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1 Introduction

Black branes provide a fascinating connection between gravitational physics and strongly

coupled quantum field theories at finite density. By the AdS/CFT correspondence [1–3],

a (d + 1)-dimensional QFT at finite chemical potential for a conserved charge is dual to

a charged d-dimensional brane in AdSd+2. This has created a new area of research at the

interface of condensed matter and high energy physics, with powerful methods that can

be applied to systems of strongly interacting fermions [4–7] . This is especially important

given the discovery of new materials, such as high Tc superconductors and heavy fermion

metals [8–10], which require going beyond the Fermi liquid paradigm.
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A very successful “bottom-up” approach has been to apply AdS/CFT to phenomeno-

logical models of Einstein gravity plus matter fields at finite chemical potential. Varying

the matter content and interactions has revealed a rich set of phenomena and striking con-

nections with condensed matter systems. The next step in this program has been to find

string theory realizations of such constructions, and determine which of these phenomena

can occur in a consistent theory of gravity. The best understood microscopic AdS/CFT

dual pairs arise from Freund-Rubin vacua AdSd+2 × Y , with Y a positively curved man-

ifold [11]. These solutions have the important property that the size of Y is of order of

the AdS radius [12]. The bottom-up models can then be realized as consistent truncations,

where solutions of the (d+2)-dimensional theory can be lifted to the full supergravity theory,

keeping only a finite number of fields. In this way, it is possible to obtain new supergravity

solutions that include the effects of nonzero chemical potentials or other background fields.

However, the situation is not completely satisfactory, since there is no guarantee that

the solutions generated in this way are minima of the full theory.1 Kaluza-Klein (KK)

fields not included in the truncation can develop instabilities, and in general it is extremely

hard to establish the perturbative stability of these solutions. Ultimately, the reason is that

there is no parametric separation between the AdS scale and the internal radius; there is

never a (d+ 2)-dimensional theory at low energies and KK modes cannot be decoupled. In

this work we will take a different approach: we will construct black branes in string the-

ory which can be described in terms of a (d+ 2)-dimensional effective field theory (EFT),

namely a theory with a small number of fields valid up to a UV cutoff that is parametrically

larger than the masses and AdS scale.

Microscopically, this means that the internal dimensions have to be much smaller than

the AdS radius, so we have a compactification as opposed to a truncation. At the level

of the (d+ 2)-dimensional theory, an EFT for black branes is rather different from a con-

sistent truncation, in that the small number of light fields in the theory determine all the

basic low energy properties, its stability and thermodynamics (at least at the perturba-

tive level). The price to pay is that in general the higher dimensional solution is known

only approximately; nevertheless, as we explain below, these approximations have negli-

gibly small effects on the low energy dynamics in perturbatively controlled regimes. In

this paper we will accomplish the above goal by constructing black branes in flux com-

pactifications of string theory. Flux compactifications [13–18] provide tools beyond the

Freund-Rubin mechanism which can give rise to the desired RAdS � RKK hierarchy. Ex-

amples of AdS4 and AdS5 vacua with small internal dimensions include [19, 20]. We will

focus on asymptotically AdS4 solutions, dual to (2 + 1)-dimensional field theories.

Our investigation is also motivated by constructing models of symmetric phases of

matter that can be stable at very low temperatures. Field theory models of non Fermi liq-

uids often have relevant operators and suffer from symmetry-breaking instabilities as the

temperature is lowered. Similar issues are encountered in the gravity side, for instance with

superconducting [21–23] or translation-breaking [24] instabilities. While these instabilities

can lead to interesting broken phases, it is important to develop tools to stabilize symmetric

1Except in certain special cases where additional symmetries, such as supersymmetry, ensure stability.
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phases by lifting the dangerous relevant operators. For this, we need to find gravity solu-

tions where all the scalar fields have positive masses. Fortunately, during the last decade

there has been important progress in developing mechanisms to lift all the light moduli in

string compactifications. The motivation has been to construct string vacua that could give

realistic models of cosmology or particle physics, and we will apply these results to stabilize

phases of condensed matter systems. Combining fluxes and certain orbifold operations we

will exhibit simple flux compactifications that describe holographic QFTs where the only

relevant operator is the global current that gives rise to the chemical potential, and all scalar

operators are irrelevant. Furthermore, the operators that are charged under the chemical

potential — the strongly coupled “electrons” — have parametrically large dimensions. This

class of theories is then an ideal laboratory for studying interesting IR symmetric phases.

1.1 Basic setup and structure of the paper

Before beginning our analysis, let us describe the basic setup. We are mainly interested

in (2 + 1)-dimensional QFTs at finite density, so we will focus on flux compactifications

that admit AdS4 × Y solutions. The internal manifold Y is taken to be a six-dimensional

Calabi-Yau (CY) manifold. The main motivation for this is that the low energy theory for

CY compactifications is very well understood [26]. Moreover, in the perturbative regime of

weak string coupling and large volume, the low energy theory depends only on topological

information of the manifold, such as dimensions of cycles and cohomology. The EFT for

black branes will then apply very generally to all CYs, making it a powerful and simple

tool to analyze the low energy physics.

Now we need to explain how the main ingredients required for black brane solutions —

a negative cosmological constant and gauge fields — are obtained in this setup. The internal

space is Ricci-flat, so there is no negative contribution to the potential energy from the inter-

nal curvature (unlike the case of Freund-Rubin vacua). The negative energy will come from

orientifold planes, and balancing their contribution against fluxes (from color branes) can

produce AdS vacua. With the goal of stabilizing all the light scalars, we will work with type

IIA string theory, where AdS solutions with the desired properties are already known [19].2

Models based on consistent truncations typically have gauge fields from the isometries

of the positively curved internal space Y . However, CY manifolds have no isometries, so we

need to look for other sources of gauge fields. Already in the early works on CY compact-

ifications it was noticed that evaluating the RR potentials on the nontrivial cohomology

forms can give rise to gauge fields; see [25] for a review and references. Decomposing the

type IIA RR-potential in terms of a harmonic two-form ω,

C3 = (Aµdx
µ) ∧ ω , (1.1)

gives a 4d gauge field Aµ, whose equation of motion follows from the harmonic condition.

Therefore, the nontrivial topology of the CY gives rise to gauge fields in the compactified

theory. This is the mechanism that we will use in order to have dual field theories at finite

chemical potential. Similar topological charges have been employed recently in [28–32].

2Stabilizing all moduli in type IIB CY compactifications requires nonperturbative effects [27]. It would

be interesting to understand these instanton effects in the dual QFT.
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The general framework of type IIA flux compactifications on CY manifolds is presented

in section 2, focusing on the structure and interactions of gauge fields and properties of the

field theory duals. Most of this material is review, but applications of CY flux compacti-

fications to holographic systems at finite density have not been considered before, so it is

useful to have a self-contained exposition. Concrete examples are discussed in section 3,

which shows that very simple manifolds such as orbifolds of a six-dimensional torus have

the required properties to produce black branes. Here one can understand very explicitly

the internal geometry, fluxes, and gauge fields. This section also analyzes models that are

dual to QFTs with no relevant scalar operators. CYs with minimal matter content (one size

modulus and one gauge field) are already of this type. We also suggest a nonsupersymmet-

ric model that captures some of the basic constraints from string compactifications. This

theory has only one scalar field and is a useful toy model for exploring possible IR phases.

The main part of the paper is section 4, where we explain how to obtain black branes in

flux compactifications and present the general effective field theory and its regime of valid-

ity. Thermodynamic properties of black branes are analyzed using holographic renormal-

ization. Flux compactifications then provide a UV complete and perturbatively controlled

framework for classifying holographic phases of matter; we initiate this analysis in section 5.

We present generalizations of the AdS Reissner-Nordstrom black hole, nonsupersymmetric

AdS2 × R2 solutions, and branes with hyperscaling violation. A lot of work remains to be

done to understand the phase structure of black branes in flux compactifications, and in

section 6 we present a summary and possible future directions.

2 Type IIA compactifications, gauge fields and holography

This first section describes the general supergravity setup in which we will construct 4d

black branes. We present a short but hopefully self-contained overview of type IIA flux

compactifications on Calabi-Yau manifolds; excellent reviews include [13–18]. Our focus

here will be on the structures needed for black branes: gauge fields and their interactions,

the effective field theory description, and properties of the holographic QFT duals.

2.1 Review of ten-dimensional supergravity and compactification

The starting point is the string frame 10d action for type IIA supergravity,

S =
1

2κ2
10

∫ √
−g
(
e−2φ

(
R+ 4(∂φ)2 − 1

2
|H3|2

)
− |F̃2|2 − |F̃4|2 − F 2

0

)
+SCS+Sloc , (2.1)

where SCS are the 10d Chern-Simons terms, and Sloc denotes the contribution from local-

ized sources (O6 planes in our case). The field strengths F̃n = F bgn + dCn−1 + . . . have

contributions from the RR-potentials Cn−1, quantized background fluxes F bgn (specified

below), and some extra terms from mixings with B2. We follow the conventions of [19, 25].

Consider a compactification M9,1 = M3,1 × Y , where Y is a Calabi-Yau orientifold.

Its cohomology determines the matter content of the 4d theory. First, the two-dimensional

cohomology group splits into even and odd forms under the action of the O6 plane; the
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basis of harmonic forms is denoted by

ωα ∈ H
(1,1)
+ (Y ) , ωa ∈ H

(1,1)
− (Y ) , (2.2)

where α = 1, . . . , h
(1,1)
+ and a = 1, . . . , h

(1,1)
− . The dual 4-forms ω̃α and ω̃a satisfy∫

ωα ∧ ω̃β = δβα ,

∫
ωa ∧ ω̃b = δba . (2.3)

An important object will be the triple intersection

κABC =

∫
ωA ∧ ωB ∧ ωC , (2.4)

where A = (α, a). We will see shortly that these harmonic forms give rise to scalar fields

(Kähler moduli) and gauge fields in the 4d theory.

