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1 Introduction

The fact that the cosmic densities of dark matter and ordinary baryonic matter are compa-

rable [1] has suggested to many authors that they may have a common origin, that is that

the dark matter and baryonic matter may have been generated by the same processes, or

that one of them may have been generated from the other. This idea is sometimes called

“cogeneration” of dark matter and ordinary matter. There is a rapidly growing literature

studying various ways that this might have happened [2–25].

The first papers to propose this possibility [2, 3] were based on the idea that primordial

asymmetries in baryon and lepton number (B, L) were partially converted into an asymme-

try in some other global quantum number (call it X) by sphaleron processes [26–28] when

the temperature of the universe was above the weak interaction scale. Assuming X to be

conserved (or nearly so) at low temperatures, the lightest particles carrying this quantum

number would be stable and could play the role of dark matter. What would result from

such a scenario is “asymmetric dark matter” [29, 30]. Many other scenarios for generating

asymmetric dark matter have been proposed [4–24]. In some of these scenarios ordinary

matter and dark matter are converted into each other by perturbative processes involv-

ing higher-dimension operators [4, 5]; and in others by sphalerons (or by both sphalerons

and higher-dimension operators) [6–9]. In some scenarios, the dark matter carries baryon

number which compensates for the non-zero baryon asymmetry of ordinary matter [10–12].

And many papers propose still other mechanisms [13–24].

A very interesting idea first proposed in [25] is that a primordial asymmetry in B or L

(or both) is partly converted into an X asymmetry (and thus a dark matter asymmetry)

by sphalerons of some new non-abelian gauge interaction. In this paper we point out that

this mechanism arises very naturally in grand unified models. In a previous paper [31], it

was noted by one of us that grand unified models with groups larger than SU(5) provide

a natural context for the emergence of dark matter. The larger fermion multiplets of such

models typically contain fermions that are Standard Model singlets, which could play the

role of dark matter. Unified models can also have accidentally conserved global charges

(analogous to B−L in SU(5) models) that could be the charge X carried by dark matter.
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It was also noted in [31] that larger unification groups can have additional non-abelian

subgroups whose sphalerons could convert B and L asymmetries into an X asymmetry.

Here we show that simple models can indeed be constructed that realize this possibility.

Most of this paper is devoted to an example based on an SU(5)×SU(2) that is embeddable

in E6. At the end of the paper we note that a similar and equally simple model can be

constructed based on SU(7). These models exploit all the features of grand unification

favorable to the genesis of dark matter that were emphasized in [31].

In the model that we present here, we denote by SU(2)∗ the gauge group of the new in-

teraction whose sphalerons are responsible for cogenerating the dark matter, in order to dis-

tinguish it from the electroweak group SU(2)L. An interesting feature of the models we dis-

cuss is that the present ratio of the number densities of dark matter particles and baryons,

nDM/nB, can be calculated thermodynamically from just the particle content of the model

and is independent of the nature of the primordial asymmetry. This allows one to determine

the mass of the dark matter particle, which is given simply by mDM = mp
ΩDM

ΩB

nB

nDM
.

A general point that is worth noting here is that the task of constructing realistic mod-

els is considerably simpler if the spahalerons that produce the X asymmetry are those of a

new non-abelian symmetry as in [25] rather than those of the electroweak interactions as

in [2, 3]. In the latter case, there must exist fermions that are chiral under SU(2)L and have

X 6= 0. Those particles cannot be lighter than MW or they would have been discovered

already (since some of them have to be electrically charged). But if they are heavy com-

pared to MW they tend to contribute excessively to the ρ parameter. By contrast, if the

sphalerons that produce the X asymmetry are those of a new non-abelian interaction, then

all X 6= 0 fermions can be neutral with respect to the Standard Model gauge interactions,

thus avoiding the above phenomenological problem.

