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1 Introduction

Uncovering the origin of neutrino masses and mixing angles is one of the most important

problems in physics beyond the standard model (SM). The minimal scenario is simply to

add three right-handed neutrino fields to the SM and then write down all the new gauge

invariant terms in the Lagrangian. One class of new terms is a set of electroweak Yukawa

couplings of the right-handed neutrinos to the lepton doublets and the Higgs doublet, which

by themselves would lead to Dirac neutrino masses, putting neutrinos on par with the other

quarks and leptons in terms of mass generation. However, neutrinos have been observed to

be extremely light, with cosmological constraints requiring the sum of their masses to be

sub-eV. While this can be accommodated by having suitably tiny neutrino Yukawa coupling

constants, this ignores the likely truth that the anomalously small neutrino masses are an

indication of a different origin. The most obvious difference is revealed by recognizing

the second class of new Lagrangian terms: the bare Majorana masses for the gauge-singlet

right-handed neutrinos. In the see-saw limit where these Majorana masses M are far above

the electroweak scale v, the neutral lepton sector breaks up into a sub-sector of three very

light left-handed Majorana neutrinos of mass scale v2/M and a second sub-sector of three

very massive neutral leptons at the scale M .

This type-I see-saw scenario is economical, elegant, compelling, and extremely difficult

to test experimentally [1–5].1 The difficulties are that the favored scale for M is far above

the TeV scale being explored at the LHC, and even if the scale is brought down to a TeV

the heavy neutral fermions have highly suppressed gauge interactions and thus are difficult

to produce and detect. The type-II [9–14] and type-III [15] see-saw variations are more

testable because the required scalar triplet and fermion triplets, respectively, at least have

electroweak gauge interactions. But the favored see-saw scale is still far higher than a TeV.

Alternative neutrino mass generation schemes are worth exploring. One motivation is

that nature is not always minimal. For example, when Pauli introduced the neutrino to

solve the apparent energy conservation problem in beta decay, he also proposed that same

particle to perform the role now known to be played by the neutron in nuclear structure.

1Note that there is some region of parameter space which might be testable at colliders. See e.g. ref. [6–8].
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While minimal models will always, justifiably, attract the greater attention, we should

devote some effort to non-minimal models unless experimental results tell us not to bother.

On the origin of neutrino mass, experiment has yet to speak. Now, many non-minimal

neutrino mass models are also more testable than the see-saw models, so the new physics

they predict should be searched for. By constraining non-minimal models, or perhaps

ruling some of them out, we increase the circumstantial evidence in favor of the simpler

but less-testable schemes such as the type-I see-saw model. Of course, we could also find

to our surprise that one of the more involved theories is actually correct.

An important class of non-minimal theories are the radiative neutrino mass models. It

can be arranged for nonzero neutrino masses to first arise at loop level rather than at tree

level, and this may be a (partial) explanation for why neutrino masses are so small. The

first radiative neutrino mass models at one-loop level were proposed in refs. [16], at two-

loop order in refs. [14, 17, 18] and with three loops in ref. [19]. Three-loop models with large

couplings like the ones proposed in ref. [19–22] as well as two-loop models with new colored

states as proposed in ref. [23–25] are particularly interesting phenomenologically, because

they promise to be easier to test experimentally. Several authors tried to combine neutrino

mass generation with other unsolved problems of physics beyond the SM, e.g. the first

papers simultaneously addressing dark matter were refs. [19, 26, 27], and for baryogenesis

they were refs. [28–30]. The proposed models vastly differ in their complexity as well as

predictive power. In recent years, several groups systematically studied radiative neutrino

mass generation: e.g. one-loop radiative neutrino mass models [31, 32], simple models with

only two new particles [33, 34], classes of models with a discrete symmetry and a DM

candidate [35, 36], the use of effective operators of the type LLHH(H†H)n [37, 38] (where

L is a lepton doublet and H is the Higgs doublet) as well as a general classification in

terms of ∆L = 2 operators [39–41]. Radiative neutrino mass generation is certainly a

logical alternative to the see-saw procedure, and should be thoroughly explored.

The purpose of this paper is not only to propose another testable radiative neutrino

mass model at two-loop order, but also to exemplify that the new physics due to the exotic

particles and their interactions cannot be arbitrarily weak. We demonstrate that there

is a region of parameter space where the neutrino oscillation data can be accommodated

while simultaneously complying with constraints from the null observations of rare flavor-

changing processes and the absence of exotic particles in collider searches. In this specific

model, the exotic particles in the theory are two copies of a certain scalar leptoquark as well

as a color-octet Majorana fermion. When these heavy exotics are integrated out, a ∆L = 2

effective operator with flavor content LLQdcQdc is generated. The model can be tested

by performing high precision searches for lepton flavor-violating processes such as µ→ eγ,

µ→ eee, and µN → eN conversion, as well as through collider searches for the leptoquarks

and the colored exotic fermion, while the requirement to generate the correct neutrino

oscillation parameters (in particular, one neutrino must be heavier than the “atmospheric”

lower bound of 0.05 eV [42]) imposes an upper bound on the new physics scale.

The next section defines the new model and places it in the context of the “the-

ory space” of radiative neutrino mass models, using underlying effective operators as the

structuring principle. Section 3 then computes the neutrino masses and mixing angles.
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Constraints from flavor-violating processes induced by the couplings required by the gener-

ation of neutrino mass are examined in section 4, while the remaining ones and neutrinoless

double beta-decay, which both give no constraints to the parameters relevant to the gener-

ation of neutrino mass, are discussed in section 5. Then collider constraints are discussed in

section 6. Finally, we discuss naturalness in the context of this model and give the preferred

region of parameter space in section 7. A publicly available Mathematica code, denoted

as ANT,2 for calculating relevant loop integrals is described in section 8. In section 9, we

summarize all the constraints and draw the conclusions.

2 The model

A very useful organizing principle for radiative Majorana neutrino mass models is the

effective operator analysis pioneered by Babu and Leung (BL) [39], and followed-up by

de Gouvêa and Jenkins (GJ) [40]. These operators are invariant under the SM gauge

group and respect baryon-number conservation, but violate lepton-number conservation

by two units. They are constructed from the SM quark and lepton multiplets (with no

right-handed neutrinos) and a single Higgs doublet.

Such operators exist at odd mass-dimension. At dimension-5, there is a unique op-

erator (up to family replication): the Weinberg operator, denoted O1 ≡ LLHH in an

efficient notation. The LL structure is shorthand for (LL)cLL. This non-renormalizable

operator may be “opened up” — derived from an underlying renormalizable or ultra-violet

(UV) complete theory — in three minimal ways at tree-level. These three possibilities

are precisely the type-I, -II and -III see-saw models. The advantage of the effective op-

erator perspective is that it encourages you to systematically construct all sensible UV

completions, so no possibilities are missed.

This technique can be extended to radiative neutrino mass models. All the ∆L = 2

effective operators of dimension-7 and higher that are not of the form O1(HH)n necessarily

contain some fields different from left-handed neutrinos and neutral Higgs bosons. To turn

such operators into self-energy diagrams for neutrinos, those other particles have to be

closed off through loops. Therefore the study of how such operators can generate neutrino

masses is the study of radiative neutrino mass models. The see-saw models exist at the

tree-level end of an extensive family of Majorana neutrino-mass models founded upon SM

∆L = 2 operators. Some of the present authors used this approach in [41] to systematically

classify the neutrino self-energy diagram topologies and the exotic scalars and fermions

they contain. That work builds on the analyses of BL and GJ in providing a guide to

the construction of all radiative neutrino mass models that obey certain conditions: the

gauge group is that of the SM and no larger, the left-handed neutrinos are Majorana,

right-handed neutrinos are absent, there is a single Higgs doublet, and the exotic particles

are scalars and fermions only.

In this paper we use the foundations just described to construct a new 2-loop neutrino-

mass model based on the operator

O11b ≡ LiLjQkdcQldcεikεjl , (2.1)

2It can be downloaded from http://ant.hepforge.org.
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where we adopt the notation of [39–41]. The label 11b tells us that this operator is number

11 in the BL list, and the i, j, k, l = 1, 2 SU(2) index structure is of type b. Written with

explicit Lorentz structure it is

O11b ≡ (LL)ciLjL (QL)ck(dR)c (QL)cl(dR)c εik εjl = (LL)ciLjL dRQ
k
L dRQ

l
L εik εjl . (2.2)

Of course it is understood that there is a set of such operators because of the family

structure of quarks and leptons.

We now use the procedure of [41] to construct an underlying theory. Table IV of [41]

tells us to look at figure 10 for completions involving scalars only, and figures 14 B-D for

completions using both scalars and fermions. We choose the latter option, partly because

the existing well-studied radiative neutrino mass models use exotic scalars exclusively, and

so it is interesting to examine a different possibility. The text discussing figure 14 then

informs us that diagrams B, C and D are applicable to exotic vector-like Dirac fermions,

while only the diagrams in D allow the fermion to be Majorana. We choose the Majorana

option, which limits us to diagram D1 and D2, from which we select D2. Making the only

allowed identifications of the fermion lines with the fields in O11b, we arrive at almost a

unique model. The remaining choices are the weak isospin assignments of the scalar and

Majorana fermion, and the color of the Majorana fermion.

We choose the exotic scalar and fermion multiplets to be, respectively,

φ ∼ (3∗, 1, 1/3), fL ∼ (8, 1, 0) , (2.3)

where the first entry is color, the second weak isospin and the third hypercharge (normalized

so that electric charge Q = IL + Y ). We shall see shortly that two copies of φ are required

to produce two neutrino mass eigenvalues of appropriate magnitude, while one copy of f

suffices. In section 3 we shall see that the model with three copies of φ, which produces

three neutrino masses, is disfavored by constraints from flavor physics.

The Yukawa couplings of these exotics to SM fields and the various bare masses are

given in

−∆L =

(
λLQijα L

c
i Qj φα + λdfiα di f φ

∗
α +

1

2
mf f

c
f +H.c.

)
+m2

φα φ
†
α φα (2.4a)

−
(
λeuijα e

c
i uj φα +H.c.

)
, (2.4b)

where i, j = 1, 2, 3 are quark-lepton family indices, α = a, b denotes the two copies of φ,

and chirality labels and gauge indices have been suppressed to reduce clutter. Note that

the φ’s are scalar leptoquarks, and the choice of isospin singlet over triplet is made for

simplicity. The fermion f can be either a color singlet or octet, with the latter chosen to

prevent it having the quantum numbers of a right-handed neutrino. The bare Majorana

mass mf must be nonzero for this Lagrangian to be ∆L = 2 and thus capable of inducing

Majorana masses for the neutrinos.

Besides the SM gauge symmetry group, we have to demand baryon-number conserva-

tion, in order to forbid the operators λQQijα QiQ
c
j φα and λudijα ui d

c
j φα, which induce proton

– 4 –
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Figure 1. The neutrino self-energy Feynman diagram. Note that the color-octet fermion f is

Majorana and therefore we do not add an arrow to the line.

decay, as discussed in e.g. refs. [43, 44]. Applying the discussion in [44], we find the follow-

ing estimates for proton decay. If φα couples to the first generation of quarks directly via

the couplings λud, there is a tree-level contribution to the proton decay channel p→ π0e+.

The decay rate can be estimated to be

Γ ∼ O

(
|λud11αλ

LQ,eu
11α |2M5

p

m4
φα

)
, (2.5)

which leads to a strong upper bound on the product of the couplings to the first generation

of quarks |λud11αλ11α| .
(
mφα/1016 GeV

)2
. If φα does not couple to the first generation

directly, there is a loop-level contribution to the proton decay channel p → K+ν̄ leading

to a partial decay width

Γ ∼
∑
m

|λud33αλ
LQ,eu
m3α |2M5

p g
8

m4
φα

(
|VubVtdVts|MbM`m

M2
t

ln

(
Mt

Mb

)
ln

(
Mt

M`m

))2

, (2.6)

where g denotes the electroweak gauge coupling constant, Mb (Mt) the bottom (top) mass

and M`m the mass of the charged lepton `m. This translates into a strong upper bound on

λud33α. Similar bounds can be derived for the couplings λQQijα . Therefore, it makes sense to

forbid these couplings by imposing baryon-number conservation.

In the following, we will perform all calculations in the full theory for simplicity using

dimensional regularization in the MS scheme.3

3 Neutrino masses

The neutrino self-energy Feynman diagram depicted in figure 1 leads to the Majorana

neutrino mass matrix

(Mν)ij = 4
mf

(2π)8

3∑
k,l=1

3∑
r,s=1

Nφ∑
α,β=1

(
λLQikαλ

df
lαVkr

)
(mdrIrsαβmds)

(
λLQjlβλ

df
kβVls

)
, (3.1)

3As there is no manifest decoupling, a more precise treatment would require an explicit decoupling of

heavy particles at their given mass thresholds in order to be able to resum the logarithms. See appendix D

for some comments on the treatment of neutrino masses in this approach.

– 5 –
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where 4 is a color factor, Nφ is the number of leptoquarks φα, the integral Iijαβ is defined as

Iijαβ ≡
∫
d4p

∫
d4q

1

p2 −m2
di

1

p2 −m2
φα

1

q2 −m2
dj

1

q2 −m2
φβ

1

(p− q)2 −m2
f

, (3.2)

and mdi denote the d-, s- and b-quark masses for i = 1, 2, 3, respectively. Note that this is

the exact loop integral, using the full propagators for the massive fermions, with the fermion

mass factors in the numerator of eq. (3.1) arising from the chiral projection operators at

the vertices. The matrix Mν corresponds to the effective term (νL)cMννL + νLM
∗
ν (νL)c.

For what follows it will be convenient to rewrite eq. (3.2) in terms of the dimension-

less parameters

ri ≡
m2
di

m2
f

and tα ≡
m2
φα

m2
f

. (3.3)

Specifically, factoring out m2
f and rescaling the momenta we have:

Iijαβ =
1

m2
f

∫
d4p

∫
d4q

1

p2 − ri
1

p2 − tα
1

q2 − rj
1

q2 − tβ
1

(p− q)2 − 1
. (3.4)

In appendix B we exactly evaluate this integral in general, and in the situation where the

quark masses are much smaller than the leptoquark φ and color-octet fermion f masses —

specifically where ri/j → 0.

We now make some useful approximations. First, since the quark masses are much

smaller than those of the leptoquark φ and color-octet fermion f , they may be neglected

in the denominator. This is equivalent to treating the internal quark lines in the mass-

insertion approximation. As mentioned, this case is evaluated in appendix B and is denoted

Iαβ ≡ lim
ri/j→0

Iijαβ =
1

m2
f

∫
d4p

∫
d4q

1

p2q2

1

p2 − tα
1

q2 − tβ
1

(p− q)2 − 1
. (3.5)

Also, we only consider the parameter space region where the b-quark mass dominates the

numerator, so that the d- and s-quark masses may be put to zero. This requires the

Yukawa couplings λLQλdf to not be strongly hierarchical in the sense of being able to

compensate for the hierarchy in the quark masses. So, the formula for the neutrino mass

matrix simplifies to

(Mν)ij ' 4
mfm

2
bV

2
tb

(2π)8

Nφ∑
α,β=1

(
λLQi3αλ

df
3α

)
(Iαβ)

(
λLQj3βλ

df
3β

)
. (3.6)

Equation 3.6 may be simply re-expressed in matrix notation as

Mν ' const.× ΛIΛT , (3.7)

where

Λiα ≡ λLQi3αλ
df
3α and I ≡ (Iαβ) . (3.8)

If there were only one leptoquark flavor, I would be just a number and Λ a 3×1 column vec-

tor. The neutrino mass matrix would then be of the form of an outer product of a column

– 6 –
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vector with its transpose, and hence of rank one. With the d- and s-quark masses switched

back on, the exact neutrino mass matrix of eq. (3.1) is (in general) rank-three, but the two

smallest eigenvalues are generally too small to fit the neutrino oscillation data.4 The ne-

cessity of two sufficiently large neutrino mass eigenvalues therefore requires two leptoquark

flavors to exist. In that case the third eigenvalue is extremely small and for all practical

purposes can be set to zero. Because we choose to adopt the natural parameter space regime

where the bottom-quark mass dominates the neutrino mass-matrix formula, from now on

we assume that there are only couplings to the third generation in the flavor basis, with the

only mixing coming from the SM down-type Yukawa couplings. For most calculations the

CKM induced couplings to the first two generations of down-type quarks can be neglected.

