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extend the construction to M-theory, by constructing thermal giant graviton solutions using

spherically wrapped M2- and M5-branes. More importantly, we switch on new quantum

numbers, namely internal spins on the sphere, which are not present in the usual extremal

limit for which the brane world volume stress tensor is Lorentz invariant. We examine

the effect of this new type of excitation and in particular analyze the physical quantities

in various regimes, including that of small temperatures as well as low/high spin. As

a byproduct we find new stationary dipole-charged black hole solutions in AdSm × Sn

backgrounds of type II/M-theory. We finally show, via a double scaling extremal limit, that
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1 Introduction

The use of brane probes in string/M-theory, notably the AdS/CFT correspondence, has

been an important tool to uncover new physics and has generated a plethora of beautiful

applications. In particular, it has revealed novel features of supergravity backgrounds,

phase transitions, stringy observables, non-perturbative aspects of field theories and dual

manifestations of operators in CFTs. Furthermore, a great deal has been learnt about the

fundamentals of string/M-theory by studying the low energy theories living on D/M-branes.

Recently a new method for thermal probe branes, based on the blackfold approach [1,

2], has been developed and applied to various cases of interest [3–9]. This has revealed

a number of new qualitative and quantitative effects, as compared to the conventional

method for probe branes in finite temperature backgrounds. In this setting, ref. [8] found

and analyzed thermal giant graviton solutions in type IIB string theory, based on spherically
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wrapped black D3-branes. The purpose of this paper is to extend these results to a wider

class of solutions, revealing a number of novel effects. In one direction, we extend the

construction of [8] to M-theory, by constructing thermal giant gravitons solutions using

wrapped M2- and M5-branes. In another direction, we generalize the construction by

switching on new quantum numbers, namely internal spins on the sphere, which are not

present in the extremal limit due to the Lorentz invariance of the world volume stress

tensor in that case. We examine the effect of this new type of excitation and analyze the

resulting phase structure and physical quantities in various regimes. As a byproduct we

note that by setting the angular velocity on the S1 equal to zero, new stationary blackfold

solutions in AdSm×Sn backgrounds of type II/M-theory are found. Moreover, by applying

a double scaling extremal limit to our thermal spinning giant graviton solutions, we find a

novel null-wave giant graviton solution which exhibits a BPS spectrum and does not have

a counterpart in the usual weakly coupled world volume theory description.

The physics of probe branes is conventionally examined using the weakly coupled

description in terms of the D-brane (DBI) or M-brane world volume theories or, in the

case of fundamental string probes, the Nambu-Goto action. However, as a consequence of

“open-closed string duality”1 this weakly coupled (microscopic) world-volume picture has

a complementary description on the strongly coupled (macroscopic) bulk space-time side.

Indeed, for supersymmetric configurations one can typically find an exact interpolation

between these two sides, which has been at the heart of, for example, the microscopic

counting of black hole entropy and the AdS/CFT correspondence.

When considering the bending of supersymmetric brane configurations most work has

been done by considering the world volume theory of a single brane in a given background.

However, one expects that the corresponding brane profiles can also be obtained from a

gravity perspective by considering the back reaction of many branes on top of each other

and solving the supergravity equations of motion using appropriate ansätze incorporating

the symmetries. A well-known example of this, relevant to the present paper, is the relation

between giant gravitons [10–12] and LLM geometries [13], but more generally, this type of

open-closed duality has been shown to extend beyond the AdS/CFT decoupling limit. For

example, in ref. [14] the shapes of brane intersections were studied from the supergravity

perspective and found to be in perfect agreement with those found from the DBI action,

the BIon solution of [15, 16] being the simplest example of this.

A natural question is then whether one can extend these open-closed descriptions to

the case of finite temperature (non-supersymmetric) configurations. This is first of all

interesting in view of the fact that in many applications branes are used to probe finite

temperature backgrounds. Furthermore, on the gravity side, branes become black when

heated up, i.e. they develop horizons, so we may learn more about black hole physics.

Finally, in the AdS/CFT context this provides us with nontrivial information on thermal

states in the dual field theories. On the world volume side this involves thermalizing the

brane actions2 and subsequently finding non-trivial solutions, while on the space-time side

1We use this terminology here loosely to denote a duality between world volume and space-time

description.
2See e.g. [17], where the Nambu-Goto action was quantized in a finite temperature background.
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one should find the corresponding gravity solutions of bent black branes. Since already at

zero temperature the latter leads to complicated (generally unsolvable) equations of motion,

one approach is to treat the black branes as finite temperature probes of the background.

This corresponds to the leading order blackfold method [1, 2], which thus provides us with

a tool3 to construct the finite temperature geometries in a perturbative expansion.

This new method to study thermal probe branes has been used to study the thermalized

version of the BIon system for the D3-brane [3, 4], the gravity dual of the rectangular

Wilson loop as described by an F-string ending on the boundary of AdS5 × S5 [5], the

M2-M5 version of the BIon system [6, 7], including a spinning M2-M5 ring intersection [9]

and thermal giant gravitons in type IIB string theory [8].

In particular, ref. [8] analyzed what happens to the type IIB D3-brane giant graviton as

one heats up the AdS5 × S5 background to non-zero temperature, requiring the D3-brane

probe to thermalize with the background. Several interesting new effects were found,

including that the thermal giant graviton has a minimal possible value for the angular

momentum and correspondingly also a minimal possible radius of the S3 on which the

D3-brane is wrapped. Furthermore, the free energy of the thermal D3-brane giant graviton

was computed in the low temperature regime, which potentially can be compared to that of

a thermal state on the gauge theory side. A detailed analysis of the space of solutions and

stability of the thermal giant graviton was made and it was shown that, in parallel with

the extremal case, there are two available solutions for a given temperature and angular

momentum, one stable and one unstable. The thermal giant graviton expanded in the

AdS5 part was also briefly examined in [8].

The aim of the present paper is to include and analyze the effect of internal spin

on the sphere on which the thermal giant graviton is wrapped. In the process we will

also generalize the results of [8] to M-theory, as we will treat the D3, M2 and M5-brane

cases in parallel. We will primarily focus on giant gravitons wrapping the sphere part

of the corresponding AdSm × Sn backgrounds. The possibility of adding internal spin is

a new feature of thermal giant gravitons that is not present in the case of the standard

extremal (supersymmetric) giant gravitons. The reason is that at zero temperature the

world volume stress tensor of the giant graviton is locally Lorentz invariant, as can be seen

directly from the D/M-brane actions (for zero world volume gauge fields). This means

that the internal spin of the giant graviton is not visible in the extremal limit. However

turning on a temperature breaks the local Lorentz invariance of the world volume stress

tensor and thus makes internal spin an important effect to consider. Moreover, we find

that it is possible to perform a non-trivial double scaling extremal limit, giving rise to a

novel null-wave4 giant graviton with BPS spectrum.

A short outline and main results of the paper are as follows: we start in section 2 by

setting up the problem and deriving the blackfold action and resulting equations of motion

describing thermal spinning giant gravitons obtained by wrapping (n − 2)-branes on an

3Reviews include [18, 19] and [20] gives a more general derivation of the blackfold effective theory. See

also refs. [3, 21, 22] for the generalization of the blackfold approach to charged black branes.
4Null-waves were first considered in the blackfold context in ref. [21]. Furthermore, a null-wave on the

M2-M5 brane intersection was recently considered in ref. [9] using blackfold methods.
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Sn−2 sphere in the sphere-part of AdSm × Sn, where the cases of interest are (m,n) =

{(5, 5); (4, 7); (7, 4)}. Our discussion will be succinct, and we refer to [8] for more details.

The giant graviton is rotating on an S1 of the Sn, and the new aspect we consider here

is that it is simultaneously spinning on the Sn−2. This is only possible for odd n, so the

M2-brane case included in this paper is by construction non-spinning, while for the D3

and M5-brane we focus here on the maximally symmetric case with equal spins in each of

the (n− 1)/2 Cartan directions. The solution of the equations of motion is presented, for

given temperature T , number of branes N(n−2) and internal spin S, and expressions for

the various physical quantities are given. The picture that emerges is that there are two

branches of solutions, a lower and upper branch, as was seen also in [8]. However, in the

presence of internal spin each of these two branches splits up further into two branches, a

low spin and high spin branch. We also consider the regime of validity of our approach, in

which the (n−2)-branes are treated as probes with locally approximately flat world volume.

This leads to the requirement that 1� N(n−2) � N
m−1
n−1 , where N is the quantized flux of

the background. The issue of the Hawking-Page transition is also addressed.

Section 3 is devoted to examining the solution space of the thermal spinning giant

gravitons in further detail (this is supplemented by appendix A which discusses various

other properties of the solution space). The main features of the solution space are exhibited

by plotting angular velocities for a representative value of the temperature. It is shown that

the regimes of low and high spin have distinct properties. For low spin, the thermodynamics

receives quadratic spin corrections which are subleading to the thermal corrections from

the non-zero temperature. On the other hand, in the high spin regime (which is bounded

by a given value of maximal internal spin) the physics is dominated by the effects of internal

spin, and we present perturbative expressions for the physical quantities in that regime.

