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1 Introduction

Higher Spin gauge theories have different structure in different space-time dimensions.
The first example of a consistent fully nonlinear HS theory in four dimensions was given
in [1]. Less is known for higher dimensions. In dimensions higher than four Higher Spin
theories are getting more complicated in general, allowing fields of mixed symmetry type.
At the same time, for the restricted spectra of only symmetric fields, Vasiliev equations are
available for any space-time dimension [2]. They are defined unambiguously and describe
totally symmetric bosonic fields of all spins.

Recent progress in three dimensional AdS higher spin gravity resulted in new relations
between topological Chern-Simons theory, two-dimensional conformal field theories with
higher spin symmetry, and new three-dimensional black hole solutions with higher spin
charges ([3]-[8] and references therein). It also points out again the importance of an
AdS background for the construction of consistent nonlinear higher spin interactions with
a finite number of interacting higher spin gauge fields. These recent results are based
on the embedding of the gravitational gauge group into a larger group, unifying higher
spin gauge symmetry with the AdS group. In the three dimensional case it amounts to
embedding SL(2) into SL(3)(SL(n)) in the case of spin three (up to spin n) gravity, and
the corresponding field theory is described by a three-dimensional Chern-Simons action
with SL(3) x SL(3) (SL(n) x SL(n)) gauge group. The case of three dimensions is singled
out by the existence of a one-parameter family of Higher Spin algebras that underlie the
construction of Chern-Simons actions for the gauge fields [9-12] and Vasiliev equations,
describing the interaction of Higher Spin gauge fields with scalar matter [13].

The main goal of this paper is to generalize this approach to five dimensions, and to
construct possible interacting theories (actually with cubic interaction) with finite number



of higher spin fields in an AdS5 background. Moreover we show the existence of a sequence
of Lie algebras, the generators of which can be identified with the generators of Higher Spin
gauge symmetries for a finite number of symmetric fields in (A)dSs, in analogy to the three
dimensional case.!

As a realization of this idea we construct in the next section a special embedding of the
spin two and spin three symmetry generators in frame formalism into a unifying SU(10)
Lie algebra, where the spin two generators correspond to the SU(4) subalgebra and the
spin three generators to the remaining part of SU(10). In section 3 we construct gauge
fields and curvatures. The latter include interactions and self-interactions of the spin-2 and
spin-3 fields through the structure constant of SU(10) algebra. In the fourth section we
construct an action with cubic interaction following the prescription of [16] and [17] and
using our SU(10) gauge transformation and curvatures as a realization of the unified spin 2
and 3 gauge field theory. Generalization to any spin is discussed in section 5.

It would of course be interesting to construct a fully nonlinear interacting SU(10) in-
variant action. The first idea which comes to mind is a five-dimensional Chern-Simons
action for the SU(10) gauge field. This idea is also based on the fact that unitary groups
have an invariant third rank symmetric tensor which provides an invariant trace for the con-
struction of the Chern-Simons action in five dimensions. But it is well known [18, 19] that
this action, even in the pure gravity case (SO(6) gauge group) leads to Gauss-Bonnet (Love-
lock) gravity with a special combination of terms quadratic and linear in curvatures and
without a propagator for spin two fluctuations in an AdSs background. Higher Spin Chern-
Simons gravity in 5d was discussed in [20], where the authors considered also the dynamics
of linearized spin 3 gauge fields. A different Lagrangian formulation for theories of spin
2 and higher in an AdS background in the frame formulation is the so-called MacDowell-
Mansouri-Stelle-West formulation [21, 22] used by Vasiliev for a perturbative analysis of
interactions [16, 17, 26]. In appendix B we discuss a generalization of the coset construction
of [21, 22] and introduce a compensator field living on the coset SU(10)/SO(10). Unfortu-
nately our result is negative: this theory does not have a correct free field limit.

2 Unification of spin 2 and 3 symmetries on AdSj5

Gravitational theories in frame formalism can be formulated as gauge theories. Since our
construction draws some of its motivation from the three dimensional case, we will briefly
recall it. There pure gravity with a negative cosmological constant can be written as a
SO(2,2) ~ SL(2,R) x SL(2,R) Chern-Simons theory. The generalization to higher spin is
to replace SL(2) by a bigger group G with a special embedding SL(2,R) < G, the simplest
case being G = SL(3,R) with the principal embedding, leading to a unified description of
a spin-three field coupled to gravity.