Hence, we do not discuss the effects of the CKM mixing except in section 5. Given that the

smallest neutrino mass almost vanishes, we know that the largest of the neutrino masses is

just the square root of the “atmospheric” squared mass difference, namely about 0.05 eV.

The new physics in our model must be sufficiently strong to produce this eigenvalue.

It is convenient to solve eq. (3.6) for the 3 × 2 matrix Λ, which can be easily done

through a Casas-Ibarra procedure [45]. One obtains

Λiα =
3∑

j,k=1

2∑
β=1

(2π)4

2Vtbmb
√
mf

(V ∗ν )ij

(
M̂

1
2
ν

)
jk
Okβ

(
Î−

1
2S
)
βα

, (3.9)

where Vν and S diagonalize the neutrino mass matrix,

M̂ν = V T
ν MνVν , (3.10)

and the matrix of integrals I,

Î = ST IS , (3.11)

respectively, with Î being a real and positive diagonal matrix. The leptonic mixing or

PMNS matrix is defined by VPMNS = V †e Vν . In the case of a normal [inverted] mass

ordering, the first [third] neutrino is massless, i.e. the (1,1) [(3,3)] element of M̂ν vanishes

and the 2-3 [1-2] sub-block of the matrix O is given by a general complex orthogonal matrix,

while the first [third] row of O is arbitrary. In order to understand the flavor structure of

the neutrino mass matrix as well as the bounds on the leptoquark masses in more detail, we

have to study the flavor structure of the matrix of integrals I, which demands a hierarchy

in Λ in order to explain a small hierarchy in the neutrino masses.

3.1 Flavor structure of the matrix of integrals I

The main feature of I we wish to demonstrate here is that the matrix develops a hierarchy

in its eigenvalues. We will discuss the case with two leptoquarks in detail and generalize

it in the end to an arbitrary number of leptoquarks. This hierarchy emerges for a wide

range of values of t1 and t2 (where 1 and 2 distinguish the two leptoquarks as defined in

eq. (3.3)), however it does not have a uniform origin. Firstly if one of the leptoquarks and

4As stated earlier, we do not consider the unnatural possibility of a strong hierarchy in the Λ values that

just happens to offset md � ms � mb.
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the octet fermion are much heavier than the other leptoquark, without loss of generality

we can take t1 → 0 and leave t2 constant. One can check using the analytic expression

in appendix B that both I11 and I12 = I21 diverge, the former doing so faster, whilst I22

remains constant. Accordingly the matrix I becomes singular and thus a hierarchy develops

in its eigenvalues. The origin of the hierarchy in this limit is relatively straightforward.

Sending t1 → 0 is equivalent to sending the corresponding leptoquark mass to the mass of

the down-type quark that appears in the same loop. In the limit that the two masses are

equal a Landau singularity appears and the amplitude associated with the diagram becomes

IR divergent. For definiteness, we give an explicit description assuming that t1 � t2 and

therefore I11 � I12 � I22:

I ≈ I11

(
1 ε

. 0

)
with ε ≡ I12

I11
(3.12)

neglecting the small I22 and we obtain for the inverse square root of the matrix I,

I−
1
2 ≡ Î−

1
2S = I

− 1
2

11

(
−i i

ε

1 ε

)
. (3.13)

Through eq. (3.9), this expression feeds into the determination of the required Yukawa cou-

plings Λ. Note that the flavor structure above implies that the mixing from the matrix I is

small, so the eventual neutrino mixing is mainly determined by the Yukawa couplings in Λ.

At the other end of parameter space, consider the case when t1 ' t2. It is easy to

check using the analytic expressions in appendix B that Iαβ shows a weak dependence on

the leptoquark masses. In particular,∣∣∣∣∣ t1 − t2t2

[
∂I12

∂t1

]
t1=t2

∣∣∣∣∣� |I22| . (3.14)

As the integral is symmetric in the leptoquark masses, we can expand I as follows

I ≈ I22

(
1 + 2ε 1 + ε

. 1

)
with ε ≡ t1 − t2

t2

∂I12
∂t1

∣∣∣
t1=t2

I22
. (3.15)

Expanding the ratio of the eigenvalues results in a quadratic hierarchy in ε, given by

ε2/4+O(ε3). This shows that there is a hierarchy in the matrix I for t1 ' t2 as well. Using

this expansion, we obtain a simple expression for the square root of the matrix I,

I−
1
2 ≡ Î−

1
2S = I

− 1
2

22

(
− i
|ε| −

i|ε|
8

i
|ε| − i−

3 i|ε|
8

1
2

1
2 (1 + |ε|)

)
+O(ε2) . (3.16)

Note that the leading contribution, which sets the scale of the couplings Λ, is entirely

determined by the first row of I−
1
2 .

Having understood these two limiting cases, we now draw our attention to the general

case, which we analyze numerically. As the absolute mass scale of the integral can be

– 8 –
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Figure 2. Contour plot of the hierarchy log10 λ1/λ2 in the eigenvalues λ1,2 of the matrix I as a

function of t1 and t2 on a logarithmic scale.

factored out, we see that the hierarchy of the eigenvalues can only depend on the two

ratios of masses tα. Hence, we show the hierarchy of the eigenvalues in the contour plot in

figure 2. The mixing angle of the integral matrix is maximal (±π/2) for the degenerate case,

vanishes for the hierarchical case and can be interpolated between those two limiting cases.

The generalization to more generations of leptoquarks is straightforward by grouping

the leptoquark masses with a similar mass scale. There is a large hierarchy between the

blocks with similar masses due to the mentioned Landau singularity. Additionally, there

is a hierarchy between the integrals involving similar leptoquark masses as discussed for

the degenerate leptoquark mass case. So if there are three copies of leptoquarks, large

hierarchies among the Yukawa couplings Λ = λLQλdf are required to compensate for large

hierarchies among the three eigenvalues of the matrix of integral I, which then induces

flavor-changing processes that exceed the current limits.

3.2 Understanding the neutrino flavor structure

We can use the approximations from the previous subsection and obtain analytic expres-

sions for the leading order contribution to the neutrino mass matrix.

3.2.1 Normal mass ordering

As mentioned above, the 2 − 3 block of the matrix O is given by a complex orthogonal

matrix parameterized by the complex angle θ:

O =

(
cos θ − sin θ

sin θ cos θ

)
. (3.17)

Consider the expression
(
M̂

1
2
ν

)
jk
Okβ

(
I−

1
2

)
βα

which appears in eq. (3.9). In the case of a

strong normal hierarchy with m1 = 0, the first row vanishes and the resulting leading order

approximation to the columns of Λ are given by a linear combination of the second and

third column of V ∗ν .
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We discuss the different limits in turn starting with the strongly hierarchical leptoquark

masses, namely t1 � t2. Here, the leading order contribution is given by

(
M̂

1
2
ν

)
jk

Okβ

(
I−

1
2

)
βα
' I−

1
2

11

 0 0

−i√m2 e
−iθ i

√
m2

ε

(
cos θ + iε2 sin θ

)
√
m3 e

−iθ
√
m3

ε

(
ε2 cos θ + i sin θ

)
 . (3.18)

Similarly, in the case of degenerate leptoquark masses, t1 ' t2, the leading order

contribution results in

(
M̂

1
2
ν

)
jk

Okβ

(
I−

1
2

)
βα
' I−

1
2

22

 0 0

− i
√
m2 cos θ
|ε|

i
√
m2 cos θ
|ε|

− i
√
m3 sin θ
|ε|

i
√
m3 sin θ
|ε|

 . (3.19)

Note that a non-vanishing mixing angle θ can lead to substantially larger couplings because

m2
2 = ∆m2

21 � ∆m2
31 = m2

3.

3.2.2 Inverted mass ordering

In the case of inverted mass ordering, the 1−2 block of the matrix O is given by a complex

orthogonal matrix. Following the discussion for normal mass ordering, we consider the

expression
(
M̂

1
2
ν

)
jk
Okβ

(
I−

1
2

)
βα

. In the case of a strong inverted hierarchy with m3 = 0,

the third row vanishes and the resulting leading order approximation to the columns of Λ

are given by a linear combination of the first and second columns of V ∗ν .

In the limit of a large hierarchy among the leptoquark masses, t1 � t2, the leading

order contribution is given by

(
M̂

1
2
ν

)
jk

Okβ

(
I−

1
2

)
βα
' I−

1
2

11

−i
√
m1 e

−iθ i
√
m1

ε

(
cos θ + iε2 sin θ

)
√
m2 e

−iθ
√
m2

ε

(
ε2 cos θ + i sin θ

)
0 0

 . (3.20)

In the case of quasi-degenerate leptoquark masses, the expression becomes

(
M̂

1
2
ν

)
jk

Okβ

(
I−

1
2

)
βα
' I−

1
2

22

−
i
√
m1 cos(θ)
|ε|

i
√
m1 cos(θ)
|ε|

− i
√
m2 sin(θ)
|ε|

i
√
m2 sin(θ)
|ε|

0 0

 . (3.21)

4 Constraints from flavor physics relevant to neutrino mass generation

The Lagrangian in eq. (2.4) violates the family lepton numbers and the total lepton num-

ber explicitly. Thus we expect rare processes, such as µ → eγ, to place limits on the

model parameters. Many of these processes proceed through one loop Feynman diagrams

and the associated amplitudes can be reduced into Passarino-Veltman integrals [46]. For

the convenience of the reader and for future reference, we have compiled our results in

appendix C and made a Mathematica package denoted as ANT publicly available, which is

briefly introduced in section 8.
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In this section, we restrict ourselves to the contributions which are required by the

generation of neutrino mass, i.e. those in eq. (2.4a). For the coupling λeu in eq. (2.4b), which

does not enter the neutrino mass formula, we only give an estimation of the constraints in

section 5. However, we compiled some of the most relevant full expressions in appendix A.

We extended the FeynRules [47] SM implementation to include the new particles and used

FeynArts [48] as well as FormCalc [49] to obtain analytical results for the different processes.

In this work, we fix the mixing angles and mass-squared differences to the experimental

best fit values (v1.1) of the NuFIT collaboration [50]5

sin2 θ12 = 0.306 , ∆m2
21 = 7.45× 10−5 eV2 ,

sin2 θ13 = 0.0231 , ∆m2
31 = 2.421× 10−3 eV2(N) , (4.1)

sin2 θ23 = 0.437 , ∆m2
32 = −2.410× 10−3 eV2(I) .

Furthermore we set the lightest neutrino mass to zero and assume vanishing CP phases in

the PMNS matrix, i.e. δ = ϕ1 = ϕ2 = 0 as well as a vanishing mixing in the matrix O

in the Casas-Ibarra-type parameterization of the Yukawa couplings Λ. We expect stronger

bounds for non-vanishing CP phases or non-vanishing mixing in the matrix O. We leave

the discussion of non-vanishing CP phases in the PMNS matrix as well as a non-vanishing

mixing in O for future work. Currently there are no bounds on the Yukawa couplings

λdf3α and, for simplicity, we will conservatively set them to a rather large value of 1 in this

work. A detailed study would require each λdf3α to be varied separately. However simple

arguments are already enough to understand the qualitative behavior. The neutrino mass

quadratically depends on the combination Λiα = λLQi3αλ
df
3α and thus a change in the coupling

λdf3α by a factor ξ has to be compensated by a factor ξ−1 in the coupling λLQi3α in order to

leave the neutrino mass matrix unchanged. The most important flavor-changing processes

turn out to be the LFV decays µ→ eγ, µ→ eee as well as µ↔ e conversion in nuclei, which

all depend on λLQi3α. The dominant contributions to the amplitudes of µ→ eee and µ↔ e

conversion in nuclei originate from penguin diagrams which are proportional to λLQ23αλ
LQ∗
13α .

Similarly the amplitude of µ → eγ is proportional to λLQ23αλ
LQ∗
13α . Hence a decrease of λdf3α

by a factor of ξ leads to an enhancement of the relevant branching ratios by a factor of

about ξ−4 and consequently a stronger constraint.

4.1 Radiative lepton flavor violating decays l−i → l−j γ

The first constraints considered are those arising from lepton flavor violating (LFV) pro-

cesses of the form l−i → l−j γ, such as µ → eγ, which are shown in figure 3. From [53]

and the Lagrangian in eq. (2.4), the amplitude for such processes in this model can be

written as

M(li → ljγ) = eε∗µū(pj)iσ
µνqν(σLijPL + σRijPR)u(pi) , (4.2)

where e is the electric charge, PL,R ≡ 1
2 (1∓ γ5) are the projection operators and the

5See [51, 52] for other global fits to the neutrino oscillation data.
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li lj
t

φα γ

Figure 3. Lepton-flavor violating rare decays. The photon can be attached to any of the four lines.

coefficients6 σL,R are given by

σLij =
mli

16π2

2∑
m=1

λLQi3mλ
LQ†
j3m

m2
φm

F (t3m) , σRij =
mlj

16π2

2∑
m=1

λLQi3mλ
LQ†
j3m

m2
φm

F (t3m) , (4.3)

where the mass ratio t3m = m2
t /m

2
φm

and the loop function F is defined as

F (t3m) =
1 + 4t3m − 5t23m + 2t3m(2 + t3m) ln t3m

4(t3m − 1)4
. (4.4)

Then, the resulting partial decay width of li → ljγ is

Γ(li → ljγ) =
(m2

li
−m2

lj
)3e2

(
|σL|2 + |σR|2

)
16πm3

li

. (4.5)

A comparison to the dominant tree-level decay l−i → l−j νiν̄j , neglecting the final state

lepton mass, results in a good analytic estimate of the branching ratio,

Br(li → ljγ) '
3s2
W

8π3α

(
2∑

m=1

λLQi3mλ
LQ†
j3m

m2
W

m2
φm

F (t3m)

)2

(4.6)

with s2
W = sin2 θW , which captures the main dependence on the leptoquark masses m2

φm

and couplings λLQi3m. In the numerical evaluation, we use the full expression of the partial

decay width and the experimentally measured total decay width.

Here we present the contour plots of the branching ratio of µ→ eγ at mf = 1 TeV and

mf = 10 TeV in figure 4a and figure 4b. As expected, the region where t1 ' t2 is excluded,

because the large hierarchy in the integral matrix I needs to be compensated by a large

hierarchy in the Yukawa couplings Λ, which then leads to a large decay width for µ→ eγ.

For the same mf , the hierarchy gets larger in the third quadrant when leptoquark masses

get smaller as shown in figure 2, which leads to a wider exclusion region. For the same t1
and t2, the branching ratio in the first quadrant scales as m−1

f when t1 ' t2 � 1. Thus

the exclusion region in the first quadrant is narrower when mf gets larger. In the third

quadrant where t1 ' t2 � 1, however, the branching ratio scales as m3
f lnm2

f for fixed t1
and t2. So the exclusion region gets wider when mf gets larger. The results for τ → eγ

and τ → µγ at mf = 1 TeV are shown in figure 4c and figure 4d respectively, which are

similar but less stringent than the constraints from µ→ eγ.

6The full expressions for σL,R can be found in appendix A.
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(a) log10 Br(µ→ eγ) for mf = 1 TeV (b) log10 Br(µ→ eγ) for mf = 10 TeV

(c) log10 Br(τ → eγ) for mf = 1 TeV (d) log10 Br(τ → µγ) for mf = 1 TeV

Figure 4. Contour plots of the branching ratio in µ→ eγ at mf = 1 TeV (top left), mf = 10 TeV

(top right), τ → eγ at mf = 1 TeV (bottom left) and τ → µγ at mf = 1 TeV (bottom right).