We furthermore perform a low temperature expansion, obtaining first the free energies for

the non-spinning thermal giant graviton (see eq. (3.15)). It is interesting to observe that

the leading thermal contribution to F − J/L (with F the free energy and J the angular

momentum on S1) in each case is proportional to the free energy of the field theory living

on the giant graviton brane, independent of J and N . We furthermore consider the cases

of low temperature with in addition low and high intrinsic spin respectively. Finally, as a

byproduct of our analysis we note that, once intrinsic spin is introduced, one can also solve

the equations of motion for the case Ω = 0, i.e. no rotation on the S1 and only intrinsic

spin. Hence the resulting solution is stationary5 so that we find, in the blackfold limit, a

novel stationary black hole solution in AdSm × Sn, in analogy with stationary odd-sphere

blackfold solutions in asymptotically flat space [21–24] and AdS space [25, 26]. For the

D3/M5-brane case these solutions have horizon topology S5×S3/S4×S5 respectively, and

the solution carries brane dipole charge. These are the first examples of such novel black

holes space times in AdS5 × S5 and AdS4 × S7 respectively.

In section 4 we find a zero temperature excitation of the usual extremal giant graviton

by taking a double scaling extremal limit of our thermal spinning D3/M5-brane giant gravi-

ton solutions. The resulting solution is described by a null-wave on the giant graviton world

5For J 6= 0 the solution is “quasi-stationary”, see [8] for a detailed discussion.
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volume, and we call this a null-wave giant graviton. The spectrum of the solution is com-

puted and we show in particular that the lower branch satisfies E = J+S with S the total

spin carried by the null-wave on the internal sphere. We take this as a strong indication that

these solutions are 1
8 -BPS for the D3-brane case and 1

16 -BPS for the M5-brane case. The

spectrum of the upper branch in the null-wave limit is also obtained. Furthermore, a sta-

bility analysis of the lower and upper branch is presented, and in particular it is shown that

the lower branch is stable as expected for a BPS solution. The null-wave giant gravitons

are new and do not have a counterpart in the standard weakly coupled brane world volume

theories. Using the blackfold action as a starting point, we also present an action that

describes these null-wave giant gravitons. This action is then used to construct in addition

null-wave giant gravitons expanded into the AdS factor of the background. We observe the

same BPS spectra as for the null-wave giant gravitons expanded on the sphere part.

2 Setup using thermal probe method

In this section we discuss the setup that we employ to obtain thermal spinning giant

gravitons. The method uses the blackfold approach [1–3, 21, 22] to thermal probe branes

in string theory, and parallels in particular the case of thermal (non-spinning) D3-brane

giant gravitons discussed in ref. [8], to which we refer the reader for further details and

choice of notation. This is generalized here to include i) thermal M2, M5-brane giant

gravitons and ii) internal spin. As we will see the latter can only be consistently turned

on for odd branes (i.e. the D3 and M5-brane case). Beyond the setup and the resulting

blackfold equation of motion, this section presents the corresponding thermal spinning

giant gravitons solutions, the regime of validity and the extremal limit.

2.1 Blackfold action and equation

Our aim is to study giant graviton solutions of type II string theory and M-theory as the

AdSm × Sn background is heated up to finite temperature, treating the giant gravitons as

probes of these backgrounds, but heating them up to the same (finite) temperature. This

is done by going to the supergravity regime and replacing the thermal probe branes by an

effective description in terms of their stress tensor and charge current.

We focus here on the conformal cases, namely we will be considering D3-branes in the

type IIB supergravity background and M5- and M2-branes in the D = 11 supergravity

backgrounds of the form AdSm × Sn, with (m,n) = {(5, 5); (4, 7); (7, 4)}. Note that n and

m are related by n = (3m− 5)/(m− 3) but for ease of notation we will keep thse symbols

separately below. We restrict our attention in this paper primarily to the corresponding

(n − 2)-branes wrapped on an Sn−2 inside the Sn-sphere of the background (except in

section 4.3). The motion of this thermal probe brane (blackfold) of topology Sn−2 is

supported by the background gauge field on the Sn. The analysis is readily generalized

to wrapping the branes on spheres inside the AdS factor, as was discussed for thermal

(non-spinning) D3-brane giant gravitons in [8].

Our first input to set up the problem is the stress tensor and charge current of the

black (n − 2)-brane probes. To leading order in the blackfold approximation the stress

– 5 –
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tensor is that of a (n− 1)-dimensional perfect fluid tensor Tab = (ε+P )uaub +Pγab where

σa = τ, σ1 . . . , σn−2 label the world volume coordinates, ua is the (n− 1)-velocity and γab
the induced metric on the brane. Furthermore, the energy, pressure, entropy density and

local temperature are given by

ε = T s−P , P = −G
(
1 + (m− 1) sinh2 α

)
, T s = (m−1)G , T =

m− 1

4πr0 coshα
, (2.1)

where we have defined

G ≡
Ω(m)

16πG
rm−1

0 , (2.2)

with Ω(m) the volume of the unit m-sphere. The parameters of the black (n−2)-brane stress

tensor and thermodynamics are thus r0, α and the codimension of the brane m+ 1. Note

that we can replace Newton’s constant G in terms of the tension T(n−2) = ((2π)n−2ln−1
p )−1

of the (n− 2)-brane using the relation6

T(n−2) =
N

Ω(n−2)Ln−1
, (2.3)

where N and L are the magnitude of the flux and the radius of the sphere part of AdSm×Sn

respectively. The black (n − 2)-brane furthermore has the (n − 1)-form charge current

J(n−1) = Q(n−2)dτ ∧ dσ1 ∧ . . . ∧ dσn−2 where Q(n−2) is the charge density

Q(n−2) = (m− 1)G sinhα coshα = N(n−2)T(n−2) , (2.4)

and N(n−2) the number of probe black (n − 2)-branes. Note that current conservation on

the world volume implies that Q(n−2) is constant.

Turning to the background and the embedding of the probe brane, we write the metric

on Sn as

dΩ2
(n) = L2

(
dθ2 + cos2 θdφ2 + sin2 θdΩ2

(n−2)

)
. (2.5)

The giant graviton spatial world volume is spanned by the Sn−2 and it moves around the

S1 ⊂ Sn described by the coordinate φ with angular velocity φ̇ ≡ βnΩ, βn = (−1)D−n−1.7

The size r of the giant graviton and the distance to the equator of the Sn is described by

the θ coordinate, r ≡ L sin θ. As mentioned above, in addition to generalizing the D3-brane

giant graviton to M-branes, the main objective of this paper is to examine the effects of

intrinsic spin. To incorporate this, we write the spatial part of the induced metric on the

brane as dΩ2
(n−2) =

∑[n/2]
i=1 dµ2

i +
∑[(n−1)/2]

j=1 µ2
jdφ

2
j subject to the condition

∑[n/2]
i=1 µ2

i = 1.

Then, instead of considering the effective fluid at rest ua∂a ∼ ∂τ , we will now consider the

following fluid velocity

ua =
ka

k
, ka∂a = ∂τ + ω

[(n−1)/2]∑
i=1

∂φi , (2.6)

6Note that for this one uses 16πG = (2π)m+n−3lm+n−2
p , where we recall that for the IIB string theory

case l8p = g2s l
8
s .

7The choice of sign βn is introduced for convenience to simplify the formulae below, treating the D3,

M2 and M5-branes uniformly. Alternatively, one can take a plus sign for all cases, and reverse the sign of

the M5-brane charge, turning it into an anti-M5-brane.
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where we have defined k ≡ |−γabkakb|
1
2 . We thus take the maximally symmetric situation

with equal angular velocities in each of the Cartan directions of the Sn−2, and, for reasons

explained below we will assume that n is odd. We then have the norms

k2 = |kw.v.|2 −W2 , W ≡ ωr , |kw.v.|2 ≡ |∂τ |2 = 1− (ΩL)2 + V2 , V ≡ Ωr . (2.7)

Note that for n even the first expression above would depend on one of the direction cosines

µn/2, leading to a Killing vector with a norm that is angular dependent. In analogy with

the neutral blackfold solutions considered in ref. [24], this will lead to an inconsistency in

the equation of motion. Thus we can only consistently switch on internal spin for the D3

and M5-brane, where the branes wrap odd-spheres. The results below still hold for the

M2-brane provided one sets the internal angular velocity ω to zero.

We will also need the background gauge field which in terms of the coordinates defined

in (2.5) takes the form

A[n−1] = (L sin θ)n−1dφ ∧ dΩ(n−2) = rn−1dφ ∧ dΩ(n−2) . (2.8)

Given the embedding described above, pulling back the gauge form to the world volume

gives a factor Ω, the angular velocity of the giant graviton on the S1.

Thermal giant graviton equation of motion

We are now ready to derive the equation of motion (EOM) for the spinning thermal giant

graviton. Here we derive the equation directly from the blackfold world volume action (for

a derivation based on the blackfold extrinsic equation see appendix C of [8]). The action

takes the form

I =

∫
R×S(n−2)

{
∗P +Q(n−2)P

[
A[n−1]

]}
, (2.9)

where R denotes time, P
[
A[n−1]

]
is the pull-back of the background gauge field A[n−1]

to the world volume and Q(n−2) = N(n−2)T(n−2) is the total charge of the giant graviton

(see also (2.4)). We also remark that since the (n − 2)-brane is expanded on the (n − 2)-

sphere the local temperature has a redshift as compared to the global temperature T of

the background space-time that we are probing, i.e. T = T/k .