The other nontrivial cohomology group is H(3)(Y ), which encodes the complex struc-

ture deformations of the CY. These moduli do not mix with the Kähler moduli or the

gauge fields, so they will not be turned on in black brane geometries as long as they are

stable. To keep the exposition simple let us assume for now that there are no complex

structure deformations, i.e. the CY is rigid; shortly we will explain how to add this sector.

For a rigid CY, there are only one even and one odd harmonic 3-forms, which we denote

by α0 ∈ H
(3)
+ (Y ) , β0 ∈ H

(3)
− (Y ).

Before introducing the orientifold and fluxes, the theory has N = 2 supersymmetry

and each harmonic 2-form gives rise to an N = 2 vector-multiplet, namely an N = 1

vector multiplet plus a chiral multiplet. The orientifold then projects out either the vector

or the chiral multiplet. Naively, this would suggest that we cannot have simultaneously

a scalar and a gauge field. However, there is a simple way out: all that is needed is to

have two-forms of both parities under the orientifold. Then, the orientifold projection will

keep the scalars in the odd two-forms and the gauge fields in the even forms. The minimal

structure is to have two harmonic forms, one of each parity.

Let us now describe the light fields that will be part of the EFT. The zero modes of

the p-forms that are allowed by the orientifold are

B2 = ba(x)ωa , C3 = ξ(x)α0 +Aα(x) ∧ ωα . (2.5)

Here ba and ξ are axions, while Aα = Aαµdx
µ are h

(1,1)
+ gauge fields. Since the internal

forms are chosen to be harmonic, these fluctuations satisfy the equations of motion for

massless fields. Additional moduli come from fluctuations of the internal metric. Kähler

deformations are associated to fluctuations of (1, 1) type δgij̄dy
i ∧ dyj̄ that can be encoded

in the Kähler form

J = va(x)ωa . (2.6)

The complex structure moduli are fluctuations of type δgij that do not respect the Kähler

condition; they do not mix with the Kähler moduli and their effects are discussed below.

More details on the moduli space of CY manifolds may be found in [26]. The last light

mode corresponds to the zero mode of the 10d dilaton φ(x).

– 5 –
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The allowed background fluxes are

F0 = m0 , H
bg
3 = −pβ0 , F2 = −maωa , F4 = eaω̃

a . (2.7)

Since type IIA superstring theory has both electric and magnetic sources, these fluxes need

to obey Dirac quantization conditions, which means that the coefficients in (2.7) are propor-

tional to integers [19]. Furthermore, the Gauss law for the O6 charge givesm0p = −
√

8π2α′.

This implies that the corresponding integer fluxes for F0 and H3 are order one, while two

and four-form fluxes are unconstrained. We note that fluxes in type IIA deform the topo-

logical type of the internal space, making it non-Kähler or non-complex [13–18]. However,

we will argue in section 4.3 that these effects can be neglected in the large flux regime.

2.2 Four-dimensional effective theory

We now compactify over Y , assuming a metric ansatz of the form

ds2 =
e2φ(x)

vol(x)
gµν(x)dxµdxν + gij̄(x, y)dyidyj̄ , (2.8)

where vol is the 6d internal volume

vol =
1

6

∫
J ∧ J ∧ J , (2.9)

and the prefactor in front of the 4d metric corresponds to choosing 4d Einstein frame with

κ2
4 = κ2

10 — which we set to one in what follows. The effective low energy theory keeps only

the zero modes and background fluxes discussed in section 2.1. We also neglect backreac-

tion from fluxes or localized sources via warp factors [33–35], nonzero torsion classes that

deform the topology type of the internal space, and the internal Kaluza-Klein (KK) modes,

an approximation that will be self-consistent over a large range of fluxes. The regime of

validity of this effective description will be discussed in detail in section 4.3. The effective

theory simplifies considerably in this limit: the kinetic terms and gauge kinetic functions

are given (approximately) by N = 2 supersymmetry, and the whole theory depends only

on integer fluxes and topological data of the CY.

In this approximation, the 4d theory is N = 1 supergravity with chiral and vector

multiplets, as well as a potential generated by the background fluxes [25],

Seff =

∫
d4x
√
g

(
1

2
R−KIJ̄g

µν∂µφ
I∂ν φ̄

J̄−Vflux−
1

4
Imταβ F

α
µνF

β µν+
1

4
Reταβ F

α
µνF̃

β µν

)
.

(2.10)

The metric signature is (− + ++), and R denotes the Ricci scalar of gµν . The fermionic

partners are not included here. Also, we are not showing certain boundary terms (see

section 4.2) that need to be added to Seff in order to have a well-defined variational prob-

lem and for performing holographic renormalization. Let us explain in detail the different

contributions to this action.

The complex scalars φI = (ta, u) are the bosonic components of chiral superfields that

combine the axions, dilaton, and metric fluctuation:

ta ≡ ba + iva , u ≡ ξ +
√

2ie−D , eD ≡ eφ√
vol

. (2.11)

– 6 –
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These ‘moduli’ acquire nonzero masses from the background fluxes, but — as we discuss

below — are still much lighter than the KK modes. The Kähler potential is given by

K(φ, φ̄) = − log

(
4

3
κabcv

avbvc
)

+ 4D , (2.12)

and the kinetic term is calculated as KIJ̄ = ∂I∂J̄K.

The flux potential is of the general N = 1 form,

Vflux = eK(KIJ̄DIWDJ̄W̄ − 3|W |2) , (2.13)

with superpotential (neglecting nonzero torsion)

W =

∫
Ω ∧H3 +

∫
J ∧ F4 −

1

2

∫
J ∧ J ∧ F2 −

m0

6

∫
J ∧ J ∧ J

= −pu+ eat
a +

1

2
κabcm

atbtc − m0

6
κabct

atbtc , (2.14)

where DIW = ∂IW + (∂IK)W . In order to calculate the potential, note that the F2

contributions can be set to zero by the redefinitions

ẽa ≡ ea +
1

2

κabcm
bmc

m0
, ũ ≡ u− eam

a

pm0
− κabcm

ambmc

3pm2
0

, t̃a ≡ ta − ma

m0
. (2.15)

A few algebraic manipulations then give

Vflux =
3e4D

K

{
Kab̄

4

(
ẽa −

1

2
m0K̃a

)(
ẽb −

1

2
m0K̃b

)
+

1

36
(m0K)2 +

(
pξ̃ +

m0

6
K̃ − ẽab̃a

)2

+
1

9
(m0K)2Kab̄b̃

ab̃b
}

+
3

2
p2 e

2D

K
−
√

2 |m0p| e3D , (2.16)

in terms of the quantities

Kab = κabcv
c , Ka = κabcv

bvc , K = κabcv
avbvc

K̃ab = κabcb̃
c , K̃a = κabcb̃

bb̃c , K̃ = κabcb̃
ab̃bb̃c . (2.17)

Here b̃a and ξ̃ are the shifted axions introduced in (2.15). This form makes it clear that

the properties around the AdS4 vacua are only sensitive to the combination ẽa, so we

could just set the F2 flux to zero. Nevertheless, we will keep F2 6= 0 because it allows for

nonzero expectation values for axions, which have interesting applications to condensed

matter systems with parity breaking [36, 37]

A crucial property of the string theory potential in Einstein frame is that Vflux → 0 in

the limit when the internal space decompactifies and the string coupling goes to zero. This

limit recovers flat 10d space as a vacuum solution. In particular, we stress that (2.16) has

no ‘hard’ cosmological constant, i.e. there is no constant term. These properties will have

important effects on the allowed black brane solutions.

Finally we come to the gauge fields. From (2.5), each gauge field comes from a fluctua-

tion of the 3-form potential C3 = Aα ∧ωα. A D2 brane wrapping the 2-cycle supported on

– 7 –
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ωα is electrically charged under Aαµ, while a D4 brane wrapped on the 4-cycle dual to ω̃α car-

ries magnetic charge. The action for the gauge fields and the relative coefficient between the

FµνF
µν and FµνF̃

µν terms is fixed by supersymmetry. The dual field strength is defined by

F̃µν ≡ 1

2
√
−g

εµνρσFρσ , (2.18)

where the inverse
√
−g makes the FF̃ contribution to the action independent of the metric.

The gauge kinetic function is linear in the Kähler moduli,

ταβ = καβat
a . (2.19)

Therefore, a Kähler modulus whose associated (odd) 2-form ωa has a nonzero triple inter-

section καβa with two even forms (ωα and ωβ) will couple to a gauge field. The vacuum

expectation value 〈va〉 determines the gauge coupling; likewise, a nonzero axion 〈ba〉 gives

rise to a θ-angle.

In summary, type IIA flux compactifications on CY manifolds give rise to a low energy

theory (2.10) containing gravity and chiral and vector supermultiplets with specific kinetic

terms and gauge kinetic functions (dictated by supersymmetry), as well as a flux potential

for the chiral superfields. The CY needs to have cohomology 2-forms of both parities under

the orientifold so that the 4d theory contains both scalars and gauge fields. The theory is

fully specified in terms of integer fluxes and topological data of the CY manifold, such as

the dimensions of cycles and the triple intersection form.

2.2.1 Supersymmetric AdS4 vacua

This class of flux compactifications admits AdS4 vacua that preserve 4 supercharges, each of

which is dual to a (2+1)-dimensional CFT (described in more detail in section 2.3). A black

brane that asymptotes to such a vacuum near the boundary is then dual to a CFT at finite

charge and/or temperature. Let us describe the properties of these vacua in some detail.

