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1 Introduction

In the recent past there has been a lot of progress in the area of lattice supersymmetry —

see [1–4] for a set of reviews and references therein. The key to these new approaches lies

in a reformulation of the continuum theory in terms of twisted variables. The process of

twisting1 produces a nilpotent scalar supersymmetry Q and an action that can be written,

quite generally, as a sum of Q-exact and Q-closed pieces. It is this structure that allows

one to write down a Q-invariant lattice theory [7–12]. Only theories with sufficiently

large numbers of supersymmetries can be twisted or orbifolded in this manner and thus

implemented on a lattice. Among them, we are particularly interested in studying the well

known theory, four-dimensional N = 4 supersymmetric Yang-Mills (SYM) and this is the

focus of the current paper.2 It is has been the subject of a few numerical studies [14–17],

with more in progress.

It should be noted that other complementary Monte Carlo approaches have been pro-

posed for studyingN = 4 SYM in the planar largeN limit see [18–24]. The lattice approach

1The twisting technique leads to lattice theories which are essentially equivalent to those derived by

orbifolding [5, 6].
2Another approach to N = 4 SYM using overlap fermions can be found in [13]
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we discuss here, based on exact lattice supersymmetry, works for any gauge group, but re-

tains only one supercharge. These other approaches work only in the large-N limit, but

retain larger numbers of exact supercharges. The results from the two approaches eventu-

ally should be compared in the region where they should coincide, namely at large N and

close to the continuum limit.

In addition, lattice formulations of two-dimensional SYM theories with four and eight

supercharges which preserve nilpotent supercharges are presented in [25, 26]. Although

these formulations are based on a twisted supersymmetry different from the one described

in this paper, evidence has been presented showing that the continuum limit of this for-

mulation for the case of two-dimensional SYM with four supercharges [27, 28] yields the

same physics [29].

The lattice action of N = 4 SYM retains invariance under only the single scalar

supercharge Q. The remaining fifteen supercharges Qa,Qab, a, b = 1, . . . , 5, are not exact

symmetries of the lattice action but are broken by terms of order the lattice spacing.

Thus one must potentially tune a series of lattice couplings (counterterms) to achieve

full supersymmetry in the continuum limit. The supersymmetric Ward-Takahashi (WT)

identities corresponding to Qa,Qab would seem to be very important in this regard as

they would provide insight into the degree of breaking and would serve as indicators that

the full SUSY has been restored, during the process of fine-tuning. However, even in the

continuum theory there are issues with these WT identities. There is no fully off-shell

formulation of N = 4 SYM, so when one goes through the normal process of deriving

the WT identities, an essential ingredient is missing: the action is not invariant under

the global SUSY transformation, unless the equations of motion are used. However, in

the quantum theory (and in particular under the path integral) the classical equations of

motion are not satisfied. This casts a pall over the whole procedure, and actually raises

questions about whether or not 〈0|∂µSµ
A(x)O(0)|0〉 really vanishes for x 6= 0 and A = a or

ab, since these symmetries are not realized off-shell.3 Another issue, which arises in the

lattice theory, is that because the supercurrents are not conserved at finite lattice spacing

(due to discretization errors that break these 15 supersymmetries), the bare supercurrent

(i.e., the one simply transcribed from the continuum) will mix with other operators under

renormalization. This has been extensively discussed in the context of N = 1 SYM with

Wilson fermions [30] and in another formulation of N = 4 SYM [13]. Thus to use the

SUSY WT identities in order to fine-tune the action, one must simultaneously determine

these mixing coefficients. In the theory that we are discussing here, there are many such

operators and mixing coefficients, rendering this a daunting task.

To our great relief, we have discovered a way to circumvent these difficulties! We have

found an intimate relationship between the restoration of the SU(4)R global R-symmetry

of the continuum theory and the supersymmetric continuum limit of the lattice theory.

In short, the exact Q SUSY, when combined with a restoration of the R-symmetry (or in

fact, even a discrete subgroup of that symmetry), is sufficient to guarantee that Qa,Qab

are restored and the long distance effective action is N = 4 supersymmetric. So, rather

3Here, Sµ
A is the supercurrent and O is any operator.
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than measuring the SUSY WT identities, one can simply measure the SU(4)R WT identies.

(See ref. [27] where the authors have constructed and numerically measured WT identities

related to the supercurrent conservation in the two-dimensional four supercharge SYM.)

Moreover, because of the twisting process, which combines this internal global symmetry

with the spacetime symmetry group of Euclidean SO(4) rotations, we ultimately find the

remarkable result that the recovery of Lorentz invariance in the continuum limit likely

implies the full N = 4 supersymmetry without any additional fine-tuning. However, it is

an open question as to whether or not the SO(4) rotational symmetry requires fine-tuning

of the lattice action in the present case. We show what condition must hold on coefficients

in the long distance effective theory for this to be the case. Even if fine-tuning of these

coefficients is necessary, at least it is relatively easy in a lattice simulation to test for SO(4)

invariance at long distance.

The outline of the paper is as follows. We begin with a discussion of the continuum

twisted N = 4 SYM theory and its supersymmetries in section 2. The action of the theory

and the scalar supersymmetry transformations of the fields are written down. We then

derive the form of the fifteen additional twisted supersymmetries by combining a set of

discrete R-symmetries of the continuum theory with the action of the scalar supersymme-

try. In section 3 we discuss how invariance of the action under these discrete R-symmetries

is already sufficient to guarantee invariance under the remaining fifteen twisted supersym-

metries. In section 4 we briefly detail the difficulty with the Ward-Takahashi identities

for the supercurrent in the twisted theory, due to the fact that there is no fully off-shell

formulation.4 We then discuss the lattice discretization of the theory in section 5. We

discuss the fate of the discrete R-symmetries on the lattice in section 6 and show that

while they are not invariances of the lattice theory they may be restored automatically in

an appropriate rotationally symmetric continuum limit. Finally, we provide a summary of

our main results in section 7.

2 The continuum N = 4 theory and its supersymmetries

The four-dimensional Euclidean N = 4 Yang-Mills theory in the continuum is obtained by

dimensional reduction of ten-dimensional N = 1 SYM. The ten-dimensional theory has a

rotation group SO(10)Lorentz and in the four-dimensional theory it becomes the product of

the four-dimensional rotation group and the R-symmetry group: SO(4)Lorentz × SO(6)R.

