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1 Introduction

What is the space of all (2, 2) superconformal field theories in 1 + 1 dimensions with c = 9

and integral R-charges? It is an interesting question in its own right and is also believed to

be important. Related questions are: what is the space of all three-dimensional Calabi-Yau

manifolds? and What is the space of all string compactifications to 3 + 1 dimensions?

Linear sigma models provide a useful tool to find (2, 2) superconformal field theories,

analyze them, and study their quantum moduli spaces [1]. Investigation so far had been

centered on models with Abelian gauge groups. The low energy theory in a typical “phase”

has simple interpretation as an orbifold of non-linear sigma model with a superpotential.

The geometric phase is related to toric geometry, where well developed techniques are

available. Models with non-Abelian gauge groups, on the other hand, had not yet been

studied much. One reason is that such models typically have phases where a simple gauge

group is unbroken, but the nature of the low energy behaviour of such theories had not been

well understood. In [2], David Tong and the author attempted to understand the nature

of a class of theories with special unitary gauge groups, and the result is applied to linear

sigma models. In the present work, we study more about non-Abelian gauge interaction,

with emphasis on orthogonal and symplectic gauge groups, and apply our findings to linear

sigma models relevant for string compactifications. We hope that this work will eventually

lead us to expand our perspective concerning the above questions.

One problem in theories with simple gauge groups is that there is often a non-compact

Coulomb branch which makes it impossible to have a sensible conformal field theory with

discrete spectrum in the infra-red limit. Coulomb branch is interesting in its own right,

especially in relation to six dimensional theories associated with Neveu-Schwarz fivebranes.

However, its presence is problematic in order to obtain theories relevant for string compact-

ifications. This motivates us to look at regular theories, where Coulomb branch is lifted

by quantum correction.

Let us describe the main results of this paper.

We first describe the result for the O(k) or SO(k) gauge theory with N massless fields

in the vector representation, x1, . . . , xN , with vanishing superpotential (k = 1, 2, 3, . . . and

N = 0, 1, 2, 3, . . . ,). For k ≥ 3, since these groups have Z2 fundamental group, we need to

specify the mod 2 theta angle [3]. Also, an O(k) theory can be regarded as a Z2 orbifold of

an SO(k) theory, and there are two possibilities additionally, denoted by O+(k) and O−(k).

The theory with k ≥ 2 is regular when N − k is odd and the mod 2 theta angle is turned

off, or when N −k is even and the mod 2 theta angle is turned on. For N ≤ k−2, whether
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regular or not, the theory has no normalizable supersymmetric ground state. That is, the

supersymmetry is spontaneously broken. The rest applies only to regular theories. For

N = k − 1, the SO(k) and O−(k) theories flow in the infra-red limit to the free theory of

the scalar products, (xixj) =
∑k

a=1 x
a
i x

a
j , the “mesons”. The O+(k) theory flows to two

copies of such free theory. For N ≥ k, we propose that there is a duality:

O+(k) ←→ SO(N − k + 1)

SO(k) ←→ O+(N − k + 1) (1.1)

O−(k) ←→ O−(N − k + 1).

The theory with gauge group on the left hand side flows to the same infra-red fixed point as

the theory with gauge group on the right hand side with N vectors x̃1, . . . , x̃N and N(N+1)
2

singlets sij = sji with the superpotential

W =
N∑

i,j=1

sij(x̃
ix̃j). (1.2)

The mesons in the original theory correspond to the singlets in the dual, (xixj) = sij .

The symmetry Z2 = O(k)/SO(k) in the SO(k) theory corresponds to the quantum Z2

symmetry of the dual O+(N − k + 1) theory (regarded as a Z2 orbifold). In particular,

the “baryons” [xi1 · · ·xik ] = det(xaib) in the SO(k) theory correspond to twist operators in

the dual O(N − k + 1) theory. There are similar correspondences between Z2 symmetries

in the other dual pairs. The duality is tested against non-trivial checks, including ’t Hooft

anomaly matching, flow by complex mass deformation, vacuum counting with twisted mass

deformation, comparison of (c, c) and (a, c) chiral rings.

We next describe the results for the USp(k) gauge theory with N massless fundamen-

tals, x1, . . . , xN , with vanishing superpotential (k = 2, 4, 6, . . . and N = 0, 1, 2, 3, . . .). It

is regular if and only if N is odd. For N ≤ k, there is no normalizable supersymmetric

ground state in both regular (N odd) and irregular (N even) theories. For N = k+ 1, the

low energy theory is the free conformal field theory of the mesons, [xixj ] =
∑k

a,b=1 x
a
i Jabx

b
j ,

where Jab is the symplectic structure defining the gauge group. For higher odd N ≥ k+3,

there is a duality:

USp(k) ←→ USp(N − k − 1). (1.3)

That is, the theory is dual to the USp(N − k − 1) gauge theory with N fundamentals

x̃1, . . . , x̃N and N(N−1)
2 singlets aij = −aji with the superpotential

W =

N∑

i,j=1

aij [x̃
ix̃j ]. (1.4)

The mesons in the original theory correspond to the singlets in the dual, [xixj ] = aij .

Again, the duality is tested against non-trivial checks.

For completeness, we record the results obtained in [2] for the SU(k) gauge theory

with N massless fundamentals, x1, . . . , xN , with vanishing superpotential (k = 2, 3, 4, . . .

– 2 –
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and N = 0, 1, 2, . . .). The theory is regular when there is no k distinct N -th roots of unity

that sum to zero. For N ≤ k, there is no normalizable supersymmetric ground state.

For N = k + 1, the low energy theory is the free conformal field theory of the baryons

[xi1 · · ·xik ]. For N ≥ k + 2, there is a duality between regular theories:

SU(k) ←→ SU(N − k). (1.5)

That is, the theory is dual to the SU(N −k) gauge theory with N fundamentals x̃1, . . . , x̃N

and vanishing superpotential. [xi1 · · ·xik ] = ǫi1···ikj1···jN−k
[x̃j1 · · · x̃jN−k ] is the relation of

the variables. This duality itself was not explicitly stated in [2] but can be proven rather

trivially based on the relation G(k,N) ∼= G(N − k,N) of Grassmannians, just as in the

series of dualities found in [2]. In a way, this is the most fundamental case from which

the members in the series follows by addition of superpotential. It would be interesting to

study SU(k) gauge theories with N fundamentals and M anti-fundamentals. We postpone

the discussion of such theories for future works.

This pattern looks strikingly similar to the results found in N = 1 gauge theories in

3 + 1 dimensions [4–6] and [7, 8]; supersymmetry breaking for low (but non-zero) flavors,

quantum deformed moduli space for a “critical” flavor, and duality for supercritical flavors:

SU(k) ←→ SU(N − k)
SO(k) ←→ SO(N − k + 4) (1.6)

USp(k) ←→ USp(N − k − 4).

For special unitary groups, the number of fundamentals must be equal to the number of

antifundamentals to avoid the gauge anomaly. For symplectic groups, N must be even to

avoid the global anomaly. There is also a similar pattern in N = 2 gauge theories in 2 + 1

dimensions [9–14]. In particular, for supercritical flavors, there is a duality between the

following gauge groups:

U(k) ←→ U(N − k)
O(k) ←→ O(N − k + 2) (1.7)

USp(k) ←→ USp(N − k − 2).

There are also versions of duality between theories with Chern-Simons terms. The shift in

rank for the orthogonal and symplectic groups decreases as ±4,±2,±1 as the dimension

is reduced from four to two. This suggests an interpretation of our duality in terms of

brane construction, as the charge of orientifold planes decreases by a factor of 2 for each

reduction of dimension by 1.

The present work is motivated by recent development in mathematics concerning equiv-

alences of derived categories (see for example [15] for an introduction). In fact, the direct

motivation came from the paper by Hosono and Takagi [16] in which the authors suggested

an equivalence of the derived categories of two distinct Calabi-Yau manifolds, X and Y , of

dimension three. X is the intersection of five symmetric quadrics in CP4 ×CP4 divided

by the exchange involution, while Y is a double cover over the degeneration locus of the
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Figure 1. The quantum Kähler moduli space for Hosono-Takagi example.

associated quadratic form on CP4 (a determinantal quintic in CP4) which is ramified along

a curve of higher degeneration. This suggests existence of a quantum Kähler moduli space

of (2, 2) superconformal field theories, which has a corner corresponding to X and another

corner corresponding to Y . X naturally leads us to consider a linear sigma model with a

non-Abelian gauge group
U(1)×O(2)

{(±1,±12)}
. (1.8)

In the opposite phase, an O(2) subgroup of the gauge group is entirely unbroken, and we

are forced to understand the low energy behaviour of such a quantum gauge theory. We

managed to understand it to some extent, and the result tells us that we indeed have a

ramified double cover over the determinantal quintic, but does not tell us how to construct

it globally. This again forced us to have a better understanding and led us to discover the

non-Abelian duality. In the dual model with gauge group (U(1)×SO(4))/{(±1,±14)}, the
global ramified double cover Y emerges naturally and completely classically. The dual pair

of linear sigma models play complementary rôles at both of the two corners corresponding

to X and Y . If the gauge symmetry is unbroken and a non-trivial quantum analysis is

necessary in one theory, the gauge symmetry is completely Higgsed and purely classical

analysis suffices in the dual theory.

Figure 1 shows the structure of the quantum Kähler moduli space obtained by the

dual pair of linear sigma models. There are three singular points at which Coulomb branch

emerges. One point is special in that there are two copies of a one-dimensional Coulomb

branch. Comparing with the result of [16], this seems to be related to having two BPS

particles that become massless at this point.

The example of Hosono-Takagi can be regarded as a sister of the example of

Rødland [17] which was the motivation of the work [2]. In that work, we studied a linear

– 4 –
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sigma model with gauge group U(2), that is,1

U(1)×USp(2)

{(±1,±12)}
. (1.9)

In this paper, we apply the duality also to this model and find a new picture. We will

also apply the duality to linear sigma models relevant for intersection of quadrics, which

was studied in mathematics [15, 21–23] as the basic example of non-trivial equivalence

of derived categories. This exercise was also useful in refining our understanding of Z2

orbifolds and that resulted in shaping up the duality in the present form.

2 O(1) theories

In this section, we study several two-dimensional (2, 2) supersymmetric gauge theories with

gauge group O(1) = {1,−1}, i.e., orbifolds by the group Z2 = Z/2Z.

We start with making general remarks concerning the definition of Z2 orbifolds in

supersymmetric field theories.

2.1 General remarks on Z2 orbifolds

Let us consider a (2, 2) supersymmetric quantum field theory in 1 + 1 dimensions with

an involutive symmetry τ commuting with the supercharges. We would like to define an

orbifold with respect to Z2 = {1, τ}.
For g, h ∈ {1, τ}, we denote by g

�
h
the g-twisted Witten index on the unprojected h-

twisted Ramond-Ramond (RR) sector. It is equal to the partition function on a torus with

h-twist in the “space” direction and g-twist in the “time” direction. As usual, it receives

contribution only from supersymmetric ground states, and does not depend on the metric

of the torus nor on the distinction between the space and time directions. In particular,

we have
τ�

τ

= ττ=1�
τ

= τ�
1
. (2.1)

This provides constraints and relations concerning the action of τ and (−1)F on the twisted

and untwisted sectors.

As an important example, let us consider a theory in which there is exactly a single

supersymmetric ground state in each of the untwisted and the twisted sectors. The first

equality (2.1) means that the twisted ground state must be τ invariant and hence survives

the orbifold projection. The second equality means that, if τ acts as the sign ετ on the

untwisted ground state, then the action of (−1)F on the twisted and untwisted sectors are

related by

(−1)F |τ = ετ (−1)F |1. (2.2)

The untwisted ground state survive the projection if ετ = 1 but is projected out if ετ = −1.
The sign ετ is a part of the data of the orbifold which has such a significant effect.

1It is interesting to see that the two simplest non-Abelian groups, USp(2) and O(2), appeared in this

way. This reminds us of their rôle in discovering the M-theory lift of orientifold six planes [18–20].
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In general, Z2 orbifolds of theories with spinors always come in pairs — if we can

define an orbifold by a symmetry τ then we can also consider the orbifold by (−1)Fsτ ,

where (−1)Fs is the operator that acts as the sign flip of all states in the untwisted RR

sector. This was emphasized for superconformal field theories in [24, 25]. It follows from

the operator product rule

NSNSg ×NSNSh −→ NSNSgh

NSNSg × RRh −→ RRgh (2.3)

RRg × RRh −→ NSNSgh

that the switch from τ to (−1)Fsτ does not change the orbifold projection in the untwisted

NSNS sector but reverses the one in the twisted NSNS sector. For later use we record

the effect:

(−1)Fs =

{
1 in untwisted NSNS and twisted RR

−1 in twisted NSNS and untwisted RR.
(2.4)

Dressing by (−1)Fs is different from the discrete torsion, which is absent for the orbifold

group Z2 as H2(Z2,U(1)) is trivial.

There is a “canonical” choice of orbifold in a class of theories. Let us consider the su-

persymmetric non-linear sigma model with a target Kähler manifold X. The spectral flow,

or A-twist, provides a linear isomorphism between the space of RR ground states and the

underlying space of the (a, c) ring, which is a deformation of the de Rham cohomology ring

HdR(X,C). Suppose X has an involutive holomorphic isometry τ , with which we would

like to define an orbifold. In the untwisted sector, there is a canonical choice of orbifold

projection: the identity operator must be kept and hence, in the the untwisted (a, c) ring,

those corresponding to the τ -invariant cohomology classes must remain. Now, the “canon-

ical” choice would be the one that keeps the linear isomorphism between the untwisted

RR ground states and the space of untwisted (a, c) ring elements. The non-canonical one

would select the RR ground states corresponding to the anti-invariants in HdR(X,C). We

shall sometimes denote the orbifold group by Z2(−1)Fs for the non-canonical choice. As an

important example, let us consider the case where τ is the identity map of X. In this case,

the unprojected twisted sector is isomorphic to the space of states of the original sigma

model. For either choice of orbifold, the untwisted NSNS and twisted RR sector must

survive the projection entirely. The untwisted RR as well as twisted NSNS sector survive

entirely for the canonical choice, while they are all projected out for the non-canonical

choice. Thus, the canonical orbifold X/Z2 is isomorphic to the sigma model whose target

space is the disjoint union of two copies of X, while the non-canonical one X/Z2(−1)Fs is

isomorphic to the original sigma model on X.

In the course of the paper, we shall introduce the notion of “canonical” or “standard”

Z2 orbifold for other type of theories. This will also be extended to the definition of

gauge theories with O(k) gauge group, which can be regarded as Z2 orbifolds of SO(k)

gauge theories.

– 6 –
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2.2 Massive fields

As the first example, we study an orbifold of the theory of massive chiral multiplets

with respect to the sign flip. Our main interest will be the spectrum of supersymmet-

ric ground states.

One way to give a mass to a chiral multiplet (x, ψ±) is to introduce a superpotential

W =
m

2
x2. (2.5)

An alternative is twisted mass [26] which is given by the following procedure: gauge the

phase rotation symmetry of x, give a value −m̃ to the scalar component of the gauge

multiplet, and then turn off the gauge interaction. A superpotential mass shall be called

a complex mass. Note that a twisted mass is possible only when the phase rotation is a

symmetry. In particular, we cannot give both complex and twisted masses at the same

time, since the phase rotation is not a symmetry of (2.5). To be more explicit, the complex

mass term reads

Lm = −|m|2|x|2 −mψ+ψ− −mψ−ψ+, (2.6)

while the twisted mass term is

Lm̃ = −|m̃|2|x|2 − m̃ψ+ψ− − m̃ψ−ψ+. (2.7)

Let us consider a Z2 orbifold of the theory of (x, ψ±) with the usual kinetic term plus

either of the two mass terms, by the sign flip symmetry,

τ : (x, ψ±)→ (−x,−ψ±). (2.8)

At first sight, the two orbifold theories, one with a complex mass and the other with a

twisted mass, are isomorphic, as one can switch from one Lagrangian to the other by

exchanging ψ− and ψ−. However, we would like to define the orbifolds with respect to a

common τ action on the common space of states. That is, we define them as two different

mass deformations of a given orbifold of a massless chiral multiplet. Then, as we will see,

the two are not isomorphic.

Each of the two theories have one untwisted and one twisted supersymmetric ground

states before the orbifold projection. Let us compare the ground state wavefunctions in the

two theories. There is literally no difference in the dependence on the bosonic field x and

hence our focus will be the fermionic fields ψ±. The fields, both bosons and fermions, are

integer (resp. half-integer) moded in the untwisted (resp. twisted) RR sector. Let us first

focus on the zero modes in the untwisted sector. The (fermionic part of) Hamiltonians of

the two systems read

Hm = mψ+0ψ−0 +mψ−0ψ+0, (2.9)

Hm̃ = m̃ψ+0ψ−0 + m̃ψ−0ψ+0. (2.10)

The lowest energy states are respectively

|0〉0 +
m

|m|ψ+0ψ−0|0〉0, (2.11)

ψ+0|0〉0 +
m̃

|m̃|ψ−0|0〉0, (2.12)

– 7 –
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where |0〉0 is the state annihilated by ψ+0 and ψ−0. The state |0〉(0) is transformed by τ

to itself up to a sign, since the defining property is τ invariant. Therefore, τ transforms

the two ground states, (2.11) and (2.12), to themselves but with opposite signs, as it flips

the sign of ψ±0. Non-zero modes are decoupled into infinite sectors labeled by the absolute

value of the momentum. The lowest energy states in each sector are again different between

the two theories but the Z2 orbifold action on them are the same. Therefore, the Z2 actions

on the untwisted sector RR ground states are opposite between the two theories, while the

actions on the twisted sector RR ground states are the same. The same computation can

be used to study the Z2 action on NSNS sector states, where the fermions are half-integer

(resp. integer) moded in the untwisted (resp. twisted) sector. The Z2 actions on the

untwisted sector NSNS ground states are the same between the two theories, while the

actions on the twisted sector NSNS ground states are the opposite.

As remarked in the previous subsection, the twisted sector RR ground state must

survive the orbifold projection, in each of the two theories. On the other hand, whether

the untwisted sector RR ground state survives or not is up to our choice. There are two

possibilities (let |Ω〉RR resp. |Ω̃〉RR be the untwisted ground state of the theory with a

complex resp. twisted mass): |Ω〉RR is invariant and |Ω̃〉RR is anti-invariant, or |Ω〉RR is

anti-invariant and |Ω̃〉RR is invariant. In the rest of the paper, we shall take the latter as our

“standard” convention for the Z2 orbifold of a chiral multiplet by the sign flip. Namely:

|Ω〉RR is anti-invariant and is projected out, while |Ω̃〉RR is invariant and survives the

projection. Note that |Ω〉RR and |Ω̃〉RR have opposite statistics, as can be seen from (2.11)

and (2.12). Let us assume that |Ω〉RR is fermionic, and hence |Ω̃〉RR is bosonic. Then, it

follows from the general constraint (2.2) that the twisted ground states in the two theories

are both bosonic. Therefore, under this assignment, we have

Tr(−1)F =

{
1 for complex mass

2 for twisted mass.
(2.13)

What about the NSNS sector? As always, the NSNS ground state in the untwisted sector

is invariant and survive the projection in each of the two theories. To determine the action

in the twisted sector, we note that the theory with a twisted mass has one twisted and one

untwisted supersymmetric ground states. This requires existence of a twist operator in the

infra-red limit. On the other hand, we do not need such an operator for the theory with a

complex mass. From this we conclude that the twisted NSNS ground state is anti-invariant

and is projected out in the theory with complex mass while the one in the theory with

twisted mass is invariant and survives the projection.

The definition and the result for theories with several massive multiplets is obtained

simply by tensor product: let us consider the orbifold of N fields (i.e. N chiral multiplets)

with complex masses and M fields with twisted masses, by the simultaneous sign flip of all

the N +M fields. Then it has one supersymmetric ground state from the twisted sector if

N is odd, while it has two supersymmetric ground states, one twisted and one untwisted,

if N is even. The states are all bosonic, and in particular,

Tr(−1)F =

{
1 if N is odd

2 if N is even.
(2.14)
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This result can be extended to the following periodicity phenomenon. We know that

simply adding a massive field to a system does not change the infra-red behaviour. Does it

hold also in orbifolds? Suppose we have a Z2 orbifold of a 2d (2, 2) supersymmetric quantum

field theory A by its involutive symmetry τA. Let us add to A a single chiral multiplet x

with a complex or twisted mass and mod out the combined system by τ = (τA, τx) where

τx is the sign flip symmetry considered above. At energies below the mass of x, relevant

states in each sector are the tensor product of states of the A system with the ground

state of the x system in that sector. By the transformation property of the ground states

learned above, we find that the orbifold projection in this theory is the same as the one for

A/τA if x has a twisted mass. On the other hand, if x has a complex mass, the projection

is the same as A/τA in the untwisted NSNS and twisted RR sectors but is opposite to

A/τA in the twisted NSNS and untwisted RR sectors. This lead us to claim that (at low

energies) the combined orbifold theory is equivalent to the original orbifold A/τA when x

has a twisted mass, while it is equivalent to the other orbifold A/(−1)FsτA when x has a

complex mass. A similar conclusion holds if we combine A with N fields with complex

mass and M fields with twisted mass: the combined orbifold system is equivalent at low

energies to A/τA if N is even and to A/(−1)FsτA if N is odd.

Embedding into linear sigma models. We now show that the above “standard” choice

of Z2 orbifold appears naturally as a part of linear sigma models. Let us consider a U(1)

gauge theory consisting of a field p of charge −2 and fields x1, . . . , xN of charge 1. First

let us set W = 0 and give no twisted mass. When the Fayet-Iliopoulos (FI) parameter r is

negative, the D-term equation −2|p|2 +∑N
i=1 |xi|2 = r requires p to have a non-zero value,

breaking the U(1) gauge group to its Z2 subgroup. In the limit r → −∞, only x’s remain

as massless degrees of freedom and we obtain the free orbifold CN/Z2 by the simultaneous

sign flip of x1, . . . , xN . We study deformations of this linear sigma model that correspond

to giving complex and twisted masses to x’s in the orbifold.

Let us first consider turning on the superpotential

W = p(x21 + · · ·+ x2N ). (2.15)

The theory at r → −∞ is now the Landau-Ginzburg (LG) orbifold of the variables

x1, . . . , xN with superpotential W = x21 + · · · + x2N by the simultaneous sign flip. That

is, a Z2 orbifold theory where all N variables have complex masses. The main question is:

is it the “standard” one or the other one? To see this, let us analyze this linear sigma model

in detail. In the regime r ≫ 0, x’s have non-zero values, breaking the gauge group com-

pletely, and the theory reduces to the non-linear sigma model on the quadric hypersurface

QN−2 = {x21 + · · · + x2N = 0} of CPN−1. We may also have Coulomb branch vacua. The

effective twisted superpotential for the scalar component σ of the U(1) vector multiplet is

W̃eff = −(−2σ)(log(−2σ)− 1)−Nσ(log σ − 1)− tσ, (2.16)

for t = r− iθ where θ is the theta angle. The Coulomb branch vacua are found by solving

∂σW̃eff ≡ 0 (mod 2πiZ), i.e.,

σN−2 = 4 e−t. (2.17)
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The detail of the theory depends on N . Let us begin with the case N = 2, where the axial

U(1) R-symmetry is anomaly free and the FI parameter r does not run. We expect that the

Witten index is constant if we move r from r ≪ 0 to r ≫ 0 as long as we avoid the point

et = 4 (which supports a non-compact Coulomb branch). At r ≫ 0, we have the sigma

model on the quadric Q0 = {x21+x22 = 0}, which is the set of two points. Its Witten index

is of course 2. Hence our LG orbifold at r → −∞ should also have Witten index 2. Let us

next discuss the case N = 1, in which the FI parameter runs from negative to positive under

the renormalization group (toward longer distances). The theory describes a flow from the

LG orbifold. The quadric Q−1 = {x21 = 0} is empty, but we have a single Coulomb branch

vacuum at σ = et/4. Thus the theory has a unique supersymmetric ground state. Finally,

we discuss the case N > 2 where the FI parameter runs from positive to negative. The

theory is a flow from the sigma model on QN−2 to our LG orbifold or to one of the N − 2

Coulomb branch vacua. Hodge number hi,j of the quadric QN−2 is (see, for example [21])

N even:





1 i = j 6= N−2
2

2 i = j = N−2
2

0 otherwise,

N odd:

{
1 i = j

0 otherwise.
(2.18)

In particular, the total number of supersymmetric ground states of the sigma model is N

for even N and N − 1 for odd N . Subtracting the number N − 2 of the Coulomb branch

vacua, we obtain 2 for even N and 1 for odd N . To summarize, for all N , the result of

the linear sigma model agrees with the result, e.g. (2.14), for our Z2 orbifold. This means

that the Z2 orbifold that appears at the r → −∞ limit of the linear sigma model is the

“standard” one in our convention.