Five dimensional gravity in AdSs space is a gauge theory of SO(2,4) (pure AdS) or
SO(1,5) (Euclidian AdS). The corresponding fiinfbein and spin connection can be ex-

!These algebras should correspond to the representations of su(2,2) (the latter can serve as defining
representations for these algebras) found in [14] and should be discrete cases of the one-parameter family
of algebras of [15].



tracted from the gauge field, which is an algebra-valued one-form, by decomposition of the
adjoint representation of SO(2,4) or SO(1,5) into the adjoint and vector representations of
SO(1,4). For simplicity and without loss of generality we can replace these non-compact
groups by their compact versions. Namely we consider instead of the AdS5 group the six di-
mensional rotation group SO(6) and expand the gauge field with respect to the “space-time
rotation” group SO(5), just separating the sixth component as the vector representation
and obtaining correspondingly a fiinfbein and a spin-connection:

AdBdgh = AAP = — ABA AB,...=1,...,6,
AAB = {496 A%y — [ (,90) a,b=1,...,5. (2.1)
We can then impose constraints of vanishing torsion and express the spin connection in
terms of flinfbein and inverse fiinfbein fields.
Then we propose the following extension to include spin 3 fields (and higher). The
SO(6) representation of the gravitational fields (2.1) is via the antisymmetric two cell Young

tableau
AAB =y 30 = H , dim(YE) =15 . (2.2)

In terms of Young tableaux, the expansion (2.1) is
H - <D + H) , (2.3)
SO(6) SO(5)

1550(5) = (54 10)s0(s) - (2.4)
From this point of view the spin 3 field corresponds to the SO(6) window diagram [16]

or in terms of dimensions:

SO . SO
AAB’CD = YAAE(;?();D - 9 dlm(YAABg,Gg‘D) - 84 . (25)

The conventions are such that A is symmetric in each pair of indices. The corresponding
SO(5) expansion to a spin 3 tetrad and connections looks like

AAB,CD eab wab,c wab,cd

(2.6)

510(6):(l l l+_ N )50(5)’

8450) = ( 14 + 35 + 35)

SO(5)

The w®¢? are so-called extra fields (which are absent in d = 3).
For the unification of the spin 2 and spin 3 degrees of freedom into one field, we should
first of all find a Lie group G with dimension

1550(6) + 8450(6) = 99¢ - (2.7)

Taking into account that SO(6) is equivalent? to SU(4) we see that the natural choice for
G is SU(10).> The 15 generators of spin 2 gauge symmetry and 84 generators of spin 3
gauge symmetry can be combined into the 99 generators of SU(10).

2See the appendix for details on the isomorphism so(6) =~ su(4) and other relevant formulae.
3For other signatures of the initial space-time isometry algebra, we have, of course, different real forms
of SL(10,C).



To proceed, we have to find an embedding of SU(4) into SU(10) such that the adjoint of
the latter decomposes w.r.t. the former as in (2.7). That amounts to finding a representation
of SU(4) of dimension 10. Such representation of SU(4) exists in the space of symmetric

second-rank tensors. We arrive at the following embedding procedure:*

e Denote the 99 generators of the SU(10) algebra by

ul, ul=o0, I,J---€{1,2,...,10}. (2.8)
e We can present the SU(10) vector indices I, J, ... as symmetric pairs of vector indices
of SU(4)
IJ,... = (af),(v0),..., «a,B,---€{1,2,3,4},
U = v =uly=vy, vd=o. (2.9)

e The SU(4) — SU(10) embedding can then be realized as the decomposition into
single and double traceless parts of U 3‘ 56

1
aB _ yyraB (arB
Uy = Wiy + 200 L), (2.10)
B _ rraB
L6 - Uaé’
af _ B _
we =15 =0,

where L? are the 15 generators of SU(4).

This shows that (2.10) is a realization of the embedding:
995y(10) = (15 + 84)50(6) - (2.11)

Using the explicit form of the SU(10) generators, it is straightforward to work out the
commutation relations of L and W. The result is given in the appendix.

To summarize, we constructed a Lie algebra of spin 3 and spin 2 transformations in
AdS5 using a special embedding SO(6) ~ SU(4) — SU(10). From (A.6) one sees that
the difference between SU(10) and SU(4) is precisely the tensor representation of SU(4)
corresponding to the window tableau of SO(6).

In the subsequent sections we attempt to construct gauge field theory with cubic
interaction corresponding to the above unified algebra starting from Vasiliev’s free higher
spin action in AdS background [16].

3 Gauge fields and curvatures

In this section we apply the SU(4) — SU(10) embedding to gauge fields and curvatures.
First of all we can equip a general one-form gauge field and zero-form gauge parameter

“We do not distinguish between the components of a tensor in the adjoint representation and the gene-
rators of SU(10).



with SU(10) indices expressed as symmetric pairs of SU(4) indices
(3.1)

A=A e=<JUp,
0A=De = §A%] =de2f + AN — AN

From now on we use for algebra valued objects a component formalism, i.e. stripping off
the generators. In this notation the SU(10) Yang-Mills field strength is

F2J =0 (3.2)

B _ B B A
oy = dATS + AS) N ATE,
Using the embedding (2.10) we can extract from the SU(10) gauge field and field strength

the spin 2 and spin 3 gauge fields and curvatures:

1 (a

A =W Loy, W =wf =0, (3.3)

af _ paB | Lo p) B _ B _
F’y§ —R,y(; +65(,y7°6), Ra5 —Tﬁ = 0.

where
1

aB WP L Wb A wre (a”n@)v Wwae

Rw? = D, ve T W, AWos = 65(7 ol N Weyo
(@ Bx L ) ppas
A LLV(S — g(JJ(,y A 5))\, (34)

5 _ qweb

DLWy = AWy + gy
1

r§ = dwf + 5wl Awy + WET AW,

Structure and couplings of fields in the curvatures reflect the structure of the commuta-

tors (A.6).5 Defining the AdS; background in standard SU(4) covariant way as

_ (0%
Wy, = W

ro = Dwowo = 0,

=0

where Dy, = d + wp is the AdS5 covariant exterior derivative,® we can expand the gauge
field in this background and extract from the SU(10) field strength the spin 2 and spin 3

curvatures in both linear and quadratic order in field fluctuations:

af afs 1 (a B)
Ay =Woi + 66(7 (wo + w)é), (3.7)
af _ pa o 1 (a
Fly = Ryys & Ry + 50, (1 12)g),

5 After rescaling the spin two field w — 3w the curvature takes the usual Riemann form.

6
1 1
Wb — qwep (o A P> A Wwes
DWO ~ —d ~8 +§(IJ0)\/\ ~& — g(do(,y/\ SN’
1 q 1 «
—wox N wg — gwé‘ﬁ N wy .

Dywg = dwz‘f + 3



where
R?yﬁa = Dy Wﬁaﬁ’
1 1 1
af  _ (o A LA af af Ao Lo(agrB)o \p
R275 = gw/\ /\W75 Bw(vAW(;))\—FW)\p /\WW; 65(7‘/‘/'/\/3‘ /\W5)U,
775 = Dww3,

1
i = geS A wh + WETAW)?. (3.8)

In the next section we construct a cubic interaction using these expansions.

4 Spin 3 and 2 cubic interaction

To formulate correctly the free action, we begin with a brief review of the Macdowell-
Mansouri-Stelle-West action principle for the case of ordinary spin two gravity in five
dimensions. The task can be formulated in the following way: we have to write a topological
action for a five dimensional gauge theory with SO(6) gauge group. This means that
we should construct a five-form enabling us to integrate over a general five dimensional
manifold M5 in a metric independent way. Introduce a field strength

FAB — qAAB 4 AAo A ACB, AB,---=1,2...6. (4.1)
The natural choice for the action is

Ss0(6) ~ /M eapcper BYP NFOP A FPE (4.2)
5

where BAB = —BB4 ig an SO(6) algebra valued gauge covariant one-form constructed
from some compensator field. The compensator field should be introduced in a way that
does not lead to equations of motion purely quadratic in the field strength

eapcpprFCP A FEF =, (4.3)

as happens in the Chern-Simons case and which leads to a vanishing propagator in an
AdS background FAB = F A“fs = 0. A possible solution is to take the compensator as an
element of the coset G/H where G in this case is SO(6) and the stabilizer H should be
taken in a way to keep “Lorentz” covariance as the remaining symmetry after gauge fixing.
The natural choice in this case is H = SO(5). This construction leads to a consistent
gravity action, which is equivalent to the Einstein-Hilbert action in the linearized limit. In
summary, we define the compensator field as an element of a five dimensional sphere

S5 =80(6)/SO(5) . (4.4)
The sphere can be realized, in a manifestly SO(6) invariant way, as a unit vector in R%:

vA L VAV, =1, (4.5)



The SO(6) covariant one-form and the corresponding action can then be constructed
from (4.5) uniquely:

BAP = viApyBl DvE =avP 4+ APV, (4.6)
Sso(6) ~ / eapcpmn VADVE A FOP A MY (4.7)
Ms

A detailed analysis of the equations of motions and symmetries of this action can be found
in [16]-[25]. Here we only note that using local SO(6) invariance of the theory, we can bring
the vector field V4(x) to the constant unit vector in the sixth direction, and the remaining
SO(5) invariance will still be sufficient for covariance in the language of fiinfbein and spin
connection (2.1). Another important aspect of this construction is that the remaining
SO(5) invariance, combined with diffeomorphism invariance will still be sufficient for full
AdS invariance of the theory [16].

The most important point of this short review for us is that one can rewrite this
action equivalently in SU(4) form. This can be done by direct transformation to chiral

spinor indices a, 8, -+ € {1,2,3,4} using standard identities for chiral Dirac matrices in
six dimensions’
veb = j(x4)eBy, s VA= izg‘ﬂvaﬁ, voP = _yPe
1
FP = (2 ap)PFAB — FAB = —i(ZAB)ngf, F%=0. (4.8)

The constraint on V' which follows from (4.5) is
1
VWVay =05, Vap = SeapysV """ (4.9)

With the help of the identity (A.11) one obtains from (4.7)

Ssu ~i [ VDVsy ANFJ AFE. (4.10)
M3
So we recognize the SU(4) covariant algebra-valued one-form®
B =iVNDV)gx, B3 =0, (4.11)
(DV)fg,\ =dVsy + AﬁgV)\}p.