Using the embedding given above, and employing the SO(n − 1) symmetry of the

configuration, the action takes the form

βIE = −Ω(n−2)r
n−2

(
|kw.v.|P + rΩQ(n−2)

)
, (2.10)

where we have gone to Euclidean space and the factor β = 1/T results from the integration

over Euclidean time. The equation of motion is obtained by varying the action keeping fixed

(T,Ω, ω) and Q(n−2). Using the definitions in (2.7) and the identity δr logP = −R1δr log k

we find after some algebra the EOM in the form

(n− 2)
(
k2 +W2

)
+ V2 +

k2 +W2

k2
R1

(
W2 − V2

)
+ (n− 1)V

√
k2 +W2R2 = 0 , (2.11)

where we have introduced the two ratios [8]

R1 ≡
T s
P

=
1−m

1 + (m− 1) sinh2 α
, and R2 ≡

Q(n−2)

P
=

(1−m) sinhα coshα

1 + (m− 1) sinh2 α
. (2.12)

– 7 –



J
H
E
P
1
0
(
2
0
1
3
)
1
0
9

Conserved quantities. Given a solution of the EOM (2.11), the configuration has a

number of conserved quantities. For use below, we present the (off-shell) expressions of

these conserved quantities, which follow from the general results for blackfolds in flux

backgrounds, derived in [8]. These are given by

E=
Ω(n−2)r

n−2

|kw.v.|k2

[
ε|kw.v.|2+P

(
|kw.v.|2−k2

)]
, S=

1

T
(m− 1)Ω(n−2)G|kw.v.|rn−2 , (2.13)

J=EΩρ2 +Q(n−2)Ω(n−2)r
n−1 , S=

Ω(n−2)Gωrn|kw.v.|
k2

, (2.14)

where E is the energy, S the entropy, J the angular momentum along the S1 ⊂ Sn, and

Si = 2
n−1S, i = 1, . . . (n − 1)/2 the intrisinc angular momenta on Sn−2. Here and in the

following we have also introduced ρ =
√
L2 − r2 and we remind the reader that ε, P , G are

defined in (2.1), (2.2). Note that, in accord with the results of appendix B in [8] one can

check that the Euclidean action in (2.10) satisfies βIE = FG = E − TS − ΩJ − ωS. The

equations of motion are therefore equivalent to requiring the first law of thermodynamics.

2.2 Solution space and thermodynamics

We now describe the solution space of the EOM (2.11). We work in the ensemble with

given temperature T , fixed charge (number of (n− 2)-branes) Q(n−2) and intrinsic spin S.

As in [8] we will use the norm of the fluid killing vector k to (formally) parameterize the

solution space as follows. For a given k,R1,R2 and W we can solve the EOM (2.11) for V
since it is a simple quadratic equation,

V±(k,W) =
1

2

(n− 1)R2

√
k2 +W2 ∓

√
D(n)
W

(R1 − 1)k2 +R1W2
k2 , (2.15)

with

D(n)
W =

(
k2 +W2

)(
4

(
n− 2 +

R1

k2
W2

)(
R1 − 1 +

R1

k2
W2

)
+ (n− 1)2R2

2

)
. (2.16)

We will refer to the two solution branches as the lower (−) and upper (+) branch re-

spectively. At the end of this section, we will show that for zero intrinsic spin and zero

temperature the lower branch reduces to the standard 1
2 -BPS giant graviton, while in that

limit the upper branch is another extremal solution that has not received much attention

in the literature.8 Using (2.7) we can now find the expression for respectively r̂ ≡ r/L,

Ω̂ ≡ ΩL and ω̂ ≡ ωL. One finds

r̂(k,W) =
V√

1 + V2 −W2 − k2
, Ω̂(k,W) =

V
r̂
, ω̂(k,W) =

W
r̂
, (2.17)

where V(k,W) is given by (2.15). Now for a given value of k we can (explicitly) work

out the values of R1 ≡ R1(k) and R2(k) and (implicitly) the value of W ≡ W(k) by the

requirement that Q(n−2), T and S are kept fixed. This will be explained in the following.

8See also [8] where the extremal limit of the lower branch for the D3-brane case was discussed in detail.
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First of all, following [8], we can determine the value of R1 and R2 (see (2.12)) for a

given k. To this end, we introduce the parameter φ ≡ 1/ cosh2 α. The charge conservation

equation (2.4) can then be rewritten as

φm−2 − φm−3 +
(m− 3)m−3

(m− 2)m−2
sin2 δ = 0 , (2.18)

with9

sin δ =

(
T̂

k

)m−1

, T̂ ≡ T

Tstat
, Tm−1

stat =
1

Q(n−2)G

(m− 1)mΩ(m)

4(4π)m

√
(m− 3)m−3

(m− 2)m−2
. (2.19)

The equation (2.18) is a polynomial of degree m− 2 whose solution we will denote by φ(k)

(for simplicity of notation we suppress the T̂ dependence in all expressions below). For

m = 4 (M5-brane on S7), it becomes a simple quadratic equation with solution

(m,n) = (4, 7) : φ(k) = sin2

(
δ(k)

2

)
. (2.20)

In the case of m = 5 (D3-brane on S5), the equation becomes cubic with solution [8]

(m,n) = (5, 5) φ(k) =
2

3

sin (δ(k))√
3 cos (δ(k)/3)− sin (δ(k)/3)

. (2.21)

It is not possible to write down an analytical expression for m = 7 (M2-brane on S4) but

φ(k) can be obtained numerically.

The second parameter W is determined by the (fixed) intrinsic spin S. Rewriting S is

straightforward using the expression in (2.14). We have

S(k,W) = LQ(n−2)Ω(n−2)
φ(k)W

√
k2 +W2

k2
√

1− φ(k)
r̂ (k,W)n−1 , (2.22)

where we recall that r̂ is given in (2.17).This equation does not in general have an analytical

solution but it is a simple algebraic equation in one variable W and its solution is again in

principle easy to obtain numerically. We denote the solution by W(k).

The equations (2.15)–(2.19) and (2.22) formally parameterize the solution in terms of

k for given T̂ , Q(n−2) and S.

Range of k. Finally, we need to address the range of k. First of all we note that k

necessarily lies in the range T̂ ≤ k ≤ 1, where the lower bound follows from (2.19) and

the upper bound from the geometric relation r ≤ L. However, this is only a necessary

condition and the form of the solution, notably positivity of the discriminant in (2.16),

leads to further restrictions. In particular, for the non-spinning giant graviton (S = 0) this

leads to the restricted range T̃ = T/Tmax ≤ k ≤ 1. Here Tmax is the maximum temperature

that the solution can have in that case (see appendix A.3), and we note that T̂ < T̃ because

9Note that T̂ here is slightly differently defined as compared to [8].
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Tstat > Tmax. More generally, as soon as we turn on spin one finds that the range of possible

k values becomes more intricate but can be computed in principle for given T̂ , S.

As an illustration we given some details on the range of k in appendix A.2, while we also

refer the reader to section 3, where we will plot the solution branches for a representative

value of T̂ . This indicates that k goes from 1 (low spin regime) to T̂ (for which the

maximum spin is obtained) and a small interval of k’s which is excluded by the EOM. As

a consequence, we see that each of the lower and upper branches, branch up further into

two branches, a low spin and high spin branch.

Physical quantities. Given a spinning giant graviton solution, we can write down the

on-shell physical quantities using the expressions in (2.13), (2.14). As in [8] we define

rescaled dimensionless energy, entropy, and angular momenta by

E ≡ EL

NN(n−2)
, S ≡ STstat

NN(n−2)
, J ≡ J

NN(n−2)
, S ≡ S

NN(n−2)
, (2.23)

and use the dimensionless ratios r̂ ≡ r/L ρ̂ ≡ ρ/L. Notice that J (respectively S) is the

ratio between orbital (respectively internal) angular momentum and the orbital angular

momentum of the maximal size giant graviton at r = L. We then record the expressions

of E, S, J and S in terms of k, W, φ(k) and r̂(k,W)

E =
1√

k2 +W2

1 + φ
k2W2 + φ

m−1√
1− φ

r̂n−2 , S =
1

T̂

φ√
1− φ

√
k2 +W2r̂n−2 , (2.24)

J = Eρ̂
√

1−W2 − k2 + r̂n−1 , S =
φW
√

k2 +W2

k2
√

1− φ
r̂n−1 . (2.25)

The expression for S suggests that maximum intrinsic spin is attained for k = T̂ , which is

confirmed by the analysis in the next section.

Validity of the approach. We also address the validity of the (leading order) blackfold

approach in which the (n− 2)-brane is treated in the probe approximation. For the probe

approximation to be valid for our supergravity black (n− 2)-brane probe we must require

the transverse length scale rs of the probe to satisfy the conditions that rs is much smaller

than any of the scales rint, rext and L, where rint and rext are the length scales associ-

ated with the intrinsic and extrinsic curvature of the embedding of the brane, respectively,

and L is the length scale of the AdSm × Sn background. A detailed analysis leads to the

(sufficient) requirement

1� ND3 � N � λND3 , 1� N2
M5 � N , 1� NM2 � N2 . (2.26)

We note that the upper bounds N(n−2) � N
m−1
n−1 follow from setting r = L in the necessary

requirement N(n−2) � N
m−1
n−1 (r/L)m−1. It is interesting to observe that the last two condi-

tions (for the M-branes) can be rewritten as λM � 1 and λM � 1 respectively, in terms of

the ’t Hooft like coupling λM = N2
5 /N2 that was identified in ref. [7] in the context of the

self-dual string soliton of the M5-brane theory. Here we use the fact that for the M5-brane

– 10 –



J
H
E
P
1
0
(
2
0
1
3
)
1
0
9

case our N is the parameter of the M2-brane theory and for the M2-brane case N is the

parameter of the M5-brane theory.

