T3412 + T12,3,4‘ (B.8)

523 534
The component expansion of (B.8) provides a good consistency check for the methods of [28]
since one recovers the a’> interaction of the open superstring tree-level amplitude [47, 48],

(Toz,4,1 + Tu1,2,3) N (T3a,1,2 + Ti2,3.4)

= 1344 - 40 - 48" - 2880 A}, 512513523. (B.9)
523 534
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