The current exclusion region at Br(µ→ eγ) < 5.7× 10−13 [54] as well as Br(τ → eγ) < 3.3× 10−8

and Br(τ → µγ) < 4.4× 10−8 [55] at 90% C.L. are plotted in red. The sensitivity of the proposed

upgrade of MEG is 6 × 10−14 [56] and it is shown as a dashed black line. The Yukawa couplings

λdf3α are set to 1.

4.2 Anomalous magnetic moment

In terms of the functions defined in eq. (4.3), the anomalous magnetic moment is simply

∆ai = 2 emli (σLii + σRii) '
e

8π2

2∑
m=1

∣∣∣λLQi3m∣∣∣2 m2
li

m2
φm

F (t3m) . (4.7)

The predicted values for all three flavors are substantially below current experimental

limits, implying that these values do not provide meaningful limits on the model. For

example, the maximum contribution to the muon anomalous magnetic moment from our

model for mf = 1 TeV is O(10−13), which is almost four orders of magnitude smaller than

the experimental uncertainty of ∆aexp
µ = (1.1659209± 0.0000006)× 10−3 [55].
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4.3 LFV rare decay µ− → e−e+e−

The model has a number of different contributions to µ− → e−e+e−, including photon

penguins, Z-penguins, Higgs penguins and box diagrams. As the Higgs penguin diagrams

are suppressed by the electron mass, we have neglected their contribution here. We consider

the contribution of the remaining diagrams in turn.7

To begin with the amplitude associated with the γ-penguin can be written as [57–59]

Mγ = ū(p1)
(
q2γµ(AL1PL +AR1 PR) + imµσµνq

ν
(
AL2PL +AR2 PR

))
u(p)

×e
2

q2
ū(p2)γµv(p3)− (p1 ↔ p2) , (4.8)

where the form factors AL,R1,2 are given by8

AL,R1 =

3∑
a=1

2∑
m=1

λLQ2amλ
LQ†
1am

384π2m2
φm

×
(tam − 1) (10 + (−17 + tam) tam)− 2

(
4− 6tam − t3am

)
ln tam

(tam − 1)2
(4.9a)

AL,R2 =
σL21,R21

mµ
, (4.9b)

where tam = m2
ua/m

2
φm

and σL,R are as defined in eq. (4.3). Note that the external

momentum as well as the electron mass me have been set to zero and all color factors have

been taken into account.

Next the contribution from the Z-penguin diagrams can be written as

MZ =
1

m2
Z

ū(p1)γµ (FLPL + FRPR)u(p)

×ū(p2)γµ (ZLPL + ZRPR) v(p3)− (p1 ↔ p2) , (4.10)

where the form factors FL,R,9 and ZL,R are given by

FL,R =
3∑

a=1

2∑
m=1

− 3eλLQ2amλ
LQ†
1am

32π3 sin θW cos θW

tam(1− tam + ln tam)

(tam − 1)2
(4.11a)

ZL = − e

sin θW cos θW

(
−1

2
+ sin θ2

W

)
(4.11b)

ZR = − e

sin θW cos θW
sin θ2

W . (4.11c)

7We do not discuss leptonic LFV τ decays, e.g. τ → eee, since they are less constraining like radiative

LFV τ decays are less constraining than radiative LFV decays of µ.
8The full expressions for AL,R1,2 can be found in appendix A.
9The full expressions for FL,R can be found in appendix A.
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Finally for the amplitude of the contribution from box diagrams we have

MBox = e2BL
1 [ūi(p1) (γµPL)uj(p)] [ūi(p2) (γµPL) vi(p3)]

+e2BR
1 [ūi(p1) (γµPR)uj(p)] [ūi(p2) (γµPR) vi(p3)]

+e2BL
2 {[ūi(p1) (γµPL)uj(p)] [ūi(p2) (γµPR) vi(p3)]− (p1 ↔ p2)}

+e2BR
2 {[ūi(p1) (γµPR)uj(p)] [ūi(p2) (γµPL) vi(p3)]− (p1 ↔ p2)}

+e2BL
3 {[ūi(p1)PLuj(p)] [ūi(p2)PLvi(p3)]− (p1 ↔ p2)}

+e2BR
3 {[ūi(p1)PRuj(p)] [ūi(p2)PRvi(p3)]− (p1 ↔ p2)}

+e2BL
4 {[ūi(p1) (σµνPL)uj(p)] [ūi(p2) (σµνPL) vi(p3)]− (p1 ↔ p2)}

+e2BR
4 {[ūi(p1) (σµνPRuj(p))] [ūi(p2) (σµνPR) vi(p3)]− (p1 ↔ p2)} , (4.12)

where the form factors Bi are given by10

BL,R
1 =

∑
i,j,m,n

− 3

16π2e2
λLQ2imλ

LQ†
1in λ

LQ†
1jmλ

LQ
1jnD00

[
m2
φm ,m

2
φn ,m

2
ui ,m

2
uj

]
, (4.13a)

BL,R
2,3,4 = 0, (4.13b)

where 3 is the color factor and all the external momenta and masses have been neglected.

The function D00 can be found in appendix C. Using the form factors given above, we can

write the decay width for µ− → e−e+e− as follows [59]:

Γ(µ−→ e−e+e−) =
e4

512π3
m5
µ

[ ∣∣AL1 ∣∣2 +
∣∣AR1 ∣∣2 − 2

(
AL1A

R∗
2 +AL2A

R∗
1 + h.c.

)
(4.14)

+
(∣∣AL2 ∣∣2 +

∣∣AR2 ∣∣2)(16

3
ln
mµ

me
− 22

3

)
+

1

6

(∣∣BL
1

∣∣2 +
∣∣BR

1

∣∣2)+
1

3

(∣∣BL
2

∣∣2 +
∣∣BR

2

∣∣2)
+

1

24

(∣∣BL
3

∣∣2 +
∣∣BR

3

∣∣2)+ 6
(∣∣BL

4

∣∣2 +
∣∣BR

4

∣∣2)
− 1

2

(
BL

3 B
L∗
4 +BR

3 B
R∗
4 + h.c.

)
+

1

3

(
AL1B

L∗
1 +AR1 B

R∗
1 +AL1B

L∗
2 +AR1 B

R∗
2 + h.c.

)
− 2

3

(
AR2 B

L∗
1 +AL2B

R∗
1 +AL2B

R∗
2 +AR2 B

L∗
2 + h.c.

)
+

1

3

{
2
(
|FLL|2 + |FRR|2

)
+ |FLR|2 + |FRL|2

+
(
BL

1 F
∗
LL +BR

1 F
∗
RR +BL

2 F
∗
LR +BR

2 F
∗
RL + h.c.

)
+ 2

(
AL1F

∗
LL +AR1 F

∗
RR + h.c.

)
+
(
AL1F

∗
LR +AR1 F

∗
RL + h.c.

)
− 4

(
AR2 F

∗
LL +AL2F

∗
RR + h.c.

)
− 2

(
AL2F

∗
RL +AR2 F

∗
LR + h.c.

)}]
,

with

FLL =
FLZL

g2s2
Wm

2
Z

, FRR = FLL|L↔R , FLR =
FLZR
g2s2

Wm
2
Z

, FRL = FLR|L↔R , (4.15)

10The full expressions for Bi are given in appendix A.
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(a) log10 Br(µ→ eee) for mf = 1 TeV (b) log10 Br(µ→ eee) for mf = 10 TeV

Figure 5. Contour plots of the branching ratio in µ− → e−e+e− at mf = 1 TeV (left) and

mf = 10 TeV (right). The current exclusion region at Br(µ → eee) < 10−12 at 90% C.L. [55]

is plotted in red. The sensitivity of measuring Br(µ → eee) down to 10−16 of a proposed future

experiment [60] is shown as a dashed black line. The Yukawa couplings λdf3α are set to 1.

and an approximate expression for the branching ratio is obtained by dividing by the

decay width of the dominant muon decay µ− → e−ν̄eνµ, as for the rare radiative LFV

decay µ→ eγ.

We show the numerical results in contour plots in figure 5, where the experimental ex-

clusion region is plotted in red. The bound is much more stringent when leptoquark masses

get smaller compared with µ→eγ, since the monopole contribution to the decay width from

the γ-penguin, as shown in eq. (4.9a), is dominant in this case and grows rapidly. When

we increase the mass of the colored octet from mf = 1 TeV to mf = 10 TeV, the exclusion

region gets smaller in both the first and the third quadrant, because the branching ratio

is dominated by the Z-penguin and γ-penguin respectively, which scales as m
−3/2
f lnm2

f in

the first quadrant and m−3
f lnm2

f in the third quadrant. Compared with the constraints

from µ→ eγ, the ones from µ → eee are more stringent in the first quadrant because of

the slower decoupling of the contribution from the Z-penguin, while in the third quadrant

they are less stringent as long as the leptoquark masses are heavier than the top mass.

4.4 µ ↔ e conversion in nuclei

The effective Lagrangian contributing to µ↔ e conversion in this model is [61]

Lint =−1

2

(
mµA

L
2 µ̄ σ

µνPLeFµν +mµA
R
2 µ̄ σ

µνPReFµν + h.c.
)

−
∑

q=u,d,s

[ (
gLS(q)ēPRµ+ gRS(q)ēPLµ

)
q̄q +

(
gLP (q)ēPRµ+ gRP (q)ēPLµ

)
q̄γ5q

+
(
gLV (q)ēγ

µPLµ+ gRV (q)ēγ
µPRµ

)
q̄γµq +

(
gLA(q)ēγ

µPLµ+ gRA(q)ēγ
µPRµ

)
q̄γµγ5q

+
1

2

(
gLT (q)ēσ

µνPRµ+ gRT (q)ēσ
µνPLµ

)
q̄σµνq + h.c.

]
. (4.16)
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At one loop, there are several contributions to µ↔ e conversion in nuclei. The long-range

interaction is determined by the electromagnetic dipole contribution, which is described

by the coefficients AL,R2 defined in eq. (4.9b). The remaining interactions are short-range

interactions. Taking all SM particles lighter than the W boson massless, there is only a

contribution to the Wilson coefficient of (ēγµPLµ)(q̄γµq) from box, γ- as well as Z-penguins:

gbox
LV (d) =

|Vtd|2

64π2

{
2
∑
m,n,i

λLQ23mλ
LQ∗
13n λ

LQ
i3nλ

LQ∗
i3mD00

(
0,m2

φm ,m
2
φn ,m

2
t

)
(4.17a)

−
∑
m

λLQ23mλ
LQ∗
13m

[
m2
t y

2
tD0

(
m2
W ,m

2
φm ,m

2
t ,m

2
t

)
+ g2

(
C0

(
m2
W , 0,m

2
φm

)
+m2

tD0

(
m2
W , 0,m

2
φm ,m

2
t

)
− 2
(
D00

(
m2
W , 0,m

2
φm ,m

2
t

)
+D00

(
m2
W ,m

2
φm ,m

2
t ,m

2
t

) ))]}
,

gγLV (d) =− α

144π

∑
m

λLQ23mλ
LQ∗
13m

m2
φm

t33m − 18t23m + 27t3m + 2
(
t33m + 6t3m − 4

)
ln (t3m)− 10

(t3m − 1)4

(4.17b)

gZLV (d) =
g2
(
4s2
W − 3

)
128π2m2

W

∑
m

λLQ23mλ
LQ∗
13m

t3m (t3m − ln (t3m)− 1)

(t3m − 1) 2
, (4.17c)

and

gbox
LV (u) =0 , gγLV (u) =− 2gLV (d) , gZLV (u) =−

8s2
W − 3

4s2
W − 3

gZLV (d) . (4.18)

The gluon penguin contribution vanishes due to its color structure. As the coherent conver-

sion process dominates, i.e. the final state of the nucleon is the same as the initial state [61],

the vector coupling to the sea quarks vanishes and it is enough to consider

gLV (u) =gbox
LV (u) + gγLV (u) + gZLV (u) , gLV (d) =gbox

LV (d) + gγLV (d) + gZLV (d) . (4.19)

The coefficients of the vector interaction with protons and neutrons are defined by

g̃
(p)
LS,RS =

∑
q

G
(q,p)
S gLS,RS(q) , g̃

(n)
LS,RS =

∑
q

G
(q,n)
S gLS,RS(q) , (4.20)

g̃
(p)
LV = 2 gLV (u) + gLV (d) , g̃

(n)
LV = gLV (u) + 2 gLV (d) , (4.21)

with the coefficients G
(u,p)
S = G

(d,n)
S = 5.1, G

(u,n)
S = G

(d,p)
S = 4.3 and G

(s,p)
S = G

(s,n)
S =

2.5 [61, 62]. In terms of these expressions, we can express the conversion rate as

ωconv =4

∣∣∣∣18A∗RD + g̃
(p)
LSS

(p) + g̃
(n)
LSS

(n) + g̃
(p)
LV V

(p) + g̃
(n)
LV V

(n)

∣∣∣∣2
+ 4

∣∣∣∣18A∗LD + g̃
(p)
RSS

(p) + g̃
(n)
RSS

(n) + g̃
(p)
RV V

(p) + g̃
(n)
RV V

(n)

∣∣∣∣2 , (4.22)
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S(p) S(n) V (p) V (n) D ωcapt(106s−1)

197
79 Au 0.167 0.0523 0.0610 0.0859 0.108 13.07

48
22Ti 0.0870 0.0371 0.0462 0.0399 0.0495 2.59

27
13Al 0.0169 0.0153 0.0163 0.0357 0.0159 0.7054

Table 1. The overlap integrals in the unit of m
5/2
µ and the total capture rates for different nuclei.

The overlap integrals of 197
79 Au as well as 27

13Al are taken from table 2 and 48
22Ti are taken from table 4

of [61], while the total capture rates are both from table 8.

where the overlap integrals D, S(p), S(n), V (p) and V (n) take values as shown in table 1.

The branching ratio is defined by Br(µN → eN) ≡ ωconv/ωcapt. In figure 6 we present

the contour plots of the branching ratio for µ ↔ e conversion in 197
79 Au, 48

22Ti and 27
13Al,

where the first gives the most stringent current constraints and the last two may give

the most stringent future ones.11 The current bounds from µ ↔ e conversion in 197
79 Au

at mf = 1 TeV and mf = 10 TeV are plotted in red figure 6a and figure 6b, which are

obviously the most stringent ones so far compared with those from µ → eγ and µ → eee.

When we increase the mass of the colored octet, the exclusion region gets smaller because

the dominant contribution, the Z-penguin, scales as m
−3/2
f lnm2

f . For µ ↔ e conversion

in 48
22Ti, although the current data gives weaker bounds, the COMET experiment [63, 64]

will be able to explore a much larger region of the parameter space or give the strongest

bounds in the future, i.e. the dashed thick line in figure 6d as well as the whole region

shown in figure 6c.

4.5 Other constraints

In the previous subsection, we discussed the most stringent constraints. In this subsection,

we discuss constraints which turn out to be not competitive compared to the constraints

from LFV processes. We start with dimension-6 operators generated at tree-level using

the list of constraints compiled in ref. [69], then discuss bounds from meson mixing, the

b→ s transition using the constraints in [70, 71] and finally generic dimension-6 operators

LLQQ generated at the one-loop order using the list of constraints in ref. [69].