It is also important to examine how these bounds relate to the Hawking-Page tem-

perature THP ∼ 1/L, above which the AdS black hole background will become dominant

over the hot AdS space-time background considered in this paper. Using the results for

the maximal temperature collected in appendix A.3 we have first of all in the case of zero

intrinsic spin that

Tmax

THP
∼ N

1
n−1

N
1

m−1

(n−2)

� 1 , (2.27)

where we used (2.26) in the last step. We thus see that in the regime where the probe

blackfold approximation is valid, the maximum temperature of the solution is far above the

Hawking-Page temperature. As a consequence this maximum temperature is not physical

in the sense that before reaching it one should change the background to the AdS black

hole, and hence our solution is most relevant for small temperatures (T̂ � 1). We also

remark that when the intrinsic spin is turned on the maximum temperature decreases.

2.3 Extremal limit

To make contact with the standard zero-temperature giant graviton we consider here the

extremal limit. This is obtained by setting φ = 0 so R1 = 0 and R2 = −1. Since S = 0 for

all W, we expect W to drop out of the problem.10 Indeed, we do not expect to be able to

see intrinsic rotation in the extremal limit, due to Lorentz invariance of the world volume

stress tensor. In further detail, we obtain from the solution (2.15) by setting R1 = 0 and

R2 = −1 that

V− =
√

k2 +W2 = |kw.v.|, V+ = (n− 2)
√

k2 +W2 = (n− 2)|kw.v.| . (2.28)

Using that |kw.v.| = 1 − Ω̂2(r̂)r̂2, V = Ω̂(r̂)r̂, it is then easy to parameterize the angular

velocity Ω in terms of the size of the giant graviton r̂

ˆ̄Ω−(r) = 1, ˆ̄Ω+(r) =
n− 2√

(n− 2)2 − (n− 1)(n− 3)r̂2
, (2.29)

and we verify that the results are independent of W. Here the lower branch is the stan-

dard 1
2 -BPS giant graviton while the upper branch (see also [8]) is a second extremal giant

graviton branch. Our thermal giant graviton branches thus correspond to heating up (and

spinning up) these extremal solutions. The corresponding extremal results for the giant

graviton on AdS are obtained by the transformation ˆ̄Ω±(AdS) = [ ˆ̄Ω±(r̂ → ir̂)]−1.

It is straightforward to compute the energy and angular momentum of the extremal

solutions using (2.24) and the above. For the lower branch we find

E− = r̂n−3, J− = r̂n−3 , (2.30)

10Another extremal limit, involving a double scaling, will be considered in section 4.
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while the upper branch has

E+ = r̂n−3
√

(n− 2)2 − (n− 3) (n− 1) r̂2, J+ = r̂n−3
(
n− 2 + (n− 3)r̂2

)
, (2.31)

In ref. [8] the stability of both branches was examined in detail for the D3-brane case, which

easily generalizes in the obvious way to the M2- and M5-brane cases considered here.

A point worth emphasizing is that the extremal solutions discussed here are in fact su-

pergravity solutions: they represent backgrounds with probe supergravity branes in them,

computed to leading order in the blackfold approach. That these solutions directly map

onto the D/M-brane giant graviton world volume solutions is a consequence of supersym-

metry (extremality). In this connection, note that the extremal limit of the blackfold world

volume action (2.10) is the D/M-brane world volume action multiplied by a factor of N(n−2)

the number of probe branes, which in the blackfold approach is very large.

3 Thermal spinning giant graviton

In this section we examine the physics of the thermal and internally spinning version of the

giant graviton configuration consisting of an (n − 2)-brane wrapped on an (n − 2)-sphere

moving on the n-sphere of AdSm × Sn. We will start by elucidating some of the main

features of the solution space obtained from the EOM (2.11).

3.1 Main features of solution space

From the point of view of the dual field theory, the most interesting giant graviton con-

figuration is the one close to maximal size, r ' L. In this case the dual operator (on the

lower branch) is known. In the extremal case for r = L there are two solutions to the

EOM, namely Ω̂ = 1 and Ω̂ = n−2 corresponding to the end points of the lower and upper

branch, respectively (cf. eq. (2.29)). In this section we examine the configuration space at

r = L when turning on temperature and intrisic spin. We mention that in principle it is

possible to numerically do a similar analysis for any r > 0, however, this is not particularly

illuminating and such an analysis has thus been omitted. We expect the general features

of the results below to hold for any r.

At r = L the Killing vector k only depends onW = ω̂. Substituting the expression for

W in terms of k into (2.15), we obtain the solution for V± = Ω̂± parameterized in terms of

k = (1− ω̂2)1/2 at maximal size. In figure 1 the angular velocity Ω is plotted as a function

of k for both branches for the D3- and M5-brane, respectively. Here we describe the main

features of the solutions.

As can be seen from the plot, there is a small range of values of k which admits no

solutions to the EOM. Therefore each branch splits up into a low spin branch and a high spin

branch.11 At low spin the angular velocity Ω± and thermodynamics get small quadratic

spin corrections. This is simply because the conserved quantities depend quadratically on

the spin parameterW except the intrinsic angular momentum which only depends linearly

11This effect can also be deduced by looking at the behavior of the quantity DW in (2.16), see appendix A.
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k

LΩ−

T̂

1

0

LΩ+

n− 2

T̂ k

1

0

Figure 1. The angular velocities Ω̂± (solid) and relative intrinsic angular momentum S/Smax

(dashed) plotted as a function of k for the D3 (red) and M5 (blue) thermal giant graviton config-

urations. The plots are drawn for T̂ = 0.18 and have been cut off at k = 0.6 to enhance features.

on W to lowest order. However, these corrections will be sub-leading to the thermal

corrections from the non-zero temperature of the background (see section 3.2 below).

In the high spin regime the situation is very different and the solution space is dom-

inated by the effects of internal spin. As already pointed out in section 2.2, the maximal

value for the intrinsic angular momentum is attained as k → T̂ . This can also be seen

from the plots in figure 1. As k approaches T̂ , we see that the angular velocity Ω− crosses

zero and becomes negative. In order to examine the solution space near maximal spin we

expand around maximal spin k = T̂ (1 + δ2), δ � 1. It is straightforward to solve the

charge quantization equation (2.18) to leading order in δ. Notice that for k = T̂ , we have

φ
(
T̂
)

=
m− 3

m− 2
. (3.1)

It is now straightforward to compute the thermodynamics for small δ. For the D3 giant

graviton we find to leading order in T̂

E =
2

√
3 T̂ 2

(
1− 4

√
2√
3
δ +O

(
δ2
))

, S =
1

2
√

3 T̂ 2

(
1− 4

√
2√
3
δ +O

(
δ2
))

. (3.2)

Similarly we find for the M5-brane configuration

E =
1

√
2 T̂ 2

(
1− 3

√
3√
2
δ +O

(
δ2
))

, S =
1

3
√

2 T̂ 2

(
1− 3

√
3√
2
δ +O

(
δ2
))

. (3.3)

Note that to leading order T̂S is of order O(T̂ 0). To leading order, the free energy is

therefore equal to the energy. The above relations can be used to eliminate the small

expansion parameter δ and write the energy in terms of the intrinsic angular momentum

in the high spin limit. For the D3 giant graviton, we find (here ∆S ≡ Smax − S)

E=
1

L

(
2
√

2

3 · 31/4π2

√
N3ND3

(LT )2
−4∆S+O

(
∆S2

))
, Smax =

1

3 · 31/4
√

2π2

√
N3ND3

(LT )2
. (3.4)
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where we have re-introduced the physical units using (2.3) and (2.19). Similarly, we find

for the M5-brane

E =
1

L

(
9

8
√

2π2

(
N4NM5

)1/3
(LT )2

− 3∆S +O
(
∆S2

))
, Smax =

3

8
√

2π2

(
N4NM5

)1/3
(LT )2

. (3.5)

As is clear from the expressions above, the maximally spinning giant graviton configurations

are very heavy objects.12

3.2 Low temperature expansion

In this section we give an approximate solution to the giant graviton EOMs in terms of

the radial coordinate r in a low temperature expansion and without intrinsic spin (this will

thus provide the M5- and M2-brane generalizations of ref. [8]). Moreover we briefly exam-

ine the low spin and the maximal spin case for a given r in a low temperature expansion,

respectively.

The low temperature limit with no intrinsic spin. In order to work out the low

temperature expansion we take T → 0, or equivalently φ→ 0 while keeping k finite. First,

since φ� 1, we can immediately solve the charge conservation equation (2.18). Indeed, in

this limit the φm−2 term can be dropped and the solution to (2.18) is given by

φ = Cm

(
T̂

k

)γm
, (3.6)

where

γm =
2(m− 1)

m− 3
and Cm = (m− 3)(m− 2)

2−m
m−3 . (3.7)

Notice that for the values of n and m considered in this paper, we have γm = γD−n = n−1.

In the limit with no intrinsic spin, we therefore find the following solution for φ

φ = φ0 k1−n , φ0 ≡ φ|r=L = fnT̂
n−1 , (3.8)

where we have defined fn ≡ CD−n and

f4 =
4

5 · 51/4
, f5 =

2

3
√

3
, f7 =

1

4
. (3.9)

Notice that the limit φ � 1 requires that k � T̂ which is equivalent to r̂ � T̂ . We now

proceed as in [8] and expand around the extremal solution (2.29). It is straightforward to

expand V± with W = 0 in terms of φ. One finds13

V− = k +O(φ2) , V+ = (n− 2)(1− φ)k +O(φ2) . (3.10)

12We note that the energy in (3.4) is proportional to N2(ND3/N)1/2, while (3.5) is proportional to

N3/2λ
1/6
M in terms of the ’t Hooft like coupling λM defined below (2.26).

