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1 Introduction

Computing n-point functions of local composite gauge-invariant operators in N = 4 su-

persymmetric Yang-Mills theory, SYM4, is an important problem because these n-point

functions are among the basic objects on which the AdS/CFT correspondence can be

tested.1 It is also a hard problem, even at tree-level, if only because of the combinato-

rial complexity of the operators involved. However, developments over the past few years,

starting with [3] and subsequent works, raise the hope that the methods of classical and

quantum integrability can be used to solve this problem, at least in the planar limit. For

a comprehensive review of integrability in SYM4 and AdS/CFT, see [4] and references

therein. For shorter review, see [5].

In this work, we focus on operators {O} that are composed of fundamental fields in

the scalar sector of SYM4. Representing these fundamental fields as matrices in the adjoint

representation of su(Nc), {O} are traces of products of Nc×Nc matrices. Further, in the

planar limit that we are interested in, Nc → ∞, multi-trace operators are suppressed by

factors of 1/Nc, and one can take {O} to be single-trace operators.

The weak-coupling limit. In weakly-coupled, perturbative Yang-Mills theory, the com-

putation of the n-point functions is a well-defined problem. Following Okuyama and

Tseng [6], it is sufficient at tree-level to count all possible planar sets of Wick contractions

between the operators involved. Apart from normalization factors, the essential object in

a 3-point function is the structure constant which, up to a normalisation is a tri-linear

form in the Hilbert space of states, which we call the cubic vertex, in analogy with string

field theory. In [7], Roiban and Volovich showed that these n-point functions reduce to

scalar products of spin-chain states constructed using the algebraic Bethe Ansatz [8]. A

systematic study in the case of three operators that belong to (different) su(2) sectors was

presented by Escobedo, Gromov, Sever and Vieira [9]. The tree-level correlation function

of three su(2) operators was expressed in [9] in terms of scalar products of off-shell Bethe

states2 of XXX spin-1
2 chains. This method is known as “tailoring”. Furthermore, it was

shown in [10] that the 3-point function can be recast in terms of scalar products of an

off-shell state and an on-shell state and thereby can be evaluated in determinant form. We

refer to this method as “freezing”.

The semi-classical limit

We are interested in computing the correlation functions of long operators that are dual

to semi-classical string states in AdS5 × S5. The semi-classical (heavy) operators {Osc}
are associated with classical solutions of the string σ-model [11–13]. For a review see [14].

In spin-chain terms, the operators {Oi} are eigenstates of the spin-chain Hamiltonian. In

other words, they are functions of rapidity variables that satisfy Bethe equations. For

such operators, the Bethe roots condense into several cuts (macroscopic Bethe strings) in

the complex rapidity plane [11]. The n-point functions of semiclassical operators {Osc}
1One of the early tests of the conjecture was to check that the tree-level n-point functions of the BPS

operators coincide with those in supergravity [1, 2].
2If the magnon rapidities satisfy the Bethe equations, the Bethe state is called on-shell, otherwise the

Bethe state is called off-shell.
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are particularly interesting, as they can be compared with the corresponding correlation

functions computed on the string theory side. Computing n-point functions of {Osc} in the

string theory was addressed in [15–22]. However, the only case when the complete answer

is known is that of two heavy and one light operators [16, 23, 24]. The same configuration

(heavy-heavy-light) was considered on the gauge theory side by Escobedo et al. [25, 26],

and in the sl(2) sector by Georgiou [27]. They used a coherent state approximation for the

two heavy operators in the su(3) sector. Comparison with the Frolov-Tseytlin limit [28] of

the string theory result [16, 23, 24] showed a perfect match.

The general case, when all three asymptotically-long operators are non-BPS, the com-

plete answer for the three-point function is known only for weak coupling, and for special

choice of the operators. In [29], Gromov, Sever and Vieira presented a thorough analysis

of the case of one BPS and two non-BPS heavy fields from the su(2) sector. In spin-chain

terms, BPS operators are characterized by trivial Bethe roots that are set to infinity. The

main result of [29] is an analytic contour integral derived from Korepin’s sum expression

for the scalar product of two off-shell states [30]. In [31, 32], the determinant expression

obtained in [10] was used to solve the problem in the general case of three heavy non-BPS

operators. In [33–35], it was argued that this solution gives the 3-point function at one

and two loops. At one loop this conjecture was verified in [33, 35].

Outline of contents. In section 2, we classify the 3-point functions such that at least

one operator is from the su(3) sector. In 3, we recall the formulation of the su(2) 3-

point function, including the cubic vertex, in determinant form. In 4, we generalize the

freezing method of ref. [10] to the case where two of the operators belong to su(3) sectors

while the third belongs to an su(2) sector. Then we take one set of Bethe roots of one

of the su(3) operators to be trivial (sent to infinity) and use the result of [36] to write

the 3-point function in a determinant form.3 In 5, we recall the how the su(2) 3-point

function was written in [31, 32, 37] in terms of certain functionals in order to be able to

compute its semi-classical limit. In 6, we write the su(3) 3-point function in terms of the

quantities defined in the previous section. In 7, we compute the semi-classical limit of the

su(3) 3-point function of three non-BPS operators, under an assumption that allows us to

compute the semi-classical limit of the norm of an su(3) Bethe eigenstate. Appendix A

contains a brief introduction to the nested coordinate Bethe Ansatz which is needed for

the ‘tailoring’ approach to the su(3) 3-point function. Appendix B includes details of the

‘tailoring’ approach to the su(3) 3-point functions. Appendix C discusses the properties of

the functional forms that are needed to obtain the semi-classical limits.

2 3-point functions with at least one su(3) operator

2.1 The structure constant in N = 4 SYM

The 2-point and the 3-point functions are determined, up to multiplicative factors, by

conformal invariance,

〈Oi(xi)Oj(xj)〉 =
Li Ni δij
|x1 − x2|2∆i

, (2.1)

3A particular limit of the result of [36] was previously obtained by Caetano and Vieira, see also

refs. [43, 44].
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Figure 1. Planar contractions contributing to the tree-level 3-point function. The contrac-

tions 〈XX̄〉, 〈Y Ȳ 〉 and 〈ZZ̄〉 are represented respectively by black solid lines, blue solid lines and

dashed lines.

〈O1(x1)O2(x2)O3(x3)〉 =
1

Nc

L1L2L3

√
N1N2N3 C123(λ)

|x12|∆1+∆2−∆3 |x23|∆2+∆3−∆1 |x31|∆3+∆1−∆2
, (2.2)

where Nc is the number of colors, λ is the ’t Hooft coupling and the three factors Ni depend

on the normalization of the operators {Oi(xi)}. The structure constant C123(λ) does not

depend on the normalization.

The factors Li, equal to the number of fundamental operators in Oi, account for

the cyclic rotations of the trace operator Oi. The structure constant C123(λ) has the

perturbative expansion

C123(λ) = C
(0)
123 + λ C

(1)
123 + . . . . (2.3)

To compute the tree-level structure constant C
(0)
123 using the method of [9], one needs

the 1-loop wave functions. At 1-loop level, the operator Oi is represented by a Bethe

eigenstate with energy ∆i.

In a su(2) sector, there is only one non-trivial configuration of 3-point functions. In

the presence of one or more operators from an su(3) sector, the structure of the 3-point

functions becomes richer and we need to classify the set of possible non-trivial configura-

tions of structure constants. An example of a set of planar contractions is given in figure 1.

The contractions
〈
XX̄

〉
,
〈
Y Ȳ

〉
and

〈
ZZ̄

〉
are represented respectively by solid lines,

(red) wavy lines and dashed lines.

Let us introduce some conventions. There are several possible choices of an su(3)

sector, which correspond to a choice of three distinct complex scalar fields X, Y , Z, X̄,

Ȳ , Z̄, with pairs of mutually conjugated fields, like Z and Z̄, excluded. When only two

types of non-conjugate scalar fields are chosen, the composite operator belongs to an su(2)

sector. If O1, O2 and O3 belong to su(α), su(β) and su(γ) sectors respectively, then the

corresponding 3-point function of type {α, β, γ}. By permutation invariance, the order of

α, β, γ is irrelevant.