The four-dimensional theory can be rewritten in a useful way by transforming to a new set

of twisted fields as shown originally by Marcus [31].5 The action of the four-dimensional

theory, after the twist, can be written in a compact form that can be seen as the dimensional

reduction of a five-dimensional theory (see [6] for details of the construction):

S =

∫
Tr

(
−FmnFmn +

1

2
[Dm,Dm]2 − χmnD[mψn] − ηDmψm

−1

4
ǫmnrpqχpqDrχmn

)
, (2.1)

4There is a similar problem in the untwisted theory, again due to the lack of an off-shell formulation.
5This twist of N = 4 SYM also plays a role in the geometric-Langlands program [32].
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where the Roman indices run from 1, · · · , 5. Here and elsewhere below there is an implicit

d4x integration measure. The bosonic degrees of freedom of the theory, the four-dimensional

gauge field and six scalars, are encoded in the five complexified gauge fields Am, with

Am = Am + iBm. This encoding of fields leads to complexified covariant derivatives and

field strengths in the theory. We have, for a generic field X

DmX ≡ ∂mX + [Am, X ], DmX ≡ ∂mX + [Am, X ], (2.2)

and the complexified field strengths

Fmn ≡ [Dm,Dn] = ∂mAn − ∂nAm + [Am,An], (2.3)

Fmn ≡ [Dm,Dn] = ∂mAn − ∂nAm + [Am,An]. (2.4)

Of course, by definition ∂5 = 0 since the theory has been reduced to four dimensions. The

fermions of the original theory become p-forms after twisting. The 16 fermionic degrees of

freedom are now packaged in the set (η/2, ψm, χmn) of p-form fields.

One of the most important aspects of the twisting process is the exposure of a nilpotent

scalar supercharge Q that would make the theory compatible with lattice discretization.

The remaining supersymmetric charges also transform as integer spin representations of

the twisted rotation group. They are packaged as the p-forms (Q, Qm, Qmn).

The nilpotent scalar supersymmetry Q acts on the twisted fields in a simple manner

QAm = ψm, (2.5)

Qψm = 0, (2.6)

QAm = 0, (2.7)

Qχmn = −[Dm,Dn], (2.8)

Qη = d, (2.9)

Qd = 0, (2.10)

where d is an auxiliary field introduced for the off-shell completion of the action.6 It obeys

the equation of motion

d =
∑

m

[Dm,Dm]. (2.11)

The off-shell form of the action can be written as the sum of a Q-exact piece and a

Q-closed piece. It is

S =

∫
Tr QΛ + SQ−closed, (2.12)

where

Λ = χmn[Dm,Dn] + η[Dm,Dm]− 1

2
ηd, (2.13)

and

SQ−closed = −1

4

∫
Tr ǫmnrpqχpqDrχmn. (2.14)

6It should be emphasized that the action is only off-shell with respect to Q, whereas the other 15

supersymmetries require the equations of motion to yield invariance.
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We recover the on-shell form of the action given in eq. (2.1) after integrating out the

auxiliary field d. The off-shell action is invariant under the Q supersymmetry

QS = 0, (2.15)

as the Q-exact term in the off-shell action vanishes due to the nilpotent property of Q and

the Q-closed term is zero due to Bianchi identity for the complexified covariant derivatives.

The twisted action eq. (2.1) possesses global discrete symmetries that are subgroups of

the R-symmetry group SO(6)R of the theory. We can make use of these discrete symmetries

and the Q supercharge transformations of the fields eq. (2.5)–(2.10) to write down the field

transformations associated with the Qa and Qab supersymmetries.

2.1 Action of the R-symmetries on the twisted fields

We will show that the twisted supersymmetries can be recovered from a knowledge of the

scalar supersymmetry Q and a discrete subgroup of the R-symmetries. To this end let

us first show how to find these discrete R-symmetries. Consider first the (kinetic part of)

twisted continuum fermion action written in matrix form

SF =

∫
Tr

(
Ψγm∂mΨ

)
. (2.16)

Here, Ψ is the 4× 4 matrix that results from twisting the SO(4) rotational symmetry with

a SO(4) subgroup of the SO(6) R-symmetry. Consider the following transformation on this

matrix fermion

Ψ → ΨΓA, (2.17)

where ΓA with A = 1, · · · , 15, belong to the set {iγm, 12 [γm, γn]} of 4 × 4 matrices that

form a basis for the generators of the SU(4) ≃ SO(6) R-symmetry. Furthermore, since the

fermions are Majorana Ψ = CΨTC−1 one can easily show that Ψ → −ΓAΨ and hence that

the fermion action is invariant under the transformation. Expanding the matrix Ψ on the

same basis (plus the unit matrix) yields the usual twisted fields (η/2, ψm, χmn). It should

be clear that these twisted fields are then permuted in a well defined manner after right

multiplication by one of the ΓA. If one subsequently demands that the Yukawa interactions

are also invariant one finds that the complexified covariant derivatives must also transform

according to the rule:

Im Dm → 1

4
Tr

(
−ΓAγmΓA

)
Im Dm, (2.18)

where Im Dm ≡ (Dm − Dm)/2i. (See also [33] where the authors have shown that a

solution of the above consistency condition exactly describes which charge can be defined

on a lattice site.) In the next sections we will write out these discrete transformations

explicitly and verify the invariance of the continuum action.

2.2 Qa supersymmetries

Consider the following set of transformations of the fields and covariant derivatives corre-

sponding to the discrete R-transformation associated with iγa (the index a is considered

– 5 –
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fixed in all that follows)

η → 2ψa, (2.19)

ψa → 1

2
η, (2.20)

ψb → −χab, (2.21)

χab → −ψb, (2.22)

χbc → 1

2
ǫbcaghχgh, (2.23)

and

Da → Da, Da → Da, (2.24)

Db → Db, Db → Db, b 6= a. (2.25)

We denote this set of discrete transformations as Ra transformations. Let us check

whether the action is invariant under Ra transformations. We have the bosonic action

SB =

∫
Tr −

∑

m,n

FmnFmn +
1

2

(∑

m

[Dm,Dm]
)2
. (2.26)

Rewriting this to expose the index a,

SB =

∫
Tr − 2

∑

n 6=a

[Da,Dn][Da,Dn]−
∑

m 6=a,n 6=a

[Dm,Dn][Dm,Dn]

+
1

2

(
[Da,Da] +

∑

m 6=a

[Dm,Dm]
)2
. (2.27)