13Note that the expressions and manipulations pertaining to this section only apply to the physical

values of n and m.
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It is seen that for the physically relevant values of n and m, V− gets no first order correction

as was also seen in the D3-brane case. Now using k2 = 1− Ω̂2r̂2 and V = r̂Ω̂, we can solve

for Ω̂

Ω̂− ' Ω̂− +O(φ2), Ω̂+ ' Ω̂+

1−

(
Ω̂+r̂

n− 2

)2

φ

+O(φ2) . (3.11)

where the expressions for the angular velocites Ω̂± at extremality were recorded in

eq. (2.29).

It is now possible to compute the on-shell quantities for the lower and upper branch

using (2.24), (2.25). For the lower branch, we find

E− ' Ē− +
n− 2

n− 1

φ0

r̂2
, J ' J̄− +

n− 2

n− 1

(
ρ̂

r̂

)2

φ0 ,

T̂S− ' φ0 , F− ' Ē− −
(
r̂2 − n− 2

n− 1

)
φ0

r̂2
. (3.12)

where Ē− and J̄− were written down in eq. (2.30). Similarly for the upper branch we find

E+'Ē+ +
n− 2

n− 1

(
n− 2

Ω̂+

)n−2(
n− 1− n− 2

r̂2

)
φ0, J+ ' J̄+ −

n− 2

n− 1

(
n− 2

Ω̂+

)n−1(
ρ̂

r̂

)2

φ0 ,

T̂S+'

(
n−2

Ω̂+

)n−2

φ0 , F+'Ē+ +
n−2

n−1

(
n−2

Ω̂+

)n−2(
(n−1)(n−3)

n−2
−n−2

r̂2

)
φ0 , (3.13)

with Ē+ and J̄+ given in (2.31). If needed, it is easy to reintroduce the dimensions and

write the expression in terms of the physical quantities. Simply use that

φ0NNM2

(LT )3
=

√
2 25π3

33
N

3/2
M2 ,

φ0NND3

(LT )4
= π4N2

D2 ,
φ0NNM5

(LT )6
=

27π6

36
N3

M5 . (3.14)

We now express the free energy F = E − TS on the lower branch in terms of the angular

momentum. We find

FM2 =
J

L
−
√

2 25π3

34
N

3/2
M2 L

2T 3 +O(T 6) ,

FD3 =
J

L
− π4

4
N2

D3L
3T 4 +O(T 8) ,

FM5 =
J

L
− 26π6

37
N3

M5L
5T 6 +O(T 12) .

(3.15)

We observe that, to leading order, the difference F − J/L is proportional to the free

energy of the field theories living on the giant graviton branes [27]. In this connection,

we note that it is non-trivial that the J-dependence has cancelled out in this difference.

It is straightforward to write down similar expressions for the upper branch, however, the

resulting expressions involve complicated functions of the angular momentum multiplying

the thermal corrections, so we omit them here.
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Finally, we compute the ratio J/E for the lower branch. We find

JM2

EM2
= L−

√
2 26π3L

34J
N

3/2
M2 (LT )3 ,

JD3

ED3
= L− 3π4L

4J
N2

D3(LT )4 ,

JM5

EM5
= L− 5 · 26π6L

37J
N3

M5(LT )6 .

(3.16)

The first term is recognized as the usual Kaluza-Klein contribution while the second term

is due to thermal effects coming from the thermal excitations of the (n − 1)-dimensional

field theories living on the giant graviton world volume.

The low temperature limit with low intrinsic spin. Since S ∼ φ (cf. eq. (2.25)), for

a given temperature T̂ , the scale set for S is given by φ0. Let us therefore define S = s φ0.

In this way the low spin regime is where s � 1. In this regime we have W ∼ s � 1 and

k ' |kw.v.|. If we further take the low temperature limit, we find to leading order

ω̂− = s , ω̂+ =

(
Ω̂+

n− 2

)n
s . (3.17)

In the low temperature regime, the effects of internal spin are first visible to order O(φ2
0).

The expression for the conserved quantities (3.12) and (3.13) are therefore not changed to

leading order.

Low temperature and maximal spin case. For a given T̂ � 1, maximal spin is

attained for k = T̂ . Indeed, the lowest possible value for k is T̂ (cf. the discussion in

section 2.2). In the low temperature limit, the middle term in the extrinsic equation (2.18)

dominates and therefore V ' W. We therefore conclude

ω̂ ' ±Ω̂± = 1 +O(T̂ 2) . (3.18)

In the high spin limit we therefore see that the upper and lower branch are on completely

the same footing. The upper branch is rotating in the positive direction while the lower

branch rotates in the negative direction around the S1. As the intrinsic spin is decreased,

the two angular velocities increase so that Ω̂+ goes from 1 to Ω̂+ (+ thermal corrections)

and Ω̂− goes from −1 to 1 (+ thermal corrections). This behavior can also be seen on the

plot in figure 1. It is easy to work out the maximal spin thermodynamics for any r � T̂ .

One finds the same results as in section 3.1 scaled with suitable powers of r̂.

3.3 Spinning black hole configuration

Very much as in flat backgrounds, the extrinsic equation allows for stationary Ω = 0

odd-sphere solutions [21] (i.e. configurations with only intrinsic spin and (m,n) =

{(5, 5), (4, 7)}). In order to make connection with ref. [21] and related works, instead

of working in the usual ensemble where we keep T , r and N(n−2) fixed and determine the
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one parameter space of solutions parameterized by internal spin S, in this section we keep

the size of the giant graviton r, the temperature T and the global dipole potential14

Φ(n−2) = Ω(n−2)r
n−2 tanhα , (3.19)

fixed. This amounts to simply taking

αΦ = arctan

(
Φ(n−2)r

2−n

Ω(n−2)

)
. (3.20)

As we now go along the one parameter family of solutions parameterized by the internal

spin S at fixed r and T , the dipole potential Φ(n−2) will be constant but the charge Q(n−2) =

T(n−2)N(n−2) will vary. For Ω = 0, the extrinsic equation (2.11) takes the simple form

(n− 2)
(
1− ω2

rr
2
)

= −R1(αΦ)ω2
rr

2 , (3.21)

with the solution

ωr =
1

r

√
n− 2

n− 2−R1(αΦ)
, (3.22)

for the internal angular velocity.

The balancing condition (3.22) is the same as the one obtained for flat backgrounds [21].

This was expected since the coupling to the background n-form flux is proportional to

Ω combined with the fact that the extrinsic equation of motion is a local equation. We

emphasize that the solution (3.22) represent a stationary bona fide three-parameter15 black

hole solution on AdSm×Sn. Using the formulas (2.13) (by substituting k = 1−ω2
RR

2 with

α fixed), it is possible to obtain the expressions for the black hole mass and thermodynamics

in a straightforward manner. However, note that although the balancing condition (3.22)

is equivalent to the balancing equation for odd-sphere solutions in flat backgrounds, the

thermodynamics is not the same due to the non-trivial (global) background geometry. In

particular the curvature of the Sn will introduce a tension term in the Smarr relation [8].

Also note that the angular momentum J of these configurations is not vanishing (as it

would trivially be in flat backgrounds) due to the presence of the background flux.

If we want to determine the stationary Ω = 0 solutions for a given charge Q(n−2)

(i.e. switch back to the canonical ensemble), in addition to eq. (3.22) we must also

impose (2.13). This gives an implicit equation for ωr which is neither captured by the

high spin regime nor the usual low temperature regime. However, it is easy to see that a

solution exists by continuity (which can also be seen on the plot in figure 1) and obtaining

the solution is straightforward numerically.

4 Null-wave giant graviton

In this section we examine a specific solution of eq. (2.15), consisting of a zero temperature

excitation of the usual extremal giant graviton obtained by taking a particular limit for

14Notice that the expression only holds for Ω = 0, see [21].
15Described by parameters (r, r0, α) or through a set of transformations (captured by eqs. (2.1), (3.19))

the physical parameters (r, T,Φ(n−2)).
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which the fluid velocity becomes light-like. Motivated by this configuration we then write

down an action for null-wave branes and show that the result obtained from varying this

action and approaching zero temperature in a non-trivial way leads to the same solution.

Finally, as an application of this action we obtain the ‘dual’ version of this configuration

expanded into AdSm.