– 4 –
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Figure 2. Schematic representation of the

type-{2, 3, 3} correlation function from figure 1.

Figure 3. The two type-{3, 3, 3} structure con-

stants.

Figure 4. The remaining two type-{2, 3, 3}
structure constants.

Figure 5. The type-{2, 2, 3} structure con-

stant.

We represent the different classes of correlation functions schematically by specifying

the different types of Wick contractions between pairs of operators. For example, the

correlation functions corresponding to figure 1 belong to the class {2, 3, 3} in figure 2. We

call the operator at the bottom O1, the one at right O3 and the one at left O2. Exchanging

a scalar field and its complex conjugate in all the operators does not change the value of

the structure constant. This enables us to choose O1 such that it contains only the scalar

fields X,Y and Z. Since we are interested in the large Nc limit, only planar contractions

are retained.

We start by classifying the type-{3, 3, 3} structure constants. In this case, there are

two non-trivial inequivalent configurations, as is shown in figure 3. Deleting one line, that

is, one type of Wick contractions, from each of these two configurations, one obtains type-

{2, 3, 3} structure constants. There are three such configurations, as shown in figure 2

and figure 4.

Deleting one line from the configurations in figure 4, one obtains a type-{2, 2, 3} or

a type-{2, 2, 2} 3-point functions. The latter is a pure su(2) 3-point function of the type

studied in [9, 10, 31, 32]. There is one configuration of type-{2, 2, 3}, as in figure 5. To sum-

marize, there are six non-trivial types of 3-point functions with at least one su(3) operator.

2.2 Tailoring the tree-level structure constants

Following [9], we construct the structure constant in three steps. 1. We split the algebraic

Bethe Ansatz representation of each spin chain into two: a left sub-chain and a right sub-

chain. 2. Considering each spin chain to be an in-state, we “flip” each left sub-chain from

an in-state to an out-state. 3. We take the scalar products of the left sub-chain state of

Oi with the right sub-chain state of Oi+1 mod 3 (i = 1, 2, 3). Finally, we normalize the three

– 5 –
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Operators Length Rapidities No. of Rapidities Partitions of Rapidities

O1 L1 u1,u2 # u1=N1, # u2=M1 u′1 ∪ u′′1 = u1, u′2 ∪ u′′2 = u2

O2 L2 v1,v2 # v1=N2, # v2=M2 v′1 ∪ v′′1 = v1, v′2 ∪ v′′2 = v2

O3 L3 w1,w2 # w1=N3, # w2=M3 w′1 ∪w′′1 = w1, w′2 ∪w′′2 = w2

Table 1. The composite operators that appear in the 3-point function, their lengths, rapidities,

numbers and partitions of their rapidities.

external states. Further details on the tailoring procedure are in appendix B. We give our

setup data in table 1.

The lengths of the left subchains are

L13 =
1

2
(L1 + L3 − L2) , (2.4)

L12 =
1

2
(L1 + L2 − L3) ,

L23 =
1

2
(L2 + L3 − L1) .

The structure constant reads

C
(0)
123 =

√
L1L2L3

N1N2N3

∑
u′,v′,w′

Hu
F Hv

F Hw
F 〈u′′∗|v′〉 〈v′′∗|w′〉 〈w′′∗|u′〉 , (2.5)

where Ni are the norms of the Bethe states:4

N1 = 〈u|u〉 , N2 = 〈v|v〉 , N3 = 〈w|w〉 . (2.6)

The HF factors are given by

Hu
F = S1

(
u′′1,u0

)
S1

(
u′′2,u1

)
S>2
(
u1,u

′′
1

)
S>2
(
u2,u

′′
2

)
(2.7)

Hv
F = S1

(
v′′1 ,v0

)
S1

(
v′′2 ,v1

)
S>2
(
v1,v

′′
1

)
S>2
(
v2,v

′′
2

)
Hw
F = S1

(
w′′1 ,w0

)
S1

(
w′′2 ,w1

)
S>2
(
w1,w

′′
1

)
S>2
(
w2,w

′′
2

)
,

with u0 = {0L1+1}, v0 = {0L2+1} and w0 = {0L3+1}. In the previous formula we used the

following notations: we denote the scattering factors as

Sσ (ua,i, ub,j) =
ua,i − ub,j + i

2σ

ua,i − ub,j − i
2σ

, σ = 1, 2 , (2.8)

and, given a function F (x, y) and two sets of variables u, v, we define

F (u,v) ≡
∏

ui∈u, vj∈v
F (ui, vj) , F> (u,v) ≡

∏
i>j

ui∈u, vj∈v

F (ui, vj) . (2.9)

4In this section all scalar products and norms are understood in the Coordinate Bethe Ansatz

normalization.

– 6 –
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Proportionality factor between ABA and CBA Bethe state: |u〉alg = cu|u〉cor is given by

cu = iN+M
∏
a=1,2

∏
j<k

ua,j − ua,k + i

ua,j − ua,k
. (2.10)

While the formula (2.5) can be explicitly used for a small numbers of magnons, it is not

adapted for taking the classical limit where the number of magnons is large. The main

obstruction for taking the classical limit of (2.5) is that the scalar products involved are

between off-shell states, and there is no closed form expression such as a determinant for

this scalar product. In the following sections, we restrict our attention to a particular

situation where the 3-point function can be written in terms of a scalar products of an

off-shell state and an on-shell state.

3 The su(2) cubic vertex in terms of scalar products

In preparation for the computation of the type-{2, 3, 3} su(3) 3-point function that we

are interested in, we review an analogous computation of a type-{2, 2, 2} su(2) 3-point

function in [10]. Consider the 3-point function of the operators Oi, of lengths Li, and

rapidities ui with cardinalities Ni, i ∈ {1, 2, 3}. In the following we set u1 = u, u2 = v,

and u3 = w. In our conventions, O1 consists of the fundamental fields {Z,X}, O2 of

{Z̄, X̄}, and O3 of {Z, X̄}.
It is advantageous to generalize the problem slightly by introducing inhomogeneities

associated with the sites of the three spin chains. Thus the i-th chain is characterized

by inhomogeneities θ(i) =
{
θ

(i)
1 , . . . , θ

(i)
Li

}
, i = 1, 2, 3. The three sets of inhomogeneities

are not independent, because the inhomogeneities associated with two sub-chains whose

fundamental fields are contracted should match. The independent inhomogeneities associ-

ated with the contractions between the i-th left sub-chain and the j-th right sub-chain are

denoted by θ(ij). The cardinality of the set θ(ij) is Lij . In this notation

θ(1) = θ(12) ∪ θ(13), θ(2) = θ(12) ∪ θ(23), θ(3) = θ(13) ∪ θ(23). (3.1)

The planarity of the 〈ZZ̄〉 contractions between the operators O2 and O3 and the

〈XX̄〉 contractions between the operators O1 and O3 selects the component of O3 with

N3 = L13 successive X̄’s and L3 − N3 successive Z’s, as in figure 1. Consequently, the

correlation function is given by the product of two factors:

• The probability to find the component Tr
[
ZL23X̄L13

]
in the state |w〉.

• The contribution of the remaining contractions can be recast as the scalar product of

an on-shell state of rapidities u and an off-shell state of rapidities v, in a spin chain

of length L1.

We present below the derivation of the two factors using the language of the six-

vertex model.

– 7 –
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Figure 6. Graphical representation of the six non-zero elements of the L -matrix (3.3). The

rapidity u is associated with the horizontal line, while the rapidity z = θ + i/2 is associated with

the vertical line.