Applying the above field transformations the bosonic action becomes

S′
B =

∫
Tr − 2

∑

n 6=a

[Da,Dn][Da,Dn]−
∑

{m,n}6=a

[Dm,Dn][Dm,Dn]

+
1

2

(
[Da,Da]−

∑

m 6=a

[Dm,Dm]
)2

=

∫
Tr − 2

∑

n 6=a

[Da,Dn][Da,Dn]−
∑

{m,n}6=a

[Dm,Dn][Dm,Dn] +
1

2
[Da,Da]

2

+
1

2

∑

m 6=a

[Dm,Dm]2 −
∑

m 6=a

[Da,Da][Dm,Dm]. (2.28)

Thus the change in the bosonic action under this discrete transformation is

S′
B − SB =

∫ ∑

n 6=a

Tr
(
− 2[Da,Dn][Da,Dn] + 2[Da,Dn][Da,Dn]

−2[Da,Da][Dn,Dn]
)
. (2.29)

– 6 –
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Making use of the following relation among complexified covariant derivatives under

the trace

Tr
(
[Da,Dn][Da,Dn]

)
= Tr

(
[Da,Dn][Da,Dn]

)
− Tr

(
[Da,Da][Dn,Dn]

)
, (2.30)

with n 6= a, it is straightforward to show that S′
B − SB = 0, i.e., the bosonic action is

indeed invariant under this discrete transformation.

Let us check the invariance of the fermionic action. We have

SF =

∫
Tr − η

∑

m

Dmψm −
∑

m,n

χmnD[mψn] −
1

4

∑

m,n,c,d,e

ǫmncdeχdeDcχmn. (2.31)

Exposing the index a,

SF =

∫
Tr

(
− ηDaψa −

∑

n 6=a

ηDnψn − 2
∑

n 6=a

χanDaψn + 2
∑

n 6=a

χanDnψa

−
∑

{m,n}6=a

χmnDmψn +
∑

{m,n}6=a

χmnDnψm

−
∑

{n,c,d,e}6=a

ǫancdeχdeDcχan − 1

4

∑

{m,n,d,e}6=a

ǫmnadeχdeDaχmn

)
. (2.32)

Under the Ra transformations it becomes

S′
F =

∫
Tr

(
− 2ψaDa

1

2
η +

∑

n 6=a

2ψaDnχan − 2
∑

n 6=a

ψnDaχan − 2
∑

n 6=a

ψnDn
1

2
η

+
∑

{m,n}6=a

1

2
ǫmnaghχghDmχan −

∑

{m,n}6=a

1

2
ǫmnaghχghDnχam

+ǫancde
1

2
ǫdeapqχpqDcψn − 1

4
ǫmnade

1

2
ǫdeapqχpqDa

1

2
ǫmnarsχrs

)

=

∫
Tr

(
− ηDaψa +

∑

n 6=a

2χanDnψa −
∑

n 6=a

2χanDaψn −
∑

n 6=a

ηDnψn

+
∑

{m,n}6=a

ǫmnaghχghDmχan −
∑

{n,c}6=a

χncDnψc +
∑

{n,c}6=a

χncDcψn

−1

4
ǫpqarsχpqDaχrs

)

= SF . (2.33)

Thus the fermionic action is also invariant under the Ra transformations.

Combining this discrete R-symmetry with the original Q supersymmetry we can now

write down the one-form supersymmetries associated with the twisted supercharge Qa.

After making the replacements eq. (2.19)–(2.25) in eq. (2.5)–(2.10) we have the supersym-

– 7 –
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metry transformations associated with the supercharge Qa:

QaAb =
1

2
δabη, (2.34)

QaAb = −χab, (2.35)

Qaψb =
1

2
δabda + (1− δab)[Da,Db], (2.36)

Qaχbc = −1

2
ǫabcgh[Dg,Dh], (2.37)

Qaη = 0, (2.38)

Qada = 0. (2.39)

Here, da = [Da,Da] −
∑

m 6=a[Dm,Dm], and the equation Qada = 0 requires the equations

of motion, since this is an on-shell supersymmetry.

From the above supersymmetry transformations we see that the Qa, like the scalar

supercharge Q, is also nilpotent: Q2
a = 0. A straightforward, if tedious, calculation allows

one to verify that the action is Qa invariant on-shell (i.e., using the equations of motion),

QaS = 0.

2.3 Qab supersymmetries

We now consider the discrete subgroup of the R-symmetries associated with Γ =
1
2 [γa, γb] corresponding to transformations of the twisted fields and covariant derivatives

parametrized by the fixed indices a and b.

η → 2χab, (2.40)

ψa → ψb, (2.41)

ψb → −ψa, (2.42)

ψc → 1

2
ǫcabghχgh, (2.43)

χab → −1

2
η, (2.44)

χac → χbc, (2.45)

χbc → −χac, (2.46)

χgh → −ǫghabcψc, (2.47)

and

Da,b → Da,b, Da,b → Da,b, (2.48)

Dc → Dc, Dc → Dc, c 6= a, b. (2.49)

We denote this set of discrete R-symmetries as Rab transformations. Let us check if

Rab transformations are indeed a symmetry of the action. First consider the bosonic action

SB =

∫
Tr −

∑

m,n

FmnFmn +
1

2

(∑

m

[Dm,Dm]
)2
. (2.50)

– 8 –
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Splitting this into pieces to expose the terms with indices a and b

SB =

∫
Tr

(
− 2[Da,Db][Da,Db]− 2

∑

c 6=a,b

[Da,Dc][Da,Dc]− 2
∑

c 6=a,b

[Db,Dc][Db,Dc]

−
∑

{c,d}6=a,b

[Dc,Dd][Dc,Dd] +
1

2

(
[Da,Da] + [Db,Db] +

∑

c 6=a,b

[Dc,Dc]
)2)

. (2.51)

Applying the field transformations

S′′
B =

∫
Tr

(
− 2[Da,Db][Da,Db]− 2

∑

c 6=a,b

[Da,Dc][Da,Dc]− 2
∑

c 6=a,b

[Db,Dc][Db,Dc]

−
∑

{c,d}6=a,b

[Dc,Dd][Dc,Dd] +
1

2

(
− [Da,Da]− [Db,Db] +

∑

c 6=a,b

[Dc,Dc]
)2)

. (2.52)

Thus the change in the bosonic action under Rab transformations is

S′′
B − SB =

∫
Tr

(
− 2

∑

c 6=a,b

[Da,Dc][Da,Dc]− 2
∑

c 6=a,b

[Db,Dc][Db,Dc]

+2
∑

c 6=a,b

[Da,Dc][Da,Dc] + 2
∑

c 6=a,b

[Db,Dc][Db,Dc]

−2
∑

c 6=a,b

[Da,Da][Dc,Dc]− 2
∑

c 6=a,b

[Db,Db][Dc,Dc]
)
. (2.53)

Once again the relation

Tr ([Da,Db][Da,Db]) = Tr ([Da,Db][Da,Db])− Tr ([Da,Da][Db,Db]), (2.54)

allows us to show that in fact S′′
B − SB = 0 and thus the bosonic action is invariant under

this discrete field transformation.