Next, let us consider another deformation. Instead of turning on the superpotential,

we give twisted masses with twisted masses 0, m̃1, . . . , m̃N to p, x1, . . . , xN . In the limit

r → −∞, the theory reduces to the Z2 orbifold where all N fields have twisted masses. In

the r ≫ 0 regime, the classical vacuum equations read

−2|p|2 +
N∑

i=1

|xi|2 = r,

σp = (σ − m̃1)x1 = · · · = (σ − m̃N )xN = 0, (2.19)

σp = (σ − m̃1)x1 = · · · = (σ − m̃N )xN = 0.

If the twisted masses are distinct, there are N solutions at σ = m̃1, . . . , m̃N , each of which

breaks the gauge symmetry completely. The vacuum equation on the Coulomb branch

reads ∂σW̃eff = 2 log(−2σ)−∑N
i=1 log(σ − m̃i)− t ≡ 0, or

4σ2 = et(σ − m̃1) · · · (σ − m̃N ). (2.20)

Let us first analyze the system with N = 1, which describes a flow from our Z2 orbifold.

The equation (2.20) has two solutions, both of which go indeed to σ = 0 in the ultra-violet

limit t → −∞. In the infra-red limit t → +∞, one solution goes to σ = m̃ and the other

solution goes away to infinity as σ ∼ et/4. The former supports the vacuum at r ≫ 0
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corresponding to the single solution to (2.19), while the latter is a Coulomb branch vacuum.

The theory indeed has two bosonic ground states. Next, let us consider the case N = 2

where r does not run. In the r ≫ 0 regime, we observed two classical vacua solving (2.19).

Let us check if that is everything. The equation (2.20) has two solutions (except at et = 4);

at r ≫ 0 the two solutions are at σ ∼ m̃1 and m̃2 and indeed correspond to the two classical

vacua, and at r → −∞ the two solutions both go to σ = 0 which is the right value for our

Z2 orbifold theory. Therefore, we did not miss anything and can conclude that the Witten

index is 2 at any value of t (except et = 4) and in particular at t→ −∞. For N > 2, the N

solutions to (2.20) are at σ ∼ m̃i in the ultra-violet limit t → +∞ and indeed correspond

to the N classical vacua solving (2.19). In the infra-red limit, two of them go to σ → 0

while other (N − 2) go away to infinity. This again confirms that our Z2 orbifold has two

bosonic supersymmetric ground states. To summarize, for all N , the result of the linear

sigma model agrees with the result for our Z2 orbifold. This ought to be the case as we

have already confirmed that the Z2 orbifold that appears at r → −∞ limit of the linear

sigma model is the “standard” one in our convention.

2.3 Corank 1 degeneration — branched double cover of C or its orbifolds

Let us next study the LG orbifold of (N + 1) variables, x1, . . . , xN and z, with the super-

potential

W = zx21 + x22 + · · ·+ x2N , (2.21)

modulo the Z2 generated by

τ : (z, x1, . . . , xN ) 7−→ (z,−x1, . . . ,−xN ). (2.22)

By the periodicity mentioned earlier, the low energy behaviour of the theory depends only

on N mod 2. The superpotential is quadratic in xi’s with coefficients depending on z. At

z 6= 0 it is non-degenerate, i.e. the Hessian matrix is of maximal rank, but as z approaches

0 the rank goes down by 1. In the region where |z| is large enough, the fields xi are massive

and can be integrated out first. This system of x’s, as we have learned, has a single (N

odd) or two (N even) massive vacua. Thus, in the region of z away from the origin z = 0,

we have the theory of the variable z without potential if N is odd. If N is even, we have

two copies of the free theory of z, that is, the sigma model whose target space is a double

cover of the z-plane. Of course this argument does not tell anything about the behaviour

near z = 0, which will be the main point of the discussion.

Even N . Let us first study the N even case. We take N = 2 for simplicity. We employ

a certain deformation of the linear sigma model introduced in the previous subsection: the

U(1) gauge theory with four fields of the following charges

p x1 x2 z

−2 1 1 0
(2.23)

with the superpotential

W = p(zx21 + x22). (2.24)
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The vector and axial U(1) R-symmetry exists and the FI parameter r does not run in this

theory. In the limit r → −∞, we recover the Z2 orbifold under discussion. In the positive

r regime, we have a sigma model whose target space is the hypersurface

zx21 + x22 = 0 (2.25)

inCP1×C = {([x1 : x2], z)}. The equation (2.25) and the D-term constraint −2|p|2+|x|2 =
r > 0 requires that x1 must be non-zero, and we may use an inhomogeneous coordinate

z̃ = ix2/x1. The equation (2.25) then reads

z = z̃2. (2.26)

This means that z̃ provides a global coordinate of the hypersurface. In particular the hy-

persurface is the complex plane C as a complex manifold. The metric is smooth everywhere

and has an asymptotic form ds2 ∝ |z̃dz̃|2 as |z̃| → ∞, which shows that the Euler density

integral is −1, i.e., the curvature is mostly negative. We expect that the metric flattens

under the renormalization group, and the theory flows to the free conformal field theory of

the variable z̃. This holds for any large positive values of r and hence for all values of r by

the absence of singularity except at a point in the FI-theta parameter space. Therefore we

conclude that the LG orbifold for even N flows in the infra-red limit to the free conformal

field theory of a single complex variable z̃ that is related to z via (2.26). Note that the

z̃-plane is indeed a double cover of the z-plane in the region away from z = 0. It is a

branched double cover with the branch point z = 0. That there is a branched double cover

was also argued in [28] using Berry’s phase.

As in any other Z2 orbifold, our LG orbifold has the quantum Z2 symmetry. If we take

the orbifold by this symmetry, we must get back the LG model before the orbifold (see,

for example [27]). In that theory, the (x1, x2) system for a given non-zero z has a unique

zero energy ground state with a mass gap. Thus, we expect a single cover of the z-plane

at least away from z = 0. This is achieved only when the quantum Z2 acts on z̃ as

z̃ 7−→ −z̃. (2.27)

In particular, the variable z̃ is a twist field of the orbifold theory.

Unfolding the Z2. At this occasion, let us discuss more about the LG model before the

orbifold. In the absence of orbifolding, the models for all N are equivalent at low energies.

Thus, we may assume N = 1 where we write x = x1. From what we have just seen, we

can say that it is dual to the orbifold of the free theory of z̃ by (2.27). However, as always,

we need to specify the orbifold action in the untwisted RR sector. We claim that it is the

non-standard one: the LG model of variables x and z with superpotential W = zx2 flows in

the infra-red limit to the free orbifold conformal field theory C/Z2(−1)Fs . Or equivalently,

it is dual to the Z2 orbifold of the theory of two variables, z̃ without mass and ỹ with a

complex mass, by the simultaneous sign flip (z̃, ỹ) 7→ (−z̃,−ỹ).
This can be derived as follows. We have seen that the LG orbifold (W = zx21+x

2
2)/Z2

is dual to the free theory of C = {z̃} with the relation z = z̃2. Let us add one variable
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ζ and perturb the system by the superpotential ∆W = ζz = ζz̃2. This changes the free

theory of z̃ to the LG model with superpotential W = ζz̃2. In the LG orbifold side, we

have the superpotential W = zx21+x
2
2+ zζ. If we integrate out z, we obtain the constraint

ζ = −x21 and we are left with the orbifold theory of x1 and x2 with superpotential W = x22.

With the notation change (z̃, ζ)→ (x, z) and (x1, x2)→ (iz̃, ỹ), this is the claimed duality.

Let us do some consistency checks. First, let us give a complex mass to z̃. This changes

the dual theory to the LG orbifold (W = z̃2+ỹ2)/Z2 which has two supersymmetric ground

states. In the LG side, this corresponds, under z = z̃2, to deforming the superpotential

to W = zx2 + z. We find two critical points, (x, z) = (0, i) and (0,−i), which means that

there are two supersymmetric ground states, agreeing with the dual result. Next, let us

give a twisted mass to z̃. The dual orbifold theory, which has one field with a twisted

mass and another with a complex mass, has one supersymmetric ground state. In the LG

side, we give twisted masses associated with the symmetry where z has charge 2 and x has

charge −1. The scalar potential is

U = |2zx|2 +
∣∣x2
∣∣2 + |−m̃x|2 + |2m̃z |2 . (2.28)

It has a classical vacuum at the origin (x, z) = (0, 0). Let us see what happens when we

turn off the superpotential W = zx2, i.e., turn off the first two terms. The potential still

has just one classical vacuum at the origin — the vacuum at the origin before turning offW

stays there, and no other vacuum comes in from infinity. Thus, we expect that the number

of ground states does not change if we set W = 0. We know that the W = 0 theory has a

unique RR ground state and hence we expect that the number of supersymmetric ground

states is one in the theory with W = zx2 as well. This is confirmed by an exact analysis

in appendix A. We again find that the result matches with the one in the dual. If we had

chosen the dual to be the one without the massive field ỹ, we would have faced a problem:

the number of ground states would be one (resp. two) if we give a complex (resp. twisted)

mass to z̃, which does not match with the LG result.

Odd N . Let us next discuss the N odd case. We take N = 3 and employ a chain of

duality and standard relations as follows. We denote by AN the system of the variables

(z, x1, . . . , xN ) with the superpotential (2.21) equipped with the symmetry (2.22), by AN/τ

its orbifold equipped with the quantum symmetry τ̂ , by B the system of one massless

variable z̃ and one variable ỹ with a complex mass equipped with the symmetry τ : (z̃, ỹ)→
(−z̃,−ỹ), and by C the system of one massless variable z̃ equipped with the symmetry

τ : z̃ → −z̃. We denote by Hinv
NSNSg

(A) resp. Hanti
NSNSg

(A) the space of invariants resp. anti-

invariants in the g-twisted NSNS sector of a system A, and similarly for the RR sectors.

Then, we have the following equalities,

Hinv
NSNS1

(A3) = Hinv
NSNS1

(A2) = Hinv
NSNS1

(A2/τ) = Hinv
NSNS1

(B) = Hinv
NSNS1

(C)
Hinv

NSNSτ
(A3) = Hanti

NSNSτ
(A2) = Hanti

NSNSτ̂
(A2/τ) = Hanti

NSNSτ
(B) = Hinv

NSNSτ
(C)

Hinv
RR1

(A3) = Hanti
RR1

(A2) = Hinv
RRτ̂

(A2/τ) = Hinv
RRτ

(B) = Hinv
RRτ

(C)
Hinv

RRτ
(A3) = Hinv

RRτ
(A2) = Hanti

RR1
(A2/τ) = Hanti

RR1
(B) = Hinv

RR1
(C)

(2.29)
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The first equality comes from the relation (A3, τ) ∼= (A2, (−1)Fsτ). The second equal-

ity is the standard relation between an orbifold (A, τ) and its quantum symmetry orb-

ifold (A/τ, τ̂) (see, e.g. [27]). The third equality follows from the duality found above,

(A2/τ, τ̂) ∼= (B, τ). The fourth equality comes from the relation (B, τ) ∼= (C, (−1)Fsτ). The

conclusion is that our LG orbifold with N = 3 (and hence for any odd N ≥ 1) flows in

the infra-red limit to the free orbifold conformal field theory C/Z2 (the standard one). It

matches with the expectation that the theory is a free theory of z = z̃2 in the region away

from z = 0. Note that the twisted and untwisted sectors are exchanged in the RR sector.

This means that the quantum symmetry of the LG orbifold corresponds in the dual orbifold

C/Z2 to the quantum symmetry combined with the symmetry (−1)F which is defined by

(−1)F =

{
1 in the NSNS sector

−1 in the RR sector.
(2.30)

2.4 Corank 2 degeneration — conifold with r = 0 and θ = π

As the final example in this section, we consider the Z2 LG orbifold

W = ax2 + 2cxy + by2 (2.31)

(x, y, a, b, c) 7−→ (−x,−y, a, b, c). (2.32)

As long as (a, b, c) is away from the degeneration locus

ab = c2, (2.33)

the fields (x, y) are massive an can be integrated out: the result of section 2.2 tells us that

the sector of (x, y) mod Z2 has two massive vacua. That is, we have a double cover of

the open subset ab 6= c2 of the (a, b, c)-space. Near the degeneration locus (2.33) but away

from the origin (a, b, c) = (0, 0, 0), we may find a coordinate change, (x, y) → (x′, y′), so

that the superpotential is expressed as

W = (c2 − ab)x′2 + y′2. (2.34)

The result of section 2.3 then tells us that the double cover is branched at the locus (2.33),

i.e., of the form

c2 − ab = d2. (2.35)

The main question is the behaviour of the theory near the origin. Note that the equa-

tion (2.35) is the one for the conifold. Thus we expect that the theory is related in some

way to that of the conifold. This is also what is observed in [28]. We would now like

to know the precise relation to the conformal field theory associated with resolution or

deformation of the conifold.

We consider a U(1) gauge theory with six fields of the following charges

p x y a b c

−2 1 1 0 0 0
(2.36)
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with the superpotential

W = p(ax2 + 2cxy + by2). (2.37)

In the r → −∞ limit, we recover the LG orbifold under question. The theory is singular

at the value of t = r − iθ where there is a non-compact Coulomb branch. The latter

exists when teff = ∂σW̃eff vanishes modulo 2πiZ, where W̃eff(σ) = −(−2σ)(log(−2σ)−1)−
2σ(log σ − 1)− tσ. The singular point is therefore

et = 4. (2.38)

In the r ≫ 0 regime, we have a sigma model whose target space is the hypersurface

ax2 + 2cxy + by2 = 0 (2.39)

in CP1×C3 where x, y are the homogeneous coordinates of the first factor CP1 and (a, b, c)

are the coordinates of the second factor C3. This is indeed a resolved conifold: there are

two solutions for (x, y) if (a, b, c) is away from (2.33) and one solution if it is at (2.33)

except at the origin (a, b, c) = (0, 0, 0) where arbitrary (x, y) solves the equation. That is,

the entire CP1 sits on the hypersurface at the origin of C3. More explicitly, if we set

d =

{
ax/y + c y 6= 0

−by/x− c x 6= 0,
(2.40)

then, a, b, c, d satisfy the conifold equation (2.35). Thus, we conclude that the LG orb-

ifold (2.31)–(2.32) belongs to a one parameter family of theories that also includes a large

volume limit of the resolved conifold.

At this point, we recall that there is another one parameter family that includes a

large volume limit of the resolved conifold — in fact two large volume limits. It is obtained

from the following U(1) gauge theory with vanishing superpotential with the following

matter content:
u1 u2 v1 v2
1 1 −1 −1 (2.41)

This one parameter family has one singular point

et = 1. (2.42)

r ≫ 0 and r ≪ 0 are the two large volume regimes. If we set

a = u1v1, b = u2v2, c =
u1v2 + u2v1

2
, d =

u1v2 − u2v1
2

(2.43)

then, a, b, c, d obey the relation (2.35).

Now let us ask whether the LG orbifold (2.31)–(2.32) belongs to the second family.

We propose that it is the theory at et = −1. We give two evidences for this proposal. One

is existence of a discrete symmetry. What is special about the theory at et = −1 is that it

has an extra Z2 symmetry. Let us consider the transformation

(u1, u2, v1, v2, V ) 7−→ (v1, v2, u1, u2,−V ), (2.44)
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where V is the vector superfield for the U(1) gauge symmetry. This reverses the FI-theta

parameter, r → −r, θ → −θ, and hence is a symmetry of the theory only at (r, θ) = (0, 0)

and (0, π). But (r, θ) = (0, 0) is the singular point, see (2.42). Thus, the theory at

(r, θ) = (0, π) (i.e. et = −1) is the only regular theory that possesses the Z2 symmetry.

Note that it acts on the U(1) invariants (2.43) as

a→ a, b→ b, c→ c, d→ −d. (2.45)

We propose to identify this Z2 symmetry with the quantum Z2 symmetry of the LG

orbifold (2.31)–(2.32). Indeed, as discussed in section 2.3, the quantum symmetry acts

as the exchange of the two sheets over the (a, b, c) space away from the degeneration

locus (2.33). That is, it must exchange the two solutions for d of the equation (2.35),

which is nothing but the transformation (2.45).

To provide another evidence, let us discuss the relation between the two families. We

write t1 (resp. t2) for the FI-theta parameter of the first (resp. second) family. Recall that

the singular points are at et1 = 4 in the first family and et2 = 1 at the second family.

We first find the relation between t1 and t2 by assuming the proposal. We expect that

the relation is generically one to two, where one value of t1 corresponds to two values of

t2 related by t2 → −t2. This requires the relation of the form et1 = f( et2 + e−t2) for

some rational function f(x) of degree 1. The relation between the singular points, large

volume limits, and the Z2 symmetric points requires the function f(x) to satisfy f(2) = 4,

f(∞) =∞ and f(−2) = 0 respectively. This fixes the relation as

et1 = et2 + e−t2 + 2. (2.46)

The main point of the second evidence is that this relation can be supported by the Picard-

Fuchs equation for the central charges of B-type D-branes. Recall that the central charge

is expressed as the period integral of some differential form for the corresponding A-branes

in the mirror system, and satisfies Picard-Fuchs differential equation [29, 30]. The mirror

for the second family is known and the equation reads as

d2

dt22
Π = 0. (2.47)

The mirror for the first family is not known but the dualization of the charged sector as

in [30] leads to the following equation

d2

dt21
Π = e−t1

(
2

d

dt1
− 1

)
2

d

dt1
Π. (2.48)

The two equations (2.47) and (2.48) are equivalent provided that t1 and t2 are related

by (2.46). This is a strong support for the relation (2.46), and in particular the proposed

identification of the LG orbifold (2.31)–(2.32) as the theory of the second family at

et2 = −1.
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3 O(2) theories

The group O(2) is isomorphic to the semi-direct product

O(2) ∼= SO(2)⋊ Z2, (3.1)

where Z2 is generated by the reflection τ with respect to the first axis,

τ =

(
1 0

0 −1

)
(3.2)

which acts on SO(2) ∼= U(1) by the group inversion. By this, an O(2) gauge theory can

be regarded as a Z2 orbifold of a U(1) gauge theory. For example, if the O(2) theory

consists of N fields in the fundamental representation (i.e. the doublet, 2), xi = (x1i , x
2
i )

T

(i = 1, . . . , N), then, ui = x1i + ix2i and vi = x1i − ix2i have U(1) charges +1 and −1
respectively, and the generator τ of the orbifold group acts on the fields as

τ : (u1, v1, . . . , uN , vN , V ) 7−→ (v1, u1, . . . , vN , uN ,−V ). (3.3)

To be precise, the U(1) gauge theory is specified only when its FI-theta parameter t = r−iθ
is specified. But (3.3) reverses its sign, t→ −t. Therefore, it is a symmetry only at t = 0

or t = πi (mod 2πiZ). But one of them is a singular point in the one parameter family

of U(1) theories because of the emergence of a non-compact Coulomb branch. By looking

at the effective twisted superpotential, we find that the singular point is t = πiN (mod

2πiZ). We decide not to consider such a theory with a non-compact flat direction. Thus,

we take the other value

t = πi(N + 1) mod 2πiZ. (3.4)

This applies whether or not there is a superpotential for the matter fields. When N is

odd, we can take t = 0 as the tree level FI-theta parameter. When, N is even, we should

take t = πi (mod 2πiZ). Alternatively, in the latter case, we may take t = 0 but introduce

one additional doublet xN+1 with a superpotential W = m
2 (xN+1xN+1), as a regulator

to prevent the singularity due to Coulomb branch. This works no matter how the mass

m is large.

As always, we need to and will specify the Z2 orbifold action on the space of states.

As an important point, the Z2 action depends on the choice of “regularizations” for the

even N case — (i) setting t = πi without introducing xN+1 or (ii) setting t = 0 while

introducing xN+1. Switching from one to the other has an effect of dressing the generator

by (−1)Fs as we have learned.

3.1 Yang-Mills theory and QCD with complex mass — supersymmetry break-

ing

Let us first study the theory without a matter field, i.e., the O(2) “Yang-Mills” theory.

According to our definition, it is the orbifold of the Maxwell theory with r = 0 and θ = π

by the Z2 that flips the sign of the vector multiplet fields V = (vµ, σ, λ). (Definition using
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a regulator field will be included in the massive QCD below.) We formulate the theory

on the circle of length L. Let us first consider the untwisted RR sector, where we impose

the periodic boundary condition on all fields. The energy spectrum from the U(1) gauge

field vµ is

En =
e2L

2

(
−1

2
+ n

)2

, n ∈ Z, (3.5)

where e is the gauge coupling. This is interpreted as the energy from the electric field

e2
(
−1

2 + n
)
, where −e2/2 is the background value associated with θ = π [31] and e2n is

from the conjugate momentum for the Wilson line. The remaining degrees of freedom,

σ and λ, has the usual free massless Lagrangian. Thus the states of the Maxwell theory

is decomposed into sectors labeled by n ∈ Z. The orbifold generator τ must reverse the

electric field, e2
(
−1

2 + n
)
→ −e2

(
−1

2 + n
)
. Thus, it acts on the sectors as

τ : (n, σ, λ) 7−→ (−n+ 1,−σ,−λ). (3.6)

Note that the sectors are permuted and none of them is invariant. In particular, there is

no subtlety concerning the definition of the Z2 orbifold action. The orbifold theory may

be identified as the sum of sectors with the label n running only over

n = 0, 1, 2, 3, . . . . (3.7)

All the states have strictly positive energies. Let us next consider the twisted RR sector,

where we impose the anti-periodic boundary condition for all fields. Gauss law constraint

requires that the electric field is constant. Together with anti-periodicity, this means that

the electric field is constantly vanishing. However, this is in conflict with the definition

of θ = π as providing the background electric field e2/2 (mod e2Z). That is, there is no

twisted sector for this choice of the theta angle. To summarize, the theory has no zero

energy state. In particular the supersymmetry is spontaneously broken.

Let us next consider “QCD” with quarks with complex masses, i.e., the theory with N

fundamental matter fields, x1, . . . , xN , with a non-degenerate quadratic superpotential, say,

W = (x1x1) + · · ·+ (xNxN ). (3.8)

Since all fields are massive, they can be integrated out and we are left with the O(2) “Yang-

Mills” theory. Note that the theta angle for the U(1) has changed from the ultra-violet

value (3.4) to the infra-red value θeff = π. The treatment of the untwisted RR sector is

as in the Yang-Mills theory. In particular, there is no zero energy state there. Unlike in

the pure Yang-Mills, the theory does have a twisted RR sector. Gauss law constraint now

takes the form

∂1

(
1

e2
F01

)
= j0 (3.9)

where j0 is the charge density. We may have a configuration as depicted in figure 2 that is

compatible with Gauss law constraint, the anti-periodic boundary condition, and θeff = π.

All of such configurations have strictly positive energies. Hence, the supersymmetry is

spontaneously broken.
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L
2

e2

2

F01

x1

Figure 2. A consistent profile of the electric field in the twisted sector.

3.2 Twisted mass — defining the Z2 orbifold

Let us next discuss the O(2) gauge theory with N doublets x1, . . . , xN now with twisted

masses m̃1, . . . , m̃N . Our focus will be the spectrum of supersymmetric ground states.

Through the course of the analysis, we specify the precise definition of the Z2 orbifold (for

the massless theory as well).

The classical vacuum equation reads as follows:

N∑

i=1

|ui|2 =
N∑

i=1

|vi|2,

(σ − m̃i)ui = (−σ − m̃i)vi = 0, ∀i, (3.10)

(σ − m̃i)ui = (−σ − m̃i)vi = 0, ∀i.

We choose m̃i to be generic. In particular, we assume m̃i + m̃j 6= 0 for all i and j. Then,

there is no value of σ at which both u and v can be non-zero, and hence u = v = 0 is

enforced by the first equation. In particular, the doublets are all massive at every value of

σ. Hence we can integrate them out and study the effective theory for the vector multiplet.