4.5.1 Processes from ∆F = 0 operators generated at tree level

Integrating out the leptoquarks leads to a few new operators at tree-level involving only

the third generation of quarks. In particular, we generate the operators

C`u,RLijtt 2
√

2GF (¯̀
iγ
µPR`j)(t̄γµPLt) , CCC,LLijtb 2

√
2GF (¯̀

iγ
µPLνj)(t̄γµPLb) , (4.23)

Cνd,LLijkl 2
√

2GF (ν̄iγ
µPLνj)(d̄kγµPLdl) , Cνd,RLijkl 2

√
2GF (ν̄iγ

µPRνj)(d̄kγµPLdl) ,

11The bound from µPb→ ePb conversion by the SINDRUM II experiment [68] is less competitive than

µ↔ e conversion in 197
79 Au.
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(a) log10 Br(µAu→ eAu) for mf = 1 TeV (b) log10 Br(µAu→ eAu) for mf = 10 TeV

(c) log10 Br(µTi→ eTi) for mf = 1 TeV (d) log10 Br(µTi→ eTi) for mf = 10 TeV

(e) log10 Br(µAl→ eAl) for mf = 1 TeV (f) log10 Br(µAl→ eAl) for mf = 10 TeV

Figure 6. Contour plots of the branching ratio of µ↔ e conversion, current experimental bounds

(in red) and prospects (thick dashed lines) in 197
79 Au (top), 48

22Ti (center), and 27
13Al (bottom) at

mf = 1, 10 TeV. The Yukawa couplings λdf3α are set to 1. The current most stringent bound comes

from Br(µAu→ eAu) < 7× 10−13 at 90 % C.L. [55] and the best experimental prospects are from

Br(µAl → eAl) . 10−16 [63–67] as well as Br(µTi → eTi) . 10−18 [63, 64] improving the current

limit Br(µTi→ eTi) < 4.3× 10−12 at 90% C.L. [55].
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with their Wilson coefficients given by

C`u,LRijtt = −
∑
m

λLQi3mλ
LQ∗
j3m

4
√

2GF m2
φm

, CCC,LLijtb = Vtb
∑
m

λLQj3mλ
LQ∗
i3m

4
√

2GF m2
φm

, (4.24)

Cνd,LLijkl = −V ∗tkVtl
∑
m

λLQ∗j3mλ
LQ
i3m

4
√

2GF m2
φm

, Cνd,LRijkl = V ∗tkVtl
∑
m

λLQ∗j3mλ
LQ
i3m

4
√

2GF m2
φm

.

There are already weak constraints on the Wilson coefficient C`u,RLijtt , mainly from Z-

decay [69]. The most stringent constraint is C`u,RLµµtt < 0.061 from Z → µµ̄. It translates into

mφm &


√
λLQ23mλ

LQ∗
23m

0.1

× 50 GeV (4.25)

and currently does not pose any competitive constraint. The bound on C`u,RLijtt with i, j =

e, µ could be improved by measuring the top pair-production cross section at a lepton

collider precisely, like a future linear collider. The Wilson coefficient CCC,LLijtb , leads to

an additional contribution to top decay. We can estimate its relative contribution to the

dominant top decay, t→W+b→ `+i νb, as

∑
l,m

CCC,LLijtb

Vtb
=
∑
j,m

λLQ∗i3m λ
LQ
j3m

4
√

2GF m2
φm

. (4.26)

However, the resulting constraint is not as stringent as the constraints from LFV processes.

It would require a big improvement of the precision or a dedicated analysis of the angular

distribution due to the different angular dependence compared to t → Wb. The Wilson

coefficients C
νb,LL(RL)
ijbb contribute to the invisible decay of Υ(nS) competing with the SM

decay mediated by an s-channel Z-boson, but there are no limits and the experimental sen-

sitivity is not good enough to measure even the SM decay. The bounds from semi-leptonic

meson decays collected in table 12 in [69] lead to a lower bound on mφm/
√
λLQ∗i3m λ

LQ
j3m of

the order of 770 GeV for C
νb,LL(RL)
ijds , 52 GeV for C

νb,LL(RL)
ijbd , 800 GeV for C

νb,LL(RL)
ijbs . A

comparison with realistic values, mφm & 100 GeV and |λLQi3m| . 0.1, demonstrates that

there is currently no competitive constraint from this class of operators.

4.5.2 Meson mixing

The most general effective Hamiltonian has the form, following the notation of [72],

Hijeff =
5∑

m=1

CijmQ
ij
m +

3∑
m=1

C̃ijmQ̃
ij
m , (4.27)

where the superscripts i, j denote the quark flavors, Cijm (C̃ijm) the Wilson coefficients and

Qijm (Q̃ijm) the following operators

Qij1 = (q̄αi γµPLq
α
j )(q̄βi γ

µPLq
β
j ) , Qij2 = (q̄αi PLq

α
j )(q̄βi PLq

β
j ) , Qij3 = (q̄αi PLq

β
j )(q̄βi PLq

α
j ) ,

Qij4 = (q̄αi PLq
α
j )(q̄βi PRq

β
j ) , Qij5 = (q̄αi PLq

β
j )(q̄βi PRq

α
j ) , (4.28)
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the Greek letters being color indices. The operators Q̃ijm are obtained from the operators

Qijm by the exchange L↔ R.

The leptoquarks contribute to meson mixing via one-loop box diagrams with neutrinos

and leptoquarks in the loop. These box diagrams only induce the Wilson coefficient

C̃ij1 = −
V 2
tiV
∗2
tj

48π2

∑
i,j,m,n

λLQi3mλ
LQ
j3nλ

LQ∗
i3n λ

LQ∗
j3m

m2
φm
−m2

φn

ln

(
m2
φm

m2
φn

)
(4.29)

in the approximation of vanishing SM fermion masses. Note that the chirality structure

differs from the ordinary SM contribution of the one-loop box diagram with W -bosons and

tops in the loop (see e.g. [73]):

Cij1 =
G2
Fm

2
W

12π2
V 2
tiV
∗2
tj S0

(
m2
t

m2
W

)
(4.30)

with the well-known Inami-Lim function [74]

S0(x) = x

[
1

4
+

9

4

1

1− x
− 3

2

1

(1− x)2

]
− 3

2

[
x

1− x

]3

. (4.31)

There is no contribution from the leptoquarks to D0 − D̄0 mixing.

As the different operators are mixed by renormalization group running, we have to

evolve the Wilson coefficients from the matching scale to the scale of the relevant meson.

Hence, the meson mixing amplitudes for B̄q −Bq with q = d, s as well as K̄0 −K0 mixing

are given by 〈
K0|HNPeff (µK)|K̄0

〉
=
∑
i

(br,1i + η cr,1i ) ηaiC̃ds1

〈
K0|Q̃dsr |K̄0

〉
, (4.32a)

〈
Bd|HNPeff (µb)|B̄d

〉
=
∑
i

(br,1i + η cr,1i ) ηaiC̃db1

〈
Bd|Q̃dbr |B̄d

〉
, (4.32b)

〈
Bs|HNPeff (µb)|B̄s

〉
=
∑
i

(br,1i + η cr,1i ) ηaiC̃sb1

〈
Bs|Q̃dbr |B̄s

〉
, (4.32c)

where η = αs(Λ)/αs(mt), the magic numbers ai, b
r,1
i , cr,1i as well as the matrix elements for

K (B) meson mixing can be found in ref. [75] ([76]). As we are only interested in an order

of magnitude estimate, we will take Λ = mt, i.e. η = 1, which means we are neglecting

the running from the leptoquark mass to the top-quark mass. In this approximation, the

meson matrix elements are〈
K0|HNPeff (µK)|K̄0

〉
= ηKC̃

ds
1

1

3
MKf

2
KB

K
1 (µK) , (4.33a)〈

Bd|HNPeff (µb)|B̄d
〉

= ηBC̃
db
1

1

3
MBdf

2
Bd
BB

1 (µb) , (4.33b)〈
Bs|HNPeff (µ(b)|B̄s

〉
= ηBC̃

sb
1

1

3
MBsf

2
BsB

B
1 (µb) , (4.33c)

where µK = 2 GeV and µb = 4.6 GeV. The QCD correction factors are ηK = 0.804 and

ηB = 0.848, while the bag parameters are BK
1 (µK) = 0.60 and BB

1 (µb) = 0.87. The SM
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contribution at the low-energy scale looks analogous, since it trivially satisfies Λ = mt,

which means the following ratios are independent of the meson masses, bag parameter and

QCD running:

〈
M |HNPeff (µ)|M̄

〉〈
M |HSMeff (µ)|M̄

〉 =
C̃ij1
Cij1

= −
∑
i,j,m,n

λLQi3mλ
LQ
j3nλ

LQ∗
i3n λ

LQ∗
j3m ln

(
m2
φm

m2
φn

)
4(m2

φm
−m2

φn
)G2

Fm
2
WS0

(
m2
t

m2
W

)
≈ −

∑
i,j,m

|λLQi3mλ
LQ
j3m|2

8.6G2
Fm

2
Wm

2
φm

, (4.34)

where we assumed that the leptoquarks have similar masses in the last equation and inserted

S0

(
m2
t /m

2
W

)
≈ 2.3.

The UTfit collaboration [72, 77] simultaneously determines the CKM parameters and

constraints on ∆F = 2 processes in terms of ratios of the meson mixing amplitudes〈
M |Heff |M̄

〉
normalized to the SM prediction:

CBqe
2iφBq =

〈
Bq|Hfulleff |B̄q

〉
〈
Bq|HSMeff |B̄q

〉 = 1 +

〈
Bq|HNPeff |B̄q

〉〈
Bq|HSMeff |B̄q

〉 , (4.35a)

C∆mK =
Re
[〈
Bq|Hfulleff |B̄q

〉]
Re
[〈
Bq|HSMeff |B̄q

〉] = 1 +
Re
[〈
Bq|HNPeff |B̄q

〉]
Re
[〈
Bq|HSMeff |B̄q

〉] , (4.35b)

CεK =
Im
[〈
Bq|Hfulleff |B̄q

〉]
Im
[〈
Bq|HSMeff |B̄q

〉] = 1 +
Im
[〈
Bq|HNPeff |B̄q

〉]
Im
[〈
Bq|HSMeff |B̄q

〉] . (4.35c)

The current best fit values for these parameters are given by [72, 77, 78]

CBd = 1.01± 0.15 , φBd = (2.2± 3.7)◦ ,

CBs = 1.03± 0.10 , φBs = (−0.84± 2.47)◦ , (4.36)

C∆mK = 0.978± 0.331 , CεK = 1.08± 0.18 .

Hence, B meson mixing constrains the new physics contribution to be less than ∼ 10−15%

of the SM contribution and the absorptive part of the K meson mixing12 constrains new

physics to be less than ∼ 20% compared to the SM. Therefore, we can näıvely estimate

10−3
∑
i,j,m

|λLQi3mλ
LQ
j3m|2

0.14

(
100 GeV

mφm

)2

� 0.1 , (4.37)

which demonstrates that meson mixing does not lead to new competitive constraints.

12As the SM contribution to ∆mK is affected by long-distance contributions and can not be calculated

reliably [78], we do not attempt to use it as constraint. The constraint shown in eq. (4.36) is obtained under

the assumption that the long-distance to ∆mK can be as large as to saturate the experimental value [78].
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4.5.3 Constraints from the b → s transition

Recently a model-independent analysis [70, 71] constrained the operators relevant for the

b → s transition. We will apply the constraints from this analysis to our model. The

new physics contributions to the b → s transition are described by the following effective

Hamiltonian [79, 80]

Heff = −4GF√
2
VtbV

∗
ts

e2

16π2

∑
i

(
CiOi + C ′iO

′
i

)
+H.c. , (4.38)

where the most sensitive operators to new physics are given by

O
(′)
7 =

mb

e

(
s̄σµνPR(L)b

)
Fµν , O

(′)
8 =

gsmb

e2

(
s̄σµνT

αPR(L)b
)
Gµν α,

O
(′)
9 =

(
s̄γµPL(R)b

) (
¯̀γµ`

)
, O

(′)
10 =

(
s̄γµPL(R)b

) (
¯̀γµγ5`

)
, (4.39)

O
(′)
S =

mb

mBs

(
s̄PR(L)b

) (
¯̀̀
)
, O

(′)
P =

mb

mBs

(
s̄PR(L)b

) (
¯̀γ5`

)
.

The analysis in [70, 71] assumed C
(′)
9,10 to be independent of lepton flavor. In our model we

expect all couplings λLQi3m to be of the same order of magnitude and therefore the decays

are almost independent of lepton flavor. Although LFV decays are allowed in our case,

this analysis should give bounds of the correct order of magnitude. Reference [70, 71]

also assumed the (pseudo-) scalar operators C
(′)
S,P to be proportional to the lepton Yukawa

coupling as well as conservation of lepton flavor. They defined all Wilson coefficients at a

matching scale µh = 160 GeV, with the operators O
(′)
7 and O

(′)
8 mixing under renormaliza-

tion. At the low-scale µb = 2.8 GeV, only the operator O
(′)
7 was important and therefore

only the linear combination13 C
(′)NP
7 (µb) = 0.623C

(′)NP
7 (µh) + 0.101C

(′)NP
8 (µh) was con-

strained by the different B-decays, and all results were shown in the limit of vanishing

C
(′)NP
8 (µh) [70, 71]. In our case, there is a contribution to C

(′)
8 , so we have to interpret

all constraints on C
(′)NP
7 (µh) as constraints on C7,eff ≡ C

(′)NP
7 (µh) + 0.162C

(′)NP
8 (µh) as

discussed in ref. [70].

In our model, the Wilson coefficients in the approximation of massless lepton and light

quark masses are given by

C7 =
∑
i,m

|λLQi3m|2

144
√

2GFm2
φm

, C ′7 =
ms

mb

∑
i,m

|λLQi3m|2

144
√

2GFm2
φm

, (4.40)

C8 = −
∑
i,m

|λLQi3m|2

48
√

2GFm2
φm

, C ′8 = −ms

mb

∑
i,m

|λLQi3m|2

48
√

2GFm2
φm

, (4.41)

for the photonic and gluonic dipole operators, and therefore the combinations constrained

13We denote the new physics contribution by C
(′)NP
i .
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by the analysis are

C7,eff = 0.514
∑
i,m

|λLQi3m|2

144
√

2GFm2
φm

∼ 2.2× 10−4
∑
i,m

(
|λi3m|

0.1

)2(100 GeV

mφm

)2

, (4.42)

C ′7,eff = 0.514
ms

mb

∑
i,m

|λLQi3m|2

144
√

2GFm2
φm

∼ 4.9× 10−6
∑
i,m

(
|λi3m|

0.1

)2(100 GeV

mφm

)2

. (4.43)

Neglecting the phase of C
(′)
7,eff , the strongest constraint from table 3 in [71] translates into

|C7,eff | < 0.017 and |C ′7,eff | < 0.20 and therefore the constraints on C
(′)
7,eff do not give

competitive constraints on the leptoquarks φm compared to those from LFV processes.

The non-vanishing Wilson coefficients of the dimension-6 operators are evaluated as

C9 =C10 =
∑
m

|λLQi3m|2

32
√

2παemGF

{
m2
t y

2
tD0

(
m2
W ,m

2
φm ,m

2
t ,m

2
t

)
+ g2

[
C0

(
m2
W , 0,m

2
t

)
(4.44)

+m2
φmD0

(
m2
W , 0,m

2
φm ,m

2
t

)
−2D00

(
m2
W , 0,m

2
φm ,m

2
t

)
−2D00

(
m2
W ,m

2
φm ,m

2
t ,m

2
t

)]}
−
∑
i,m,n

λLQ13mλ
LQ∗
13n λ

LQ
i3nλ

LQ∗
i3mD00

(
0,m2

φm
,m2

φn
,m2

t

)
16
√

2παemGF
,

and we can estimate the magnitude for one leptoquark, φm, as

C9 = C10 ∼ 0.011

[
1 + 0.012

∑
i

(
|λi3m|

0.1

)2
](

λLQ∗k3mλ
LQ
k3m

0.01

)(
100 GeV

mφm

)2

. (4.45)

The right-handed counterparts, C ′9,10, are proportional to ms and vanish in the limit of

vanishing quark masses for the first two generations. The Wilson coefficients C
(′)
S,P vanish

in the limit of massless neutrinos as well as the first two generations of leptons. Again, a

comparison with the constraints in table 3 of [71] shows that the constraints on C9,10 do

not lead to competitive constraints on the leptoquarks φm.