3.1 The su(2) Bethe states as six-vertex-model partition functions

The three type of vertex configurations, a, b, c represented in figure 6 have weights

a(u− z) =
u− z + i

u− z
, b(u− z) = 1 , c(u− z) =

i

u− z
. (3.2)

The rapidities u and z = θ + i/2 are associated respectively with the horizontal and with

the vertical lines. These weights are given by the three types of non-zero elements of the

L-matrix, which in our case coincides with the R-matrix,

L(u− z) = I +
i

u− z
P , z = θ + i/2. (3.3)

Here I is the identity matrix and P is the permutation matrix.

Consider the expansion of a Bethe vector |u〉 in the local basis |s1, . . . , sL〉, where

sk ∈ {1, 2},

|u〉 =
∑

s1,...,sL=1,2

ψs1,...,sL(u)|s1, . . . , sL〉 . (3.4)

Each of the components ψs1,...,sL(u) is a sum over all the possible vertex configurations

with on a L×N rectangle, with all indices fixed to 1 on the left and the upper boundaries,

2 on the right boundary, and free indices equal to s1, . . . , sL on the lower boundary, as

shown in figure 7. Similarly the dual Bethe state is represented by the partition function

of the six-vertex model on a rectangle, with boundary conditions 1 on the right and the

lower boundary, and 2 on the left boundary.

3.2 The su(2) scalar/ inner product in terms of the 6-vertex model

With the normalisation of the basis

〈 s1, . . . , sL|r1, . . . , rL 〉 = δs1,r1 . . . δsL,rL , (3.5)

the scalar product of two (in general off-shell) Bethe states

〈v|u〉 =
∑

s1,...,sL=1,2

ψs1...sL(u) ψs1...sL(v)∗ (3.6)

– 8 –
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Figure 7. A six-vertex configurations for the

coefficient ψ
121221211111

(u) of the Bethe state |u〉,
eq. (3.4).

Figure 8. A six-vertex configurations for the

inner product 〈v,u 〉.

is obtained simply by gluing two such partition functions, as shown in figure 8, and summing

over the free indices. In addition to the sesquilinear form (3.6), which is ‘the scalar product’

, we define a bilinear form, which we call ‘the inner product’

〈v,u〉 = 〈v,u〉 =
∑

s1,...,sL=1,2

ψs1...sL(u) ψsL...s1(v). (3.7)

The vertex representation of the inner product (3.7) is obtained by gluing two lattices as

the one shown in figure 7 and summing over the free spin indices. The result is the six-

vertex partition function on a lattice with indices 1L on the upper and lower boundaries,

and 1N2N on the left and right boundaries in figure 8. The symmetry 〈v,u〉 = 〈v,u〉 of

the inner product follows from the symmetry of the weights a, b, c of the vertices in figure 6

with respect to a rotation by 180 degrees.

It follows from the hermitian conjugation properties of the creation (B) and the anni-

hilation (C) operators (see the historical note [38]) that for N -magnon states

〈v|u〉 = (−1)N 〈v∗,u 〉 , (3.8)

where the set of rapidities v∗ is obtained from v by complex conjugation. Since the Hamil-

tonian of the XXX chain is hermitian, the sets of rapidities of the Bethe eigenstates are

symmetric under complex conjugation. Therefore the normalisation factor N1 = | 〈u,u 〉 |
in (2.1) is equal to the (squared) norm 〈u|u 〉 of the Bethe eigenstate.

The structure constant C
(0)
123 is equal, up to the normalization factor, to the cubic

vertex made of the wave functions of the Bethe states in the representation (3.4),

C
(0)
123 =

〈u,v,w 〉√
〈u,u 〉 〈v,v 〉 〈w,w 〉

, (3.9)

where the form of the cubic vertex depends on the choice of the three su(2) sectors. In our

particular case

〈u,v,w 〉 ≡
∑

ψ
1...1︸︷︷︸
L23

sL12
...s1(v) ψs1...sL12 2...2︸︷︷︸

L13

(u) ψ 2...2︸︷︷︸
L13

1...1︸︷︷︸
L23

(w) , (3.10)

where the summation indices s1, . . . sL12 take values 1 and 2.

– 9 –
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Figure 9. The su(2) cubic vertex in terms of six-vertex configurations. The shaded area factorizes

out and can be cut out. Furthermore, the right piece is connected to the rest only with type-2

contractions and factorizes out. The lattice splits into two pieces which do not talk to each other

and can be evaluated separately.

The cubic vertex 〈u,v,w 〉 can be evaluated using the fact that it gives the partition

function of the six-vertex model on a lattice obtained by gluing three rectangular lattices

with dimensions L1 × N1, L2 × N2 and L3 × N3 as shown in figure 9. The indices 1 and

2 are identified with Z and X or their complex conjugates, depending on the operator

under consideration. First we notice that in the part of the lattice that has vertical lines

labeled by θ(23), represented by the shaded area in figure 9, there is only one six-vertex

configuration, and therefore its contribution to the cubic vertex factorizes out. The factor

is a pure phase if the sets v and θ(23) are symmetric under complex conjugation. We will

assume that this is the case and will ignore this phase factor. Therefore we can delete this

part of the lattice.

Next, we observe that the sub-lattice associated with the operatorO3 factorizes because

all lines that connect it with the rest of the lattice are of type 2. (This factorisation is

obvious in the expression (3.10) for the cubic vertex.) These operations are schematically

represented in figure 10.

The problem boils down to the calculation of two independent six-vertex partition

functions, which give the two non-trivial factors in the structure constant. These two factors

will be computed using the freezing procedure. The freezing procedure for the first factor

works as follows. One starts from a rectangular lattice corresponding to the scalar product
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Figure 10. Schematic representation of the lattice obtained by gluing the rectangular lattices

corresponding to the states 〈u|, |v〉 and |w〉, with subsequent removal of the redundant piece and

separating the two non-interacting sub-lattices. After the removal of the redundant piece, the

states |v〉 and |w〉 are no more Bethe eigenstates, because the chain are shortened (L1 → L12 and

L3 → L23).

Figure 11. The freezing procedure for the two factors in C0
123.

〈 ṽ|u 〉. Both sets of rapidities have cardinality N1. The first N2 rapidities ṽ coincide with

the rapidities v characterizing the operator O3, the rest N3 = N1 −N2 = L1 − L12 of the

rapidities ṽ will be denoted by ṽN2+1 = z̃L12+1, . . . , ṽN1 = z̃L1 , or symbolically, ṽ = v ∪ z̃.

3.3 The su(2) freezing procedure

If we adjust the rapidity of the last magnon to the value of the last inhomogeneity, z̃L1 =

θL1 − i/2, then the vertex at the low right corner is necessarily of type c. Then the only

possibility for the rest of the vertices on the last row and the last column is that they are

type b. This is what we call “freezing”. Hence last row and the last column form a hooked

index line carrying the index 2, as shown in figure 11, left. This procedure is repeated

N3 times, the rapidities of the lowest N3 rows fixed to z̃ = θ(13) − i/2. The result is that

the rightmost N3 indices below the lowest horizontal u-line are fixed to the value 2. After
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removing the frozen part of the lattice, shaded in blue in the figure, we obtain that the

first factor in the cubic vertex equals the scalar product 〈v ∪ z̃,u 〉. The contribution of

the frozen part of the lattice is the product of all c-vertices on the diagonal, which equals

(−1)L13 , a factor we will ignore.

In a similar way we compute the second factor . The freezing procedure is shown in

figure 11, right. We start with a scalar product 〈w, z̃ 〉 for a chain of length L3 = N3 +L23.

We freeze the rapidities of the bra state to z̃ = θ(13)−i/2. The frozen area (shaded in blue)

gives a contribution, which is a pure phase if both sets w and θ(23) are symmetric under

complex conjugation. We will assume that this is the case and will ignore this factor. The

rest of the lattice gives the second factor in the expression for the cubic vertex. We find

〈u,v,w 〉 = 〈v ∪ z̃,u〉θ(1) 〈w, z̃〉θ(3) (3.11)

up to a factor which takes into account the contribution of the deleted and added pieces

of the lattice. This factor is a pure phase, since the set w is symmetric under complex

conjugation, and can be ignored.