Imposing the F-term conditions DuW = DaW = 0 gives the supersymmetry preserving

vacua for the Kähler moduli

〈ba〉 =
ma

m0
, 3m2

0κabc〈vb〉〈vc〉+ 10m0ea + 5κabcm
bmc = 0 , (2.20)

and for the axio-dilaton

p〈ξ〉 =
eam

a

m0
+
κabcm

ambmc

3m2
0

, 〈e−D〉 = −2
√

2

15

m0

p
〈κabcvavbvc〉 . (2.21)

Therefore, the 10d string dilaton is stabilized at

gs = 〈eφ〉 =
15

4
√

3

∣∣∣∣ pm0

∣∣∣∣ 1√
〈κabcvavbvc〉

, (2.22)

and the cosmological constant and AdS radius become

3

L2
= −Vmin = 3〈eK |W |2〉 =

2025

64

p4

m2
0

1

〈κabcvavbvc〉3
. (2.23)
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One key result of [19] is that 4-form fluxes, which are not constrained by charge con-

servation, can be taken to be parametrically large to obtain an AdS solution with large

radius and small string coupling. Indeed, in the large flux limit

ea ∼ N � 1 , (2.24)

the Kähler moduli expectation values scale as 〈va〉 ∼ N1/2 and then

vol ∼ N3/2 , gs ∼ N−3/4 , L2 ∼ N9/2 . (2.25)

These scalings are measured in units of κ4 = 1, the 4d Einstein frame that we have adopted.

The masses of light moduli are generically of order of the AdS scale 1/L2,

L2m2
moduli ∼ O(1) . (2.26)

On the other hand, the mass scale for the KK modes is

m2
KK ∼

e2D

(κabcvavbvc)1/3
⇒ L2m2

KK ∼ O(N) . (2.27)

Therefore, at large N the KK scale is parametrically larger than the AdS scale and the

masses of the light moduli. It is consistent to treat the vacuum as four-dimensional, and

the EFT is valid up to a cutoff of order mKK . We refer to these vacua as AdS4 × (small).

This fact will be crucial for our construction of the EFT for black branes. In contrast,

Freund-Rubin solutions have L2m2
KK ∼ 1. Here the vacuum is not four dimensional; in

special cases there exist consistent truncations that can be analyzed in 4d, but there is no

effective field theory with a finite number of modes.

2.2.2 Complex structure moduli

The discussion so far has ignored complex structure moduli; these are not sourced by gauge

fields or Kähler moduli so they will be spectators of the brane dynamics. Nevertheless, they

do interact with the metric and one has to make sure that they do not lead to instabilities.

Let us now describe the properties and spectrum of these modes.

Complex structure deformations are classified by the cohomology group H(2,1)(Y ) [26]

and give rise to h(2,1) chiral superfields in 4d. The pseudo-scalar components are axions

coming from evaluating the 3-form potential C3 on the harmonic 3-forms, and the scalar

components descend from metric deformations δgij . More details may be found in [25]. It

is useful to group these together with the dilaton, leading to h(2,1) + 1 fields uk. From the

term
∫

Ω ∧H3 in (2.14), only the linear combination

W ⊃ −pkuk (2.28)

appears in the superpotential. This plays the role of the “universal” dilaton u studied

before.

– 9 –
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In order to find the masses of the complex structure moduli, we will use the following

more general result. Consider a chiral superfield ϕ; expanding the supergravity potential

V = eK(Kϕϕ̄|DϕW |2−3|W |2) to quadratic order around the supersymmetric vacuum gives

L=Kϕϕ̄|∂ϕ|2+
eK

2

(
ϕ ϕ∗

)(Kϕϕ̄|∂ϕDϕW |2−2Kϕϕ̄|W |2 −eKW ∗∂ϕDϕW

−W (∂ϕDϕW )∗ Kϕϕ̄|∂ϕDϕW |2−2Kϕϕ̄|W |2

)(
ϕ∗

ϕ

)
(2.29)

The physical masses squared are then

m2
± = eK

(
|Kϕϕ̄∂ϕDϕW |2 ± |Kϕϕ̄∂ϕDϕW ||W | − 2|W |2

)
. (2.30)

This gives the mass splittings between the real and imaginary parts of the chiral superfield

ϕ. It can also be derived using the supersymmetry algebra of AdS [38].

Now, let ϕ denote a complex structure modulus corresponding to one of the combi-

nations orthogonal to the universal dilaton (2.28). The Kähler potential only depends on

ϕ − ϕ∗; the axion cannot appear because of the shift symmetry. Also, ϕ does not appear

in the superpotential and hence ∂ϕDϕW = −Kϕϕ̄W . Eq. (2.30) then gives

m2
+ = 0 , m2

− = − 2

L2
, (2.31)

where the AdS radius is 1/L2 = eK |W |2. We conclude that the mass spectrum of the

h(2,1) complex structure moduli is given by massless axions (as expected), and tachyonic

modes from the imaginary parts of ϕ. See also [39]. The tachyonic modes do not imply an

instability of AdS4 because they are above the BF bound [40]

m2
BF = −9

4

1

L2
. (2.32)

In concrete black brane solutions one has to check that such modes do not lead to instabil-

ities. It is also possible to consider rigid CY manifolds, i.e. without complex structure. For

instance, in the toroidal models of section 3.1 the complex structure deformations can be

projected out by orbifolding, which has the effect of lifting relevant operators in the dual.

2.3 Three-dimensional CFT duals

The AdS4× (small) flux vacua are dual to 2 + 1-dimensional conformal field theories with

two supercharges, plus two conformal supercharges at the fixed point. This is the smallest

supersymmetry in 2 + 1 dimensions, a property that is useful for keeping the number of

scalar fields to a minimum and improving the stability of the system once supersymmetry

is broken by the chemical potentials. An explicit UV Lagrangian for these theories it not

yet known, because the stabilization of the dilaton does not allow to interpolate between

large ’t Hooft coupling (where the gravity solution is valid) and small coupling. This is

similar to AdS5 solutions dual to field theories with dyonic matter [20, 41, 42].

Nevertheless, many aspects of these CFTs can be calculated from the gravity side.

Some properties of the gauge theory can be revealed by trading the 2- and 4-form fluxes

by wrapped D6 and D4 branes, which corresponds to the Coulomb branch of the dual field
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theory [43, 44]. This analysis was performed in [45], and further properties of the duals

were analyzed by [46]. The central charge of the CFT is of order

c ∼ L2

κ4
∼ (κabcv

avbvc)3 ∼ N9/2 , (2.33)

where we used (2.23) and the large flux limit (2.24); also, recall that we have set κ4 = 1.

The dimension of a single trace operator dual to a bulk scalar of mass m2 is determined

by the standard quantization formula

∆ =
3

2
+

√
9

4
+ L2m2 . (2.34)

The Kähler moduli have L2m2
moduli ∼ 1, so the CFT has a few dual operators with

∆ ∼ O(1). From (2.31), the complex structure moduli are dual to h(2,1) marginal operators

(∆− = 3) and their superconformal partners with ∆+ = 2.3 The existence of this universal

sector of 2h(2,1) operators may shed more light on the UV structure of such CFTs. As

described in section 3, it is also possible to have gravity solutions with m2 > 0 from rigid

CYs. This situation is also very interesting because the field theory duals have no relevant

spin zero operators. The remaining scalar operators are dual to the tower of KK modes;

since L2m2
KK ∼ N , these have ∆ ∼

√
N . Therefore, the CFTs dual to AdS4 × (small)

gravity solutions have a gap in the dimension of operators. For this reason, these 3d theories

are ideal laboratories to study interesting low energy phases of matter at finite density and

chemical potential. The simplest CFTs with this property are the minimal models in two

dimensions, but in higher dimensions the conformal symmetry is not powerful enough to

show the existence of a gap. Holography provides us with such a tool.

The bulk gauge fields Aαµ will provide the charges for black branes. They are dual to

h
(1,1)
+ global currents Jαµ in the CFT. Nonzero boundary values Aαµ(∞) have the effect of

adding the source term

SCFT ⊃
∫
d3x
√
−g Aαµ(∞)Jµα (2.35)

to the field theory dual. (Here r → ∞ denotes the AdS4 boundary.) A nonzero time

component for the gauge field at the boundary is then dual to a chemical potential for the

global symmetry. We will also be interested in turning on bulk magnetic fields that do

not vanish at the boundary. A spatial component Aα(∞) = Bαx1dx2 gives an external

magnetic field Bα for the dual U(1) symmetry.

The field theory origin of these h
(1,1)
+ global symmetries is interesting: they are dual

to three dimensional U(1) gauge fields aαµ,

Jα = ?3da
α . (2.36)

(The global symmetry shifts the dual photon by a constant.) The gravity side has been

formulated in terms of the gauge fields from the 3-form potential C3 = Aα ∧ ωα, but the

3Instanton effects from the gravity side can be used to lift the complex structure axions, introducing

nonperturbatively small corrections to these dimensions.

– 11 –



J
H
E
P
1
0
(
2
0
1
3
)
1
2
6

theory can also be described in terms of the dual gauge fields

dÃα = ?4dAα (2.37)

that descend from the 5-form C5 = Ãα ∧ ω̃α. Recall that ω̃α is the 4-form dual to ωα,

defined in (2.3). The particles electrically charged under Aαµ are D2 branes that wrap the

2-cycle [ωα], while D4 branes wrapped on [ω̃α] are magnetic monopoles — and viceversa

for Ãαµ. Given this structure, the U(1) gauge fields aαµ arise as the CFT duals of the bulk

fields Ãαµ [47]. This may be seen for instance by integrating by parts the term (2.35) and

using the duality relations. An electric charge density for Jµ is then dual to a density of

magnetic flux (from magnetic monopoles) for aµ, and a background magnetic field for Jµ
corresponds to a chemical potential for aµ.

It is important to note that the charged particles are not part of the low energy theory

in our regime of interest: at large volume and small string coupling they are very massive.

This translates to dual “electrons” that are described by operators of very high dimension

∆ ∼ N2, estimated by placing the wrapped branes as probes in the geometry. This should

be contrasted with gauge fields that arise from isometries of internal positively curved

spaces and give rise to light charged fields.