The effective twisted superpotential for σ is

W̃eff = −
N∑

i=1

(σ − m̃i)(log(σ − m̃i)− 1)−
N∑

i=1

(−σ − m̃i)(log(−σ − m̃i)− 1)

+πi(N + 1)σ, (3.11)

and the vacuum equation reads

N∏

i=1

(σ − m̃i) = (−1)N+1
N∏

i=1

(−σ − m̃i). (3.12)

The equation is of order N and is symmetric under the Z2 orbifold action

σ 7−→ −σ. (3.13)

If m̃i are generic and in particular m̃i + m̃j 6= 0, the solutions are distinct and are away

from the forbidden region σ = ±m̃i where (3.11) cannot be trusted.

When N is even, there are N
2 pairs of non-zero solutions. Since these solutions break

the Z2 orbifold symmetry (3.13), there no need to consider the twisted sector, nor enters
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the subtlety of defining the Z2 orbifold. Thus, quite simply, there are N
2 supersymmetric

ground states.

When N is odd, there are N−1
2 pairs of non-zero solutions, and one solution at σ = 0 at

which the orbifold group is unbroken. There are N−1
2 supersymmetric ground states from

the Z2 breaking solutions. The main issue is the spectrum at the Z2 symmetric solution

σ = 0. The effective superpotential near that solution is

W̃eff =

(
1

m̃1
+ · · ·+ 1

m̃N

)
σ2 + · · · (3.14)

where the ellipses stand for a constant and higher order terms. Even though we are

considering the U(1) gauge multiplet, we can effectively treat the system as the Z2 orbifold

of just a single twisted chiral multiplet of this superpotential. Before the orbifold projection

there are two supersymmetric ground states, one twisted and one untwisted. As always,

the one in the twisted sector is invariant and survives the orbifold projection. On the

other hand, we must make a choice concerning the projection in the untwisted sector.

We shall call the orbifold “standard” if the untwisted RR ground state is invariant and

survives and “non-standard” if it is anti-invariant and is projected out. We shall denote the

corresponding gauge group O+(2) for the standard orbifold and O−(2) for the non-standard

one. Under this definition, the total number of ground states is





N − 1

2
+ 2 =

N + 3

2
in O+(2) theory

N − 1

2
+ 1 =

N + 1

2
in O−(2) theory.

(3.15)

This definition of orbifolds for odd N can be extended, by continuity, to the theories where

the twisted masses are turned off and then the superpotential is turned on. In particular,

we have a definition for the theory with even N plus an additional doublet with a complex

mass (the “regulator”).

Embedding into linear sigma models. This definition can be compared with a ge-

ometrical setting where the notion of canonical or non-canonical orbifolds already exists

(see section 2.1). This is done via a linear sigma model. Let us consider for odd N the

theory with gauge group (U(1) × O(2))/{(±1,±12)} consisting of a field p in the repre-

sentation (−2,1) with zero twisted mass and fields x1, . . . , xN in the representation (1,2)

with twisted masses m̃1, . . . , m̃N . In the regime where the FI parameter rU(1) for the U(1)

factor is negative, the field p must have a non-zero value and breaks the U(1) to {±1}, that
is, breaks the gauge group to simply O(2). In the limit rU(1) → −∞, the theory reduces to

the O(2) gauge theory we are discussing. We would like to study this linear sigma model

and in particular look what we have at the other regime rU(1) ≫ 0.

We can write the gauge group as (U(1) × U(1))/{(±1,±1)} ⋊ Z2. The FI-theta pa-

rameter of the first U(1) is unconstrained but the one for the second U(1) must be zero

since we have an odd number of doublets. We shall reparametrize the continuous part of

– 20 –



J
H
E
P
1
0
(
2
0
1
3
)
1
2
1

the group as

U(1)×U(1)

{(±1,±1)}
∼= U(1)1 ×U(1)2. (3.16)

[(g, h)] 7−→ (gh, gh−1)

The FI-theta parameters must be equal between U(1)1 and U(1)2 and are denoted by

t = r − iθ; r is a free parameter of the theory when N = 1 while it runs from positive to

negative when N ≥ 2. The matter fields are p of charge (−1,−1), ui’s of charge (1, 0) and

vi’s of charge (0, 1) with respect to U(1)1 × U(1)2. The symmetry τ acts as the exchange

of U(1)1 and U(1)2 as well as u’s and v’s.

At r ≫ 0, the classical vacuum equations for the scalar fields are

−|p|2 + |u|2 = −|p|2 + |v|2 = r,

(σ1 − m̃i)ui = (σ2 − m̃i)vi = 0 ∀i, (σ1 + σ2)p = 0, (3.17)

(σ1 − m̃i)ui = (σ2 − m̃i)vi = 0 ∀i, (σ1 + σ2)p = 0, (3.18)

where σ1 and σ2 are the scalar components of the vector multiplets for U(1)1 and U(1)2. If

m̃i are distinct, there are N
2 solutions: (σ1, σ2) = (m̃i1 , m̃i2) with |ui1 |2 = |vi2 |2 = r and all

other u’s and v’s and p are zero. Note that the Z2 orbifold group is broken at the N2 −N
solution with i1 6= i2 while unbroken at the N solutions with i1 = i2. Each pair of broken

solutions yields one supersymmetric ground state while each unbroken solution yields two

vacua (one twisted and one untwisted) for the canonical orbifold and one twisted vacuum

for the non-canonical one, in the sense of section 2.1. Thus, the total number of vacua is




N2 −N
2

+ 2N for the canonical orbifold,

N2 −N
2

+N for the non-canonical orbifold.

(3.19)

If m̃i are not distinct, say all equal (write it m̃), then, there is a continuum of solutions

at σ1 = σ2 = m̃ with |u|2 = |v|2 = r and p = 0. The solution space is CPN−1 ×CPN−1

on which the Z2 orbifold group acts as the exchange of the two CPN−1 factors. The

supersymmetric ground states in the untwisted sector are in one to one correspondence

with invariant resp. anti-invariant cohomology classes ofCPN−1×CPN−1 for the canonical

resp. non-canonical orbifold. If H1 and H2 denote the hyperplane classes of the first and

the second CPN−1 factor, invariant resp. anti-invariant cohomology classes are of the form

H i
1H

j
2 + Hj

1H
i
2 resp. H i

1H
j
2 − Hj

1H
i
2, with 0 ≤ i, j ≤ N − 1. An elementary count finds

that the total number of such classes is N2+N
2 resp. N2−N

2 . On the other hand, the twisted

sector ground states are in one to one correspondence with the cohomology classes of the

diagonal CPN−1 (there are N of them), for both orbifolds. Thus, the total number of

ground states is




N2 +N

2
+N for the canonical orbifold,

N2 −N
2

+N for the non-canonical orbifold.

(3.20)
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The result of course matches with (3.19), including the separation into twisted and un-

twisted sectors.

In order to compare this result with the O(2) gauge theory at r → −∞, let us look

into the Coulomb branch vacua. The effective twisted superpotential is W̃eff = −(−σ1 −
σ2)(log(−σ1 − σ2)− 1)−∑a,i(σa − m̃i)(log(σa − m̃i)− 1)− t(σ1 + σ2), and the extremum

equation reads,
N∏

i=1

(σ1 − m̃i) =

N∏

i=1

(σ2 − m̃i) = − e−t(σ1 + σ2). (3.21)

The are N2 solutions — N of them have σ1 = σ2 (Z2 preserving) and N2 − N of them

have σ1 6= σ2 (Z2 breaking). In the limit r → +∞, the solutions behave as σ1 → m̃i1

and σ2 → m̃i2 for some i1 and i2. Thus, they all correspond to the classical vacua at

r ≫ 0 studied above. At r → −∞, some of the solutions have σ1 + σ2 → 0 and correspond

to vacua of the O(2) gauge theory under consideration, while the others have divergent

values of σ1 + σ2 and have nothing to do with the O(2) gauge theory. Among the Z2

preserving solutions, one of them goes to (0, 0) as σ1 = σ2 ∼ −1
2 e

t
∏N

i=1(−m̃i), while the

other N − 1 diverge as σN−1
a ∼ −2 e−t. Among the Z2 breaking solutions, (N − 1)2 of

them are divergent as σ2 ∼ ωσ1 (ωN = 1, ω 6= 1) and σN−1
1 ∼ − e−t(1 + ω), while the rest

(N − 1 solutions) are finite and hence has σ1 + σ2 → 0 in the limit r → −∞. Among the

ground states in (3.19) or (3.20), those from the solutions with σ1 + σ2 → 0 in the limit

r → −∞ are 



N − 1

2
+ 2 for the canonical orbifold,

N − 1

2
+ 1 for the non-canonical orbifold.

(3.22)

This is in perfect agreement with (3.15), provided that the “standard” O+(2) theory cor-

responds to the canonical orbifold in the geometric setting at r ≫ 0 and “non-standard”

O−(2) theory corresponds to the non-canonical orbifold.

3.3 Massless QCD — a dual description

Single flavor. Next, let us consider the massless “QCD” with one flavor, i.e., the theory

with a single fundamental matter field x = (x1, x2)T with no superpotential nor twisted

mass. It is a Z2 orbifold of the U(1) gauge theory with r = θ = 0 consisting of fields u, v

of charges 1, −1. We have a single generator of the O(2) invariants

a = (xx) := (x1)2 + (x2)2 = uv, (3.23)

which is also the generator of the U(1) invariants.

Let us first study the U(1) theory before the Z2 orbifold. It has no Coulomb branch

since the effective potential at large |σ| is e2π2/2 by the one loop theta angle. Let us study

the Higgs branch. The D-term equation reads

|u|2 = |v|2. (3.24)

We find a one-dimensional Higgs branch, parametrized by the invariant a = uv, whose

metric is classically of the form ds2 = |da|2/|a|. It is the cone C/Z2 and has a conical

– 22 –



J
H
E
P
1
0
(
2
0
1
3
)
1
2
1

singularity at the origin a = 0. The singularity appears because the metric is obtained by

integrating out the gauge field which is classically massless at a = 0. However, the Coulomb

branch is lifted by the non-zero value of the effective theta angle and the gauge field may

not be massless at a = 0. We propose from this that the conical singularity is smeared in

the quantum theory and that the theory flows in the infra-red limit to the free conformal

field theory of the single complex variable a. That is, the sigma model whose target space

is the complex a-plane C. Relevant mathematical fact is that the ring of C×-invariant

polynomials of u and v is generated by the invariant a = uv, which obeys no relation,

C[u, v]C
×

= C[a]. (3.25)

The situation is quite similar to the case of SU(k) QCD with (k + 1) flavors [2], where it

was argued that it is the free theory of baryon variables. Relevant mathematical fact there

was again that the the ring of SL(k,C)-invariant polynomials of (k + 1) fundamentals is

the polynomial ring (with no relation) of the baryonic variables [32].

Let us come back to the O(2) theory, which is obtained by taking a Z2 orbifold of the

U(1) theory. In the effective description obtained above, the symmetry τ acts trivially on

the variable a. Thus, the orbifold is either the sigma model on the disjoint union of two

copies of C = {a} or C = {a} itself (see section 2.1). We claim that our standard choice

yields the former and the non-standard one the latter,

O+(2) with one massless doublet −→ C ⊔C

O−(2) with one massless doublet −→ C.
(3.26)

This can be shown by the embedding into the linear sigma model discussed in section 3.2:

if we set m̃1 = 0 in the N = 1 model, then the r ≫ 0 theory is the Z2 orbifold of

the sigma model whose target space is the total space of the line bundle O(−1,−1) over

“CP0 × CP0” (i.e. a complex line over a point), where the orbifold acts trivially. The

O+(2) theory corresponds, as we have learned, to the canonical orbifold and hence to two

copies of the line C while the O−(2) corresponds to the non-canonical one and to a single

copy of C.

Two flavors. Let us next consider the massless “QCD” with two flavors, i.e., the theory

with two fundamentals, x = (x1, x2)T and y = (y1, y2)T , having no superpotential nor

twisted mass. It is defined as a Z2 orbifold of the U(1) gauge theory with r = 0 and θ = π

consisting of fields u1, u2, v1, v2 of charge 1, 1,−1,−1. The theory before the orbifold is

something which we have already encountered in the present paper — it is the theory which

is identified with the Z2 LG orbifold (2.31)–(2.32) discussed in section 2.4. Furthermore,

the Z2 orbifold symmmetry is identified as the quantum symmetry of the Z2 LG orbifold.

To be precise, there are two distinct orbifolds, corresponding to O+(2) or O−(2), and only

one of them has that property. Without identifying which is the one, let us proceed for

now assuming that the Z2 orbifold symmetry does correspond to the quantum Z2 of the

LG orbifold (2.31)–(2.32). Then, the orbifold theory is the LG model before the orbifold

i.e., (changing the notation to avoid possible confusion) the LG model of five variables

– 23 –



J
H
E
P
1
0
(
2
0
1
3
)
1
2
1

x̃, ỹ, ã, b̃, c̃ with the superpotential

W = ãx̃2 + 2c̃x̃ỹ + b̃ỹ2. (3.27)

The relation to the O(2) invariants (xx), (xy), (yy) are

ã = u1v1 = (xx), b̃ = u2v2 = (yy), c̃ =
u1v2 + u2v1

2
= (xy). (3.28)

The quantum Z2 symmetry (for the orbifold by the Z2 = O(2)/SO(2)) acts on the dual

variables as

(x̃, ỹ, ã, b̃, c̃) 7−→ (−x̃,−ỹ, ã, b̃, c̃). (3.29)

This is because the quantum symmetry of the quantum symmetry orbifold is the original

orbifold symmetry, which was (2.32) in the previous notation. In particular, the variables

x̃ and ỹ are twist fields with respect to the Z2 = O(2)/SO(2).

To find which of O+(2) or O−(2) we are discussing, let us perturb the system by

giving a mass m to one of the two fundamentals, say y, by the tree level superpotential

W = m(yy). In the dual theory, this corresponds to deforming the superpotential to

W = ãx̃2 + 2c̃x̃ỹ + b̃ỹ2 +mb̃. (3.30)

If we integrate out b̃, then we obtain the constraint ỹ2 +m = 0, which has two solutions

ỹ = ±i√m. For each of them, plugging the value back to (3.30), we may integrate out c̃

yielding the constraint x̃ = 0, which leaves us with the free theory of the single variable

ã that corresponds to the invariant (xx). That is, after the mass perturbation, we obtain

the sigma model whose target space is two copies of C. In view of (3.26), we see that this

result is consistent if our theory was the O+(2) theory, i.e., the O+(2) theory with two

massless doublets, x and y, and one regulator doublet x3 with a complex mass. Indeed,

if that is the case, after the mass perturbation, we have one massless doublet x and two

doublets y and x3 with complex masses. Addition of two fields with complex masses have

no effect whatsoever, both in the theta angle and in the Z2 orbifold action. Thus, we are

left with the O+(2) theory with a single massless doublet x, whose low energy theory is

indeed two copies of the free theory of the singlet (xx).

To summarize, we found that the O+(2) theory with two massless doublets x and

y is dual to the Landau-Ginzburg model of five variables x̃, ỹ, ã, b̃, c̃ with the superpoten-

tial (3.27). x̃ and ỹ are twist fields with respect to the Z2 = O+(2)/SO(2) and the other

variables are the gauge invariant composites, ã = (xx), b̃ = (yy) and c̃ = (xy).

Using the chain of duality and standard relations as in (2.29), we find the dual of

the other theory as well: the O−(2) theory with two massless doublets is dual to the

Z2(−1)Fs orbifold of the Landau-Ginzburg model of five variables x̃, ỹ, ã, b̃, c̃ with the

superpotential (3.27), where the orbifold generator is (x̃, ỹ, ã, b̃, c̃) 7→ (−x̃,−ỹ, ã, b̃, c̃)
combined with (−1)Fs .

Let us draw some conclusions from these duality relations.
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3.4 Corank 1 degeneration — two or one massive vacua

We consider the theory with N doublets x1, . . . , xN and a singlet z with superpotential

W = z(x1x1) + · · ·+ (xNxN ). (3.31)

By the definition of the O±(2) theory, the low energy behaviour does not depend on N as

long as N ≥ 1: if N is odd, the theory is defined as it is. If N is even, it is defined as the

O±(2) theory with one additional massive field (a regulator). Changing N by one either

does not change anything (i.e. the regulator is reinterpreted as a physical massive field, or

vice versa) or add/subtract two doublets with complex masses, which does not change the

low energy behaviour.

Let us take N = 1 for simplicity. If z is fixed at a value away from zero, the super-

potential for x1 is regular and we have supersymmetry breaking. The question is what

happens in a neighborhood of z = 0 and when the fluctuation of z is taken into account.

To see this, we use the dual description. For the theory with gauge group O+(2) (resp.

O−(2)), the dual is two copies (resp. one copy) of the LG model of two variables, z and a,

with the superpotential

W = za. (3.32)

This superpotential has a unique critical point z = a = 0. Hence the theory has two (resp.

one) massive supersymmetric ground states, with the expectation values

〈z〉 = 0, 〈(x1x1)〉 = 0. (3.33)

One may also consider the theory with N = 2 and apply the duality obtained above.

The O+(2) (resp. O−(2)) theory is dual to the LG model (resp. Z2(−1)Fs LG orbifold) of

six variables, x̃, ỹ, ã, b̃, c̃ and z, with the superpotential

W = ãx̃2 + 2c̃x̃ỹ + b̃ỹ2 + zã+ b̃. (3.34)

There are two (resp. one) critical points, x̃ = ã = b̃ = c̃ = z = 0 and ỹ = ±i. That is, there
are two (resp. one) massive supersymmetric ground states, with the expectation values

〈z〉 = 0 and 〈(x1x1)〉 = 〈(x2x2)〉 = 〈(x1x2)〉 = 0.

3.5 Corank 2 degeneration — ramified double cover of C2 or its orbifolds

Let us now consider the theory of two doublets, x and y, and three singlets, a, b and c,

which are coupled via the superpotential

W = a(xx) + 2c(xy) + b(yy) (3.35)

At values of (a, b, c) away from the degeneration locus

ab = c2, (3.36)

the superpotential gives masses to both x and y. As we learned in section 3.1, there is no

zero energy state in such a theory. Therefore, the low energy theory will concentrate near
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the degeneration locus (3.36). Near that locus but away from the origin, (a, b, c) = (0, 0, 0),

we may change the variables to make the superpotential into the form

W = (c2 − ab)(x′x′) + (y′y′). (3.37)

The result of section 3.4 then tells us that, for the gauge group O+(2) (resp. O−(2)) we

have two (resp. one) zero energy states along the locus (3.36), as far as (a, b, c) is away

from the origin. Thus, we expect to have some kind of double (resp. single) cover over the

degeneration locus (3.36). We would like to find what really is the low energy theory.

Let us apply the dual description for the O+(2) theory. It is simply the LG model of

five plus three variables, x̃, ỹ, ã, b̃, c̃ and a, b, c, with the superpotential

W = ãx̃2 + 2c̃x̃ỹ + b̃ỹ2 + aã+ 2cc̃+ bb̃. (3.38)

Integrating out a, b, c, we obtain the constraints ã = b̃ = c̃ = 0 and we are left with the

theory of x̃ and ỹ only, with vanishing superpotential. Thus, we obtain the conformal field

theory of just two variables x̃ and ỹ, with no constraint and no superpotential. Extremizing

W with respect to ã, b̃, c̃ finds the relations

a = −x̃2, b = −ỹ2, c = −x̃ỹ. (3.39)

Such an (a, b, c) indeed satisfies the equation (3.36). Conversely, for each non-zero (a, b, c)

obeying (3.36), the equation (3.39) has two solutions for (x̃, ỹ), related by the sign flip

(x̃, ỹ) → (−x̃,−ỹ). That is, the (x̃, ỹ) space is a double cover of the degeneration locus

ab = c2, as expected. Recall that ab = c2 is the equation defining the A1 surface singularity,

which is known to be realized by C2/Z2, and the relations (3.39) exhibit that realization,

C2 −→ C2/Z2. (3.40)

Recall that this Z2 symmetry is the quantum symmetry of the orbifold by the

Z2 = O+(2)/SO(2) (and hence x̃ and ỹ are twist fields). See (3.29). Note also that ã = b̃ =

c̃ = 0 means

(xx) = (yy) = (xy) = 0. (3.41)

We conclude that the O+(2) theory flows in the infra-red limit to to the free conformal

field theory of two twist variables, x̃ and ỹ, i.e., the sigma model with the target space C2.

The singlets a, b and c are related to x̃ and ỹ by (3.39). The O(2) invariants, (xx), (yy)

and (xy), vanish in the infra-red fixed point theory.

We may unfold the Z2 = O+(2)/SO(2) by orbifolding the associated quantum symme-

try. Also, we may use the chain of duality and standard relations as in (2.29). These lead

us to conclude that the SO(2) ( resp. O−(2)) theory flows in the infra-red limit to the free

orbifold conformal field theory C2/Z2 ( resp. C2/Z2(−1)Fs). Here, “the SO(2) theory” of

course stands for the U(1) theory with r = 0 and θ = π.
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4 Orthogonal groups

In this section, we study low energy behaviour of theories with the orthogonal gauge group,

O(k) or SO(k), with N chiral multiplets in the fundamental representation, i.e., the vector

representation k. We denote the chiral matter fields as x1, . . . , xN where each xi is a column

vector of length k, xi = (xai )a=1,...,k. Our main focus will be the theory with vanishing

superpotential for x1, . . . , xN . The group O(k) is the semi-direct product SO(k) ⋊ Z2 for

even k, as in O(2) discussed in the previous section, and the direct product SO(k) × Z2

for odd k, where {1k} ×Z2 corresponds to the subgroup generated by the central element

−1k. In either case, the O(k) gauge theory can be treated as a Z2 orbifold of the SO(k)

gauge theory. As always, there are two versions of the orbifold, related by (−1)Fs . As the

final important point, the groups O(k) and SO(k) have a non-trivial fundamental group

π1(O(k)) = π1(SO(k)) = Z2 for k ≥ 3. (4.1)

This means that there is a mod 2 theta angle: on a closed two-dimensional manifold, there

are two topological types of principal G bundles for G = O(k) or SO(k), the trivial and the

non-trivial. And the mod 2 theta angle assigns a phase (−1) to the path-integral weight

for the non-trivial G bundle.

4.1 The space of classical vacua

Let us first describe the space of classical vacua — the space of scalar fields that annihilate

the classical potential. We denote the scalar component of the vector multiplet by σ. It is

a k×k antisymmetric complex matrix. We write x for the k×N matrix (xai ). The vacuum

equation reads

[σ, σ†] = 0,

xx† = (xx†)T , (4.2)

σx = σ†x = 0.

The first equation means that σ must lie in the complexification of the Lie algebra of a

maximal torus. That is, up to gauge transformations, it is of the form

i




−σ1
σ1

. . .

−σℓ
σℓ




resp. i




−σ1
σ1

. . .

−σℓ
σℓ

0




, (4.3)

for k = 2ℓ resp. k = 2ℓ + 1. The second equation means that xx† is a real symmetric

matrix, and hence it can be diagonalized using the gauge symmetry. With an appropriate

– 27 –



J
H
E
P
1
0
(
2
0
1
3
)
1
2
1

U(N) flavor rotation, we can write the solution as

x =




a1
. . .

aN




or




a1
. . .

. . .

ak




(4.4)

depending on N ≤ k or N ≥ k. The final equation requires that if the number of non-zero

σa’s is s, then the number of non-zero ai’s is at most k − 2s. Let Cs (resp. Hr) be the set

of gauge equivalence classes of solutions for σ of rank 2s or less (resp. x of rank r or less).

It has complex dimension s (resp. Nr − r(r−1)
2 ). The space of classical vacua is

M =
ℓ⋃

s=smin

(
Cs ×Hk−2s

)
, (4.5)

where smin = 0 if N ≥ k − 1 and smin =
[
k−N
2

]
if N ≤ k − 2. When N ≥ k − 1, there

is a Higgs branch C0 ×Hk in which x is generically non-zero and breaks the gauge group

completely (or to a Z2 subgroup for the O(k) theory with N = k−1). When k is even, there

is a Coulomb branch Cℓ×H0 in which σ generically has the full rank k. Other components

are the mixed Coulomb-Higgs branches where both x and σ are generically non-zero.