4 The su(3) cubic vertex in terms of scalar products

As before, we consider that the three operators, O1, O2, O3, are described by three sets

of rapidities u = {u1,u2}, v = {v1,v2} and w = {w1,w2} with cardinalities respectively

N1 + M1, N2 + M2 and N3 + M3. In the configuration we are considering, w2 = ∅, since

O3 is an su(2) operator. We refer to section 6 for the equations obeyed by these rapidities.

Again, we have two types of contributions to the correlation function:

• the contribution of the 〈ZZ̄〉 contractions between the operators O2 and O3, through

the factor 〈z̃1,w1〉, with z̃1 = θ(13) − i/2 and #z̃1 = N3,

• the remaining contractions, which can be recast as the inner product 〈v∪z̃,u〉 between

an on-shell vector of a spin chain with length L1 and rapidities u = {u1,u2} and an

off-shell state with the same length and rapidities (v = {v1,v2}) ∪ (z̃ = {z̃1, z̃2}),
with z̃1 = θ(13) − i/2 and z̃2 = θ(13) − i.

Below we evaluate, using the freezing argument, the {2, 3, 3} type structure constant

(figure 1),

C
(0)
123 =

〈u,v,w1 〉
su(3)√

〈u,u 〉su(3) 〈v,v 〉su(3) 〈w1,w1 〉
. (4.1)

We will show that the corresponding cubic vertex is given by

〈u,v,w 〉
su(3)

= 〈v ∪ z̃,u〉
su(3)

θ(1) 〈w1, z̃1〉θ(3) (4.2)

with z̃ = {z̃1, z̃2} =
{
θ(13) − i/2, θ(13) − i

}
. (4.3)

Here 〈 , 〉 denotes, as before, the su(2) inner product, and 〈 , 〉su(3) denotes the su(3)

inner product.

– 12 –



J
H
E
P
1
0
(
2
0
1
3
)
1
3
8

Figure 12. Graphical representation of the 15 non-zero elements of the su(3) L -matrix, eq. (3.3).

The rapidities u and z = θ+i/2 are associated with the horizontal and the vertical lines, respectively.

4.1 The su(3) Bethe states in terms of the 15-vertex-model

In order to generalize the freezing procedure to su(3), let us first show how to represent

the components of the su(3) Bethe vectors in terms of configurations of a 15-vertex model

shown in figure 12. The vertices are similar to those from figure 6, with the difference that

the indices carried by the lines can be now 1, 2 or 3. We represent them graphically by thin,

red and black lines, respectively. The weights are identical to those from equation (3.2),

depending on whether the indices carried by the lines are equal or different.

The Bethe vector |u〉 is given by the expansion

|u〉 =

3∑
s1,...,sL=1

ψs1,...,sL(u) |s1, . . . , sL〉 (4.4)

where ψs1,...,sL(u) is a sum over all the possible 15-vertex configurations on a rectangular

lattice with L1 +N1 vertical lines and N1 +M1 horizontal lines, with the free spin indices

equal to s1, . . . , sL. An example for such a vertex configuration is given in figure 13. The

first L1 vertical lines carry rapidities θ
(1)
1 + i/2, . . . , θ

(1)
L1

+ i/2 and spin indices 1 on the

top, which correspond to the vacuum |Ω〉 = |1L〉 ≡ |11 . . . 1〉. The right N1 vertical lines

carry rapidities u1,1 + i . . . u1,N1 + i and have index 2 on the top. At the bottom, the

first L1 indices are free, and the last N1 ones are fixed to 1. The lower N1 horizontal line

correspond to the first-level magnons and carry rapidities u1,1, . . . , u1,N1 . The higher M1

horizontal lines represent the second-level magnons with rapidities u2,1, . . . , u2,M1 . Due to

the particular spin and rapidity choices, the shaded regions are frozen to the particular

configuration shown in the figure. This diagram is equivalent to (a special case of5) the

one used by Reshetikhin in [39].

The structure constant factorizes as in the su(2) case. The two factors can be cast

in the form of scalar products of an on-shell and an off-shell Bethe states by applying the

freezing procedure.

5In [39], there are had two momentum-carrying nodes, while our spin chain has only one momentum-

carrying node.
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Figure 13. A configuration contributing to the coefficient ψ131231311111(u) of a su(3) Bethe vec-

tor (4.4) with L = 12, N = 4 and M = 3 .

4.2 The su(3) freezing procedure

Consider the scalar product of two su(3) states of the first chain, 〈ṽ,u〉=〈{ṽ1, ṽ2}, {u1,u2}〉,
as represented in figure 14. Our purpose is to freeze the rightmost N3 indices to the value

3, as imposed by the planarity of the contractions in the three point function. This can be

done by setting the last N3 rapidities of first level magnons at their freezing values,

ṽ1,N2+1 = θ
(13)
1 − i/2, . . . , ṽ1,N1 = θ

(13)
N3
− i/2. (4.5)

This will insure that the corresponding frozen region contains only red and black lines

propagating from the top to the bottom of the diagram. The number of black or red

lines is not fixed by the freezing, only their sum is fixed. In order to force all the lines in

the frozen region to be black, we have to apply once again the freezing procedure to the

magnons of second level, by fixing

ṽ2,M2+1 = θ
(13)
1 − i, . . . ṽ2,M1 = θ

(13)
N3
− i. (4.6)

The remaining magnons are set to the corresponding values in the state |v〉,

ṽ1,1 = v1,1, . . . , ṽ2,M2 = v2,M2 . (4.7)

This gives us the first factor of the expression (4.2) for the cubic vertex. The second factor,

〈 z1,w1 〉, is the same as in the su(2) case.

5 The su(2) structure constant in terms of the A -functional

In the su(2) case, the rapidities of the on-shell Bethe states satisfy the Bethe equations

L∏
l=1

uj − θl + i/2

uj − θl − i/2
= −

N∏
k=1

uj − uk + i

uj − uk − i
, j = 1, . . . , N. (5.1)
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Figure 14. The inner product 〈ṽ,u〉 and the freezing to 〈v ∪ θ(13) − i/2,u〉.

The Bethe equations (5.1) follow from the requirement that the eigenvalue T (u) of the

T -matrix,

T (u) =
Q+

θ (u)

Q−θ (u)

Q−−u (u)

Qu(u)
+
Q++

u (u)

Qu(u)
≡ eip1u(u) + eip

2
u(u) (5.2)

has vanishing residues at the Bethe roots.6 Here Qu and Qθ are the Baxter polynomials

Qu(u) =

N∏
j=1

(u− uj), Qθ(u) =

L∏
l=1

(u− θl), (5.3)

and

Q±(u) = Q (u± i/2) , Q±±(u) = Q(u± i), Q[n](u) = Q (u+ in/2) . (5.4)

The Bethe equations read

e2ipu(uj) = −1, j = 1, . . . , N, (5.5)

where the pseudomomentum pu, known also as the counting function, is defined

modulo π by

e2ipu = eip
1
u−ip2u =

Q−θ
Q+

θ

Q++
u

Q−−u
. (5.6)

6With the normalisation (3.3) of the L-matrix, T (u) is not a polynomial, but has poles at u− θl.
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The T -matrix (5.2) is normalized according to the vertex representation with

weights (3.2). The eigenvalues of the diagonal elements of the monodromy matrix on

the vacuum, A(u) and D(u), are given by

D(u) = eip
1
∅(u) =

L∏
l=1

b (u− θl − i/2) = 1,

A(u) = eip
2
∅(u) =

L∏
l=1

a (u− θl − i/2) =
Q+

θ (u)

Q−θ (u)
.