Linearization of this construction around an AdSs background gives the free spin 2 action”

Sgﬁa) = i/M VOAD, Vaa A rfp ATR, (4.12)
5

"Further details are given in appendix A.

8 Another way of transformating to the SU(4) invariant action leading to the same result is considered
in appendix B.

9Here and below, the overall normalization is fixed for convenience.



which is the starting point for considering free actions for higher spin fields in AdSs
space [16]-[25]. We now present the correct free action for spin three, which consist of
two parts [16]

Ms
- 4RICCLDD1 A R{MCH 7ND2VD1 VD2)7 (4.13)

where the relative coefficient between the two terms is fixed such that the equation of
motion for the unwanted “extra” fields corresponding to the SO(5) window like Young
tableau in (2.6) trivializes. Using results from appendix A we can transform this action to
SU(4) invariant form:

lao

S35ty = /M5 VD Vi A (2RI s ARJZ + REL ARV, 0, VO®). (4.14)

For the construction of the cubic interaction lagrangian using our unifying spin 2 and 3
symmetry group SU(10) we start from the free spin 3 and spin 2 actions in AdS5 background
written in the SU(4) form with an as yet undetermined relative coefficient a:

S = a Si5ty + SSuis- (4.15)

We then construct the cubic interaction following Noether’s procedure and using the SU(10)

transformations for curvatures (3.8). If we split the gauge parameter efff into its spin tree

and two parts,

1
B _ pap (o _B)
€ = My + Eé(uev)’ (4.16)
ngﬁ - Eg =0,
we derive the gauge transformation for the spin 3 and spin 2 curvatures:'°
a3 af 1 (a B)o 1 af 1 afs
SRy, = [Rnlg, — 65(“ [R,n]y)a + g[R, el + g[r, s
1
ory = glrely + [’ g, (4.19)
where
A A
[Rnls = Rl — S R,
B _ paB _p _ _(apph)
(R, el = R e, ey RyL, (4.20)
B — plapBp _ poB p
[ronla = 75" = 0,70
0The corresponding transformation for the gauge fields is:
e « «a 1 (a o 1 a 1 o
6W,u,f - Dwonuf + [VV7 ’r]],uf - g(séu [W7 77}5))0 + g[m a}uf + g[w77ﬂu57 (417)
B = Duyel + 5oyl + Wl (4.18)



with
[R,e]%] = [ =0. (4.21)

To perform Noether’s procedure we split the gauge transformations into zeroth and first
order in gauge fields and, as typical for Yang-Mills type of gauge fields, expand the trans-
formations in first and second order in gauge fields
50R?5V = (50’/“(11“ = O,
51R(1)fy + 60R§5y = A(R)Zf(Rla 1,1, 5)’
5lr?‘u, + 507,,51“ = A(T‘)Z(R17 1,7, 5)7 (422)

a ap L o 1 ag 1 N
A(R)“f - [Rlan]/ué - 65((“ [Rl')n]f))g + g[Rhg]plé + g[rhn]ufv

fe! 1 fe! ao
A(r)u = g[rbs]u + [Rl)n]ua'

We now use the prescription suggested in [16, 17] (see also [15] for further details and gen-
eralizations) and replace in the free action the linearized curvatures by the full curvatures
and extract a candidate cubic action of the form:

Seubic — ai/ . VOrhu A [7“55 ATSa +1H A rga]
M

laoc 2a0

+ z'/M5 2V A [REZ 5, AR + RS o 1 ) )
+ i /M5 VoA A [Rgﬁél A RS+ RS AN RIS 1V b, Va@},
where
h = Dy,V, Dyh=0. (4.24)

This gives Noether’s equation with nonzero right hand side

0197 4 5p5P = ai / VOrhya A [Aff)
M5

A ’I“(lsa + 7"{6 A A?T)a}

laoc

. al no 10 no 610
+i /M5 2V N A (Al NREE LR AANE | (425)

y /Ms VO A [A@%m AR + RO AATE 1V, Valaz] .
It remains to prove that the right-hand side of Noether’s equation is zero on the free mass
shell. This means that the r.h.s. is zero on solutions of the free equation of motion of the
theory. This requires a deformation of the initial Yang-Mills like gauge symmetry. To show
that r.h.s. vanishes on the solutions of the free equations of motion we use the so-called
First On-Shell Theorem [16] which in our case can be formulated in the following manner:

e All linearized ‘torsions’ are zero on the free mass shell

v RYE = vl = o, (4.26)



e The remaining curvatures can be expressed through the Weyl tensor zero forms in
the following way:

RS = HPvrdal

Tpv p yuv
2
e, = HOVOes, (4.27)
HY) = hye AVhs,.
where the Weyl zero forms are completely symmetric and traceless
AafB AafB) _ ~Aaf Aa . (da) A
Claw = C“(w% )= Clwy G = c'(ma) = Clomp (4.28)
AafB _ e _
Cous = a =0
e The Weyl tensors are V transversal:
SN aB 0 Ao _
verColal — yelb e — o, (4.29)

The first simplification of the r.h.s. of (4.25) occurs by virtue of the identity (A.17) and
condition (4.26). It allows us to remove the last line in (4.25) while changing the coefficient
in the second line from 2 to 1.