4.1 Extremal giant graviton solution with null-wave

Here we show that the thermal giant graviton solution obtained in sections 2 and 3 admits a

zero-temperature limit which can be regarded as a null-wave excitation of the extremal giant

graviton presented in section 2.3. This null-wave limit consists in approaching extremality

by sending φ→ 0 such that

φ

k
= P k , k→ 0 (P fixed) , (4.1)

while keeping the charge Q(n−2) constant. This zero-temperature limit is consistent

with (2.18). Moreover, in this particular limit, the equation of motion (2.11) simplifies to

(n− 2)W2 + V2 −W2P
(
W2 − V2

)
− (n− 1)VW = 0 . (4.2)

The solution to (4.2) can also be obtained by taking the appropriate limit (4.1) in the

general solution (2.15) and reads

V± =
1

2

n− 1± |n− 3− 2PW2|
1 + PW2

W . (4.3)

As in the extremal case of section 2.3 , this results in two branches of solutions

Ω̂− = ω̂ , Ω̂+ = ω̂

(
n− 1

1 + PW2
− 1

)
. (4.4)

The off-shell thermodynamic properties associated with these configurations are obtained

from (2.13) together with (4.1) and take the following form:

E =
1

ω̂

(
1 + Pω̂2r̂2

)
r̂n−3 , T̂S = 0 , (4.5)

J = Eρ̂
√

1− ω̂2r̂2 + r̂n−1 , Si =
2

n− 1
Pω̂2r̂n+1 , i = 1, . . . , (n− 1)/2 . (4.6)

Contrary to the usual 1
2 -BPS case presented in section 2.3, we see that the null-wave

giant graviton caries spin along the Cartan directions of the world volume, which vanishes

when the momentum density P vanishes. The null-wave excitation of the extremal giant

graviton excites (n − 1)/2 new extra quantum numbers of equal magnitude. We will now

analyze the thermodynamic properties and stability of both branches (4.4) and compare

the results with the extremal giant graviton.
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Lower branch. For the branch of solutions Ω̂−, the requirement that k = 0 implies

that Ω̂− = ω̂ = 1. In fact, this means that not only the center of mass is moving at

the speed of light but also all points in the expanded brane. This was not possible for

the extremal graviton solution of section 2.3 as there all brane points are required to

move along a timelike Killing vector field. In this case, using eqs. (4.5)–(4.6), the on-shell

thermodynamic quantities take the form

E = E− +
S
r̂2

, J = J− + ρ̂2 S
r̂2
, (4.7)

where E− and J− denote the energy and angular momentum of the lower branch extremal

giant graviton given in section 2.3 and S denotes the sum of all the spins, i.e.,

S =

(n−1)/2∑
i=1

Si = P r̂n+1 . (4.8)

These relations are of particular interest as they indeed show that this configuration can be

seen as a zero-temperature excitation of the lower branch of the extremal giant graviton.

Furthermore, from (4.7) we obtain the relation:

E = J + S . (4.9)

This relation is also interesting in its own right as it shows, in the case of AdS5 × S5, that

we are dealing with a configuration with a 1
8 -BPS spectrum since it satisfies the expected

BPS bound E = J + S1 + S2. Similarly, in the case of AdS4 × S7 it corresponds to a

configuration with a 1
16 -BPS spectrum since E = J + S1 + S2 + S3. If the giant graviton

has maximal size, r̂ = 1, the BPS relation (4.9) simplifies to E = J + P.

Upper branch and comparison between branches. For the upper branch solution

Ω+, one can also solve the constraint k = 0 , however the resulting expression for ω is

too cumbersome to be presented here. Nevertheless, in the limit in which P vanishes the

constraint k = 0 yields the value of ω̂

ˆ̄ω =
1√

(n− 2)2 − (n− 3)(n− 1)r̂2
, (4.10)

which when inserted into (4.5) gives rise to the thermodynamic properties of the upper

branch of the extremal giant graviton as given in section 2.3. The upper branch solution

in (4.4) has generically a non-BPS spectrum for all values of P except when the giant gravi-

ton acquires maximal size. This is clear when looking at figure 2, since for all values of P
the two branches meet at r̂ = 1 and therefore the charges E and J are equal at maximum

size. These plots are obtained by solving the constraint k = 0 for the upper branch and

obtaining r̂ (P). The bound on r̂, i.e., 0 < r̂ ≤ 1 implies the bound 1
3 ≤ ω̂ ≤ 1 on ω̂. These

bounds in turn imply that at maximality the total spin S is equal for both branches. In

contrast with the thermal spinning case analyzed in section 3 the spin of these null-wave

giant graviton configurations is not bounded from above and from eqs. (4.7) neither is the

energy nor the orbital angular momentum. Figure 2 also shows that indeed, the configu-

ration characterized by (4.4) is a deformation of the extremal giant graviton (dashed line).
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Figure 2. E versus r̂ (left plot) and J versus r̂ (right plot) for P = 0, 1
6 ,

1
2 and n = 5 . The

dashed lines represent the plots for the extremal giant graviton with P = 0 while the uppermost

curve represents the case P = 1
2 .

Stability. To study the stability of the solution branches (4.4) we employ the method

used in [8] which consists in considering the thermodynamic ensemble parametrized by

the size r, the conserved orbital angular momentum J, the conserved spins Si and the

conserved total charge Q(n−2), and looking for the configurations that minimize the energy

E. A small off-shell perturbation along r of the angular velocity ω and the momentum

density P, with J, Si and Q(n−2) held fixed, allows us to determine the second derivative

of E with respect to r. For the lower branch this takes the simple form:

E−(2) =
1

2

(n− 3− 2P r̂2)2

(1− r̂2)(1 + P r̂2)
r̂n−3 . (4.11)

In the case P = 0 and n = 5 we recover the second variation of the energy for the lower

branch extremal giant graviton [8]. If we restrict to the cases P > 0, as otherwise the

energy would be negative (see eq. (4.5)), we always have that E−(2) > 0. This means

that the lower branch of the null-wave giant graviton is always stable as expected for

BPS configurations. In the case of the upper branch, expanding around the extremal

value (4.10) for n = 5 one obtains

E+
(2) =

r̂2

2ρ̂2

(
4Ω̄+(r)

(
4

3
r̂2 − 1

)
+

(9− 28r̂2 + 16r̂4)

ρ̂2
ω̃

)
, (4.12)

where we have introduced the expansion parameter ω̃ = ω − ˆ̄ω. In the case for which

ω̃ = 0 ,one recovers the result for the extremal giant graviton, namely, that the upper branch

is only stable if r̂ > r̂∗ where r̂∗ =
√

3/2 [8]. As the spin parameter ω̂ is introduced the value

of r̂∗ can be determined numerically and increases with increasing ω̂. The range of stability

of the upper branch is decreased for increasing spin. This feature is also seen in the case of

the giant graviton constructed from wrapping an M5-brane around the S7 of AdS4 × S7.

These results could have been anticipated by looking at figure 3. For each value of S the sur-

face intersecting the curve for fixed P selects two different values of J. The value of J corre-

sponding to the lowest energy E is the one corresponding to the lower branch in (4.4). How-

ever, if J is increased beyond the BPS bound, the lower branch ceases to exist and the stable

configurations lie within the stable region of the upper branch solution r̂∗ ≤ r̂ ≤ 1. This is

a very similar picture to the stability properties of the P = 0 extremal giant graviton [8].
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Figure 3. E versus S and J for the values P = 0, 1
6 ,

1
2 and n = 5 . The dashed line represents

P = 0 while the uppermost curve represents P = 1
2 .

4.2 Action for null-wave branes

In this section we obtain an action for null-wave branes by taking an appropriate limit of

the action (2.9). We begin by stressing that the extremal limit of (2.9) that yields the DBI

action multiplied by a factor of N(n−2) is obtained by sending r0 → 0 and α→∞ such that

the total charge Q(n−2) is held constant. Equivalently, using the parameter φ introduced

in section 2, the same limit is obtained by sending φ → 0. However, we are interested in

near-extremal situations for which φ is taken to be small but non-zero. In these cases, the

fluid pressure approaches P → −Q(n−2)(1 − φ/(n − 1)). Using now the low temperature

expansion obtained in eqs. (3.6)–(3.7) as φ→ 0, the action (2.9) reduces to16

I = −Q(n−2)

∫
Wn−1

dn−1σ
√
−γ

(
1− fn

n− 1

(
T̂

k

)n−1
)

+

∫
Wn−1

P[A[n−1]] . (4.13)

In the case for which the temperature is taken to zero, the action (4.13) reduces to N(n−2)

times the DBI action plus the Wess-Zumino contribution. When the temperature is non-

zero, it accounts for near-extremal excitations of ground state configurations. Noting that

by definition k = | − γabkakb|
1
2 , the world volume stress tensor of the excited state can be

obtained from (4.13) in the usual way [28] and takes the form

T ab = Q(n−2)fn

(
T̂

k

)n−1(
uaub +

1

n− 1
γab
)
−Q(n−2)γ

ab . (4.14)

From the form of the world volume stress tensor it is clear that as T̂ → 0 we obtain the

known result for Dirac branes at zero temperature.

The expression (4.14) suggests the existence of a scaling limit as T̂ → 0 different from

the usual extremal limit [21]. This is obtained by sending T̂ → 0 while the fluid velocity

approaches the speed of light k → 0 such that
√
fn(T̂ /k)

n−1
2 ua →

√
Pla for constant P.

In this case, the world volume stress tensor of the excitation is given by

T ab = K lalb −Q(n−2)γ
ab , (4.15)

16We have written the action (4.13) adapted to the background space-time and configurations studied

here but we stress that this action is easily generalized for any other background and for the large class of

branes studied in [21].

– 21 –



J
H
E
P
1
0
(
2
0
1
3
)
1
0
9

where we have introduced the momentum density K via the relation K = Q(n−2)P and also

the null-vector la satisfying lala = 0.17 The world volume stress tensor (4.15) is that of

a null-wave: a zero-temperature excitation of the Dirac brane world volume stress tensor

carrying a conserved momentum current along a null-vector la. When the momentum

density K vanishes, one obtains the result for Dirac branes. For the case of non-zero K, the

near-extremal action (4.13) can be exchanged by a simpler one for which the variational

principle holds the momentum density K constant instead of the temperature T ,18

I = −Q(n−2)

∫
Wn−1

dn−1σ
√
−γ
(

1 +
1

2
P k2

)
+

∫
Wn−1

P[A[n−1]] . (4.16)

The world volume stress tensor (4.15) then follows from (4.16) by first obtaining it for

general k and afterwards taking the limit k → 0. The equations of motion that follow by

varying (4.16) take the form [8]

DaT
ab = 0 , T abKab

µ =
1

(n− 1)!
⊥ µ

νF
νρ1...ρn−1Jρ1...ρn−1 , (4.17)

where Kab
µ is the extrinsic curvature of the embedding surface, ⊥ µ

ν projects orthogonally

to the world volume directions and F[n] = dA[n−1] is the background field strength.19

Here note that the first equation in (4.17) is trivially satisfied as a consequence of

stationarity [29] and the only non-trivial dynamics are encoded in the second equation

of (4.17). When introducing (4.15) into (4.17) leads to eq. (4.2) for the particular

embedding geometry of the giant graviton.