(5.7)

The inner product of an on-shell Bethe state u and an off-shell state v is given in a

determinant form by [40, 41]

〈v,u 〉 =

N∏
j=1

Aθ(vj) Su,v , (5.8)

where

Su,v =
detjk Ω(uj , vk)

detjk
1

uj−vk+i

, (5.9)

is the Slavnov determinant. The Slavnov kernel Ω(u, v) is defined by7

Ω(u, v) = t(u− v)− e2ipu(v) t(v − u) , t(u) =
1

u
− 1

u+ i
. (5.10)

The Slavnov determinant cannot be directly evaluated in the classical limit. This can

be done using the representation in terms of the A -functional introduced in [29]. The

Slavnov determinant Su,v was expressed in terms of the A -functional first for the limit

u → ∞ [29] and then in the general case [31, 32]. Later a more compact expression was

found in [37].

The A -functional, whose properties are listed in appendix C, is defined for any function

f(u) and any set of points in the complex plane u = {u1, . . . , uN} as follows,

A ±u [f ] =
detjk

(
uk−1
j − f (uj) (uj ± i)k−1

)
detjk

(
uk−1
j

) . (5.11)

The Slavnov determinant is expressed in terms of this functional as [37]8

Su,v = (−1)N A +
u∪v

[
Q−θ
Q+

θ

]
. (5.12)

7In order to simplify the formulas, here (as well as in [31, 32, 37]) we use a different normalisation for the

Slavnov matrix than in [41]. In our conventions, the Slavnov kernel depends only on the pseudomomentum

pu = p2u − p1u.
8The expression (5.12) for the Slavnov determinant depends on the ensemble of the rapidities u and v

in a completely symmetric way. This remarkable symmetry of this expression follows from the fact that,

due to the global su(2) symmetry, the annihilation operators with rapidities v can be replaced by creation

operators with the same rapidities and a global raising operator [37]. See also the exercises of the 3rd day

of the 4th Mathematica School (http://msstp.org/?q=node/272).
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Let us express the scalar products in the expression for the cubic vertex in terms of

the A -functional. We find for the two inner products in (4.2)

〈v ∪ z̃,u〉θ(1) = (−1)N1

N2∏
j=1

A(vj)

N3∏
j=1

A(z̃j) A +
v∪u

[
Q−

θ(12)

Q+
θ(12)

]
, (5.13)

〈w, z̃〉θ(3) = (−1)N3

N3∏
j=1

A(z̃j) A +
w

[
Q+

θ(23)

Q−
θ(23)

]
. (5.14)

Proofs. Using the properties of the A -functional (appendix C), we transform

A +
v∪z̃∪u

[
Q−

θ(1)

Q+
θ(1)

]
= A +

v∪z̃∪u

[
Q−

θ(13)

Q+
θ(13)

Q−
θ(12)

Q+
θ(12)

]
= A +

v∪u

[
Q−

θ(12)

Q+
θ(12)

]
, (5.15)

A +
w∪z̃

[
Q−

θ(3)

Q+
θ(3)

]
= A +

w∪z̃

[
Q−

θ(13)

Q+
θ(13)

Q−
θ(23)

Q+
θ(23)

]
= A +

w

[
Q−

θ(23)

Q+
θ(23)

]
. (5.16)

Ignoring the factors that are pure phases, we find for the cubic vertex

〈u,v,w 〉
su(3)

= A +
v∪u

[
Q−

θ(12)

Q+
θ(12)

]
A +

w

[
Q−

θ(23)

Q+
θ(23)

]
. (5.17)

The second factor has been evaluated in a different ways in [10] and [31], where it was used

that it equal to a partial domain wall partition function of the six-vertex model.

The norm 〈u,u 〉 is most easily computed by taking the expression for the inner product

〈v,u 〉, eq. (5.12), in the limit v→ u.

6 The su(3) structure constant in terms of the A -functional

A generic Bethe state |u〉 in an su(3) sector is characterized by the rapidities u = {u1,u2}
and the inhomogeneity parameters θ associated with the momentum-carrying node (1),

where

u1 = {u1,j , . . . , u1,N}, u2 = {u2,1, . . . , u2,M} , θ = {θ1, . . . , θL}. (6.1)

The rapidities satisfy the nested Bethe wave functions for the su(3) R-matrix given by (3.3):

L∏
l=1

u1,j − θl + 1
2 i

u1,j − θl − 1
2 i

= −
N∏
n=1

u1,j − u1,n + i

u1,j − u1,n − i

M∏
m=1

u1,j − u2,m − 1
2 i

u1,j − u2,m + 1
2 i

1 = −
M∏
m=1

u2,j − u2,m + i

u2,j − u2,m − i

N∏
n=1

u2,j − u1,n − 1
2 i

u2,j − u1,n + 1
2 i
. (6.2)

The Bethe equations (6.2) follow from the requirement that that the su(3) T -matrix

in the fundamental representation,

T (u) = eip
1
u(u) + eip

2
u(u) + eip

3
u(u) , (6.3)
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has vanishing residues at the Bethe roots. For given distribution of the roots u1 and u2,

the pseudomomenta piu(z) are determined modulo 2π by9

eip
1
u =

Q++
u1

Qu1

Q−θ
Q+

θ

, eip
2
u =

Q−−u1

Qu1

Q+
u2

Q−u2

, eip
3
u =

Q−−−u2

Q−u2

, (6.4)

see e.g. [42]. In terms of the three pseudomomenta, the Bethe equations (5.5) read

eip
1
u(z)−ip2u(z) = −1 if z ∈ u1;

eip
2
u(z)−ip3u(z) = −1 if z − i/2 ∈ u2 .

(6.5)

It is convenient to introduce the functions P 1
u(z) and P 1

u(z), associated with the two

nodes of the Dynkin graph of su(3), and related to the quasimomenta piu(z), i = 1, 2, 3, by

P 1
u(z) = p1

u(z)− p2
u(z), P 2

u(z) = p2
u(z + i/2)− p3

u(z + i/2). (6.6)

In terms of these functions, which we will also call pseudomomenta, the Bethe equations

take the more standard form

eiP
a
u (z) = −1, if z ∈ ua (a = 1, 2). (6.7)

The functions P1 and P2 can be expressed in terms of the su(3) Cartan matrix {Mab} =(
2 −1
−1 2

)
as

eiP
a
u =

(
Q−θ
Q+

θ

)δa,1 ∏
b=1,2

Q
[Mab]
ub

Q
[−Mab]
ub

, a = 1, 2. (6.8)

Let us stress that the values of the local conserved charges are determined only by the level-

1 roots u1. The duality transformations change the level-2 roots u2, but leave invariant

the level-1 roots u1, which carry the physical information [42].

The norm of an on-shell Bethe state. The squared norm of an on-shell Bethe state

has been computed for the case of su(3) by Reshetikhin10 [39] and is expressed as the

determinant of the matrix of the derivatives of the two quasi-momenta:11

〈u,u 〉 = cu det
[
∂ua,jP

b
u(ub,k)

]
, (6.9)

where the determinant is with respect to the double indices A = {a, j} and B = {b, k}.
The normalizationn factor cu is given by (2.2). The matrix of the derivatives of the two

quasimomenta is explicitly

∂ua,jP
b
u (ub,k) = tab (ua,j − ub,k) + tab (−ua,j + ub,k) + i δa,bδj,k

∂P au(z)

∂z

∣∣∣∣∣
z=ua,j

, (6.10)

9Here we used the conventions of eqs. (5.3) and (5.4).
10A conjecture for su(n) is proposed by EGSV in [9].
11Here it is assumed that the set of the Bethe roots is symmetric under complex conjugation.
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where

tab(u) =
1

u
− 1

u+ i
2Mab

. (6.11)

Instead of taking the derivatives, we will compute the norm as the limit of the determinant

depending on two sets of rapidities, u and v, which has the limit (6.10) when v → u. We

define the (N +M)× (N +M) square matrix Ωab(uj , vk), with

Ωab(u, v) = tab(u− v)− eiPau (v) tab(−u+ v) . (6.12)

The expression for the norm, which we are going to evaluate in the classical limit, is

〈u,u 〉 = cu lim
va,j→ua,j

det [Ωab (ua,j , vb,k)] . (6.13)

6.1 The inner product 〈u, v〉 in the limit u2 → ∞

Unlike the su(2) case, the inner product of an on-shell Bethe state with an of-shell Bethe

state is not generically a determinant. Determinant representations exist in some particular

cases [36, 43–45]. We will use the determinant expression obtained by Wheeler [36], when

the rapidities of the second type of magnons of the Bethe eigenstate are sent to infinity.