2 The model

The model we propose is based on the gauge group GSM ×SU(2)∗, which can be embedded

in larger groups in the following way:

E6 ⊃ SU(6)× SU(2) ⊃ SU(5)× SU(2) ⊃ GSM × SU(2). (2.1)

Moreover, the particle content of the model is exactly what would arise from such an

embedding. In particular, each family of fermions consists of the 27 particles that make

up the fundamental representation of E6:

27 −→ (15, 1) + (6, 2) −→ (10, 1) + (5, 1) + (5, 2) + (1, 2)

−→

(

ℓc,

[

u

d

]

, uc

)

+

([

ℓ

ν

]

, dc

)

+

([

ℓI

νI

]

, dcI

)

+ (χI), I = 1, 2,
(2.2)

where the decomposition in eq. (2.2) corresponds to the sequence of groups in eq. (2.1).

The index I in eq. (2.2) stands there and through the paper for the index of the extra

SU(2)∗ group. Note that each family automatically contains particles, denoted χI , that
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are singlets under GSM but non-singlet under SU(2)∗ and thus able to play the role of dark

matter, illustrating the point made in [31].

While eqs. (2.1) and (2.2) show our model is naturally unified in a larger group, this is

not essential to the mechanism of cogeneration. Henceforth in this paper we will discuss the

model as if its gauge group is just GSM × SU(2)∗ without any assumption about whether

this is unified at some high scale. Nevertheless, it is convenient as a notational “shorthand”

to refer to fermions and scalars by the SU(5)× SU(2)∗ multiplets in which they would be

contained if the model were further unified, and we shall often do this.

In SU(5)×SU(2)∗ language, then, each family consists of (10, 1)+(5, 1)+(5, 2)+(1, 2).

Besides the (1, 2) = χI already mentioned, there are other non-Standard Model fermions

contained in each family, namely the and half of the fermions in the (5, 2), or, in terms of

SU(5) alone, a vectorlike 5 + 5 pair. We will henceforth call these the “extra fermions”.

The spontaneous breaking of SU(2)∗, at a scale M∗, is accomplished by the vacuum

expectation value (VEV) of a (1, 2) multiplet of Higgs fields that we shall denote ΩI . This

Higgs field also gives mass to the “extra fermions” by means of the following Yukawa

coupling

(5, 2) (5, 1) 〈(1, 2)h〉 ⊃ dcId
c 〈ΩI〉, (ℓI νI) ·

(

ℓ

ν

)

〈ΩI〉. (2.3)

It was said above that the fermions χI that transform as (1, 2) play the role of dark

matter. But more precisely, there are three families of these SU(2)∗ doublets, or altogether

six flavors of them, and it is the lightest of them that is stable and composes the dark

matter. To give these six fermions mass we introduce six partners for them that are

singlets under all the gauge groups. We denote these by χc
a, a = 1, . . . , 6. The Yukawa

terms that give them mass are of the form Ya(χIχ
c
a)〈ΩI〉.

The value of the scale M∗ at which SU(2)∗ is broken by 〈ΩI〉 does not matter very

much as far as the mechanism for generating a dark matter asymmetry is concerned. It

should certainly be large enough that the SU(2)∗ gauge bosons and the “extra” fermions in

(5, 1) and (5, 2) would not already have been detected. On the other hand, the dark matter

particles, which will later be seen to have mass around 1GeV, obtain mass from the VEV

of ΩI . Therefore, the larger the VEV of ΩI is, the smaller must be its Yukawa coupling to

the dark matter particles. We know that some Yukawa couplings in nature are very small

(those of e, u, and d are of order 10−5). If one does not wish Yukawa couplings to be smaller

than 10−5, say, one would need M∗ to be less than about 100TeV. We imagine, therefore,

that M∗ is somewhere between 1 and 100TeV. Moreover, as will be discussed later, if M∗

is larger than about 100TeV, the SU(2)∗ gauge interactions will be too slow to keep the

“dark sector” of particles in thermal equilibrium with the Standard Model particles long

enough to avoid problems with primordial nucleosynthesis (The energy trapped in massless

particles of the dark sector can cause the universe too expand too rapidly in the era of

primordial nucleosynthesis).