A second simplification results from using the torsion free condition. It sets to zero all
terms in (4.25) which originate from the second term in A gy which effectively becomes

« [e% 1 o
Aryi = [Rus el + 3 Ll (4.30)

Note that here the full parameter € (cf. 4.16) appears. The remaining terms can be written
in the form

51 Sfree + 5oscubic (431)

, ” 1 o
—ai [ Vi n (Gl AR, Rl Ary s A Ry )
M

. o 1 516 1
+Z/M5 VR A {[(R1 A Ry),elhg + 5[7”1777]532 AR + RS 5, A g[Tl’ﬁ]gffg}v

where
(Ry A Ry)%P = R®® A RO
1% 1p1p2 lpv o
(ri A rl)z‘ = r?p A rfu. (4.32)

Then inserting (4.27) in (4.31) we obtain

615free +6OScubic
_ (2) 2y rav T Loy o A o) ST AN 150
— /M5 by N HL) AHEVVOVY {a( Sl elh + (O mlh e2h + <51l
o 1 ag 1 o}
+[(CIC2),€lig + 31yl CL + SO0 i | (4.33)

,10,



We now note the crucial identity

@ @ _ 1
s NHGG) NHE) = 2 HO ViV Vs + Vit VsVor + Vi VaVas| - (4:39)
where
H® = VXth,, ANV sy AVhs, AVPPhys ANVOTh, (4.35)

is a volume form. Using this identity and the properties of the Weyl tensors, eqs. (4.28)
and (4.29), the variation of the action simplifies considerably:

. ] 4
8™+ 805 = 5 (2a=3) [ HO (Col it - ik, CI%) . (430)

So we see that full cancelation occurs if we fix the coefficient a = % We have thus shown
that the invariant action with cubic interaction is

. 2.
Sfree-l—cublc —_ §2 /]V[r Va/\hu)\ A |:7a/116 A T(lsoa + TI;S A T(lsoa + 7“/11’6 A 'r‘ga (4.37)

+i/M5 2V By A {ng@ ARV + Rog 5, NRIRE + RYT 5 A Réléz}

lao laoc 200
; a HP1 o p2 Hp1 T2 Hp1 T2 0102
o / M5 VE iy A {Rladl N RS, T RyG5, A RIS, +R%s, N R35, VoinV } :

This action can be extracted as an expansion up to cubic order of the following expression
written in the form which includes only the SU(10) field strength Fio:

. 1
Gfreet+cubic _ i/MS {gvakhlﬁ\ A F/ﬁg’ A Fgg (4.38)
oV ABy, MO A FAP L 1OA], /\F'Msl /\F052vp1/)2v
+ BB Np ao T 22 Bp1 apa 0102
4 2
= VO FE A s — 3V FEg A nggvplp2%152}.

With the help of identity (A.16) we can rewrite (4.38) as

: 1
Gfreefcubic _ gl /M5 [Vo&\hu)ﬁg _ Vﬂahuo’ + hﬁavug] (4.39)

1
9 (z&g; 4 VOV, L0 5{;;) A FISp R
Analyzing this expression we find that the first bracket removes from the product of two
SU(10) field strengths the quadratic term which mixes the spin two and spin three fields.
In the free limit this leads to the correct diagonal action (4.15). On the other hand
the operator
25(’;21 5§12 + VPAP2Vs s, (4.40)

in the second bracket controls the trivialization of the “extra field” equation of motion for
the spin 3 part and the coefficient % in front of last term is fixed by the condition that

— 11 —



a deformation of the SU(10) gauge invariance which leads to this cubic interaction exists.
This nontrivial deformation makes the generalization of this procedure to quartic or the
full nonlinear action illusive and as a result the compact expression (4.40) is correct only
up to cubic order.

One might consider avoiding the deformation and to generalize the nonlinear spin 2
(SU(4)) action (4.10) to the spin 3 (SU(10)) case by introducing a SU(10) covariant compen-
sator. But this does not provide the correct free limit without mixed terms and the triviality
of “extra” field free equations at the same time. This is demonstrated in appendix B.