We assume that M is odd; then one can send to infinity the u2 roots one by one. As a

result the second level Bethe equations become trivial and the first level Bethe equations

take the same form as for su(2). The inner product 〈u,v 〉
su(3)

θ factorizes into two su(2)

inner products [36]

lim
u2→∞

〈v,u〉su(3) = det
jk

(
[v2,j ]

k−1 − [v2,j + i]k−1 Q
−
v1

(v2,j)

Q+
v1(v2,j)

)
× det

ij

(
t(u1,j − v1,k) −

Q−θ (v1,k)

Q+
θ (v1,k)

Q++
u1

(v1,k)

Q−−u1 (v1,k)
t (−u1,j + v1,k)

)
× 1

∆[v1] ∆[v2] ∆[u1]
×
∏
j,k

(u1,j − v1,k + i)

= 〈u1,v1 〉su(2)
θ 〈∞,v2 〉su(2)

v1
. (6.14)

Using (C.13), we write (6.14) in the form

lim
u2→∞

〈v,u〉θ = A +
u1∪v1

[
Q−θ
Q+

θ

]
A +

v2

[
Q−v1

Q+
v1

]
. (6.15)

The su(3) structure constant in terms of the A -functional. Combining (5.13),

(5.14), (6.14) in eq. (4.2), we get

〈u,v,w 〉 = A +
w1

[
Q−

θ(13)

Q+
θ(13)

]
A +

u1∪v1

[
Q−

θ(12)

Q+
θ(12)

]
A +

v2

[
Q−v1

Q+
v1

]
. (6.16)
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7 The semi-classical limit of the su(3) 3-point function

7.1 The Sutherland limit

The classical , or thermodynamical limit is attained for long spin chains (L � 1) with

macroscopically many excitations N,M ∼ L, and in the low energy regime (δE ∼ 1/L) [11,

12, 46]. Such spin chains correspond to “heavy” operators, which are traces of products of

many SYM fields. In this limit the roots scale as ua,j ∼ L. In the condensed matter litera-

ture the classical limit has been studied by Sutherland [47] and by Dhar and Shastry [48],

and is known as Sutherland scaling limit. In the classical limit the roots are organized in

several macroscopic strings, which condense into cuts in the complex rapidity plane. The

three quasimomenta p1, p2, p3 become the three branches of the same meromorphic func-

tion. The three sheets of the corresponding Riemann surface are joined among themselves

along the cuts defined by the long Bethe strings. In the classical limit, the Bethe state is

characterised by the resolvents

Gu1(z) = ∂z logQu1(z), Gu2(z) = ∂z logQu2(z), (7.1)

as well as the resolvent for the inhomogeneities

Gθ(u) = ∂u logQθ(u). (7.2)

The two resolvents, Gu1 and Gu2 , can be expressed in terms of the three quasimomenta

p1
u, p

2
u and p3

u, which become the three branches of a single meromorphic function on the

tri-foliated Riemann surface,

p1
u = Gu1 −Gθ (mod 2π),

p2
u = Gu2 −Gu1 (mod 2π),

p3
u = −Gu2 (mod 2π),

(7.3)

or

P 1
u = 2Gu1 −Gu2 −Gθ (mod 2π),

P 2
u = 2Gu2 −Gu1 (mod 2π).

(7.4)

Let Cαij be the cuts joining the i-th and the j-th sheets. Then the Bethe equations (6.5)

become boundary conditions on these cuts, depending on the mode numbers nαij :

2πnα12 = /p1 − /p2, z ∈ Cα12 ,

2πnα23 = /p2 − /p3, z ∈ Cα23 ,
(7.5)

where /p denotes the half-sum of the values of the function p on both sides of the cut.

7.2 Stacks

In addition, there is the possibility of configurations called stacks (bound states of rapidities

associated with different nodes [49]), which represent pairs of roots belonging to the nodes

1 and 2 and at distance O(1) from each other [42, 46, 50]. We can have macroscopic strings
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of stacks, which in the classical limit become two cuts that merge into one cut. Since the

roots that form the string of stacks belong to two different nodes, they correspond to a

cut type 1-2 and a cut type 2-3, where we understand that the cut of type i-j joins the

i-th and the j-th sheets of the Riemann surface. The result of merging of the two cuts is

a cut of the type 1-3. Therefore, in order to have a description of the generic Bethe state

in the classical limit, we must assume also the existence of cuts of type 1-3. The boundary

condition on these cuts is obtained by taking the limit of (7.5) and has the form

2πnα13 = /p1 − /p3, z ∈ Cα13 . (7.6)

The bosonic duality transformations [42] in the classical limit corresponds simply to the

exchange of the Riemann sheets 2 and 3.

7.3 The semi-classical norm

The determinant (6.13) can be computed in the classical limit under the assumption that

there are only 1-2 and 2-3 type cuts, which are separated at macroscopic distance ∼ L.

With this assumption, the off diagonal elements of Ω(u, v) ∼ (u − v)−2 ∼ 1/L2, and the

only matrix elements of order one are those in a strip of width ∼ 1/
√
L along the diagonal.

As a consequence, the non-diagonal blocks do not contribute in the classical limit and the

determinant is simply the product of the determinants of the diagonal blocks,

〈u,u 〉su(3) ' det [Ω11 (u1,j , u1,k)] det [Ω22 (u2,j , u2,k)]

= 〈u1,u1 〉su(2) 〈u2,u2 〉su(2) .
(7.7)

Let us evaluate the norm assuming that there there are no cuts relating the first and the

third sheet of the Riemann surface. We can use the expression for the classical limit of the

norm in the su(2) sector (appendix C):

〈u,v 〉θ = log A +
u∪v

[
Q−θ
Q+

θ

]
=

∮
Cu∪Cv

dz

2π
Li2

[
f(z) eiGu(z)+iGv(z)−iGθ(z)

]
+ o(logL), (7.8)

with

Gu(z) = ∂z logQu(z), Gθ(z) = ∂z logQθ(z). (7.9)

The norm of the classical Bethe state is then12

log〈u|u 〉=
∮
Cu1

dz

2π
Li2

(
e2iGu1 (z)−iGu2 (z)−iGθ(z)

)
+

∮
Cu2

dz

2π
Li2

(
e2iGu2 (z)−iGu1 (z)

)
. (7.11)

12We conjecture that in the most general case, when some of the roots can form bound states (“stacks”),

this logarithm of the norm is given by

log 〈u|u 〉 =
∑
α<β

∮
Cαβ

dz

2π
Li2
(
eip

α
u (z)−ipβu(z)

)
, (7.10)

where Cij (i, j = 1, 2, 3) denote the contour (or contours) surrounding the cuts between the i-th and the

j-th sheets.
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7.4 Semi-classical limit of the structure constant

Substituting (7.8) in (6.16) we find for the structure constant in the classical limit

logC
(0)
123 =

∮
Cu1∪v1

dz

2π
Li2

(
eiGu1 (z)+iGv1 (z)−iG(12)

θ (z)
)

+

∮
Cv2

dz

2π
Li2

(
eiGv2 (z)−iGv1 (z)

)
+

∮
Cw1

dz

2π
Li2

(
eiGw1 (z)−iG

θ(13)
(z)
)

− 1

2
log 〈u|u 〉 − 1

2
log 〈v|v 〉 − 1

2
log 〈w|w 〉 .

(7.12)

The last line is evaluated in the classical limit according to (7.11).