It should be noted that since the ΩI is in a pseudo-real representation of the gauge

group and since we will not give it any global charge that would distinguish from its

conjugate Ω∗
I , the symmetries of the model allow Ω∗

I to couple in the same ways that ΩI

– 3 –
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name GSM × SU(2)∗ SU(5)× SU(2)∗ SU(6)× SU(2)∗ E6 X W

3×

(

u

d

)

(3, 2,+1

6
; 1) (10, 1) (15, 1) 27 0 0

3× uc (3, 1,−2

3
; 1) (10, 1) (15, 1) 27 0 0

3× ℓc (1, 1,+1; 1) (10, 1) (15, 1) 27 0 0

3×

(

ℓ

ν

)

(1, 2,+1

2
; 1) (5, 1) (15, 1) 27 0 0

3× dc (3, 1,−1

3
; 1) (5, 1) (15, 1) 27 0 0

3×

(

ℓ1,2

ν1,2

)

(1, 2,−1

2
; 2) (5, 2) (6, 2) 27 0 0

3× dc1,2 (3, 1,+1

3
; 2) (5, 2) (6, 2) 27 0 0

3× χ1,2 (1, 1, 0; 2) (1, 2) (6, 2) 27 +1 0

χc
1,...,6 (1, 1, 0; 1) (1, 1) (1, 1) 1 −1 0

p× S (1, 1, 0; 1) (1, 1) (1, 1) 1 0 +1

Ω1,2 (1, 1, 0; 2) (1, 2) (6, 2) 27 0 0

h (1, 2,+1

2
; 1) (5, 1) (15, 1) 27 0 0

h′1,2 (1, 2,−1

2
; 2) (5, 2) (6, 2) 27 0 0

σ (1, 1, 0; 1) (1, 1) (1, 1) 1 +1 −1

Table 1. The fermion and scalar content of the model.

can. For example, there are both (χIχ
c
a)〈ΩI〉 and (χIχ

c
a)〈Ω

∗
I〉 Yukawa terms, and similarly

there are both hh′IΩI and hh′IΩ
∗
I terms in the Higgs potential. (These facts imply the

chemical potential of the Ω fields zero, which is relevant to our later discussion.)

To break the electroweak gauge group and give mass to all the Standard Model quarks

and leptons, there must be more than one SU(2)L doublet of Higgs fields. The masses

of the up quarks come from a Higgs doublet, which we shall denote h, that would be

contained in (5, 1) of SU(5) × SU(2)∗. In that language, it has Yukawa couplings of the

type (10, 1)(10, 1)〈(5, 1)h〉, which contains in particular uuc〈h〉. The down quarks and

charged leptons obtain mass from a pair of Higgs doublets, which we denote h′I , that

would be contained in (5, 2) of SU(5)× SU(2)∗. These have Yukawa couplings of the form

(10, 1)(5, 2)〈(5, 2)h〉, which contains in particular ddcI〈h
′
I〉 and ℓcℓI〈h

′
I〉. The neutrinos can

obtain mass from the dimension-5 effective operator νIνJ〈h
′
I〉〈h

′
J〉/MR. It does not matter

for our purposes whether this operator arises from the Type I or Type II see-saw mechanism.

Finally, two more types of particle are contained in the model: some number (p)

of gauge singlet fermions that will be denoted S and a gauge singlet boson that will be

denoted σ. These will play a role, as will be seen, in allowing dark matter particles and

their antiparticles to annihilate leaving only “asymmetric dark matter”.
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The complete fermion and scalar content of the model is displayed in table I. In the last

two columns of table I, we give the charges of the fields under two global symmetries, U(1)X
and U(1)W . The charge X is the crucial one for the model. It is the asymmetry in X that

is responsible for the existence of stable dark matter. The charge W plays the role of con-

straining the couplings of the singlet fields S and σ that are responsible for the annihilation

of dark matter particles with their anti-particles. In particular, the global U(1)W invariance

means that these fields interact only by the Yukawa term y(χcS)σ. This term allows the an-

nihilation process χc+χc −→ S+S to occur by the exchange of a σ boson in the t channel.

