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Université de Genève, 24 quai Ernest Ansermet, CH-1211 Genève 4, Switzerland
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1 Introduction

The most recent observations of the cosmic microwave background (CMB) by the Planck

satellite [1, 2] strongly support the inflation paradigm, i.e. that the Universe underwent

an early phase of accelerated expansion. Following inflation, there was — necessarily —

a period of ”reheating”, during which (almost) all the particles in the Universe were cre-

ated out of the energy responsible for inflation. The produced particle species eventually

thermalized, and after that the history of the Universe followed the hot Big Bang theory.

Reheating, however, is far from being understood. The initial stages are typically expected
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to be driven by non-perturbative quantum effects, generally coined as preheating. More-

over, the physics since the end of Reheating till the Big Bang Nucleosynthesis (BBN) is

uncertain, and there is plenty of room for speculation. Several backgrounds of gravita-

tional waves (GW) are indeed expected to have been generated during these early stages.

If detected, these backgrounds would bring us invaluable information about many of the

unknowns in the early Universe physics.

The existence of GW constitute a basic prediction of general relativity. To date,

unfortunately, GW have yet not been directly detected. The measured decay of the orbital

period of the first binary pulsar ever discovered, PSR 1913+16, has nevertheless provided

indirect evidence for their existence [3, 4]. Actually, based on theoretical considerations,

it is expected that the Universe should be permeated by a variety of GW backgrounds

of diverse origin. For instance, from astrophysical phenomena, we expect GW from the

collapse of supernovas or the coalescence of compact binaries. From the early Universe, we

expect GW from non-equilibrium phenomena. The presence today of a GW background

can be characterized by its spectrum, defined as the energy density in GW per logarithmic

interval of frequency, ΩGW(f) ≡ 1
ρc

dρ
GW

d log f , normalized to the actual critical energy density

ρc. Due to the uncertainty in the actual expansion rate of the universe Ho, and since

ρc ∝ H2
o , constraints are often set on the combination h2ΩGW(f), where h is the little-

Hubble parameter defined as Ho = h× 100 Km s−1 Mpc−1.

A number of constraints on GW have already been derived from a variety of ob-

servations. From BBN, there is an upper bound on the total amount of GW as∫
h2ΩGW(f) d log f < 5.6 · 10−6(Neff − 3), with Neff the effective number of relativis-

tic species. Ignoring the unlikely possibility that the GW spectrum may have a very

narrow peak, one can take as a rule of thumb that for frequencies f & 10−10 Hz,

h2ΩGW(f) . 10−5 [5]. From CMB observations there is the so called COBE bound,

h2ΩGW(f) . 7·10−11, valid for the range 3·10−18 Hz < f < 10−16 Hz. This bound becomes

stronger, as h2ΩGW(f) . 10−14, at f ' 10−16 Hz [6]. For other CMB constraints see also [7].

From individual millisecond pulsars and the European Pulsar Timing Array (EPTA), it

have been found respectively h2ΩGW(f) . 2 · 10−8 [8] and h2ΩGW(f) . 6 · 10−9 [9], both

at f ' 4 · 10−9 Hz.

There are also many plans for direct detection experiments, such as the Laser Inter-

ferometer Gravitational Wave Observatory (LIGO) [10, 11], the European Laser Interfer-

ometer Space Antenna (eLISA) [12], the Big Bang Observer (BBO) [13–15], the Decihertz

Interferometer Gravitational Wave Observatory (DECIGO) [16], or the Einstein Telescope

(ET) [17]. All these observatories operate at some typical frequencies ranging from ∼ 10−5

Hz to ∼ 103 Hz. From the lack of a direct detection, the LIGO collaboration has already

provided an upper limit as h2ΩGW(f) . 3.6 · 10−6, valid at f ' 102 Hz. From the polar-

ization of the CMB one could also infer upper bounds on the amplitudes of potential GW

backgrounds. These arise because metric perturbations generated by inflation (or cosmic

defects) include also tensor modes, which are GW. If the scale of inflation (or the vacuum

expectation value — VEV — of the defects) is sufficiently high, one might even hope to

detect directly [18–20] the tensor perturbations with the Planck Surveyor (expected to

release its polarization results in 2014), or with polarization optimized ground-based CMB

experiments such as PolarBear or QUIET [21, 22].
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During the post-inflationary period, but previous to BBN, several GW backgrounds

are expected to be generated by causal mechanisms. These include preheating [23–29],

phase transitions [30–40], turbulent motions [41–45] and cosmic defects [46–51], which are

all non-equilibrium phenomena. The resulting GW backgrounds are very different in na-

ture from the inflationary one, which was originated from quantum fluctuations [52]. In

particular, just after the end of inflation, the (almost) homogeneous inflaton field begins

to oscillate around the minimum of its potential. If it is coupled to other fields — and it

should be, since it must decay —, the oscillations provide an effective time dependent mass

to these fields. Due to this there can be, under certain circumstances, a significant burst of

particle production from the time dependent inflaton field. This is precisely what we were

referring to before as preheating [53–56]. As mentioned, the production of particles during

preheating takes place out-of-equilibrium. Besides, it corresponds to a non-perturbative ef-

fect, which cannot be described by standard quantum field theory perturbation techniques,

so it has to be studied by other means. With the help, for instance, of lattice simulations,

the non-thermal distribution of the excited fields at preheating has been studied in detail

in several scenarios.

Energetically speaking, the excitations of the fields during preheating are very violent,

what gives rise to the production of a significant background of GW [23–29]. In the case of

chaotic inflation models the fields coupled to the inflaton are excited through a phenomenon

known as parametric resonance [53–56]. In other models like Hybrid inflation, there is a

tachyonic instability [57, 58]. Either way, the field distributions develop a non-trivial

anisotropic stress due to the non-equilibrium nature of the process, and that acts precisely

as the source of GW. Something similar occurs in the case of a phase transition. There the

collisions of the nucleated bubbles in the true vacuum, also produce to a non-equilibrium

distribution of the order-parameter field (the “Higgs” of the model), which develops an

anisotropic stress sourcing correspondingly GW [30–40].

Each source of GW produce a spectrum with a distinctive shape and amplitude. It

is then important to characterize all the potential sources. However, most works studying

post-inflationary early universe phenomena responsible for the generation of GW, have

focused only on bosonics sources, often scalar fields. Thus, we want to complete the picture

here, by considering fermionic fields as the source of GW. Not only it is conceivable that

fermions were produced in the early stages of the Universe, it is also necessary that they

were created somewhen between the end of inflation and BBN. All matter fields of which we

have direct evidence, the quarks and leptons of the Standard Model, are indeed fermions.

Dark Matter candidates include heavy fermions, and the realization of Baryo/Lepto-genesis

can be attained through mechanisms involving fermions. Fermionic preheating [61–65] after

inflation is indeed no less natural than the usual bosonic preheating [53–56], but simply

more difficult to treat.

It is then expected that a distribution of fermions was created by some mechanism(s)

somewhen during the evolution of the early Universe, before BBN. Usual effects by which

fermions are created correspond to out-of-equilibrium phenomena, as in the case of bosonic

species. The spectrum of such fermions is then non-thermal, and their energy-momentum

tensor acts as an anisotropic-stress over the background. It is then natural to expect that
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such non-thermally produced fermions might generate a GW background. The question

then is: how big is the amplitude, and what is the frequency? The aim of the present paper

is to answer in detail these questions. We have developed a general formalism to compute

the GW spectrum generated by an ensemble of fermions, which then we have applied to

several post-inflationary/pre-BBN scenarios. There are two distinct possibilities: first,

fermions generated in preheating due to their interactions with the inflaton, and second,

fermions excited because of their interactions with a scalar field (other than the inflaton),

spectator in the post-reheating thermal era. We treat both possibilities.

In a recent letter [67] we presented the GW spectrum generated by fermions created at

some post-inflationary scenarios. In this paper we will go through the physics in detail, de-

scribing carefully the technicalities of our formalism and considering its application within

several scenarios, including a systematic exploration of the parameters involved. With

our present work, we want to demonstrate that, contrary to naive expectations based on

Pauli-blocking arguments, fermions can indeed act as very effective generators of GW. The

natural frequencies of the backgrounds we predict lie, unfortunately, in a high-frequency

window inaccessible to currently planned GW detectors. This is, of course, certainly a

concern. However, we would like to see this fact as a reason to stimulate our experimen-

tal colleagues to start an active seek for the possibility of developing high-frequency GW

detectors. A detection of a GW background like the one we predict here, would provide

a direct observational access to the physics of the very early Universe. Therefore, with no

doubt, the endeavor is certainly worth to be pursued.

The paper is divided as follows. In section 2 we review the formalism of stochastic

backgrounds of GW. In section 3, we first present a description of fermions in an expanding

universe (section 3.1), and then develop a general formalism for computing the spectrum

of GW that they generate (section 3.2). We discuss the problem of ultraviolet divergences

which arise naturally in the problem, and propose a method to regularize the fermionic

source of GW (section 3.3). In section 4 we first discuss general aspects of the dynamics of

fermions and scalar fields interacting in an expanding universe (section 4.1), followed by a

parametric estimation of the frequency and amplitude of the spectrum of GW created by

fermions (section 4.2). We then analyze in detail the scenarios where fermions are excited

during preheating from a massless (section 4.3) and a massive (section 4.4) inflaton, as

well as the case when the fermion production takes place from a massive scalar field in

the thermal era after the completion of reheating (section 4.5). Finally in section 5 we

summarize all our results and draw our final conclusions. In appendices A and B we

present the technical details of our calculations, in appendix C we discuss the case of

fermions with a bare mass, and finally in appendix D we review — for completeness — the

formalism of stochastic GW backgrounds from scalar fields.

All through the paper we will work in ~ = c = 1 units, with Mp ' 1.2× 1019 GeV the

Planck mass, related to the Newton constant as G = 1/M2
p . Summation will be assumed

over repeated indices. We will use the Fourier transform convention

f(x, t) =

∫
dk

(2π)3 e−ik·x f(k, t) ↔ f(k, t) =

∫
dx e+ik·x f(x, t). (1.1)
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Note also that the following acronyms will be often used: BBN for big bang nucleosyn-

thesis, GW for gravitational waves, CMB for cosmic microwave background, IR for in-

frared, UV for ultraviolet, dof for degrees of freedom, TT for transverse-traceless, FRW

for Friedman-Robertson-Walker, RD for radiation-dominated, MD for matter-dominated,

VEV for vacuum expectation value, tNO for time-dependent normal-ordering, and UTC

for unequal time correlator.

2 Gravitational waves

Gravitational Waves (GW) are tensor perturbations of the space-time metric. More specif-

ically, they are the transverse-traceless (TT) degrees of freedom (dof) of the metric per-

turbations. After inflation the Universe is well described by a spatially flat Friedman-

Robertson-Walker (FRW) background. The perturbed FRW line element with GW as the

only perturbation, can then be written as

ds2 = a2(t)
[
−dt2 + (δij + hij) dx

idxj
]
, (2.1)

with a(t) the scale factor and t the conformal time. The perturbations hij verify the

conditions ∂ihij = 0 (transversality) and hii = 0 (tracelessness), required to identify them

with GW.

Splitting the Einstein equations into background and linearized equations, one finds

that the GW eom [6] in a FRW background are given by

ḧij(x, t) + 2Hḣij(x, t)−∇hij(x, t) = 16πGΠTT
ij (x, t), (2.2)

with H ≡ ȧ/a the (comoving) Hubble rate and dots denoting derivatives with respect

conformal time. The source ΠTT
ij is the TT-part of the anisotropic stress Πij , which we

define below. The conditions ∂iΠ
TT
ij = ΠTT

ii = 0 then hold ∀x,∀ t.
Obtaining the TT-part of a tensor in configuration space amounts to a non-local op-

eration. It is more convenient to do it in Fourier space, where a projector to filter out only

the TT dof of a tensor can be easily built. The eom of GW in fourier space reads

ḧij(k, t) + 2Hḣij(k, t) + k2hij(k, t) = 16πGΠTT
ij (k, t), (2.3)

where k is the comoving wave-number and k = |k| is the modulus. The GW source can

then be written as

ΠTT
ij (k, t) = Λij,lm(k̂) Πlm(k, t). (2.4)

where Λij,lm(k̂) is a TT-projection operator defined as1

Λij,lm(k̂) ≡ Pil(k̂)Pjm(k̂)− 1

2
Pij(k̂)Plm(k̂), (2.5)

Pij = δij − k̂ik̂j , k̂i = ki/k (2.6)

1Note that for the homogeneous mode k = 0 this projection is ill-defined. However, the transversality

condition is automatically verified by a homogeneous mode, so it is then sufficient to redefine the projector

for this case as Λij,lm(0) ≡ δilδjm − 1
3
δijδlm. This guarantees the tracelessness. For a discussion on how to

define the analogous TT-projection on a discrete space (a lattice grid in numerical simulations), see [69].
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One can easily see that the transverse-traceless conditions in Fourier space, kiΠ
TT
ij (k̂, t) =

ΠTT
ii (k̂, t) = 0, are fulfilled at any time, thanks to the fact that Pij k̂j = 0 and PijPjm = Pim.

The anisotropic stress tensor Πµν describes the deviation of the energy momentum

tensor Tµν with respect that of a perfect fluid. The spatial-spatial components read

Πij ≡ Tij − p gij , (2.7)

with p the homogeneous background pressure and gij = a2(t)(δij + hij) the spatial-spatial

metric tensor. In the scenarios we consider in this paper the energy budget is dominated

by a homogeneous and isotropic background fluid, which causes the universe to expand

effectively either as radiation- (RD) or matter-dominated (MD). The corresponding energy-

momentum of this background is that of a perfect fluid, with spatial-spatial components

T pf
ij = p gij . On top of this there is a subdominant contribution from fermions, which have

their own energy-momentum tensor TF
ij . Hence, in these scenarios, the (spatial-spatial

components of the) total energy-momentum tensor are given by Tij = T pf
ij +TF

ij . It is clear

then that Πij = TF
ij , what implies that it is the TT-part of the fermions energy-momentum

tensor that will act as a source of GW.

Rescaling the tensor perturbations as

h̄ij (k, t) = a(t)hij (k, t) , (2.8)

the GW eom become

¨̄hij (k, t) +

(
k2 − ä(t)

a(t)

)
h̄ij (k, t) = 16πGa(t)ΠTT

ij (k, t) . (2.9)

Either in RD or MD, and in general for a scale factor with any power law behavior in time,

ä/a ∼ H2. Thus the term ä/a is negligible at sub-horizon scales k � H, and therefore we

will drop it from now on. The GW eom then looks like

¨̄hij (k, t) + k2h̄ij (k, t) = 16πGa(t)ΠTT
ij (k, t) . (2.10)

The solution of eq. (2.10) is given by a convolution with the Green function associated

to a free wave-operator in Minkowski, G(k, t − t′) = 1
k sin(k(t − t′)). That is, at times

t > tI , with tI the initial time with no gravitational waves, i. e. hij (k, tI) = ḣij (k, tI) = 0,

we obtain

hij (k, t) =
h̄ij(k, t)

a(t)
=

16πG

a(t)k

∫ t

tI

dt′ sin
[
k
(
t− t′

)]
a(t′) ΠTT

lm

(
k, t′

)
. (2.11)

2.1 The spectrum of gravitational waves

Expanding the Einstein equations to second order in the tensor perturbations, one recog-

nizes that the energy density of a GW background is given by [6]

ρGW(t) =
1

32πGa2(t)

〈
ḣij(x, t)ḣij(x, t)

〉
V

≡ 1

32πGa2(t)

1

V

∫
V
dx ḣij(x, t)ḣij(x, t)

=
1

32πGa2(t)

∫
dk

(2π)3

dk′

(2π)3
ḣij(k, t)ḣ

∗
ij(k

′, t)
1

V

∫
V
dx e−ix(k−k′) (2.12)
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with 〈. . .〉V a spatial average over a sufficiently large volume V encompassing all the

relevant wavelengths λ∗ of the hij perturbations. In the limit V 1/3 � λ∗,∫
V�λ3∗

dx e−ix(k−k′) → (2π)3δ(3)(k− k′),

and then,

ρGW(t) =
1

32πGa2(t)V

∫
dk

(2π)3
ḣij(k, t)ḣ

∗
ij(k, t) (2.13)

The GW energy density spectrum (per logarithmic interval), defined as

ρGW(t) =

∫
dρGW

d log k
d log k , (2.14)

is then found to be

dρGW

d log k
=

k3

(4π)3Ga2(t)V

∫
dΩk

4π
ḣij(k, t)ḣ

∗
ij(k, t) , (2.15)

where dΩk represents a solid angle element in k-space.