5 Outlook

One obvious generalization can be envisioned: including spins higher than three. This gen-
eralization is straightforward as far as the identification of G and the embedding SO(6) — G
are concerned. Consider e.g. spin 2, spin 3 and spin 4. The fields and their SO(5) repre-
sentations are

5 e®[ 114 et 11130
wab H 10 Wab,c ]@ Wabc,d | ] 81 (5‘1)
wab,cd 1 ] 35 wabc,de 77T 105
wabc,def 84

The fields in each column combine into representations of SO(6) whose Young tableau
coincides with the last one in each column. The total of 399 fields nicely combine into the
adjoint representation of SU(20). The pattern repeats if we add higher spins such that

for spin 2,...,s we find SU((SJ§2)). All of the fields, that correspond to spins from 2 to

s+2
3

symmetrized su(4) indices for each of the SU ((3'52)) indices (the number of components

s now combine into one SU (( ))—Valued one-form master field. We can introduce s — 1
matches exactly). The trace decomposition of the master one-form field gives all the fields,
corresponding to different spins.

We expect that this result hints on the existence of one parameter family of alge-
bras for symmetric Higher Spin fields in five dimensions, in full analogy with the three
dimensional case. For the critical values of the parameter, this algebra should acquire
infinite-dimensional ideals, with the remaining generators forming finite dimensional sub-
algebras SU ((552)) This sequence of algebras should include the known infinite dimen-
sional Higher Spin algebras, discussed in [2, 16, 20, 27, 28]. In order to check this idea,
one has to implement the more general construction of Higher Spin algebra, along the lines
of [29-32]. In fact, a one parameter family of Higher Spin algebras is known to exist in any
dimension [15] (see also [33]). This family of algebras includes mixed symmetry fields in
higher dimensions, while in five dimensions it does not. It is also known [14] that there is a
family of unitary representations of the AdSs algebra su(2,2) that should serve as defining
representations for these algebras.

— 12 —



While we have demonstrated the correct cubic action for spin two and spin three in an
AdS background, we encounter standard problems when considering the fully interacting
theory, even in the case of our higher spin algebra with only finite number of spins (see
appendix B for an alternative attempt). Therefore, the question of existence of an action
with nonlinear interactions of a finite number of dynamical Higher Spin fields remains open.
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A Useful relations

In this appendix we give some of the details about the Lie-algebras which were used in the
main body of the paper.

The generators of SU(n) in the fundamental representation can be chosen as a basis
of real traceless matrices as follows:

i i Lorg
(U)); = 8", — 8505, (A1)
where the range of all indices is 1,...,n. These generators satisfy
U}, UL] =65 UL — 6, UJ. (A-2)

Using the explicit representation (A.1l), one easily works out the rank three d-symbol
of SU(n):

1
djin = tr(UHUL, Un'}) (A.3)
= L (o obrat v ot oMok — 2okt ol — ZaMoK st — 2o1sKaM 1 2 glsk o
_5 NYL %J LYJ YN ENLJ ELNJ ELJN EJLN'

Considering the special embedding SU(4) < SU(10), we represent the SU(10) indices
I,J,... by a symmetriced pair of SU(4) indices, i.e. I = (af3), etc. with o, 5,--- =1,...,4
and rewrite (A.2) as

USP U] = 8 US — o8 Ut 698 = 525) + 6565, (A4)
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Given the decomposition'!

1
af ( B) aff _ joa __
Uy =Us =wey +65(7 oo W =Le=0, (A.5)

and the algebra (A.4), it is straightforward to derive
(L5, Ls] = 0515 — 05 L
(LG, Whe) = 50 Why, — 5 Wie, (A.6)

(Wl Wi = sl wel — sodwy

aB prr e <<u VB 4 sloln v)B)

+ g (00w = ot Wi, = 50w < gew)?)
nm ( ap s(uyv)
6(5 oLy 5p06(7L5)>

8)
)

1 (npv) _ swv slapB) _ slalugn) 18) | siu(agh) )

T <5< (000) L) = 00198y Ly = 035" 0, Ly + 056 6))

where (a(7)d) denotes symmetrization in (¢, d) and in (8,7) and 52‘56 = 53‘5? + 5?&5.
The isomorphism between the vector respresentation of SO(6) and the antisymmetric

second rank tensor representation of SU(4) is made explicit with the help of the chiral

Dirac matrices, some of whose properties are'?