Turning to the fermionic part of the action we have

SF =

∫
Tr

(
− η

∑

m

Dmψm −
∑

m,n

χmnD[mψn] −
1

4

∑

m,n,c,d,e

ǫmncdeχdeDcχmn

)
. (2.55)

Splitting this into pieces to expose the terms with indices a and b

SF =

∫
Tr

(
− ηDaψa − ηDbψb −

∑

m 6=a,b

ηDmψm − 2χabDaψb + 2χabDbψa

−2
∑

n 6=a,b

χanDaψn + 2
∑

n 6=a,b

χanDnψa − 2
∑

n 6=a,b

χbnDbψn + 2
∑

n 6=a,b

χbnDnψb

−
∑

{m,n}6=a,b

χmnDmψn +
∑

{m,n}6=a,b

χmnDnψm − ǫabcdeχabDcχde

−2ǫancbeχanDcχbe − ǫdeabnχdeDaχbn − ǫdebanχdeDbχan

)
. (2.56)
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Applying the field transformations given in eq. (2.40)–(2.49) the fermionic action be-

comes

S′′
F =

∫
Tr

(
− 2χabDaψb + 2χabDbψa − χabDmǫmabghχgh − ηDaψa − ηDbψb

−χbnDaǫnabghχgh + 2χbnDnψb + χanDbǫnabghχgh + 2χanDnψa

+
1

2
ǫmnabcψcDmǫnabrsχrs −

1

2
ǫmnabhψhDnǫmabuvχuv −

1

2
ǫabcdeηDcǫdeabhψh

+2ǫancbeχbnDcχae − ǫdeabnǫdeabcψcDaχan + ǫdebanǫdeabpψpDbχbn

)
. (2.57)

Simplifying and rearranging the terms

S′′
F =

∫
Tr

(
− ηDaψa − ηDbψb − 2ηDmψm − 2χabDaψb + 2χabDbψa

−2χanDaψn + 2χanDnψa − 2χbnDbψn + 2χbnDnψb

−χmnDmψn + χmnDnψm − ǫabcdeχabDcχde

−2ǫancbeχanDcχbe − ǫdeabnχdeDaχbn − ǫdebanχdeDbχan

)

= SF . (2.58)

Thus we have recovered the original fermionic part of the action.

After making the replacements eq. (2.40)–(2.49) in the Q supersymmetries for the

fields we have the supersymmetry transformations associated with the supercharge Qab:

QabAc =
1

2

∑

g,h

ǫabcghχgh, (2.59)

QabAc = δacψb − δbcψa, (2.60)

Qabψc =
∑

g,h

ǫabcgh[Dg,Dh], (2.61)

Qabχcd =
1

2
δacδbddab − δbc[Da,Dd] + δac[Db,Dd], (2.62)

Qabη = 2[Da,Db], (2.63)

Qabdab = 0. (2.64)

Here, dab = −[Da,Da]− [Db,Db] +
∑

m 6=a,b[Dm,Dm], and the equation Qabdab = 0 requires

the equations of motion, since this is an on-shell supersymmetry.

From the above supersymmetry transformations we see that the supercharge Qab is

also nilpotent: Q2
ab = 0 and the action invariant under Qab on-shell.

2.4 Combined expressions for supersymmetry transformations

The supersymmetry transformations can be combined to express them in a compact form

once we introduce the (Grassmann odd) supersymmetry parameters (δκ0, δκa, δκab) asso-

ciated with the supercharges (Q,Qa,Qab). Thus the supersymmetry transformations of
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the fields are

δκAm = δκ0ψm +
1

2
δκbδbmη +

1

2
δκabǫabmghχgh, (2.65)

δκAm = −δκbχbm + δκab(δamψb − δbmψa), (2.66)

δκψm = δκb

(1
2
δbmdb + (1− δbm)[Db,Dm]

)
+ δκabǫabmgh[Dg,Dh], (2.67)

δκχmn = −δκ0[Dm,Dn]−
1

2
δκbǫbmngh[Dg,Dh]

+δκab

(1
2
δamδbndab − δbm[Da,Dn] + δam[Db,Dn]

)
, (2.68)

δκη = δκ0d+ 2δκab[Da,Db], (2.69)

δκd = δκda = δκdab = 0 (2.70)

where the operator δκ is

δκ = δκ0Q+ δκaQa + δκabQab. (2.71)

The above set of transformations are clearly a symmetry of the action if the parameters

(δκ0, δκa, δκab) are strictly singlets under the gauge group.

3 R-symmetries and fine-tuning of the action

In ref. [34] it has been shown that the only relevant counterterms that can modify the action

through radiative corrections correspond to renormalizations of marginal operators already

present in the bare action. Thus the most general form for the renormalized action is

S =

∫
Tr Q

(
α1χmnFmn + α2η[Dm,Dm]− 1

2
α3ηd

)
− 1

4
α4ǫmncdeχdeDcχmn, (3.1)

where αi with i = 1, · · · , 4 are dimensionless numbers taking values (1, 1, 1, 1) in the

classical theory. Indeed one would think that at most three dimensionless ratios of these

couplings might need to be tuned in the quantum theory. In this section we show that

the discrete R-symmetries provide a powerful constraint on the relations between αi’s

since the operators appear through radiative corrections to the action must respect these

additional symmetries.

After integrating out the auxiliary field d, we have the form of the action with general

coefficients

S =

∫
Tr

(
− α1FmnFmn +

1

2

(α2
2

α3

)
[Dm,Dm]2 − α1χmnD[mψn] − α2ηDmψm

−1

4
α4ǫmnrpqχpqDrχmn

)
. (3.2)

We have shown that the action is invariant under the Ra transformations. The invari-

ance under any one of the Ra transformations in the bosonic sector yields the following

constraint

α1 =
α2
2

α3
. (3.3)

– 11 –



J
H
E
P
1
0
(
2
0
1
3
)
1
6
6

In the fermionic sector invariance under any one of the Ra transformation gives an-

other constraint

α1 = α2 = α4. (3.4)

Combining these two constraints we find

αi = α, i = 1, · · · 4, (3.5)

with α an arbitrary parameter, which can be absorbed by redefining the overall gauge

coupling of the theory.