In the early Universe, however, we often encounter situations where GW are created

from a stochastic source. Hence the spatial distribution of the tensor perturbations is

assumed to be stochastic, following the random distribution of the source. In such cases

we can apply the Ergodic hypothesis, which amounts to replace 〈. . .〉V by an ensemble

average 〈. . .〉 over realizations. A stochastic background of GW can then be described by

ρGW =
1

32πGa2(t)

〈
ḣij(x, t)ḣij(x, t)

〉
=

1

32πGa2(t)

∫
dk

(2π)3

dk′

(2π)3 eix(k−k′)
〈
ḣij (k, t) ḣ∗ij

(
k′, t

)〉
(2.16)

The expectation value in the second line of eq. (2.16), assuming statistical homogeneity

and isotropy, defines the power spectrum of the tensor perturbation first derivatives,〈
ḣij (k, t) ḣ∗ij

(
k′, t

)〉
≡ (2π)3 Pḣ(k, t)δ(3)(k− k′) . (2.17)

Thus

ρGW(t) =
1

(4π)3Ga2(t)

∫
dk

k
k3 Pḣ(k, t) (2.18)

and from here, the GW energy density spectrum reads

dρGW

d log k
(k, t) =

1

(4π)3Ga2(t)
k3 Pḣ(k, t) (2.19)

Obtaining Pḣ(k, t) is simple. With the help of eq. (2.11), first we write

ḣij(k, t) =
16πG

ka(t)

∫ t

tI

dt′a(t′)G(k(t− t′)) ΠTT
ij (k, t′), (2.20)

where

G(k(t− t′)) ≡
(
k cos[k(t− t′)]−H sin[k(t− t′)]

)
(2.21)

– 7 –



J
H
E
P
1
0
(
2
0
1
3
)
1
0
1

From here we obtain〈
ḣij (k, t) ḣ∗ij

(
k′, t

)〉
(2.22)

= (2π)3 (16πG)2

k2a2(t)

∫ t

tI

dt′
∫ t

tI

dt′′a(t′)a(t′′)G(k(t−t′))G(k(t− t′′)) Π2(k, t′, t′′) δ(3)(k−k′),

where we have introduced the unequal-time-correlator (UTC), Π2(k, t, t′), of the TT-

part of the anisotropic-stress ΠTT
ij ,〈

ΠTT
ij (k, t) ΠTT

ij (k′, t′)
〉
≡ (2π)3 Π2(k, t, t′) δ(3)(k− k′) (2.23)

Once GW production ends GW propagate as free waves, each mode oscillating with

period Tk = 2π
k . In order to define correctly the energy density spectrum of GW we need

to perform a time average over those oscillations. Strictly speaking, at the moment when

GW production ends, we should match the solution (2.11) with the freely propagating wave

solution.2 From there we should build the GW energy density spectrum with the free waves,

and only then perform the time average over oscillations. It is however mathematically

equivalent to take the time average over the product of G(k, t, t′) functions. We obtain

〈
G(k, t, t′)G(k, t, t′′)

〉
Tk
≡ 1

Tk

∫ t+Tk

t
dt̃ G(k, t̃, t′)G(k, t̃, t′′)

=
1

2
(k2 +H2(t)) cos[k(t′ − t′′)] (2.24)

Replacing G(k, t, t′)G(k, t, t′′) by 〈G(k, t, t′)G(k, t, t′′)〉Tk in eq. (2.22), and taking into ac-

count that at subhorizon scales (k2 +H2(t)) ≈ k2, we then find Pḣ as

Pḣ =
(16πG)2

2a2(t)

∫ t

tI

dt′
∫ t

tI

dt′′a(t′)a(t′′) cos[k(t′ − t′′)] Π2(k, t′, t′′) (2.25)

Plugging eq. (2.25) into eq. (2.19), we finally find the energy density spectrum of a stochastic

background of GW (at subhorizon scales) as

dρGW

d log k
(k, t) =

2

π

Gk3

a4(t)

∫ t

tI

dt′
∫ t

tI

dt′′ a(t′) a(t′′) cos[k(t′ − t′′)] Π2(k, t′, t′′), (2.26)

2.2 The spectrum today

Besides tI as the initial time of GW generation, it is convenient to coin also the following

times: the end of GW production, t∗, the first moment when the Universe become RD, tRD ,

and finally today, as to. Gravitational waves decouple immediately after production, so we

can evaluate the GW energy density spectrum today from the spectrum computed at the

time of production, simply by redshifting the frequency and amplitude correspondingly. In

order to do so we need to relate the scale factor today ao, with that at the beginning of

2The freely propagating waves are described by a superposition of the linearly independent homogeneous

solutions to the free-source GW eom.
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GW production aI . Denoting To and ρo the temperature and energy density of the CMB

today, we obtain

aI
ao

=

(
aI
aRD

)(
gs,o
gs,RD

) 1
3
(
To
TRD

)
=

(
aI
a∗

)(
a∗
aRD

)(
gs,o
gs,RD

) 1
3
(
go
gRD

)− 1
4
(
ρo
ρRD

) 1
4

=

(
aI
a∗

)(
gs,o
gs,RD

) 1
3
(
go
gRD

)− 1
4
(
ρo
ρ∗

) 1
4
(
a∗
aRD

) (1−3w)
4

, (2.27)

where in the first line we have used the entropy conservation law in a thermal expanding

background a(t)T (t) ∝ g−1/3
s,t , with T and gs,t the background temperature and the entropic

degrees of freedom at time t; in the second line we used the temperature-energy density

relation of a relativistic thermal fluid ρ(t) ∝ gtT
4(t), with gt the relativistic degrees of

freedom at time t; and in the third line we used the energy density evolution law ρ(t) ∝
a(t)−3(1+w) in an expanding background dominated by a fluid with effective equation of

state (pressure-to-density ratio) p/ρ = w. Assuming that the effective degrees of freedom

do not change from t∗ to tRD , i.e. gs,∗ = gs,RD and g∗ = gRD , and taking into account

that gs,t ∼ gt, we then have (gs,o/gs,RD)1/3 (go/gRD)−1/4 ∼ (go/g∗)
1/12 ∼ O(1) [≈ 1.77 if

go/g∗ = 103, ≈ 1.47 if go/g∗ = 102]. With all this, and taking into account the value today

of the energy density of relativistic species ρo ≈ 2 · 10−15eV 4, the frequency today reads

f ≡
(
aI
ao

)
k

2π
≈ ε1/4

(
aI
a∗

)(
k

ρ
1/4
∗

)
× 5 · 1010Hz, (2.28)

where we have introduced the factor

ε ≡
(
a∗
aRD

)(1−3w)

, (2.29)

to quantify our ignorance about the expansion rate between t∗ and tRD . If at t∗ the Universe

is already in a RD phase with w = 1/3, i.e. tRD < t∗, then we have ε = 1. If on the contrary,

the Universe is in an expanding phase with w 6= 1/3 between t∗ and tRD , then a∗/aRD < 1.

In general, unless in a RD background since t∗, there is always a frequency shift by a

factor ε1/4 < 1.

The spectral amplitude of the GW background today, normalized to the actual critical

energy density ρc, can be obtained as

h2ΩGW ≡
h2

ρc

(
dρGW

d log k

)
o

= h2Ωrad
1

ρo

(
a∗
ao

)4( dρGW

d log k

)
∗

= h2Ωrad

(
a∗
aRD

)4( gs,o
gs,RD

) 4
3
(
gRD

go

)
1

ρRD

(
dρGW

d log k

)
∗

= h2Ωrad

(
a∗
aRD

)1−3w ( gs,o
gs,RD

) 4
3
(
gRD

go

)
1

ρ∗

(
dρGW

d log k

)
∗
, (2.30)
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where in the first line we used the fact that the energy density of freely propagating GW

scales as a radiation fluid, i.e. ρGW ∝ 1/a(t)4; in the second line we used the evolution of

the radiation dof from tRD till today, ρo = (gs,RD/gs,o)
4/3 (go/gRD) ρRD (aRD/ao)

4; and in

the third line we used the evolution of the total energy density from t∗ to tRD (assuming

again that the effective dof do not change), ρRD = ρ∗(aRD/a∗)
−3(1+w).

Applying the same considerations as with the frequency, the amplitude today can be

finally written as

h2ΩGW ≡
h2

ρc

(
dρGW

d log k

)
o

= h2Ωrad

(
go
g∗

)1/3 ε

ρ∗

(
dρGW

d log k

)
∗

(2.31)

where ε is defined as before. Here h2Ωrad ' 4 · 10−5, and the ratio of the number of

relativistic degrees of freedom today to those active at end of GW production is (go/g∗)
1/3 ∼

O(0.1), so the total prefactor is of the order O(10−6).

3 Fermions as a source of gravitational waves — Theory

The previously presented formalism applies to any stochastic GW source in a (flat) FRW

background, characterized by its unequal-time-correlator (UTC), Π2(k, t, t′). In this section

we develop a formalism to calculate specifically the spectrum of GW created by fermions.

We discuss first, in section 3.1, the dynamics of fermions in a FRW background. Then we

derive the explicit form of the fermionic UTC in section 3.2, followed by a discussion in

section 3.3 about the need and procedure to regularize it.

3.1 Fermions in a FRW background

The Dirac equation for a spin-1
2 fermion field in a flat FRW background is[
i

a(t)
γµDµ −mψ(t)

]
Ψ (x, t) = 0, (3.1)

where the time-dependence considered in the mass is due to possible interactions of Ψ with

other (homogeneous) fields, and Dµ is the covariant derivative given by

Dµ = ∂µ +
1

4
γαβω

αβ
µ , (3.2)

with γαβ ≡ 1
2 (γαγβ − γβγα), and ωαβµ the spin connection coefficients. The γµ are the

ordinary flat-space gamma matrices verifying the anti-commutation relations

{γµ, γν} = 2ηµν , {γµ, γν} = 2ηµν , (3.3)

with ηµν = ηµν = diag(−1, 1, 1, 1) the Minkowski metric, and γµ = ηµνγν . In the Dirac

basis, these 4× 4 matrices read

γ0 =

(
1 0

0 −1

)
, γi =

(
0 −σi
σi 0

)
, (3.4)

with 1 the 2× 2 identity matrix and σi (i = {1, 2, 3}) the Pauli matrices.
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The spin connection coefficients ωαβµ in eq. (3.2) are defined [85] as

ωabµ =
1

2
ecµ

(
Ωabc − Ωbca − Ωcab

)
, (3.5)

Ωabc ≡ eµae
ν
b (∂µeνc − ∂νeµc) , (3.6)

with eαν the local Lorentz frame fields, i.e. the vierbeins, defined from the background metric

gµν = a2(t)ηµν as

gµν = ηαβe
α
µe
β
ν . (3.7)

By using eq. (3.5) we obtain the spin connection coefficients in a FRW background as

ωi0µ = −ω0i
µ = Hδiµ, ωijµ = ω00

µ = 0, (3.8)

with H the Hubble rate in conformal time. The Dirac equation (3.1) becomes then[
iγµ∂µ + i

3

2
Hγ0 − a(t)mψ(t)

]
Ψ (x, t) = 0. (3.9)

By an appropriate conformal redefinition of the Dirac field as

ψ(x, t) = a3/2(t)Ψ(x, t), (3.10)

we can remove the friction term ∝ Hγ0, and write the Dirac equation like

[iγµ∂µ − a(t)mψ(t)]ψ (x, t) = 0. (3.11)

Thus we have reduced the problem to the Dirac equation in Minkowski, but with an effective

time-dependent mass a(t)mψ(t).

Since the effective mass is homogeneous in space, we can quantize the Dirac field as

usual, like

ψ(x, t) =

∫
dk

(2π)3 e
−ik·x

[
âk,ruk,r(t) + b̂†−k,rvk,r(t)

]
, (3.12)

ψ̄(x, t) = ψ†(x, t)γ0 =

∫
dk

(2π)3 e
+ik·x

[
â†k,rūk,r(t) + b̂−k,rv̄k,r(t)

]
, (3.13)

with time-independent creation/annihilation operators satisfying the canonical anticom-

mutation relations{
âk,r, â

†
k′,r′

}
=
{
b̂k,r, b̂

†
k′,r′

}
= (2π)3 δr,r′δ

(3)(k− k′) . (3.14)

Other anticommutators vanish and the vacuum state |0〉 is defined as usual by

âk,r|0〉 = b̂k,r|0〉 = 0, ∀k, r (3.15)

The four-component spinors can be written as

uk,r(t) ≡

 uk,+(t)Sr

uk,−(t)Sr

 , vk,r(t) ≡

 vk,+(t)S−r

vk,−(t)S−r

 , (3.16)
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with {Sr} 2-component spinors, eigenvectors of the helicity operator, normalized as S†rSr =

2, and S−r ≡ −iσ2S
∗
r [86]. Choosing eigenstates of the Pauli matrix σ3 to be the basis of

the spinors Sr, these read

S1 = −S−2 =

(
1

0

)
, S2 = S−1 =

(
0

1

)
(3.17)

The spinors vk,r(t) and uk,r(t) are not independent. The former are related to the latter

by charge conjugation as vk,r(t) = C ūT
k,r(t), where C = iγ0γ2 [87]. It follows from here

that the mode functions satisfy the relation

vk,±(t) = ±u∗k,∓(t). (3.18)

Thus, from now on we can work with only one of the mode functions. We choose uk,±(t).

By introducing the decomposition of eq. (3.12) into the Dirac equation eq. (3.11),

and differentiating the latter with respect conformal time, it follows that the eom for the

complex mode functions uk,+(t) and uk,−(t) decouple. The eom correspond to that of an

oscillator with a complex time-dependent frequency,

d2

dt2
uk,±(t) +

(
ω2
k(t)± i d

dt
(amψ)

)
uk,±(t) = 0 , ω2

k(t) = k2 + a2(t)m2
ψ(t) (3.19)

In order to obtain the time evolution of uk,±(t) we need to specify the initial conditions

at time t = tI . These should correspond to vanishing initial fermion number density or,

equivalently, vanishing energy density. To find out the k-dependence of u
(I)
k,± ≡ uk,±(tI)

and u̇
(I)
k,± ≡ u̇k,±(tI) we need to introduce the fermion Hamiltonian density, and show how

to diagonalize it by means of canonical Bogoliubov transformations. The Hamiltonian of

a spin-1
2 fermion field in a FRW background is given by

H(t) =
1

2a

∫
dxψ†(x, t)i∂tψ(x, t) (3.20)

By substituting eqs. (3.12) and (3.16) in eq. (3.20), we obtain a non-diagonal form for the

Hamiltonian as

H(t) =
1

a

∫
dk

(2π)3

{[
â†k,râk,r − b̂−k,r b̂

†
−k,r

]
Ek(t) + b̂−k,râk,rFk(t) + â†k,r b̂

†
−k,rF

∗
k(t)

}
,

(3.21)

with (real) diagonal coefficient Ek(t) and (complex) non-diagonal coefficient Fk(t) given as

Ek(t) =
i

2

[
u∗k,+u̇k,+ + u∗k,−u̇k,−

]
= 2kRe{u∗k,+uk,−}+ amψ

(
1− 2|uk,+|2

)
, (3.22)

Fk(t) =
i

2
[uk,−u̇k,+ − uk,+u̇k,−] = k

(
u2
k,+ − u2

k,−
)

+ 2amψuk,+uk,− . (3.23)

In the last equality of both expressions, we have used the relation between u̇k,±(t) and

uk,±(t), as derived from the ’Dirac equation’ iγ0u̇k,r = [γjk
j + a(t)mψ(t)]uk,r. From the

above expressions we find that the following relation is satisfied

E2
k + |Fk|2 = ω2

k (3.24)
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The Hamiltonian can be brought to a diagonal form by an appropriate canonical Bo-

goliubov transformation of the creation and annihilation operators,

ˆ̃ak,r(t) = αk(t)âk,r + βk(t)b̂†−k,r (3.25)

ˆ̃
b†k,r(t) = α∗k(t)b̂†−k,r − β

∗
k(t)âk,r, (3.26)

where αk(t) and βk(t) are complex coefficients. The idea is that by choosing judiciously

the latter coefficients, the Hamiltonian will read, in terms of the new creation/annihilation

operators, as

H(t) =
1

a

∫
dk

(2π)3

[
ˆ̃a†k,r(t)

ˆ̃ak,r(t) +
ˆ̃
b†k,r(t)

ˆ̃
bk,r(t)

]
ωk(t), (3.27)

A new (”quasi-particle”) vacuum |0t〉 is defined by

ˆ̃ak(t)|0t〉 =
ˆ̃
bk(t)|0t〉 = 0 (3.28)

By demanding that ˆ̃ak(t) and
ˆ̃
bk(t) also satisfy the canonical anticommutation rela-

tions (3.14), we first note that αk(t) and βk(t) must verify the relation

|αk(t)|2 + |βk(t)|2 = 1. (3.29)

By comparing eq. (3.21) and eq. (3.27) we find that the conditions that we must impose

on the Bogoliubov coefficients for the Hamiltonian to be diagonal as in eq. (3.27), are

|βk(t)|2 =
ωk(t)− Ek(t)

2ωk(t)
(3.30)

αk(t)

βk(t)
=
Ek(t) + ωk(t)

F ∗k(t)
(3.31)

Hence there are four dof in the complex Bogoliubov coefficients and four constraints; two

real equations, eqs. (3.29), (3.30), and one complex equation, eq. (3.31). These are, however,

not independent constraints, and in reality only three dof are independently constrained

from eqs. (3.29), (3.30) and (3.31). Thus, there is a certain degree of arbitrariness in the

Bogoliubov coefficients, which allow us to choose αk(t) to be real-valued.3

The number density of produced particles up to time t (equal to the number of pro-

duced antiparticles) is given by the vacuum expectation value of the particle number op-

erator ñk ≡ ˆ̃a†k
ˆ̃ak,

n(t) =
1

2π2a3(t)

∫
dk k2 〈0|ñk|0〉 =

1

2π2a3(t)

∫
dk k2 |βk(t)|2 (3.32)

Thus |βk(t)|2 represents the occupation number of fermions with momentum k at time t. In

agreement with the Pauli exclusion principle the occupation number cannot exceed unity

|βk(t)|2 ≤ 1. The initial conditions then, corresponding to vanishing initial occupation

number,
∣∣β(I)

k

∣∣2 = 0 (and thus α
(I)
k = 1), are determined by E

(I)
k ≡ ω

(I)
k and F

(I)
k = 0.

3This corresponds to a choice of the phase of βk = |βk|eiϕβ opposite to the phase of Fk = |Fk|eiϕF ,

ϕβ = −ϕF .
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From the definitions of Ek and Fk by eqs. (3.22), (3.23), we finally find that the initial

amplitudes are

u
(I)
k,± =

√√√√1±
aIm

(I)
ψ

ω
(I)
k

, (3.33)

u̇
(I)
k,± = −iku(I)

k,∓ ∓ iaIm
(I)
ψ u

(I)
k,± , (3.34)

where u̇
(I)
k,± was just obtained as a function of u

(I)
k,± through the Dirac equation.

We have now at hand all ingredients needed to study the dynamics of fermions in

a FRW background. Starting from the initial conditions given by eqs. (3.33), (3.34), we

can solve the Dirac eq. (3.19) to obtain the time evolution of uk,±(t). From there we

can compute any expectation value of the fermion field. For instance the spectrum of the

fermion occupation number given by eq. (3.30), from which ultimately we can obtain the

total number density of fermions at time t from eq. (3.32).

We can only solve the Dirac equation, of course, in the context of a specific model. In

section 4, we will consider a fermionic field Ψ coupled to a homogeneous scalar field ϕ via

a Yukawa coupling Lint = hϕΨ̄Ψ, with h a dimensionless coupling. We will study scenarios

in which the scalar field is either the inflaton, like in (p)reheating after inflation, or either a

spectator field, like in the thermal era after the reheating of the Universe. In these models

the scalar field oscillates around the minimum of its potential, generating an effective mass

for the fermionic field as mΨ(t) = hϕ(t). The variations in time of mΨ(t) will give rise to

a non-trivial production of fermions which will source GW. See section 4 for details.

3.2 Spectrum of gravitational waves from fermions

The spatial-spatial components of the energy-momentum tensor of a spin-1
2 fermion field

are given by

Tij = i
a

2

[
Ψ̄γ(i
−→
D j)Ψ− Ψ̄

←−
D (iγj)Ψ

]
, (3.35)

where a is the scale factor, D∗ is the covariant derivative4 given by eq. (3.2), and the

overhead arrow points to the field with respect which the derivatives are taken.