3 Simple models with no relevant scalar operators

Our discussion so far has been for general CY manifolds. The first question to ask is of

course whether there are examples with the structure that we need, namely with N =

1 orientifolds that lead to both even and odd cohomology 2-forms with nonzero triple

intersection. We would also like to have simple string theory models which exhibit the

consistency constraints that need to be imposed on bottom-up approaches, and where the

properties of black branes and their holographic duals can be analyzed in detail.

It turns out that already very simple CY manifolds — orbifolds of tori — have these

properties; these models are nice in that the internal geometry and the origin of gauge fields

and moduli are very explicit. Also, they have many scalar fields and can lead to a rich phase

diagram. After describing these constructions, we turn our attention to a different class of

models: CYs with the smallest number of fields, namely one Käbler modulus and one gauge

field. This is the simplest example that can support black branes, and we will analyze its

effective field theory in detail. Finally, section 3.3 presents a simple one-field model that sat-

isfies basic constraints imposed by string theory but which does not assume supersymmetry.

3.1 Toroidal orbifolds

Toroidal orbifolds T 6/G, with G a discrete group, can be seen as singular limits of CYs

by blowing down certain cycles. The orbifold is chosen to preserve N = 2 supersymmetry

(see [48] for a review and references) and then one has to choose an orientifold involution

that respects half of the supersymmetries. The orbifold singularities lead to additional

complex structure and Kähler moduli from twisted sectors, the “blow-up modes”, that

need to be taken into account as well.
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As a concrete example, consider the T 6/Z4 orbifold with Z4 action

(z1, z2, z3)→ (iz1, iz2,−z3) , (3.1)

where zi are complex coordinates on T 6. This model has been studied in detail in [49–51].4

The orientifold action is Ωp(−1)Fσ, where Ωp is the worldsheet parity and σ is the involution

(z1, z2, z3)→ (z̄1, iz̄2, z̄3) . (3.2)

Ignoring the blow-up modes for a moment, this model gives rise to four Kähler moduli, one

complex structure modulus and one gauge field. The nonzero triple intersections between

the Kähler moduli are κ123 = −κ344 = κ, i.e. vol = κv3(v1v2− v2
4/2); ω3 has nonzero triple

intersection −κ with the even two-form, giving rise to a coupling (2.19) between v3 and

the gauge field.

Recall from section 2.2 that (absent nonperturbative effects) the complex structure

moduli have a universal spectrum that leads to relevant operators of dimension 2 and 3 in

the dual CFT. As discussed in the introduction, it is important to develop tools to lift rel-

evant operators in order to favor the stability of symmetric phases at low temperatures. In

the context of toroidal compactifications, complex structure deformations can be projected

out by appropriate orbifolds. There are various examples of abelian orbifolds with these

properties [48]. For instance, T 6/Z8 plus a suitable orientifold action [49–51] has two un-

twisted Käbler moduli and one gauge field. The 4d field theory is fixed in terms of the triple

intersections κ122 = κ for the odd 2-forms, and κ̂111 = −κ between one odd and two even

forms. The orbifold can be understood directly in terms of discrete projections in the dual

QFT [52], providing a mechanism to project out potentially dangerous relevant operators.

One aspect of these constructions is the existence of additional blow-up modes, which

quickly increase the number of fields.5 The existence of large numbers of fields is presum-

ably a general property of string compactifications, and it would be useful to develop tech-

niques to deal efficiently with this problem. Nevertheless, the situation for toroidal models

is slightly simpler than the generic one because the twisted modes behave as probe scalars in

the background produced by the untwisted sector. Indeed, taking the 4-form fluxes for the

untwisted sector to be order N and the twisted ones to be of order N̂ � N , the kinetic and

mass mixings between twisted and untwisted fields are suppressed by powers of N̂/N � 1.

A similar suppression arises at the level of the couplings to gauge fields. We can then con-

struct black branes supported by the untwisted sector only (which, as we just saw, can have

a very small number of fields), and then add the blow-up modes in the probe approximation.

As long as they do not lead instabilities, the black brane solution will be consistent.

3.2 Models with one Kähler modulus

Having discussed some concrete toroidal orbifolds, we now analyze in detail the simplest

possible class of CYs with the properties that we need, namely manifolds with one even and

4We thank T. Wrase for conversations on such models and for pointing out some of these references.
5The T 6/Z4 model above has 26 twisted (1, 1) forms and 6 twisted (2, 1) forms, and the T 6/Z8 model

has 21 twisted (1, 1) forms and no blow-up modes from the (2, 1) forms.
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one odd harmonic two-form (with nontrivial triple intersection) and no complex structure

deformations. The EFT then contains the dilaton and a Kähler modulus interacting with

a single gauge field. With this matter content the field theory is fully specified (up to the

triple intersection number), so there is no need to have a specific model.6

Given this field content, the low energy Lagrangian is fixed to

Lkinetic =
3

4v2
∂µv∂

µv +
3

4v2
∂µb∂

µb+
e2D

2
∂µξ∂

µξ + ∂µD∂
µD − 1

4
v FµνF

µν +
1

4
b FµνF̃

µν

Vflux =
e4D

κv3

((
ẽ1 −

m0

2
κb̃2
)2

v2 +
m2

0

12
κ2v6 + 3

(
pξ̃ +

m0

6
κb̃3 − ẽ1b̃

)2

+
m2

0

4
κ2b̃2v4

)

+
3

2

p2e2D

κv3
−
√

2|m0p|e3D , (3.3)

where we used the notation introduced around (2.16), and e1 denotes the (only) 4-form

flux. Note that the only dependence on the CY enters through the triple intersection κ,

where 6vol = K = κv3. The triple intersection between the even and odd harmonic forms

has been set to one by a redefinition of the gauge field.

A supersymmetric minimum requires sgn(m0ẽ1) = −1, and sgn(m0p) = −1 from tad-

pole cancellation. The F-term conditions stabilize the volume modulus and the dilaton at

〈v〉 =

√
10

3

√
− ẽ1

κm0
, 〈e−D〉 =

8

9

√
5

3

κm0

p

(
− ẽ1

κm0

)3/2

, (3.4)

and the axions are stabilized at 〈ξ̃〉 = 〈b̃〉 = 0, namely

〈ξ〉 =
e1m

1

pm0
+
κ(m1)3

3pm2
0

, 〈b〉 =
m1

m0
. (3.5)

Here m1 is the (only) 2-form flux. These expectation values can also be obtained by

extremizing (3.3). The gauge coupling and θ angle in the AdS4 vacuum are then given by

1

g2
= Imτ =

√
10

3

√
− ẽ1

κm0
,

θ

8π2
= Reτ =

m1

m0
. (3.6)

In particular, in the large flux limit ẽ1 ∼ N � 1 the gauge coupling becomes weak.

The AdS4 radius is then given

L2 =
25600

√
10
3

2187

m2
0κ

3

p4

(
− ẽ1

κm0

)9/2

, (3.7)

and expanding the potential (3.3) to quadratic order around the supersymmetric vacuum

obtains the physical mass eigenvalues

M2
kL

2 = (70, 18) , M2
axionL

2 = (88, 10) . (3.8)

These AdS4 vacua on CYs with one even and one odd harmonic 2-forms are dual to

(2+1)-dimensional CFTs with superconformal primaries of dimensions ∆ = 5 and ∆ = 10,

a global current, and a gap ∆ ∼
√
N � 1 to the rest of the operators.

6One can check that there are known manifolds with h(1,1) = 2 [53]. It would be interesting to have

detailed examples of CY orientifolds with small Hodge numbers.
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3.3 A class of simplified nonsupersymmetric models

So far we have considered theories with N = 1 supersymmetry, but it is also important to

understand what basic properties would still be valid in the absence of supersymmetry (a

situation of more general interest). Let us analyze this question for the simple case of a

real scalar field φ interacting with a gauge field Aµ. Based on the properties of the string

theory models discussed before, we impose the following conditions on the EFT:

• The theory is assumed to arise from a weakly coupled supergravity theory, so that

the scalar potential and gauge kinetic function will be given in terms of exponentials

of the canonically normalized scalar.7

• There should be no ‘hard’ cosmological constant, with the potential asymptoting to

zero for |φ| → ∞. This limit corresponds to the weakly coupled and decompactifica-

tion limits of string theory.

• We require the existence of a stable minimum with negative energy.

We will find that these simple constraints already lead to a prediction: the absence of

relevant spin zero operators in the dual CFT.

The action is then of the form

S =

∫
d4x
√
g

(
1

2
R− 1

2
(∂φ)2 − 1

4
eαφFµνF

µν − Vflux

)
, Vflux = −Ae−αν1φ +B e−αν2φ ,

(3.9)

where 0 < ν1 < ν2 and A and B are positive. The range of the scalar field is taken to be

0 < φ <∞. It is possible to add more exponential terms to the potential, but they are not

required for producing an AdS minimum and do not affect our conclusions in important

ways.

The AdS4 vacuum becomes

α〈φ〉 =
1

ν2 − ν1
log

(
ν2B

ν1A

)
, Vmin = − 3

L2
= −(ν2 − ν1)

A

ν2

(
ν1A

ν2B

)ν1/(ν2−ν1)

. (3.10)

The dependence on A and B can be absorbed into the AdS radius by shifting the scalar

field to zero expectation value, φ = 〈φ〉+ ϕ. Then,

Vflux =
3

L2

(
− ν2

ν2 − ν1
e−αν1ϕ +

ν2

ν2 − ν1
e−αν2ϕ

)
. (3.11)

Finally, from (3.11) we obtain the mass of the scalar field around the minimum L2m2 =

3α2ν1ν2 > 0 which, as anticipated, is dual to an irrelevant single-trace operator. The dual

CFT has no relevant spin zero operators and a global conserved current.