Finally, let us comment on the newly measured decay Bs → µ+µ− at the LHCb

experiment [81, 82] as well as CMS experiment [83]. This measurement improves the

constraint on C9 and C10. Naively rescaling the bound by the square root of the uncertainty

in the measured branching ratio over the upper bound, we expect at most an improvement

by one order of magnitude compared to the previous constraint. However, the constraints

from LFV processes are still much stronger even assuming a very optimistic improvement

of one order of magnitude over the old constraint.

4.5.4 ∆F = 1 flavor changing neutral current processes at one-loop level

In the previous subsection we have discussed constraints from the b→ s transition and in

this subsection we broaden our view in this direction. Specifically we consider ∆F = 1

operators, i.e. operators with a change of quark flavor. This brings in constraints from

processes like (semi-) leptonic meson decays, precision measurements of Z-decay as well as
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collider searches for contact interactions. Neglecting all lepton/quark masses except for that

of the top quark, the FCNC processes are determined by the following effective operator:

DLR
ijkl 2

√
2GF (d̄iγ

µPLdj)(¯̀
kγµPR`l) . (4.46)

Note that the corresponding operator with an up-type quark current vanishes in this limit.

Evaluating the expression, we arrive at an analogous expression to eq. (4.44),

DLR
ijkl =

V ∗tiVtj
32π2

{
2
∑
i,m,n

λLQl3mλ
LQ∗
k3n λ

LQ
i3nλ

LQ∗
i3mD00

(
0,m2

φm ,m
2
φn ,m

2
t

)
(4.47)

−
∑
m

λLQ∗k3mλ
LQ
l3m

[
m2
t y

2
tD0

(
m2
w,m

2
φm ,m

2
t ,m

2
t

)
+ g2

(
C0

(
m2
w, 0,m

2
t

)
+m2

φmD0

(
m2
w, 0,m

2
φm ,m

2
t

)
−2D00

(
m2
w, 0,m

2
φm ,m

2
t

)
−2D00

(
m2
w,m

2
φm ,m

2
t ,m

2
t

))]}
.

We can estimate the magnitude of the Wilson coefficient as

|DLR
ijkl| ∼ 1.3×10−5

[
1 + 0.012

∑
i

(
|λi3m|

0.1

)2
]
V ∗tiVtj

(
λLQ∗k3mλ

LQ
l3m

0.01

)(
100 GeV

mφm

)2

. (4.48)

A comparison with the list of constraints on two-lepton, two-quark operators in table 2 of

ref. [69] shows that the most constrained operators are D1212 < 3×10−7 = 8×10−4 |V ∗tdVts|,
D2312 < 8 × 10−5 = 1.9 × 10−3 |V ∗tsVtb|, D2311 < 1.8 × 10−4 = 4.3 × 10−3 |V ∗tsVtb|, and

D2322 < 7.0× 10−5 = 1.7× 10−3 |V ∗tsVtb|, where we already weighted each constraint by the

CKM mixing. Most constraints originate from (semi-)leptonic B-decays as well as leptonic

KL decays. We already discussed the constraints from the b → s transition in a previous

section. None of these constraints are competitive to the constraints from LFV processes.

5 Constraints from other flavor- and lepton-number violating processes

In the previous section, we have discussed the constraints from flavor physics for the Yukawa

couplings required by the generation of neutrino masses. In the next two subsections, we

address the remaining couplings, which will be generated radiatively in any case. We then

discuss neutrinoless double beta-decay.

5.1 Constraints induced by right-handed coupling of the third generation

Now we consider the constraints from processes induced by non-zero λeui3m. Suppose this

coupling constant is set equal to zero at some scale µ0. At other scales, it will be nonzero,

and can be estimated by looking at the non-diagonal contribution to the renormalization

group equation from a vertex correction,

16π2dλ
eu
ikm

dt
∼
(
Y T
e

)
ij
λLQjlm(Yu)lk , (5.1)

where Yu and Ye are the up-quark and charged-lepton Yukawa couplings of the standard

model in the LR convention, and t = lnµ. This leads to the estimate

λeui3m(µ) ∼
yiytλ

LQ
i3m(µ0)

16π2
ln

µ

µ0
, (5.2)
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mf mφ1 mφ2 max |λeu33m|
[GeV] [GeV] [GeV] [Br(µ− → e−γ)] [Br(µ− → e−e+e−)] [Br(µN → eN)]

1 103 100 200 1.3× 10−5 2.0× 10−4 6.7× 10−4

2 103 200 900 7.7× 10−5 1.3× 10−3 4.3× 10−3

3 103 900 104 9.8× 10−5 1.7× 10−3 5.4× 10−3

4 104 103 2× 103 7.6× 10−6 1.2× 10−4 3.9× 10−4

5 104 2× 103 9× 103 2.2× 10−5 3.8× 10−4 1.2× 10−3

6 104 9× 103 105 7.2× 10−4 1.2× 10−2 4.0× 10−2

Table 2. Experimental constraints on λeu33m from the three most constraining LFV processes under

the assumption that both matrix elements are equal and λdf3m = 1.

i.e. the couplings to the different charged leptons are suppressed by their respective Yukawa

couplings (ye, yµ, yτ ) = (2.9×10−6, 6.1×10−4, 0.01). The couplings of the first two right-

handed generations of up-type quarks are even further suppressed. We will discuss them in

the following subsection together with the left-handed couplings to the first two generations.

These couplings will lead to additional contributions to LFV processes. In appendix A,

we summarize the formulae of the additional contributions for radiative LFV decays, µ− →
e−e+e+ as well as µ↔ e conversion in nuclei in order to illustrate their effects. Generally,

we expect similar constraints for the right-handed couplings (neglecting the left-handed

couplings) as for the left-handed couplings. However, there might be cancellations and the

bounds weakened if both couplings are present. In order to illustrate the constraints on the

couplings λeu in presence of the couplings λLQ, we will consider six benchmark points and

calculate the constraints for these points. The results are shown in table 2 and the bounds

on λeu33m are of the order of 10−5 − 10−3 assuming the mentioned constraints. Obviously,

the bounds get weaker the larger the overall mass scale. The upper bounds are all higher

than the estimates of eq. (5.2), so it is phenomenologically consistent to set these Yukawa

couplings to zero at µ0 ∼ GeV.

5.2 Constraints from flavor-violating processes induced by coupling to the

first two generations of quarks

Similarly to the right-handed coupling λeu, the couplings to the first two generations are

generated radiatively as well. The wave-function renormalization of the left-handed quark

doublet induces the following flavor-non-diagonal contributions to the coupling λLQ:

16π2dλ
LQ
ikm

dt
∼ λLQilm

(
YuY

†
u + YdY

†
d

)
lk

= λLQilm

(
diag(y2

u, y
2
c , y

2
t ) + V diag(y2

d, y
2
s , y

2
b )V

†
)
lk
,

(5.3)

where Yu and Yd are the up- and down-type SM quark Yukawa couplings. Hence the

RG contribution to the left-handed coupling to the first two generations of quarks can be

estimated as

λLQikm(µ) ∼ Vtk
Vtby

2
bλ

LQ
i3m(µ0)

16π2
ln

µ

µ0
, (5.4)
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or explicitly in terms of the Wolfenstein parameterization as

λLQi1m(µ) ∼ Aλ3(ρ+ iη)
y2
bλ

LQ
i3m(µ0)

16π2
∼ 10−8λLQi3m(µ0) ln

µ

µ0
, (5.5a)

λLQi2m(µ) ∼ Aλ2 y
2
bλ

LQ
i3m(µ0)

16π2
∼ 10−7λLQi3m(µ0) ln

µ

µ0
. (5.5b)

The couplings of the first two generations to the leptoquark φ and the fermionic color-

octet f , described by λdf , is not induced at one loop if the right-handed mixing in the

down sector vanishes

16π2dλ
df
km

dt
∼ λdflm

(
Y †d Yd

)
lk

= λdflm diag(y2
d, y

2
s , y

2
b )lk , (5.6)

where the second equality holds for vanishing right-handed mixing. A small mixing is

however induced at the two-loop order.

We will restrict ourselves to the discussion of the tree-level processes, since it is not

the main focus of our paper, but would like to point out that there are also constraints

from quark FCNCs, like meson mixing and b → s transitions, as we discussed in the

previous section. In comparison to the previous section, these processes are not suppressed

by the smallness of the CKM mixing angles. At tree-level, the leptoquark induces several

operators of the type LLQQ

C`u,LLijkl 2
√

2GF (¯̀
iPL`j)(ūkPLul) , C`u,RRijkl 2

√
2GF (¯̀

iPR`j)(ūkPRul) , (5.7a)

C`u,V LRijkl 2
√

2GF (¯̀
iγ
µPL`j)(ūkγµPRul) , C`u,V RLijkl 2

√
2GF (¯̀

iγ
µPR`j)(ūkγµPLul) , (5.7b)

C`u,TLLijkl 2
√

2GF (¯̀
iσ
µνPL`j)(ūkσµνPLul) , C`u,TRRijkl 2

√
2GF (¯̀

iσ
µνPR`j)(ūkσµνPRul) , (5.7c)

Cνd,V LRijkl 2
√

2GF (ν̄iγ
µPLνj)(d̄kγµPRdl) , Cνd,V RRijkl 2

√
2GF (ν̄iγ

µPRνj)(d̄kγµPRdl) , (5.7d)

CCC,RRijkl 2
√

2GF (ν̄iPR`j)(d̄kPRul) , CCC,V LLijkl 2
√

2GF (ν̄iγ
µPL`j)(d̄kγµPLul) , (5.7e)

CCC,TRRijkl 2
√

2GF (ν̄iσ
µνPR`j)(d̄kσµνPRul) . (5.7f)

The Wilson coefficients are given by

C`u,LLijkl = −
λLQjkmλ

eu∗
ilm

4
√

2GFm2
φm

, C`u,RRijkl = −
λeujkmλ

LQ∗
ilm

4
√

2GFm2
φm

, (5.8a)

C`u,V LRijkl = −
λLQjkmλ

LQ∗
ilm

4
√

2GFm2
φm

, C`u,V RLijkl = −
λeujkmλ

eu∗
ilm

4
√

2GFm2
φm

, (5.8b)

C`u,TLLijkl = −
λLQjkmλ

eu∗
ilm

16
√

2GFm2
φm

, C`u,TRRijkl = −
λeujkmλ

LQ∗
ilm

16
√

2GFm2
φm

, (5.8c)

Cνd,V LRijkl =
λLQ
ĵk̂m

λLQ∗
îl̂m

4
√

2GFm2
φm

V ∗
îi
VĵjUk̂kU

∗
l̂l
, Cνd,V RRijkl = −

λLQ
îk̂m

λLQ∗
ĵl̂m

4
√

2GFm2
φm

VîiV
∗
ĵj
Uk̂kU

∗
l̂l
, (5.8d)

CCC,RRijkl =
λeujlmλ

LQ∗
îk̂m

4
√

2GFm2
φm

V ∗
îi
U∗
k̂k
, CCC,V LLijkl = −

λLQjlmλ
LQ∗
îk̂m

4
√

2GFm2
φm

V ∗
îi
U∗
k̂k
, (5.8e)

CCC,TRRijkl = −
λeujlmλ

LQ∗
îk̂m

16
√

2GFm2
φm

V ∗
îi
U∗
k̂k
. (5.8f)
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Using the analysis in [69], we can derive bounds for the different operators.14 The tensor

operators have not been studied in [69], neither possible scalar operators, where the color

indices are not contracted within the same fermion chain. However, similar bounds should

apply as for the scalar operators. Therefore, we will use the bound on the corresponding

scalar operator to obtain an order of magnitude estimate for the bound of the tensor

operator. As the CKM (PMNS) mixing angles are small (large), we approximate them

by the identity (democratic, Uij ∼ 1/
√

3) matrix. Under these assumptions, we obtain

constraints on the products of the couplings λLQ,euλLQ,eu∗. We will only highlight the

most important constraints and refer the interested reader to the tables in [69], particularly

tables 3,6,7 as well as tables 12–15. The most stringent constraints originate from leptonic

meson decays, especially charged meson decays, as well as µ↔ e conversion in nuclei. The

constraints from leptonic charged meson decays especially constrain the operator CCC,RRijkl ∼
2.3λeujlmλ

LQ∗
ikmm

2
W /m

2
φm

neglecting mixing. A selection of constraints from table 14 in [69]:

• The measurement of the ratio of pions decaying to electrons vs muons, Rπ, constrains

λeui1mλ
LQ∗
11m . 6.8× 10−6m2

φm
/m2

W as well as λeui1mλ
LQ∗
21m . 1.4× 10−3m2

φm
/m2

W .

• The measurement of K+ → ēνi leads to λeui2mλ
LQ∗
11m . 6.4× 10−6m2

φm
/m2

W .

• The measurement of RK leads to λeui2mλ
LQ∗
21m . 1.3× 10−3m2

φm
/m2

W .

• The measurement of B+ → ēν leads λeui3mλ
LQ∗
11m . 7.7× 10−5m2

φm
/m2

W .

• The measurement of B+ → µ̄ν leads to λeui3mλ
LQ∗
21m . 4.3× 10−5m2

φm
/m2

W .

• The measurement of B+ → τ̄ ν leads to λeui3mλ
LQ∗
31m . 3.5× 10−4m2

φm
/m2

W .

• The measurement of D+ → µ̄ν leads to λeui1mλ
LQ∗
22m . 1.6× 10−3m2

φm
/m2

W .

Furthermore, we would like to highlight the constraint from µ↔ e conversion in nuclei via

a leptoquark exchange µu→ φ? → eu. In this case the only relevant nonzero couplings in

the effective Lagrangian eq. (4.16) are

gLS(u) = −
∑
m

λLQ21mλ
eu∗
11m

2m2
φm

, gRS(u) = −
∑
m

λeu21mλ
LQ∗
11m

2m2
φm

, (5.9a)

gLV (u) =
∑
m

λLQ21mλ
LQ∗
11m

2m2
φm

, gRV (u) =
∑
m

λeu21mλ
eu∗
11m

2m2
φm

. (5.9b)

Plugging them in eq. (4.22), we obtain for the conversion rate

ωconv =

∣∣∣∣∣∑
m

m−2
φm

[(
Gu,pS S(p) +Gu,nS S(n)

)
λLQ21mλ

eu∗
11m +

(
2V (p)+V (n)

)
λLQ21mλ

LQ∗
11m

]∣∣∣∣∣
2

(5.10)

+

∣∣∣∣∣∑
m

m−2
φm

[(
Gu,pS S(p) +Gu,nS S(n)

)
λeu21mλ

LQ∗
11m +

(
2V (p) + V (n)

)
λeu21mλ

eu∗
11m

]∣∣∣∣∣
2

.

14Note that the analysis in [69] assumed no accidental cancellations between the different processes.
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Figure 7. New contributions to neutrinoless double beta-decay.

Assuming that there is no accidental cancellation between the different terms, we obtain

bounds on the different coupling combinations of the order of

λLQ21mλ
eu∗
11m .

(
4×10−9 − 7×10−8

) m2
φ

m2
W

, λeu21mλ
LQ∗
11m .

(
4×10−9 − 7×10−8

) m2
φ

m2
W

, (5.11a)

λLQ21mλ
LQ∗
11m .

(
10−8 − 10−7

) m2
φ

m2
W

, λeu21mλ
eu∗
11m .

(
10−8 − 10−7

) m2
φ

m2
W

. (5.11b)

We conclude that there are already strong constraints on the couplings to the first two

generations. In particular the coupling to the first generation of quarks is constrained by

π± decays via the measurement of Rπ and the constraints from µ↔ e conversion in nuclei.