A similar set of relations among αi and the same conclusion as in eq. (3.5) can be

obtained from examining the invariance of the action under any one of the Rab interchange

symmetries.

Thus we can write the quantum action of the theory as

S =

∫
Tr α

(
−FmnFmn +

1

2
[Dm,Dm]2 − χmnD[mψn] − ηDmψm

−1

4
ǫmnrpqχpqDrχmn

)
. (3.6)

These results imply that invariance under the single scalar supercharge Q together with

invariance under any one of the 15 Ra or Rab symmetries implies that the theory is invariant

under all additional twisted supersymmetries. We will use this fact to argue later that the

supersymmetries of the lattice theory will be enhanced at any point in the parameter space

where the R-symmetries of the theory are restored.

It is interesting to note that if SO(4) rotational symmetry (the Euclidean version of

Lorentz invariance) is restored in the continuum limit, then the supersymmetry must be

enhanced to at least N = 1. In that case it is quite possible that a discrete R-symmetry

will be present since N = 1 theories often have a U(1)R R-symmetry — and even if it is

anomalous a discrete subgroup survives. We would then expect to have one or more of the

15 Ra or Rab symmetries in effect. In that case the full N = 4 supersymmetry emerges

because of the above arguments.

4 Ward-Takahashi identities

In this section we illustrate the difficulty that occurs when we attempt to derive the WT

identities involving the supercurrent and any local (or non-local) operator by making a

change of variables in the functional integral which defines the expectation value of the

operator. We will find that the fact that we do not have a fully off-shell formulation

presents an obstruction.

Let us consider a composite operator O(y) constructed out of the component fields Φ

of the theory. The expectation value of this operator is given by

〈O(y)〉 = 1

Z

∫
[dΦ]e−S[Φ]O(y), (4.1)
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where Z denotes the partition function and [dΦ] the measure of the functional integral.

Now consider some infinitesimal transformation of the fields defined by

Φ(x) → Φ′(x) = Φ(x) + δκΦ(x), (4.2)

where δκΦ(x) = κ∆Φ(x), with κ a Grassmann parameter and ∆ the deformation on the

field.

The functional integral itself is independent of any relabeling of integration variables.

This gives,

0 = 〈O′(y)〉 − 〈O(y)〉
= δκ〈O(y)〉

=
1

Z

∫
[dΦ]

(
e−S[Φ](−δκS[Φ])O(y) + e−S[Φ]δκO(y)

)

= −〈(δκS)O(y)〉+ 〈δκO(y)〉. (4.3)

That is,

〈(δκS)O(y)〉 = 〈δκO(y)〉. (4.4)

For the symmetry transformation δκ = κAQA, with the index A labeling the 16 super-

charges, it takes the form

〈(QAS)O(y)〉 = 〈QAO(y)〉. (4.5)

So far, the identity presents no problem. However, in the continuum one would like to argue

that QAS = 0, and so one obtains the “global” WT identity, 〈QAO(y)〉 = 0. However,

QAS = 0 requires the use of the equations of motion. These are not valid for the fields

under the path integral, since we are not just summing over classical paths. So we have

no right to set QAS = 0, and so 〈QAO(y)〉 = 0 does not follow. An exception is the scalar

supercharge Q: we do have an off-shell formulation, involving d, for which QS = 0 without

using the equations of motion. Thus we find that we can prove the identity 〈QO(y)〉 = 0.

Another comment is in order here. While it is true that in the quantum theory we

cannot use the classical equations of motion, we can use their quantum analogue, the

Schwinger-Dyson equations. Then the equations of motion are satisfied up to contact

terms. However QAS involves an integral over all spacetime, and so this will always include

the point y, where the operator O(y) sits. Thus we will pick up a nonzero contribution

from the contact term when we evaluate 〈(QAS)O(y)〉. It can be shown that this contact

term is precisely the right-hand side, 〈QAO(y)〉. Thus we end up with a trivial identity

that contains no new information.

For the purpose of finding the critical values of the parameters for which fine-tuning

is successful, and the SUSY long distance theory emerges, it is more useful to study the

“local” WT identities — i.e., the ones that involve the supercurrent. The analogy that

one should make is in finding the critical bare mass (equivalently, the critical κ) when

using Wilson fermions in lattice QCD. There one studies the axial current WT identities,

such as 〈0|∂µJa
5µ(x)P

b(0)|0〉, where P b is the pseudoscalar density, and demands that they

– 13 –



J
H
E
P
1
0
(
2
0
1
3
)
1
6
6

vanish. To obtain these sorts of identities, we generalize the transformation of the fields

given above to be a spacetime dependent transformation:

Φ(x) → Φ′(x) = Φ(x) + δκ(x)Φ(x), (4.6)

where δκ(x)Φ(x) = κ(x)∆Φ(x), with κ(x) a spacetime dependent, arbitrary Grassman

function. In our twisted theory we have

δκ(x) = κA(x)QA, (4.7)

with A denoting the sixteen possibilities corresponding to Q,Qa,Qab.

If we make use of the equations of motion, the variation of the action can be brought

into the form

δκS =

∫
d4x ∂mκA(x)Sm

A (x), (4.8)

where the index m is summed over and Sm
A (x) is the supercurrent (Noether current) asso-

ciated with N = 4 SUSY. We know that this is true because if the κA are constant, the

action is invariant with the equations of motion. Note that the supercurrent is decomposed

into scalar, one-form and two-form parts

Sm
A = (Sm

0 ,Sm
a ,Sm

ab). (4.9)

We write the WT identity relations given in eq. (4.4) as

〈(δκS)O(y)〉 = 〈δκO(y)〉. (4.10)

Plugging in the variation of the action,

−
〈∫

d4zκA(z)
(
∂mSm

A (z)
)
O(y)

〉
=

〈
κA(y)QAO(y)

〉
,

− δ

δκA(x)

〈∫
d4zκA(z)

(
∂mSm

A (z)
)
O(y)

〉
=

δ

δκA(x)

〈
κA(y)QAO(y)

〉
,

−
〈∫

d4zδ(4)(x− z)∂mSm
A (z)O(y)

〉
=

〈
δ(4)(x− y)QAO(y)