As mentioned before, the source of GW is simply the TT-part of the fermions’ energy-

momentum tensor

ΠTT
ij (k, t) = Λij,lm(k̂)Tlm(k, t) (3.36)

Hence, by substituting the decomposition eqs. (3.12)–(3.13) into eq. (3.35), we obtain the

explicit form of the TT-part of the anisotropic stress in Fourier space, eq. (3.36), like

ΠTT
ij (k, t)=

∫
dx

a2(t)

dp dp′

(2π)6

(
b̂−p,sv̄p,s+ â†p,sūp,s

)
∆ij

(
âp′,rup′,r+ b̂†−p′,rvp′,r

)
e+i(k+p−p′)x,

(3.37)

where ∆ij is given by

∆ij ≡ Λij,lm(k̂)

(
1

2
p(lγm) +

1

2
p′(lγm) +

i

8

[
γ(lγαβω

αβ
m) − γαβω

αβ
(l γm)

])
. (3.38)

4γ(i
−→
D j) ≡ γi

−→
D j + γj

−→
D i,
←−
D (iγj) ≡

←−
D iγj +

←−
D jγi.
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Since
∫
dx ei(k+p−p′)x = (2π)3δ(3)(k + p−p′), we can substitute p′ by k + p, and eliminate

all integrations in eq. (3.37) but the one over p. By doing so and introducing the explicit

form of the spin connection, eq. (3.8), we find

∆ij = Λij,lm(k̂)

(
1

2
p(lγm) +

1

2
(k + p)(lγm) −

i

2
Hγ0δlm

)
= Λij,lmp(lγm) , (3.39)

where in the last equality we used that Λij,lm(k̂)kl = 0 (transversality), and we eliminated

the part from the spin connection ∝ δlm, thanks to Λij,lm(k̂)δlm = 0 (tracelessness). With

all this, eq. (3.37) finally reads

ΠTT
ij (k, t) =

Λij,lm(k̂)

a2(t)

∫
dp

(2π)3

(
b̂−p,sv̄p,s + â†p,sūp,s

)
×

× p(lγm)

(
âk+p,ruk+p,r + b̂†−(k+p),rvk+p,r

)
, (3.40)

Analogously, we also obtain

ΠTT
ij
∗
(k′, t′) =

Λij,lm(k̂′)

a2(t′)

∫
dq

(2π)3

(
b̂−q,sv̄q,s + â†q,sūq,s

)
×

× q(lγm)

(
âq−k′,ruq−k′,r + b̂†(k′−q),rvq−k′,r

)
, (3.41)

We need now to compute the UTC, i.e. the Π2(k, t, t′) function defined in eq. (2.23), charac-

terizing the expectation value 〈0|ΠTT
ij (k, t)ΠTT

ij
∗
(k′, t′)|0〉. From eqs. (3.40), (3.41) we infer

that out of the 16 different quadrilinear combinations of creation/annihilation operators in

ΠTT
ij (k, t)ΠTT

ij
∗
(k′, t′), only the following two have non-zero expectation value,

〈0|b̂−p,sâk+p,râ
†
q,s′b

†
k′−q,r′ |0〉 = (2π)6δ(3)(k + p− q)δ(3)(k− k′)δs,r′δr,s′ , (3.42)

〈0|b−p,sb†−(k+p),rb−q,s′b
†
k′−q,r′ |0〉 = (2π)6δ(3)(k)δ(3)(k− k′)δs,rδs′,r′ . (3.43)

The second expectation value, eq. (3.43), corresponds to the zero-mode k = k′ = 0 of

the anisotropic-stress, and must vanish due to isotropy.5 Therefore only the first term,

eq. (3.42), will contribute to the UTC.

Now we are ready to obtain Π2(k, t, t′) as a function of the 4-spinors up,r and vp,r.

From the definition of the UTC by eq. (2.23), and using eqs. (3.40), (3.41) and (3.42), we

finally obtain

Π2(k, t, t′) =
1

a2(t)a2(t′)

∫
dp

(2π)3

(
v̄p,s(t)p(iγj)uk−p,r(t)Λij,lm(k̂)ūk−p,r(t

′)p(lγm)vp,s(t
′)
)
,

(3.44)

where we have used the property Λij,pq(k̂)Λpq,lm(k̂) = Λij,lm(k̂). By representing the 4-

spinors as in eq. (3.16) we can calculate the integrand in eq. (3.44), which corresponds to

5Such term is proportional to δ3(0) and thus represents a non-physical divergence, corresponding to the

zero-point fluctuations, that must be removed.
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a trace over spinorial-indices. We obtain, see appendix A for details,

Tr
{
v̄p,s(t)p(iγj)uk−p,r(t)Λij,lm(k̂)ūk−p,r(t

′)p(lγm)vp,s(t
′)
}

(3.45)

= 2p2 sin2 θ
[
uk−p,+(t)up,+(t)u∗k−p,+(t′)u∗p,+(t′) + uk−p,−(t)up,−(t)u∗k−p,−(t′)u∗p,−(t′)

−uk−p,+(t)up,+(t)u∗k−p,−(t′)u∗p,−(t′)− uk−p,−(t)up,−(t)u∗k−p,+(t′)u∗p,+(t′)
]
,

where θ is the angle between k and p. Note that the r.h.s. of eq. (3.45) is expressed as a

function only of the mode functions uk,± and not vk,±(t), since the latter are related to

the former by eq. (3.18). We can then write eq. (3.44) like

Π2(k, t, t′) =
1

2π2a2(t)a2(t′)

∫
dp dθ p4 sin3θWk,p(t)W ∗k,p(t′), (3.46)

where we have defined

Wk,p(t) ≡ uk−p,+(t)up,+(t)− uk−p,−(t)up,−(t). (3.47)

From here, substituting eq. (3.46) into eq. (2.26), we find that the spectrum of GW pro-

duced by fermions is given by

dρGW

d log k
(k, t) =

Gk3

π3a4(t)

∫
dp dθ p4 sin3θ

(∣∣I(c)(k, p, θ, t)
∣∣2 +

∣∣I(s)(k, p, θ, t)
∣∣2) , (3.48)

where

I(c)(k, p, θ, t) ≡
∫ t

ti

dt′

a(t′)
cos(kt′)Wk,p(t′), I(s)(k, p, θ, t) ≡

∫ t

ti

dt′

a(t′)
sin(kt′)Wk,p(t′)

(3.49)

Eqs. (3.47)–(3.49) are the set of master formulas describing the energy-density spec-

trum of GW generated at sub-horizon scales by some fermionic field. They were first

presented in [67]. For any process in the early Universe at which fermions develop an

anisotropic stress, the spectrum of the GW generated by such fermions can be just found

by plugging the corresponding mode functions uk,±(t) into eqs. (3.47) and (3.49), and then

calculating eq. (3.48). However, as we will show in what follows, such computation does

not yet give the final answer. The UTC needs to be regularized in order to remove the

(otherwise infinite) contribution from the zero-point fermion fluctuations. Thus, the set of

master formulas eqs. (3.47)–(3.49) need to be revisited, as shall be explained in the next

section. Note that the structure of the formula in eq. (3.48) resembles that of scalar fields

sourcing GW, see appendix D.

3.3 Regularized spectrum of gravitational waves from fermions

The calculation presented so far leads to an ultraviolet (UV) divergence in the momentum

integral in eq. (3.48). This is due to the contribution from the fermionic vacuum fluc-

tuations. In order to obtain a physical amplitude of the GW background generated by

fermions, we need to regularize this divergence. We need a regularization procedure which
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subtracts the contribution from the large momentum fermion vacuum fluctuations. We can

do indeed a very similar procedure to what it is normally done in flat-space. That is, we can

impose a normal ordering in the creation and annihilation operator products. The dif-

ference with respect the case in Minkowski is that now the background is time-dependent.

Therefore we will need a time-dependent normal-ordering (tNO) procedure.

Our aim is to regularize the unequal-time correlator Π2(k, t, t′), which is a quadrilinear

combination of the Dirac field. However note that the vacuum expectation value (VEV) of

the GW source, the TT-part of anisotropic stress tensor, ΠTT
ij , also needs to be regularized.

Therefore we will begin by discussing how to regularize an operator O ∼ Ψ̄Ψ bilinear in

the Dirac field, like ΠTT
ij . In the Heisenberg picture VEVs are considered with respect to

the initial vacuum |0〉. If the expectation value 〈0|O|0〉 of some operator O diverges, we

can regularize it by simply subtracting the contribution from the zero-point fluctuations

at time t. However the state |0〉 is not regarded anymore as the physical vacuum at time t;

rather there is a new state |0t〉 that has the properties of vacuum at that time. That is, the

physical vacuum changes in time. Thus the vacuum-fluctuations that are to be removed6

at every time t, should depend on the vacuum at that time, i.e. |0t〉. Therefore the tNO

prescription amounts to compute expectation values as

〈O(t)〉reg ≡ 〈0|O(t)|0〉 − 〈0t|O(t)|0t〉 (3.50)

By its very definition, the operation of tNO gives the VEV of O only for the existing

particles at time t, since the VEV of the vacuum quantum fluctuations (as opposed to

particles) at time t is subtracted.

To perform this regularization we note that for an operator of the form O ∼ Ψ̄Ψ, it is

possible to define another operator Õ such that

〈0|Õ(t)|0〉 = 〈0t|O(t)|0t〉, (3.51)

see appendix B for details. The new operator is written as Õ(t) ∼ Φ̄Φ, with7

Φ(x, t) =
1

a3/2

∫
dk

(2π)3 e
−ikx

[
âk,r Uk,r(t) + b̂†−k,rVk,r(t)

]
(3.52)

Φ̄(x, t) = Φ†(x, t)γ0 =
1

a3/2

∫
dk

(2π)3 e
+ikx

[
â†k,r Ūk,r(t) + b̂−k,rV̄k,r(t)

]
, (3.53)

where the new four-spinors are given as

Uk,r(t) = αk(t)uk,r(t) + β∗k(t)vk,r(t), (3.54)

Vk,r(t) = αk(t)vk,r(t)− βk(t)uk,r(t), (3.55)

with α and β the same Bogoliubov coefficients quoted before. Note that indeed eqs. (3.54)

and (3.55), relate the 4-spinors Uk,r,Vk,r with uk,r, vk,r, similarly to how the Bogoliubov

transformation eqs. (3.25) and (3.26), relate the operators ˆ̃ak,r,
ˆ̃
bk,r with âk,r, b̂k,r.

6This is the reason why the tNO procedure is written as 〈0|O(t)|0〉−〈0t|O(t)|0t〉 and not as 〈0t|O(t)|0t〉−
〈0|O(t)|0〉.

7The 1

a3/2
prefactors are simply taken by analogy with the conformal relation Ψ = 1

a3/2
ψ.
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The regularized VEV of O can then be written as

〈O(t)〉reg = 〈0|O(t)− Õ(t)|0〉 ≡ 〈0|Oreg(t)|0〉, (3.56)

with

Oreg(t) ∼
(
Ψ̄Ψ− Φ̄Φ

)
(t) (3.57)

We can apply this procedure to any operator bilinear in the Dirac field. Thus the

regularized VEV of the TT-part of the anisotropic stress-tensor, i.e. the GW source, could

be obtained as〈
ΠTT
ij (k, t)

〉
reg

=
〈
0
∣∣ΠTT

ij (u, v)− Π̃TT
ij (U ,V)

∣∣0〉 ≡ 〈0 ∣∣ΠTT
ij,reg

∣∣ 0〉 , (3.58)

with ΠTT
ij,reg(k, t) a function of all spinors v, u,V,U . We will not provide however the explicit

expression for ΠTT
ij,reg(k, t), since in general grounds it is expected that

〈
ΠTT
ij (k, t)

〉
= 0, and

thus the regularization of ΠTT
ij is unnecessary. In particular, due to statistical homogeneity

and isotropy, 〈0|hij(x, t)|0〉 = 0, ∀x, t. Then, from the linearized GW eom, we are forced to

conclude that 〈0|ΠTT
ij (x, t) |0〉 = 0, ∀x, t, and correspondingly 〈0|ΠTT

ij (k, t) |0〉 = 0,∀k, t.

Therefore, regularizing the expectation value of ΠTT
ij (k, t) as in eq. (3.58) does not change

this fact, and the regularized VEV still vanishes (see appendix A.2 for more details).

We will then rather focus on the regularization of a bilinear operator with a non-vanishing

VEV. The simplest one is the scalar quantity O2(x, t) = Ψ̄(x, t)Ψ(x, t), which has a Fourier

transform as

O2(k, t) =

∫
dp

(2π)3

[
b̂−p,sv̄p,suk+p,râk+p,r + b̂−p,sv̄p,svk+p,r b̂

†
−(k+p),r (3.59)

+ â†p,sūp,suk+p,râk+p,r + â†p,sūp,svk+p,r b̂
†
−(k+p),r

]
,

The regularized VEV of this quantify is then

〈O2(k, t)〉reg ≡
〈
0
∣∣O2(u, v)− Õ2(U ,V)

∣∣0〉 ≡ 〈0∣∣O2,reg(k, t)
∣∣0〉, (3.60)

where the explicit form of O2,reg(k, t) is found as (see appendix A)

O2,reg(k, t) =

∫
dp

(2π)3

[
b̂−p,s

(
v̄p,suk+p,r − V̄p,sUk+p,r

)
âk+p,r (3.61)

+b̂−p,s
(
v̄p,svk+p,r − V̄p,sVk+p,r

)
b̂†−(k+p),r

+â†p,s
(
ūp,suk+p,r − Ūp,sUk+p,r

)
âk+p,r

+ â†p,s
(
ūp,svk+p,r − Ūp,sVk+p,r

)
b̂†−(k+p),r

]
All the information we need to regularize the VEV of any bilinear operator in the Dirac

field is contained in eq. (3.61). The latter expression is indeed identical to that in eq. (3.59),

but with every bilinear product of spinors, v̄u, v̄v, ūu and ūv, replaced respectively by its

regularized version, (v̄u − V̄U), (v̄v − V̄V), (ūu − ŪU) and (ūv − ŪV). Such replacements
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constitute precisely our prescription for regularizing the VEV of any operator formed by

an even product of fermionic fields. For instance, out of the four bilinear operators in

eqs. (3.59) and (3.61), b̂â, b̂b̂†, â†b̂, â†b̂†, only b̂b̂† has a non-zero VEV as 〈0|bp,sb†k,r|0〉 =

(2π)3δrsδD(p− k). Thus, we obtain the regularized VEV as

〈
0
∣∣O2(x, t)

∣∣0〉
reg
≡
〈
0
∣∣O2,reg(x, t)

∣∣0〉 =

∫
dp

(2π)3

(
v̄p,svp,s − V̄p,sVp,s

)
, (3.62)

which is independent of x. The non-regularized VEV reads〈
0
∣∣O2(x, t)

∣∣0〉 =

∫
dp

(2π)3
v̄p,svp,s , (3.63)

also independent of x, being simply the same as in eq. (3.62), but with v̄p,svp,s in

the integrand, instead of
(
v̄p,svp,s − V̄p,sVp,s

)
. More explicitly, computing the trace in

eqs. (3.63), (3.62), the details of which can be found in appendix A, we find

〈
0
∣∣O2(x, t)

∣∣0〉 = 2

∫
dp

(2π)3

(
|up,+|2 − |up,−|2

)
(3.64)〈

0
∣∣O2(x, t)

∣∣0〉
reg

= 4

∫
dp

(2π)3
|βp|2

(
|up,+|2 − |up,−|2

)
(3.65)

Defining the ’regularized’ mode functions8 by

ũp,± ≡
√

2 |βp|up,± , (3.66)

we can then write the regularized VEV like〈
0
∣∣O2(x, t)

∣∣0〉
reg

= 2

∫
dp

(2π)3

(∣∣ũp,+∣∣2 − ∣∣ũp,−∣∣2) (3.67)

Note that this expression is actually the same as that of the non-regularized VEV, but

as a function of the regularized mode functions. In other words, the regularized VEV,

eq. (3.67), can be obtained under the prescription that it is equal to the non-regularized

VEV, eq. (3.64), but substituting up,± by ũp,±. Therefore, we can write〈
0
∣∣O2[u+, u−]

∣∣0〉
reg
≡
〈
0
∣∣O2

[
u± → ũ±

] ∣∣0〉 (3.68)

We can easily appreciate now how the regularization is working at removing the UV di-

vergence: In any scenario under consideration there will always be a characteristic UV

cut-off scale k∗, such that fermions with larger momenta k > k∗ are not excited. Thus

the occupation number of the high momenta modes should vanish (often it dies away ex-

ponentially), nk>k∗ → 0. In other words, for UV modes k > k∗, there are only fermion

vacuum fluctuations, which are precisely responsible for the divergence. Since nk ≡ |βk|2,

then βk>k∗ → 0, and hence the regularized mode functions die also away for k > k∗, as

8Note that in our original letter [67], we proposed a different ’dressing’ for the regularized mode functions

ũp,±(t), based on a different approach than (though very similar to) the one carefully detailed in this

section 3.3, and complemented by appendices A, B.
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ũk,± ∝ |βk| → 0. Therefore the integral in eq. (3.65) [or equivalently that in eq. (3.67)]

is naturally regularized at the scale k = k∗, which separates the excited fermionic modes

from the vacuum fluctuations. The short wave-length vacuum fluctuations with k > k∗,

responsible of the UV divergence in the original integration in eq. (3.64), are therefore

removed (typically they are exponentially suppressed, depending on the scenario), and the

divergence is then regularized.

We can generalize this prescription to regularize the VEV of any operator formed by

an arbitrary product of pairs of fermionic fields, each evaluated at a given time. We can

write this symbolically, in Fourier space, as

O2N (t1, t2, . . . , tN ) ∼
N∏
n=1

O2(tn) ∼
N∏
n=1

Ψ̄[u±(pn, tn)]Ψ[u±(kn, tn)] , (3.69)

where each O2 is a characteristic operator evaluated at a given time, bilinear in the fermion

fields and possibly including matrices or momentum components (from the fourier trans-

form of derivatives) multiplying any of the fields within the pair. The regularized VEV of

O2N is then obtained as

〈
0
∣∣O2N (t1, t2, . . . , tN )

∣∣0〉
reg
≡
〈
0
∣∣ N∏
n=1

O2

[
u±(tn)→ ũ±(tn)

] ∣∣0〉 (3.70)

Following this prescription, the regularization of the source of GW, the unequal time

correlator Π2(k, t, t′), can now be achieved straight ahead. We just have to substitute the

mode functions within each pair of spinors evaluated at the same time, by their regularized

version. That is〈
ΠTT
ij (k, t)ΠTT∗

ij (k′, t′)
〉

reg
≡
〈
0
∣∣ΠTT

ij [u± → ũ±](k, t) ΠTT∗
ij [u± → ũ±](k′, t′)

∣∣0〉
≡ (2π)3Π2

reg(k, t, t′)δ3(k− k′). (3.71)

The regularized UTC, Π2
reg(k, t, t′), like the expression of the non-regularized UTC,

eq. (3.44), will be a function of quadrilinear combinations of spinors. It is actually ob-

tained by the same trace calculation as in eq. (3.45), but substituting every u± by ũ±. We

then have

Π2
reg(k, t, t′) =

1

2π2a2(t)a2(t′)

∫
dp dθ p4 sin3θ W̃k,p(t)W̃ ∗k,p(t′), (3.72)

with W̃k,p defined analogously to Wk,p in eq. (3.47), but in terms of ũ±’s as

W̃k,p(t) ≡ ũk−p,+(t)ũp,+(t)− ũk−p,−(t)ũp,−(t) (3.73)

= 2|βp(t)||βk−p(t)|Wk,p(t)

Substituting eq. (3.73) in eq. (2.26), we find the regularized spectrum of GW produced by

fermions like

dρGW

d log k
(k, t) =

Gk3

π3a4(t)

∫
dp dθ p4 sin3θ

(∣∣∣Ĩ(c)(k, p, θ, t)
∣∣∣2 +

∣∣∣Ĩ(s)(k, p, θ, t)
∣∣∣2) , (3.74)
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where

Ĩ(c)(k, p, θ, t) ≡
∫ t

ti

dt′

a(t′)
cos(kt′)W̃k,p(t′), Ĩ(s)(k, p, θ, t) ≡

∫ t

ti

dt′

a(t′)
sin(kt′)W̃k,p(t′)

(3.75)

Denoting again as k∗ the UV cut-off momentum scale above which only fermion vac-

uum fluctuations are present, we expect that the fermionic occupation number should

then vanish for modes k > k∗, i.e. np>k∗ ≡ |βp>k∗ |2 = 0. Consequently W̃±k,p(t) =

2|βp(t)||βk−p(t)|Wk,p(t) → 0 for when p � k∗ and/or k � k∗. That is, the would be

UV-divergence in eq. (3.72) is regularized by the suppression of the large-momentum tail

of W̃±k,p(t), and the convergence of the GW spectrum at large k is also guaranteed. Note

that eqs. (3.74), (3.75) are actually identical to the ones before we considered regular-

ization, eqs. (3.48), (3.49), but simply evaluated at the regularized mode functions ũ±.