8 Conclusions and outlook

We have analyzed the tree-level 3-point functions of single-trace operators of the planar

N = 4 SYM theory in the su(3) sector. Each of the three operators is an eigenstate of the

dilatation operator, and it is characterized by a set of charges (angular momenta) and a

set of rapidities. We have classified the possible configurations of Wick contractions and

given the general expression of the 3-point functions in terms of rapidities associated to

each operator. This expression, obtained using the tailoring technique of EGSV [9], is

not adapted for taking the classical limit. In some particular situation, when one of the

operators belongs to an su(2) sector, we are able to express the 3-point function using the

alternative method of freezing proposed in [10]. By further specializing the second group

of rapidities corresponding to one of the operators, we can use a result of [36] to express

the scalar products as determinants. Finally, the semi-classical limit of the determinants

can be taken using the results from [31, 32]. The simplest classical operator from the su(3)

sector are the three-spin solution obtained by C. Kristjansen [51].

There are two obvious directions to explore. First, one can try to evaluate the general

sum over partitions in (2.5) quasi-classically. One can either try to perform a quasiclssical

evaluation of the Korepin sum over partitions for the scalar product of two off-shell Bethe

states, in the spirit of [29], or refine the coherent state approximation [25, 52, 53]. Another

direction is to explore the non-compact sector of the theory. There are several recent papers

which are relevant for that, [54–60, 60–63].
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A The nested coordinate Bethe Ansatz

As an introduction to the ‘tailoring’ procedure in the context of su(3) 3-point function, this

appendix is a brief introduction to the nested coordinate Bethe anstaz of the su(3) spin
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……

Figure 15. The Dynkin diagram of su(K) algebra.

chain. Let us consider an su(K) spin chain of length L. The treatment follows closely [64].

The hamiltonian reads

H =
λ

8π2

L∑
n=1

(In,n+1 −Pn,n+1) . (A.1)

At each site of the spin chain, there is a spin with K different polarizations. The Hilbert

space of the spin chain is H = (CK)⊗L. In the Hamiltonian (A.1) In,n+1 is the identity

operator in the space CKn ⊗ CKn+1 and Pn,n+1 is the permutation operator in CKn ⊗ CKn+1.

The Dynkin diagrams of the Lie algebra give a convenient way to label the excitations. For

the su(K) algebra, the Dynkin diagram is given by figure 15.

Following Bethe, one looks for the eigenstates of the Hamiltonian (A.1) in the form

|Ψ〉 =
∑

positions

ψn1,...,nK−1 (u1, · · · ,uK−1) |n1, · · · ,nK−1〉 , (A.2)

where ua is the set of rapidities of node a and na labels the positions of the excitation of

node a (a = 1, · · · ,K−1). The summation is taken over all possible positions of excitations.

The nested ket state |n1, · · · ,nK−1〉 is constructed in the following steps:

1. Start with an initial value of length L;

2. Create N1 excitations of node 1 at positions n1. The N1 excitations form a reduced

inhomogeneous spin chain of length N1;

3. Create N2 excitations of node 2 at positions n2 in the reduced spin chain. One should

have N2 < N1. The excitations of node 2 again form a reduced inhomogeneous spin

chain of length N2;

4. Repeat the above steps for all the K − 1 nodes.

The procedure for the su(3) case is explained in figure 16. We would like to stress

the important feature that the excitations of node a should only be created from the

excitations of node a − 1 (the reduced spin chain). Therefore we have Na ≤ Na−1. The

positions should obey

1 ≤ n1,1 < · · · < n1,N1 ≤ L,
1 ≤ na,1 < · · · < na,Na ≤ Na−1, for 2 ≤ a ≤ r .

The beauty of this method is that at each step, the operation is simple and the same: to

create one kind of excitation in a reduced spin chain of length Na. Here we see the nested

feature of this method.
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Figure 16. Nesting procedure for su(3). In our example, K = 3, L = 12, {n1,j} = {1, 2, 5, 8, 9, 11}
and {n2,j} = {1, 3, 4, 5, 6}. The final result reads |2, 1, 0, 0, 2, 0, 0, 1, 2, 0, 2, 0〉, where 0 denotes the

vacuum state, 1 denotes the first excited state and 2 denotes the second excited state. In our ket

notation, it is written as |{1, 2, 5, 8, 9, 11}, {1, 3, 4, 5, 6}〉.

The wave function ψ(u1, · · · ,uK−1) is constructed by nested Bethe ansatz. It is given

in terms of a series of wave functions ψa, a = 2, · · · ,K − 1.The Bethe wave function reads

ψ (u1, · · · ,uK−1) =
∑
P1

A1(P1)

N1∏
j=1

(
u1,P1,j + i

2

u1,P1,j − i
2

)
ψ2(P1) , (A.3)

where the wave functions ψa, a = 2, · · · ,K − 1 are given by

ψa(Pa−1) =
∑
Pa

Aa(Pa)

Na∏
j=1

na,j∏
k=1

(
ua,Pa,j − ua−1,Pa−1,k

−Ma−1,a
i
2

)δk 6=na,j
ua,Pa,j − ua−1,Pa−1,k

+Ma−1,a
i
2

ψa+1(Pa). (A.4)

with Pa the permutation (Pa,1, . . . , Pa,Na) of (1, · · · , Na). We define ψK(PK−1) = 1. Ma,b

is the Cartan matrix of the Lie algebra, for su(K) being

Ma,b = 2δa,b − δa−1,b − δa+1,b . (A.5)

Our choice of normalization is

Aa (1, 2 · · · , Na) = 1 (A.6)

and the coefficients Aa obey the relation

Aa(· · · , i, j, · · · )
Aa(· · · , j, i, · · · )

= S2(ua,i, ua,j) . (A.7)

Here we used the following definition,

Sσ(ua,i, ub,j) =
ua,i − ub,j + i

2σ

ua,i − ub,j − i
2σ

, σ = 1, 2 . (A.8)

In order that (A.2) is an eigenstate of the spin chain Hamiltonian, the rapidities should

satisfy the Bethe ansatz equations:(
ua,j + Va

i
2

ua,j − Va i2

)L
=

r∏
b=1

Nb∏
k=1

(a,j)6=(b,k)

ua,j − ub,k + i
2Ma,b

ua,j − ub,k − i
2Ma,b

, (A.9)

where Va are the Dynkin labels. We consider the fundamental representation in this paper,

where Va = δa,1.
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left subchain right subchain

Figure 17. The cutting process for a spin chain with L = 8. We take l = 4 and L − l = 4. The

sites in the right subchain are originally labeled by 5, 6, 7, 8 while after cutting they are labeled by

1, 2, 3, 4.

B The su(3) tailoring prescription

We consider the operators in su(3) sector with definite one-loop anomalous dimensions. In

the spin chain language, these operators are represented by the Bethe eigenstates of the

su(3) spin chain. One first write the Bethe state as the entangled state of two subchain

states. This operation is called “cutting”. After cutting operation, each subchain state also

takes the form of Bethe states. In order to perform Wick contraction, one needs to “flip”

one of the subchains. Flipping is an operation that takes a ket state into the corresponding

bra state with the same wave function. One can flip either the left or the right subchain.

In this paper, we always flip the right subchain. The last step is to calculate the scalar

product of Bethe states, this is called the “gluing” operation.

Consider a generic su(2) Bethe state |u〉 of a spin chain with length L. We define the

first l sites from the left to be the left subchain and the rest L − l sites to be the right

subchain. |u〉 can be written as an entangled state of the subchains

|u〉 =

min{N,l}∑
k=0

∑
1≤n1<···<nk≤l

∑
l≤nk+1<···≤L

ψ(u)|n1, · · · , nk〉 l ⊗ |nk+1 − l, · · · , nN − l〉 r (B.1)

where k is the number of magnons in the left subchain. Note that one needs to re-label the

positions of the magnons in the right subchain, see figure 17. Since we have two subchains,

the magnons can either be in the left subchain or in the right subchain. After cutting

a Bethe eigenstate, the resulting two subchains states still take the form of Bethe state.