4.2 Regularity

Classically, the gauge theory reduces at low energies to the non-linear sigma model whose

target space is the classical vacuum moduli space (4.5). This space is singular and non-

compact, and hence we do not know if we have a sensible theory in the infra-red limit, or at

least the fixed point theory must be described by something very much different from the

sigma model for (4.5) [33, 34]. Here we would like to discuss the possibility that quantum

corrections lift all non-compact flat directions in σ, i.e., Coulomb and all possible mixed

branches. We shall refer to such a theory as a regular theory. Regularity is judged by the

effective twisted superpotential W̃eff for σa’s. By non-renormalization theorem, this is not

affected even if the superpotential for the matter multiplets is introduced. In particular, if

the theory is regular, by introducing a superpotential that lifts the Higgs branch, we can

obtain a (2, 2) superconformal field theory with discrete spectrum at the infra-red fixed

point. We would like to compute W̃eff and find a criterion for regularity.

Let us first consider the Coulomb branch Cℓ ×H0 for the k even case (k = 2ℓ). If σa’s

are chosen so that |σa| and |σa ± σb| for a 6= b are all non-zero, we have either massive

multiplets or the massless vector multiplets for the maximal torus U(1)ℓ. To obtain the

effective theory for the latter, we integrate out the massive modes, consisting of the chiral

multiplets xi and the “off-diagonal” vector multiplets V c
d. Let us first consider the vector

multiplets. The contribution to W̃eff can be found [35] by looking at the mass terms for

the gaugino,

− tr
(
λ−[σ, λ+] + λ+[σ

†, λ−]
)
. (4.6)
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For a 6= b, those which are charged under U(1)a × U(1)b are in the 2 × 2 block, V c
d for

c = 2a − 1, 2a and d = 2b − 1, 2b, and have masses ±σa ± σb (all the four possible sign

combinations). The contribution to W̃eff of these four multiplets is πi(σa−σb)+πi(σa+σb)
which vanishes modulo 2πi times σa’s. Computation of the contribution from the massive

chiral multiplets is standard, −∑i,a σa(log σa − 1) −∑i,a(−σa)(log(−σa) − 1), which is

πiN
∑

a σa, again modulo 2πi times σa’s. The total is

W̃eff = πiN
ℓ∑

a=1

σa. (4.7)

Let us next consider the k odd case (k = 2ℓ + 1) and look at the mixed branch

Cℓ ×H1. In this case, computation depends on the location of x in H1. If it is zero, then,

the entire gauge group, O(k) or SO(k), is unbroken and we can do the computation as

usual. If it is non-zero, the gauge group is broken to its proper subgroup, O(k − 1) or

SO(k − 1), and we need to take into account the Higgs effect. Let us first consider the

former, expanding x around x = 0. The last components xk1, . . . , x
k
N are massless and we

leave them in the effective theory. Integration over massive modes can be done in the same

way as above, except that now, for odd k, we have the right-most off-diagonal components,

V c
k for c = 1, . . . , k − 1. For c = 2a − 1, 2a, they are charged only under U(1)a and have

masses ±σa. They yield the non-trivial contribution πiσa to W̃eff . Contribution from other

massive modes are the same, and the total is

W̃eff = πi(N + 1)
ℓ∑

a=1

σa. (4.8)

Let us next perform computation around a Higgsed point, say,

x1 = · · · = xN−1 =




0
...

0

0



, xN =




0
...

0

v



. (4.9)

In this case, we must treat the super-Higgs multiplet, consisting of the right-most off-

diagonal vector multiplets V a
k and the complexified gauge orbit directions xaN , as one

block. This block gives no contribution to W̃eff — the one from vectors and the one from

chirals cancel against each other. The rest is as in O(k−1) or SO(k−1) theory with N −1

fundamentals. Note that k − 1 is even and the above result (4.7) can be used. The result

is W̃eff = πi(N − 1)
∑

a σa, which is equal to (4.8) modulo 2πi times σa’s. Actually, we

did not have to do the two computations in view of the decoupling between the chiral and

twisted chiral multiplets — the result for W̃eff should not depend on where in H1 you do the

computation. Nevertheless, the fact that we indeed obtained the same result is gratifying.

Computation in various mixed branches should be obvious by now, thanks to the

exercise given above that involves the super-Higgs multuplet. We obtain (4.7) or (4.8)

depending on whether k is even or odd, where the sum over amust be reduced appropriately

(for example, the sum is over a ∈ {1, . . . , s} on Cs ×Hk−2s).
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The result is that we have an effective theta angle

θeff =

{
πN k even,

π(N + 1) k odd.
(4.10)

for each U(1) factor on the classical Coulomb or mixed branch. If it is zero modulo 2π,

the energy density is zero and we do have non-compact Coulomb and mixed branches. If it

is non-zero modulo 2π, then the energy density is e2eff(σ)/8 times the number of unbroken

U(1) factors, where eeff(σ) is the effective gauge coupling at the given value of σ. The

latter approaches the classical value e as |σa| and |σa ± σb| for a 6= b are all much larger

compared to e. Thus, the non-compact Coulomb and mixed branches are all lifted in this

case. To summarize, the theory is regular if and only if N − k is odd.

Mod 2 theta angle. In the analysis so far, we have implicitly assumed that the mod

2 theta angle is set equal to zero. Let us now see its effect. First, the universal cover of

the group SO(k) is Spin(k) which is realized as the subset of the Clifford algebra C(Rk),2

generated multiplicatively by elements of the form exp
(∑

a<b tabeaeb
)
. The conjugation

action of Spin(k) on Rk ⊂ C(Rk) induces an isomorphism SO(k) ∼= Spin(k)/Z2 where Z2

is the subgroup consisting of ±1 ∈ C(Rk). That is why SO(k) has the fundamental group

Z2. An example of non-trivial loop in SO(k) is

t ∈ R/2πZ 7−→ gt =




cos(t) − sin(t)

sin(t) cos(t)

1k−2


 ∈ SO(k). (4.11)

Indeed it lifts to a path g̃t = exp
(
t
2e1e2

)
from g̃0 = 1 to g̃2π = −1 in Spin(k). A topo-

logically non-trivial SO(k) bundle over a closed surface Σ is the one having the transition

function gt along a circle in Σ parametrized by t ∈ R/2πZ that separates Σ into two

connected components. The mod 2 theta angle assigns the phase (−1) to such a principal

SO(k) bundle. By this exercise, we see that it yields the theta angle

θ = π, (4.12)

for the subgroup U(1) ∼= SO(2) ⊂ SO(k) of 2-dimensional rotations for each orthogonal

decomposition Rk ∼= R2 ⊕ Rk−2. In particular, it yields a contribution π to the theta

angle for each U(1) factor on the classical Coulomb or mixed branch. We can now state

the complete criterion:

When N − k is odd (resp. even), the theory is regular if and only if the tree level mod

2 theta angle is turned off (resp. turned on).

Thus, the theory with N − k even, which is not by itself regular, can be made regular

by turning on the mod 2 theta angle. Alternatively, we may consider adding a fundamental

chiral multiplet with a complex mass m, as a regulator. In fact, in the limit |m| → ∞ the

effective action for the vector multiplet obtained by integrating it out is nothing but the

2It is generated by 1 and the basis e1, . . . , ek of Rk which obey the relation eaeb + ebea = −2δa,b. Note

that exp(teaeb) = cos(t) + eaeb sin(t) for a < b. In particular, exp(πeaeb) = −1 and exp(2πeaeb) = 1.
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mod 2 theta angle. This can be seen by noting that it yields the theta angle θ = π for each

SO(2) subgroup of 2-dimensional rotation. When we consider the theory with gauge group

O(k), the regulator field also has the effect of inverting the definition of the Z2 orbifold,

i.e., dressing the generator by (−1)Fs . The situation is exactly the same as what we have

seen in the O(2) gauge theory.

In what follows, unless otherwise stated, we shall always assume that the theory is

regular. When N − k is even, either the mod 2 theta angle is turned on or a regulator field

is introduced.

4.3 Twisted masses

Before discussing the theory with massless fundamentals x1, . . . , xN , let us study the theory

in which they have twisted masses m̃1, . . . , m̃N . Along the way, we introduce a notation

that distinguishes the two orbifold projections for the case where the gauge group is O(k).

We assume that the masses are generic and in particular satisfy

m̃i + m̃j 6= 0 ∀(i, j). (4.13)

Then, the Higgs branch is lifted, and the theory is well behaved in any direction. Our focus

is the spectrum of supersymmetric ground states of this regularized system.

We integrate out the fundamentals as they are massive in any field configuration.

We also stay in the generic locus on the Coulomb branch and integrate out the massive

off-diagonal components of the vector multiplet. The resulting effective twisted superpo-

tential is

W̃eff = −
∑

i,a

(σa − m̃i)(log(σa − m̃i)− 1)−
∑

i,a

(−σa − m̃i)(log(−σa − m̃i)− 1)

+πik
∑

a

σa + πi(N − k + 1)
∑

a

σa. (4.14)

The first line is from the chiral multiplets, while the term πik
∑

a σa on the second line is

from the massive vectors — as we have seen in the previous section, we have a non-zero

contribution πi
∑

a σa if and only if k is odd. The last term πi(N − k+ 1)
∑

a σa, which is

non-zero when N − k is even, is from either the mod 2 theta angle or the regulator field.

The vacuum equation reads

N∏

i=1

(σ − m̃i) = (−1)N+1
N∏

i=1

(−σ − m̃i), (4.15)

for σ = σ1, . . . , σℓ. The solutions are identified under the action of the Weyl group: per-

mutations of σa’s as well as the sign flips

σa 7−→ ǫaσa,

{
ǫ1 · · · ǫℓ = 1 SO(k), k even,

no condition otherwise.
(4.16)

Note that the reflections with ǫ1 · · · ǫℓ = −1 is allowed for O(k), k even as well — they

are from the disconnected component of O(k) and represent the Z2 orbifold generator. We
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require the solutions to obey

σa 6= ±m̃i,

σa 6= ±σb a 6= b, (4.17)

σa 6= 0 ∀a if k is odd.

In the forbidden region, there are massless degrees of freedom other than the U(1)ℓ vector

multiplets, and the effective twisted superpotential (4.14) can not be trusted. We do not

have to worry about the first condition, σa 6= ±m̃i, as σ = ±m̃i are not among the roots

of (4.15) thanks to the condition (4.13). We simply ignore solutions violating the other

conditions. Namely, we assume that there is no supersymmetric ground state supported

in the forbidden region. This point was examined in [2] in a specific class of models and

consistent picture has emerged.

Let us first study the case where k is even (k = 2ℓ) and N is even. The equation (4.15)

have N
2 pairs of non-zero roots. Solutions for σ1, . . . , σℓ obeying the condition (4.17) exists

if and only if N
2 ≥ ℓ. For O(k) gauge group, the number of inequivalent solutions is

(N
2
ℓ

)
.

For SO(k) gauge group, the number is twice as much, 2
(N

2
ℓ

)
, because of the constraint

ǫ1 · · · ǫℓ = 1 on the Weyl group elements. As the Weyl group is completely broken at each

of these solutions, these are the number of supersymmetric ground states. For the same

reason, for the O(k) theory, the result does not depend on the choice of the orbifold.

When k is even (k = 2ℓ) and N is odd, the equation (4.15) has N−1
2 pairs of non-

zero roots and one root at σ = 0. Solutions for σa’s obeying (4.17) exists if and only if
N−1
2 + 1 ≥ ℓ. The count from solutions for which σa’s are all non-zero is as in the case

above:
(N−1

2
ℓ

)
for O(k) and 2

(N−1
2
ℓ

)
for SO(k). Let us consider solutions where one σa

vanish, say, σ1 = 0 (there are
(N−1

2
ℓ−1

)
inequivalent solutions of this type). For SO(k) gauge

group, the Weyl group is completely broken and we obtain
(N−1

2
ℓ−1

)
as the number of ground

states. For O(k) gauge group, exactly one Weyl group element is unbroken. It is the one

that acts as the sign flip of σ1 only, and is represented by




−1
1
. . .

1



. (4.18)

The spectrum of supersymmetric ground states from this sector is sensitive to the definition

of the orbifold. As in the O(2) theory discussed in section 3.2, we denote the gauge group

by O+(k) if we receive two supersymmetric ground states (one twisted and one untwisted),

and by O−(k) if we receive one twisted supersymmetric ground state. The total number of

states of this type is 2
(N−1

2
ℓ−1

)
for O+(k) theory and

(N−1
2

ℓ−1

)
for O−(k) theory. To summarize,

the number of ground states for even k and odd N case is
(N−1

2
ℓ

)
+ 2
(N−1

2
ℓ−1

)
for O+(k),

(N−1
2
ℓ

)
+
(N−1

2
ℓ−1

)
=
(N+1

2
ℓ

)
for O−(k), and 2

(N−1
2
ℓ

)
+
(N−1

2
ℓ−1

)
for SO(k).
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Let us next study the case where k is odd (k = 2ℓ+1). Note that there is one component

of each vector xi that is neutral with respect to the maximal torus. If we choose the torus as

in (4.3), then it is the last (k-th) component. Thus, the variables xk1, . . . , x
k
N are decoupled

from the rest of the degrees of freedom on the generic locus of the Coulomb branch. Note

that O(k) and SO(k) differ in the presence/absence of the group element



1
. . .

1

−1



, (4.19)

that flips the sign of these components. For SO(k), the last component system is simply the

model of N variables with twisted mass (possibly with one additional regulator field). This

sector hence provides a unique supersymmetric ground state. For O(k), the last component

system is the Z2 orbifold thereof. The spectrum in this sector again is sensitive to the choice

of orbifold. We denote the gauge group by O+(k) if the number of supersymmetric ground

states is two for even N and one for odd N , and by O−(k) if opposite, i.e., one for even N

and two for odd N . We now turn to the sector of the first k − 1 = 2ℓ components.

We first consider the case where N is even. The equation (4.15) has N
2 pairs of non-zero

roots. Solutions obeying (4.17) exist if and only if N
2 ≥ ℓ, and the number of inequivalent

ones is
(N

2
ℓ

)
. This is for both O(k) and SO(k) since they share the same Weyl group when

k is odd. Since the Weyl group is completely broken at each of them, this is the number of

vacuum states from this sector. Combining with the last component sector, the total num-

ber of supersymmetric ground states is 2
(N

2
ℓ

)
for O+(k),

(N
2
ℓ

)
for O−(k), and

(N
2
ℓ

)
for SO(k).

Next, we consider the case where N is odd. The equation (4.15) has N−1
2 pairs of non-

zero roots and one root at σ = 0. According to (4.17) we need to avoid the one at σ = 0

when k is odd. The solutions exist if and only if N−1
2 ≥ ℓ, and the number of inequivalent

ones is
(N−1

2
ℓ

)
for both O(k) and SO(k). Since the Weyl group is completely broken at each

of them, this is the number of vacuum states from this sector. Combining with the last

component sector, the total number of supersymmetric ground states is
(N−1

2
ℓ

)
for O+(k),

2
(N−1

2
ℓ

)
for O−(k), and

(N−1
2
ℓ

)
for SO(k).

The definition of orbifold for O±(k) can be extended by continuity to the theories

where the twisted masses are turned off and then, possibly, the superpotential is turned

on. For k even, this is defined originally for odd N and then is extended to the even N case

via the regulator field. For k odd, this is already defined for both even and odd N , and we

would like to check whether the two are continuously connected. We can focus on the last

component sector in which the choice of orbifold is relevant. Let us start from the even N

case, with no mod 2 theta angle nor the regulator field. The number of ground states is 2

for O+(k), and this is the number in the “standard” Z2 orbifold in the sense of section 2.2.

We then turn off the twisted mass for, say, xN , and give it a complex mass. Then we have

Neff = N − 1 (odd) fundamentals with a regular field xN . According to section 2.2, the

number of supersymmetric ground states is 1, which is indeed the number we are assigning

for O+(k) with odd Neff . This shows the continuity of our definition.
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To summarize, for N ≤ k−2 there is no supersymmetric ground state. For N ≥ k−1,

the number of supersymmetric ground states is given by:

group k N number

O+(k) even even

(N
2
k
2

)

O−(k) even even

(N
2
k
2

)

SO(k) even even 2

(N
2
k
2

)

O+(k) even odd

(N−1
2
k
2

)
+ 2

( N−1
2

k
2 − 1

)

O−(k) even odd

(N+1
2
k
2

)

SO(k) even odd 2

(N−1
2
k
2

)
+

( N−1
2

k
2 − 1

)

group k N number

O+(k) odd even 2

( N
2

k−1
2

)

O−(k) odd even

( N
2

k−1
2

)

SO(k) odd even

( N
2

k−1
2

)

O+(k) odd odd

(N−1
2

k−1
2

)

O−(k) odd odd 2

(N−1
2

k−1
2

)

SO(k) odd odd

(N−1
2

k−1
2

)

(4.20)

4.4 N ≤ k − 2: supersymmetry breaking

Let us consider the (regular) theory with massless fundamentals where the number N is in

the range 1 ≤ N ≤ k− 2. The observed fact that there is no supersymmetric ground state

when the twisted masses are turn on implies that there is no normalizable supersymmetric

ground state in the massless theory either. This is because [2], if there were a normalizable

zero energy state in the massless theory, that would stay in the spectrum even if the masses

are turned on, since the masses would only make better the behaviour of states at infinity

in the field space.

In fact, there is no normalizable supersymmetric ground state also in irregular theory

with 1 ≤ N ≤ k − 2 as well as in the pure Yang-Mills theory (regular or not) for k ≥ 3.

To see that, let us continue from the previous subsection and take the limit where some

of the twisted masses are sent to infinity. If an odd number of m̃i’s are sent to infinity,

the behaviour of the superpotential (4.14) at large values of σa’s is changed and a regular

theory becomes an irregular theory. If an even number of m̃i’s are sent to infinity, the

behaviour does not change and a regular theory becomes another regular theory. Note

that a pure-Yang-Mills theory is obtained by sending all twisted masses to infinity — the

regular one if N is even and the irregular one if N is odd. Let us look closely into the

equation (4.15). If one twisted mass, say m̃N , is sent to infinity, then one pair of non-zero

roots go away to infinity. To see that we rewrite the equation as

(
−1 + σ

m̃N

)N−1∏

i=1

(σ − m̃i) =

(
−1− σ

m̃N

)N−1∏

i=1

(σ + m̃i). (4.21)
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We see that the equation has a limit as m̃N →∞. It is an equation of order (N −2). Since

the order has decreased by 2, two roots must have gone away to infinity. If two twisted

masses, say m̃N−1 and m̃N , are sent to infinity, the same argument shows that still one

pair of non-zero roots go away to infinity.

This and the analysis of the previous subsection lead us to conclude that the irregular

theory in the range 1 ≤ N ≤ k − 2 has no supersymmetric ground state, when generic

twisted masses are turned on and hence also when they are turned off. We also find that

the pure Yang-Mills theory with k ≥ 3, whether regular or not, has no supersymmetric

ground state.

4.5 N = k − 1: free conformal field theory

Let us now consider the theory with N = k − 1 massless fundamentals. In the regular

theory, the Coulomb and mixed branches are lifted and we are left with the Higgs branch

Hk = Hk−1 only. As a complex manifold, the Higgs branch is isomorphic to the affine

space C
(k−1)k

2 since the chiral ring of gauge invariants is isomorphic to the polynomial ring

of the k(k−1)
2 scalar products (xixj) (the “mesons”) with no relations, see [32]

C[x1, . . . , xk−1]
SO(k,C) = C

[
(xixj)

∣∣∣ 1 ≤ i ≤ j ≤ k − 1
]
. (4.22)

The classical metric is singular at the roots of Coulomb and mixed branches where parts

of the gauge symmetry is unbroken. However, the singularity is expected to be smeared as

these branches are lifted by quantum corrections. We claim that the theory flows in the

infra-red limit to the free theory of the mesons. This is just as in the U(1) theory discussed

in section 3.3 and in the SU(k) theory with N = k + 1 massless fundamentals discussed

in [2]. To be precise, this is for the gauge group SO(k). In the O(k) case, we must take the

orbifold with respect to the Z2 symmetry that acts trivially on the mesons. This will make

either two copies or one copy of the Higgs branch. We claim that the former is the case

for the O+(k) theory and the latter is the case for the O−(k) theory. We do not provide a

proof of this here, but consistency will be seen in what follows.

To summarize, we claim that the O+(k) resp. O−(k) resp. SO(k) gauge theory with

N = k − 1 massless fundamentals flows in the infra-red limit to two copies resp. one copy

resp. one copy of the free conformal field theory of the k(k−1)
2 mesonic variables.

4.6 N ≥ k: duality

Finally, let us consider the theory with N ≥ k massless fundamentals. We claim that there

is a duality, where the correspondence of the gauge groups is

O+(k) ←→ SO(N − k + 1)

SO(k) ←→ O+(N − k + 1) (4.23)

O−(k) ←→ O−(N − k + 1).

The theory with the gauge group on the left hand side and N massless fundamentals

x1, . . . , xN flows in the infra-red limit to the same fixed point as the theory with the
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gauge group on the right hand side and N fundamentals, x̃1, . . . , x̃N , plus N(N+1)
2 singlets,

sij = sji (1 ≤ i, j ≤ N), having the superpotential

W =
N∑

i,j=1

sij(x̃
ix̃j). (4.24)

The mesons in the original theory correspond to the singlets in the dual,

(xixj) = sij . (4.25)

The baryons [xi1 · · ·xik ] in the original SO(k) theory correspond to twist operators in the

dual O+(N − k + 1) theory regarded as a Z2 orbifold. More fundamentally, the order

2 symmetry O(k)/SO(k) of the original theory corresponds to the quantum symmetry of

the dual. Likewise for the baryons [x̃i1 · · · x̃iN−k+1 ] and the order 2 symmetry of the dual

SO(N − k + 1) theory. The quantum symmetry of the O−(k) theory corresponds to the

quantum symmetry combined with (−1)F in the dual O−(N −k+1) theory, and vice versa.

The claimed relation is indeed a duality. I.e., the dual of the dual is the original. Let us

start from O+(k) with N massless fundamentals. The dual has gauge group SO(N −k+1)

and its dual has O+(N − (N − k + 1) + 1) = O+(k). The latter has N fundamentals, ˜̃xi,
and 2N(N+1)

2 singlets, s̃ij and sij , having the superpotential

W =
∑

s̃ij(˜̃xi˜̃xj) +
∑

sij s̃
ij . (4.26)

The second term comes from the first dual superpotential and the relation (x̃ix̃j) = s̃ij . If

s̃ij is integrated out, we obtain the constraints sij = −(˜̃xi˜̃xj). The resulting theory is sim-

ply the O+(k) gauge theory with N fundamentals ˜̃xi and no superpotential, which is indeed

the theory we started with. Note that the constraints on sij and the meson/singlet corre-

spondence implies the relation (xixj) = −(˜̃xi˜̃xj). The minus sign is typical for duality. The

case where we start from SO(k) or O−(k) is the same. Another way to see the duality na-

ture is to couple the original system to singlets s̃ij via the superpotentialW =
∑
s̃ij(xixj).

This corresponds in the dual theory to the superpotential W =
∑
sij(x̃

ix̃j) +
∑
s̃ijsij .

Integrating out s̃ij eliminates sij and we have the theory of the fundamentals x̃i only. Note

that we have the relation s̃ij = −(x̃ix̃j), which is the singlet/meson correspondence (4.25)

again up to a sign.

In what follows, we shall provide several evidences of the claimed duality.

Special cases. Special cases of the duality for small values of k and N had already been

encountered and established in the earlier sections:

SO(1)/O±(1), N = 1 SO(2), N = 2 O±(2), N = 2 SO(1)/O±(1), N = 2

2.3 2.4 3.3 3.5

In fact, the author used these cases as hints to find the general duality. The top row

shows the left hand sides of the duality, and the number below shows the section in which
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the duality appeared. We define O+(1) resp. O−(1) theories as the standard resp. non-

standard Z2 orbifold when N − 1 is odd, and the definition is continued to the N − 1 even

case by introducing a “regulator” field. In other words, by periodicity, O+(1) = Z2 resp.

Z2(−1)Fs and O−(1) = Z2(−1)Fs resp. Z2 when N is even resp. odd.

From O+/SO duality to O
−

duality. The duality between O−(k) and O−(N −k+1)

can be derived using the chain of standard relations and the duality between O+(k) and

SO(N−k+1), as in (2.29). To see this, replace (A3, τ) in (2.29) by the SO(k) gauge theory

with N fundamentals equipped with the Z2 symmetry to define the O−(k) theory. Then,

(A2, τ) should be replaced by the same theory equipped with the Z2 symmetry to define

the O+(k) theory. (A2/τ, τ̂) is now the O+(k) theory with N fundamentals equipped with

the quantum Z2 symmetry. According to the O+/SO duality, this is equivalent to the dual

SO(N−k+1) theory equipped with the symmetry τ ∈ O(N−k+1)/SO(N−k+1), which

replaces (B, τ). Finally, the same theory equipped with τ(−1)Fs replaces (C, τ). The end

result is the dual O−(N − k + 1) theory, with the exchange of the twisted and untwisted

sectors in the RR sector. The exchange shows that the quantum symmetry τ̂ in the O−(k)

theory corresponds to the symmetry (−1)Fτ̂ in the O−(N − k + 1) theory.