S5 = —Xha;
(=) = ; e*Pr0xsy, (A.7)
(sl + (£P)5l = 267745,
A convenient basis for the Eéﬂ is X' = do3 @01, 8% = 1®o09, X3 =ioy @1, %% =

09 ® 03, X% = i01 ® 09, 0 = 09 ® 01 where o; are the three Pauli matrices. Then SO(6)
algebra generators can be constructed as

(24BY) = -3 (EA nhBBy _ zaBﬁzAﬁv), (A.8)

Defining
1
Vg =i505Va, Vvoeh — 5ef"ﬁv‘svwg, (A.9)

one finds that (4.5) implies the constraint

VIV, = 55, (A.10)

" Our conventions are 5(0‘L5) = (5O‘LB 55L5 + d§ LB + SBLO‘
2The indices & referrmg to the other chirality are not needed here. By raising and lowering them with
the charge conjugation matrix we can always convert them to un-dotted indices.
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Using the symmetries of the Lh.s. and the fact that ©48 is traceless, leads to the identity

eapcpmn ShpShs(SOP)R (M)

m
. 1 1 1
=43 Ea,B)\u%)g — GWEAu(sZ% — 56,1@7)\5:5/5[; + 565@5)\655/6 + 5675,1)\5%(5{1 (A.11)
1 vp 1 o 1 o 1 PY| o v
_56“/5@\5&5# - ieaﬁw‘safsA + ieaﬁriufswé/\ + 567504#5,85/\ - ievéﬁuéa‘s,\
with
025 = 6955 — o508 (A.12)
Other useful identities are
eapopun (B4 G(ECP) (M) =16 gy, (A.13)
(£Nap(Za)rs = 2 caprs: (A.14)
and ]
hap A hos = =5 (Voo HES = Vi Hig) = Vas HY) + VasH)). (A.15)

For an antisymmetric one-form hqp with yoB hap = 0 (e.g. for hap = DV, ) and a two-form
fg one finds the identity

1
§W%W—Wm@$Aﬁ+WMMﬁAﬁ:VWWﬂAﬂ. (A.16)
We will also use

VapVas + Vary Vg + VasViay = €apyes
Vorpo Vo2 = ghoemm Vo Veaps + 6216,022' (A.17)

B Topological actions and coset construction

In this appendix we describe an attempt to construct an action for the spin two and
spin three fields with manifest SU(10) symmetry, generalizing the coset space construction
described in section 4. While the symmetry is manifest we will find that this construc-
tion leads to unwanted mixed terms between the spin two and spin three fields at the
quadratic level.

We begin with an alternative way to write the action (4.7) in SU(4) invariant form.
Note that the integrand in (4.7) is just the SO(6) invariant trace of three elements of the
SO(6) algebra or, equivalently, that € 4pcppr is the d-symbol of SO(6) ~ SU(4). With this
observation it is immediate how to generalize the topological action for any Lie group G:

SG'N/ dQ@ABQ/\F@/\FA, (B.1)
M3

where capital Greek indices I',©,A--- € {1,...,dim(G)}. The crucial point of this con-
struction is the choice of the coset G/H whose element will be used for the construction
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of the G' covariant one-form B®. In the case of G = SO(6) we have H = SO(5) and the
compensator field is an element of the five-sphere. Equivalently for the same system, if
G = SU(4) we identify the stabilizer group H = Sp(4) ~ SO(5) and the compensator V
is an element of the coset

SU(4)/Sp(4), (B.2)

and is expressed as an antisymmetric SU(4) tensor constrained by (4.9). Then the SU(4)
algebra valued one-form can be constructed as (4.11) and the general action (B.1) trans-
forms into (4.10). Note also that in the same fashion as we fixed the gauge using local
SO(6) rotations,

VA=WV, (a=1,...,5),
vOA = (0,1), (B.3)

in the SU(4) formulation, we can bring the compensator field V,3(z) to the constant
symplectic form VCEZ), leaving an unbroken symmetry Sp(4). The relation corresponding
to (B.3) is

Vag(z) = V) =ix8,. (B.4)

We now extend the discussion to a possible compensator field for the unfied discussion
of spin 2 and spin 3 cases based on the SU(10) algebra. To this end we consider an action
with gauge group SU(10) with the special embedding of SU(4) discussed in section 2. This
means that we identify in (B.1) the field strength F* with the SU(10) field strength (3.2).
In other words we replace the indices I', ©, A, ... by two symmetrised pairs of SU(4) indices
f:? with the corresponding SU(10) rule for taking the trace, e.g. using the d-symbol (A.3)

A
Ssu(io) = /M B3 A F{Y AFY, (B.5)

S5

F ;)‘ f was defined in (3.2). It remains to define the possible coset space and compensator,
and to construct an SU(10) covariant one-form

33567 ng =0, (BG)

af _ paB Ap Ap _af
5B76 —B)\pew—Bwe)\p.