5.3 Neutrinoless double beta-decay

As well as constraints from flavor violation, there are also, in principle, constraints from

total lepton-number violating processes such as neutrinoless double-beta decay. A complete

classification of all possible tree-level contributions to the relevant effective dimension-

9 operators of neutrinoless double beta-decay has been given in ref. [38]. There are two

possible contributions in this model besides the standard contribution from light neutrinos;

they are shown in figure 7, the short-range contribution 5-i in the notation of [38] as well

as the long-range contribution 2-i-b. The couplings of the leptoquark contributing to

neutrinoless double beta-decay, i.e. λLQi1α, λeui1α as well as λdf1α, do not enter the expression

for neutrino masses and thus are not constrained from below and can be arbitrary without

affecting the neutrino mass contribution. Hence, we are left with the standard contribution

from light neutrinos. The magnitude of the effective mass controlling the light neutrino

contribution to neutrinoless double beta decay is given by

〈mee〉 =
∑

U2
eimi . (5.12)

As the mass of the lightest neutrino almost vanishes, we read off 〈mee〉 ' (0.2−4)×10−3 eV

[(1− 4)× 10−2 eV] for m1 ' 0 eV from figure 2 in [84] in case of a normal [inverted] mass

ordering varying the other neutrino mass parameters in their 3σ ranges. Concluding, there

are currently no constraints from neutrinoless double beta decay on the parameter space

of this model.
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Figure 8. Main pair production channels for leptoquarks.

6 Collider constraints

As there are several new particles in the model, which might have masses close to the

electroweak scale, they can be searched for at colliders. In particular, hadron colliders, like

the LHC, seem promising, because all new particles carry color charge and therefore couple

to gluons. We will not perform a detailed collider study, since it is beyond the scope of

this paper and thus left for future work, but we will discuss the different search channels

for the scalar leptoquark and the fermionic colored octet in the following subsections.

6.1 Scalar leptoquark

The scalar leptoquark φα is mainly pair-produced in gluon fusion as well as qq̄ annihi-

lation, while the production via the exchange of leptons through Yukawa interactions is

suppressed. The main pair production channels are shown in figure 8. There are more

pair-production channels; however, they rely on Yukawa couplings to the first generation

of quarks, which are highly constrained by flavor physics, as we discussed in section 5.

Besides pair production, the leptoquark φα can also be singly produced via its Yukawa

interactions λLQ,eu, but they are similarly suppressed compared to the pair-production

channels relying on Yukawa couplings.

The leptoquark will decay into either a down-type, mostly b, quark and a neutrino

or a top quark and a charged lepton. The decay into b quark plus missing transverse

energy (MET) resembles the standard direct sbottom pair production search, but with

a reduced branching fraction for mφα > mt. Hence, the possible collider signatures are

two b-jets plus MET, leptons and/or additional jets in the final state. The leptoquarks in

this model differ from the standard assumption in leptoquark searches that the leptoquark

couples to one generation only. Due to the flavor structure of the neutrino mass matrix,

the leptoquark has to couple to the third generation of left-handed quarks as well as all
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Figure 9. Pair production channels of the fermionic colored octet.

three generations of left-handed leptons. The couplings to the right-handed particles as

well as the first two generations of left-handed quarks are not required in order to generate

neutrino masses and therefore can be arbitrarily small. In fact, the couplings to the first

two generations of quarks are strongly constrained by collider searches and especially flavor

physics constraints, as we discussed in section 5.

The CMS collaboration has performed a search for two b-jets plus MET, leptons and/or

additional jets in the final state, based on 4.7 fb−1 of
√
s =7 TeV data [85]. The analysis

sets a lower limit on mφ of 450 GeV assuming a 100% branching fraction to a b-quark

and a τ -neutrino. However the limit from this search is much lower for realistic branching

fractions, since the branching fraction decreases from 100% for leptoquarks lighter than

the top quark down to 50% for a leptoquark mass much heavier than the top quark. In

our model, we expect a limit slightly above the top mass. Nonetheless this situation is

certain to change with increased data and the LHC should be able to provide important

constraints on this model. A detailed study is left for future work.

6.2 Fermionic colored octet

The fermionic colored octet f is pair-produced similarly to a gluino, dominantly via gluon

fusion. The main production channels are shown in figure 9. It decays via the coupling

λdf into a down-type, mostly b-, quark and a leptoquark, which decays via the interactions

λLQ,eu to either a b-quark and a neutrino or a top quark and a charged lepton,

f → bφ† → bbν , and f → bφ† → bt` . (6.1)

The top quark decays in the usual way into a W boson and a b-quark and therefore leads to

another b-jet in the final state as well as additional jets, or a lepton and MET. Depending on

the masses, the decays are via off-shell particles. Hence the final state contains four b-jets

and depending on the decay channel MET, leptons and/or additional jets. As the fermionic

colored octet is a Majorana fermion, it can lead to a fermion number violating process and

lead to like-sign top as well as lepton pairs in the final state, which are ideal channels to

search for new physics due to the small SM background. Due to the similarity of production

as well as some of the decay channels with a gluino, we expect that the LHC experiments

should be already able to produce reasonable constraints on the colored fermionic octet.

However, none of the current searches is directly applicable without a simulation.
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In order to set a limit on mf , a recent gluino search from the CMS collaboration could

be exploited [86, 87]. This result is useful as they present the raw numbers obtained at a

number of intermediate steps in the analysis, which would allow the differences between

our present model and the SUSY gluino scenario to be accounted for. Despite this, we

have not done this in the present paper for pragmatic reasons. As seen in section 3, the

neutrino mass generated in our model is only weakly dependent on mf , and derived limits

are unlikely to meaningfully constrain the model. Future searches may alter this conclusion,

but the more interesting constraint colliders can place on this model is through mφα .

7 Naturalness constraints

As there are three scalars in the model, we have to discuss the effects of quadratic correc-

tions to the scalar masses from other particles. We will firstly consider the contributions

of the scalar leptoquarks as well as the fermionic colored octet to the SM Higgs and then

calculate the quadratic correction to the leptoquark masses.

7.1 Contributions to the SM Higgs

The newly introduced particles, the colored octet fermion as well as the two leptoquarks,

contribute to the effective Higgs potential. For completeness, we give the tree-level Higgs

potential

V = −µ2H†H + λ(H†H)2 (7.1)

and therefore the VEV 〈H〉 and the Higgs mass m2
h are given by

〈H〉2 =
µ2

2λ
, and m2

h = 4µ2 = 8λ 〈H〉2 . (7.2)

We are especially interested in corrections to the mass terms, since they are quadratically

sensitive to the new mass scales. Even setting all new couplings which do not enter the

neutrino mass contribution to zero at some scale, there is a contribution dependent on the

parameters λLQi3α as well as λdf3α at two-loop order,

− |yb|
2

(4π)4

∑
α

[
3
∑
i

∣∣∣λLQi3α∣∣∣2 f1(m2
φα) + 4

∣∣∣λdf3α∣∣∣2 f2(m2
φα ,m

2
f )

]
H†H , (7.3)

where the functions fi encode the structure of the two-loop diagram. The relevant diagrams

are shown in figure 10. We will use this contribution to estimate the natural region of

parameter space, where the contribution to the Higgs mass is less than 126 GeV, the

measured value of the resonance at the LHC:

12|yb|2

(4π)4

∑
i

∣∣∣λLQi3α∣∣∣2m2
φα . 4µ2 = m2

h ⇒ mφα .
1900√∑
i

∣∣∣λLQi3α∣∣∣2mh (7.4a)

16|yb|2

(4π)4

∣∣∣λdf3α∣∣∣2 max(m2
φα ,m

2
f ) . 4µ2 = m2

h ⇒ mφα ,mf .
1600∣∣∣λdf3α∣∣∣mh , (7.4b)
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Figure 10. Different contributions to the effective Higgs potential.

where we assumed that the loop functions fi(m
2) ∼ m2. Similarly, at three-loop order,

there are contributions to the quartic Higgs coupling. However, they are too small to lead

to any competitive constraints. Summarizing, naturalness prefers smaller masses of the

new particles.

7.2 Naturalness of the leptoquark masses

Similarly to the Higgs mass, the mass term of the leptoquark receives corrections to its

mass. The most important diagrams are shown in figure 11. We can readily estimate the

contribution due to the fermionic colored octet f

(δm2
φ)αβ = −4

3

λdf3αλ
df∗
3β

16π2
A0[m2

f ]⇒ mf .
2
√

3π∣∣∣λdf3α∣∣∣mφα (7.5)

and therefore the hierarchy between the leptoquark masses and the colored octet mass is

limited by naturalness depending on the coupling λdf . Similarly, the hierarchy between the

leptoquark masses itself is limited by naturalness

(δm2
φ)αβ = −

∑
γ,i,j

λLQj3αλ
LQ
j3β

(4π)4

∣∣∣λLQi3γ ∣∣∣2 h1(m2
φγ )⇒ mφγ .

16π2√∑
i,j |λ

LQ
j3αλ

LQ
i3γ |2

mφα , (7.6)

where h1 encodes the loop integral structure. We do not take into account any corrections to

the quartic interactions, since they do not lead to any competitive constraints. Concluding,

naturalness disfavors a large hierarchy in the masses of the new particles.

8 Mathematica code

Together with this paper, we publish the Mathematica package ANT, which provides all

Passarino-Veltman (PV) functions up to boxes in the limit of vanishing external momenta

using the definitions of FormCalc/LoopTools [49]. In addition, it includes all first deriva-

tives with respect to the external momenta of the following PV functions

B0, B1, C0, C1, C2, and C00 ,
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Figure 11. Different contributions to the effective potential of the leptoquark.

which were necessary for the calculations in this work. See appendix C for the list of

all PV functions contained in the Mathematica package. After loading the Mathematica

package, the function ANT is available, which can be used to evaluate an arbitrary expression

containing PV functions given in the limit of vanishing external momenta. Besides the

function ANT, it defines the functions A0ant, B0ant, C0ant, and D0ant, which directly

evaluate to the result for the corresponding functions A0, B0i, C0i, and D0i, respectively,

in the given limit. The package ANT can be downloaded from http://ant.hepforge.org.

In order to illustrate the use of ANT, we give one short example and refer the interested

reader to the documentation for further information. The following example code

<< ANT.m;

expr=a + b C0i[cc0,0,0,0,m1s,m2s,0];

ANT[expr]

leads to the output

a+ b
2 m1s2 log(m2s) + 3 m1s2 − 2 m1s2 log(m1s)− 4 m1s m2s + m2s2

6 (m1s−m2s)3
.

9 Summary and conclusions

The origin of neutrino masses and mixings is one of the most important topics in physics

beyond the standard model. The three well-known see-saw models are tree-level scenarios

for Majorana neutrino mass generation that lie at one end of a whole sequence of possible

models. Viewing these theories from the vantage point of gauge-invariant and baryon-

symmetric effective operators that violate lepton number conservation by two units, the

see-saw models are seen to be the simplest UV completions of the dimension-5 Weinberg

operator LLHH. The other models in the sequence are based on more complicated effec-

tive operators, and they necessarily feature radiative neutrino mass generation. We have

constructed and thoroughly analyzed the constraints on a new model of this kind, based

on a certain UV completion of an effective operator with flavor structure LLQdcQdc. This

is the first time, to our knowledge, that a radiative neutrino mass model involving exotic
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fermions in addition to exotic scalars has been so exhaustively studied. Neutrino masses

and mixings are generated at 2-loop level using a Majorana color-octet fermion and two

copies of a color-triplet, isosinglet, charge −1/3 leptoquark scalar.

Fitting the parameters to reproduce the observed neutrino masses and mixings, we

then derived the constraints on the remaining parameter space from various, mainly flavor-

changing processes. We focused on the region of parameter space where the only relevant

Yukawa couplings were to the third generation. We found that the lepton-flavor-violating

processes of µ to e conversion in nuclei, µ→ eγ and µ→ eee provided the most stringent

constraints, as summarized in figures 4–6. We also derived bounds from other processes

— exotic contributions to Z and t decay, neutral-meson mixing, b → sγ — that turned

out to less constraining on the parameters of this particular model. Finally, we estimated

bounds on Yukawa coupling constants that play no role in the generation of neutrino mass

but are required by the theory to exist. These included the couplings of the leptoquarks

to right-handed up-type quarks and charged leptons, and other Yukawa couplings to the

first two generations of quarks and leptons.

Collider constraints were also examined. While the leptoquarks have the same quantum

numbers as right-handed sbottoms, and similar states have in general have been searched for

at the LHC, currently no useful collider bounds exist. The reason is that the characteristic

leptoquark decay branching ratios in this model, as driven by their role in neutrino mass

generation, place them out of view of current searches. This situation is expected to change

in the future, however. The exotic fermion resembles a gluino, but since the neutrino

masses and mixings do not depend critically on its mass, current collider constraints are

not significant.

The dashed black lines in figures 4–6 show expected sensitivities of future experiments.

Clearly, the best prospects lie in the quite significant improvements expected in µ to e

conversion measurements [63, 64]. In addition, it would be very useful to extend the

scope of LHC searches for leptoquark scalars to encompass a wider range of decay mode

branching ratios.
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A More details of flavor physics

In this section, we summarize general formula for the contributions to LFV rare decays

involving left- as well as right-handed couplings.
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A.1 li → ljγ

Contributions to li → ljγ from left- as well as right-handed couplings to the third generation

of quarks are given by

σLij =
1

16π2

3∑
a=1

2∑
m=1

λLQiamλ
LQ†
jammli + λeuiamλ

eu†
jammlj

m2
φm

1 + 4tam − 5t2am + 2tam(2 + tam) ln tam
4(tam − 1)4

+
1

16π2

3∑
a=1

2∑
m=1

λLQiamλ
eu†
jammua

m2
φm

7− 8tam + t2am + 2(2 + tam) ln tam
2(tam − 1)3

, (A.1a)

σRij =
1

16π2

3∑
a=1

2∑
m=1

λLQiamλ
LQ†
jammlj + λeuiamλ

eu†
jammli

m2
φm

1 + 4tam − 5t2am + 2tam(2 + tam) ln tam
4(tam − 1)4

+
1

16π2

3∑
a=1

2∑
m=1

λeuiamλ
LQ†
jammua

m2
φm

7− 8tam + t2am + 2(2 + tam) ln tam
2(tam − 1)3

, (A.1b)

where tam = m2
ua/m

2
φm

and mua is the mass of the appropriate up-type quark mass.