Conserved momentum current and spin. The equations of motion (4.17) that arise

by varying the action (4.16) express conservation of the world volume stress tensor (4.15)

along world volume directions and balance of mechanical forces along transverse directions

to the world volume. However, the first equation in (4.17) now splits into two equations

lbDbl
a = 0 , Da (Kla) = 0 . (4.18)

The first equation above requires the null vector la to generate geodesics along the world

volume while the second equation expresses the conservation of the momentum current.

The momentum current can be integrated in order to obtain a conserved momentum charge

associated with the near-extremal configuration. However this charge is not independent

and is related to the existence of angular momenta along world volume directions (spin)

of the configuration. Indeed, for the configurations presented in the previous sections, the

spin along the world volume Killing vector field χi can be evaluated using the expression

Si = K
∫
Bn−2

dn−2σ
√
−γ laχai , (4.19)

17The world volume stress tensor (4.15) can also be obtained by taking the equivalent limit r0 → 0 and

k→ 0 such that (Ω(n+1)nr
n
0 )

1
2 ka = (16πGK)

1
2 k la [21].

18Note that the variational principle also holds the charge Q(n−2) constant since DaQ(n−2) = 0 and hence

P is also held constant. Further, in order to write (4.16) we have used the fact that the variation of δφ is

given by δφ = −(1/γm)φδ logk . Furthermore, the action (4.16) is general for all p-branes studied in [21]

and for any background space-time if one simply replaces n by p+ 2.
19Here we have assumed that the force term on the r.h.s. of the second equation in eq. (4.17) does not work

on the world volume. The reader should see ref. [8] for more details on how to compute these quantities.
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where Bn−2 is the spatial part of the world volume. If the momentum density K vanishes,

the configuration carries no spin. Using (4.19) results in the value for the spin written

in (4.5). The energy and angular momentum along transverse directions to the world

volume can be evaluated using the formulae given in [8] together with the world volume

stress tensor (4.15).

4.3 Null-wave giant graviton expanded into AdSm

Here we obtain the ‘dual’ version of the spinning giant graviton configuration of section 4.1,

namely of (m−2)-branes expanded into the Sm−2 sphere of the AdSm part of the space-time

(but still moving on a circle in Sn) using the action (4.16). We begin by parameterizing

the AdSm metric as

ds2
AdSm

= −R2
0 dt

2 +R−2
0 dρ̃2 + ρ̃2dΩ2

(m−2) , R2
0 = 1 +

ρ̃2

L̃2
, (4.20)

where L̃ = 2L/(m−3) and the metric on the sphere (2.5) is parametrized by the coordinates

αi. The giant graviton is now placed at ρ̃ = r while the background gauge field with support

on the S(m−2) takes the form

A[m−1] = −r
n−1

L̃
dt ∧ dΩ(m−2) . (4.21)

The world volume Killing vector field is in this case |kw.v.|2 = R2
0 − Ω2L2 , while the fluid

velocity is k2 = |kw.v.|2 − ω2r2. The action (4.16) takes the simple form

βIE = Q(n−2)Ω(m−2)r
m−2

[
|kw.v.|

(
1 +

1

2
P k2

)
− r

L̃

]
. (4.22)

Explicit variation and taking the limit k→ 0 leads to the equation of motion

(m− 2)W2L̃2 + r2 +W2P(1− ω2L̃2)r2 − (m− 1)WL̃r = 0 . (4.23)

This equation admits two branches of solutions as its ‘dual’ version in section 4.1. However,

the upper branch of solutions is less interesting as it is never BPS. This is in fact the same

feature observed for the upper branch of the usual 1
2 -BPS giant graviton [8]. Our focus

will be on the lower branch of solutions which takes the simple form of

Ω̂− = 1 , ω̂ = 1 , (4.24)

where we have rescaled Ω and ω such that Ω̂ = ΩL and ω̂ = ωL̃.

Thermodynamic properties and stability. Using the formulae for thermodynamic

quantities given in [8] and eq. (4.19) for the spin of the configuration we obtain the following

off-shell expressions20

E =
1

ω̂
R2

0

(
1 + Pω̂2r̂2

)
r̂m−3 − r̂m−1 , T̂S = 0 , (4.25)

20Here we have introduced the ratio r̂ = r/L̃ as well as the rescaled quantities

E =
E

Ω(m−2)Q(m−2)L̃m−2
, J =

J

Ω(m−2)Q(m−2)L̃m−2L
, S =

S
Ω(m−2)Q(m−2)L̃m−1

.
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Figure 4. E versus r̂ (left plot) and J versus r̂ (right plot) for P = 0, 1
6 ,

1
2 and n = 5 for the

lower branch of solutions. The dashed lines represent the plots for the extremal giant graviton with

P = 0 while the uppermost curves correspond to the case P = 1
2 . The plot was restricted to the

range 0 ≤ r̂ ≤ 1.

J =
1

ω̂

√
1 + r̂2(1− ω̂2)

(
1 + Pω̂2r̂2

)
r̂m−3 , Si =

2

n− 1
Pω̂2r̂m+1 . (4.26)

For the specific solution (4.24) one can find the relations

E = E− + (1 + r̂2)
S
r̂2
, J = J− +

S
r̂2
, (4.27)

implying the BPS bound E = J +S, where S is the sum over all the (n− 1)/2 spins. The

effect of increasing the spin on the energy and angular momentum can be seen by looking

at figure 4. As the spin is increased both the energy and angular momentum increase for

fixed r̂. Figure 4 depicts the interval 0 ≤ r̂ ≤ 1 but we note that for these configurations

in which the giant graviton is expanded into the AdSm part, the size r is unbounded from

above. The stability properties can be analyzed using the method outlined in section 4.1.

In this case we find for the second variation of the energy on the lower branch

E−(2) =
1

2

(m− 3− 2P r̂2)2

(1 + r̂2)(1 + P r̂2)
r̂m−3 . (4.28)

Therefore we see that these configurations are always stable for any value of r as expected

for BPS configurations.

5 Discussion and outlook

In this paper we have constructed and analyzed thermal spinning giant gravitons in both

type II string theory and M-theory. For extremal giant gravitons, at zero temperature, the

world volume stress tensor is Lorentz invariant, so internal spin on the sphere is a gauge

degree of freedom and hence “invisible”. Heating up the giant graviton breaks the Lorentz

invariance, allowing for the introduction of new quantum numbers, namely, the internal

spin. The results of [8] and the present paper, show that by thermalizing giant gravitons

(in the supergravity regime) we find interesting finite temperature objects in supergravity

exhibiting a variety of new qualitative and quantitative effects, while at the same time we

gain access to connections between extremal and null-wave objects.
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We emphasize that the thermal spinning giant gravitons we have constructed, consist-

ing of the background together with the thermal probe brane placed in it, are bona fide

solutions of the supergravity equations of motion, to leading order in the blackfold limit.

This is even true for high temperatures (i.e. also above the Hawking-Page temperature)

as long as T ≤ Tmax, provided that we are in the regime of validity in which the black

brane can be treated as a probe (see section 2.2) . However, it would be interesting to see

what happens to our solutions when heated up beyond the Hawking-Page temperature by

repeating the analysis for the corresponding AdS black hole backgrounds.

As mentioned above, the thermal spinning giant gravitons of this paper are leading

order classical solutions of the relevant supergravity theory. However, the blackfold ap-

proach provides a well-defined scheme in which one can consider higher-order corrections.

It would be interesting in this context to study higher-order (elastic) corrections21 using

the results of [20, 28, 29, 33, 34]. For the D3-brane case this would reveal what happens

for larger values of the perturbative ratio ND3/N , while for the M-brane cases this would

involve perturbative effects involving the ’t Hooft like coupling λM (identified in ref. [7],

see section 2.2) with corrections governed by λM for M5-branes and 1/λM for M2-branes.

Furthermore, we recall that as a byproduct of our analysis we have found, in the blackfold

limit, new stationary dipole-charged black hole solutions with horizon topology Sm×Sn−2

in AdSm × Sn type II/M-theory backgrounds for m,n = (5, 5) and (4, 7). It would be

interesting to examine these further, and perhaps construct the full solution numerically.

Another aspect that deserves deeper study is the supersymmetry of the null-wave giant

gravitons, which would be first of all important to verify explicitly to leading order, and

subsequently examine at higher orders.

We have considered in this paper the maximally symmetric spinning case with equal

angular velocity on each of the Cartan directions. It could be interesting to study the

less symmetric case with arbitrary angular velocities (see appendix A of [24] where

this was studied for stationary S3-blackfolds in asymptotically flat space). Another

interesting generalization is to construct the spinning thermal giant gravitons on products

of odd-spheres, in analogy with [21, 24]. This would involve M2-branes on T 2, so that in

particular this allows for spinning M2-branes contrary to the case of single odd-spheres

considered here where spinning M2-branes are not possible.