7Strong warping can lead to important deformations of the kinetic term [54, 55] and hence to functional

forms different from exponentials.
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4 The effective field theory for black branes

Now we have assembled all the necessary tools to construct black branes, and in this section

we describe their 4d effective theory. We also perform the holographic renormalization

for these solutions and extract the thermodynamic properties of the dual QFTs at finite

temperature, chemical potential and magnetic field.

4.1 Dyonic black branes

The starting point is the low energy theory for the light moduli

Seff =

∫
d4x
√
g

(
1

2
R−KIJ̄g

µν∂µφ
I∂ν φ̄

J̄−Vflux−
1

4
Imταβ F

α
µνF

β µν+
1

4
Reταβ F

α
µνF̃

β µν

)
+Sb .

(4.1)

This is an “Einstein-Maxwell-dilaton-axion” theory8 with specific couplings, kinetic terms

and flux potential dictated by supersymmetry, topological data of the internal CY, and

integer fluxes. Sb denotes boundary contributions (to be discussed below) that are required

for holographic renormalization. Dilatonic branes have been extensively studied in the

literature, mostly from a bottom-up perspective [56–59]. There is by now an impressive

list of microscopic and macroscopic models, e.g. [60–64] just to cite a few.

We have explained how (4.1) arises as the low energy limit of 10d supergravity com-

pactified on CY manifolds. This effective theory is valid up to a cutoff of order of the KK

scale, which is parametrically larger than the cosmological constant. Above this scale, the

UV completion is given by classical 10d supergravity. Moreover, quantum and α′ correc-

tions are negligible in the regime of small string coupling and large internal radius where

the moduli are stabilized. We now construct black branes sourced by nonzero electric and

magnetic charges for the gauge fields Aαµ. The gauge kinetic function τ depends on the

light fields φI , and this coupling will in turn induce a nontrivial radial dependence on the

various scalars. The metric ansatz that describes the brane is

ds2 = −e−w(r)f(r)dt2 +
dr2

f(r)
+
r2

L2
(dx2

1 + dx2
2) , (4.2)

and the solution is required to asymptote to the AdS4 vacua of section 2.2 at large r. Here

L is the AdS4 radius.

The equations of motion for the metric and gauge field are

Rµν = Imταβ

(
FαµρF

β ρ
ν − 1

4
gµνF

α
λσF

β λσ

)
+ 2KIJ̄ ∂µφ

I∂ν φ̄
J + gµνVflux

∂µ

(√
g Im ταβ F

β µν
)

=
1

2
εµνρσ∂µ

(
Re ταβF

β
ρσ

)
. (4.3)

The gauge field equation allows for the following electric and magnetic charges,

Fαtr = e−w/2
L2

r2
Imταβ(Qβ − ReτβγP

γ) , Fα12 = Pα , (4.4)

8The name ‘dilaton’, used in bottom-up models, refers to a field that is neutral under the gauge symmetry,

and should not be confused with the string dilaton.
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where Imταβ = (Imτ−1)αβ. The equations of motion for the scalar fields are

0 =
1
√
g
∂µ(KIJ̄

√
ggµν∂νφ

I)− (∂J̄KAB̄)gµν∂µφ
A∂ν φ̄

B − ∂J̄Vflux

−1

4
∂J̄(Im ταβ)FαµνF

β µν +
1

8
√
g
∂J̄(Re ταβ) εµνρσF

α
µνF

β
ρσ . (4.5)

Computing the Ricci tensor for (4.2) shows that both Rtt and Rrr depend on second

derivatives of f and w, while Rij only depends on first derivatives. Taking a linear combina-

tion of the Rtt and Rrr equations that depends only on first derivatives of f and w, and com-

bining with Rij , allows to determine these functions directly in terms of first order equations

∂rf

r
+ f

(
1

r2
+KIJ̄∂rφ

I∂rφ̄
J

)
+
L4

r4
Vbrane + Vflux = 0

∂rw + 2rKIJ̄∂rφ
I∂rφ̄

J = 0 , (4.6)

where we introduced the potential Vbrane induced by the charges (4.4):

Vbrane ≡
1

2
Imταβ(Qα − ReταγP

γ)(Qβ − ReτβδP
δ) +

1

2
ImταβP

αP β . (4.7)

These equations can be summarized compactly by the radial Lagrangian

L = − r
2

L2
e−w/2

(
∂rf

r
+
f

r2
+ fKIJ̄∂rφ

I∂rφ̄
J + Veff(r, φ)

)
, (4.8)

with an effective potential

Veff(r, φ) ≡ L4

r4
Vbrane(φ) + Vflux(φ) . (4.9)

The gauge fields have been integrated out exactly using (4.4).

The Lagrangian (4.8) determines the radial profile of the black brane, after supple-

menting the evolution equations by appropriate boundary condition. We require that for

r →∞ the solution asymptotes to the AdS4 vacuum of section 2.2, namely

f(r)→ r2

L2
, w(r)→ 0 , φI(r)→ 〈φI〉 . (4.10)

In general, the solution will develop a horizon at some infrared value r = rh, where f(r) ∝
r − rh. The remaining boundary conditions come from requiring regularity at r = rh.

In general it is not possible to find analytic solutions to this system of equations, but

approximate and numeric solutions will be studied in section 5.

4.2 Holographic renormalization and thermodynamics

Let us now study the thermodynamics of black branes and their QFT duals, using holo-

graphic renormalization [65–67]. The boundary term Sb in (4.1) has two kinds of contri-

butions: the Gibbons-Hawking-York boundary term required to have a well-defined vari-

ational problem [68, 69], plus boundary counterterms that subtract the infinities of the
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on-shell action in the limit r → ∞. The gauge fields do not lead to divergences, and the

same is true for scalars assuming (as we do here) that ∆ > 3/2 as in the examples before.9

The only counterterms are those associated to the gravitational field,

Sct =

∫
∂Md+1

√
γ

(
d− 1

L
+ . . .

)
, (4.11)

where γµν is the induced metric on the boundary ∂Md+1, and the dots are additional

curvature invariants that will not be relevant for us. The on-shell action is evaluated at a

fixed (large) radial cutoff rc, and the limit rc →∞ is taken at the end. With the GHY and

counterterm contributions in place, (4.1) gives a finite (cutoff independent) answer. This

is the gravitational version of the renormalization procedure in the QFT side.

The holographic stress tensor is given in terms of the extrinsic curvature Θµν of the

boundary [70]:

Tµν = −
(

Θµν −Θγµν +
2
√
γ

δSct
δγµν

)
. (4.12)

The conserved mass associated to Tµν , which is dual to the energy of the QFT, is

E =

∫
Σ

√
γ uµuνTµν , (4.13)

where Σ is a spacelike surface in ∂M , and uµ is the timelike unit normal to Σ.

The metric (4.2) has extrinsic curvature components

Θtt = −1

2
f1/2∂r(e

−wf) , Θij = δij
r

L2
f1/2 . (4.14)

This gives an energy density

ε =
E

V
=

2

L
e−w/2

(
f1/2 − L

r
f

)
r2

L2
, (4.15)

where all the quantities are evaluated at r → ∞ and V is the two-dimensional spatial

volume. Eq. (4.15) vanishes for the AdS4 solution, so the counterterms effectively sub-

tract the diverging contribution of AdS4. In a nontrivial black brane geometry, the only

nonvanishing contribution comes from the subleading term

w ∼ 0 , f ∼ r2

L2
− f1

L

r
(4.16)

and gives

ε =
f1

L
. (4.17)

The expression (4.16) is familiar from the Schwarzschild AdS geometry, in which case f1

gives a nonzero temperature. We will soon determine the thermodynamic parameters in

more detail.

9The procedure to subtract scalar field divergences for ∆ < 3/2 is standard and can be straightforwardly

implemented in our context.
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Finally, let us evaluate the on-shell action of the gravity solution, which gives the

thermodynamic potential. The Ricci scalar for (4.2) is

√
gR = − 2

L2
e−w/2(r∂rf + f)− 1

L2
∂r

[
r2ew/2∂r(e

−wf)
]
. (4.18)

The first term here also appeared as the gravitational contribution to the radial La-

grangian (4.8), while the second term is total derivative that was dropped at that stage

because it does not contribute to the equations of motion. However, when evaluated on-

shell, only the total derivatives contribute because the remaining terms vanish by the

constraint δL/δw = 0. The other contributions come from the boundary terms Sb and a

total derivative from the Yang-Mills term.10 The gravitational terms combine to give

− 1

2

∫
M4

√
gR+

∫
∂M4

√
γ

(
Θ+

2

L

)
=

∫
d3x

{
2e−w/2

r2

L2

(
f1/2

L
− f
r

)∣∣∣∣∣
r→∞

− 1

2

r2

L2
e−w/2f ′

∣∣∣∣
r=rh

}
(4.19)

For a thermal circle of length β (determined below) and recalling the asymptotic behav-

ior (4.16), we arrive to

SGR = βV
(
f1

L
− 1

2

r2
h

L2
e−wh/2f ′h

)
. (4.20)

Lastly, the contribution from the total derivative in the Yang-Mills sector is

1

4

∫
√
g
(

Imταβ F
α
µνF

β µν + iReταβ F
α
µνF̃

β µν
)

=

∫
d3xAµJ

µ (4.21)

with the conserved current

Jµ =
1

2

√
g
(

ImταβF
β rµ + iReταβF̃

β rµ
)∣∣∣∣∞
rh

. (4.22)

Note that the nonzero θ angle from the axion Reταβ gives an additional contribution to

the current, proportional to F̃ . Taking into account the regularity condition At(rh) = 0

and the on-shell value of the field strength, this evaluates to 1
2 βVA

α
t (∞)Qα. Putting these

contributions together obtains

Son-shell = βV
(
f1

L
− 1

2

r2
h

L2
e−wh/2f ′h −

1

2
Aαt Qα

)
. (4.23)

The previous results determine the thermodynamic properties of black branes and

the holographic dual. Since we have fixed the asymptotic value of At, which is dual to

the chemical potential, the gravitational action will yield the thermodynamic potential Ω

in the grand canonical ensemble.11 As usual, the temperature is obtained by expanding

10There is also a total derivative from the scalar fields, which gives a vanishing contribution given our

assumption ∆ > 3/2.
11We could also work at fixed charge density; this requires adding a boundary term to the action in order

to have a well-defined variational problem. The effect of this boundary contribution is to shift Ω to the free

energy F = Ω + µαNα.
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the metric around the horizon and requiring the absence of a conical singularity from the

shrinking thermal circle. Doing so obtains

T =
1

4π
f ′(rh)e−wh/2 . (4.24)

Next, the entropy is obtained from the area of the horizon,

s =
S
V

=
2π

κ2
4

r2
h

L2
, (4.25)

and we work in units of κ2
4 = 1.