Searching for a suitable stabilizer for the coset G/H constructed from G = SU(10), we
arrive at H = SO(10). This choice of compensator allows the background value described
by the SU(4)/Sp(4) coset construction. This property we use below in the analysis of the

linearized limit. From

G/H = SU(10)/S0O(10), (B.7)
dim(G/H) = dim(SU(10)) — dim(SO(10)) = 54
we conclude that the compensator should appear as a 54-dimensional representation of

SO(10). For SU(10) covariance of B or, equivalently, for SU(10) invariance of the ac-
tion (B.5), this representation should be expressed as a constrained representation of
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SU(10). From an SO(10) point of view it is a second rank symmetric traceless tensor
with 54 independent real components, which we can express as an SU(10) object in the
following way. Consider the space of complex tensors symmetric in a pair of lower indices
and its complex conjugate tensor with upper indices

Vir =V, Vi =yl = Vip)*, I,J,---€{1,...10}. (B.8)
It has 55 independent complex components. The natural SU(10) invariant (real) constraints

VIEV; =64 or V'V =1, (B.9)
det(Viy) =1 (B.10)

reduces the number of independent real components to 54 and we can identify this tensor
with an element of the symmetric space (B.7). Then we can construct an SU(10) covariant
traceless one-form in the usual way

B = iVIE DV, (B.11)
DViy = dVis — Al VL,

Moreover as opposed to the SU(4) case!3 for SU(10) we can construct one more invariant
action. Such a term can be constructed with the rank four d symbol of SU(10), defined as
the completely symmetrized trace of four SU(10) generators:

Sa ~ / dQE@ABQE ANFOAFN (B.12)
Ms

As before, capital Greek indices refer to the adjoint representation of SU(10) and we can
replace them by an upper and a lower index refering to the fundamental representation of
SU(10) and its complex conjugate, respectively, e.g. F» — Ff with FI[ = 0 or by two pairs
of symmetrised SU(4) indices, i.e. F ,? 65 with Fgg = 0. The tensor B can be realized using
the SU(10)/SO(10) compensator field (cf. (B.8)—(B.10)):!4

IK

BYE = (VI DV, — DVIRV;p) — traces. (B.13)

)
2

Replacing capital Latin indices with symmetrized pairs of SU(4) indices as before, we
arrive at the following expression for B,Ojg in (B.5)

B = iVl DV, 5, (B.14)
8 _
B2 =0,

where the SU(10)/SO(10) compensator field is defined as

Vagre = Vap,as;
VabAp — (Vaﬂ,)\p)*a

A s
VeIV s =055,

det(Viag),0)) = 1.

13The identity (A.16) relates two possible expressions for the spin 2 action.
" The traces would give the same contribution as (B.5).

(B.15)
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The second action (B.12) in the SU(4) covariant notation is

o A
Ssu0) = / B NFL AFY, (B.16)
where '
1, _
Biﬁ’;\f = §(Vaﬁ706DV;w,)\p _ Dvaﬁ,afsvlw’)\p). (B.17)

In this case we can also use local SU(10) transformations of the compensator field
and set

Vaging = e - (B.18)

The unbroken symmetry is SO(10), because the r.h.s. of (B.18) remains invariant under
SO(10) rotations.

We now address the embedding of the SU(4)/Sp(4) compensator Vs into the

U(10)/SO(10) element (B.15). It is easy to see that the restrictions imposed by the ansatz

1
Vagos = i(vaavﬁé + Vo Vas),

_ 1
Verat = S(Vervi L viyer), (B.19)
supplemented with
A ~ o0, (B.20)
lead to a reduction of the one-forms
B _ i _ Lsaps)
Bls =iV DVap a5 = 50, By
BY =iV DV, (B.21)

This means that putting the spin three gauge field to zero and using the ansatz (B.19),
we obtain the purely gravitational action (4.10) from the SU(10) invariant actions. This
immediately shows that the equations of motion have AdSs; background solutions.
Expressions (B.14) and (B.17) form all possible SU(10) covariant one forms which we
can construct using this compensator field. Therefore the most general action should be a
linear combination
Ssu(io0) + K Ssu(io) ; (B.22)

where the relative coefficient x is fixed by comparison with the free spin three action of
Vasﬂlev (4.14). Trying to fix it we replace in (B.19) and (B.5) F' with linearized curvatures

1W Rlﬁ + 15504 3) , use the SU(4) restriction (B.19) for the SU(10) compensator field

and replace the covariant derivative by D,,,. Straightforward calculation gives

~ 8
Ssu(10) + K Ssu(10) = ¢ / .9 —(1— H)Va)\h AT A rla + Smixed (713 R1) (B.23)

. A Lo 516 \ i op 55
" Z/M5 [2va hyx A Rys, 5, N Rigg =26V hun A RyGs A RS Vo V! 2] ;

where

Snixed (113 R1) :i/ [3V0‘”h,w AT AR+ V"‘”h,w A ARV vap} (B.24)
M5
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We see that the two possible independent SU(10) invariant structures produce two inde-
pendent contributions to the mixed term action (B.24). However there is no choice for the
relative cofficient k which trivializes the “extra” field equation of motion in the second line
of (B.23) (k = —3, cf. (4.14)) and in the mixed term action (B.24) (k = —1) simultane-
ously. This makes the correct free limit for the coset SU(10) action unreachable, at least
with the ansatz (B.19). At the moment we do not know how to resolve this problem.
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