Central charge. The dual pair of theories have the same symmetry other than the Z2

symmetry which was already mentioned: the U(N) or SU(N)×U(1)B flavor symmetry and

the vector and axial U(1) R-symmetries. Charge assignment compatible with the duality

statement is

SU(N) U(1)B U(1)V U(1)A
x N 1 0 0

x̃ N −1 1 0

s S 2 0 0

(4.27)

The R-charges could be modified by the U(1)B charge. The above choice is the unique

one that assigns vanishing R-charges to x, and only with this choice, the two U(1) R’s

can become parts of the (2, 2) superconformal symmetry in the infra-red fixed point of the

original theory. The latter follows from the following argument [33]: for large values of x

where the semi-classical sigma model analysis is valid, the R-currents can be chiral only if

x does not rotate under the R-symmetries.

Assuming that these R-symmetries indeed become the parts of the superconformal

symmetry, one can compute the central charge of the fixed point [2, 36–38]: each Dirac

fermion with vector R-charge q and axial R-charge ∓1 contributes by −q to the normalized

central charge ĉ = c/3. Recall that the fermionic component of a chiral multiplet of vector

R-charge Q has q = Q − 1, and that the gaugino normally has q = 1. The central charge

of the infra-red fixed point of the original theory is

ĉ = kN − k(k − 1)

2
. (4.28)

Note that this is the dimension of the Higgs branch Hk. This is consistent with the fact

that the sigma model on a Kähler manifold of dimension d is classically a conformal field
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theory with central charge ĉ = d. One the other hand, the central charge of the dual

theory reads

ĉdual =
N(N + 1)

2
− (N − k + 1)(N − k)

2
. (4.29)

The two, (4.28) and (4.29), indeed agree. This comparison can be regarded as the ’t Hooft

anomaly matching for U(1)2R, which is the only non-trivial one.

The dual theory in some detail. Let us study the low energy behaviour of the dual

theory. We first look at the classical flat directions. The D-term equations are as in (4.2),

and we also have the F-term equations from the superpotential (4.24),

(x̃ix̃j) = 0 ∀(i, j), (4.30)

sij x̃
j
ã = 0 ∀(i, ã). (4.31)

The first equations and the D-term equations require x̃1 = · · · = x̃N = 0, which makes

the second equation vacuous. Thus, the space of classical vacua is just the space SN
parametrized by the singlets sij . It is the space of all symmetric N ×N matrices and has

dimension N(N+1)
2 .

The gauge group is entirely unbroken everywhere in the flat directions, and therefore,

quantum effects of gauge interactions should be taken into account. Let us first consider

the case where the original gauge group is O+(k) and the dual gauge group is SO(k̃),

with k̃ = N − k + 1. As we have done many times in sections 2 and 3, we work in the

Born-Oppenheimer approximation, treating the singlets sij as slow variables and SO(k̃)

gauge fields and the fundamentals x̃i as fast variables. From this view point, we may

regard s = (sij) as a mass matrix for x̃i’s, and its corank (N minus its rank) is the

effective number Neff of massless fundamentals. We have learned that, if Neff ≤ k̃ − 2, the

supersymmetry is spontaneously broken, i.e., there is no zero energy state. Thus, unless

the supersymmetry is entirely broken, the low energy dynamics will concentrate on the

locus of sij ’s where the matrix s has corank k̃− 1 or higher. That is, rank N − (k̃− 1) = k

or lower,

SN,≤k =
{
s ∈ SN

∣∣∣ rank(s) ≤ k
}
. (4.32)

Let us look at the behaviour of the theory near such a locus. For concreteness, let us look

at the region of SN where the last k × k block of (sij) has rank k. We separate x̃i’s into

two groups: the first N − k of them, x̃α for α = 1, . . . , N − k, and the last k of them, x̃µ

for µ = N − k + 1, . . . , N . Fields from the latter group are massive and can be integrated

out. This leaves us with the superpotential

W =
N−k∑

α,β=1


sαβ −

N∑

µ,ν=N−k+1

sαµs
µνsνβ


 (x̃αx̃β) (4.33)

In the above, (sµν) is the inverse of the last k × k block (sµν) of (sij). At this point, we

again use what we have learned: the SO(k̃) theory with Neff = N − k = k̃ − 1 massless

fundamentals is the free theory of the mesons at low energies. Then, the composites (x̃αx̃β)
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in (4.33) should be regarded as elementary fields and can be integrated out. This yields

the constraints sαβ =
∑
sαµs

µνsνβ, which means that s is of rank k since

A = BC−1BT =⇒
(
A B

BT C

)
=

(
1N−k BC

−1

1k

)(
0N−k

C

)(
1N−k

C−1BT 1k

)
. (4.34)

Therefore, the low energy theory is the sigma model whose target space is the submanifold

SN,≤k, in the region of the field space where the rank of s is at least k. The space SN,≤k

has codimension (N−k)(N−k+1)
2 in SN ,3 and that explains the central charge (4.29). It can

be regarded as the same space as the the Higgs branch Hk = HO(k),N of the original theory,

in the sense that both spaces are parametrized by N × N symmetric matrices of rank k

or less: (xixj) for HO(k),N and sij for SN,≤k, which indeed correspond to each other under

the duality (4.25).

The analysis for the case where the original gauge group is O−(k) and the dual group

is O−(k̃) proceeds in the same way. We find that the singlet sij is constrained to be in

the subspace SN,≤k and the dual theory reduces to the sigma model on SN,≤k in the open

domain of rank exactly k. Of course, this dual pair is different from the one above. In the

original side, they differ in the orbifold projections in the twisted NSNS and untwisted RR

sectors. In the dual side, the non-standard orbifold should be at work in the O−(k̃) theory.

Finally, let us study the case where the original gauge group is SO(k) and the dual

group is O+(k̃). The analysis of the dual theory proceeds in the same way until the point

where we use the low energy description of the theory with Neff = k̃ − 1. In the present

case, where the gauge group is O+(k̃), there are two copies of the free theory of invariants

(x̃αx̃β). Therefore, we have a double cover of SN,≤k at least over the open subset consisting

of matrices s of maximal rank k. The two sheets are exchanged under the Z2 quantum

symmetry of the orbifold. Let us compare it with the Higgs branch of the original theory,

Hk = HSO(k),N . Since the Higgs branch for the O(k) theory is obtained by a Z2 quotient

of the one for the SO(k) theory, HSO(k),N is indeed a double cover of HO(k),N . The baryons

[xi1 · · ·xik ] are the ones that distinguish the two sheets above HO(k),N , and they are indeed

claimed to be twist fields in the dual theory.

Flow by complex mass. Let us consider the O+(k) resp. SO(k) resp. O−(k) gauge

theory with N fuandamental matter fields with a superpotential mass term for one of them,

say the last one, W = (xNxN ). This introduces a term sNN in the dual superpotential,

W =
N∑

i,j=1

sij x̃
ix̃j + sNN . (4.35)

3The subspace of SN consisting of matrices of corank i or higher has codimension i(i+1)
2

: to choose

such a matrix, we first choose a subspace of codimension i and then choose a symmetric bilinear form

in that subspace. The first choice involves i(N − i) parameters, as it corresponds to choosing a point of

the Grassmannian G(N − i, N), and the second choice involves (N−i)(N−i+1)
2

parameters. Therefore the

codimension is N(N+1)
2

− {i(N − i) + (N−i)(N−i+1)
2

} = i(i+1)
2

.
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If we integrate out sNN , we obtain the constraint (x̃N )2 + 1 = 0 which can be solved by

x̃N =




0
...
0
±i


 . (4.36)

It breaks the dual gauge group to the subgroup SO(k̃−1) resp. O+(k̃−1) resp. O−(k̃−1).

Note that the solution is unique except in the case where k̃ = 1 and the dual gauge group

is SO(1) = {1}, i.e., N = k and the original gauge group is O+(k), in which the two

solutions +i and −i are inequivalent. Plugging (4.36) to the superpotential we have terms

of the form ±2isj′N x̃j
′

k̃
for j′ = 1, . . . , N −1. Integrating out sj′N , we obtain the constraint

x̃j
′

k̃
= 0. Thus, we are left with the SO(k̃−1) resp. O+(k̃−1) resp. O−(k̃−1) gauge theory

with N − 1 fundamentals x̃′1, . . . , x̃′N−1 and (N−1)N
2 singlets si′j′ , having the remaining

superpotential. This is indeed the dual of the O+(k) resp. SO(k) resp. O−(k) theory with

N − 1 massless fuandamentals.

For the case where the starting point is N = k, the dual gauge group SO(1) or O±(1)

is trivial or completely broken by (4.36) and the “fundamentals” x̃j
′

’s are completely gone.

If the original gauge group is SO(k) or O−(k) (the dual group O+(1) or O−(1)), we have

the free theory of only the singlets si′j′ , which correspond to the mezons (xi′xj′) in the

original. If the original gauge group is O+(k) (the dual group SO(1)), then, since the two

solutions (4.36), i.e., x̃N = ±i, are inequivalent, we have two copies of the free theory of

the singlets. To summarize, the duality reproduces the effective theory for the N = k − 1

theory obtained in section 4.5.

Vacuum counting with twisted mass. As another test of duality, let us compare the

number of supersymmetric ground states, or more precisely the Witten index, of the dual

pair perturbed by twisted masses. The counting for the original theory, where x1, . . . , xN
are given twisted masses m̃1, . . . , m̃N , has been done in section 4.3 under the genericity

assumption including (4.13). As this is associated with the U(1)N ⊂ U(N) global symme-

try, this corresponds in the dual side to giving twisted mass m̃i+ m̃j to sij and −m̃i to x̃
i.

Note that the masses for sij are all non-zero under (4.13). We discussed in section 2.3 the

vacuum counting problem in such a system. As argued there, the spectrum of supersym-

metric ground states, or at least the Witten index, is expected not to change if we turn

off the superpotential, since no vacuum runs off to nor come in from infinity. (This was

confirmed in a simple example by an exact analysis in appendix A.) Then, since the singlet

sector provides “one” as the number of ground states, the total number is the same as the

theory of x̃’s only. For this the result of section 4.3 is applicable, though of course for the

dual group. Thus, the comparison is a straightforward task — just stare the table (4.20).

A complete match!

4.7 Chiral rings

We discuss the chiral rings, both (c, c) and (a, c) rings, of the models we are studying. In

some cases, the duality can be used to determine them. In some other cases, we can deter-

mine the rings in both sides of the dual pair and the result can be used to test the duality.
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The (c, c) ring. The classical (c, c) ring is the ring of gauge invariant polynomials of the

chiral multiplet fields. For the O(k) theory (in the untwisted sector) and for the SO(k)

theory, it is respectively [32]

C[x1, . . . , xN ]O(k,C) = C
[
(xixj)

]/
J1, (4.37)

and

C[x1, . . . , xN ]SO(k,C) = C
[
(xixj), [xi1 · · ·xik ]

]/
(J1, J2, J3), (4.38)

where J1, J2, J3 denote relations of the form

J1 : det




(xi0xj0) · · · (xi0xjk)
...

...

(xikxj0) · · · (xikxjk)


 = 0, (4.39)

J2 : [xi1 · · ·xik ][xj1 · · ·xjk ] = det




(xi1xj1) · · · (xi1xjk)
...

...

(xikxj1) · · · (xikxjk)


 , (4.40)

J3 :

k∑

p=0

(−1)p[xi0 · · · x̂ip · · ·xik ](xipxj) = 0. (4.41)

These relations must be satisfied in the semiclassical regime where the gauge group is com-

pletely broken, and hence must be the exact chiral ring relations, as a potential parameter

of correction does not exist. In the dual side, the corresponding relations are not visible in

the classical theory and appear only in the infra-red limit of the quantum theory. Indeed

the relations J1 are consistent with the constraint rank(s) ≤ k obtained in the paragraph

including (4.32)–(4.34). In the case of O(k) gauge group, we also have (c, c) ring elements

from the twisted sector. For the O+(k) theory, the twist fields correspond to O(k̃)/SO(k̃)

anti-invariants in the dual theory and are generated by the baryons [x̃i1 · · · x̃ik̃ ]. We can find

the relations involving these fields using the above relations J2 as well as the classical con-

straint from the F-term equations (4.30)–(4.31). These lead to the following conclusions.

We write sij = (xixj), bi1···ik = [xi1 · · ·xik ], b̃i1···ik̃ = [x̃i1 · · · x̃ik̃ ] whenever appropriate.
The (c, c) ring of the O+(k) theory is the polynomial ring of sij and b̃i1···ik̃ modulo

the relations

det



si0j0 · · · si0jk
...

...

sikj0 · · · sikjk


 = 0, b̃i1···ik̃ b̃j1···jk̃ = 0,

N∑

j1=1

sij1 b̃
j1j2···jk̃ = 0. (4.42)

The (c, c) ring of the SO(k) theory is the polynomial ring of sij and bi1···ik modulo the

relations

det



si0j0 · · · si0jk
...

...

sikj0 · · · sikjk


 = 0, bi1···ik̃ bj1···jk̃ = det



si1j1 · · · si1jk
...

...

sikj1 · · · sikjk


 ,

k∑

p=0

(−1)p sijp bj0···ĵp···jk = 0. (4.43)
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The (c, c) ring of the untwisted elements of the O−(k) theory is the polynomial ring of sij
modulo the relations

det



si0j0 · · · si0jk
...

...

sikj0 · · · sikjk


 = 0. (4.44)

The (a, c) ring. Classically, the (a, c) ring is the ring of gauge invariant polynomials of

the scalar components σ of the gauge multiplets, which is isomorphic to the ring of Weyl

invariant polynomials of the components σ1, . . . , σℓ for the maximal torus. Examples of

elements are

c2i = tr(σ2i) =
ℓ∑

a=1

σ2ia , pℓ = Pf(σ) = σ1 · · ·σℓ (for SO(2ℓ)). (4.45)

As the generators, we can take c2, . . . , c2ℓ for SO(2ℓ + 1), O(2ℓ + 1) and O(2ℓ), and

c2, . . . , c2ℓ−2, pℓ for SO(2ℓ). There are no relations among them and thus the ring is the

polynomial ring of these generating variables. The underlying vector space is of course

infinite dimensional.

The story is different in the quantum theory. Coulomb branch is lifted by quantum

corrections if the theory is regular. This implies that the underlying vector space of the

(a, c) ring of the infra-red conformal field theory is finite dimensional. Thus, we expect to

have quantum relations among the generators, c2, . . . , c2ℓ, or c2, . . . , c2ℓ−2, pℓ. In addition,

we also have (a, c) ring elements from the twisted sector in the theories with gauge group

O(k) or O(k̃). In the SO(k) and O+(k) theories, where we have the spectral flow between

(a, c) ring elements and RR ground states, the dimension is expected to be equal to the

number (4.20) of supersymmetric ground states in the model perturbed by twisted masses.

The key to find the quantum relations is the relations (4.15) for the mass deformed

system. In the massless limit, m̃i → 0, they become

(σa)
N = 0 a = 1, . . . , ℓ. (4.46)

From these we would like to extract relations among the gauge invariants. Analogous

problem has been discussed in [39] (see also [30, 35]). We apply the “change of variables

method” from that reference to the case when N is odd, which proceeds as follows. The

relations (4.46) are the Jacobi relations of the function 1
N+1(σ

N+1
1 + · · ·+ σN+1

ℓ ), which is

invariant under the SO(k) and O(k) Weyl group when N is odd. We express this function

in terms of the generators of the SO(k) Weyl invariants, and call it W ;

1

N + 1
(σN+1

1 + · · ·+ σN+1
ℓ ) =

{
W (c2, . . . , c2ℓ−2, p) k even,

W (c2, . . . , c2ℓ) k odd,
(4.47)

For the SO(k) theory, the (a, c) ring is identified with the Jacobi ring of W , that is,

the (c, c) ring of the Landau-Ginzburg model with the superpotential W . For the O±(k)

theory, the (a, c) ring is identified with the (c, c) ring of the Landau-Ginzburg orbifold

with the superpotential W with respect to O±(k)/SO(k) ∼= Z2. We are not claiming
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that the conformal field theory is dual, or mirror to be precise, to the Landau-Ginzburg

model/orbifold. We are simply identifying the (a, c) ring of our theory with the (c, c) ring

of the LG. The two theories cannot be mirror to each other as the (c, c) ring of our theory

is infinite dimensional while the (a, c) ring of the LG is finite dimensional.

This applies both to the original O(k) or SO(k) theory and to the dual O(k̃) or SO(k̃)

theory. Let us compute the ring in some examples, and check against the duality.

SO(2), N = 5 versus O+(4), N = 5. The (a, c) ring of the SO(2) theory is the Jacobi

ring of W = 1
6p

6
1, i.e. the polynomial ring of p1 modulo the relation

p51 = 0. (4.48)

Under the Z2 = O(2)/SO(2), three elements, 1, p2, p4, are even and two elements, p, p3,

are odd. The (a, c) ring of the O+(4) theory is the (c, c) ring of a LG orbifold with the

superpotential W = 1
6c

3
2 − 1

2p
2
2c2 with respect to Z2 : (c2, p2) → (c2,−p2). The spectra

of (c, c) elements and RR ground states for the two cases are as follows (We follow the

notation of [25]. In particular, Kτ ∈ Z/2Z is the parameter that distinguishes two possible

orbifold projections): for Kτ = 1, the states surviving the orbifold projection are

(c, c) :

{
|0〉1(c,c), c2|0〉1(c,c), c22|0〉1(c,c) from untwisted

|0〉τ(c,c), c2|0〉τ(c,c) from twisted
(4.49)

RR :

{
|0〉1R, c2|0〉1R, c22|0〉1R from untwisted

|0〉τR, c2|0〉τR from twisted.
(4.50)

For Kτ = 0, the surviving states are

(c, c) :

{
|0〉1(c,c), c2|0〉1(c,c), c22|0〉1(c,c) from untwisted

none from twisted
(4.51)

RR :

{
p2|0〉1R from untwisted

|0〉τR, c2|0〉τR from twisted.
(4.52)

We see that we need to take Kτ = 1 for the O+(4) theory, in order to have 3 untwisted and

2 twisted (c, c) ring elements, as expected from the vacuum counting in section 4.3. (Then

Kτ = 0 should correspond to the O−(4) theory. Note that the number of RR ground states

also matches with (4.20) also for O−(4).) The ring relation is standard for the untwisted

sector elements. Relations involving twist operators can be found using the recent result

by Krawitz [40].4 Let 1τ be an element corresponding to the state |0〉τ(c,c). The ring relation

is then

1τ · 1τ = −c2, c22 · 1τ = 0, (4.53)

in addition to c32 = 0 that comes from the Jacobi relations c22 = p22, p2c2 = 0. The rings for

the dual pair are indeed isomorphic under the correspondence

1, p1, p
2
1, p

3
1, p

4
1 ←→ 1, 1τ ,−c2,−c2 · 1τ , c22. (4.54)

4See Definition 13, eq. (2.7). We thank Tyler Jarvis for instruction on the ring structure and also

pointing out that arXiv:0906.0796 has an error in Definition 2, eq. (10).
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We can also perform the test for the other versions of dual pair: O+(2) versus SO(4) as

well as O−(2) versus O−(4). The ring of O+(2) is again found from [40]. It is generated

by 1τ and p21 which obey the relations p21 · 1τ = 0 and 1τ · 1τ = p41. The ring of SO(4) is

the Jocobi ring of W = c32/6 − p22c2/2, i.e., the polynomial ring of c2 and p2 modulo the

relation c22 = p22, p2c2 = 0. The two rings are isomorphic under

1, p21, 1τ , p
4
1 ←→ 1, c2, p2, c

2
2. (4.55)

The ring of O−(2) is the ring of even polynomials of p1 modulo p51 = 0 while the ring of

O−(4) is the ring of polynomials of c2 with c32 = 0. They are obviously isomorphic.

SO(3), N = 7 versus O+(5), N = 7. The (a, c) ring of the SO(3) theory is the Jacobi

ring of W = 1
8c

4
2, that is, the polynomial ring of c2 modulo the relation c32 = 0. The

(a, c) ring of the O+(5) theory is the (c, c) ring of the orbifold of the LG model with

W = 1
8c

2
2c4 +

1
16c

2
4 − 1

16c
4
2 by the Z2 that acts trivially on the variables. In order to be

consistent with (4.20), the orbifold must be the one which is isomorphic to the model

without the orbifold. The ring is therefore the polynomial ring of c2 and c4 modulo the

relation c22 + c4 = c32 − c2c4 = 0, that is, the polynomial ring of c2 modulo the relation

c32 = 0. The two rings are indeed isomorphic to each other. Nothing changes for the dual

pair O+(3) versus SO(5). For the pair O−(3) versus O−(5), the ring is doubled on both

sides — for each untwisted element, there is a copy in the twisted sector, and the ring

relation is the obvious one. The two rings are isomorphic to each other.

In this paper, we do not try to give full rational for the above procedure to determine

the (a, c) ring for odd N case, nor even to propose the ring for even N case. Also, we

do not attempt to prove the isomorphism for general dual pair. It is possible that the

would be proven isomorphism is related to the level-rank duality for the fusion ring of the

Wess-Zumino-Witten models or for the chiral ring of Kazama-Suzuki models. We postpone

the full account on these for future work.

5 Symplectic groups

In this section, we study low energy behaviour of theories with the symplectic gauge group

USp(k) with N chiral multiplets, x1, . . . , xN in the fundamental representation k. Here k

is an even integer, k = 2ℓ, for ℓ = 1, 2, 3, . . .. We recall that the group USp(k) is the group

of k × k unitary matrix that preserves the symplectic structure defined by the matrix

Jk =

(
−1ℓ

1ℓ

)
. (5.1)

That is, USp(k) consists of k×k matrix g satisfying g†g = 1k and gTJkg = Jk. It is simply

connected and hence any principal USp(k) bundle on a closed surface is topologically trivial.

In particular, there is no room for theta angle.

Note that USp(k) and SU(k) coincide at k = 2. Some of the results below for the

k = 2 case had been obtained in [2] as results for SU(2) gauge theories.
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5.1 The space of classical vacua

Let us first describe the space of classical vacua. We denote the scalar component of the

vector multiplet by σ. It is a k× k matrix such that Jkσ is symmetric. We write x for the

k ×N matrix (xai ), and denote by x↑ and x↓ its upper and lower ℓ×N submatrices. The

vacuum equation reads

[σ, σ†] = 0,

x↑x
†
↑ = (x↓x

†
↓)

T , x↑x
†
↓ = −(x↑x

†
↓)

T , (5.2)

σx = σ†x = 0.

The first equation means that, up to gauge transformations, σ is of the form




σ1
. . .

σℓ
−σ1

. . .

−σℓ




(5.3)

Let us introduce ℓ×N quaternion matrix x = x↑+jx↓. The combination xx† is a self-adjoint

quaternion matrix and can be diagonalized using a U(Hk) ∼= USp(k) conjugation. By the

equations on the second line, this means that (after the gauge rotation) x↑x
†
↑ = (x↓x

†
↓)

T

is a real diagonal matrix and x↑x
†
↓ vanishes. This implies that, with an appropriate U(N)

flavor rotation, the solution can be made into the form

x =




a1
. . .

am

a1
. . .

am




, (5.4)

where r = 2m can range over even numbers from 0 to min{k,N} (resp. min{k,N − 1})
for even (resp. odd) N . The final equation requires that if the number of non-zero σa’s

is s, then the number of non-zero ai’s is at most ℓ − s. Let Cs (resp. Hr) be the set of

gauge equivalence class of solutions for σ of rank 2s or less (resp. x of rank r or less). It

has complex dimension s (resp. Nr − r(r+1)
2 ). The space of classical vacua is

M =
ℓ⋃

s=smin

(
Cs ×Hk−2s

)
, (5.5)
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where smin = 0 if N ≥ k and smin = [k−N+1
2 ] if N ≤ k − 1. When N ≥ k there is a Higgs

branch C0 ×Hk. There is always a Coulomb branch Cℓ ×H0. Other components are the

mixed Coulomb-Higgs branches.