〉
. (4.11)

Thus we would have the supersymmetric WT identities

〈∂mSm
A (x)O(y)〉 = −δ(4)(x− y)〈QAO(y)〉. (4.12)

Setting y = 0 they take the form

∂m〈Sm
A (x)O(0)〉 = −δ(4)(x)〈QAO(0)〉. (4.13)

However, note that we made use of the equations of motion in deriving (4.8). This was

necessary in order to eliminate terms which do not involve ∂mκA, but rather just κA without

derivatives, since the symmetry is only realized on-shell. Inside the path integral in which

we derived the WT identity, the fields do not generically lie on classical paths and so this

step was not valid. Thus the proof has a fatal flaw and it is not at all clear that the WT

identity will be satisfied. However, as above, Q is realized off-shell, so its corresponding

identity will in fact be satisfied. But this is of no use to us in fine-tuning because Q is

exact on the lattice anyhow.
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5 Twisted supersymmetries on the lattice

5.1 The lattice action

The twisted continuum theory can be discretized in a straightforward manner. The complex

continuum gauge fields Aa, a = 1, · · · , 5, are mapped to complexified Wilson gauge links

Ua living on links (n,n + µ̂a) of a four-dimensional abstract hypercubic lattice, with n

denoting the integer valued site on the lattice and µ̂a the basis vector along a direction.

Since our theory has five complexified gauge links we need a four-dimensional lattice with

five basis vectors. We can take all these basis vectors to be equivalent to ensure that the

lattice theory enjoys the maximal symmetry. This requirement imposes a condition on the

lattice theory that it must possess an S5 point group symmetry. It is indeed consistent

with the continuum symmetry of the theory as the S5 point group symmetry is a discrete

subgroup of the SO(4) twisted rotational symmetry. A lattice arrangement in which all

the five basis vectors are treated equally is called the A∗
4 lattice.

The five basis vectors of the A∗
4 lattice are

ê1 =

(
1√
2
,
1√
6
,

1√
12
,

1√
20

)
,

ê2 =

(
− 1√

2
,
1√
6
,

1√
12
,

1√
20

)
,

ê3 =

(
0,− 2√

6
,

1√
12
,

1√
20

)
, (5.1)

ê4 =

(
0, 0,− 3√

12
,

1√
20

)
,

ê5 =

(
0, 0, 0,− 4√

20

)
,

and they are aligned such that they connect the center of a 4-simplex to its five corners.

It should be noted that these basis vectors are related to the weights of the defining

representation of SU(5). The point group symmetry S5 of the lattice action is the Weyl

subgroup of SU(5).

We begin with placing the fields of the lattice theory on the links of an abstract

hypercubic lattice with integer site n and basis vectors µ̂a:

µ̂1 = (1, 0, 0, 0),

µ̂2 = (0, 1, 0, 0),

µ̂3 = (0, 0, 1, 0), (5.2)

µ̂4 = (0, 0, 0, 1),

µ̂5 = (−1,−1,−1,−1),

obeying the constraint
∑

m µ̂m = 0. These abstract vectors do not correspond to positions

in spacetime of sites and links of the A∗
4 lattice. They can be related to the physical location

in spacetime using the A∗
4 basis vectors êa. We relate the integer site n to the spacetime
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location R in the following way:

R = a
4∑

ν=1

(µν · n)êν = a
4∑

ν=1

nν êν , (5.3)

where a is the lattice spacing. We can also show that a small lattice displacement of the

form dn = µ̂m on the abstract lattice corresponds to a spacetime translation by (aêm) on

the A∗
4 lattice:

dR = a
4∑

ν=1

(µν · dn)êν = a
4∑

ν=1

(µ̂ν · µ̂m)êν = aêm. (5.4)

We place the twisted fields on the links of the hypercubic lattice the following way. The

field ψm(n) is the superpartner of Um(n) and thus it must also reside on the same link. The

field Um(n) resides on the oppositely oriented link from n → n − µ̂m. The ten fermions

χmn(n) are then chosen to reside on new fermionic links n+ µ̂m+ µ̂n → n while the singlet

fermionic field η(n) is assigned to the degenerate link consisting of a single site n. The

nilpotent scalar supersymmetry Q acts on the lattice fields in the following way

QUm(n) = ψm(n) (5.5)

Qψm(n) = 0 (5.6)

QUm(n) = 0 (5.7)

Qχmn(n) = −
(
D(+)

m Un(n)
)†

= −F†
mn(n) (5.8)

Qη(n) = d(n) (5.9)

Qd(n) = 0 (5.10)

We see that the Q supersymmetry transforms a bosonic field of one type to a fermionic

field of the same type at the same place on the lattice. The complexified field strength

takes the following form on the abstract lattice

Fmn(n) = D(+)
m Un(n) = Um(n)Un(n+ µ̂m)− Un(n)Um(n+ µ̂n). (5.11)

In the naive continuum limit it reduces to the continuum (complex) field strength and is

automatically antisymmetric in the indices.

The link mappings and orientations of the lattice fields are conveniently summarized

by giving their gauge transformation properties on the lattice

η(n) → G(n)η(n)G†(n) (5.12)

ψm(n) → G(n)ψm(n)G†(n+ µ̂m) (5.13)

χmn(n) → G(n+ µ̂m + µ̂n)χmn(n)G
†(n) (5.14)

Um(n) → G(n)Um(n)G†(n+ µ̂m) (5.15)

Um(n) → G(n+ µ̂m)Um(n)G†(n) (5.16)

where for instance G ∈ U(N). The action on the lattice takes the form

S = SQ−exact + SQ−closed , (5.17)
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where

SQ−exact =
∑

n

Tr
(
−F†

mn(n)Fmn(n) +
1

2

(
D(−)

m Um(n)
)2

− χmn(n)D(+)
[m ψn](n)− η(n)D(−)

m ψm(n)
)
, (5.18)

and

SQ−closed =
∑

n,m,n,c,d,e

−1

4
Tr ǫmncdeχde(n+ µ̂m + µ̂n + µ̂c)D

(−)
c χmn(n+ µ̂c). (5.19)

We see that the terms in the action form closed loops on the lattice ensuring gauge invari-

ance.