The σ boson is assumed to have no vacuum expectation value, and therefore the S fermions

are massless. In this way, essentially all the dark matter anti-particles annihilate with dark

matter particles into massless particles, whose energy is red-shifted away as the universe

expands, leaving only the dark matter particle excess, i.e. the “asymmetric dark matter”.

The global symmetries U(1)X and U(1)W can arise as accidental symmetries of the low

energy theory even if GSM × SU(2)∗ is unified in a larger group, as will be discussed later.

3 The genesis of the dark matter asymmetry

Now that the particle content and couplings of the model have been defined, we turn to

the process by which the dark matter asymmetry is generated. The sphalerons of SU(2)∗
create one each of every left-handed fermion that is a doublet of SU(2)∗, namely (for each

family) the three colors of dcI , the leptons νI and ℓI , and the X-bearing particles χI .

Thus, for the SU(2)∗ sphaleron processes ∆X = ∆B = 1

2
∆L. (We follow the loose but

common practice of referring to processes that involve the anomaly of some group G as

“sphalerons” even if they happen at a temperature far above the scale at which G is broken

rather than through tunneling.) The sphalerons of the electroweak SU(2)L give ∆X = 0

and ∆B = ∆L. All other processes at low energy conserve B, L, and X. (There might be

grand unified interactions that violate these quantum numbers, and such interactions might

have played a role in generating a primordial asymmetry in one or more of them. But when

the temperature is far below the grand unification scale, we can neglect these interactions.)

There are four cosmological eras that need to be considered: (a) The era when some

primordial asymmetry of B, L, or X (or some combination of them) was generated. This

could have been by means of grand unified interactions; but in any case we assume that it

happened when the temperature was much higher than the scale M∗ at which the SU(2)∗
interactions are broken. It does not matter for us which of the many mechanisms that have

been proposed for baryogenesis or leptogenesis is responsible for this, or what the relative

values were of the asymmetries in B, L, and X that were produced in this primordial era.

(b) The era after the primordial asymmetries were generated, but when the temperature

is still greater than T∗, where T∗ is the temperature below which the SU(2)∗ sphalerons

processes effectively cease. (c) The era when TW < T < T∗, where TW is the temperature

below which the SU(2)L sphaleron processes effectively cease. (TW has been estimated to

be about 200GeV [32, 33].) And (d), the era when T < TW .

In era (b), when both kinds of sphaleron processes (SU(2)∗ and SU(2)L) are active,

the ratios of X, B, and L are determined by thermodynamics. The point is that the

– 5 –
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requirement of equilibrium for the two kinds of sphaleron processes gives two conditions

on the two independent ratios of these quantum numbers. At the end of era (b), when T

falls below T∗ and the SU(2)∗ sphaleron processes effectively cease, the ratio of X to B−L

is frozen, because all other processes conserve both B − L and X.

In the next era, when TW < T < T∗, the SU(2)L sphaleron processes continue to

violate B and L, and the ratio of B to L changes to a new value that can be computed

from the requirement that the SU(2)L sphalerons are in equilibrium. The ratio of B to L

becomes frozen when the temperature falls below TW , since after that point all processes

conserve both B and L. Consequently, from that point on, down to the present, X, B, and

L remain in constant ratios to each other.

Finally, when the temperature falls below the mass of the lightest X-bearing particle

(which is the dark matter particle), virtually all the particles with non-zero X annihilate

with their anti-particles into massless S fermions, except the residue that cannot annihilate

due to the asymmetry in X. (We assume the dark matter annihilation is sufficiently fast

to leave almost purely asymmetric dark matter. This puts a constraint on the mass and

coupling of the scalar σ, which will be discussed later.)