A.2 µ− → e−e+e−

In this subsection, we list the different contributions to µ− → e−e+e+ from left- as well as

right-handed couplings to the third generation of quarks

AL,R1 =

3∑
a=1

2∑
m=1

λLQ,eu2am λLQ,eu†1am

384π2m2
φm

×
(tam − 1) (10 + (−17 + tam) tam)− 2

(
4− 6tam − t3am

)
ln tam

(tam − 1)2
, (A.2a)

AL,R2 =
σL21,R21

mµ
, (A.2b)

FL,R =
3∑

a=1

2∑
m=1

− 3eλLQ,eu2am λLQ,eu†1am

32π3 sin θW cos θW

tam(1− tam + ln tam)

(tam − 1)2
, (A.2c)

BL,R
1 =

∑
i,j,m,n

− 3

16π2e2
λLQ,eu2im λLQ,eu†1in λLQ,eu†1jm λLQ,eu1jn D00

[
m2
φm ,m

2
φn ,m

2
ui ,m

2
uj

]
, (A.2d)

BL,R
2 =

∑
i,j,m,n

− 3

16π2e2
λLQ,eu2im λLQ,eu†1in λeu,LQ†1jm λeu,LQ1jn D00

[
m2
φm ,m

2
φn ,m

2
ui ,m

2
uj

]
, (A.2e)

BL,R
3 =

∑
i,j,m,n

−
3muimuj

16π2e2
λeu,LQ2im λLQ,eu†1in λLQ,eu†1jm λeu,LQ1jn D0

[
m2
φm ,m

2
φn ,m

2
ui ,m

2
uj

]
, (A.2f)

BL,R
4 = 0 , (A.2g)

where again tam = m2
ua/m

2
φm

and σL,R are as defined in eq. (A.1a) and (A.1b).
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A.3 µ ↔ e conversion in nuclei

In this subsection, we list the right-handed contributions to µ↔ e conversion in nuclei

gbox
RV (d) =

|Vtd|2

64π2

{
2
∑
m,n,i

λeu23mλ
eu∗
13nλ

LQ
i3nλ

LQ∗
i3mD00

(
0,m2

φm ,m
2
φn ,m

2
t

)
(A.3a)

+
∑
m

λeu23mλ
eu∗
13m

[
2y2
tD00

(
m2
W ,m

2
φm ,m

2
t ,m

2
t

)
− g2m2

tD0

(
m2
W ,m

2
φm ,m

2
t ,m

2
t

) ]}
,

gγRV (d) =− α

144π

∑
m

λeu23mλ
eu∗
13m

m2
φm

t33m − 18t23m + 27t3m + 2
(
t33m + 6t3m − 4

)
ln (t3m)− 10

(t3m − 1)4 ,

(A.3b)

gZRV (d) =−
g2
(
4s2
w − 3

)
128π2m2

W

∑
m

λeu23mλ
eu∗
13m

t3m (t3m − ln (t3m)− 1)

(t3m − 1) 2
, (A.3c)

and the corresponding up-type contributions are

gbox
RV (u) =0 , gγRV (u) = −2 gγRV (d) , gZRV (u) = −

8s2
W − 3

4s2
W − 3

gZRV (d) . (A.4)

B Calculation of Iijαβ

In this section we evaluate the integral Iijαβ from eq. (3.4) in general, and in the limit of

vanishing quark masses. To do this we will partly use the results of [88–90]. Firstly we can

use partial fractions to re-express the integral in terms of four simpler terms

Iijαβ =
1

m2
f

1

tα − ri
1

tβ − rj

[
Î (tα, tβ)− Î (ri, tβ)− Î (tα, rj) + Î (ri, rj)

]
, (B.1)

with

Î (s, t) ≡ µε
∫
ddp

∫
ddq

1

p2 − s
1

q2 − t
1

(p+ q)2 − 1
, (B.2)

where we have set q → −q and introduced the dimensionful parameter µ to facilitate di-

mensional regularization. In contrast to [88–90], we will not use the partial p operation

of [91] to transform these integrals into less divergent expressions involving four propa-

gators. It turns out here that neglecting this step leads to a simpler final result. The

momentum space integration in eq. (B.2) can be performed through the introduction of

Feynman parameters, yielding

Î (s, t) = π4
( µ
π2

)ε
Γ [−1 + 2ε]

∫ 1

0
dx

∫ 1

0
dy

yε−1

(1− x)ε xε

(
(1−y)s+

y

x
t+

y

1−x

)1−2ε

. (B.3)

Expanding in ε and substituting this into eq. (B.1) we obtain

Iijαβ =
π4

m2
f

1

tα−ri
1

tβ−rj

∫ 1

0
dx

∫ 1

0
dy [h (tα, tβ)− h (ri, tβ)− h (tα, rj) + h (ri, rj)] , (B.4)
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where we have defined

h (s, t) ≡ sx(1− x)(1− y) + (1− x)yt+ xy

x(1− x)y
ln [sx(1− x)(1− y) + (1− x)yt+ xy] . (B.5)

The integration with respect to y leads to an integral over a sum of dilogarithms

Iijαβ =
π4

m2
f

1

tα − ri
1

tβ − rj
[−g (tα, tβ) + g (ri, tβ) + g (tα, rj)− g (ri, rj)] , (B.6)

where

g (s, t) ≡ s
∫ 1

0
dxLi2

(
1− µ2

)
with sµ2 ≡ 1

(1− x)
+
t

x
. (B.7)

Using the results in [88–90] the integral over x can be performed to obtain:

g (s, t) =
s

2
ln s ln

t

s
+
∑
±
±s(1− s) + 3st+ 2(1− t)x±

2w
(B.8)

×
[
Li2

(
x±

x± − s

)
− Li2

(
x± − s
x±

)
+ Li2

(
t− 1

x±

)
− Li2

(
t− 1

x± − s

)]
, (B.9)

with

x± =
1

2
(−1 + s+ t± w) , w =

√
1 + s2 + t2 − 2(s+ t+ st) . (B.10)

Looking back at eq. (B.6), it can be seen that terms depending only on one ratio ti,j,α,β will

vanish. Therefore, we can replace the function g in eq. (B.6) with the slightly simplified

function

ĝ (s, t) ≡ g(s, t) +
s

2
ln2 s =

s

2
ln s ln t+

∑
±
±s(1− s) + 3st+ 2(1− t)x±

2w
(B.11)

×
[
Li2

(
x±

x± − s

)
− Li2

(
x± − s
x±

)
+ Li2

(
t− 1

x±

)
− Li2

(
t− 1

x± − s

)]
. (B.12)

The combination of eq. (B.6) with g → ĝ and B.12 provides the full analytic solution to

Iijαβ. Nevertheless it is also useful to evaluate the integral in the case of vanishing ri and

rj , as the down-type quark masses are much lighter than the leptoquark and color octet

masses. Thus we also present the integral in this limit

Iαβ ≡ I00αβ =
π4

m2
f

ĝ (tα, 0)− ĝ (tα, tβ)

tαtβ
, (B.13)

where the limit ĝ(s, t)
t→0−→ ĝ(s, 0) is most easily obtained by taking the limit t→ 0 before

performing the x-integration

ĝ (s, 0) = −sπ
2

6
− (1− s) ln s ln(1− s)− (1− s) Li2(s) . (B.14)

In order to verify our result, we compared each expression with the numerical integration

of the integral eq. (3.4).
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C Analytic expressions for certain Passarino-Veltman integrals

Here we give analytic expressions for the N-point functions used in the calculation of rare

processes in the main text. All of the integrals are calculated in limit of zero external

momentum. For the definition of the integrals, see [49, 92]. The two-point functions and

their derivatives are as follows

B0[a2] =∆ε + 1− t ln t

t− 1
, (C.1a)

B1[a2] =− 1

2
∆ε +

1

2
ln
m2

2

µ2
+
−3t2 + 2t2 ln t+ 4t− 1

4(t− 1)2
, (C.1b)

m−2
2 B00[a2] =

1

4
(t+ 1)∆ε +

3− 3t2 + 2t2 ln t

8(1− t)
, (C.1c)

B11[a2] =
1

3
∆ε +

11t3 − 6t3 ln t− 18t2 + 9t− 2

18(t− 1)3
, (C.1d)

where a2 = {m2
1,m

2
2}, t =

m2
1

m2
2

and as we use dimensional regularization,

∆ε ≡
2

ε
− γE + ln 4π . (C.2)

Note that B00 is defined in the units m2
2, whereas the remaining two-point functions are

dimensionless. The derivatives of the Bs are

m2
2

∂B0[a2]

∂p2
=
t
(
t2 − 2t ln t− 1

)
2(t− 1)3

, (C.3a)

m2
2

∂B1[a2]

∂p2
=−

t
(
t3 − 6t2 + 3t+ 6t ln t+ 2

)
6(t− 1)4

, (C.3b)

and both carry units of m−2
2 .

The three-point functions are given by

m2
3C0[a3] =− t1 ln t1

(t1 − 1) (t1 − t2)
+

t2 ln t2
(t1 − t2) (t2 − 1)

, (C.4a)

m2
3C1[a3] =− t2

2 (t1 − t2) (t2 − 1)
+

t21 ln t1

2 (t1 − 1) (t1 − t2)2 −
t2 (t1 (t2 − 2) + t2) ln t2

2 (t1 − t2)2 (t2 − 1)2 ,

(C.4b)

m2
3C2[a3] =− t2 − t1

2 (t1−1) (t1−t2) (t2−1)
+

t21 ln t1

2 (t1−1)2 (t1−t2)
− t22 ln t2

2 (t1−t2) (t2−1)2 , (C.4c)

C00[a3] =
1

4

(
∆ε − ln

m2
3

µ2

)
+

3

8
+− t21 ln t1

4 (t1 − 1) (t1 − t2)
+

t22 ln t2
4 (t1 − t2) (t2 − 1)

, (C.4d)

m2
3C11[a3] =

t2

(
(3t2 − 5) t21 − 4 (t2 − 2) t2t1 + (t2 − 3) t22

)
6 (t1 − t2) 3 (t2 − 1)2 (C.4e)

− t31 ln t1

3 (t1 − 1) (t1 − t2)3 +

t2

((
t22 − 3t2 + 3

)
t21 + (t2 − 3) t2t1 + t22

)
ln t2

3 (t1 − t2)3 (t2 − 1)3 ,
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m2
3C12[a3] =

(
t22 + 1

)
t21 − t2

(
t22 + t2 + 2

)
t1 + t22 (t2 + 1)

6 (t1 − 1) (t1 − t2) 2 (t2 − 1) 2

− t31 ln (t1)

6 (t1 − 1) 2 (t1 − t2) 2
+
t22 (t1 (t2 − 3) + 2t2) ln (t2)

6 (t1 − t2) 2 (t2 − 1) 3
, (C.4f)

m2
3C22[a3] =

(3− 5t2) t21 +
(
5t22 − 1

)
t1 − 3t22 + t2

6 (t1 − 1)2 (t1 − t2) (t2 − 1)2 − t31 ln t1
3 (t1 − 1) 3 (t1 − t2)

+
t32 ln t2

3 (t1 − t2) (t2 − 1)3 , (C.4g)

where a3 = {m2
1,m

2
2,m

2
3} and t1,2 =

m2
1,2

m2
3

. C00 has mass dimension 0, whilst the other

three-point functions are defined with units of m−2
3 .

The calculation of the γ-penguin used in the text also requires the derivatives of several

of the three-point functions. Here we list the analytic expressions for those used:

m4
3

∂C0[a3]

∂p2
1

=− −2t2t
2
1 + t21 + (2t1 − 1) t22

2 (t1 − 1) (t1 − t2)3 (t2 − 1)

=−
t1
(
t21 + t2t1 − 2t2

)
ln t1

2 (t1 − 1)2 (t1 − t2) 3
+
t2
(
t22 + t1 (t2 − 2)

)
ln t2

2 (t1 − t2)3 (t2 − 1)2 , (C.5a)

m4
3

∂C0[a3]

∂p2
2

=− (t2 + 1) t21 − t2 (t2 + 3) t1 + 2t22
2 (t1 − 1) (t1 − t2)2 (t2 − 1)2

+
t21 ln t1

2 (t1 − 1)2 (t1 − t2)2 −
t2
(
t22 + t2 − 2t1

)
ln t2

2 (t1 − t2)2 (t2 − 1)3 , (C.5b)

m4
3

∂C0[a3]

∂p2
12

=
(1− t2)

(
− (t2 − 2) t21 + (t2 − 3) t2t1 + t22

)
2 (t1 − 1) 2 (t1 − t2) 2 (t2 − 1) 2

−
t1
(
t21 + t1 − 2t2

)
ln t1

2 (t1 − 1)3 (t1 − t2)2 +
t22 ln t2

2 (t1 − t2)2 (t2 − 1)2 , (C.5c)

m4
3

∂C1[a3]

∂p2
1

=

(
−5t22 + 9t2 − 2

)
t21 − t2

(
t22 − 2t2 + 5

)
t1 + t22 (t2 + 1)

6 (t1 − 1) (t1 − t2) 3 (t2 − 1) 2

+
t21
(
t21 + 2t2t1 − 3t2

)
ln t1

3 (t1 − 1)2 (t1 − t2)4

−
t2
(
t32 + 2t1 (t2 − 2) t22 + t21

(
t22 − 3t2 + 3

))
ln t2

3 (t1 − t2)4 (t2 − 1)3 , (C.5d)

m4
3

∂C1[a3]

∂p2
2

=

(
t22 − 5t2 − 2

)
t21 + t2

(
t22 + 2t2 + 9

)
t1 − t22 (t2 + 5)

6 (t1 − 1) (t1 − t2) 2 (t2 − 1) 3

− t31 ln t1

3 (t1 − 1)2 (t1 − t2)3

+
t2
(
3t21 + t2

(
t22 − 4t2 − 3

)
t1 + t22 (2t2 + 1)

)
ln t2

3 (t1 − t2)3 (t2 − 1)4 , (C.5e)
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m4
3

∂C1[a3]

∂p2
12

=−
(
t22 − t2 + 1

)
t31 − t2

(
t22 + 2

)
t21 + t22 (t2 + 2) t1 − t32

3 (t1 − 1)2 (t1 − t2)3 (t2 − 1)2

+
t21
(
t21 + (t2 + 1) t1 − 3t2

)
ln t1

6 (t1 − 1)3 (t1 − t2)3 − t22 (t1 (t2 − 3) + t2 (t2 + 1)) ln t2

6 (t1 − t2)3 (t2 − 1)3 , (C.5f)

m4
3

∂C2[a3]

∂p2
1

=

(
−t22 + t2 − 1

)
t21 + t2 (t2 + 1) t1 − t22

3 (t1 − 1) 2 (t1 − t2) 2 (t2 − 1) 2

+
t21
(
t21+(t2+1) t1 − 3t2

)
ln t1

6 (t1 − 1)3 (t1 − t2)3 − t22 (t1 (t2 − 3) + t2 (t2 + 1)) ln t2

6 (t1 − t2)3 (t2 − 1)3 , (C.5g)

m4
3

∂C2[a3]

∂p2
2

=

(
2t22 + 5t2 − 1

)
t21 −

(
9t22 + 2t2 + 1

)
t1 + t2 (5t2 + 1)

6 (t1 − 1)2 (t1 − t2) (t2 − 1)3

− t31 ln t1

3 (t1 − 1) 3 (t1 − t2)2 +
t22 (t2 (t2 + 2)− 3t1) ln t2

3 (t1 − t2)2 (t2 − 1)4 , (C.5h)

m4
3

∂C2[a3]

∂p2
12

=

(
−2t22 + 9t2 − 5

)
t21 +

(
−5t22 + 2t2 − 1

)
t1 + t2 (t2 + 1)

6 (t1 − 1)3 (t1 − t2) (t2 − 1)2

+
t21
(
t21 + 2t1 − 3t2

)
ln t1

3 (t1 − 1)4 (t1 − t2)2 − t32 ln t2

3 (t1 − t2)2 (t2 − 1)3 , (C.5i)

m2
3

∂C00[a3]

∂p2
1

=
(t2 − 1) t21 + t22t1 − t22

12 (t1 − 1) (t1 − t2)2 (t2 − 1)
− t21 (t1 (2t2 + 1)− 3t2) ln t1

12 (t1 − 1)2 (t1 − t2)3

+
t22 (t2 + t1 (2t2 − 3)) ln t2

12 (t1 − t2)3 (t2 − 1)2 , (C.5j)

m2
3

∂C00[a3]

∂p2
2

=
t2 (t2 + 1)− t1

(
t22 + 1

)
12 (t1 − 1) (t1 − t2) (t2 − 1)2 +

t31 ln t1

12 (t1 − 1)2 (t1 − t2)2

− t22 (t1 (t2 − 3) + 2t2) ln t2

12 (t1 − t2)2 (t2 − 1)3 , (C.5k)

m2
3

∂C00[a3]

∂p2
12

=
(t2 − 1) t21 − t1 + t2

12 (t1 − 1)2 (t1 − t2) (t2 − 1)
− t21 (t1 (t2 + 2)− 3t2) ln t1

12 (t1 − 1)3 (t1 − t2)2

+
t32 ln t2

12 (t1 − t2)2 (t2 − 1)2 , (C.5l)

where the derivatives of C00 carry units of m−2
3 and the others carry m−4

3 .