The gauge symmetries of the bulk theory are dual to global symmetries in the CFT,

and the asymptotic values of the gauge fields Aαµ determine the chemical potential and

external magnetic fields for the α-th global symmetry:

µα = Aαt (∞) =

∫ ∞
rh

dr e−w/2
L2

r2
Imταβ(Qβ − ReτβγP

γ) . (4.26)

From (4.22), the conserved charge density is

ρα = 〈J tα〉 =
δS

δAαt (∞)
= −Qα

2
. (4.27)

The gauge field also has a nonzero component at infinity Aα ⊃ Pαx1dx2, which implies

that there is a nonzero external magnetic field for the corresponding U(1) symmetry,

Bα = Pα . (4.28)

In the grand canonical ensemble, the thermodynamic potential is related to the on-shell

action by

Ω = TSon-shell = V
(
f1

L
− 1

2

r2
h

L2
e−wh/2f ′h +

1

2
AατQα

)
. (4.29)

The right hand side of this expression is recognized as the definition of the grand potential

Ω = V (ε− Ts− µαρα). The pressure is given by

P = −Ω

V
= −

(
f1

L
− 1

2

r2
h

L2
e−wh/2f ′h +

1

2
AατQα

)
(4.30)

that follows from the familiar relation ε = Ts− P + µαρα.

The magnetic field induces a magnetization Mα = mαV. Recalling that

dε = Tds+ µαdρα −mαdB
α , (4.31)

the magnetization density mα is given by

mα = − ∂ε

∂Bα

∣∣∣∣
s, ρ

= − 1

L

∂f1

∂Bα

∣∣∣∣
s, ρ

. (4.32)
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Calculating this quantity requires knowledge of the full numerical solution. Nevertheless,

to get some intuition, let us assume that m2 > 1/L2, and approximate the metric by the

RN-AdS warp factor,

f(r) ≈ r2

L2
− f1

L

r
+ L2〈Vbrane〉

L2

r2
. (4.33)

Evaluating this at r = rh determines f1 and hence the energy,

ε ≈ rh
L2

(
r2
h

L2
+ L2〈Vbrane〉

L2

r2
h

)
. (4.34)

Since s ∝ r2
h, and the charge and magnetic field appear as explicit variables in Vbrane, we

obtain, to linear order in the charges,

mα =
3

4πT

(
2〈ReταβImτβγ〉ργ − 〈Imταβ − ReταγImτγδReτδβ〉Bβ

)
, (4.35)

where rh
L2 ≈ 4π

3 T at this order. We thus find a magnetic susceptibility controlled by the

gauge coupling and θ angle, as well as a contribution from the charge density when the θ

angle is nonvanishing.

4.3 Regime of validity of the effective theory

Lastly, let us determine the regime of validity of the black brane EFT. As we discussed

before, the 4d action (4.1) arises as the low energy limit of type IIA 10d supergravity com-

pactified on CY manifolds. The UV cutoff is set by the KK scale m2
KK ∼ N/L2, where N

is the order of magnitude of the 4-form flux, and the fields kept in the effective description

have masses m2 ∼ 1/L2. For N � 1 the UV cutoff is parametrically larger than the AdS

scale and light masses, and KK modes can be decoupled. The theory also receives α′ and

quantum corrections, but these are parametrically small at large N . Another source of

corrections comes from the localized sources (e.g. the O6 plane), which backreact on the

metric and RR-potentials. The compactified theory solves the equations of motion on aver-

age, and the backreaction appears in the form of warp and conformal factors and nontrivial

internal wavefunctions for the dilaton and p-form potentials, which allow to solve the equa-

tions of motion pointwise. These effects, which correct the kinetic terms and flux potential,

are small at small gs and large volume, as follows from the general results of [33–35].

Furthermore, fluxes in type IIA deform the topology type of the internal space, making

the Kähler and/or complex structure forms non-closed [13–18]. In particular, the flux

superpotential receives corrections W ⊃
∫
dJ ∧ Ω, with ||dJ || ∼

√
vol/L ∼ N−3/2; these

are negligibly small at large N . More generally, the backreaction induces a nonzero Ricci

scalar R(6) ∼ 1/L2, modifying the effective potential by an amount

V ∼
(
g2
s

vol

)2
vol

g2
s

R(6) ∼ 1

N3

1

L2
,

where the first factor comes from the Einstein frame. Such corrections are parametrically

small compared to the terms that we have kept in the potential.
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An important additional contribution comes from the nonzero chemical potentials.

The EFT should remain valid as long as these are much smaller than the KK scale. To

illustrate this effect, consider corrections to the moduli kinetic terms and gauge kinetic

function depending on some scalar KK mode φKK . By orthogonality of the internal wave-

functions, the lowest possible such correction is of order φ2
KK . Then, as long as the order

of magnitude of the black brane energy is much smaller than mKK , the corrections on the

φKK equation of motion (and hence on the moduli effective action) will be negligible. The

precise form of such effects depends on each CY, but the main point is that because of the

parametric separation of scales, KK modes can’t be destabilized.

We should stress that there are nonperturbative effects, not included in the EFT,

from Schwinger pair-production of the charge carriers and of color branes that give rise

to the dual gauge groups. In the gravity side these are modeled, respectively, by D2s

wrapped on the 2-cycles that support the gauge fields, or Dp branes that are domain walls

in the 4 external directions. The motion of these probe branes serves as tests for possible

nonperturbative instabilities in the dual QFT, like the “Fermi sea-sickness” phenomenon

of [71]. An analysis of such effects is left to future work [72].

5 Black brane solutions

In the remaining of the paper we will analyze explicit black brane solutions in flux compact-

ifications. The range of possible phases in these theories appears to be extremely rich, and

here we will only take the first steps towards understanding them. The simplest exact solu-

tions are AdS2×R2, which are interesting for dual descriptions of emergent local quantum

criticality. Next we turn to generalizations of the Reissner-Nordstrom AdS (RN-AdS) black

hole, where the cosmological constant arises from expectation values of scalars that evolve

radially. Finally, we discuss branes that exhibit hyperscaling violation. For concreteness,

these solutions are studied in the simple models of section 3. It would be very interesting

to develop tools to analyze black branes at the level of the general EFT (some of which

are described in section 5.3), and understand the landscape of finite density flux vacua.

5.1 AdS2 × R2 fixed point

The simplest solution is an extremal AdS2×R2 geometry. This geometry has been studied

as the zero temperature limit of the RN-AdS black hole, in order to describe systems with

emergent local quantum criticality [73–75]. It also appears as an exact solution in our setup.

The extremal solution is characterized by having a double pole for the emblackening factor

f(r) ∼ (r − rh)2 at the horizon.

The exact solution is found in a new radial coordinate u, in terms of which the

AdS2 × R2 metric takes the form

ds2 = − u2

L2
(2)

dt2 +
L2

(2)

u2
du2 + b2h(dx2

1 + dx2
2) . (5.1)

Here L(2) is the AdS2 radius and b2h = r2
h/L

2 in the ansatz (4.2). The equations of motion

from the radial Lagrangian (4.8) in this new coordinate system then imply that the scalars
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are stabilized at
∂

∂φI
log Vflux(φh) =

∂

∂φI
log Vbrane(φh) (5.2)

and the AdS2 radius and horizon position are given by

L2
(2) = − 1

2Vflux(φh)
, b4h =

r4
h

L4
=
Vbrane(φh)

−Vflux(φh)
. (5.3)

See also [57, 58]. An intriguing property of these solutions, noted many times in the past,

is their ground state entropy density

S
V

=
2π

κ2
4

√
Vbrane(φh)

−Vflux(φh)
. (5.4)

Let us obtain the AdS2×R2 in some of the simple models. In the nonsupersymmetric

toy model of section 3.3,

Vflux = −Ae−αν1φ +Be−αν2φ, Vbrane =
1

2
(Q2e−αφ + P 2eαφ) .

A few algebraic manipulations reveal that the horizon value of the scalar field satisfies

ν2 − ν1

2
coth (α

ν2 − ν1

2
φh + δ2) = th (αφh + δ2) +

ν2 + ν1

2
(5.5)

and the size of the horizon is

r4
h

L4
=

PQ cosh (αφh + δ2)√
AB sinh (αν2−ν12 φh + δ1)

eα
ν1+ν2

2
φh (5.6)

where δ1 = sinh−1 ( A−B
2
√
AB

), δ2 = sinh−1 (P
2−Q2

2PQ ). Given that ν1, ν2 > 0, ν2 > ν1, one can

show that (5.5) always admits a solution of φh such that r4
h > 0. We hence conclude that

there always exists dyonic near horizon AdS2×R2 solutions in this model. For a purely elec-

trically charged brane, the zero temperature near horizon solution can be given explicitly,

αφh =
1

ν2 − ν1
log

(
ν2 − 1

ν1 − 1

B

A

)
. (5.7)

This near horizon value is independent of the electric charge, which cancels because it is

the only dimensionful perturbation. In contrast, the dyonic solution (5.5) depends on the

dimensionless coupling δ2.