Eqs. (3.74), (3.75), together with eq. (3.73), constitute therefore the master set of equa-

tions that should be really used to determine the spectral amplitude of the GW emitted

by an ensemble of fermions.

4 Fermions as a source of gravitational waves — Applications

In this section we will apply the previous formalism to early Universe scenarios where

out-of-equilibrium fermions are created through parametric excitation interactions with a

scalar field. Such fermions develop naturally an anisotropic stress which sources GW. This

is the case of fermions produced during (p)reheating after inflation, but also during the

post-reheating thermal era previous to BBN. All along section 4 we present the numerical

results for the spectrum of the GW generated by fermions excited from a Yukawa type

interaction with a homogeneous oscillatory scalar field. We have characterized how the

GW spectrum depends on the parameters involved in the various models considered. In

particular, we have investigated two possible general scenarios: 1) fermion particle creation

during the preheating period following the end of inflation, considering both the case of a

massless or a massive inflaton, and 2) fermion production from some spectator field during

the thermal era following reheating, before BBN, like e.g. in curvaton-like scenarios. We

will refer to the first case as fermionic preheating, and to the second as post-reheating

thermal scenarios. We begin in section 4.1 with considerations common to all scenarios

studied, discussing general aspects of the dynamics of homogeneous oscillating scalar fields,

and their coupling to fermions through a Yukawa term. In section 4.2, we complete the

discussion on the common aspects of the scenarios considered, by providing a general

parametric estimation of the amplitude and frequency of the expected background of GW.

Sections 4.3 and 4.4 are dedicated respectively to the cases of fermionic preheating from

a massless and a massive inflaton. Finally, section 4.5 is devoted to the post-reheating

fermion production scenarios in the thermal era.

4.1 Scalar field dynamics and the Yukawa interaction

In all scenarios we have always considered a coupling of a scalar field ϕ to some fermionic

species Ψ, via a Yukawa interaction as

Lint = hϕΨ̄Ψ, (4.1)
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with h a dimensionless Yukawa coupling. If the scalar field forms a homogeneous conden-

sate, this interaction induces an effective time-dependent mass in the fermionic field like

mΨ = hϕ(t). Depending on the dynamics of ϕ, the fermion modes can be excited, so

it is important to characterize well the behavior of ϕ. All along sections 4.1–4.5 we will

assume that the only mass that fermions have is the dynamical one from their interac-

tion with ϕ. We leave for appendix C the consideration of fermions having an additional

time-independent bare mass.

The eom of a homogeneous scalar field in a FRW background is given by

ϕ̈+ 2Hϕ̇+ a2dV

dϕ
= 0 (4.2)

where derivatives are taken with respect to conformal time t. In principle, since the scalar

field is coupled to fermions, one should then include somehow the Yukawa interaction in

eq. (4.2). However, in most situations the excitation of fermions from the scalar field

represents a marginal transfer of energy out of the scalar condensate. Hence one can

ignore the effect of the fermions into the scalar field dynamics. Obviously this depends

on the exact excitation of the fermions and on the strength of the Yukawa coupling h.

For reasonable coupling amplitudes, the interaction with fermions is never an issue for the

scalar field dynamics. It is therefore important to characterize the behavior of ϕ just as

dictated from its own potential V (ϕ), ignoring the Yukawa coupling. The condensate ϕ

will simply act as a source for the fermions, while the ’backreaction’ of the latter into the

former will be negligible.

We will consider two type of potentials, that of a massive field, V (ϕ) = 1
2m

2
ϕϕ

2, and

that of a self-interacting field, V (ϕ) = λ
4ϕ

4. In the scenarios that we have studied the

condensate starts with some initial amplitude, ϕ(tI) = ΦI , and then oscillates around the

minimum of V (ϕ), located at ϕ = 0 in the two potentials considered. Due to the expansion

of the universe the amplitude of the field will decrease with time as the condensate oscillates.

Soon after the field begins to roll towards the ’bottom’ of the potential for the first time,

the solution of eq. (4.2) can be written in the form

ϕ(t) ≈ Φ(t)F (t), (4.3)

with Φ(t) a decreasing amplitude and F (t+ 2π/ω) = F (t) an oscillatory periodic function

with angular frequency ω and amplitude equal to unity. This is a common aspect shared

by the two potentials that we have considered,9 quadratic and quartic, though the details

differ. We will discuss in each section 4.3, 4.4 and 4.5, some of the details of the analytical

solutions for ϕ(t) corresponding to each different scenario. However, in practice, we will

not rely in such analytical expressions (which are only approximate), and rather we will

solve numerically the eom of the scalar field, together with the Fermions’ mode equation.

In the light of the coupling in eq. (4.1), the eom for the fermionic mode functions

uκ,±(τ) can be written in the form

d2

dτ2
uκ,±(τ) +

[
κ2 + q a2(τ)ϕ̃2(τ)± i√q d

dτ
(a(τ)ϕ̃(τ))

]
uκ,±(t) = 0, (4.4)

9The periodicity in the case of a massive scalar field is actually exact only in cosmic time, y(t) =∫ t
0
dt′a(t′), not in conformal one t.
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where we have defined a dimensionless time τ and momentum κ, as well as a dimensionless

scalar field amplitude (normalized to unity at tI = 0), as

τ ≡ ωt , κ ≡ k/ω , ϕ̃(τ) ≡ ϕ/ΦI (4.5)

We have also introduced a resonance parameter

q ≡
h2Φ2

I

ω2
, (4.6)

which becomes q = h2/λ in the case of a quartic potential, and q = h2Φ2
I/m

2
ϕ in the case

of a quadratic potential.

For each scenario, we have solved numerically eq. (4.2) together with eq. (4.4). The

initial conditions for the fermions correspond simply to an initial zero number density,

eqs. (3.33), (3.34), which we already discussed in section 3.1. The initial conditions of the

scalar field vary from scenario to scenario. In the case of preheating, the two potentials

considered, quadratic and quartic, do not necessarily represent the inflationary potential

(as it would be the case in chaotic inflation models), but rather the effective potential

for the inflaton after inflation. In the particular circumstance in which the preheating

potential represents as well the inflationary potential, then the initial conditions for the

inflaton are simply determined by the breaking of the slow-roll regime. That is, considering

the slow-roll parameters (each subscript corresponding to a derivative with respect ϕ)

ε ≡ 1

16πG

(
Vϕ
V

)2

, η ≡ 1

8πG

∣∣∣∣VϕϕV
∣∣∣∣ , (4.7)

the initial amplitude ΦI can be obtained from the moment when either of the slow-roll

parameters becomes unity, ε = 1 or η = 1. The initial velocity is then read from the

slow-roll eom Φ̇I ≈ −V (ΦI)/2HI . However, in general, as said, the shape of the potential

during preheating is not necessarily linked to the potential during inflation (which could

be, for instance, a plateau). Thus the initial amplitude and velocity for the inflaton in such

case are free parameters, though bounded to be smaller than the ones from the breaking

of the slow-roll condition in the chaotic inflationary regime. Finally, in the case of a

scalar field oscillating during the thermal era after the completion of reheating, clearly its

potential is not related to the inflationary one, since the scalar field is not identified with

the inflaton. Therefore the initial conditions in this case can be freely chosen, with the

only constraint that the energy stored in the scalar condensate should correspond to only

a marginal fraction of the energy in the thermal bath, which dominates the energy budget

of the universe.

4.2 Parametrization of the gravitational waves amplitude and frequency

Let us note that since we will solve the fermion mode equation in the natural units de-

fined in eq. (4.5), it is also convenient to express the GW spectrum in such units. Thus,

eqs. (3.74), (3.75) can be rewritten as a function of dimensionless variables, such that the
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total fraction of GW energy density when production ends at t = t∗, reads

Ω(∗)
GW
≡ 1

ρ∗

(
dρGW

d log k

)
∗

=

(
ω

Mp

)2(aI
a∗

)1−3w κ3F∗(κ)

π3ρ̃I
(4.8)

F∗(κ) ≡
∫
dp̃ dθ p̃4 sin3 θ

(∣∣∣Ĩ(c)(κ, p̃, θ, τ∗)
∣∣∣2 +

∣∣∣Ĩ(s)(κ, p̃, θ, τ∗)
∣∣∣2) , (4.9)

where κ ≡ k/ω, p̃ ≡ p/ω, τ∗ ≡ ωt∗, ρ̃I ≡ ρI/ω
4, and the Ĩ(x) functions are just given by

the same formulas as in eq. (3.75), but expressed in terms of the dimensionless variables.

Note that we have also introduced the Planck mass Mp ≡ 1/
√
G ' 1.22 · 1019 GeV, and

used the fact that the energy density ρ̃∗ at the end of GW production, can be expressed

as a function of the initial energy density ρ̃I ≡ ρI/ω
4, as ρ̃∗ = ρ̃I(aI/a∗)

3(1+w), where

w is the equation of state parameter. In the case of a RD universe with w = 1/3, then

(aI/a∗)
1−3w = 1 in eq. (4.8), since the GW energy density scales exactly as the background

one, i.e. both behave as relativistic dof .

According to eq. (2.28) and eq. (2.31), today’s frequency and amplitude of the GW,

redshifted from the time of production, are given by

h2ΩGW = h2Ωrad

(
go
g∗

) 1
3

× εΩ(∗)
GW
, (4.10)

f = κ

(
aI
a∗

)(
ε

ρ̃∗

) 1
4

× 5 · 1010Hz, (4.11)

where we recall that ε = (a∗/aRD)(1−3w) as defined in eq. (2.29).

In general, fermions excited from a homogeneous oscillating scalar field ϕ are expected

to fill up a “Fermi-sphere” with a comoving radius [62, 63]{
κF ∼ q1/4 , V (ϕ) ∝ ϕ4

κF ∼ (a/aI)
1/4q1/4 , V (ϕ) ∝ ϕ2

(4.12)

where q is the resonance parameter. Outside the Fermi-sphere, for κ > κF , the fermion

occupation number vanishes and hence the GW production is strongly suppressed for those

modes. Only inside the Fermi-sphere, i.e. for κ < κF , fermions are excited. Let us now look

carefully at the integrand of F∗ in eq. (4.9). We see that there is an angular modulation

sin3 θ, and more importantly, that its amplitude grows with the internal momenta as p̃4.

Besides, given the structure of the Ĩ(x) functions, these are not expected to depend signif-

icantly on p̃ for p̃ < κF , though they should drop abruptly for p̃ > κF . Thus we expect

a growth of the integrand with p̃ until we hit the Fermi-radius scale κF . From there on,

i.e. for p̃ > κF , the integrand amplitude will be suppressed (typically exponentially), since

the modes are outside of the Fermi-sphere. Therefore, on general grounds, we can expect

that there will be a peak at some scale k = kp in the spectrum of GW, located roughly at

the Fermi-radius scale, i.e. kp ∼ κF ω. In other words, the position of the highest amplitude

of the spectrum of GW from fermions, is expected to be around the maximum momentum

excited in the fermions. This feature can actually be nicely seen in the plots in figure 1,

figure 3 and figure 5, which we present in sections 4.3, 4.4 and 4.5, respectively.
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Let us try to find an analytic estimate for the q-dependence of the peak amplitude

of the GW background produced by fermions. For this we need to figure out an analytic

estimate for F∗(κp), where κp = kp/ω. Ignoring the angular dependence in the integrand

of F∗(κp), which will contribute only to a O(1)-modulation factor, we can actually write

F∗(kp) ∼
∫
dp̃ p̃4

∣∣∣Ĩ(κ, p̃, τ∗)
∣∣∣2 , (4.13)

where Ĩ represents any of the Ĩ(x) functions, whose amplitude is expected to be of the same

order, |Ĩ(c)| ∼ |Ĩ(s)|. Only the modes within the Fermi-sphere are excited, so we can make

the following Antsaz ∣∣Ĩ∣∣ = A p̃n θ(κp − p̃), (4.14)

where A is a dimensionless amplitude, n is an effective spectral index characterizing the

dependence of Ĩ with p̃, and θ(x) is the step function. We expect that
∣∣Ĩ∣∣ should decrease

with growing p̃, or in other words that n < 0. This is because the higher the value of p̃,

the faster the fermion mode functions in the integrand of
∣∣Ĩ(x)

∣∣ oscillate, and hence the

smaller the amplitude of
∣∣Ĩ(x)

∣∣ should be due to a ’phase erasing’ effect. Before writing

the Ĩ(x) functions in terms of the natural dimensionless variables, we see that Ĩ(x) has

dimensions of inverse energy. Therefore, the natural value for the spectral index, just

based on dimensional considerations, is n = −1. Using eq. (4.12), we expect then

F∗(κp) ∼ A2κ3+2δ
F ' A2q

3
4

+ δ
2 ×


1 , V (ϕ) ∝ ϕ4(
a∗
aI

) 3+2δ
4

, V (ϕ) ∝ ϕ2 ,

(4.15)

where we have introduced the parameter

δ ≡ n+ 1, (4.16)

to account for possible deviations with respect our educated guess of n = −1. From here,

we can infer that the final GW peak amplitude at τ = τ∗, Ω(p)
GW
≡ Ω(∗)

GW
(κp), should scale as

Ω(p)
GW

=

(
ω

Mp

)2(aI
a∗

)1−3w κ3
pF∗(κp)
π3ρ̃I

∼ A2

π3

ω6

ρIM2
p

q
3+δ
2 ×


(
a∗
aI

)3w−1

, V (ϕ) ∝ ϕ4

(
a∗
aI

)3w+ 1+δ
2

, V (ϕ) ∝ ϕ2

(4.17)

Let us note that in the case V (ϕ) ∝ ϕ4, we expect in most scenarios that the factor in

eq. (4.17) is (a∗/aI)
3w−1 = 1, since typically the scalar field φ is either oscillating in a

relativistic thermal background or dictating itself the expansion of the Universe, in both of

which cases w = 1/3. Only in the case that V (ϕ) ∝ ϕ4 does not dominate the energy budget

and the latter is dominated by non-relativistic dof , i.e. w 6= 1/3, then does (a∗/aI)
3w−1 may
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have any weight different than unity. However that corresponds to uncommon situations,

unlikely to have happened in the early Universe.

In sections 4.3–4.5 we will quantify the goodness of this parametrization of the peak

amplitude as a function of q, measuring δ and A2 from actual numerical results varying q

within each scenario considered. Anticipating our results, for a massless scalar field with

q > 1, we find that the (δ/2)-correction in eq. (4.17) amounts to a ∼ 7% relative deviation

with respect the ’expected’ 3
2 power index of q (which would correspond to n = −1 exactly),

whereas the correction for a massive scalar field with q > 1, goes up to ∼ 17%.

The corresponding amplitude of the GW peak today is simply

h2ΩGW (fp) ' h2Ωrad

(
go
g∗

) 1
3

× εΩ(p)
GW

, (4.18)

whereas the present frequency of the GW peak, using eqs. (4.11)–(4.12), is given by

fp ' 5 · 1010

(
aI
a∗

)(
ε

ρ̃∗

) 1
4

κF Hz

∼ 5 · 1010

(
ω

ρ
1/4
I

)
ε
1
4 q

1
4 Hz×


(
a∗
aI

) 3w−1
4

, V (ϕ) ∝ ϕ4

(
a∗
aI

) 3w
4

, V (ϕ) ∝ ϕ2

(4.19)

Again in the case V (ϕ) ∝ ϕ4, typically the expansion rate is determined by either φ or a

relativistic thermal background, so that w = 1/3 and, correspondingly, the volume factor

in eq. (4.19) is (a∗/aI)
(3w−1)/4 = 1. In the case V (ϕ) ∝ ϕ2, if the expansion rate is either

determined by φ or by a non-relativistic background, so that w = 0, the corresponding

volume factor in eq. (4.19) is also (a∗/aI)
3w/4 = 1.

Note that the above reasoning assumed implicitly that q > 1, which justifies the

assumption that
∣∣Ĩ∣∣ should decrease smoothly as p̃ grows (until we hit the sharp cut-off

at p̃ = κF ). When q < 1 the structure of the excited momenta below the Fermi radius is

complicate, and only specific set of modes p̃1 < p̃2 < . . . < κF are excited [62, 63]. We thus

expect a different behavior of Ĩ with respect p̃, as compared to the previous case q > 1. In

the case q < 1, while increasing p̃, more excited modes enter within the sphere of radius

equal to such p̃. Thus, we may expect that
∣∣Ĩ∣∣ grows with p̃ or, equivalently, that n > 0

in eq. (4.14). In this case the δ-parametrization of the deviations with respect n = −1

looses somehow its meaning, since in general δ will not be a small correction to n = −1.

Therefore, in the case of q < 1, eq. (4.17) is still expected to be valid, but it is better to

consider δ simply as a fitting parameter, and not as a small correction.

Now we have at hand everything needed to make an estimate of the spectral peak

amplitude of the GW background produced by a fermionic source excited by a coherent

scalar field through a Yukawa interaction. We will calibrate our formulas above confronting

them with the actual numerical results from the several scenarios that we have studied in

sections 4.3–4.5.
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Figure 1. Spectrum of GW just at the end of production, see eq. (4.24), obtained for parameters

q = 106, h = 0.1 and ΦI =
√

3/2πMp, corresponding to an initial energy scale EI ≈ 6.0 · 1016GeV.

The dashed line has been added by hand, just to help guiding the eye through the scattered points.

A realistic spectral shape should be a smooth curve, but due to the rapid oscillations of some of the

functions involved, the numerical calculations are not accurate enough. This affects particularly

the modes in the UV tail, where the calculated amplitude decrease rather slow. The dashed line

plotted lies within the estimated errors from our numerical integration (which we do not show just

not to obscure the plot). The ’picture’ that one should really take clear from this plot is that there

is a well-defined peak in the spectrum, just as expected located at κ ∼ q1/4.