5.2 Regularity

We are interested in regular theory where all the Coulomb and mixed branches are lifted by

quantum corrections. The computation of the effective twisted superpotential is very simple

compared to the orthogonal groups. Let us consider the classical Coulomb branch, Cℓ×H0.

The massive vector mutiplets give no contribution to the twisted superpotential — there are

four multiplets that are charged under U(1)a×U(1)b and yields πi(σa+σb)+πi(σa−σb) ≡ 0.

The massive chiral multiplets give the usual contribution, and the result is

W̃eff = −
∑

i,a

σa(log σa − 1)−
∑

i,a

(−σa)(log(−σa)− 1) = πiN

ℓ∑

a=1

σa. (5.6)

Computation on the mixed branches gives the same result except that the sum is over

a = 1, . . . , s for Cs ×Hk−2s. The conclusion is that the theory is regular if and only if N

is odd.

The theory with even N is not regular. Unlike in the orthogonal groups, the symplectic

group is simply connected and does not allow any theta angle. Also, the trick using complex

mass does not work here — the gauge invariants [xixj ] are antisymmetric in i↔ j and any

mass reduces the degrees of freedom by even number.

5.3 Twisted masses

Let us give twisted masses m̃1, . . . , m̃N to the chiral matter fields x1, . . . , xN , and study

the spectrum of supersymmetric ground states. We assume genericity of m̃i’s including

m̃i + m̃j 6= 0 so that the Higgs branch is lifted everywhere on the σ-space. The effective

twisted superpotential is

W̃eff = −
∑

i,a

(σa − m̃i)(log(σa − m̃i)− 1)−
∑

i,a

(−σa − m̃i)(log(−σa − m̃i)− 1). (5.7)

and the vacuum equation for σ = σ1, . . . , σℓ reads

N∏

i=1

(σ − m̃i) = (−1)N+1
N∏

i=1

(−σ − m̃i). (5.8)

The solutions are identified under the action of the Weyl group: permutations and inde-

pendent sign flips of σa’s. We require the solutions to obey

σa 6= ±m̃i,

σa 6= σb a 6= b, (5.9)

σa + σb 6= 0 ∀(a, b).

The same remark made for the O(k) or SO(k) gauge theory after (4.17) applies here without

modification.
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The equation (5.8) has a single root at σ = 0 and N−1
2 pairs of non-zero roots. There

are solutions for σa’s obeying (5.9) if and only if N−1
2 ≥ ℓ, i.e., N ≥ k + 1. The number of

inequivalent solutions is (N−1
2
k
2

)
. (5.10)

The Weyl group is completely broken at each solution, and hence this is the number of

supersymmetric ground states.

5.4 N ≤ k: supersymmetry breaking

By the result of the previous subsection and applying the same argument as in the orthog-

onal gauge groups, we conclude the following: there is no normalizable supersymmetric

ground state in pure USp(k) Yang-Mills theory (an irregular theory) as well as in the

theory with N ≤ k massless fundamentals, for both N odd (regular theory) and N even

(irregular theory).

5.5 N = k + 1: free conformal field theory

Let us now consider the theory with N = k + 1 massless fundamentals. In the regular

theory, the Coulomb and mixed branches are lifted and we are left with the Higgs branch

Hk only. As a complex manifold, the Higgs branch is isomorphic to the affine space C
(k+1)k

2

since the chiral ring of gauge invariants is isomorphic to the polynomial ring of the
(
k+1
2

)

symplectic products [xixj ] (the “mesons”) with no relations,

C[x1, . . . , xk+1]
Sp(k,C) = C

[
[xixj ]

∣∣∣ 1 ≤ i < j ≤ k + 1
]

(5.11)

The metric is singular at the roots of Coulomb and mixed branches, but the singularity is

expected to be smeared as these branches are lifted. We claim that the USp(k) gauge theory

with N = k + 1 massless fundamentals flows in the infra-red limit to the free conformal

field theory of the (k+1)k
2 mesonic variables.

5.6 N ≥ k + 3: duality

Finally, let us consider the theory with an odd N ≥ k+3 massless fundamentals. We claim

that there is a duality:

The USp(k) gauge theory with N fundamentals x1, . . . , xN flows in the infra-red limit

to the same fixed point as the USp(N−k−1) gauge theory with N fundamentals, x̃1, . . . , x̃N ,

and N(N−1)
2 singlets, aij = −aji (1 ≤ i, j ≤ N), having the superpotential

W =
N∑

i,j=1

aij [x̃
ix̃j ]. (5.12)

The mesons in the original theory correspond to the singlets in the dual,

[xixj ] = aij . (5.13)

It is a duality — the dual of the dual is the same as the original. We omit the detail

here, except showing the equality, N − (N − k − 1)− 1 = k.
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The central charge. The two theories has the same symmetry: the SU(N) × U(1)B
flavor symmetry and the vector and axial U(1) R-symmetries:

SU(N) U(1)B U(1)V U(1)A
x N 1 0 0

x̃ N −1 1 0

s A 2 0 0

(5.14)

We have assigned vanishing R-charges to x, so that the two U(1) R’s can become parts

of the (2, 2) superconformal symmetry in the infra-red fixed point of the original theory.

Assuming that they indeed do correspond to the parts of the superconformal symmetry,

let us compute the central charge of the original theory. The one for the original theory is

ĉ = kN − k(k + 1)

2
, (5.15)

which is also the dimension of the Higgs branch Hk. The one for the dual theory is

ĉdual =
N(N − 1)

2
− (N − k − 1)(N − k)

2
. (5.16)

The two, (5.15) and (5.16), indeed agree.

The dual theory in some detail. Let us study the low energy behaviour of the dual

theory with gauge group USp(k̃), with k̃ = N − k− 1. The D-term equations are like (5.2)

and the F-term equations from (5.12) are

[x̃ix̃j ] = 0 ∀(i, j), (5.17)

aij x̃
j
ã = 0 ∀(i, ã). (5.18)

They force x̃1 = · · · = x̃N = 0 but no condition on the singlets aij . The space of classical

vacua is the space AN = {(aij)} ∼= C
N(N−1)

2 of N ×N antisymmetric matrices. The gauge

group is unbroken everywhere, and quantum effects of gauge interactions must be taken

into account. When we view a = (aij) as the mass matrix for x̃i and study the gauge sector

first, the nature of the low energy theory depends very much on the corank of a, as it is

equal to the effective number Neff of massless fundamentals. If Neff ≤ k̃ − 1, there is no

zero energy state. Thus, the low energy dynamics will concentrate on the locus where the

matrix a has corank k̃ + 1 or higher, i.e., rank N − (k̃ + 1) = k or lower,

AN,≤k =
{
a ∈ AN

∣∣∣ rank(a) ≤ k
}
. (5.19)

Let us look at the behaviour of the theory near such a locus. For concreteness, let us look

at the region of AN where the last k × k block of (aij) has rank k. We separate x̃i’s into

two groups: the first N − k and the last k of them, x̃α and x̃µ. Integrating out the massive

fields from the latter, we obtain the superpotential

W =
N−k∑

α,β=1


aαβ −

N∑

µ,ν=N−k+1

aαµa
µνaνβ


 [x̃αx̃β ], (5.20)
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where (aµν) is the inverse of the last k × k block (aµν) of (aij). The USp(k̃) theory with

Neff = N−k = k̃+1 massless fundamentals is the free theory of the mesons at low energies.

Then, the composites [x̃αx̃β] in (5.20) can be integrate them out as elementary fields and

we obtain the constraints aαβ =
∑
aαµa

µνaνβ. This means that a is of rank k since

A =−BC−1BT =⇒
(

A B

−BT C

)
=

(
1N−k BC

−1

1k

)(
0N−k

C

)(
1N−k

−C−1BT 1k

)
. (5.21)

Therefore, the low energy theory is the sigma model whose target space is the submanifold

AN,≤k, in the region of the field space where the rank of a is at least k. The space AN,≤k

has codimension (N−k)(N−k−1)
2 in AN ,5 which explains the central charge (5.16). It can be

regarded as the same space as the Higgs branch Hk = HUSp(k),N of the original theory, in

the sense that both spaces are parametrized by N ×N antisymmetric matrices of rank k or

less: [xixj ] for HUSp(k),N and aij for AN,≤k, which indeed correspond to each other under

the duality (5.13).

Flow by complex mass. Let us consider the theory with a superpotential mass term

for two of the N fundamentals, say the last two, W = [xN−1xN ]. This introduces a term

a(N−1)N in the dual superpotential,

W =
N∑

i,j=1

aij [x̃
ix̃j ] + a(N−1)N . (5.22)

If we integrate out a(N−1)N , we obtain the constraint [x̃N−1x̃N ] + 1 = 0, which can be

solved by

x̃N−1 =

(
eℓ
0ℓ

)
, x̃N =

(
0ℓ
eℓ

)
where eℓ =




0
...

0

1



. (5.23)

They break the dual gauge group to the subgroup USp(N − k− 3). Plugging them back to

the superpotential, we have terms of the form aj′N x̃
j′

ℓ − aj′(N−1)x̃
j′

2ℓ for j
′ = 1, . . . , N − 2.

Integrating out aj′(N−1) and aj′N , we obtain the constraint x̃j
′

a = 0 for j′ = 1, . . . , N−2 and

a = ℓ, 2ℓ. Thus, we are left with the USp(N−k−3) gauge theory with N−2 fundamentals

x̃′1, . . . , x̃′N−2 and (N−2)(N−3)
2 singlets ai′j′ , having the remaining superpotential. This is

indeed the dual of the USp(k) theory with N − 2 massless fundamentals.

If the starting point was N = k+3, the dual gauge group USp(2) is completely broken

and the fundamentals are all gone. What remains is the free theory of the singlets ai′j′ for

i, j = 1, . . . , k + 1, which correspond to the mesons [xixj ]. The duality indeed reproduces

the effective theory for the N = k + 1 theory obtained in section 5.5.

5The subspace of AN consisting of matrices of an odd corank i or higher has codimension i(i−1)
2

: to

choose such a matrix, we first choose a subspace of codimension i and then choose an antisymmetric bilinear

form in that subspace. The first choice involves i(N − i) parameters, as it corresponds to choosing a point

of the Grassmannian G(N − i, N), and the second choice involves (N−i)(N−i−1)
2

parameters. Therefore the

codimension is N(N−1)
2

− {i(N − i) + (N−i)(N−i−1)
2

} = i(i−1)
2

.
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Vacuum counting with twisted mass. Let us compare the Witten index of the dual

pair perturbed by twisted masses. The counting for the original theory, where x1, . . . , xN
are given twisted masses m̃1, . . . , m̃N , has been done in section 5.3 under a certain genericity

assumption. This corresponds, in the dual side, to non-zero and generic twisted masses

m̃i + m̃j for aij and −m̃i for x̃
i. We expect that the Witten index does not change as we

turn off the superpotential, since no vacuum runs off to nor come in from infinity, Then, it

is the same as the theory of x̃’s only. For this the result of section 5.3 is applicable, though

of course for the dual group. Thus, we only have to compare (5.10) for USp(k) and for

USp(N − k − 1). They indeed agree with each other.

5.7 Chiral rings

The (c, c) ring. The classical (c,c) ring is the ring of gauge invariant polynomials of the

chiral multiplet fields, which is known to be [32]

C[x1, . . . , xN ]Sp(k,C) = C
[
[xixj ]

]/
(J0, J1, . . . , Jℓ) (5.24)

where the relations are

J0 :
∑

σ∈Sk+1

(−1)l(σ)[xj0xiσ(0)
][xiσ(1)

xiσ(2)
] · · · [xiσ(k−1)

xiσ(k)
] = 0,

J1 :
∑

σ∈Sk+1

(−1)l(σ)[xj0xiσ(0)
][xj1xiσ(1)

][xj2xiσ(2)
][xiσ(3)

xiσ(4)
] · · · [xiσ(k−1)

xiσ(k)
] = 0,

· · · (5.25)

Jℓ :
∑

σSk+1

(−1)l(σ)[xj0xiσ(0)
][xj1xiσ(1)

] · · · [xjkxiσ(k)
] = 0.

As these must be satisfied in the semiclassical regime and as there is no parameter for

corrections, this must be the (c, c) ring of the theory. In the dual side, the corresponding

relations for aij appear only in the infra-red limit. These are consistent with the constraint

rank(a) ≤ k obtained in the paragraph including (5.19)–(5.21).

The (a, c) ring. The (a, c) ring of the classical theory is the ring of gauge invariant

polynomials of σ, or equivalently, the ring of Weyl invariant polynomials of σ1, . . . , σℓ. It

is the polynomial ring of the invariants c2, . . . , c2ℓ, where

c2i = tr(σ2i) =
ℓ∑

a=1

σ2ia . (5.26)

The underlying vector space is of course infinite dimensional. In the quantum theory, since

the Coulomb branch is lifted if it is regular (i.e. for odd N), we expect to have relations

among c2, . . . , c2ℓ, so that the underlying vector space has a finite dimension which is equal

to the number (5.10). The relations are found via the m̃i → 0 limit of (5.8),

(σa)
N = 0 a = 1, . . . , ℓ, (5.27)
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which are the Jacobi relations of the function 1
N+1(σ

N+1
1 + · · · + σN+1

ℓ ). We express this

function, which is invariant under the Weyl group when N is odd, in terms of c2, . . . , c2ℓ
and call it W . Then, the (a, c) ring is the Jacobi ring of W (c2, . . . , c2ℓ).

Notice that it is isomorphic to the ring for the SO(2ℓ+ 1) or O+(2ℓ+ 1) theory with

the same N . Of course this does not mean that the theory is equivalent to the SO or

O+ theories. They are different in many other ways, such as the central charge and the

(c, c) ring.

This holds for both the original USp(k) theory and for the dual USp(k̃) theory. It is

straightforward to check that the rings for the dual pair are isomorphic to each other, at

least for low values of (k,N). We do not try to give a proof for general (k,N) in this paper.

(In fact, a proof in this case is equivalent to a proof in the SO(odd) or O+(odd) theories

with odd N , by the isomorphism mentioned above.) It would be interesting to see if there

is a relation to level-rank duality in Wess-Zumino-Witten fusion rings or in the chiral rings

in Kazama-Suzuki models.

6 Motivation, test, and application

6.1 A linear sigma model including O+(2)

The present work started as an attempt to understand, from the quantum field theory

point of view, the relation discussed in [16] between two different Calabi-Yau manifolds.

One of the two naturally leads us to consider the following linear sigma model.

It is the theory with the gauge group G = (U(1)×O(2))/{(±1,±12)}, with the mat-

ter fields
p1 p2 p3 p4 p5︸ ︷︷ ︸ x1 x2 x3 x4 x5︸ ︷︷ ︸

(−2,1) (1,2)
(6.1)

and the superpotential

W =
5∑

i,j,k=1

Sij
k p

k(xixj). (6.2)

Sij
k = Sji

k are complex numbers which are generic in the sense specified soon. The theta

parameter for the SO(2) ⊂ O(2) is turned off for the theory to be regular, as we have 5

(odd) doublets. We often use the parametrization introduced in section 3.2:

G =
U(1)×U(1)

{(±1,±1)} ⋊ Z2
∼= (U(1)1 ×U(1)2)⋊ Z2 (6.3)

([(g, h)], ∗) 7−→ (gh, gh−1, ∗).

The FI-theta parameters for U(1)1 are equal to those of U(1)2 and are denoted by (r, θ),

or t = r− iθ. The matter fields are pk’s of charge (−1,−1), ui’s of charge (1, 0) and vi’s of

charge (0, 1) with respect to U(1)1 ×U(1)2, and the superpotential (6.2) reads as

W =
5∑

i,j,k=1

Sij
k p

k(uivj + viuj). (6.4)
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The generator τ of Z2 exchanges U(1)1 and U(1)2 as well as ui and vi. The D-term

equations read

− |p|2 + |u|2 = −|p|2 + |v|2 = r, (6.5)

and the F-term equations are
∑

ij

Sij
k uivj = 0, k = 1, . . . , 5, (6.6)

∑

j,k

Sij
k p

kuj =
∑

j,k

Sij
k p

kvj = 0, i = 1, . . . , 5. (6.7)

The low energy theory at r ≫ 0. Let us analyze the low energy theory at r ≫ 0.

The D-term equations require u 6= 0 and v 6= 0, thus U(1)1 × U(1)2 is completely broken.

The space of (u, v) can be identified as CP4 × CP4 on which τ acts by the exchange of

the two CP4 factors. Let X̃S be the subspace of CP4×CP4 consisting of (u, v) satisfying

the first set of F-term equations, (6.6). We assume that X̃S is a smooth submanifold of

CP4×CP4 of codimension 5. Namely, we require that the differential of the five equations

has the maximal rank,

(C): If (u, v) represents a point of X̃S, then the 5× 10 matrix (Su, Sv) is of rank 5.

Here, Su is the square matrix whose (k, i)th entry is
∑

j S
ij
k uj . This condition also forbids

the exchange τ to have a fixed point: a fixed point would be represented by (u, u) where

u 6= 0 satisfies
∑

i,j S
ij
k uiuj = 0, but the matrix (Su, Su) has rank 4 or less, as Su has u in

the kernel, contradicting (C). In particular, the gauge group is completely broken. Again

by the condition (C), the second set of F-term equations (6.7) requires that all pk’s vanish.

We conclude that the vacuum manifold is the free quotient XS = X̃S/Z2, which may also

be written simply as

XS =

{
x ∈ (C2)⊕5

∣∣∣ x 6= 0,
∑

i,j

Sij
k (xixj) = 0 ∀k

}/
(C× ×O(2,C))/Z2. (6.8)

X̃S and XS are three dimensional Calabi-Yau manifolds, with h1,1(X̃S) = 2, h2,1(X̃S) = 52

and h1,1(XS) = 1, h2,1(XS) = 26 [16]. The modes transverse to X̃S are all massive and

hence the low energy theory is the non-linear sigma model whose target space is XS .

As always, we need to make a choice of the Z2 orbifold, which is a part of the definition

of the O(2) gauge theory. We fix this by requiring the sigma model on XS to be the stan-

dard one, where RR ground states are in one to one correspondence with the cohomology

classes of XS , i.e., Z2 invariant (rather than anti-invariant) cohomology classes of X̃S , with

Hodge diamond
1

0 0
0 1 0

1 26 26 1
0 1 0
0 0
1

(6.9)

For this we need to choose the Z2 orbifold to be the standard one. This is achieved if we

choose the O(2) factor of the gauge group to be the O+(2).
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Singularity. Let us find the location of the singular points. We denote by σ1 and σ2 the

fieldstrength for the groups U(1)1 and U(1)2. They are exchanged by the symmetry τ ,

σ1
τ←→ σ2. (6.10)

The effective twisted superpotential is W̃eff = 5(σ1 + σ2)(log(−σ1− σ2)− 1)− 5σ1(log σ1−
1)− 5σ2(log σ2− 1)− t(σ1+σ2). The theory is singular if there is a non-compact Coulomb

branch determined by the equations ∂σ1W̃eff = ∂σ2W̃eff = 0 mod 2πiZ, i.e.,

et =
(−σ1 − σ2)5

σ51
=

(−σ1 − σ2)5
σ52

. (6.11)

There are three inequivalent solutions, (σ1, σ2) ∝ (1, 1), (1, e
2πi
5 ), (1, e

4πi
5 ), for the values

of t given respectively by

et = −25, − (1 + e
2πi
5 )5, − (1 + e

4πi
5 )5. (6.12)

Note that the first point is special in that the symmetry (6.10) is unbroken. There we must

take into account the Z2 orbifold that acts trivially. Since we choose the gauge group to

be O+(2), the Z2 orbifold yields two copies of the Coulomb branch at et = −25. At each

of the symmetry breaking points, there is just one copy of Coulomb branch.

Location of singular points agree with the result of [16] (under the relation x = − e−t

to the parameter x of [16]). In that work, the monodromies of the Picard-Fuchs system

are also computed — at the three points they are conjugate to




1 2

1

1

1


 ,




1 1

1

1

1


 ,




1 1

1

1

1


 . (6.13)

The difference is clear. A spacetime interpretation would be that there are two massless

hypermultiplets of charge 1 at the first point, while there is just one massless hypermultiplet

of charge 1 at each of the latter two. This observation tempts us to make a

Conjecture: Suppose a linear sigma model gives rise to a family of 4d N = 2 compact-

ifications of Type II superstrings. If a disjoint union of n copies of Coulomb branch is

supported at a locus of the moduli space, then there are n massless hypermultiplets of the

same charge along the locus.

The low energy theory at r ≪ 0. Let us now study the low energy theory at r ≪ 0.

This time the D-term equations require p 6= 0. We then find that the equations |u|2 = |v|2
and p ·(Su, Sv) = 0 force u = v = 0 under the condition (C). The space of classical vacua is

therefore the space of p obeying |p|2 = |r|modulo phase rotations, that is, aCP4. However,

the low energy theory is not just the sigma model on this vacuum manifold, since a non-

trivial subgroup of the gauge group is unbroken: non-zero values of p break the U(1) factor

to {±1} and hence the unbroken gauge group is ({±1}×O+(2))/{(±1,±12)} ∼= O+(2). We
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may consider the theory as the O+(2) gauge theory with five doublets, x1, . . . , x5, fibred

over the CP4, with the superpotential (6.2), which may be rewritten as

W =
5∑

i,j=1

Sij(p)(xixj), (6.14)

where Sij(p) =
∑5

k=1 S
ij
k p

k. The low energy behaviour of the O+(2) gauge theory for a

given value of p depends very much on the rank of the mass matrix S(p) = (Sij(p)). It

follows from the condition (C) that S(p) has at least rank 3 if p 6= 0. That is, a possible

rank of S(p) is 3, 4 or 5. Let us put

YS =
{
[p] ∈ CP4

∣∣∣ rankS(p) ≤ 4
}
, (6.15)

CS =
{
[p] ∈ CP4

∣∣∣ rankS(p) = 3
}
. (6.16)

YS is a hypersurface of CP4 given by the equation detS(p) = 0. CS is of codimension 3

in CP4 and hence is a curve. YS has A1 singularity along CS (see section 3.5). The mass

matrix S(p) has corank 1 along YS \CS and corank 2 along CS . In this situation, we may

apply the analysis of section 3.4 and 3.5 concerning the O+(2) gauge theories with doublets

having superpotential with corank 1 and 2 degenerations. The result there implies that,

at least locally, the low energy theory is the sigma model whose target space is a double

cover of YS ramified along CS — the cover is of the type C2 → C2/Z2 as in (3.40), in the

direction of YS transverse to CS . The question is whether such a ramified double cover of

YS exists globally. This is in fact proven to be the case in [16]. Thus, we can say that the

low energy theory is indeed the sigma model on that double cover.

However, it is quite unsatisfactory in that the local understanding cannot tell anything

about the existence of the global cover, let alone the construction of such a cover. It would

have been disastrous if there were more than one covers or if there were none (though neither

is the case fortunately). This was the actual motivation to look for the dual description

of the O(2) theory with more than two massless flavors, which resulted in the discovery of

the non-Abelian duality.

6.2 The dual linear sigma model including SO(4)

As described in section 3.3, the O+(2) gauge theory with five doublets x1, . . . , x5 is dual

to the SO(4) gauge theory with five quartets x̃1, . . . , x̃5 and fifteen singlets sij with the

superpotential W =
∑

i,j sij(x̃
ix̃j). The singlets are related to the gauge invariants by

sij = (xixj). This duality can be incorporated into the full linear sigma model and leads

us to consider the following theory.

It is the (U(1)× SO(4))/{(±1,±14)} gauge theory with the following field content

p1 p2 p3 p4 p5︸ ︷︷ ︸ x̃
1 x̃2 x̃3 x̃4 x̃5︸ ︷︷ ︸ (sij)1≤i≤j≤5︸ ︷︷ ︸

(−2,1) (−1,4) (2,1)
(6.17)

and the superpotential

W =
∑

i,j

sij(x̃
ix̃j) +

∑

i,j,k

Sij
k p

ksij . (6.18)
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The sum of U(1) charges vanish, −2 × 5 − 1 × 20 + 2 × 15 = 0. Hence, the axial U(1)

R-symmetry is not anomalous and the FI-theta parameters (r̃, θ̃) is a free parameter of the

theory. As we will show later, we can normalize the latter so that the D-term equation for

the U(1) subgroup reads as

− 2|p|2 − |x̃|2 + 2|s|2 = 2r̃. (6.19)

Let us consider the theory at r̃ ≪ 0. The D-term and F-term equations require p 6= 0,

which breaks the gauge group to the subgroup ({±1} × SO(4))/{(±1,±14)} ∼= SO(4).