Now we also study the theory section 3.2 with a single Kähler-modulus and look for an

electrically charged AdS2×R2 solution. Absent magnetic charges, the axions are stabilized

at their supersymmetric values, so we only need to consider the Kähler modulus v = eφ

and dilaton D. The near horizon values are found to be

vh = (6 + 4
√

3)
1
4

√
− ẽ1

κm0
, e−Dh = (−6 + 4

√
3)

1
4

√
3

2

κm0

p

(
− ẽ1

κm0

)3/2

, (5.8)
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which have the same parametric dependence on the fluxes as the supersymmetric

vacua (3.4). Recall that ẽ1 ∼ N � 1 in the large flux limit where we have perturba-

tive control. As before, the dependence on the electric charge cancels for dimensional

reasons. The ground state entropy density is given by

S
V

=
2π

κ2
4

√
1

2
+

1√
3

4

3

ẽ2
1Q√
κm2

0p
4
∼ N2Q . (5.9)

The dimensions of operators in the dual quantum critical point can be obtained by

expanding (3.3) plus the contribution Vbrane from the charge density around the new horizon

values for the scalars. The physical masses in AdS2 units are

M2
kL

2
(2) = (12.10, 2.41) , M2

axionL
2
(2) = (13.9, 1.51) . (5.10)

In the next section we argue that there exists a solution that interpolates between AdS4 in

the UV and this IR geometry. In the dual theory at finite chemical potential, this describes

an RG flow between a 3d UV fixed point and a conformal quantum mechanics in the IR

(or perhaps the chiral sector of a 2d CFT). The only scalar operators of small dimension

in the UV theory have ∆ = 5, 6, 10, 11 [see (3.8)], which flow to ∆ = 1.82, 2.13, 4.01, 4.26

in the IR. It would also be interesting to study the fermionic sector [72].

The existence of AdS2 × R2 vacua in black brane solutions of flux compactifications

provides a UV complete setup to study holographic systems with emergent local quantum

criticality. It would be especially interesting to understand the microscopic origin of the

ground state entropy (5.4) and their stability. As illustrated in the previous example, it is

possible to construct dual theories with no relevant operators which, at finite density, are

free of homogeneous instabilities at the perturbative level. To establish this, it is important

that KK modes decouple. There could also be inhomogeneous instabilities, like the one

found in [24], but our analysis so far shows that there can be stable solutions [72].

5.2 Generalized Reissner-Nordstrom branes

A distinguishing property of black branes in flux compactifications is that the cosmological

constant arises as the expectation value of the potential. A ‘hard’ cosmological constant

gives the RN-AdS geometry, but now the nontrivial radial evolution of the scalars will

introduce corrections. In general it is then hard to find analytic solutions. The procedure

to construct black branes starts from perturbative expansions near the UV and IR regions,

and then finds the full interpolating geometry numerically. The perturbation series

have some undetermined integration constants, which are fixed in the full solution. One

approach to this problem is to use the perturbative expansion near the horizon to seed

the numerical integration, and then scan over the integration constants until the correct

UV asymptotics is reproduced.

In the asymptotically AdS4 region (r � L in our coordinate system), the normalizable

modes are the expectation values for the scalar fields, and we fix their sources to zero.

We deform from the AdS4 solution by turning on a metric mode f(r) ∝ f1L/r, as well as

nonvanishing temporal and spatial components for the bulk gauge fields. These correspond

to nonzero temperature (4.24), chemical potentials (4.26) and magnetic fields (4.28).
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Given these sources, the solution of (4.8) at large r is

f(r) =
r2

L2
− f1

L

r
+ L2〈Vbrane〉

L2

r2
+ f I

L2(∆I−1)

r2(∆I−1)
+ . . .

φI(r) = 〈φI〉+ cIJ
L∆J

r∆J
+ L2dI

L4

r4
+ L2nI

L7

r7
+ . . . (5.11)

w(r) = 4L4KIJ̄dIdJ̄
L8

r8
+ 2KIJ̄c

ILc̄JN
∆L∆N

∆L + ∆N

L∆L+∆N

r∆L+∆N
+ . . .

where dI , f I and nI depend on the flux and brane potentials, and the dimensions ∆

are given by (2.34). Summation over repeated indices is implicit, with different fall-offs

appearing because in general the φI are not mass eigenvectors.12 Also, 〈. . .〉 denote

expectation values in the AdS4 vacuum. Eqs. (5.11) show the leading effects from the

temperature and electric and magnetic sources. The first three terms in f(r) give the

RN-AdS black brane, and the corrections to this behavior arise because the scalar fields

are dynamical. At this stage, the only arbitrary integration constants are the cIJ , which

are dual to expectation values of single trace operators OI in the gauge theory, and f1

that will be related to the temperature below.

Let us now turn our attention to the IR region. At the horizon r = rh, the warp factor

f(r) ∼ r − rh. The solution is required to be regular at the horizon, so we expand

f(r) = −r2
hVeff(rh, φh)

r − rh
rh

. . .

φI(r) = φIh −KIJ̄∂J̄Veff(rh, φh)
r − rh
rh

+ . . . (5.12)

w(r) = wh − 2KIJ̄(∂I log Veff(rh, φh))(∂J̄ log Veff(rh, φh))
r − rh
rh

+ . . .

where the effective radial potential (here evaluated at the horizon) was introduced in (4.9).

From this near horizon expansion, the arbitrary integration constants are rh, φIh and wh.

The full black brane solution can be obtained by a standard shooting method, where

the IR series (5.12) (to high enough order) is used to seed the numerical integration very

close to the horizon. The arbitrary constants wh and φIh are adjusted until the correct

UV asymptotics (5.11) is reproduced. This procedure fixes (cIJ , f1, φ
I
h, wh) in terms of

the parameters (rh, µ
α, Bα). The expectation values of the dual single trace operators

(extracted from the cIJ) are in general nonzero.

Let us illustrate this for the non-supersymmetric model (3.3) — the procedure for other

models with more scalars is similar but longer to present. As an example, consider ν1 = 2,

ν2 = 3, α = 1, and A = 3ν2
ν2−ν1 , B = 3ν1

ν2−ν1 , so that 〈φ〉 = 0 and L = 1. This describes

a holographic (2 + 1)-dimensional CFT with a single scalar operator of dimension ∆ = 6

and one global symmetry. We study electric branes, corresponding to putting this CFT

at finite charge density. As discussed before, we start from the near horizon solution, and

“shoot” for the correct AdS4 asymptotics. The series expansion depends on two parameters

12The series for φI is schematic because, as we explained before, the scalar and pseudoscalar parts of φ

have different masses, so one should write the two series separately.
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Figure 1. Top left figure plots φ(r)(blue) and the UV series expansion Q2

28
1
r4 −

0.1
r6 (purple); top right

figure plots f(r)(blue) and the asymptotic AdS4 behavior; bottom left and bottom right are plots

of w(r) and At(r) respectively, from which we can extract the temperature and chemical potential.

φh and wh. The equation of motion for w(r) contains one additive integration constant,

which is determined by a boundary condition either at the horizon or the boundary. The

usual choice is w(∞) = 0, but here we shall simply set wh = 0 instead. The two boundary

conditions simply differ by a rescaling of t. Then we are left with only one parameter φh.

The spacetime coordinates are rescaled to set rh = 1 and the black brane is then uniquely

specified by the dimensionless charge density Q in units of temperature. The temperature

and chemical potential can be extracted from the numerical solution, via (4.24) and (4.26).

For each Q, we scan over the horizon values φh until the scalar field profile has the

correct asymptotic behavior,

φ(r) ∼ Q2

28r4
+

c

r∆

as r → ∞, with ∆ = 6. The coefficient c is the expectation value of the dual operator

at finite T and µ. It can then be checked that the metric approaches the correct AdS4

geometry when this happens. Figure 1 shows the numeric solution for Q =
√

2, for which

the shooting method gives the horizon value φh = 0.0410 and expectation value c ∼ −0.1

for the dual operator. From the full numerical solution, we can recover the standard

w̃(r) ∼ w(r) − w(∞), hence w̃h ∼ −w(∞) = 0.0297. The temperature and chemical
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Figure 2. Plot of φh(Tµ ) against the dimensionless scale − log T
µ , compared with the zero temper-

ature value φh(T = 0) = log 4
3 .

potential of the brane can then be extracted by

T =
1

4π
f ′(rh)e−

w̃h
2 = 1.61, µ = At(∞) =

∫ ∞
rh

dre−
w
2
−φL

2Q2

2r2
= 0.892

We also examine how the solution varies with charge density Q, and verify that the

AdS2×R2 solution arises as the zero temperature limit of the finite temperature geometry.

Figure 2 plots the horizon values φh as a function of log T
µ and the limiting AdS2 × R2

attractor value φh = log 4
3 . This strongly suggests that the IR AdS2 × R2 fixed point can

be connected to the AdS4 vacuum.

5.3 Branes with hyperscaling violation

Finally, we study solutions with hyperscaling violation θ and dynamical exponent z,

f(r) = f0 r
4/(2−θ) , e−w(r) = rω , (5.13)

where we have introduced the shorthand notation

ω ≡ 2
2z − 2− θ

2− θ
. (5.14)

These geometries transform covariantly under scalings, and describe holographic field theo-

ries whose thermodynamics behaves as if they lived in 2−θ effective spatial dimensions — as

can be seen from the thermal entropy S ∼ T (2−θ)/z. The case θ = 1 is a promising candidate

for Fermi surfaces [76–78], and more general values of θ can reproduce some of the properties

of systems with disorder [79]. In UV complete theories, these geometries are in general valid

over some finite range of r, with simple examples coming from Dp brane solutions [80–82].