4.3 Fermionic preheating, part I: the case of a self-interacting inflaton

In this section we study the GW production from fermions produced by of a self-interacting

scalar field oscillating with potential V = 1
4λϕ

4. This is the situation during preheating

after inflation, with the massless scalar field playing the role of the inflaton, and hence

dominating the energy budget of the Universe. The expansion of the Universe behaves

in this case, effectively as a radiation dominated (RD) FRW universe, since the trace

of the inflaton energy-momentum is zero. The scale factor evolves correspondingly as

a(t) ≈ aI [1 +HI(t− tI)], with aI and HI the scale factor and the (comoving) Hubble rate

at t = tI . We take tI = 0 at the end of inflation. The Hubble rate during preheating is then

H(t) ≈ HI/ [1 +HIt] ∼ 1/t. The solution to eq. (4.2) is given by an elliptic cosine [53–55]

ϕ(t) = Φ(t) cn(x(t), 1/2) , x(t) ≡
√
λΦI t (4.20)

with a decreasing amplitude Φ(t) ∝ 1/x(t). Note that this expression indeed matches the

form anticipated in eq. (4.3). The natural frequency of oscillations is then

ω =
√
λΦI , (4.21)

whereas the period in between inflaton zero crossings is given by ωT = π−1/2Γ2(1/4) ≈
7.416 [55], different than the usual harmonic 2π ≈ 6.283 . . .. Note that we could also write

the behavior of ϕ(t) in terms of the number of oscillations N after inflation. In particular

the amplitude scales as Φ ∝ 1/N .
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For a RD background we have an equation of state parameter w = 1/3, and hence the

parameter defined in eq. (2.29) is ε = 1. This implies that the energy density of the GW

scales exactly as the energy of the inflaton, which drives the expansion of the Universe.10

The total background energy density of the Universe at the end of the production of GW

is then given by

ρ∗ = ρI

(
aI
a∗

)4

=
λ

4
Φ4
I

(
aI
a∗

)4

, (4.22)

where ρI = λ
4 Φ4

I is the initial energy density at the end of inflation. The resonance param-

eter in this scenario is given by

q =
h2

λ
(4.23)

Using eq. (4.8) we obtain that the spectrum of GW right after production ends is given by

Ω(∗)
GW

(κ) =
4λ2

π3

(
ΦI

Mp

)2

κ3F∗(κ; q). (4.24)

We see from eq. (4.24) that, as expected, the initial amplitude ΦI , the self coupling of the

inflaton λ, and the resonance parameter q (or equivalently the Yukawa coupling h for a

fixed λ), determine completely the final shape of the GW spectrum. In principle, for this

model, the amplitude of the CMB fluctuations fix the inflaton self-coupling to λ ∼ 10−13,

whereas the radiative corrections require, in order not to spoil the flatness of the potential,

that h . 10−3 [68]. However this is only true if the potential V (φ) = λ
4 φ

4 describes

the inflationary period, corresponding to a chaotic inflation scenario. However, if that

was the case, this model would be rule out in the light of the latest analysis of the CMB

fluctuations by the Planck Collaboration [1, 2]. It is clear then, that the chaotic inflation

scenario in which V ∝ φ4 describes both the inflation and reheating periods, is not an

acceptable model anymore. We are therefore forced to conclude that, for our purposes, the

inflationary potential should be described by some unspecified shape, and the quartic form

V ∝ φ4 becomes valid only at (p)reheating, after inflation. In general we will then consider

λ and h as free parameters (within reasonable margins), whereas the initial amplitude

ΦI will not need to be determined from the breaking of the slow-roll condition. Yet the

latter, i.e. the moment when the slow-roll parameter ε or η would become unity in the

chaotic scenario, determines an upper bound for the initial amplitude ΦI . In this scenario

η becomes unity first, and thus

η ≥ 1 ⇒ ΦI ≤ Φsr
I =

√
3

2π
Mp (4.25)

In the case that V ∝ φ4 is only valid after inflation, the initial field amplitude is simply

restricted as ΦI 6 Φsr
I . Equivalently, the initial energy scale would be EI = (λΦ4

I/4)1/4 <

Esr
I ≡

√
3/(4π)λ1/4Mp, with realistic situations corresponding to EI � Esr

I .

In figure 1 we show an example of a GW spectrum, right after production ends, in an

scenario V (φ) = λ
4φ

4 with λ = 10−8 and h = 0.1. The resonance parameter is then q = 106.

10This fact is actually advantageous, since there is no extra suppression of the GW energy density relative

to the total one, as it will be the case when the expansion is matter dominated (MD), for when ε < 1.
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Figure 2. q-dependence of F∗(κp). The fits correspond to F∗(κp) ∝ q0.86 for q ≥ 1, and F∗(κp) ∝
q1.48 for q � 1, see eq. (4.28).

The initial energy scale in the example is EI = λ1/4ΦI/
√

2 ≈ 6.0 · 1016GeV, corresponding

to an initial amplitude ΦI = Φsr
I . This energy scale is too big to be acceptable, and was

chosen just to show how big, in an extreme case, the fraction of energy in the GW could

be with respect that in the background. To rescale the amplitude of this GW spectrum to

more realistic initial smaller amplitudes ΦI < Φsr
I , one just need to multiply the spectral

amplitude by an overall constant (ΦI/Φ
sr
I )2. Of course the physical scale at which the

spectrum peaks would also shift as kp → (ΦI/Φ
sr
I )kp. However, since in the plot we

show the GW spectral amplitude as a function of the natural units for the peak position,

∼ q1/4
√
λΦI , such shift would not be apparent.

In figure 1 we observe that, indeed as expected, the position of the maximum amplitude

(’peak’ hereafter) of the GW spectrum is located at kp ∼ κpω ∼ q1/4ω. The actual peak

position, measured in the numerics as

k(num)
p ' 2 q1/4

√
λΦI , (4.26)

matches very well the expectation.

In figure 2 we show the numerical dependence of F∗(κp) at the peak amplitude, with

the resonance parameter q = h2/λ. That is, we have obtained numerically the spectral

GW amplitude at k = kp, for a fixed ΦI , while varying q. Let us recall that given our

Antsaz eq. (4.14), which leads to eq. (4.15), we expect that F∗ evaluated at κp, scales as

F∗(κp, q) ' A2 · q
3
4

+ δ
2 (4.27)

When confronting these expressions with our numerical results, see figure 2, we obtain the

following results{
q > 1 : F∗(κp) ≈ 2.3 · 10−3 × q0.86 ⇒ A2 ≈ 2.3 · 10−3 , δ ≈ 0.22

q < 1 : F∗(κp) ≈ 0.36× q1.48 ⇒ A2 ≈ 0.36 , δ ≈ 1.46
(4.28)

In the case of q > 1, we see that the correction δ
2 to the 3

2 exponent in q, is of the order

of ∼ 7%. Note that δ was introduced originally as a correction to the spectral index of
∣∣Ĩ∣∣
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in eq. (4.15) for q > 1. If we then approximate this correction to δ ' 0.25, we see that the

scaling for q > 1 in our original Antsaz eq. (4.14), really goes as∣∣Ĩ∣∣ ∝ p̃(−1+δ) ≈ 1

p̃ 3/4
, (4.29)

In the opposite regime, when q < 1, δ is not considered as a small correction. Approximat-

ing the numerical fit in this case to δ ≈ 1.5, we then find that our Antsaz scales as∣∣Ĩ∣∣ ∝ p̃(−1+δ) ≈ p̃1/2 , (4.30)

The GW production in the example in figure 1 lasts for several oscillations of the

inflaton, with the scale factor growing as a∗/aI ' 100. The approximated amplitude of the

spectral peak given by our parametrization in eq. (4.17), is however independent of a∗/aI ,

and reads

Ω(p)
GW
' 4A2

π3
λ2

(
ΦI

Mp

)2

q
3+δ
2 '


3.0 · 10−4λ2

(
ΦI

Mp

)2

q1.61, q ≥ 1

4.6 · 10−2λ2

(
ΦI

Mp

)2

q2.23, q � 1

(4.31)

We can easily translate our results from the time of GW production to the present

frequency and amplitude of the GW spectrum today. We just need to use eqs. (4.17)–(4.19).

In particular, after having calibrated our parametrization schemes against the numerical

results, today’s amplitude and characteristic frequency of the peak

h2ΩGW(fp) ≡ h2Ωrad

(
go
g∗

)1/3

Ω(p)
GW

, and fp ' 5 · 1010 κp

ρ̃
1/4
I

Hz,

can be written as

h2ΩGW (fp) '


1.2 · 10−9λ2

(
ΦI

Mp

)2

q1.61, q ≥ 1

1.8 · 10−7λ2

(
ΦI

Mp

)2

q2.23, q � 1

(4.32)

fp ' 7 · 1010q
1
4λ

1
4 Hz = 7 · 1010 h

1
2 Hz , (4.33)

As it was expected, the typical frequencies are very high. For instance, the spectrum in the

example in figure 1 would be peaked today at fp ∼ 1010 Hz, and it would have an amplitude

of h2ΩGW(fp) ∼ 10−15. Although the amplitude is not that small, the frequency is however

simply too large as compared to the frequency range for which the future GW direct

observatories such as BBO or DECIGO will be designed. Can we reduce the frequency?

This is actually possible by having a very small Yukawa coupling. Let us actually take a

very tiny value, say h = 10−20. Then the prefactor in eq. (4.33) is q1/4λ1/4 = h1/2 = 10−10,

and thus the peak frequency fp would be in the ∼ 10 Hz regime. Let us now take a

big amplitude for ΦI , say ∼ Mp (even if this is too big to be acceptable), such that the
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prefactor (ΦI/Mp)
2 in eq. (4.32) is O(1). We are then left with a remaining prefactor

∼ (10−9)10−7λ2q(3+δ)/2 . (10−89)10−87q(δ−1)/2, which is ridiculously small, independently

of the resonance parameter q. Actually q(δ−1)/2 is always smaller than unity, because for

q > 1, δ < 1, whereas for q < 1, δ > 1. This contributes to make even smaller the overall

amplitude, as h2ΩGW(fp)� (10−89)10−87.

In conclusion, the GW background from fermions excited from a Yukawa interaction

with a coherent oscillating field — the inflaton — with potential11 ∝ φ4, can have a non-

negligible amplitude, but it is naturally peaked at high frequencies.

4.4 Fermionic preheating, part II: the case of a massive inflaton

In this section we study the GW production from fermions excited by a massive homo-

geneous scalar field oscillating in a potential V = 1
2m

2
ϕϕ

2, in the context of preheating

after inflation. The massive scalar field is again identified with the inflaton, so we consider

that dominates the energy budget of the Universe. The approximated solution to eq. (4.2)

is [53–55]

ϕ(t) ' ΦI

mϕy(t)
sin(mϕy(t)) (4.34)

which, expressed in terms of cosmic time y(t) ≡
∫ t

0 dt
′a(t′), matches the form in eq. (4.3).

The frequency of oscillations in this case is ω = mϕ, and we see that the inflaton crosses

zero every time mϕy(t) = π, 2π, 3π, . . ..

The energy density of the inflaton in a quadratic potential scales like in a non-

relativistic fluid [53–55]. So the Universe is effectively MD for as long as the inflaton

condensate dominates the energy budget. Therefore, the scale factor behaves (back to

conformal time) approximately as a(t) ≈ aI
[
1 + 1

2HI(t− tI)
]2

, with aI and HI the scale

factor and the Hubble rate at t = tI (again we take tI = 0 at the end of inflation). The

Hubble rate during preheating is then H(t) ≈ HI/
[
1 + 1

2HIt
]
∼ 2/t. In a MD background

the equation of state parameter is w = 0, and hence the parameter defined in eq. (2.29)

is ε = (a∗/aRD) < 1. This implies that the radiation-like energy density of the GW will

decrease faster than the matter-like background energy density.

The total energy density of the Universe right at the end of the GW production, at

t = t∗, is given by

ρ∗ = ρI

(
aI
a∗

)3

=
1

2
m2
ϕΦ2

I

(
aI
a∗

)3

, (4.35)

11Let us note that in this case of a quartic potential, the homogeneous inflaton also decays through a

self-resonance. This self-resonant process is however very inefficient, since it happens analogously as in a

theory with an extra scalar field χ coupled to the inflaton as 1
2
g2φ2χ2, with fixed coupling ratio g2/λ = 3.

For such ratio there is no ’principal’ resonant band at long wavelengths, so only short wavelengths are

mildly excited (the ’Floquet’ index is small) and the resonance is not very broad. Thus, there is always a

long period of inflaton oscillations until the moment when self-resonance has finally any impact. During

that period, GW from the fermionic decay are expected to be produced exactly as we have described in

this section, unless the resonant parameter q = h2/λ Yukawa is ridiculously small. It might be interesting

to study the regime at which both decay processes (fermionic and self-resonant) influence each other, but

most likely this would only affect the cases where, from the simple analysis ignoring the self-resonance, the

GW amplitude is already expected to be extremelly small, and therefore uninteresting.
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where ρI = 1
2m

2
ϕΦ2

I is the initial energy density of the Universe at the start of preheating.

The resonance parameter in this case is given by

q =
h2Φ2

I

m2
ϕ

, (4.36)

From eq. (4.8) we obtain that the spectrum of GW at t = t∗ is given by

Ω(∗)
GW

=
2

π3

(
m2
ϕ

ΦIMp

)2(
aI
a∗

)
κ3F∗(κ; q), (4.37)

We see from eq. (4.37) that the initial amplitude ΦI , the inflaton mass mϕ and the reso-

nance parameter q (or equivalently the Yukawa coupling h for fixed ΦI and mϕ) determine

completely the final amplitude of the GW spectrum. The potential V (φ) = 1
2m

2
ϕφ

2 de-

scribes, in principle, only the (p)reheating stage, not the inflationary period. But if it did,

as in a chaotic inflation scenario, the amplitude of the CMB fluctuations fixes the inflaton

mass to mϕ ∼ 1013 GeV, whereas avoiding that radiative corrections spoil the flatness of

the potential requires h . 10−3 [68]. In the case of chaotic inflation, therefore, V ∝ φ2

is valid both at inflation and (p)reheating, and contrary to the case of chaotic inflation

with V ∝ φ4, this scenario is not ruled out by the Planck Results [1, 2]. The chaotic

inflation scenario with V ∝ φ2 is still viable, though it is true that it is not preferred by

the data, since it is 2σ ”away” from the preferred value in the (tensor-to-scalar)-(spectral

index) plane [1, 2]. For our purposes, we can either consider the chaotic inflation case,

or rather that the inflationary potential is described by some unspecified shape with the

quadratic form V ∝ φ2 only valid during (p)reheating. Therefore, in analogous situation to

the quartic case, we can consider mϕ and h as free parameters within reasonable margins.

The initial amplitude ΦI , on the other hand, is simply restricted to not being bigger than

the amplitude inferred from the breaking of the slow-roll regime in the chaotic scenario. As

before, we can determine such upper bound for the initial amplitude ΦI when any of the

slow-roll parameters becomes unity in the chaotic scenario. In this model both parameters

are equal and thus become unity at the same time, so from ε = η ≥ 1 we find that

ΦI ≤ Φsr
I =

Mp

2
√
π

(4.38)

In general ΦI 6 Φsr
I or, equivalently, the initial energy at the end of inflation should be

restricted as EI = (1
2m

2
ϕΦ2

I)
1/4 < Esr

I ≡ (mϕMp)
1/2/(8π)1/4.

In figure 3 we show an example of a GW spectrum obtained right at the end of

production in an scenario V (φ) = 1
2m

2
ϕφ

2 with mϕ = 3 ·1013 GeV, inflaton initial amplitude

ΦI = Φsr
I , and Yukawa coupling h = 0.1. The resonance parameter and initial energy in this

example are, correspondingly, q = 106 and EI ' 3 · 1015GeV. To rescale the amplitude of

this GW spectrum for initial smaller amplitudes ΦI < Φsr
I , we need to multiply the spectral

amplitude by an overall constant (Φsr
I /ΦI)

2 < 1, at the same time that we re-evaluate F∗
with a new (smaller) resonance parameter q → (ΦI/Φ

sr
I )2q. Note that indeed this is

substantially different from the quartic potential case, since in the latter the resonance
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Figure 3. The spectrum of GW right after production, see eq. (4.37), for parameters q = 106,

h = 0.1 and ΦI = Mp/(2
√
π), and thus correspondingly for an inflaton mass mϕ = 3.4 · 1014GeV

and initial energy density EI = 3·1016GeV. Again, the dashed line is simply a guide for the eye over

the scattered points. Similar considerations to the ones discussed in the previous section (see the

caption of figure 1) apply here as well, in particular what concerns the amplitude of the spectrum

at the most UV scales (κ > 5q1/4).

parameter is independent of ΦI , and hence there is no need for re-evaluating F∗. The scale

at which the spectrum peaks would also shift, as kp → (ΦI/Φ
sr
I )1/2kp.

If we maintain the inflaton initial amplitude fixed but change its mass as mϕ → m′ϕ,

we would then have to multiply the spectrum by a factor (m′ϕ/mϕ)4, at the same time that

we re-evaluate F∗ at a new resonance parameter q → (mϕ/m
′
ϕ)2q. The physical scale of

the peak would shift as kp → (m′ϕ/mϕ)1/2, but again, due to the units used in the plot,

such shift would not be apparent in figure 3.

In figure 3 we can also see very clearly that, as expected (analogously to the case of a

quartic potential), the position of the maximum amplitude of the GW spectrum is located

at kp ∼ κpω. In the example chosen the GW production lasts for ln(a∗/aI) ≈ ln 11 ≈ 2.4

e-foldings, so we expect κp ' (a∗/aI)
1/4q1/4 ' 1.8 q1/4. We see therefore that the actual

peak position obtained from the numerical outcome,

k(num)
p ' 2 q1/4mϕ, (4.39)

matches very well the expectation.

In figure 4 we show the numerical dependence of the peak amplitude F∗(κp; q) against

the resonance parameter q = (hΦI/mϕ)2. From our Antsaz in eqs. (4.14), (4.15) we expect

at the peak scale

F∗(κp, q) ' A2 · (a∗/aI)
3
4

+ δ
2 q

3
4

+ δ
2 (4.40)

From our numerical outcome, see figure 4, we obtain that q > 1 : F∗(κp) ≈ 1.1 · 10−4 × q1.03 ⇒ A2 ≈ 9.6 · 10−6 , δ ≈ 0.56 ,

q < 1 : F∗(κp) ≈ 2.5 · 10−3 × q2.22 ⇒ A2 ≈ 1.2 · 10−5 , δ ≈ 2.94 ,
(4.41)
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Figure 4. q-dependence of F∗(κp). The fits, see eq. (4.41), correspond to F∗(κp) ∝ q1.03 for q > 1,

and F∗(κp) ∝ q2.22 for q < 1.