Thus, we have an SO(4) gauge theory fibred over CP4 = {p}. Since this fibration of SO(4)

theories is dual to the fibration of O+(2) theories discussed in the previous subsection, we

conclude that this linear sigma model at r̃ ≪ 0 is dual to the original one (6.1)–(6.2) at

r ≪ 0. Comparing (6.19) and (6.5), we expect that r̃ agrees with r in the limit r → −∞.

The precise relation will be determined momentarily.

The low energy theory at r̃ ≪ 0. Let us further study the low energy behaviour of

this theory at r̃ ≪ 0. Integrating out the fields sij we obtain the constraints

(x̃ix̃j) + Sij(p) = 0 ∀(i, j). (6.20)

Since S(p) has rank at least three for p 6= 0 by the condition (C), we find that the 4 × 5

matrix (x̃ia) has rank at least 3 if it obeys the constraints (6.20). This completely breaks the

residual SO(4) gauge group. We find that the manifold of classical vacua is the free quotient

ỸS =
{
(p, x̃) ∈ C⊕5 ⊕ (C4)⊕5

∣∣∣ p 6= 0, (6.20)
}/C× × SO(4,C)

{(±1,±14)}
. (6.21)

If it is a smooth manifold, we identify the low energy theory as the non-linear sigma model

with this target space. Since our theory is dual to (6.1)–(6.2), this must be the double

cover of YS which we were longing for! This is indeed the case, as we show now.

Since x̃i are in the quartet 4, the 5× 5 matrix (x̃ix̃j) has at most rank 4. Thus, (6.20)

yields the constraint on p that S(p) must have rank at most 4. I.e., we obtained the

constraint that pmust represent a point of YS , this time, by a completely classical argument.

Therefore, (p, x̃) 7→ p defines a map

f : ỸS −→ YS . (6.22)

Let us find the fibre of this map. A choice of p 6= 0 that represents a point of YS breaks

the group of the quotient (6.21) to the subgroup ({±1} × SO(4,C))/Z2
∼= SO(4,C). The

symmetric matrix S(p) can be diagonalized using the GL(5,C) coordinate change and we

may assume S(p) = −diag(c1, c2, c3, c4, 0), where three of c1, . . . , c4 must be non-zero. A

solution to the equation (6.20) for such S(p) can be made into the following form using the

SO(4,C) symmetry,

(x̃1, . . . , x̃5) =




±√c1
±√c2

±√c3
±√c4 0


 . (6.23)
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Even number of sign flip of the non-zero entries is a part of the SO(4,C) symmetry, while

odd number of sign flip is not a part of it if c1, . . . , c4 are all non-zero — det(x̃1 · · · x̃4)
distinguishes the orbits. If one of c1, . . . , c4 vanishes, any number of sign flip is a part of

SO(4,C). Therefore, the fibre f−1([p]) consists of two points if rankS(p) = 4 while it is a

single point if rankS(p) = 3 (i.e. if [p] belongs to CS). Let us look at the behaviour of f

near the curve CS . For example, take a point p∗ where S(p∗) = −diag(0, 0, 1, 1, 1). If we

assume that p∗ is a smooth point of CS , we may assume that we can find three coordinates

(a, b, c) of CP4 = {p} transverse to CS so that

S(p) = −




a c

c b

1

1

1



. (6.24)

[p] belongs to YS if and only if ab = c2. The equation (6.20) is solved by

(x̃1, . . . , x̃5) =




ξ η

1

1

1


 , ξ2 = a, η2 = b, ξη = c. (6.25)

This is indeed the expected local behaviour. Namely, we found that the forgetful map (6.22)

is a double cover of YS ramified along the curve CS .

We confirmed that the space ỸS in (6.21) is the double cover of YS which we were

looking for. Note that we were able to obtain the target space ỸS by a completely classical

analysis in this dual model, since the gauge group is completely Higgsed. This construction

of ỸS is strikingly explicit compared to the one given in [16] based on the relative spectrum

of a sheaf of algebra over YS .

Smoothness of ỸS. Let us discuss the condition for smoothness of ỸS . In view of

the fact that it is a double cover of YS ramified over CS , with the local structure as

above, it is smooth if CS is a smooth submanifold of CP4. The curve CS is locally an

intersection of three hypersurfaces. To see this, take a point [p∗] ∈ CS and choose a

coordinate system such that S(p∗) = −diag(0, 0, 1, 1, 1). Then, CS can be defined by

∆11(p) = ∆12(p) = ∆22(p) = 0 in the region where the matrix S(p)345 = (Sij(p))3≤i,j≤5

has rank 3. Here ∆ij(p) is the determinant of the 4 × 4 obtained by deleting i-th raw

and j-the column of S(p). The curve CS is smooth if and only if the 5 × 3 matrix of the

differentials of these three equations has rank 3. The matrix is equal to (S11
k S12

k S22
k ) times

detS(p)345 6= 0. Therefore, the condition for the smoothness of the curve CS is

(D): If S(p∗) is of the form

(
02

∗3

)
, the 5× 3 matrix (S11

k S12
k S22

k ) has rank 3.

The condition (D) is also a necessary condition for the smoothness of ỸS . To see this, let us

recall that ỸS is defined by the free quotient (6.21). The number of variables is 5+20 = 25
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while the number of equations is 15 and the dimension of the group is 1 + 6 = 7. And the

difference 25 − 15 − 7 = 3 matches the dimension of ỸS . Thus, ỸS is smooth if and only

if the 25 × 15 matrix of differentials of the equations has rank 15. At the point p∗ in the

discussion above, and for x̃ given by (6.25) with ξ = η = 0, the matrix takes the form
(

020×3 ∗20×12

S11
k S12

k S22
k ∗5×12

)
. (6.26)

It has rank 15 only if the 5 × 3 part (S11
k S12

k S22
k ) has rank 3. In summary, (D) is the

condition for smoothness of ỸS .

This condition follows from the condition (C) for smoothness of X̃S . To see this,

suppose (D) fails. That is, there is some p∗ such that S(p∗) = −diag(0, 0, 1, 1, 1) but

(S11
k S12

k S22
k ) has rank 2 or less, i.e., there is some (α, β, γ) 6= (0, 0, 0) such that αS11

k +

βS22
k + γS12

k = 0 for all k. We can find (u1, u2) 6= (0, 0) and (v1, v2) 6= (0, 0) such that

α = u1v1, β = u2v2 and γ = u1v2 + u2v1. Then, u = (u1, u2, 0, 0, 0) and v = (v1, v2, 0, 0, 0)

represent a point of X̃S . Note that (Su, Sv) is annihilated by p∗ 6= 0, which means that

(Su, Sv) has rank 4 or less. I.e., (C) fails.

The converse also holds if we assume that the τ action on X̃S has no fixed point.

Suppose that (C) fails under that assumption. Then, there are linearly independent two

5-vectors u and v satisfying
∑

i,j S
ij
k uivj = 0 for all k such that (Su, Sv) has rank 4 or less.

That means that there is some p∗ that annihilates this 5 × 10 matrix. With a choice of

coordinates, we may assume u = (1, 0, 0, 0, 0) and v = (v1, 1, 0, 0, 0). That p∗ annihilates

(Su, Sv) means that the matrix S(p∗) is of the form in the set-up of (D). However, the

equation
∑

i,j S
ij
k uivj = 0 reads S11

k v1 + S12
k = 0, which means that (S11

k S12
k S22

k ) cannot

have rank 3. Thus, (D) fails.

To summarize, “X̃S is smooth” is equivalent to “ỸS is smooth and the τ action on X̃S

is fixed point free”. X̃S , XS and ỸS are all smooth under the condition (C).

The FI-theta parameters. Let us now carry out the promise concerning the FI-theta

parameters (r̃, θ̃). The Lie algebra of the gauge group is the direct sum of u(1) and

so(4), where α ∈ u(1), regarded as a real number, generates the one parameter subgroup

{[( eitα,14)]}t∈R. We denote by Fu(1) the u(1) component of the curvature. On a closed

worldsheet Σ, the flux
∫
Σ Fu(1) obeys a certain quantization condition. For the usual U(1)

gauge group the condition is that the flux can take all values of 2πZ. For the present gauge

group, it can take all values of πZ. For example, we may decompose Σ into two parts by a

circle S1 parametrized by t ∈ R/2πZ and consider the principal bundle determined by the

transition function along S1, given by [( e
it
2 , ht)], where ht is some SO(4)-valued function

such that ht+2π = −ht. Then, the flux for any connection of this bundle is ±π (the sign

depends on the orientation of Σ versus that of S1). Therefore, the theta term must be

of the form
∫
Σ

2θ̃
2πFu(1), rather than the usual

∫
Σ

θ̃
2πFu(1), in order to have the periodicity

θ̃ ≡ θ̃ + 2π. The corresponding twisted superpotential is

W̃tree = −2 t̃ σu(1), (6.27)

for t̃ = r̃ − iθ̃. The FI parameter r̃ enters into the D-term equation indeed as (6.19).
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Let us find the singular points in the parameter space, in order to find the

precise relation between (r̃, θ̃) and (r, θ). A maximal torus of the gauge group is

(U(1) × SO(2) × SO(2))/{(±1,±12,±12)} and we identify it as U(1)0 × U(1)1 × U(1)2,

where the element [(z, h1, h2)] of the former group is identified with the element (g0, g1, g2)

of the latter group by

g0 = z2, g1 = zh1, g2 = zh2. (6.28)

Here we abuse the notation: the rotation of R2 by an angle α is identified with the element

eiα ∈ U(1). The SO(4) Weyl group action (h1, h2) 7→ (h2, h1), (h
−1
1 , h−1

2 ) corresponds to

(g0, g1, g2) 7→ (g0, g2, g1), (g0, g0g
−1
1 , g0g

−1
2 ). (6.29)

By z2 = g0, the tree level twisted superpotential (6.27) is written as W̃tree = −t̃σ0. The

fields have the following charges under U(1)0 ×U(1)1 ×U(1)2:

p1 p2 p3 p4 p5︸ ︷︷ ︸ x̃
1 x̃2 x̃3 x̃4 x̃5︸ ︷︷ ︸ (sij)1≤i≤j≤5︸ ︷︷ ︸

(−1, 0, 0)
(−1,1,0)
(0,−1,0)
(−1,0,1)
(0,0,−1)

(1, 0, 0)
(6.30)

Writing down the effective twisted superpotential and extremizing it, we obtain the

equations determining the Coulomb branch,

(−σ0)5(−σ0 + σ1)
5(−σ0 + σ2)

5

(σ0)15
= − et̃,

(−σ1)5
(−σ0 + σ1)5

=
(−σ2)5

(−σ0 + σ2)5
= 1. (6.31)

The sign in − et̃ comes from integrating out the off diagonal components of the vector

multiplet, as in the πiσa shift (4.8) in section 4.2. We need to avoid solutions such

that σ1 = σ2 and σ0 = σ1 + σ2 at which the unbroken subgroup is bigger than the

maximal torus. By the second set of equations, we find σa = σ0
1+ωa

, with ω5
a = 1,

for a = 1, 2, where ω1 = ω±1
2 needs to be avoided. The Weyl group action (6.29) is

translated into (ω1, ω2) 7→ (ω2, ω1), (ω−1
1 , ω−1

2 ). The are four inequivalent possibilities,

(ω1, ω2) = ( e
2πi
5 , e

4πi
5 ), ( e−

2πi
5 , e

4πi
5 ), (1, e

2πi
5 ), (1, e

4πi
5 ). Correspondingly, t̃ has values

et̃ = −1, − 1, − 2−5(1 + e
4πi
5 )5, − 2−5(1 + e

2πi
5 )5. (6.32)

The Weyl group is completely broken at each of the four Coulomb branches. Therefore,

there are two copies of one-dimensional Coulomb branch at et̃ = −1, while there is one at

each of the other two values of et̃. Comparing it with (6.12), we find the relation between

t and t̃: it is et = 25 et̃, i.e.,

r = r̃ + 5 log 2, θ = θ̃. (6.33)

We have reproduced, in a very different way, the observation that et = −25 has a double

Coulomb branch.
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The low energy theory at r̃ ≫ 0. Nothing stops us from studying the low energy

behaviour of the model in the opposite regime r̃ ≫ 0. The D-term equation (6.19) requires

that s = (sij) is non-zero. This breaks the gauge group to SO(4). We have an SO(4) gauge

theory fibred over CP14 = {s}. The 5 quartets of this theory has mass matrix sij and

the nature of the low energy theory depends on its rank. Analysis of such a system has

been carried out in section 4.6, which can be applied here without modification. By the

supersymmetry breaking for the SO(4) theory with Neff ≤ 2, we find that the low energy

dynamics concentrates near the locus of CP14 where sij is of rank 2 or less. The low energy

description of the theory with Neff = 3 in terms of composite mesons tells us that, inside

the open subset of CP14 where s has rank at least 2, the theory reduces to the sigma model

whose target space is the locus of rank exactly 2. In the present case, we also have the

F-term constraints ∑

i,j

Sij
k sij = 0, k = 1, . . . , 5. (6.34)

Thus, the low energy theory is a simple non-linear sigma model whose target space is
{
[s] ∈ CP14

∣∣∣ rank s = 2, (6.34)
}
. (6.35)

To be precise, we may need to worry about the rank 1 locus. Here we simply assume

genericity of Sij
k so that there is no rank 1 solution to (6.34). This is equivalent to the

assumption that no u 6= 0 solves
∑

i,j S
ij
k uiuj = 0, i.e., the τ action on X̃S is free, which is

guaranteed by the condition (C). The space (6.35) is isomorphic to XS = X̃S/Z2 via the

correspondence sij ∝ (xixj) — compare (6.35) with (6.8). We have reproduced the low

energy theory of the original linear sigma model at r ≫ 0.

Summary. In the original (U(1) × O+(2))/Z2 theory, the O+(2) gauge symmetry is

completely Higgsed and the classical analysis suffices in the r ≫ 0 phase while it is entirely

unbroken and its strong quantum effect is essential in the r ≪ 0 phase. In the dual

(U(1)×SO(4))/Z2 theory, the SO(4) gauge symmetry is unbroken in the r ≫ 0 phase while

it is completely Higgsed in the r ≪ 0 phase. The exchange between Higgs/weak/classical

and confinement/strong/quantum is a typical feature of duality.

6.3 SO(2) and O−(2) versions

Purely from curiosity, we study the linear sigma model of section 6.1 in which the O+(2)

factor of the gauge group is replaced by SO(2) or O−(2).

SO(2). Let us consider the model with the gauge group (U(1) × SO(2))/{(±1,±12)} ∼=
U(1)1×U(1)2. The FI-theta parameters t1 and t2 of the two U(1) factors are independent

in this model. The D-term equations read

− |p|2 + |u|2 = r1, −|p|2 + |v|2 = r2, (6.36)

and the F-term equations remain the same as (6.6)–(6.7). The model has three classical

phases: (I) r1 > 0, r2 > 0, (II) r2 < 0, r1 > r2, and (III) r1 < 0, r1 < r2. The D-term

equations require u 6= 0 and v 6= 0 in Phase I, u 6= 0 and p 6= 0 in Phase II, and v 6= 0 and
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p 6= 0 in Phase III. The low energy theory in the respective phase is the sigma model with

the target space

XI =

{
(u, v) ∈ CP4 ×CP4

∣∣∣
∑

i,j

Sij
k uivj = 0 ∀k

}
,

XII =

{
(u, p) ∈ CP4 ×CP4

∣∣∣
∑

i,j

Sij
k p

kui = 0 ∀j
}
, (6.37)

XIII =

{
(v, p) ∈ CP4 ×CP4

∣∣∣
∑

i,j

Sij
k p

kvj = 0 ∀i
}
.

Note that XI = X̃S and XII
∼= XIII. Hodge diamond of RR ground states is

1
0 0

0 2 0
1 52 52 1
0 2 0
0 0
1

(6.38)

The quantum Kähler moduli space can be found by looking for Coulomb branch vacua.

Writing down the effective twisted superpotential and extremizing it, we obtain the vacuum

equations for σ1 and σ2, which read for z := σ2/σ1 as

et1 = −(1 + z)5, et2 = −(1 + z−1)5. (6.39)

This provides a parametric representation of the singular locus. We indeed see the three

phase boundaries: the I-II phase boundary corresponds to z → ∞ where et1 → ∞ and

et2 → −1, the I-III boundary corresponds to z → 0 where et2 → ∞ and et1 → −1, and
the II-III boundary corresponds to z → −1 where et1 → 0, et2 → 0 and et1−t2 → −1.

Let us look at the locus

r1 = r2 ≪ 0, and θ1 = θ2. (6.40)

It is on the classical II-III phase boundary but avoids the quantum phase boundary which

is the line on the opposite side θ1 − θ2 = π (mod 2πZ). The theory is regular and we may

apply our understanding of the low energy behaviour of the SO(2) gauge theory or its dual

O+(4) gauge theory. This tells us that the low energy theory is the orbifold conformal

field theory

ỸS/Z2, (6.41)

where ỸS is defined by (6.21) and Z2 is the symmetry associated with O+(4)/SO(4). Note

that the map f : ỸS → YS in (6.22) is the mathematical quotient with respect to this Z2.

We would like to make two remarks concerning the dual model with gauge group

(U(1) × O+(4))/{(±1,±14)}. The center of this group is U(1) and it may appear that

the model has just one Kähler parameter. This corresponds to the t1 = t2 subspace of

the original quantum Kähler moduli space. The missing exactly marginal (a, c) operator
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should come from the twisted sector with respect to the Z2
∼= O+(4)/SO(4). Indeed, this

must be the twist operator denoted by 1τ in the study of the (a, c) ring of the relevant

O+(4) theory in section 4.7. Another remark is about the local analysis of the dual in the

r̃ ≫ 0 phase. The difference from the SO(4) case occurs at the point where we use the low

energy description of the theory with Neff = 3 massless fundamentals: for SO(4) we had

one copy of the free theory of composite mesons but for O+(4) we have two copies. This

gives us a double cover of (6.35), and that must be the double cover X̃S of XS .

O
−
(2). Next, we consider the model with the gauge group (U(1)×O−(2))/{(±1,±12)} ∼=

(U(1)1 × U(1)2) ⋊ Z2(−1)Fs . This is a one parameter model, t1 = t2 = t, with the same

D- and F-term equations as in section 6.1. The difference is that the orbifold group is

the non-standard one. Accordingly the low energy theory is the non-standard orbifold: at

r ≫ 0 we have

X̃S/Z2(−1)Fs , (6.42)

and at r ≪ 0 we have

ỸS/Z2(−1)Fs (6.43)

Hodge diamond of RR ground states is

0
0 0

0 1 0
0 26 26 0
0 1 0
0 0
0

(6.44)

The singular points are et = −25, −(1+ e
2πi
5 )5 and −(1+ e

4πi
5 )5 as in (6.12) but this time,

there is only one copy of Coulomb branch at the first point as well as in the other two.

The dual model with gauge group (U(1) × O−(4))/{(±1,±14)} has no other ex-

actly marginal operator than the one that generates δt̃. The orbifold with respect to

O−(4)/SO(4) is opposite to that of O+(4)/SO(4) in the twisted NSNS sector, and we have

indeed seen in (4.51) that there is no twisted (a, c) ring element in the relevant O−(4)

theory. In the r̃ ≫ 0 phase, we find that the target space is (6.35), i.e. XS , rather than

the double cover X̃S , since the O−(4) theory with Neff = 3 massless fundamentals flows to

one copy of the free theory of composite mesons. It is not the standard sigma model as it

is obtained after the non-standard orbifold operated locally.

6.4 Rødland’s example — USp(2) versus USp(4)

The linear sigma model studied in [2] has gauge group (U(1)×USp(2))/{(±,±12)} ∼= U(2)

and the following matter fields, superpotential and twisted superpotential:

p1 · · · p7︸ ︷︷ ︸ x1 · · · x7︸ ︷︷ ︸
det−1 2

(6.45)

W =
7∑

i,j,k=1

Aij
k p

k[xixj ], (6.46)

W̃ = −t tr2σ. (6.47)
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Aij
k = −Aji

k are complex numbers which are generic in a suitable sense. The low energy the-

ory at r ≫ 0 is the non-linear sigma model whose target space is the complete intersection

of seven planes in the Grassmannian G(2, 7),

XA =

{
[x] ∈ G(2, 7)

∣∣∣
∑

i,j

Aij
k [xixj ] = 0 ∀k

}
. (6.48)

The low energy theory at r ≪ 0 is the non-linear sigma model whose target space is the

Pfaffian Calabi-Yau manifold,

YA =
{
[p] ∈ CP6

∣∣∣ rankA(p) = 4
}
, (6.49)

where Aij(p) =
∑

k A
ij
k p

k. This was demonstrated in [2] by finding and employing the low

energy description of USp(2) gauge theories with 1 or 3 massless fundamentals. Both XA

and YA have Hodge diamond

1
0 0

0 1 0
1 50 50 1
0 1 0
0 0
1

(6.50)

but they are topologically and birationally inequivalent. Finally, the theory is singular at

et = (1 + ω)7, (1 + ω2)7, (1 + ω3)7, (6.51)

where ω := e
2πi
7 . There is a single one dimensional Coulomb branch at each point. Note

that (6.51) differs from [2] by a sign. This is because [2] missed the possible effect of

integrating out the off-diagonal components of the vector multiplet discussed in section 4.2.

In the present case, the effect is the π shift of the theta angle of the central U(1), which

contributes to the sign change.6

As in the model including O(2), we may employ the duality for the USp(2) part, and

consider the dual linear sigma model. It has gauge group (U(1)×USp(4))/{(±,±14)} and
the following matter fields, superpotential and twisted superpotential:

p1 · · · p7︸ ︷︷ ︸ x̃
1 · · · x̃7︸ ︷︷ ︸ (aij)1≤i<j≤7︸ ︷︷ ︸

(−2,1) (−1,4) (2,1)
(6.52)

W =

7∑

i,j=1

aij [x̃
ix̃j ] +

7∑

i,j,k=1

Aij
k p

kaij , (6.53)

W̃ = −2 t̃ σu(1). (6.54)

At r̃ ≪ 0, the gauge group is completely Higgsed. We have F-term equations

[x̃ix̃j ] +Aij(p) = 0 ∀(i, j). (6.55)

6This effect was also missed in the first version of the present paper.
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The low energy theory is the non-linear sigma model whose target space is the free quotient

{
(p, x̃) ∈ C⊕7 ⊕ (C4)⊕7

∣∣∣ p 6= 0, (6.55)
}/C× × Sp(4,C)

{(±1,±14)}
. (6.56)

There is a map to YA given by (p, x̃) 7→ p. Indeed if (p, x̃) solves (6.55), then A(p) has rank

4. In fact it is an isomorphism. To see that, let us choose a point [p] ∈ YA and use the

GL(7,C) coordinate change to make A(p) into the form



J2

J2
03


 . (6.57)

A solution to (6.55) is given by

x̃ = (14,04×3) , (6.58)

and any solution is in its Sp(4,C) orbit. Thus, the fibre of the map at each point of YA
consists of a unique point. We have seen that (6.56) is another representation of the Pfaffian

variety YA. It is obtained in a completely classical manner in this dual model, while (6.49)

is obtained by a very non-trivial analysis of the quantum theory in the original model.

At r̃ ≫ 0, the D-term equation requires a 6= 0 and the gauge group is broken to USp(4).

This leaves us with a USp(4) gauge theory fibred over CP20 = {a}. The 7 quartets have

mass matrix aij and the nature of the theory depends on its rank. Analysis of such a system

has been carried out in section 5.6, which can be applied here without modification: by

the supersymmetry breaking for the USp(4) theory with Neff ≤ 3 and by the low energy

description of the theory with Neff = 5 in terms of composite mesons, we find that the

theory reduces at low energies to the sigma model on the locus of CP20 where aij has rank

2. (Note that a cannot have rank 0 as that would violate the D-term equation for the

U(1).) We also have the F-term constraints,

∑

i,j

Aij
k aij = 0, k = 1, . . . , 7. (6.59)

The low energy theory is a simple non-linear sigma model with the target space
{
[a] ∈ CP20

∣∣∣ rank a = 2, (6.59)
}
. (6.60)

This is isomorphic to XA under the correspondence aij ∝ [xixj ]. We have reproduced the

low energy theory of the original linear sigma model at r ≫ 0.