Finally the analytical expressions for the four-point functions are the following:

m4
4D0[a4] =− t1 ln t1

(t1 − 1) (t1 − t2) (t1 − t3)
+

t2 ln t2
(t1 − t2) (t2 − 1) (t2 − t3)

− t3 ln t3
(t1 − t3) (t2 − t3) (t3 − 1)

, (C.6a)

m4
4D1[a4] =− t2

2 (t1 − t2) (t2 − 1) (t2 − t3)
+

t21 ln t1

2 (t1 − 1) (t1 − t2)2 (t1 − t3)

+
t2

(
− t32 + t3t2 + t1

(
t2 (t3 + 1)− 2t3

))
ln t2

2 (t1 − t2)2 (t2 − 1)2 (t2 − t3)2

− t23 ln t3

2 (t1 − t3) (t2 − t3)2 (t3 − 1)
, (C.6b)
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m4
4D2[a4] =

t3
2 (t1 − t3) (t2 − t3) (t3 − 1)

+
t21 ln t1

2 (t1 − 1) (t1 − t2) (t1 − t3)2

− t22 ln t2

2 (t1 − t2) (t2 − 1) (t2 − t3)2

+
t3

(
t1
(
t2 (t3 − 2) + t3

)
+ t3

(
t2 − t23

) )
ln t3

2 (t1 − t3)2 (t2 − t3) 2 (t3 − 1)2 , (C.6c)

m4
4D3[a4] =

t3 − t2
2 (t1 − 1) (t2 − 1) (t2 − t3) (t3 − 1)

+
t21 ln t1

2 (t1 − 1)2 (t1 − t2) (t1 − t3)

− t22 ln t2

2 (t1 − t2) (t2 − 1)2 (t2 − t3)
− t23 ln t3

2 (t1 − t3) (t3 − 1)2 (t3 − t2)
, (C.6d)

m2
4D00[a4] =− t21 ln t1

4 (t1 − 1) (t1 − t2) (t1 − t3)
+

t22 ln t2
4 (t1 − t2) (t2 − 1) (t2 − t3)

+
t23 ln t3

4 (t1 − t3) (t3 − 1) (t3 − t2)
, (C.6e)

m4
4D11[a4] =

( (
t22 − 3 (t3 + 1) t2 + 5t3

)
t21 +

(
t32 + t22 + 3t23t2 − 5t23

)
t1

− t2t3
(
t22 + t3t2 + t2 − 3t3

) )
× t2

6 (t1 − t2)2 (t2 − 1)2 (t1 − t3) (t2 − t3)2

− t31 ln t1

3 (t1 − 1) (t1 − t2)3 (t1 − t3)

+
(( (

t23 + t3 + 1
)
t22 − 3t3 (t3 + 1) t2 + 3t23

)
t21

+ t2
(
t42 − 3 (t3 + 1) t32 + 6t3t

2
2 + t3 (t3 + 1) t2 − 3t23

)
t1

+ t22
(
(t3 + 1) t32 − 3t3t

2
2 + t23

) )
× t2 ln t2

3 (t1 − t2)3 (t2 − 1)3 (t2 − t3)3

+
t33 ln t3

3 (t1 − t3) (t3 − 1) (t3 − t2)3 , (C.6f)

m4
4D12[a4] =

t2t3 (−2t3t2 + t2 + t3) + t1
(
(t3 − 1) t22 + t23t2 − t23

)
6 (t1 − t2) (t2 − 1) (t1 − t3) (t2 − t3)2 (t3 − 1)

− t31 ln t1

6 (t1 − 1) (t1 − t2)2 (t1 − t3)2

+
t22

(
t2
(
t22 + t3t2 − 2t3

)
− t1 (t2 (2t3 + 1)− 3t3)

)
ln t2

6 (t1 − t2)2 (t2 − 1)2 (t2 − t3)3

+
t23

(
t3
(
t23 + t2 (t3 − 2)

)
− t1

(
t3 + t2 (2t3 − 3)

))
ln t3

6 (t1 − t3)2 (t3 − 1)2 (t3 − t2)3 , (C.6g)
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m4
4D13[a4] =

t1
(
(t3 − 1) t22 − t2 + t3

)
− t2 (t2 (t3 − 2) + t3)

6 (t1 − 1) (t1 − t2) (t2 − 1)2 (t2 − t3) (t3 − 1)

− t31 ln t1

6 (t1 − 1)2 (t1 − t2)2 (t1 − t3)

+
t22
(
t2
(
t22 + t2 − 2t3

)
− t1 (t2 (t3 + 2)− 3t3)

)
ln t2

6 (t1 − t2)2 (t2 − 1)3 (t2 − t3)2

+
t33 ln t3

6 (t1 − t3) (t2 − t3)2 (t3 − 1)2 , (C.6h)

m4
4D22[a4] =−

t3 (t3 − t2)
(
t1 (t2 (5− 3t3) + (t3 − 3) t3) + t3

(
t2 (t3 − 3) + t3 (t3 + 1)

))
6 (t1 − t3)2 (t2 − t3)3 (t3 − 1)2

− t31 ln t1

3 (t1 − 1) (t1 − t2) (t1 − t3)3 +
t32 ln t2

3 (t1 − t2) (t2 − 1) (t2 − t3)3(( (
t23 − 3t3 + 3

)
t22 + (t3 − 3) t3t2 + t23

)
t21

+ t3
(
(t3 − 3) t33 + t22 (t3 − 3) + t2

(
−3t33 + 6t23 + t3

))
t1

+ t23
(
t33 + t2 (t3 − 3) t23 + t22

) )
× t3 ln t3

3 (t1 − t3)3 (t3 − 1)3 (t3 − t2)3 , (C.6i)

m4
4D23[a4] =−

t1
(
t2
(
t23 + 1

)
− t3 (t3 + 1)

)
− t3 (t3t2 + t2 − 2t3)

6 (t1 − 1) (t2 − 1) (t1 − t3) (t2 − t3) (t3 − 1)2

− t31 ln t1

6 (t1 − 1) 2 (t1 − t2) (t1 − t3)2 +
t32 ln t2

6 (t1 − t2) (t2 − 1)2 (t2 − t3)2

+
t23

(
t3
(
t23 + t3 − 2t2

)
− t1 (t2 (t3 − 3) + 2t3)

)
ln t3

6 (t1 − t3)2 (t2 − t3)2 (t3 − 1)3 , (C.6j)

m4
4D33[a4] =−

(t3 − t2)
(
− 3t3t2 + t2 + t3 + t1 (−3t3 + t2 (5t3 − 3) + 1) + 1

)
6 (t1 − 1) 2 (t2 − 1)2 (t2 − t3) (t3 − 1)2

− t31 ln t1

3 (t1 − 1)3 (t1 − t2) (t1 − t3)
+

t32 ln t2

3 (t1 − t2) (t2 − 1)3 (t2 − t3)

+
t33 ln t3

3 (t1 − t3) (t3 − 1)3 (t3 − t2)
, (C.6k)

where a4 = {m2
1,m

2
2,m

4
3,m

2
4} and ti =

m2
i

m2
4

for i = 1, 2, 3. Here D00 is defined with units of

m−2
4 and all other four-point functions carry units of m−4

4 .

D Effective operator approach to neutrino masses

In terms of an effective field theory language using dimensional regularization and MS, the

dominant contribution to neutrino masses does not originate from O11b, but from O1. We

will argue this in the following. Assuming that mf ∼ mφ ∼ M � v, we can match the

full theory to the effective theory at the scale M . In particular, we generate a dimension-5

operator O1 by matching at two loop and the operator O11b via tree-level matching. The
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Wilson coefficients C1 (C11b) of the two operators O1 (O11b) are given by

C1 = 4
mfy

2
b

(2π)8

Nφ∑
α,β=1

(
λLQi3αλ

df
3α

)
(Iαβ)

(
λLQj3βλ

df
3β

)
, (D.1a)

C11b =

Nφ∑
α,β=1

y2
b

m2
φα
m2
φβ
mf

(
λLQi3αλ

df
3α

)(
λLQj3βλ

df
3β

)
. (D.1b)

After EW symmetry breaking, O11b also contributes to neutrino masses, but its contri-

bution is suppressed compared to the contribution of O1 by the bottom quark Yukawa

coupling squared

mν =
(
C1 + C11bÂ0(mb)

2
)
v2 , (D.2)

where Â0 denotes the finite part of A0. Hence the ratio of the two contributions is of the

order of
C11bÂ

2
0(mb)

C1
∼
m4
b

m4
φ

, (D.3)

and the contribution of O11b to neutrino masses can be safely neglected for M > v, since

yb � 1. Relaxing the assumption that mf ∼ mφ, we still arrive at the result that O11b can

be neglected compared to O1. However the resulting Wilson coefficients receive additional

corrections due to running between the different scales mφ and mf .

Using a cutoff regularization scheme, the estimate of the different contributions to

neutrino masses is different, since A0 ∼ M2 and the effective operator O11b can be the

dominant contribution to neutrino mass.

A similar discussion applies to other ∆L = 2 operators. In fact, it is straightforward

to generalize the argument to all ∆L = 2 operators.
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[80] C. Bobeth, A.J. Buras, F. Krüger and J. Urban, QCD corrections to B̄ → Xd,sνν̄,

B̄d,s → `+`−, K → πνν̄ and KL → µ+µ− in the MSSM, Nucl. Phys. B 630 (2002) 87

[hep-ph/0112305] [INSPIRE].

[81] LHCb collaboration, First Evidence for the Decay B0
s → µ+µ−, Phys. Rev. Lett. 110 (2013)

021801 [arXiv:1211.2674] [INSPIRE].

[82] LHCb collaboration, Measurement of the B0
s → µ+µ− branching fraction and search for

B0 → µ+µ− decays at the LHCb experiment, Phys. Rev. Lett. 111 (2013) 101805

[arXiv:1307.5024] [INSPIRE].

[83] CMS collaboration, Measurement of the B(s) to µ+µ− branching fraction and search for B0

to µ+µ− with the CMS Experiment, Phys. Rev. Lett. 111 (2013) 101804 [arXiv:1307.5025]

[INSPIRE].

[84] W. Rodejohann, Neutrinoless double beta decay and neutrino physics, J. Phys. G 39 (2012)

124008 [arXiv:1206.2560] [INSPIRE].

– 48 –

http://dx.doi.org/10.1016/j.nuclphysBPS.2011.06.008
http://inspirehep.net/search?p=find+J+Nucl.Phys.Proc.Suppl.,218,38
http://arxiv.org/abs/1112.0242
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.0242
http://dx.doi.org/10.1103/PhysRevLett.76.200
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,76,200
http://dx.doi.org/10.1140/epjc/s10052-010-1482-4
http://dx.doi.org/10.1140/epjc/s10052-010-1482-4
http://arxiv.org/abs/1008.0280
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.0280
http://dx.doi.org/10.1007/JHEP04(2012)008
http://arxiv.org/abs/1111.1257
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.1257
http://dx.doi.org/10.1007/JHEP08(2012)121
http://dx.doi.org/10.1007/JHEP08(2012)121
http://arxiv.org/abs/1206.0273
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.0273
http://dx.doi.org/10.1088/1126-6708/2008/03/049
http://arxiv.org/abs/0707.0636
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.0636
http://arxiv.org/abs/0802.2882
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.2882
http://dx.doi.org/10.1143/PTP.65.297
http://dx.doi.org/10.1143/PTP.65.297
http://inspirehep.net/search?p=find+J+Prog.Theor.Phys.,65,297
http://dx.doi.org/10.1088/1126-6708/1998/10/008
http://dx.doi.org/10.1088/1126-6708/1998/10/008
http://arxiv.org/abs/hep-ph/9808328
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9808328
http://dx.doi.org/10.1016/S0550-3213(02)00291-2
http://arxiv.org/abs/hep-ph/0112303
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0112303
http://www.utfit.org
http://dx.doi.org/10.1016/S0550-3213(00)00007-9
http://arxiv.org/abs/hep-ph/9910220
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9910220
http://dx.doi.org/10.1016/S0550-3213(02)00141-4
http://arxiv.org/abs/hep-ph/0112305
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0112305
http://dx.doi.org/10.1103/PhysRevLett.110.021801
http://dx.doi.org/10.1103/PhysRevLett.110.021801
http://arxiv.org/abs/1211.2674
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.2674
http://dx.doi.org/10.1103/PhysRevLett.111.101805
http://arxiv.org/abs/1307.5024
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.5024
http://dx.doi.org/10.1103/PhysRevLett.111.101804
http://arxiv.org/abs/1307.5025
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.5025
http://dx.doi.org/10.1088/0954-3899/39/12/124008
http://dx.doi.org/10.1088/0954-3899/39/12/124008
http://arxiv.org/abs/1206.2560
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.2560


J
H
E
P
1
0
(
2
0
1
3
)
1
1
8

[85] CMS collaboration, Search for third-generation leptoquarks and scalar bottom quarks in pp

collisions at
√
s = 7 TeV, JHEP 12 (2012) 055 [arXiv:1210.5627] [INSPIRE].

[86] CMS collaboration, Search for new physics in events with same-sign dileptons and b-tagged

jets in pp collisions at
√
s = 7 TeV, JHEP 08 (2012) 110 [arXiv:1205.3933] [INSPIRE].

[87] CMS collaboration, Search for new physics in events with same-sign dileptons and b jets in

pp collisions at
√
s = 8 TeV, JHEP 03 (2013) 037 [Erratum ibid. 1307 (2013) 041]

[arXiv:1212.6194] [INSPIRE].

[88] J. van der Bij and M. Veltman, Two Loop Large Higgs Mass Correction to the rho

Parameter, Nucl. Phys. B 231 (1984) 205 [INSPIRE].

[89] A. Ghinculov and J. van der Bij, Massive two loop diagrams: the Higgs propagator, Nucl.

Phys. B 436 (1995) 30 [hep-ph/9405418] [INSPIRE].

[90] K.L. McDonald and B. McKellar, Evaluating the two loop diagram responsible for neutrino

mass in Babu’s model, hep-ph/0309270 [INSPIRE].

[91] G. ’t Hooft and M. Veltman, Regularization and Renormalization of Gauge Fields, Nucl.

Phys. B 44 (1972) 189 [INSPIRE].

[92] A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop

level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075]

[INSPIRE].

– 49 –

http://dx.doi.org/10.1007/JHEP12(2012)055
http://arxiv.org/abs/1210.5627
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.5627
http://dx.doi.org/10.1007/JHEP08(2012)110
http://arxiv.org/abs/1205.3933
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.3933
http://dx.doi.org/10.1007/JHEP03(2013)037
http://arxiv.org/abs/1212.6194
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.6194
http://dx.doi.org/10.1016/0550-3213(84)90284-0
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B231,205
http://dx.doi.org/10.1016/0550-3213(94)00522-G
http://dx.doi.org/10.1016/0550-3213(94)00522-G
http://arxiv.org/abs/hep-ph/9405418
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9405418
http://arxiv.org/abs/hep-ph/0309270
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0309270
http://dx.doi.org/10.1016/0550-3213(72)90279-9
http://dx.doi.org/10.1016/0550-3213(72)90279-9
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B44,189
http://arxiv.org/abs/0709.1075
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.1075

	Introduction
	The model
	Neutrino masses
	Flavor structure of the matrix of integrals I
	Understanding the neutrino flavor structure
	Normal mass ordering
	Inverted mass ordering


	Constraints from flavor physics relevant to neutrino mass generation
	Radiative lepton flavor violating decays l(i)*- -> l(j)*- gamma
	Anomalous magnetic moment
	LFV rare decay mu*- -> e*- e*+ e*-
	mu <-> e conversion in nuclei
	Other constraints
	Processes from Delta F=0 operators generated at tree level
	Meson mixing
	Constraints from the b->s transition
	Delta F=0 flavor changing neutral current processes at one-loop level


	Constraints from other flavor- and lepton-number violating processes
	Constraints induced by right-handed coupling of the third generation
	Constraints from flavor-violating processes induced by coupling to the first two generations of quarks
	Neutrinoless double beta-decay

	Collider constraints
	Scalar leptoquark
	Fermionic colored octet

	Naturalness constraints
	Contributions to the SM Higgs
	Naturalness of the leptoquark masses

	Mathematica code
	Summary and conclusions
	More details of flavor physics
	l(i) -> l(j) gamma
	mu*- -> e*-e*+e*-
	mu <-> e conversion in nuclei

	Calculation of I(ij alpha beta)
	Analytic expressions for certain Passarino-Veltman integrals
	Effective operator approach to neutrino masses