We now turn to the thermodynamic calculation of the ratios of X, B, and L, which

parallels the calculations in [34, 35]. We start with era (b) when there is already some

primordial asymetry and when T > T∗. We assume that in this era the SU(2)∗ symmetry

may be treated as unbroken. Thus all the particles within an irreducible multiplet of

GSM ×SU(2)∗ all have equal chemical potentials, and the chemical potentials of the gauge

bosons vanish. Moreover, the scattering processes involving the Yukawa interactions and

scalar self-interactions, which we assume to be in equilibrium, give relations among the

chemical potentials that allow one to write all of them in terms of just five, namely µQ, µL,

µχ, µh, and µσ, which are respectively the chemical potentials of the quark doublets (u, d),

the lepton doublets (νI , ℓI), the χI , and the scalar fields h and σ. In particular, we have

µΩ = µΩ∗ ⇒ µΩ = 0,

µL + µL + µΩ = 0 ⇒ µL = −µL,

µh + µh′ + µΩ = 0 ⇒ µh′ = −µh,

µuc = −µQ − µh,

µdc = −µQ + µh,

µℓc = −µL + µh,

µdc + µdc + µΩ = 0 ⇒ µdc = −µdc = µQ − µh,

µχ + µχc + µΩ = 0 ⇒ µχc = −µχ,

µχc + µS + µσ = 0 ⇒ µS = µχ − µσ.

(3.1)

The next step is to realize that the electric charge Q and the global charge W are

conserved by all interactions, and therefore the conditions Q = 0 and W = 0 must be

satisfied. These two conditions will allow us to solve for the chemical potentials of the

scalars, µh and µσ, in terms of those of the fermions, µQ, µL, and µχ. In computing the

density of Q and W , we assume that all the particles of the model have masses small

– 6 –
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compared to M∗ and thus to T . (When T ∼ T∗, the mass of Ω may perhaps not be

negligible compared to T , but this will not matter for what follows since µΩ = 0.)

The condition for electric charge to vanish is then

0 = Q ∝ 6µL(−1) + 3µℓc(+1) + 3µL(+1)

+ 9µQ

(

+
2

3

)

+9µuc

(

−
2

3

)

+9µQ

(

−
1

3

)

+18µdc

(

+
1

3

)

+9µdc

(

−
1

3

)

+ (b(0)/f(0))[µh(+1) + 2µh′(−1)]

⇒ 0 = −12µL + 24µh ⇒ µh =
1

2
µL

(3.2)

where f(x)≡ 1

4π2

∫∞

0
y2dy[cosh2(1

2

√

y2+x2)]−1 and b(x)≡ 1

4π2

∫∞

0
y2dy[sinh2(1

2

√

y2+x2)]−1

are integrals over the Fermi and Bose distribution functions and x = m/T . Since we are

assuming that the particle masses are small compared to T∗, we have that b(x)/f(x) ∼=

b(0)/f(0) = 2. In obtaining the last line of eq. (3.2), we have used the relations given in

eq. (3.1). In a similar way we have, from the vanishing of W ,

0 = pµS(+1) + (b(0)/f(0))µσ(−1) ⇒ µS =
2

p
µσ

⇒ µχ − µσ =
2

p
µσ ⇒ µσ =

(

p

p+ 2

)

µχ,

(3.3)

where to get the last line of eq. (3.3), we have used the last relation in eq. (3.1). We remind

the reader that the integer p in eq. (3.3) is the the number of massless S fields. (See table

I.) The minimal model would therefore simply have p = 1.

The final step in analyzing era (b), is to use the equilibrium conditions for the two

types of sphalerons to relate the chemical potentials of the fermions, µQ, µL, and µχ. The

condition for equilibrium of the SU(2)L sphalerons is simply

0 = 9µQ + 6µL + 3µL ⇒ µQ = −
1

3
µL, (3.4)

where we have used µL = −µL from eq. (3.1). For the SU(2)∗ sphalerons, the equilibrium

condition is

0 = 6µL + 9µdc + 3µχ = 6µL + 9(−µQ + µh) + 3µχ

⇒ 0 =
21

2
µL − 9µQ + 3µχ ⇒ 0 =

27

2
µL + 3µχ

⇒ µχ = −
9

2
µL,

(3.5)

where in the middle steps in eq. (3.5) we have used eqs. (3.2) and (3.4) to eliminate µh

and µQ.