Hence the two subchain states have their own Bethe wave functions ψl(u
′) and ψr(u

′′),

where u′ and u′′ is a partition of u,

u′ ∪ u′′ = u, u′ ∩ u′′ = ∅ . (B.2)

In general, ψ(u) = H(u′,u′′) ψl(u
′)ψr(u

′′) where H(u′,u′′) is a partition-dependent factor

which shall be called H-factor from now on. Formally, the cutting of a Bethe state can be

written as

|u〉 =
∑
α

H
(
u′,u′′

)
|u′〉 ⊗ |u′′〉 . (B.3)

Usually the expression for the H-factor is long. In order to make the expression more

compact, we introduce some short-hand notations. Given a function F (x, y) and two sets
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of variables u, v, we define

F (u,v) ≡
∏

ui∈u, vj∈v
F (ui, vj), F>(u,v) ≡

∏
i>j

ui∈u, vj∈v

F (ui, vj) . (B.4)

For a constant c, we define

F (u, c) =
∏
ui∈u

F (ui, c), F (c,v) =
∏
vi∈v

F (c, vi) . (B.5)

With the notations from (A.8) the H-factor for the su(2) spin chain is given by

H
(
u′,u′′

)
= S1

(
u′′, 0

)l
S>2
(
u′,u′′

)
. (B.6)

The cutting operation can be generalized to su(K) Bethe state. Let us denote the nested

Bethe state by |u〉 where u = (u1, · · · ,uK−1). We have

|u〉 =
∑
u′

H
(
u′,u′′

)
|u′〉 ⊗ |u′′〉 (B.7)

with the H-factor

H
(
u′,u′′

)
=

K−1∏
n=1

S1

(
u′′n,u

′
n−1

)
S>2
(
u′n,u

′′
n

)
(B.8)

where u′0 is defined as u′0 = {0l} with l the length of left subchain. In order to perform

Wick contraction, we need to “flip” the right subchain from a ket state into a bra state.

The flipping operation is different from Hermitian conjugate. Given a state

|ψ〉 = eiθ|XZXZZ〉 (B.9)

the Hermitian conjugate and flipping (denoted by superscript F) lead to

(|ψ〉)† = e−iθ〈XZXZZ|

(|ψ〉)F = e+iθ〈Z̄Z̄X̄Z̄X̄| .

For an su(2) Bethe state |u〉, the flipped state is proportional to the hermitian conjugate

of the Bethe state |u∗〉
(|u〉)F = 〈u∗|F (u) (B.10)

where u∗ is the complex conjugate of u and we call the proportionality F (u) the F -factor.

For an su(2) Bethe state, the F -factor reads

F (u) = S1(u, 0)L+1 S>2 (u,u) (B.11)

where L is the length of the spin chain. For an su(K) Bethe state |~u〉, the F -factor is

given by

F (u) =

K−1∏
n=1

S1 (un,un−1)S>2 (un,un) (B.12)
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where u0 is defined by u0 = {0L+1}. From now on, by “tailor” (denoted by T ) a (nested)

Bethe state, we mean first cut the state and then flip the right subchain state. We define

the product of the corresponding H-factor and the F -factor to be the HF factor. For an

su(K) Bethe state |u1, · · · ,uK−1〉

(|u〉)T =
∑
u′

Hu
F |u′〉 ⊗ 〈u′′∗| (B.13)

where

u′ ∪ u′′ = u, u′ ∩ u′′ = ∅ (B.14)

and the HF -factor reads

Hu
F =

K−1∏
n=1

S1

(
u′′n,un−1

)
S>2
(
un,u

′′
n

)
. (B.15)

C The functionals A ±

C.1 Definition

For any set of points u = {uj}Nj=1 in the complex plane and for any complex function f(z),

we define the pair of functionals A ±u [f ], which are completely symmetric polynomials of

degree N of the variables f(u1), . . . , f(uN ). The functional A ±u is defined as a sum of

monomials labeled by all possible partitions of the set u into two disjoint subsets u′ and

u′′, with u′ ∪ u′′ = u,

A ±u [f ] =
∑

u′∪u′′=u

∏
u′∈u′

[
−f(u′)

] ∏
u′′∈u′′

u′ − u′′ ± i
u′ − u′′

. (C.1)

The expansion (C.1) was thoroughly studied by Gromov, Sever and Vieira [29]. The

expansion (C.1) is summed up by the following operator expression,

A ±u [f ] = Â ±u [f ] · 1 , (C.2)

where the different operator Â ±[u] is defined as

Â ±u [f ]
def
=

1

∆u

N∏
j=1

(
1− f(uj) e

±i∂/∂uj
)

∆u, ∆u =
∑
j<k

(uj − uk). (C.3)

The operator functional Â ±[u] is formally obtained from the c-functional A ±[u] as

Â ±u [f ] = A ±u

[
f ei∂

]
. (C.4)
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C.2 Properties

It was found in [29] that for constant function f(u) = κ, the expansion (C.1) does not

depend on the positions of the rapidities u and the functional A ±u [f ] is given in this

case by

A ±u [κ] = (1− κ)N . (C.5)

The functional A ±[f ] have other remarkable properties [31, 32]:

1. Determinant formula, eq. (5.11), which is obtained by substituting ∆u=detjk

(
uk−1
j

)
in the definition (C.3).

2. Functional relations between A + and A −:

A ∓u [f ] = A ±u [1/f ]

N∏
j=1

[−f(uj)] , (C.6)

A ∓u [f ] = A ±u

[
−Q

∓∓
u

Q±±u
f

]
. (C.7)

3. Reduction formula:

A ±u∪z

[
f
Qz

Q±±z

]
= A ±u [f ] . (C.8)

4. Factorization property:

Â ±u∪v[f ] = Â ±u

[
Q±±v
Qv

f

]
· Â ±v

[
Q±±u
Qu

f

]
. (C.9)

Aplying N times the factorisation property, one obtains the representation

Â ±u [f ] =

N∏
j=1

(
1−E±j f(uj) e

i∂/∂uj
)
, E±j

def
=
∏
k( 6=j)

uj − uk ± i
uj − uk

= Res
u→uj

Q±±u (u)

Qu
.

(C.10)

Relation to the Slavnov determinant. The determinant of the kernel Ω(u, v)

defined as

Ωf (u, v) = t(u− v)− Q++
u

Q−−u
(u) f(v) t(−u+ v), (C.11)

where the set u satisfies the “on-shell” condition

Q++
u (uj)

Q−−u (uj)
f(uj) = −1 for uj ∈ u, (C.12)

is evaluated as [37]

detjk Ωf (uj , vk)

detjk
1

uj−vk+i

= A +
u∪v[f ]. (C.13)
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C.3 Classical limit

In the classical limit, the Bethe roots condensate in one or several disjoint cuts. Let Ck be

a contour encircling the k-th cut anticloskwise and leaving outside all other singularities of

f and Gu. The filling fraction of the k-th cut is

αk =
1

2πL

∮
Ck

Gu(u)du. (C.14)

We consider the limit L → ∞ with all αk finite. Then the leading, linear in L, term of

log A ± is given by the contour integral

log A ±u [f ] ' ±
∮
Cu

du

2π
Li2

(
f(u) e±iGu(u)

)
, Cu = ∪nk=1Ck. (C.15)

While there is not yet a rigorous proof of this formula, it has passed a number of analytical

and numerical checks. A heuristic derivation of (C.15) for f(u) =
(
u−i/2
u+i/2

)L
, was presented

in [29]. When f(u) = κ, it was shown in [29] that the quasiclassical formula (C.15) gives the

exact answer (C.5). Moreover, the integral (C.15) satisfies the functional equation (C.6)

thanks to the functional equation for the dilogarithm,

Li2

(
1

ω

)
= −Li2(ω)− π2

6
− 1

2
log2(−ω). (C.16)
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