Let us first discuss some general properties. The range of allowed z and θ is constrained

by the null energy condition [80],

(2− θ)(2z − 2− θ) ≥ 0 , (z − 1)(2 + z − θ) ≥ 0 . (5.15)
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Note that this implies ω ≥ 0 in (5.14). Furthermore, we require the existence of a finite

temperature solution valid for r > rh, and we have assumed that the extremal horizon is

at r = 0.13 This implies
2

θ − z
≤ 1 . (5.16)

Next, replacing the hyperscaling ansatz (5.13) in the radial equations (4.6) obtains

KIJ̄∂rφ
I∂rφ̄

J̄ =
ω

2r2
(5.17)

and

f0r
4

2−θ

(
2 +

2z

2− θ

)
= −r2

(
Vflux(φ) +

L4

r4
Vbrane(φ)

)
. (5.18)

The conditions (5.15) and (5.16) imply that the left hand side of this last equation

is positive. We thus reach the general conclusion that hyperscaling violating geometries

require a source of negative energy that has to dominate the total potential energy. We

stress that this is a local statement, independent of whether such geometries can be

embedded into an asymptotically AdS solution. Such a source can come from positive

internal curvature, for instance in sphere reductions [83, 84] or near horizon limits of

branes [80–82]. For the flux compactifications discussed in this work, the source of negative

energy comes from orientifold planes.

To gain intuition, it is useful to first analyze hyperscaling violating solutions in the

nonsupersymmetric model. For a purely electric solution, balancing the negative term in

the potential (3.9) (which we just argued has to dominate in the hyperscaling violating

regime) against Vbrane gives a solution with

θ =
4ν1

ν1 + 1
, z = 3− 2

ν1 + 1
− 8

α2(ν2
1 − 1)

(5.19)

and φ ∼ 4
α(ν1−1) log r. The solution is valid approximately at large r if ν1 > 1, and at

small r otherwise. These results agree with the electric branes discussed in [85]. On the

other hand, if the magnetic charge is nonzero, it always dominates over the electric charge,

yielding parameters

θ =
4ν1

ν1 − 1
, z = 3 +

2

ν1 − 1
− 8

α2(ν2
1 − 1)

(5.20)

with φ ∼ 4
α(ν1+1) log r. The solution is valid at large r. This agrees with the magnetic

branes of [86]. A hyperscaling violating solution has positive specific heat if

2− θ
z
≥ 0 , (5.21)

which in this case translates into

0 ≤ ν1 ≤ ±
1

3
+

2

3

√
1 + 6/α2 (5.22)

for the electric/magnetic branes respectively.

13This requires gtt → 0 as r → 0. The conclusion below regarding the source of negative energy is also

valid if the singularity is at large r, but a holographic interpretation is not clear in this case.
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Let us now consider hyperscaling violation in CY flux compactifications. From (5.18),

the flux and brane potential energy contributions

Vflux ∼ r2θ/(2−θ) , Vbrane ∼ r(2θ−8)/(θ−2) . (5.23)

The orientifold is the only source of negative energy and it has to dominate the total energy.

This determines the behavior of the physical dilaton

D = D0 +
2

3

θ

2− θ
log r . (5.24)

eq. (5.17) implies that the Kähler moduli vi have power-law dependence on r, and finding

a hyperscaling violating solution requires identifying consistently a set of terms in Vflux and

Vbrane that give the dominant contribution.

In practice, obtaining these solutions analytically is complicated by the fact that these

compactifications generically have many scalars. However, in the single Kähler modulus

theory of section 3.2 this can still be done by direct inspection. We find a consistent electric

solution where axions do not run,

v ∼ r1/2 , D ∼ −3

2
log r (5.25)

and

θ =
18

5
, z =

17

20
. (5.26)

The solution is valid at large r and is under perturbative control because vol → ∞ and

gs → 0. It is supported by a combination of electric charge, orientifold tension, H3 flux

and Romans mass. Nevertheless, θ > 2, so the specific heat is negative and there may be

instabilities. It would be interesting to study the stability of this solution, along the lines

of [87, 88]. This motivates the more general question of a possible “correlated stability

conjecture” [89–92] for hyperscaling violation geometries, which would be worth analyzing.

5.3.1 General racetrack potentials

It is of interest to have more efficient tools to study hyperscaling violating solutions in the

flux landscape. Here we take the first steps in this direction by obtaining some general

results for racetrack potentials V =
∑
Am exp(

∑
αm,iφi).

We assume that in a hyperscaling violating geometry (5.13), the canonically normalized

scalar fields are running in the form

φi(r) = log φ0
i + ki log r , (5.27)

which is the case for kinetic terms in perturbative flux compactifications. The effective

potential is then a polynomial in r. Usually a hyperscaling violating geometry is an

approximate solution, sourced by a subset of terms in Veff that have to consistently

dominate in the regime of interest. Now we are going to study how the hyperscaling

violating exponents are constrained in our EFT.
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The leading order equations of motion are

f2
0

θ − 6 + ( θ2 − 1)
∑
k2
i

θ − 2
r

2θ
2−θ + Veff = 0 (5.28)

4 + 2θ − 4z

2− θ
+
∑

k2
i = 0 (5.29)

f2
0

θ − 6 + ( θ2 − 1)
∑
k2
i

θ − 2
kmr

2θ
2−θ − ∂φmVeff = 0 (5.30)

Assume that the leading order terms in the potential comes from the following subset of

terms from the full potential,

Vdominate =
Vbrane

r4
+
∑
m

Am exp
∑

αm,iφi . (5.31)

For simplicity, we consider a single gauge field and denote by φ1 the scalar field in its gauge

kinetic function; then Vbrane = 1
2Q

2e±αφ1 , with the sign determined by whether the brane

is electric or magnetic. For Vdominate to source the geometry to the leading order, it needs∑
i

αi,mki =
2θ

2− θ
, ±αk1 − 4 =

2θ

2− θ
. (5.32)

It is useful to introduce the notation

Ãm ≡ Am
∏

(φ0
i )
αi,m , Ã0 ≡

Q2

2
(φ0

1)α0,1 , α0,i ≡ ±αδ1,i (5.33)

which make the leading order equations of motion algebraic,

f2
0

θ − 6 + ( θ2 − 1)
∑
k2
i

θ − 2
+
∑
n

Ãn = 0 (5.34)

f2
0

θ − 6 + ( θ2 − 1)
∑
k2
i

θ − 2
kj −

∑
n

Ãnαj,n = 0 (5.35)

We further define an auxiliary “probability”

Pl ≡
Ãl∑
n Ãn

, 〈f〉 ≡
∑
n

fnPn (5.36)

(a slight abuse of name, since Pl is not necessarily positive), and solve for ki

ki = −〈αi〉 = −
∑
n

αinPn . (5.37)

One can then show that the hyperscaling violation and dynamical exponents are

θ = 2 +
4∑

i〈αi〉2 + 4P0 − 2
, z = 1 +

4P0∑
i〈αi〉2 + 4P0 − 2

, (5.38)

and

f2
0 =

1

4P0 + 1
2

∑
i〈αi〉2 − 3

∑
n

Ãn . (5.39)
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The exponents (θ, z) are determined in terms of the auxiliary probabilities {Pl}, which

are in turn fixed by the power-matching identities (5.32). From the definition of Ãn, Pl are

functions of {φ0
i }, hence if the number of scalars is greater than the number of terms in

Vdominate, it is in general possible to solve for {φ0
i }’s given the {Pl}. However, additional

constraints need to be satisfied in order to have a physically sensible solution. In particular,

one should check that Vdominate self-consistently dominates over the neglected terms in Veff,

and that φ0
i are real and f0 > 0. Furthermore, the condition that the total potential energy

in the hyperscaling violating regime be negative now translates into
∑

n Ãn < 0. We may

also want to impose positivity of the specific heat, which amounts to

1− 4P0 −
1

2

∑
i

〈αi〉2 ≥ 0 , (5.40)

although, as we discussed before, there may be interesting phases arising from instabilities.

6 Summary and future directions

In the present work we have constructed charged black branes in flux compactifications

of type IIA string theory on CY manifolds. The gauge fields arise from the 3-form RR

potential evaluated on harmonic 2-forms and the essential feature of these solutions is that

the six internal dimensions are parametrically smaller than all the relevant scales. Black

branes are described in terms of a 4d effective field theory that includes only a few light

fields and where KK modes decouple. In the perturbative regime of large flux, the EFT

depends only on topological information of the CYs and not on specific metric properties.

We also studied basic aspects of the (2 + 1)-dimensional duals at finite chemical potential,

including their spectrum of operators and thermodynamic properties.

Clearly a lot of work remains to be done to understand the holographic phases of mat-

ter described by flux compactifications at finite density. We focused on some of the simple

solutions, including AdS2 × R2, generalized Reissner-Nordstrom and branes with hyper-

scaling violation. These systems may exhibit phenomena that are qualitatively different

from known Freund-Rubin compactifications. Along this direction, it would be important

to study transport properties of the charge carriers, which are dual to operators of very

high dimension (unlike examples where the charges descend from internal isometries).

The appearance of emergent local quantum criticality in the flux landscape is very

intriguing, and the stability and holographic properties of such solutions are currently

under investigation [72]. We found hyperscaling violating solutions with negative specific

heat. It would be interesting if no-go theorems can be found for these theories, and also

if an analog of the correlated stability conjecture [89–92] exists for hyperscaling violation.

Given the simple scaling properties of such geometries, these questions may be tractable.

Other phases that could potentially be UV-completed in flux compactifications include the

multi-centered solutions of [93, 94], and homogeneous but anisotropic branes [95, 96].

Finally, it would also be interesting to explore different limits of string vacua. For

instance, strong warping leads to nontrivial kinetic terms [54, 55], and one could consider

the effects of finite density in simple geometries of this type. Also, [20] found AdS5
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solutions with small extra dimensions using (p, q) 7-branes, and it would be interesting to

analyze such 4d CFTs at finite chemical potential. Finally, type IIB AdS solutions on CYs

with nonperturbative effects [27] provide another framework for charged brane solutions

that is worth analyzing.
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