So, finally, we have from eqs. (3.2)–(3.5) all the chemical potentials in terms of just

one, µL. We are now in a position to compute the ratio of X to B−L at the end of era (b).

– 7 –
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Again assuming that the particles that carry B, L, and X are light compared to T∗, one has

B ∝
1

3

(

18µQ − 9µuc − 18µdc + 9µdc

)

= 18µQ − 6µh = −9µL,

L ∝ 12µL − 6µL − 3µℓc = 21µL − 3µh =
39

2
µL,

X ∝ 6µχ − 6µχc + (b(0)/f(0))µσ = 12µχ + 2µσ = −9

(

7p+ 12

p+ 2

)

µL.

(3.6)

Consequently,

X

B − L
=

6

19

(

7p+ 12

p+ 2

)

, (3.7)

which, by a very strange coincidence, is simply equal to 2 in the minimal case, where

p = 1. This is the ratio of X to B − L that exists also at the present era.

In order to obtain the present ratio of X to B, which is our aim, we need to consider

what happened in era (c), when the present ratio of B to L was established. We assume

that in era (c), where T > TW > MW , the electroweak symmetry is unbroken and therefore

the chemical potential of the W bosons vanishes and the chemical potentials are equal for

all particles within any Standard Model multiplet.

In era (c), we no longer have to consider the quantum number X or the chemical

potentials of the X-bearing particles, as they do not affect the ratio of B to L. The

important chemical potentials are µQ, µL, and µh. The chemical potentials of the other

quarks and leptons are given in terms of these by the relations in eq. (3.1), which are still

valid in era (c). Eq. (3.4), which gives the relation arising from the equilibrium of SU(2)L
sphaleron processes, is also still valid.

The strategy is the same as the calculation done in era (b), but simpler. The first step

is to use the condition that the universe has Q = 0 to derive a formula for µh in terms of

µQ and µL. This relation is different from that for era (b), given in eq. (3.2), because in

era (b) the charge density included the contributions from the “extra” quarks and leptons

in (5, 1) and (5, 2), namely the ℓ, ν, dc and the half of the ℓ1,2, ν1,2 and dc1,2 with which

they mate to obtain mass. Those fermions are light compared to T in era (b); but in era

(c) (or at least near the end of that era) we can neglect them because we assume that they

are heavy compared to the electroweak scale and thus highly Boltzmann suppressed.

Therefore the only particles that one must consider in computing the electric charge

density are all the fermions of the Standard Model and the three electroweak Higgs doublets

h, and h′1,2. All these fermions may be treated as massless (since we are assuming that

SU(2)L is unbroken in this era). However, the masses of h and h′1,2 must be taken into

account. We therefore define the quantity ch ≡ [b(mh/TW )+b(mh′

1
/TW )+b(mh′

2
/TW )]/b(0).
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Given all this, one has

0 = Q ∝ 3µL(−1) + 3µℓc(+1)

+ 9µQ

(

+
2

3

)

+ 9µuc

(

−
2

3

)

+ 9µQ

(

−
1

3

)

+ 9µdc

(

+
1

3

)

+ (b(0)/f(0))chµh(+1)

⇒ 0 = −6µL + 6µQ + (12 + 2ch)µh

⇒ 0 = −8µL + (12 + 2ch)µh ⇒ µh =
4

6 + ch
µL,

(3.8)

where we have used the SU(2)L sphaleron equilibrium condition µQ = −1

3
µL, given in

eq. (3.4). Now that we have both µh and µQ in terms of µL, we may compute the ratio of