So for q > 1, we see that the δ
2 -correction to the 3

2 slope (expected for n = −1) in

eq. (4.17), is of the order ∼ 17%. If we approximate δ ' 0.5, we see that the scaling for

q > 1 in eq. (4.14), goes as ∣∣Ĩ∣∣ ∝ p̃(−1+δ) ≈ 1

p̃ 1/2
, (4.42)

In the opposite regime, when q < 1, approximating the numerical fit to δ ≈ 3.0, we find

that our Antsaz scales as ∣∣Ĩ∣∣ ∝ p̃(−1+δ) ≈ p̃2 , (4.43)

The GW production in the example in figure 3 lasts only for few e-folds, with the

scale factor growing as a∗/aI ' 11. However the duration in general will depend on q, and

thus we will maintain explicitly in the characterization of the GW peak, the dependence

with a∗/aI . Note that this is opposed to the case of preheating with V ∝ φ4, discussed

in section 4.3, where neither the amplitude nor the frequency of the peak depend on the

duration a∗/aI . From eq. (4.17), we see that the approximated amplitude of the spectral

peak at the end of GW production is

Ω
(p)
GW '

2A2

π3

(
m2
ϕ

ΦIMp

)2(
a∗
aI

) 1+δ
2

q
3+δ
2 '


6.2 · 10−7

(
m2
ϕ

ΦIMp

)2(
a∗
aI

)0.78

q1.78, q > 1

7.7 · 10−7

(
m2
ϕ

ΦIMp

)2(
a∗
aI

)1.97

q2.97, q < 1

(4.44)

Let us now convert our results from the end of GW production to the frequency and

amplitude of the GW today, for what we simply have to use eqs. (4.17)–(4.19). After the

calibration above of our parametrization schemes against the numerical results, the present
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amplitude and characteristic frequency of the peak,

h2ΩGW(fp) ≡ h2Ωrad

(
go
g∗

)1/3

Ω(p)
GW

, fp ' 5 · 1010

(
aI
a∗

) 1
4 κp

ρ̃
1/4
I

Hz,

can be parametrized as

h2ΩGW (fp) '


2.5 · 10−12

(
m2
ϕ

ΦIMp

)2(
a∗
aI

)0.78

q1.78, q > 1

3.1 · 10−12

(
m2
ϕ

ΦIMp

)2(
a∗
aI

)1.97

q2.97, q < 1

(4.45)

fp ' 6 · 1010

(
mϕ

ΦI

) 1
2

q
1
4 Hz = 6 · 1010 h

1
2 Hz (4.46)

As in preheating with a quartic potential, the typical frequencies are also very high. The

spectrum in the example in figure 3, for instance, would be peaked at fp ∼ 1010 Hz,

with an amplitude today of h2ΩGW(fp) ∼ 10−17. This is not a big amplitude, but yet

it is around the sensitivity threshold expected for detectors like BBO or DECIGO. The

frequency, however, is again as in the quartic potential case, simply too large compared

to the operational frequency range of such observatories. Of course, we can reduce the

frequency by finding the appropriate parameter values. By having a very small Yukawa

coupling, say we take again a very tiny value — the same as in the quartic potential

— h = 10−20. Then the peak frequency would be in the ∼ 10 Hz regime. For q > 1,

by using relation
(
m2
ϕ/(ΦIMp)

)2
= (h2/q)2 (ΦI/Mp)

2 and by assuming a∗/aI ∼ O(10),

we obtain that the amplitude of the GW can only be ridiculously small, h2ΩGW (fp) ∼
10−11h4 (ΦI/Mp)

2 q−0.22 � 10−90. For the scenarios with q < 1 we obtain a similar result,

h2ΩGW (fp) ∼ 10−10h4 (ΦI/Mp)
2 q0.97 � 10−90.

In conclusion, the GW background from fermions excited from a Yukawa interaction

with a coherent oscillating massive inflaton with potential ∝ φ2, is naturally peaked at

high frequencies if we want to maintain a non-negligible amplitude. Therefore, this is a

common aspect shared by the preheating scenarios considered.

4.5 Fermion production after reheating: the thermal era

Finally, in this section we will study the GW production from the fermionic decay of a

massive homogeneous scalar field oscillating in a potential V = 1
2m

2
ϕϕ

2, but this time not

in the context of preheating after inflation. We want to analyze the case of a massive field

during the thermal era after the completion of reheating. Given the nature of previous

results, we will put particular attention to see if, contrary to the preheating scenarios,

there might be a chance to produce a non-negligible GW amplitude at low frequencies in

this case.

In this situation the expansion of the Universe is dictated by the radiation background,

and thus the scale factor goes as a(t) = aI [1 +HI(t− tI)], where aI and HI represent the
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scale factor and the Hubble rate at t = tI . The initial time tI should be understood as the

initial moment of GW generation from fermions, during the thermal era. If the Universe

reheated at time t = trh, then the only constraint is that tI ≥ trh. The Hubble rate during

the thermal era is then H(t) = HI/ [1 +HIt] ∼ 1/t. It is clear that the massive spectator

scalar field should not be identified with the inflaton. Besides, its energy density should be

subdominant within the energy budget of the Universe.

At the beginning the scalar field is light (a2m2
ϕ � H2), and it slowly rolls down its

potential. Later the scalar field becomes heavy (a2m2
ϕ > H2) and it starts to oscillate. Let

us say that this happens at time tI when the slow-roll parameter of the spectator field

ηϕ ≡
a2Vϕϕ
3H2

=
a2m2

ϕ

3H2
(4.47)

becomes unity. For the Hubble rate this gives

HI = H(tI) =
mϕ√

3
, (4.48)

where we have set aI = 1. The total energy density at the beginning of the oscillations is

then given as

ρI =
3

8πa2
I

H2
IM

2
p =

1

8π
m2
ϕM

2
p (4.49)

The solution to eq. (4.2) in these circumstances is [76]

ϕ(y(t)) =
21/4Γ(5/4)ΦI[
mϕy(t) +

mϕ
2HI

] 1
4

J 1
4

(
mϕy(t) +mϕ/(2HI)

)
, (4.50)

where y(t) is the cosmic time y(t) ≡
∫ t

0 dt
′a(t′), J1/4(x) is a Bessel function of order 1

4

and Γ(5/4) ≈ 0.9064. This solution matches the form in eq. (4.3), but again only when

given in terms of cosmic time y(t), which can be expressed as a function of the conformal

time t as y(t) = aI
2

[
(1 +HIt)2 − 1

]
H−1
I . The prefactors in eq. (4.50) just guarantee that

ϕ(0) = ΦI , as can be simply checked by using the small-argument expansion of the Bessel

function. For mσy(t) & 2, the large-argument expansion of the Bessel function gives

ϕ(t) ' Φ(t) sin (mϕy(t) + π/8) ; Φ(t) ' 0.860
ΦI

(mϕy(t))3/4
. (4.51)

Thus, the scalar field oscillates with frequency ω = mϕ in cosmic time, crossing zero (i.e.

ϕ = 0) every time mϕy(t) = 7π
8 ,

15π
8 , 23π

8 , . . . .

The energy density of a scalar field in a quadratic potential scales, as mentioned before,

like if it was a non-relativistic fluid [53–55], i.e. as ρϕ ∝ 1/a3(t). So although the Universe

is RD at the start of the oscillations, if we would wait long enough, the energy density

of the scalar condensate would end dominating the energy budget, and thus dictating the

expansion of the Universe. We will however not consider such a possibility here, since

the production of GW from fermions excited by a massive oscillatory field usually takes

place during only few oscillations. Therefore, unless the initial energy in the condensate is
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close to the energy density of the radiation background, the GW production will happen

while the energy of the scalar condensate is still subdominant. We will then consider

that after the GW emission ceases, the scalar field decays at some latter moment into

radiation dof , thus avoiding any MD anomalous expanding era. After the completion of

reheating, the expansion of the Universe always remain as RD (receiving simply an injection

of energy from the scalar condensate), until the matter-radiation equality moment teq prior

to recombination (at redshift zeq ' 3400). The massive scalar field we want to consider

then is simply an spectator in the radiation background.

For a RD background we already know that the parameter defined in eq. (2.29) is ε = 1.

This implies that, as in the case of the quartic potential during preheating, the energy

density of the GW scales exactly as it does the total energy of the thermal background.

The total energy density of the Universe just when the GW production ends at t = t∗,

is given by

ρ∗ = ρI

(
aI
a∗

)4

=
1

8π
m2
ϕM

2
p

(
aI
a∗

)4

, (4.52)

as it corresponds to a relativistic fluid. The great difference in this post-reheating scenario,

as compared to the (p)reheating ones, is that the initial energy density ρI is actually

unrelated to the initial scalar condensate energy density ρ
(I)
ϕ = 1

2m
2
ϕΦ2

I . So ρI 6= ρ
(I)
ϕ ,

and consequently ρI does not determine the initial amplitude of the scalar field ΦI . At

most, the initial amplitude ΦI is simply constrained such that its energy represents only

a marginal fraction of ρI . This is precisely the crucial difference with respect the massive

preheating case. Hopefully we will able to take advantage of this fact, rendering to more

observable circumstances the GW background in these scenarios.

The resonance parameter is the same as in the preheating case with a quadratic

potential,

q =
h2Φ2

I

m2
ϕ

, (4.53)

but the spectrum of GW at t = t∗ is now given, see eq. (4.8), by

Ω(∗)
GW

=
m6
ϕ

π3ρIM2
p

κ3F∗(κ; q) =
8

π2

(
mϕ

Mp

)4

κ3F∗(κ; q), (4.54)

To determine the final amplitude of the GW spectrum, we see from eq. (4.54) that we need

to specify the mass mϕ and the resonance parameter q. The potential V (φ) = 1
2m

2
ϕφ

2

is not related in any how to the (p)reheating or inflationary periods and hence, we will

consider mϕ and h as free parameters within reasonable margins. The initial amplitude ΦI ,

as mentioned above, should just be restricted as 1
2m

2
ϕΦ2

I � ρI . Since we will consider only

the situation when the thermal background always dominates the energy density budget

of the Universe during GW production, then we should have that the energy of the scalar

condensate at the end of GW production, ρ∗ϕ ≡ 1
2m

2
ϕΦ2

I (aI/a∗)
3, should be smaller than the

total energy of the thermal bath at that moment, ρ∗, given above in eq. (4.52). Therefore,

ρ∗ϕ ≤ ρ∗ ⇒ ΦI ≤ Φmax
I ≡ 1

2
√
π

(
aI
a∗

) 1
2

Mp , (4.55)
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Figure 5. Spectrum of GW right after the end production, for parameters q = 106, mϕ ≈ 1.2 ·
1014 GeV, initial energy scale EI ≈ 1.7 ·1016 GeV and ΦI = (10−2/h)Mp. Analogous considerations

about the dashed guiding line, similar to those in figures 1 and 3, apply here.

In figure 5 we show an example of a spectrum obtained right at the end of GW

production in the model under study, with parameters mϕ = 10−5Mp, q = 106, EI =

ρ
1/4
I = 1.4 · 10−3Mp. The initial scalar amplitude is then ΦI = mϕ

√
q/h = (10−2/h)Mp,

where the Yukawa coupling h is not fixed. If we choose e.g. h = 0.1, then ΦI = 0.1Mp. The

point of the example, again, is not to take realistic parameter values, but rahter to show

that extreme values give rise to a significant fraction of GW. To rescale the amplitude of

this GW spectrum for other initial amplitudes Φ′I , we only need to re-evaluate F∗ with

the new resulting resonance parameter q′ = (Φ′I/ΦI)
2q. Note that this is very different

from the situation in massive preheating, since in the latter, the expression of the GW

spectral amplitude contains ΦI explicitly as a multiplicative factor, and not only through

the resonance parameter in the argument of F∗. Changing ΦI → Φ′I would also shift

the scale at which the spectrum peaks, as kp → (Φ′I/ΦI)
1/2kp, similarly as in the case of

massive preheating.

Changing instead the scalar field mass, mϕ → m′ϕ, would give rise to a rescaling of the

GW spectrum by a factor (m′ϕ/mϕ)4, but one should at the same time re-evaluate F∗ at

a new resonance parameter q → (mϕ/m
′
ϕ)2q. The physical scale of the peak would shift

again like in the massive preheating case, as kp → (m′ϕ/mϕ)1/2kp.

In figure 5 we see again that, as expected, and analogously to the preheating scenarios,

the position of the maximum amplitude of the GW spectrum is located at kp ∼ κpω. In

the example chosen the GW production lasts for ln(a∗/aI) ≈ ln 11 ≈ 2.4 e-foldings, so

we expect κp ' (a∗/aI)
1/4q1/4 ' 1.8 q1/4. Nicely, the actual peak position seen in the

numerical output, see figure 5,

k(num)
p ' 2 q1/4mϕ, (4.56)

matches very well (once again) the expectation.

In figure 6 we plot the function F∗(κp; q) versus the resonance parameter q =

(hΦI/mϕ)2. Let us recall once again that our Antsaz eqs. (4.14), (4.15) predicts that
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Figure 6. The q-dependence of F∗(κp). The fittings are given in eq. (4.58).

at the peak scale,

F∗(κp, q) ' A2 · (a∗/aI)
3
4

+ δ
2 q

3
4

+ δ
2 . (4.57)

From our numerical results, see figure 6, we learn that{
q > 1 : F∗(κp) ≈ 8.9 · 10−4 × q0.99 ⇒ A2 ≈ 8.3 · 10−5 , δ ≈ 0.48 ,

q < 1 : F∗(κp) ≈ 1.1 · 10−2 × q2.13 ⇒ A2 ≈ 6.7 · 10−5 , δ ≈ 2.76 ,
(4.58)

So for q > 1, we obtain that the δ
2 -correction to the 3

2 slope (expected for δ = 0) in

eq. (4.17), is of the order of ∼ 16%. If we approximate δ ' 0.5, we see that the scaling for

q > 1 in eq. (4.14), goes as ∣∣Ĩ∣∣ ∝ p̃(−1+δ) ≈ 1

p̃ 1/2
, (4.59)

In the opposite regime, when q < 1, approximating the numerical fit to δ ≈ 3.0, we find

that our Antsaz scales as ∣∣Ĩ∣∣ ∝ p̃(−1+δ) ≈ p̃2 , (4.60)

From this analysis we can nicely conclude that the scaling behavior of |Ĩ| found in the case

of a scalar field with quadratic potential V ∝ φ2, is universal: both at preheating (with the

scalar field playing the role of the inflaton) and at thermal post-reheating stages (with the

scalar field being simply an spectator), the spectral indices are the same, with δ ' 3 for

q < 1 and δ ' 0.5 for q > 1. This could had been expected, since the physics of the GW

production from fermions is only sensitive to the shape of the potential of the scalar field

acting as a source, and thus it should be independently of whether the scalar condensate

dominates (inflaton in preheating) or not (spectator in thermal era) the energy budget of

the Universe. The shape of the spectrum of GW is simply related to the potential of the

oscillating field, and with these numerical results we nicely confirm this fact.

As in the preheating scenarios, the GW production typically lasts for few e-folds. In

the example in figure 5, the scale factor grows as a∗/aI ' 11. From eq. (4.17) we can
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obtain the approximated GW peak amplitude, including the duration (a∗/aI) factors, as

Ω(p)
GW
' 8A2

π2

(
mϕ

Mp

)4(a∗
aI

) 3+δ
2

q
3+δ
2 '


6.7 · 10−5

(
mϕ

Mp

)4(a∗
aI

)1.74

q1.74, q > 1

5.4 · 10−5

(
mϕ

Mp

)4(a∗
aI

)2.88

q2.88, q < 1

(4.61)

We can convert again our results from the end of GW production to the frequency and

amplitude of the GW today. We simply need to use once again eqs. (4.17)–(4.19), together

with the previous calibration of our parametrization schemes against the numerical results.

We obtain that the amplitude and characteristic frequency of the peak today,

h2ΩGW(fp) ≡ h2Ωrad

(
go
g∗

)1/3

Ω(p)
GW

, fp ' 5 · 1010 κp

ρ̃
1/4
I

Hz,

can be written as

h2ΩGW (fp) '


2.7 · 10−10

(
mϕ

Mp

)4(a∗
aI

)1.74

q1.74, q > 1

2.2 · 10−10

(
mϕ

Mp

)4(a∗
aI

)2.88

q2.88, q < 1

(4.62)

fp ' 5 · 1010

(
a∗
aI

) 1
4

(
mϕ

ρ
1/4
I

)
q

1
4 Hz ' 1011

(
a∗
aI

) 1
4
(
mϕ

Mp

) 1
2

q
1
4 Hz . (4.63)

As in the preheating scenarios, the typical frequencies are very high. However now we

see that the parametric dependence of the frequency and peak amplitude is not controlled

by the same parameters. This is thanks to the fact that total initial energy density ρI is

not determined by the initial scalar field amplitude ΦI . This is quite a relevant difference

with respect the GW produced in fermionic preheating, so we will try now to use it in our

favor in order to render more observable the GW spectra generated in the post-reheating

scenarios. The spectrum in the example in figure 5 would be peaked today at fp ' 1011 Hz,

with an amplitude of ΩGW(fp) ∼ 10−16. This amplitude, as it happened in the examples

in the preheating scenarios, it is above the sensitivity threshold of BBO or DECIGO,

but its frequency is again too large to be accessible to such observatories. Let us see if

we can reduce the characteristic frequency by finding the appropriate parameters, while

at the same time we do not decrease the amplitude of the background. The frequency

and amplitude of the GW spectrum peak in eqs. (4.62) and (4.63) are characterized by

parameters {mϕ, q}.
Let us begin by choosing q ∼ 1. Then, in order to have a peak frequency in the ∼ 10

Hz regime, we need to take a ratio (mϕ/Mp)
1/2 ∼ 10−10. However this implies that the

peak amplitude should be constrained as h2ΩGW(fp) ∼ 10−10(10−10)8(a∗/aI)
1.74(2.88) <

10−87(10−86). Therefore, in the case of q ∼ 1 it is not possible to have a non-negligible

amplitude while shifting the frequency to small values. So what about the case q �
1? In such a case, we then need a ratio (mϕ/Mp)

1/2 ∼ q−1/410−10 � 10−10 for the

peak frequency to be in the ∼ 10 Hz range. But, again this implies that h2ΩGW(fp) ∼
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10−10(q−1/410−10)8(a∗/aI)
1.74q1.74 � 10−88. So the case of q � 1 is even worse than

when q ∼ 1. Following that trend we could expect perhaps that in the opposite situation,

i.e. q � 1, there might be a chance to decrease the frequency but not the amplitude. Is

that so? Well, to obtain fp ∼ 10 Hz, we need that (mϕ/Mp)
1/2 ∼ q−1/410−10. The peak

amplitude would then be h2ΩGW(fp) ∼ 10−10(q−1/410−10)8(a∗/aI)
2.88q2.88 � 10−87, which

is again way too small to be observed.

In conclusion, in these scenarios of GW production from Yukawa-excited fermions from

an oscillatory spectator scalar field during the thermal era, GW backgrounds live naturally

at very high frequencies, similarly to those in preheating scenarios. Note that though we

only proved this for a massive scalar field, there is no particular reason to consider that

this would change if we had chosen a massless scalar field.

5 Summary and discussion

Fermions are expected to be created somewhen during the evolution of the early Universe,

before BBN. Fermions could be the result of a perturbative decay from other bosonic

species, but the most natural effects by which fermions can be efficiently created, correspond

to non-perturbative phenomena. In the latter case the spectrum of the created fermions is

non-thermal, and it develops a non-trivial anisotropic-stress, the transverse-traceless part

of which acts as a source of GW. It is thus natural to consider that, non-perturbatively

excited fermions in the early Universe, generate a stochastic background of GW. In this

paper we have explored this possibility, characterizing the amplitude and frequency of the

GW background from fermions in a variety of post-inflationary models.