As also remarked in [8], another important next step would be to consider the case in

which we have many thermal (spinning) giant gravitons moving along the S1 of Sn and

taking the limit in which they are smeared along this circle. This would reveal the the differ-

ence between the smeared and non-smeared phases at finite temperature, and elucidate the

connections with for example the superstar [35], bubbling AdS solutions [13] and bubbling

AdS black holes [36]. A related outstanding question is to examine the connection between

our null-wave giant gravitons (which have SO(m− 1)× U(1) isometry with m = 5 for D3

and m = 4 for M5) and the lower supersymmetric bubbling geometries that have been

21Viscuous corrections of (charged) black branes have been considered in [30–32] where in particular

ref. [32] considered D3-branes showing that the blackfold effective field theory approach subsumes the

constructions encountered in the fluid/gravity correspondence and the black hole membrane paradigm.
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considered in the literature (see e.g. refs. [37–40]). In this connection, considering thermal

versions of giant gravitons with less supersymmetry [41] is expected to be relevant as well.

We finally point out that the null-wave giant gravitons do no have a counterpart in the

usual weakly coupled world volume theory description. It would be interesting to reconsider

this by studying the thermal DBI (or M-brane) theory and exploring an appropriate limit.

This would be worthwhile in view of finding a precise dual description of the null-wave giant

gravitons. More generally, via the AdS/CFT correspondence our thermal spinning giant

graviton solutions are expected to correspond to a thermal state in the dual gauge theory. It

would be very interesting to find a description of this thermal state in the gauge theory and

compare its properties to those of the thermal giant graviton, in particular the free energies

found in eq. (3.15) in the low temperature limit and the accompanying low/high spin results.
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A Details on solution space

In this appendix we give further details on the solution space presented in sections 2–3 and

establish the relation between the results presented in this paper and those obtained in [8].

A.1 Alternative parameterization of solution space

Here we reparameterize the equations of motion and solution space of section 2 such that

the connection with the solution space of the non-spinning thermal giant graviton found

in [8] is more apparent. To this aim, we define a new parameter ω such that

ω =
ω2r2

k2 . (A.1)

Using this newly defined parameter, the equation of motion (2.11) can be rewritten as

(n− 2 +R1ω) |kw.v.|2 + Ω2r2 (1−R1(ω + 1)) + (n− 1)Ωr|kw.v.|R2 = 0 . (A.2)

For clarity of presentation we focus on the case n = 5. In this situation eq. (A.2) admits

the following family of solutions

Ω± =
|3 + ωR1|√

(3 + ωR1)2L2 − 8(1 + ∆±(α,ω))r2
, (A.3)

where we have defined

∆±(α,ω) = −1

8

(
3R1 + 8R2

2 ± 4R2

√
D(α,ω) + ωR1(R1 − 4)

)
+

1

2
, (A.4)
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Figure 5. D(α,ω) as a function of α for 0 ≤ ω ≤ 1 and n = 5 . The dashed black line represents

the case ω = 0. The vertical axis was restricted to the interval 0 ≤ D(α,ω) ≤ 2 while the horizontal

axis was restricted to 0 ≤ α ≤ 3.

with

D(α,ω) = −3(1−R1) + 4R2
2 + ωR1(2 +R1(ω + 1)) . (A.5)

Indeed, setting ω = 0 in eq. (A.3) yields the form of Ω± obtained in [8] for thermal

giant gravitons expanded into the S5 part of AdS5 × S5. A necessary condition for the

solution (A.3) to exist is D(α,ω) ≥ 0. In figure 5 we exhibit the dependence of D(α,ω) ≥ 0

on α within the range 0 ≤ ω ≤ 1. From figure 5 we see that there are two regions of

possible spinning giant graviton configurations. The black dashed line depicts the case

ω = 0 obtained in [8] for which there is only one region of possible solutions. As the spin

is increased the solution space is composed of a blue region (Region 1) and of a red region

(Region 2). It is possible to determine analytically the ranges of α defining both regions

by solving D(α,ω) = 0 . This leads to the ranges

Region 1:

(
9

4
+ ω

)
≤ cosh2 α <∞ , ω ≥ 0

Region 2: 1 ≤ cosh2 α ≤
(

1

4
+ ω

)
, ω >

3

4
.

(A.6)

From (A.6) we see that Region 1 exists for all values of ω while Region 2 only appears

after the spin parameter ω is increased beyond the value ω = 3/4. At the lower bound

of Region 1 and at the upper bound of Region 2 the two branches of solutions Ω± meet

each other. Note that Region 2 can be decomposed into a thermodynamically stable and

unstable part. The unstable part lies within the range 1 ≤ cosh2 α ≤ 3/2 as it has negative

heat capacity [3]. For generic (m,n) we obtain similar bounds as in (A.6), in particular

for the non-spinning case, these are 5/3 ≤ cosh2 α < ∞ for the M5-giant graviton and

10/3 ≤ cosh2 α <∞ for the M2-giant graviton.
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A.2 Range of k

The ranges (A.6) together with charge conservation (2.4) allow to determine the bounds

on k mentioned in section 2.2. Focusing on n = 5 and on the lower bound of Region 1 we

obtain the bound for k

Region 1: T̂
(9 + 4ω)

3
8

2
1
4 (3
√

3)
1
4 (5 + 4ω)

1
8

≤ k ≤ 1 . (A.7)

In the case ω = 0 this agrees with the result found for non-spinning giant gravitons

in [8]. For Region 2, the upper bound in (A.6) allows us to write the bound on the

thermodynamically stable part as

Region 2 stable: T̂ ≤ k ≤ T̂ (1 + 4ω)
3
8

2
1
4 (3
√

3)
1
4 (4ω − 3)

1
8

, (A.8)

while for the unstable part it is instead allowed in the entire interval

Region 2 unstable: T̂ ≤ k ≤ 1 . (A.9)

For the bounds on k for the stable part of both regions we observe that there is a gap in

the allowed values of k for which there does not exist a giant graviton configuration. This

is the gap observed in section 3 for the maximal size giant graviton. The same features are

observed for the other values of (m,n).

A.3 Maximum temperature

The solution space does not admit configurations at any temperature T . As already seen

for the non-spinning giant graviton in [8] there exists a maximum temperature beyond

which giant graviton configurations cease to exist. This bound is obtained from the charge

conservation equation (2.4) which can be recast into the form

km−1 =
Q(n−2)G

Ω(m)

4(4π)mR1(α)coshm−1α

(m− 1)mR2(α)
Tm−1 , (A.10)

where the ratiosR1 andR2 are defined in (2.12). The maximum temperature that the giant

graviton can attain in the thermodynamically stable region is obtained from (A.10) when

cosh α̃ takes the value that gives rise to the lower bound of Region 1 in (A.6). Generically,

we can define the maximum temperature as

Tm−1
max =

[
Q(n−2)G

Ω(m)

4(4π)mR1(α)coshm−1α

(m− 1)mR2(α)

]−1

|α=α̃ . (A.11)

For the case of the spinning giant graviton on AdS5 × S5 this results in

Tmax = Tstatic

(
6
√

3
√

5 + 4ω

(9 + 4ω)
3
2

) 1
4

. (A.12)

From the above expression we see that as the spin parameter ω increases, the maximum

temperature that the giant graviton can attain decreases. This is again a generic feature

for any (m,n).
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A.4 The special case Ω = ω

Here we analyze the case for which Ω = ω. This is a peculiar case as it corresponds to a

branch of solutions for which there is no continuous limit that connects it with the thermal

non-spinning giant graviton of [8] but it still admits a limit in which it connects to the usual
1
2 -BPS giant graviton. In this situation the spin orbit interaction term in (2.11) vanishes

and the equation of motion can be written as

(n− 2)
(
1− Ω2(L2 − r2)

)
+ Ω2r2 + (n− 1)Ωr

√
1− Ω2(L2 − r2)R2 = 0 . (A.13)

For clarity of presentation we focus on the case n = 5 but we note that the above equation

admits a solution for any n. For n = 5 the solution takes the form

Ω± =
3√

9L2 − 8(1 + ∆±(α)) r2
, (A.14)

where

∆±(α) = −1

2

(
2R2

2(α)±R2(α)
√
D(α)

)
+

1

2
, D(α) = 4R2

2(α)− 3 . (A.15)

We see that (A.14) allows for two branches of solutions. However, one must remember that

the condition k2 = 1−Ω2
±L

2 ≥ 0 must be imposed, implying Ω± ≤ L−1. A straightforward

check tells us that the upper branch solution always violates this requirement (except in

the strict limit α→∞). Hence we conclude that for the case Ω = ω only the lower branch

of solutions exists. Imposing the same requirement on the fluid velocity k for the lower

branch leads to the allowed range for α in solution space

9

8
≤ cosh2 α <∞ . (A.16)

This range implies that there is a thermodynamically stable region and an unstable region

which ranges from 9/8 ≤ cosh2 α ≤ 3/2. This furthermore means that this branch of

solutions does not admit a neutral limit (as one cannot approach α = 1), i.e., they must be

always charged and supported by the background gauge field. Moreover, the range (A.16)

implies that in both stable and unstable regions, the fluid velocity must satisfy the bound

T̂ ≤ k ≤ 1. Another interesting feature of this branch of solutions is that both ends of

the interval (A.16) correspond to zero-temperature limits. The limit α → ∞ corresponds

to either the usual extremal limit of section 2 or the null-wave limit of section 4. The

limit α → 9/8, using the fact that ∆−(9/8) = −1, implies Ω− = L−1 and hence that

k → 0. Therefore, by charge conservation (A.10) we see that for the charge Q(n−2) to

remain constant we must have T → 0. This is another type of null-wave giant graviton

configuration but not a regular one since in this limit the thickness r0 remains finite and

hence all thermodynamic quantities presented in section 2 diverge except for the product

TS which remains finite. Further, in this limit the configuration satisfies the relation

F = E− T̂S = J + S , which is the BPS relation found in section 4.
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