B to L. Again, this gives a result different from eq. (3.6), because of the different relation

between temperature and mass that holds in era (c). One obtains

B ∝
1

3
(18µQ − 9µuc − 9µdc) = 12µQ = −4µL

L ∝ 6µL − 3µℓc = 9µL − 3µh = 9µL − 3
4

6 + ch
µL =

42 + 9ch
6 + ch

µL,
(3.9)

Therefore, when T falls below TW , the ratio L/B is frozen at

L

B
= −

3

4

(

14 + 3ch
6 + ch

)

. (3.10)

Combining this with eq. (3.7) gives

X

B
=

6

19

(

7p+ 12

p+ 2

)(

66 + 13ch
4(6 + ch)

)

, (3.11)

which for the minimal case p = 1 reduces to

X

B
=

66 + 13ch
2(6 + ch)

. (3.12)

For the allowed range 0 < ch < 3 this varies between 5.5 and 5.833. If, as seems reasonable,

one assumes that one linear combination of the three electroweak Higgs doublets (the

“Standard Model Higgs doublet”) is much lighter than the others, one would expect

ch ∼= 1, giving X/B ∼= 5.64. A value of X/B ≈ 5.6 implies that the dark matter particle

has a mass close to 1GeV.

Besides the dark matter particle itself, there are five other flavors of χ(χc) particles.

These are, by definition, heavier than the dark matter particle and will all have decayed

or annihilated by the time the temperature reaches 1GeV. It is important that the energy

released in these decays and annihilations does not get trapped in the dark sector (i.e.

the sector of χ, χc, σ, and S), as otherwise the thermal energy of the massless S particles

at the time of primordial nucleosynthesis might cause the universe to expand too fast,

leading to an excessive primordial Helium abundance. However, as long as M∗ < 100TeV,
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the particles of the dark sector are kept in thermal contact with the Standard Model

particles by SU(2)∗ gauge interactions and do not “overheat”.

In order for the dark matter to be almost purely asymmetric, there must be an efficient

mechanism for dark matter particles and their antiparticles to annihilate into massless

particles. This is why we introduced the massless S fermion(s) and the scalar σ. Given

the Yukawa coupling y(χcS)σ, which was mentioned earlier, the exchange of a σ allows the

annihilation process χc + χc −→ S + S. In order to have the density of dark matter anti-

particles very small compared to the density of dark matter particles, mσ/y must be less

than about 10GeV. Of course, this involves fine-tuning in the absence of supersymmetry

or some other symmetry or mechanism that would make such a small scalar mass natural.

In computing the ratios of B, L, and X above, we made certain assumptions about the

SU(2)L and SU(2)∗ dynamics. In particular, we assumed that at the temperature when

the anomalous processes of one of these interactions become cosmologically negligible,

the interaction in question may be treated as still unbroken. It is possible to make other

assumptions [34, 35]. The result for the B, L, X ratios would not greatly change. But to

get an exact result one would need to understand the sphaleron dynamics and the details

of the SU(2)L and SU(2)∗ phase transitions well.

The whole scenario depends on there being a global charge X that is conserved ex-

cept for the SU(2)∗ anomaly (and possibly GUT-scale interactions). The question is why

there should be such a global U(1)X and whether it is compatible with grand unification.

The answer is that it can arise as an accidental symmetry of the low-energy theory. And,

despite appearances, this can easily happen even in a grand unified version of this model.

For example, consider an embedding of the model into SU(5) × SU(2)∗. Suppose that all

the Yukawa coupling allowed by SU(5) × SU(2)∗ exist, except for (5, 2)(1, 2)(5, 1)h. (In

other words, the following Yukawa couplings exist: (10, 1)(10, 1)(5, 1)h, (10, 1)(5, 2)(5, 2)h,

(5, 1)(5, 2)(1, 2)h, and (1, 2)(1, 1)(1, 2)h. This is easily ensured by a discrete global symme-

try that commutes with SU(5)×SU(2)∗. For instance, one can have a ZN symmetry under

which (10, 1) → ω(10, 1), (5, 1)h → ω∗2(5, 1)h, (5, 2)h → ω∗(5, 2)h, with all other multiplets

transforming trivially. It is easy to show that with the coupling (5, 2)(1, 2)(5, 1)h missing,

the global U(1)X shown in table I arises as an accidental symmetry of the low-energy theory.