In section 3.2, see also appendix A, we first developed a general formalism for com-

puting the GW spectrum generated by an ensemble of fermions. In section 3.3, we took

particular care of the UV divergences in the GW source, proposing a method to regularize

the UTC of the TT dof of the fermion’s energy-momentum tensor. The main set of formu-

las encompassing our findings are eqs. (3.47), (3.48) and (3.49) [before regularization], and

eqs. (3.73), (3.74) and (3.75) [after regularization]. See also eqs. (4.8), (4.9), which provide

the equivalent dimensionless expressions in terms of the natural variables of the problem.

All these equations are the master set of formulas in this paper, which describe the spec-

trum of the GW background created by any ensemble of fermions. We have also provided

a parametric estimation of the frequency and amplitude of the spectrum of GW created by

fermions, see section 4.2, valid for when the fermions are excited from a Yukawa coupling

with a coherent oscillatory scalar field. The main result there is given by eq. (4.17).

We have applied our formalism of GW to several post-inflationary fermion-production

scenarios. In section 4.3 we have analyzed in detail the case when fermions are created

during preheating from a massless inflaton. Based on our numerical outcome, we have

obtained a fit to the amplitude and frequency of the GW peak in these scenarios, given

by eqs. (4.32), (4.33). Analogously, in section 4.4, we have analyzed the case of a massive

inflaton, for which we also found a fit to the amplitude and frequency of the GW peak,

given by eqs. (4.45), (4.46). Finally, the case when fermion production takes place after

the completion of reheating, during the thermal era, has also been taken in consideration

in section 4.5. The equivalent fit to the GW peak is captured in eqs. (4.62), (4.63).
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All the scenarios studied share in common that the main mechanism of fermion exci-

tation is due to a Yukawa coupling with a coherent oscillating scalar field; the inflaton in

preheating, and a spectator field in the thermal scenario. Also common is that fermions

are excited non-perturbatively, filling up a Fermi sphere of comoving radius kF ∼ q1/4ω,

where q is the resonance parameter [eq. (4.6)] and ω is the scalar field oscillation frequency.

The modes within the Fermi sphere are continuouly excited with their occupation numbers

oscillating at different rates, depending on the momentum and the resonance parameter.

See [61–63] for an extensive discussion on the details of their dynamics. The modes out-

side the Fermi sphere, i.e. the UV modes of the problem, are on the contrary not excited,

and remain as vacuum fluctuations. Due to this non-equilibrium structure of the fermions

distribution, a non-trivial anisotropic stress appears in the system, whose TT part source

actively GW. The final amplitude and frequency of the GW generated in each case, depends

basically on the resonance parameter, and on the shape of the scalar potential.

In figures 1, 3 and 5 we have plotted the spectrum of GW from different scenarios

(having chosen the parameters in each case to maximize the amplitude). In all the cases the

numerical points of the spectrum show some scattering around what it would be a physical

continuous signal. We believe that the reason for this is the inaccuracy in our numerical

calculations, due to the need to integrate numerically highly oscillating functions for a long

period. The spectral amplitude in the UV scales seems particularly affected by this, since

it tends to decrease slower that what it would be reasonably expected, say following the

initial trend of the slope on the right side of the spectral peak. We have added dashed

lines to aid the visualization of how a continuous spectra would look like. With our current

computational power we cannot determine the ’fine’ details of the would-be continuous

spectra. However, what it is clear is that we capture very well the ’essence’ of such spectra,

i.e. the presence of a very well defined peak, accompanied by clear IR and UV tails around.

The peak of the GW spectrum in all considered cases is, actually very nicely located at a

scale of the order of the Fermi radius in each scenario, κp ' κF , as expected. For the peak

of the spectrum today, we can write [reproducing again eqs. (4.17)–(4.19)]

h2ΩGW (fp) ' h2Ωrad

(
go
g∗

) 1
3 εA2

π3

ω6

ρIM2
p

q
3+δ
2 ×


(
a∗
aI

)3w−1

, V (ϕ) ∝ ϕ4(
a∗
aI

)3w+ 1+δ
2

, V (ϕ) ∝ ϕ2

(5.1)

and

fp ' 5 · 1010

(
ω

ρ
1/4
I

)
ε
1
4 q

1
4 Hz×


(
a∗
aI

) 3w−1
4

, V (ϕ) ∝ ϕ4

(
a∗
aI

) 3w
4

, V (ϕ) ∝ ϕ2

(5.2)

valid for both q < 1 and q > 1, as long as the right choice for the parameter δ is made. Let

us recall that w is the efective equation of state parameter from the start of GW production

at aI till the end at a∗, A
2 is adjusted from our numerical output (and differs from scenario

to scenario, though typically is � 1), and ε ≤ 1, defined in eq. (2.29), parametrizes the
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expansion history since the end of GW production till the first moment when the Universe

becomes RD. From our numerical investigation, we have found that the parameter δ for

each regime, q < 1 and q > 1, is determined by the shape of the scalar potential, rather than

by the expansion rate (characterized by w). In particular we have found δ(q > 1) ≈ 1/4

and δ(q < 1) ≈ 3/2 for a massless scalar field, and δ(q > 1) ≈ 1/2, δ(q < 1) ≈ 3 for a

massive scalar field (both in the case of massive preheating or of a massive spectator in the

thermal era).

For clarity, we reproduce again the final parametrizations found for each scenario,

collecting altogether the expressions already presented in eqs. (4.32), (4.33), (4.45),

(4.46), (4.62) and (4.63),

• Massless preheating:

h2ΩGW (fp) '


1.2 · 10−9λ2

(
ΦI

Mp

)2

q1.61, q > 1

1.8 · 10−7λ2

(
ΦI

Mp

)2

q2.23, q < 1

(5.3)

fp ' 7 · 1010q
1
4λ

1
4 Hz = 7 · 1010 h

1
2 Hz , (5.4)

• Massive preheating:

h2ΩGW (fp) '


2.5 · 10−12

(
m2
ϕ

ΦIMp

)2(a∗
aI

)0.78

q1.78, q > 1

3.1 · 10−12

(
m2
ϕ

ΦIMp

)2(a∗
aI

)1.97

q2.97, q < 1

(5.5)

fp ' 6 · 1010

(
mϕ

ΦI

) 1
2

q
1
4 Hz = 6 · 1010 h

1
2 Hz , (5.6)

• Massive spectator in thermal era:

h2ΩGW (fp) '


2.7 · 10−10

(
mϕ

Mp

)4(a∗
aI

)1.74

q1.74, q > 1

2.2 · 10−10

(
mϕ

Mp

)4(a∗
aI

)2.88

q2.88, q < 1

(5.7)

fp ' 5 · 1010

(
a∗
aI

) 1
4

(
mϕ

ρ
1/4
I

)
q

1
4 Hz ' 1011

(
a∗
aI

) 1
4
(
mϕ

Mp

) 1
2

q
1
4 Hz (5.8)

As discussed all along section 4, the natural frequencies for these backgrounds, fp ∼
109 − 1011 Hz, are too high to be reached by the frequency range that will be probed by

proposed GW observatories. Tunning the parameters such that the peak frequency becomes

small, for instance taking the Yukawa coupling h to extremely small values, automatically

implies a tremendous suppression in the amplitude of the GW background itself, to values

totally undetectable as h2ΩGW(fp) � 10−87. The problem is ameliorated, as compared

to preheating scenarios, in the case of the scalar spectator in the thermal era. But still
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remains. Therefore, we are forced to accept that the backgrounds considered in this paper

peak naturally at high frequencies, where no experimental device has been envisaged with

sufficient sensitivity as 10−20 . h2ΩGW(fp) . 10−10. A possible scenario where one might

be able to achieve the goal of having a small frequency but not so small amplitude, would

be to consider the GW production from Fermions in Hybrid preheating [57–59]. We have

not explored this situation in this paper, but we will briefly comment about it later.

Let us note that in our results in sections 4.3–4.5, the fermions are massless, except

for their interactions with the scalar field, which provides them a dynamical mass. We

have considered in appendix C the case of fermions having a bare constant mass in the

Lagrangian. We conclude there that fermions with a light mass (mΦ � hΦI) do not

affect our results from sections 4.3–4.5, summarized in the previous equations. Too heavy

fermions (mΦ � hΦI) on the contrary, are simply not excited, and thus GW production

is completely suppressed (since it simply does not take place). Therefore, a bare mass is

either irrelevant or a killing factor of the GW production, which justifies our analysis in

the bulk of the text with massless fermions.

Finally, before we conclude, we would like to raise up a number of points which could

be interesting for future research in the topic that we have studied here:

• As mentioned already, it would be very interesting to apply our formalism from

section 3 to fermions produced in Hybrid preheating [70, 71]. Our parametric formulas

from section 4.2 would not be valid there, since the excitation of fermions in these

models occurs via tachyonic effects, very differently than the oscillatory parametric

effects of the scenarios analyzed in sections 4.3–4.5. The characteristic scale in Hybrid

models (substituting the frequency scale ω in of the models considered in the paper)

is given by ω2 = λv2, whereas the initial energy scale is EI ∼ λ1/4v, with λ and v

the self-coupling and VEV of an auxiliary (symmetry breaking) field coupled to the

inflaton. The characteristic frequency would scales as f ∝ λ1/4 [25, 26], so that for

small self-couplings we could obtain a peak frequency sufficiently small. The question

is how the amplitude of the GW background would be affected by such a small value

of λ. This possibility could be explored indeed using the formalism developed in

section 3.

• Realistic scenarios — rooted in particle physics — where both our theoretical formal-

ism and our parametric formulas could be used, include (p)reheating [72–74] after

Higgs-inflation [75], and the curvaton-Higgs model recently proposed [76] within the

curvaton scenario [77–79]. In the former the SM Higgs plays the role of the inflaton,

creating during preheating the gauge fields and leptons of the SM through parametric

resonance. It is then expected a high frequency GW background both from the ex-

cited bosons and fermions. In the latter, the curvaton is a spectator field during the

thermal era. In [76] it was considered that the curvaton excited non-perturbatively

the SM Higgs, but one could equally consider that the SM fermions could be cou-

pled to the curvaton, in which case these would be excited precisely as considered in

section 4.5.
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• Our formalism for GW from fermions in sections 3.2, 3.3 does not rely on solving the

mode functions from the Dirac equation. Actually, it has been recently obtained the

result [80] that quantum effects might enhance the production of fermions in preheat-

ing scenarios. As a consequence fermions would approach faster to a quasistationary

thermal in the IR, as compared to the rate expected in semiclassical descriptions

based on the Dirac equation with a homogeneous background field. The impact of

this effect goes beyond our applied results in this paper in sections 4.3–4.5, where

we have simply solved the Dirac equation with the fermion mode functions stimu-

lated by the classical scalar field to which they are coupled to. We speculate that

this next-to-leading order effects considered in [80], could impact our results in two

manners: on one hand it could enhance the production of GW since more fermions

are stimulated faster, but on the other hand it could decrease, at the same time, the

efficiency of GW production, since the IR band of momenta tends faster to a quasi-

equilibrium thermal state. It should be interesting to explore this, perhaps with

the recent lattice techniques proposed to simulate non-equilibrium quantum fermions

coupled to classical bosonic fields [81]. We expect that the overall result of taking

into account these corrections in the fermion dynamics, will amount for a rescaling

of our parametric formulas through a renormalization of the dimensionless constant

A2, whereas the functional parametrization depending on the resonance parameter q

should (most likely) remain.

• In our considerations about fermion dynamics all through section 4, we have not con-

sidered explicitly nonlinear effects, such as the backreaction from the created fermions

into the oscillating scalar field. A proper study of these aspects would enlarge the

complexity of the calculations substantially. Such non-linear effects will never pre-

vent in any case the GW production from taking place during the initial fermionic

parametric excitaction, when backreation is still negligible. Only when the energy

transferred into the fermions is comparable to the energy in the scalar oscillatory field,

does the backreaction matters. But in most cases the fraction of energy transferred

into fermions is negligible, and the transfer of energy ceases before it might become

relevant (there is no more phase space and fermions of higher momenta cannot be

created anymore). In [64, 65] it was found that in fermionic preheating with q < 108,

backreaction is never relevant, since the energy transferred into the fermions is sim-

ply too small. The case with a resonant parameter bigger than q = 108 is actually

(most-likely) unrealistic, since it would typically require unreasonably big Yukawa

couplings. Yet, if one would want to consider such situation, probably the best way

to study it would be with the aforementioned lattice techniques proposed in [81].

• In our discussion about the regularization of the fermions’ GW source in section 3.3,

we have not compared our results with other time-dependent regularization schemes,

like for instance the one proposed in [82]. This would be an interesting exercise

to do, though not easy: most of the existing techniques, often focused in bosonic

species and not in fermions, are suitable for 2-point functions, but not necessarily

for 4-point functions. In our case, given the structure of the UTC Π2(k, t, t′), we
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necessarily need to deal with a 4-point fermionic operator. What it should be really

clear is that our prescription for regularizing the UTC, captures well all the relevant

expected physical effects. Mainly, that the UV modes which are not really excited

by the scalar field, are filterred out, eliminating this way their otherwise divergent

vacuum fluctuations’ contribution. Only the IR modes survive naturally, thanks to

the Bogoliubov coefficients |βk(t)| in front of the ’regularized’ mode functions. Thus

only the relevant modes — those physically excited within the Fermi sphere — are

captured, and allowed to contribute into the final GW spectrum.

• A final, perhaps more speculative consideration about our results, would be to con-

sider the possibility of anisotropies arising in the GW produced by fermions. It has

been recently shown [83, 84] that anisotropies emerge naturally in the GW back-

ground from preheating with bosonic fields, whenever the preheat fields were light

during inflation (i.e. its effective mass smaller than the Hubble rate). It is not clear

how these type of results could be extended to the case of fermions, but it is certainly

intriguing, and probably worth exploring, to consider the possibility that, indeed,

anisotropies could arise in the amplitude of the GW background from fermions that

we have just described in this paper.

To conclude, as a final remark, we would like to emphasize once again, that the natural

frequency of the GW backgrounds that we have described in this paper, is in the fp ∼
109 − 1011 Hz range. There is unfortunately no experimental device planned to work at

those high frequencies, with sufficiently good sensitivity. Nevertheless, we would like to see

this fact not only as a caveat, which it is, but also as a reason to urge experts on the field

to start considering (more actively) the possibility of developing ultra-high frequency GW

detectors. There is little doubt that pursuing this endeavor is certainly worthy. We have

shown here that fermions can indeed act as very efficient generators of GW. The natural

frequencies of the backgrounds that we predict lie in a high-frequency window, inaccessible

to currently planned GW detectors. However, a detection of such a GW background would

open a direct window to the physics of the very early Universe.
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A “Traceology” in a time-dependent background

In section 3 we presented the result of several VEVs, from the non-regularized UTC in

eq. (3.44) to the regularized one in eq. (3.72), passing through the 2-point correlation func-
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tions in eqs. (3.58), (3.62) and (3.63). All these calculations involved the computation of

traces over spinorial contractions. In this appendix we show the details of such calculations.

First we set up a compact notation for spinorial fields, then show the computation of the

2-point correlation functions from the main text, and finally we show the calculation of the

4-point UTCs, both with and without regularization.

A.1 Compact notation

For the sake of clarity, let us recall that we write a Dirac field ψ as

ψ(x, t) =

∫
dk

(2π)3 e
−ik·x

[
âk,ruk,r(t) + b̂†−k,rvk,r(t)

]
(A.1)

with ak,r, bk,r satisfying the anti-commutation relations of eq. (3.14), and where the 4-

component spinors are expressed as

uk,r(t) ≡

(
uk,+(t)Sr

uk,−(t)Sr

)
, vk,r(t) ≡

(
vk,+(t)S−r

vk,−(t)S−r

)
, (A.2)

with {Sr} 2-component spinors given by

S1 = −S−2 =

(
1

0

)
, S2 = S−1 =

(
0

1

)
(A.3)

Given the structure of the 4-component spinors shown in eqs. (A.2), (A.3), we can

rewrite them as

uk,r(t) = uk,+(t)Sr ⊗ P+ + uk,−(t)Sr ⊗ P− , (A.4)

vk,r(t) = vk,+(t)S−r ⊗ P+ + vk,−(t)S−r ⊗ P− , (A.5)

where we have defined the projectors

P+ =

(
1

0

)
, P− =

(
0

1

)
, (A.6)

and introduced the multiplication rule

A⊗B ≡

 A·B11 · · · A·B1Q
...

. . .
...

A·BP1 · · · A·BPQ

 ≡



A11B11 · · · A1MB11

...
. . .

...

AN1B11 · · · ANMB11

· · · · · ·
A11B1Q · · · A1MB1Q

...
. . .

...

AN1B1Q · · · ANMB1Q
...

. . .
...

...
. . .

...

A11BP1 · · · A1MBP1
...

. . .
...

AN1BP1 · · · ANMBP1

· · · · · ·
A11BPQ · · · A1MBPQ

...
. . .

...

AN1BPQ · · · ANMBPQ


(A.7)

– 47 –



J
H
E
P
1
0
(
2
0
1
3
)
1
0
1

with A and B arbitrary matrices (of dimensions N ×M and P ×Q, respectively)

A ≡

 A11 · · · A1M
...

. . .
...

AN1 · · · ANM

 , B ≡

 B11 · · · B1Q
...

. . .
...

BP1 · · · BPQ

 (A.8)

In particular, we have

C ⊗ P+ ≡


C1

C2

0

0

 , C ⊗ P− ≡


0

0

C1

C2

 , C =

(
C1

C2

)
, (A.9)

with C an arbitrary 2-component 1-column matrix.

Let us recall that the mode functions uk,±, vk,± are not independent from each other,

since they are related by the charge conjugation, from where it follows the relation vk,±(t) =

±u∗k,∓(t). Thus, making use of this relation and assuming from now on a summation over

repeated indices, we can write eqs. (A.4), (A.5) in a compact manner like

uk,r(t) = uk,a(t)Sr ⊗ Pa, (A.10)

vk,r(t) = a u∗k,−a(t)S−r ⊗ Pa, (A.11)

The advantage of this notation will become clear when we perform an explicit spinorial

trace calculation, since it will allow us to factorize any trace over 4-component spinors into

a product of traces over the projectors P± on one hand, and the 2-component spinors S±r
on the other hand. This will simplify enormously any calculation. This factorization is

possible thanks to the following nice property of the ⊗ product just defined

(B1 ⊗B2) · (B3 ⊗B4) = (B1 ·B3)⊗ (B2 ·B4) (A.12)

where · stands for standard matrix multiplication and Bi are arbitrary matrices with ap-

propriate dimensions such that B1 and B2 can multiply B3 and B4, respectively.