The covariant forward and backward difference operators appearing in the lattice action

are given by

D(+)
m f(n) = Um(n)f(n+ µ̂m)− f(n)Um(n), (5.20)

D(+)
m fn(n) = Um(n)fn(n+ µ̂m)− fn(n)Um(n+ µ̂n), (5.21)

D(−)
m fm(n) = fm(n)Um(n)− Um(n− µ̂m)fm(n− µ̂m), (5.22)

D(−)
c fmn(n) = fmn(n)U c(n− µ̂c)− Uc(n+ µ̂m + µ̂n − µ̂c)fmn(n− µ̂c). (5.23)

It can be shown that the Q-closed term satisfies an exact Bianchi identity on the lattice

just as for the continuum

ǫmncdeD(−)
c Fmn(n+ µ̂c) = 0. (5.24)

5.2 Qa and Qab supersymmetries on the lattice

If we try to implement eq. (2.65)–(2.70) on the lattice, according to the discretization pre-

scription given above we encounter an immediate problem - the lattice fields connected

by Qa and Qab are located on distinct links in the lattice and hence transform differently

under gauge transformation. Thus these supersymmetries do not commute with gauge

transformations. Indeed, the condition that the parameters (δκ0, δκa, δκab) should be sin-

glets under gauge transformations singles out Q as the only supercharge that be exactly

preserved on the lattice.

Below, we show the supersymmetry transformations associated withQa andQab super-

charges. To emphasize the differing link characters of the fields involved we have adopted

the expanded notation where a lattice field fa associated with link n → n+ µ̂a is denoted

fa(n,n+ µ̂a)

QaUb(n,n+ µ̂b) =
1

2
δabη(n,n), (5.25)

QaU b(n+ µ̂b,n) = −χab(n+ µ̂a + µ̂b,n), (5.26)

Qaψb(n,n+ µ̂b) =
1

2
δabda(n,n) + (1− δab)(D(+)

a Ub)(n,n+ µ̂a + µ̂b), (5.27)

Qaχbc(n+ µ̂b + µ̂c,n) = −1

2
ǫabcgh(D(+)

g Uh)(n,n+ µ̂g + µ̂h), (5.28)

Qaη(n,n) = 0, (5.29)

Qada(n,n) = 0. (5.30)
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QabUc(n,n+ µ̂c) =
1

2
ǫabcghχgh(n+ µ̂g + µ̂h,n), (5.31)

QabUc(n+ µ̂c,n) = δacψb(n,n+ µ̂b)− δbcψa(n,n+ µ̂a), (5.32)

Qabψc(n,n+ µ̂c) = ǫabcgh(D(+)
g Uh)(n+ µ̂g + µ̂h,n), (5.33)

Qabχcd(n+ µ̂c + µ̂d) =
1

2
δacδbddab(n,n)− δbc(D(+)

a Ud)(n,n)− δacD(+)
b Ud(n,n), (5.34)

Qabη(n,n) = 2(D(+)
a Ub)(n,n+ µ̂a + µ̂b), (5.35)

Qabdab(n,n) = 0. (5.36)

Of course the translation between continuum and lattice expressions is not unique; one

can always change the arguments of the lattice fields by terms of order the lattice spacing

and add terms which are subleading in the lattice spacing to the supersymmetry trans-

formations. However, this cannot change the essential result that any supersymmetry

transformation other than that associated with the scalar Q will necessarily relate lattice

objects of differing link character and hence these supersymmetries will not commute with

gauge transformations. This has an immediate consequence; the variation of any gauge

invariant closed loop under either Qa or Qab will lead to a gauge variant quantity whose

expectation value will vanish by Elitzur’s theorem [35]. Thus Ward identities constructed

this way will be satisfied trivially because of gauge invariance. Indeed, the only way to

construct non-vanishing supersymmetry variations is to start from a non-gauge invariant

operator corresponding to an open loop which closes under supersymmetry variation. We

have been able to construct only a extremely small number of such operators and they are

all of short length. This hints perhaps that the supersymmetric Ward identities associated

with the non-scalar twisted supersymmetries supply very few additional constraints on the

structure of the quantum theory over and above gauge invariance.

6 Discrete R-symmetries and the lattice theory

In spite of the fact that the lattice action has the same form as the continuum theory, with

a straightforward transcription of fields and covariant derivatives, we will show below that

it does not enjoy the discrete R-symmetries Ra and Rab that were enumerated above. Thus

we cannot draw the same implication as in the continuum, that under renormalization (e.g.,

in the determination of the low energy effective action under Wilsonian renormalization

group flow), the coefficients αi that were discussed above will all be equal. However, if any

of the 15 discrete R-symmetries emerge in the long distance theory, this equality is sufficient

to yield the full N = 4 supersymmetry at low energies. Thus apart from a renormalization

of the overall coefficient, which is just the inverse gauge coupling squared, no fine-tuning

of the lattice action would in this case be required.

There is some reason to hope that the discrete R-symmetries do in fact emerge at

low energies. The reason is that the twisting process has combined the SO(4) spacetime

symmetry with an SO(4) subgroup of the R-symmetry group. If the SO(4) rotational sym-

metry of the continuum emerges at low energies, then we also expect to obtain the SO(4)

subgroup of R-symmetry, since they are basically on the same footing as far as twisting is
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concerned. In that case some of the discrete R-symmetries would also be emergent, which

is sufficient to guarantee the equality of coefficients.

To see why the discrete R-symmetries are not invariances of the lattice theory, note

that they relate site fields to link fields and vice versa. This breaks the gauge invariance

of the lattice theory: closed loops will transform to expressions that are no longer closed

loops. As an example consider the following choice for Ra:

η(n,n) → 2ψa(n,n+ µ̂a), (6.1)

ψa(n,n+ µ̂a) → 1

2
η(n,n), (6.2)

ψb(n,n+ µ̂b) → −χab(n+ µ̂a + µ̂b,n), (6.3)

χab(n+ µ̂a + µ̂b,n) → −ψb(n,n+ µ̂b), (6.4)

χbc(n+ µ̂b + µ̂c,n) → 1

2
ǫbcaghχgh(n+ µ̂g + µ̂h,n), (6.5)

and

Ua(n,n+ µ̂a) → Ua(n,n+ µ̂a), U†
a(n+ µ̂a,n) → U†

a(n+ µ̂a,n), (6.6)

Ub(n,n+ µ̂b) → U†
b (n+ µ̂b,n), U†

b (n+ µ̂b,n) → Ub(n,n+ µ̂b), b 6= a. (6.7)

Then one of the terms in our lattice action is

S4 = −α2

∑

n,m

Tr η(n,n)
(
ψm(n,n+ µ̂m)U†

m(n+ µ̂m,n)