How would one observe dark matter in the laboratory? It would be very difficult to

produce or detect it directly, since it interacts with the Standard Model particles only by

the SU(2)∗ gauge interactions, which are much more feeble than the weak interactions,

because broken at a much higher scale. On the other hand, the “extra” quarks and

leptons that are in (5, 1) and (5, 2) could be directly produced in accelerators through their

Standard Model interactions. These then could decay into a combination of Standard

Model particles and the dark particles χ(χc) by means of their SU(2)∗ gauge interactions.

Each “extra” fermion in (5, 2) is a partner in an SU(2)∗ doublet with a Standard model

fermion, to which it can be converted by emitting an SU(2)∗ gauge boson. That boson,

in turn, can decay into χ + χ). The “extra” fermions can also decay by ordinary charged

weak interactions entirely into Standard Model particles. The point is that the “extra”

fermions mix slightly with the Standard Model fermions of the same color and charge.

For example, the dc mix with the left-handed d, s, and b quarks with mixing angles that

are of order md,s,b/mdc , and similarly for the “extra” leptons.
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The model described above is an illustration of a general idea that could be im-

plemented in other ways. For example, one can construct an SU(7) unified model

that is in many ways quite similar to this. The fermions can be placed in three fam-

ilies, each consisting of 21 + 7 + 7 + 7, which is the simplest way to incorporate a

family in SU(7). Under the SU(5) × SU(2)∗ subgroup, each family decomposes into

(10, 1)+(5, 2)+(1, 1)+3×(5, 1)+3×(1, 2). As in the model described earlier in this paper

there would be (1, 2) fermions, which could be the dark matter, and “extra fermions” in

5 + 5 of the SU(5). A difference with the model described earlier, which would be phe-

nomenologically significant, is that the extra fermions in the SU(7) model would not be

paired in SU(2)∗ doublets with ordinary Standard Model quarks and leptons. Both com-

ponents of each (5, 2) get large mass with (5, 1) multiplets. Nevertheless, there would be

mixing between the “extra fermions” and the Standard Model (SM) fermions. As in the

model described earlier, those mixing angles would be of order the ratio of the masses of the

SM fermions and extra fermions. The result would be that a heavier extra fermion would

predominantly decay into a lighter extra fermion plus a dark matter pair, as its decays into

a SM fermion plus dark matter pair would be suppressed by these small mixing angles.

The lightest extra quark (or lepton) would have no choice, however, but to decay into SM

quarks (or leptons). This would predominantly happen through the weak interactions,

since, as in the model described earlier, the dc would mix slightly with the left-handed d,

s, and b, and similarly for the leptons.

4 Conclusions

We have shown that it is possible to construct simple unified models in which the

sphalerons of a new interaction convert asymmetries of B and L into a dark matter asym-

metry. Since there are two kinds of sphaleron process involved, the equilibrium conditions

allow one to compute the ratios of B, L, and X (the dark matter number) independently

of the nature of the primordial asymmetry, e.g. whether it was an asymmetry in B or in

L. Since one can compute the ratio of X to B in such models, one obtains a prediction

for the mass of the dark matter particle. The dark matter particles in the scenario we

describe does not have Standard Model gauge interactions and so would not be easily

detectable in a direct way. However, such models generically give rise to extra vectorlike

pairs of quarks and leptons that transform like 5 + 5 of SU(5). These could be directly

produced, and decay into Standard Model fermions plus dark matter particle-antiparticle

pairs. The phenomenology of such models remains to be explored.

These models predict the number density of dark matter a priori but not their mass,

leaving mass of the dark matter particle to be inferred from the measured dark matter

density. It would be interesting to see if a model could be constructed which predicts a

priori both the number density and mass of the dark matter particles.
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