Finally, let us identify the singular points and find the relation to the FI-theta param-

eters of the original model. Identification and parametrization of the maximal torus can

be done in almost the same way as in the model including SO(4). One difference is that

the Weyl group is slightly bigger, (h1, h2) 7→ (h2, h1), (h
−1
1 , h2), (h1, h

−1
2 ), and there are

more forbidden loci: σ0 = 2σ1 and σ0 = 2σ2 in addition to σ1 = σ2 and σ0 = σ1 + σ2. The

equation determining the Coulomb branch is

(−σ0)7(−σ0 + σ1)
7(−σ0 + σ2)

7

(σ0)21
= − et̃,

(−σ1)7
(−σ0 + σ1)7

=
(−σ2)7

(−σ0 + σ2)7
= 1. (6.61)
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The sign in − et̃ comes from the effect of integrating out the off diagonal components of

the vector multiplet. We find σa = σ0
1+ωa

, with ω7
a = 1, for a = 1, 2, where we need to avoid

ω1 = 1 and ω2 = 1 in addition to ω1 = ω±1
2 . The Weyl group action becomes (ω1, ω2) 7→

(ω2, ω1), (ω
−1
1 , ω2), (ω1, ω

−1
2 ). There are three inequivalent possibilities (ω1, ω2) = (ω, ω2),

(ω, ω3) and (ω2, ω3) (again, ω := e
2πi
7 ), for which et̃ = (1 + ω3)7, (1 + ω2)7 and (1 + ω)7

respectively. The Weyl group is completely broken and there is a single Coulomb branch

at each of these points. Comparing with (6.51), we may set

r̃ = r, θ̃ = θ. (6.62)

To summarize, we obtained completely consistent results from the dual pair of linear

sigma models. The two play complementary rôles. If the gauge symmetry is unbroken and

a non-trivial quantum analysis is needed in one theory, the gauge group is Higgsed and

the result is obtained by purely classical analysis in the dual. This happens both at r ≫ 0

and r ≪ 0.

6.5 Intersection of quadrics

Let S1(x), . . . , SM (x) be quadratic polynomials of N variables x = (x1, . . . , xN ). We denote

by QS the intersection of M quadrics in CPN−1

S1(x) = · · · = SM (x) = 0. (6.63)

We assume that QS is a smooth submanifold of dimension N − 1−M .

A linear sigma model for QS is the U(1) gauge theory with fields p1, . . . , pM of charge

−2 and fields x1, . . . , xN of charge 1, with the superpotential

W = p1S1(x) + · · · pMSM (x). (6.64)

For large positive values of the FI parameter, r ≫ 0, the D-term equation forces x to have

non-zero values and the gauge group is completely broken. The theory reduces at low

energies to the non-linear sigma model whose target space is QS . For r ≪ 0, on the other

hand, p = (p1, . . . , pM ) must have non-zero values, and the U(1) gauge group is broken to

the Z2 subgroup. The low energy theory is the so called hybrid model. It is a Landau-

Ginzburg model on the Z2 orbibundle O(−1
2)

⊕N over CPM−1. The equation for Coulomb

branch vacua is

(−2σ)2M/σN = et. (6.65)

When N = 2M , where QS is a Calabi-Yau manifold, the axial U(1) R symmetry is anomaly

free and t is a parameter of the theory. There is a singular point at et = 2N . When

N > 2M , the theory is a flow from the sigma model on QS to the r ≪ 0 hybrid model

or one of the (N − 2M) Coulomb branch vacua. When N < 2M , the theory is a flow

from the r ≪ 0 hybrid model to the sigma model on QS or one of the (2M −N) Coulomb

branch vacua.
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Our main interest is the nature of the hybrid model at r ≪ 0. (See [28] for an earlier

study.) We may rewrite the superpotential (6.64) as

W =
N∑

i,j=1

Sij(p)xixj , (6.66)

where Sij(p) =
∑

k S
ij
k p

k for Sk(x) =
∑

i,j S
ij
k xixj . The model can be regarded as the Z2

Landau-Ginzburg orbifold of x with this quadratic superpotential fibred over P := CPM−1.

We denote by P(i) the locus of p ∈ P where S(p) has rank N− i. It has codimension i(i+1)
2 .

Over the generic locus P(0), the fields xi are all massive and can be integrated out. The Z2

orbifold is the standard one, so that the number of zero energy states in the x sector is two

resp. one if N is even resp. odd (section 2.2). Thus, we have a double resp. single cover

over P(0). Near the first degeneration locus P(1) (codimension 1), the result of section 2.3

can be applied: the double cover for the N even case is branched along P(1), while the cover

for the odd N case is of the form of the orbifold C/Z2 in the transverse direction to P(1).

Near the second degeneration locus P(2) (codimension 3), the result of section 2.4 and 3.3

can be applied: in the transverse direction with coordinate (a, b, c), the double cover for

the N even case is the conifold c2 − ab = d2 with θ = π where the Z2 deck transformation

is d→ ±d, while the cover for the N odd case is the Z2(−1)Fs orbifold thereof. We would

like to see how such local behaviour may be glued together and find a global picture. For

this purpose we turn to the dual model.

A key to find the dual is to rewrite the gauge group as

U(1) =
U(1)×O(1)

{(±1,±1)} , (6.67)

and apply the duality to the O(1) sector that appears in the r ≪ 0 hybrid model. Since we

have the standard Z2 orbifold with N fields that transform by sign flip, the O(1) is O+(1)

when N is even while it is O−(1) when N is odd (see Special Cases in section 3.3). For

even resp. odd N , the dual model has gauge group

U(1)× SO(N)

{(±1,±1N )} resp.
U(1)×O−(N)

{(±1,±1N )} , (6.68)

the matter fields
p1 · · · pM︸ ︷︷ ︸ x̃1 · · · x̃N︸ ︷︷ ︸ (sij)1≤i≤j≤N︸ ︷︷ ︸
(−2,1) (−1,N) (2,1)

(6.69)

and the superpotential

W =
N∑

j,j=1

sij(x̃
ix̃j) +

N∑

i,j=1

Sij(p)sij . (6.70)

The mod 2 theta angle for the SO(N) factor is turned on (as N − k = 0 (even)). We write

t̃u(1) = r̃u(1) − iθ̃u(1) for the FI-theta parameter for the U(1) factor.
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Let us be more precise about the theta angle. There is no subtlety for odd N since

the gauge group is simply isomorphic to U(1) × SO(N), as the element (−1,−1N ) iden-

tifies the two connected components. In particular, the theta parameter has the stan-

dard periodicity θ̃u(1) ≡ θ̃u(1) + 2π. For even N , the fundamental group of the gauge

group is isomorphic to Z ⊕ Z2 but not canonically so. For example, a loop associated to

(n, 0) ∈ Z ⊕ Z2 may be chosen as t ∈ R/2πZ 7→ gt = [( e
int
2 , ht)] where ht is represented

by h̃t = exp
(
nt
4 (e1e2 + · · ·+ eN−1eN )

)
]) in Spin(N), but we could equally well choose the

one where the sign of eaea+1 in the exponent is flipped. To be specific, let us define θ̃u(1)

so that the path-integral weight is given the phase e
in
2
θ̃
u(1) for the gauge bundle defined

by this particular transition function gt. It has the extended periodicity θ̃u(1) ≡ θ̃u(1) + 4π.

Recall that 2θ̃ in (6.27) also has the extended periodicity for the same reason. However,

unlike in that case, the theories with θ̃u(1) and θ̃u(1) + 2π are equivalent — the symmetry

τ ∈ O(N)/SO(N) makes the shift

θ̃u(1) −→ θ̃u(1) + 2π. (6.71)

To see this, note that conjugation by τ changes ht by multiplication of a non-contractible

loop in SO(N). For example, if τ is represented by diag(−1, 1, . . . , 1), then τ h̃tτ
−1 =

exp
(
nt
4 (−e1e2 + · · ·+ eN−1eN )

)
= exp

(
−nt

2 e1e2
)
h̃t. Since we have a non-trivial mod 2

theta angle for SO(N), the path-integral weight changes by (−1)n. This change is nothing

but the shift (6.71). In the model of (6.27), the symmetry τ ∈ O(4)/SO(4) exists but does

not shift θ̃u(1) = 2θ̃ since the mod 2 theta angle for SO(4) is turned off. Note that the

shift (6.71) is related to the ambiguity in the choice of isomorphism of the fundamental

group to Z⊕ Z2.

Let us now analyze the theory at r̃u(1) ≪ 0. The D- and F-term equations require p to

have non-zero values, and the gauge group is broken to SO(N) (even N) or O−(N) (odd

N). Integrating out the fields sij we obtain the constraints

(x̃ix̃j) + Sij(p) = 0 ∀(i, j). (6.72)

Suppose S(p) has rank at least N − 1 for all p 6= 0, i.e., P = P(0) ∪P(1), which would be

the case if dimP ≤ 2. Then, x̃ has rank at least N − 1 for every solution to (6.72). For

even N the residual gauge group SO(N) is completely broken at any solution to (6.72).

Therefore, the low energy theory is the sigma model whose target space is the free quotient

P̃S =
{
(p, x̃) ∈ CM ⊕ (CN )⊕N

∣∣∣ p 6= 0, (6.72)
}/C× × SO(N,C)

{(±1,±1N )} . (6.73)

The map (p, x̃) ∈ P̃S 7→ p ∈ P is a double cover that is branched along the degeneration lo-

cus P(1). This can be seen as in the argument to show that (6.22) is a ramified double cover.

Indeed, if S(p) = −diag(z, 1, . . . , 1), the solution to (6.72) is given by x̃ = diag(z̃, 1, . . . , 1)

with z = z̃2. For non-zero z, the two solutions with opposite signs of z̃ are distinct. P̃S

provides an explicit global realization of the branched double cover that is expected in the

local analysis of the original linear sigma model. For odd N , the residual gauge group
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O−(N) is completely broken at maximal rank solutions over P(0) but a Z2 subgroup re-

mains unbroken at corank 1 solutions over P(1). The low energy theory is the sigma model

on an orbifold

PS =
{
(p, x̃) ∈ CM ⊕ (CN )⊕N

∣∣∣ p 6= 0, (6.72)
}/C× ×O−(N,C)

{(±1,±1N )} . (6.74)

For S(p) = −diag(z, 1, . . . , 1) and x̃ = diag(z̃, 1, . . . , 1) with z = z̃2, the relevant unbroken

gauge group is O−(1) that acts on a single variable z̃ as z̃ → −z̃. Therefore, the orbifold is

the standard one C/Z2 in the direction transverse to P(1). Again, PS provides an explicit

global realization of the orbifold that is expected in the local analysis of the original linear

sigma model. In a general case, especially when P has dimension three or higher, P(i) with

i ≥ 2 are non-empty. At solutions to (6.72) over such higher degeneration locus, contin-

uous subgroups of the gauge group remain unbroken. In particular, the quotients (6.73)

and (6.74) are not smooth manifolds nor orbifolds, and we no longer have a sigma model

description of the low energy theory. But we do see what we have locally in the direction

transverse to P(i): for even resp. odd N it is the SO(i) resp. O−(i) gauge theory with i

massless fundamentals, which flows to a superconformal field theory with central charge

ĉ = i(i+1)
2 . The case i = 2 is indeed (orbifold of) the conifold at θ = π. It would be

interesting to understand the total system better, using the original and the dual models.

The model at r̃u(1) ≫ 0 can be analyzed as follows. The D-term equation requires

s 6= 0 and the gauge group is broken to SO(N) (even N) or O−(N) (odd N). By the

supersymmetry breaking for the theory with Neff ≤ N − 2 and the low energy description

of the theory with Neff = N − 1 in terms of the composite mesons, we find that the theory

reduces to the sigma model on the locus of s ∈ CP
N(N+1)

2 of corank N − 1, i.e., rank 1, so

that one may write

sij = xixj . (6.75)

We also have the F-term constraints
∑

ij

Sij
k sij = 0, k = 1, . . . ,M. (6.76)

Namely, we have the sigma model whose target space is the complete intersection of the

quadrics (6.63).

Finally, let us analyze the Coulomb branch vacua.

Even N . We use the following parametrization of the maximal torus of the gauge group;

U(1)× SO(2)1 × · · · × SO(2)N
2

{(±1,±12, . . . ,±12)}
∼= U(1)0 ×U(1)1 × · · · ×U(1)N

2
(6.77)

(z, h1, . . . , hN
2
) 7−→ (z2, zh1, . . . , zhN

2
).

For the theta parameter θ̃u(1) (period 4π) as defined in the paragraph including (6.71), the

tree level twisted superpotential on the Coulomb branch is

W̃tree = −t̃u(1)σu(1) + πi

N
2∑

a=1

(σso(2)a − σu(1)) = −t0σ0 + πi

N
2∑

a=1

σa. (6.78)
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Here we write σ0 = 2σu(1) and σa = σu(1) + σso(2)a following (6.77) and we put t0 :=
1
2 t̃u(1)+

N
2 πi (period 2πi). The πi terms in (6.78) come from the mod 2 theta angle for the

SO(N) gauge group. The effective twisted superpotential is

W̃eff=−
N
2

(
N
2 − 1

)

2
πiσ0 −M(−σ0)(log(−σ0)− 1)

−N
N
2∑

a=1

{
(−σ0 + σa)(log(−σ0 + σa)− 1) + (−σa)(log(−σa)− 1)

}

−N(N + 1)

2
σ0(log σ0 − 1)− t0σ0 + πi

N
2∑

a=1

σa, (6.79)

where the first term results from integrating out the off diagonal components of the vector

multiplet. The vacuum equations read

(−σ0)M
∏N

2
a=1(−σ0 + σa)

N

σ
N(N+1)

2
0

= (−1)
N
2 (N

2 −1)
2 et0 ,

σNa
(σ0 − σa)N

= −1 ∀a. (6.80)

Writing σa = σ0
(
1
2 + ua

)
(i.e., ua := σso(2)a/σ0), we see that each ua must solve

(
1

2
+ u

)N

+

(
1

2
− u
)N

= 0 (6.81)

and σ0 is then determined by

σ
M−N

2
0 (−1)M

N
2∏

a=1

(
1

2
− ua

)N

= (−1)
N
2 (N

2 −1)
2 et0 . (6.82)

The equation (6.81) has N
2 pairs of non-zero roots, and we must find solutions such that

ua 6= ±ub (a 6= b) modulo the SO(N) Weyl group action — permutations and sign flips

of ua’s preserving the product u1 · · ·uN
2
. There are two inequivalent solutions. When

N 6= 2M , the equation (6.82) for given ua’s has
∣∣M − N

2

∣∣ solutions for σ0. Thus, there are

total of |2M − N | solutions, matching with the result in the original linear sigma model.

When N = 2M , the equation (6.82) should be regarded as the one that determines the

location of singular points in the parameter space. Corresponding to the two solutions for

ua’s, we have two singular points, related by et0 → − et0 , i.e., t0 → t0 + πi. Thus our

one parameter family of theories cannot be the same as the one parameter family from the

original model which has one singular point ( et = 2N ). At this point, we recall that we

have a symmetry τ ∈ O(N)/SO(N) which shifts t̃u(1) by 2πi (6.71), that is, t0 → t0 + πi.

Thus, our dual family can be regarded as a double cover of the original family. A precise

covering map is given by

et = 2N

N
2∏

a=1

(
1 + e

πi(2a−1)
N

)2N
· e2t0 . (6.83)

This also relates t and t̃u(1) via e2t0 = et̃u(1) .
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Odd N . This case is more straightforward as the gauge group is simply isomorphic to

U(1) × SO(N). We denote the scalar components of the vector multuplet by σ for the

U(1) part and by σ1, . . . , σN−1
2

for the maximal torus of SO(N). The tree level twisted

superpotential is

W̃tree = −t̃u(1)σ + πi(σ1 + · · ·+ σN−1
2

). (6.84)

Again, the πi terms come from the mod 2 theta angle of the SO(N) gauge group. Com-

putation of the effective twisted superpotential is straightforward and the vacuum equa-

tion reads

(−2σ)2M (−σ)N ∏
N−1

2
a=1 (−σ + σa)

N (−σ − σa)N
(2σ)N(N+1)

= et̃u(1) ,
(−σ − σa)N
(−σ + σa)N

= 1 ∀a. (6.85)

We see that each za = σa/σ must solve the equation

(1 + z)N − (1− z)N = 0, (6.86)

and σ is then determined by

(−σ)2M−N22M−N(N+1)

N−1
2∏

a=1

(1− z2a)N = et̃u(1) . (6.87)

The equation (6.86) has one root at z = 0 and N−1
2 pairs of non-zero roots. We look for

solutions such that za 6= ±zb (a 6= b) and za 6= 0 modulo the SO(N) Weyl group action

— permutations and independent sign flips of za’s. There is a unique solution. Thus,

we find |2M − N | Coulomb branch vacua, matching with the result in the original linear

sigma model.

6.6 Equivalences of D-brane categories

As mentioned earlier, the present work is motivated by recent development in mathematics

concerning equivalences of derived categories of certain pairs of algebraic varieties. Such

categories are realized as the categories of B-branes in the supersymmetric non-linear sigma

models. If two varieties X and Y sits on a common quantum Kähler moduli space, it is

expected from the general principle of (2, 2) supersymmetry that X and Y have equivalent

derived categories. Our task was to promote the equivalences found in mathematics to

statements in quantum field theories. Here we summarize the relevant equivalences, give

some references, and make some comments.

The study of section 6.1 and 6.2 is directly related to the work [16] by Hosono and

Takagi. The relevant equivalence is

Db(XS) ∼= Db(ỸS). (6.88)

The proof is being done by the authors of [16].
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From the linear sigma model with gauge group (U(1) × SO(2))/{(±1,±12)} studied

in section 6.3, we have equivalences

Db(XII)
∼=ր ց∼=

Db(X̃S) Db
Z2
(ỸS)

∼=ց ր∼=
Db(XIII)

(6.89)

The two arrows on the left (i.e. those not involving the orbifold category Db
Z2
(ỸS)) as well

as the unwritten vertical arrow in the middle are already mentioned in [16]. They can be

promoted to the relations between N = 2 theories with boundaries [41].

From the linear sigma model with gauge group (U(1) × O−(2))/{(±1,±12)} studied

also in section 6.3, we have

Db
Z2(−1)Fs (X̃S) ∼= Db

Z2(−1)Fs (ỸS). (6.90)

We invented a notation Db
Z2(−1)Fs

(−) for the category of the non-standard Z2 orbifold, not

knowing the well accepted notation in mathematics.

The equivalence relevant for section 6.4 is

Db(XA) ∼= Db(YA). (6.91)

This was first pointed out by E. Witten as a consequence of the work [2]. Proofs are given

by Borisov-Caldararu [42] and Kuznetsov [43].

The study of section 6.5 is related to the following equivalences, found by Bondal-

Orlov [15, 22, 23]:

Db(QS) ∼= 〈CS ,O1, . . . ,ON−2M 〉 if N ≥ 2M,
〈
BN−2M , . . . ,B−1, D

b(QS)
〉 ∼= CS if N ≤ 2M ,

(6.92)

where CS is a category that corresponds to the linear sigma model at σu(1) = 0 for r ≪ 0.

For M ≤ 3, CS = Db(P̃S) for even N and CS = Db(PS) for odd N . Oi and B−j are

“exceptional objetcs” of the category on the other side of the equivalence. 〈−,−, . . . ,−〉
stands for “semi-orthogonal decomposition”. In fact, this equivalence for odd N was the

motivation to refine our understanding of Z2 orbifolds at an earlier stage, and the refinement

resulted in finding the O− duality (the earlier understanding gave us only the SO/O+

duality). Linear sigma models relevant for the equivalence for the case N = 2M were

studied earlier in [28].

A point of view that seems to underlie all of these equivalences is projective duality

and its categorical counterpart proposed by A. Kuznetsov, called Homological Projective

Duality [44]. Indeed, comparison of the presentation (6.15) of YS and (6.35) of XS suggests

projective duality. Note that these two presentations have been found in two linear sigma

models which are dual to each other. The same applies to (6.49) of YA and (6.60) of XA.

It would be interesting to see if there is a relation between the gauge theory duality and

projective duality at a more fundamental level.
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A Supersymmetric quantum mechanics with both superpotential and

twisted masses

We study the spectrum of supersymmetric ground states of the theory of two variables z

and x having the superpotential

W = zx2, (A.1)

and twisted masses associated with the symmetry

x 7−→ λ−1x, z 7−→ λ2z. (A.2)

That is, x and z have twisted masses −m̃ and 2m̃ respectively.

For the purpose of finding the ground states, we may only consider the zero mode

sector. The supercharges are given by

Q+ = ψ
x

+

∂

∂x
+ ψ

z

+

∂

∂z
−
(
2zxψx

− + x2ψz
− − m̃xψ

x

− + 2m̃zψ
z

−

)
(A.3)

Q− = ψ
x

−

∂

∂x
+ ψ

z

−

∂

∂z
+
(
2zxψx

+ + x2ψz
+ + m̃xψ

x

+ − 2m̃zψ
z

+

)
(A.4)

Q+ = −ψx
+

∂

∂x
− ψz

+

∂

∂z
−
(
2zxψ

x

− + x2ψ
z

− − m̃xψx
− + 2m̃zψz

−

)
(A.5)

Q− = −ψx
−

∂

∂x
− ψz

−

∂

∂z
+
(
2zxψ

x

+ + x2ψ
z

+ + m̃xψx
+ − 2m̃zψz

+

)
. (A.6)

Non-zero anticommutators are

{Q+, Q+} = {Q−, Q−} = H, (A.7)

{Q+, Q−} = m̃J, {Q−, Q+} = m̃J, (A.8)

where H and J are the Hamiltonian and the generator of (A.2) respectively,

H =− ∂2

∂x∂x
− ∂2

∂z∂z
+ |2zx|2 + |x2|2 + |m̃x|2 + |2m̃z|2 (A.9)

+
[(

2zψx
+ψ

x
− + 2xψx

+ψ
z
− + 2xψz

+ψ
x
−

)
+ h.c.

]
+
[(
−m̃ψx

+ψ
x

− + 2m̃ψz
+ψ

z

−

)
+ h.c.

]
,

J =−
(
x
∂

∂x
− x ∂

∂x
− ψx

+ψ
x
+ + ψx

−ψ
x

−

)
+ 2

(
z
∂

∂z
− z ∂

∂z
− ψz

+ψ
z
+ + ψz

−ψ
z

−

)
. (A.10)

The space of states can be chosen to be the space

H =
2⊕

p,q=0

Ω0,p(C2,∧qTC2) (A.11)
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of differential forms on C2 = {(x, z)} with values in polyvector fields. The fermions are

represented on it as

ψ
x

+ + ψ
x

− = dx∧, ψx
+ + ψx

− = ı

(
∂

∂x

)
,

ψx
+ − ψx

− = ı (dx) , ψ
x

+ − ψ
x

− =
∂

∂x
∧,

and similarly for ψz
± and ψ

z

±.

If we choose m̃ to be pure imaginary, m̃ + m̃ = 0, the operator Q = Q+ + Q− obey

the relation,

Q2 = 0, {Q,Q†} = 2H. (A.12)

In particular, there is a one to one correspondence between supersymmetric ground states

and Q-cohomology classes. Under the same condition, m̃+ m̃ = 0, Q is represented by the

operator Q = ∂ +Qhol on the space H in (A.11), where

Qhol = ı(dW )− m̃K∧, (A.13)

with dW = 2zxdx + x2dz and K = −x ∂
∂x

+ 2z ∂
∂z
. Using the standard argument, one

can show that Q-cohomology classes are in one to one correspondence with the Qhol-

cohomology classes where Qhol is regarded as the differential on the space of holomorphic

polyvector fields,

Hhol =
2⊕

q=0

Γhol(C
2,∧qTC2). (A.14)

Note that

Qhol(1) = −m̃
(
−x ∂

∂x
+ 2z

∂

∂z

)
,

Qhol

(
∂

∂x

)
= 2zx+ 2m̃z

∂

∂x
∧ ∂

∂z
, Qhol

(
∂

∂z

)
= x2 + m̃x

∂

∂x
∧ ∂

∂z
,

Qhol

(
∂

∂x
∧ ∂

∂z

)
= x

(
−x ∂

∂x
+ 2z

∂

∂z

)
.

It is easy to see that there is only one cohomology class, which is represented by

x+ m̃
∂

∂x
∧ ∂

∂z
. (A.15)

This proves that the system has a unique supersymmetric ground state.
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