−U†
m(n,n− µ̂m)ψm(n− µ̂m,n)

)
. (6.8)

After exposing the index a

S4 = −α2

∑

n

Tr η(n,n)
(
ψa(n,n+ µ̂a)U†

a(n+ µ̂a,n)

−U†
a(n,n− µ̂a)ψa(n− µ̂a,n)

)

−α2

∑

n,b

Tr η(n,n)
(
ψb(n,n+ µ̂b)U†

b (n+ µ̂b,n)

−U†
b (n,n− µ̂b)ψb(n− µ̂b,n)

)
. (6.9)

Applying the field interchanges

S4 → S′
4 = −α2

∑

n

Tr 2ψa(n,n+ µ̂a)
(1
2
η(n,n)U†

a(n+ µ̂a,n)

−U†
a(n,n− µ̂a)

1

2
η(n− µ̂a,n− µ̂a)

)

−α2

∑

n,b

Tr 2ψa(n,n+ µ̂a)
(
− χab(n+ µ̂a + µ̂b,n)Ub(n,n+ µ̂b)

+Ub(n− µ̂b,n)χab(n+ µ̂a,n− µ̂b)
)
, (6.10)
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we see that none of the terms closed loops on the lattice, thus breaking gauge invariance.

One can make alternate choices for Ra that will render one of the terms a closed loop, but

then none of the other terms will be closed loops. By these sorts of arguments it is easy to

convince oneself that no definition of Ra or Rab will be symmetries of the lattice theory.

7 Conclusions

In this article we have derived the full set of supersymmetry transformations relevant to the

Marcus twist of N = 4 super Yang-Mills. The recent supersymmetric lattice construction

of N = 4 super Yang-Mills is based on a discretization of this twisted theory in which just

the scalar supersymmetry is preserved in the lattice theory while the other fifteen super-

symmetries are broken by lattice effects at a generic point in parameter space. We have

shown how to derive the explicit form of these additional supersymmetries by combining

the scalar supersymmetry with a series of discrete R-symmetries.

In a previous paper [34] we have given general arguments, based on exact lattice sym-

metries, that the restoration of these additional supersymmetries may potentially require

the tuning of three independent marginal couplings in the classical lattice action. However,

in this paper we find yet another remarkable property of the Q-exact twisted formulation:

if any one of the 15 discrete R-symmetries are emergent in the infrared theory, the full

supersymmetry of the target N = 4 theory is recovered without any additional fine tuning.

Since Lorentz invariance implies at least N = 1 supersymmetry, it is quite reasonable that

a U(1)R symmetry or a discrete subgroup would emerge in the Lorentz invariant continuum

limit. In that case we would expect one or more of the 15 discrete R-symmetries to be

present. Furthermore, we have argued that if the SO(4) Euclidean (twisted) rotational in-

variance is emergent in the low energy theory, as is necessary to obtain a Lorentz invariant

continuum limit, then the discrete R-symmetries will most likely be in force. This is because

the twisting process treats the SO(4) spacetime symmetry and the SO(4) R-symmetry in

an even-handed way, so we expect that restoration of one will imply restoration of the

other. However, this is not a rigorous statement. However, if it is true, the crucial ques-

tion of supersymmetry restoration is determined by whether or not Lorentz invariance is

automatic in the continuum limit. Even if it is not true, checking for the restoration of the

discrete R-symmetries is quite a bit easier than attempting to check SUSY WIs, because

of the issue of operator mixing in the latter case.

Clearly the question of the restoration of the SO(4) spacetime symmetry has straight-

forward tests in term of measurements of correlation functions. The S5 symmetry group of

the A∗
4 lattice goes a long way toward ensuring the desired limit. For instance, the bosonic

term that appear in eq. (3.2) will give a Lorentz invariant continuum limit in that sector.

Unfortunately, the fermionic terms that appear in eq. (3.2) require α1 = α2 = α4 in order

for Lorentz invariance to emerge. Thus, a more detailed study of the quantum continuum

limit in this theory needs to be performed both perturbatively and nonperturbatively, in

order to understand the fate of Lorentz invariance and the discrete R-symmetries. The

fermions that we are using are equivalent to staggered fermions, and so restoration of

Lorentz invariance would proceed as it does in lattice QCD if we had the full hypercubic
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symmetry group. However, S5 is less restrictive, as is seen from the independent coefficients

on the fermionic terms in eq. (3.2).

Thus we see that it is not really a matter of there being new operators that break the

discrete R-symmetry or Lorentz symmetry, since the operators in eq. (3.2) are the same as in

the bare action. As we have just stated, in order to have Lorentz symmetry, the coefficients

of all the fermion terms have to be the same, α1 = α2 = α4 and to have in addition the

discrete R-symmetries, one also requires α3 to match these coefficients. We are not aware

of any mechanism that would enforce equality of these coefficients under renormalization

group flow, so generically we expect logarithmic violations of both symmetries. However,

whether or not this generic situation (which is the worst case scenario) actually occurs can

only be determined by perturbative and/or nonperturbative calculations that need to be

performed. In the case of perturbative calculations we have already checked at one-loop in

ref. [34] and found equality of the coefficients. To compute the same effects at two loops

in lattice perturbation theory is notoriously difficult, because of the integrals which must

be evaluated numerically. We think that it will be quite a bit easier to check the discrete

R-symmetries by computing correlation functions with Monte Carlo simulations, which is

what we are currently planning to do as the next step, based on the results of this paper.

Even if a positive answer to this question is obtained, which would indeed be remark-

able, there would still be important items to be done. One thing is that irrelevant operators

may break the supersymmetry by O(a) effects, where a is the lattice spacing. Thus it is still

necessary to take the continuum limit. In a theory that is supposed to be conformal at all

scales, taking the continuum limit is quite a bit different from in a QCD-like theory where

one has asymptotic freedom and dimensional transmutation. That is, vanishing bare cou-

pling does not correspond to the continuum limit in the lattice theory that we are studying.

Rather, what one must do is study physics at scales x much larger than the lattice spacing,

which amounts to long distance correlation functions. It still needs to be studied how large

x must be relative to a in order to obtain the continuum physics. How would we know if

we are obtaining the continuum physics, considering that the results are nonperturbative?

It is here that it is crucial that we know that the restoration of SO(4) Lorentz invariance

and SU(4)R symmetry, together with the exact Q supersymmetry, is sufficient. These are

properties that can be checked through the measurement of correlation functions, which

should be related to each other through the symmetries.
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