Before we move into calculating any trace, let us list a bunch of properties which will

aid us in the task. Calling I the 2 × 2 identity matrix and σi the Pauli matrices, we

find that

SrS
T
r = S−rS

T
−r = I , (A.13)

SrS
T
−r = −S−rST

r = iσ2 , (A.14)

ST
r Sr = ST

−rS−r = 2 , (A.15)

ST
r S−r = ST

−rSr = 0 , (A.16)

as well as

PT
a Pb = δab (A.17)

σ3P± = ±P± , (A.18)

σ1P± = P∓ (A.19)
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Finally, let us note that the flat gamma-matrices γµ can be written, in the Dirac basis, as

γ0 = I ⊗ σ3 , γk = σk ⊗ (−iσ2) , (A.20)

and let us recall the Pauli matrix product

σiσj = iεijkσk + Iδij , (A.21)

where εijk is the totally antisymmetric tensor. In particular it follows that σ3(iσ2) = σ1,

which we will use repeatedly in the trace calculations below.

A.2 2-point functions: Vacuum Expectation Values (VEVs)

The three 2-point functions that we have introduced in the text are
〈
0
∣∣ΠTT

ij (k, t)
∣∣0〉

reg
,〈

0
∣∣O2(x, t)

∣∣0〉
reg

,
〈
0
∣∣ΠTT

ij (k, t)
∣∣0〉

reg
and

〈
0
∣∣O2(x, t)

∣∣0〉, where O2(x, t) ≡ Ψ̄(x, t)Ψ(x, t).

We will begin by the simplest,
〈
0
∣∣O2(x, t)

∣∣0〉, followed by
〈
0
∣∣O2(x, t)

∣∣0〉
reg

. Then, as we

will show,
〈
0
∣∣ΠTT

ij (k, t)
∣∣0〉

reg
=
〈
0
∣∣ΠTT

ij (k, t)
∣∣0〉 = 0.

Let us then first recall eq. (3.63),〈
0
∣∣O2(x, t)

∣∣0〉 =

∫
dp

(2π)3
v̄p,rvp,r . (A.22)

The spinorial trace in the integrand is

v̄p,svp,s = v†p,sγovp,s = (au∗p,−aS−r ⊗ Pa)† · I ⊗ σ3 · (bu∗p,−bS−r ⊗ Pb)

= ab up,−au
∗
p,−b · (S

†
−rIS−r ⊗ P †aσ3Pb) = ab up,−au

∗
p,−b · (2⊗ aδab)

= 2a |up,−a|2 = 2
(
|up,−|2 − |up,+|2

)
, (A.23)

which coincides with (the integrand of) eq. (3.64).

Recalling eq. (3.62), we have〈
0
∣∣O2(x, t)

∣∣0〉
reg

=

∫
dp

(2π)3

(
v̄p,svp,s − V̄p,sVp,s

)
, (A.24)

Thus, we just need to compute the trace V̄p,sVp,s, analogously as how we computed v̄p,svp,s.

We obtain

V̄p,rVp,r = V†p,sγoVp,r = (αpvp,r − βpup,r)†γo(αpvp,r − βpup,r)

=
(
aαpu

∗
p,−a(S−r ⊗ Pa)− βpup,a(Sr ⊗ Pa)

)† · I ⊗ σ3

·
(
bαpu

∗
p,−b(S−r ⊗ Pb)− βpup,b(Sr ⊗ Pb)

)
=
(
abα2

pup,−au
∗
p,−b · (S

†
−rIS−r) + |βp|2up,au∗p,b · (S†rISr)

− aαpβpup,−aup,b · (S†−rISr)−b αpβ
∗
pup,au

∗
p,−b · (S†rIS−r)

)
⊗ (P †aσ3Pb)

=
(
α2
p|up,−a|2 · 2 + |βp|2|up,a|2 · 2

−aαpβpup,−aup,b · 0− bαpβ
∗
pup,au

∗
p,−b · 0

)
⊗ (aδab)

= 2
(
α2
p − |βp|2

) (
|up,−|2 − |up,+|2

)
(A.25)
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From eq. (A.25), together with eq. (A.23), we conclude then that the regularized integrand

characterizing eq. (A.24) is(
v̄p,rvp,r − V̄p,rVp,r

)
= 4|βp|2

(
|up,−|2 − |up,+|2

)
= 2|βp|2v̄p,rvp,r , (A.26)

which coincides with eq. (3.65).

Finally, let us consider the VEV of the TT-part of the anisotropic stress-tensor, i.e. the

GW source. Following the prescription described in section 3.3, we have〈
ΠTT
ij (k, t)

〉
reg

=
〈
0
∣∣ΠTT

ij (uk,r, vk,r)− Π̃TT
ij (Uk,r,Vk,r)

∣∣0〉 ≡ 〈0∣∣ΠTT
ij,reg

∣∣0〉 (A.27)

where

ΠTT
ij,reg(k, t) =

1

(2π)3a2(t)

∫
dp Λij,lm(k̂) (A.28)

×
[
b̂−p,s

(
v̄p,sp(lγm)uk+p,r − V̄p,sp(lγm)Uk+p,r

)
âk+p,r

+ b̂−p,s
(
v̄p,sp(lγm)vk+p,r − V̄p,sp(lγm)Vk+p,r

)
b̂†−(k+p),r

+ â†p,s
(
ūp,sp(lγm)uk+p,r − Ūp,sp(lγm)Uk+p,r

)
âk+p,r

+ â†p,s
(
ūp,sp(lγm)vk+p,r − Ūp,sp(lγm)Vk+p,r

)
b̂†−(k+p),r

]
The non-regularized expression is indeed identical to the above one but with every bilinear

product of spinors ∼ (v̄γu− V̄γU), (v̄γv− V̄γV), (ūγu− ŪγU) and (ūγv− ŪγV), replaced

by ∼ v̄γu, v̄γv, ūγu and ūγv, respectively. Thus, we obtain〈
0
∣∣ΠTT

ij,reg(k, t)
∣∣ 0〉=(2π)3

[
1

a2(t)

∫
dp

(2π)3
Λij,lm(k̂) p(l

(
v̄p,sγm)vp,s− V̄p,sγm)Vp,s

)]
δ(3)(k) ,

(A.29)

and analogously, the non-regularized VEV as〈
0
∣∣ΠTT

ij (k, t)
∣∣ 0〉 = (2π)3

[
1

a2(t)

∫
dp

(2π)3
Λij,lm(k̂) p(l v̄p,sγm)vp,s

]
δ(3)(k) , (A.30)

Notice that both 〈0|ΠTT
ij (k, t)|0〉 and 〈0|ΠTT

ij,reg(k, t)|0〉 are proportional to δ(3)(k), as ex-

pected from statistical homogeneity and isotropy. The corresponding VEVs of the GW

source in real space reads12

〈
0
∣∣ΠTT

ij (x, t)
∣∣ 0〉

reg
≡ 1

(2π)3

∫
dk e−ikx

〈
0
∣∣ΠTT

ij,reg(k, t)
∣∣ 0〉 (A.31)

= Λij,lm(0)
1

a2(t)

∫
dp

(2π)3
p(l

(
v̄p,sγm)vp,s − V̄p,sγm)Vp,s

)
,

again with analogous expression for the non-regularized version, but substituting the bi-

linear ∼ (v̄γv− V̄γV) by ∼ v̄γv. As expected, due to statistical homogeneity and isotropy,

12Note that for the homogeneous mode k = 0, the TT-projection given by Λij,lm(k̂) is ill-defined. Since

the transversality condition is automatically verified by a homogeneous mode, it is then sufficient to redefine

the projector for this case as Λij,lm(0) ≡ δilδjm − 1
3
δijδlm, which guarantees the tracelessness. For a

discussion on how to define the analogous TT-projection on a lattice, suitable for numerical simulations,

see [69].
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〈0|ΠTT
ij (x, t) |0〉reg does not depend on x. Actually 〈0|ΠTT

ij (x, t) |0〉reg = 0, ∀x, since if we

split the integration in eq. (A.31) into angular and radial parts, we obtain〈
0
∣∣ΠTT

ij (x, t)
∣∣ 0〉

reg
∝
∫
dΩp̂ cosψ(l ×

∫
dpp3

(
v̄p,sγm)vp,s − V̄p,sγm)Vp,s

)
(A.32)

= 0 × (finite) = 0,

with dΩp̂ the differential solid angle in momentum space, and ψl the Euler angle of the

momentum component pl, i.e. cosψl ≡ pl/|p|. Notice that only thanks to the regular-

ization, the radial integration over p(l

(
v̄p,sγm)vp,s − V̄p,sγm)Vp,s

)
in eq. (A.32), is finite.

The integral over the angles is zero, and therefore 〈0|ΠTT
ij (x, t) |0〉reg vanishes ∀x. In the

non-regularized version, the analogous radial integration is performed over p(lv̄p,sγm)vp,s,

and it diverges. So even if the angular part integration is zero, still one needs to regularize

the VEV in order to render finite and well defined the radial integration.

A.3 4-point functions: Unequal Time Correlators (UTCs)

In this section we will obtain eqs. (3.44) and eq. (3.72), representing respectively the non-

regularized and regularized VEV of the unequal-time-correlator (UTC), in terms of the

mode functions obeying the Dirac equation. It will suffice to obtain the non-regularized

version, since the regularized one will follow from there just substituting the mode functions

up,± by ũp,± ≡
√

2np up,±, np the occupation number, as explained in the main text.

For the sake of clarity, let us reproduce again here the UTC given by eq. (3.44), which

looks like

Π2(k, t, t′) =
1

a2(t)a2(t′)

∫
dp

(2π)3

(
v̄p,s(t)p(iγj)uk−p,r(t)Λij,lm(k̂)ūk−p,r(t

′)p(lγm)vp,s(t
′)
)
,

(A.33)

Notice that the integrand corresponds to a trace over spinorial-indices. Thanks to

kiΛij,lm(k̂) = Λij,lm(k̂)kl = 0 and to Λij,lm(k̂) = Λij,lm(−k̂), we can write the integrand in

any of the following equivalent manners(
v̄p,s(t)p(iγj)uk−p,r(t)Λij,lm(k̂)ūk−p,r(t

′)p(lγm)vp,s(t
′)
)

(A.34)

∼
(
v̄p−k,s(t)p(iγj)up,r(t)Λij,lm(k̂)ūp,r(t

′)p(lγm)vp−k,s(t
′)
)

(A.35)

∼
(
v̄p,s(t)p(iγj)uk+p,r(t)Λij,lm(k̂)ūk+p,r(t

′)p(lγm)vp,s(t
′)
)

(A.36)

∼
(
v̄p+k,s(t)p(iγj)up,r(t)Λij,lm(k̂)ūp,r(t

′)p(lγm)vp+k,s(t
′)
)

(A.37)

Considering the first of these expressions, eq. (A.34), we find(
v̄p,s(t)p(iγj)uk−p,r(t)Λij,lm(k̂)ūk−p,r(t

′)p(lγm)vp,s(t
′)
)

= p(ip(lΛij,lm(k̂)
(
v†p,s(t)γoγj)uk−p,r(t)u

†
k−p,r(t

′)γoγm)vp,s(t
′)
)

= p(ip(lΛij,lm(k̂)(au∗p,−a(t)S−s ⊗ Pa)† · (I ⊗ σ3) · (−iσj) ⊗ σ2) · (uk−p,b(t)Sr ⊗ Pb)
·(uk−p,c(t′)Sr ⊗ Pc)† · (I ⊗ σ3) · (−iσm) ⊗ σ2) · (du∗p,−d(t′)S−s ⊗ Pd)
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= ad up,−a(t)uk−p,b(t)u
∗
k−p,c(t

′)u∗p,−d(t
′)(S†−sIp(iσj)SrIΛij,lm(k̂)S†rIp(lσm)S−s)

⊗ (P †aσ3(−iσ2)PbP
†
c σ3(−iσ2)Pd)

= ad up,−a(t)uk−p,b(t)u
∗
k−p,c(t

′)u∗p,−d(t
′)Tr(Λij,lm(k̂)S−sS

†
−sp(iσj)SrS

†
rIp(lσm))

⊗ (P †aσ1PbP
†
c σ1Pd)

= ad up,−a(t)uk−p,b(t)u
∗
k−p,c(t

′)u∗p,−d(t
′)Tr(Λij,lm(k̂)Ip(iσj)Ip(lσm))⊗ (P †aP−bP

†
c P−d)

= ad up,−a(t)uk−p,b(t)u
∗
k−p,c(t

′)u∗p,−d(t
′)Tr(p(iσj)Λij,lm(k̂)p(lσm))⊗ (δa,−bδc,−d)

= ac up,−a(t)uk−p,−a(t)u
∗
k−p,−c(t

′)u∗p,−c(t
′)Tr(p(iσj)Λij,lm(k̂)p(lσm))

= Wk,p(t)W ∗k,p(t′)2p2 sin2 θ, (A.38)

where in the last line we used, on one hand,

Tr(p(iσj)Λij,lm(k̂)p(lσm)) = 2|p|2 sin2 θ, (A.39)

with θ the angle between k and p, and on the other hand,

ac up,−a(t)uk−p,−a(t)(uk−p,−c(t
′)up,−c(t

′))∗ (A.40)

=
[
uk−p,+(t)up,+(t)u∗k−p,+(t′)u∗p,+(t′) + uk−p,−(t)up,−(t)u∗k−p,−(t′)u∗p,−(t′)

−uk−p,+(t)up,+(t)u∗k−p,−(t′)u∗p,−(t′)− uk−p,−(t)up,−(t)u∗k−p,+(t′)u∗p,+(t′)
]

= Wk,p(t)W ∗k,p(t′) (A.41)

with

Wk,p(t) ≡ uk−p,+(t)up,+(t)− uk−p,−(t)up,−(t) (A.42)

We have derived this way eq. (3.45), which characterizes the non-regularized UTC

eq. (3.46), and ultimately determines the spectrum of GW eq. (3.48).

Having shown explicitly the calculation of the spinorial trace in eq. (A.34), there is

no need to repeat the exercise for the regularized case. It is enough to substitute in the

final expression of eq. (A.38), every mode function u± by the regularized ones ũ± defined

in eq. (3.66).

B Time-dependent normal-ordering of bilinears O(t)

As written in eq. (3.50) the tNO regularized vacuum expectation value of a bilinear O(t)

is given by

〈O(t)〉reg ≡ 〈0|O(t)|0〉 − 〈0t|O(t)|0t〉, (B.1)

where |0〉 is the initial vacuum and |0t〉 the vacuum at time t. We want to write eq. (B.1)

in the form

〈O(t)〉reg ≡ 〈0|Oreg(t)|0〉, Oreg(t) ≡ O(t)− Õ(t) (B.2)

where Oreg(t) is an ”effective regularized” bilinear, and Õ(t) satisfies 〈0|Õ(t)|0〉 =

〈0t|O(t)|0t〉. We can find Õ(t) by replacing the fields Ψ(x, t), Ψ̄(x, t) in O(t) by some

auxiliary fields Φ(x, t), Φ̄(x, t). To do this we need to find some operators ĉk,r(t) and
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d̂†k,r(t), related to âk,r(t) and b̂†−k,r(t), which should satisfy for all combinations {j, k}
the constraint

〈0|ĝj(t)ĝk(t)|0〉 = 〈0t|f̂j(t)f̂k(t)|0t〉, (B.3)

with ĝj(t), ĝk(t) chosen each from the set of operators {ĉk,r(t), ĉ†k,r(t), d̂k,r(t), d̂
†
k,r(t)},

and f̂j(t) and f̂k(t) the analogous ones chosen from {âk,r(t), â†k,r(t), b̂−k,r(t), b̂
†
−k,r(t)}.

Considering a linear relation, we have found that the solution to the problem is given

univocally by the following operators, which satisfy the required condition,

ĉk,r(t) = αk(t)âk,r − βk(t)b̂†−k,r (B.4)

d̂†k,r(t) = αk(t)b̂†−k,r + β∗k(t)âk,r (B.5)

For example, 〈0|ĉk,r(t)d̂p,s(t)|0〉 = αk(t)βk(t)δ(3) (k− p) δr,s = 〈0t|âk,r(t)b̂†−p,s(t)|0t〉 is ver-

ified. For the other combinations we find analogous identities.

We can now write the auxiliary fields Φ(x, t) and Φ̄(x, t) as the original ones Ψ(x, t)

and Ψ̄(x, t), but replacing the operators âk,r and b̂†−k,r by ĉk,r(t) and d̂†k,r(t). Thus, we have

a3/2 Φ(x, t) ≡
∫

dk

(2π)3 e
−ik·x

[
ĉk,r(t)uk,r(t) + d̂†k,r(t)vk,r(t)

]
=

∫
dk

(2π)3 e
−ik·x

[
âk,r Uk,r(t) + b̂†−k,r Vk,r(t)

]
, (B.6)

and, correspondingly,

a3/2 Φ̄(x, t) = a3/2 Φ†(x, t)γ0 =

∫
dk

(2π)3 e
+ikx

[
â†k,r Ūk,r(t) + b̂−k,r V̄k,r(t)

]
. (B.7)

where we have defined a new set of four spinors as

Uk,r(t) = αk(t)uk,r(t) + β∗k(t)vk,r(t), (B.8)

Vk,r(t) = αk(t)vk,r(t)− βk(t)uk,r(t). (B.9)

Now the bilinear Õ(t) in eq. (B.2) can be constructed by replacing the fields Ψ(x, t)

and Ψ̄(x, t) in O(t) by the fields Φ(x, t) and Φ̄(x, t). Comparing eqs. (B.6), (B.7) with

eqs. (3.12), (3.13), we observe that the only difference between Ψ(x, t), Ψ̄(x, t) and Φ(x, t),

Φ̄(x, t), is that the 4-spinors uk,r(t) and vk,r(t) are replaced by Uk,r(t) and Vk,r(t), respec-

tively. Hence, we finally arrive at the functional form of Õ(t) by simply replacing uk,r(t)

and vk,r(t) in O(t), respectively with Uk,r(t) and Vk,r(t).

C What if the fermions have a bare mass?

In sections 4.1–4.5 we assumed that the fermions creating the GW had an effective mass

mψ = hϕ, due to the interactions with the scalar field ϕ. But what if the fermions had

also a bare mass mb?, i.e. a term in the Lagrangian L = −mbΨ̄Ψ, with mb a constant mass

parameter. The time-dependent effective mass of the fermionic field would then be

mψ(t) = mb + hϕ(t). (C.1)
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Figure 7. The bare mass dependence of F(κp) for model considered in section (4.4) with parameters

q = 106 and ΦI =
Mp

2
√
π

.

The fermion modes are excited when their effective mass approaches a vanishing mass

mψ → 0, and hence when hϕ(t) ' −mb. All along section 4 we assumed that mb = 0, so

that the fermions were excited when ϕ(t) was crossing around zero. Let us recall that we

are dealing with scalar fields which behave as ϕ(t) ' Φ(t)F (t), with Φ(t) the decreasing

amplitude and F (t + 2π/ω) = F (t) a periodic function of frequency ω with an amplitude

equal to unity. Fermions will not be excited if the bare mass is so large that the effective

mass (C.1) is always nonvanishing. Hence, the fermions are excited only if the following

constraint is satisfied

mb < hΦ(t) (C.2)

In the case of small bare mass mb � hΦ(t) we would expect that the produced GW spectra

does not differ much from the (bare) massless case mb = 0. On the contrary, if the bare

mass is large mb ≥ hΦ(t) we expect that the produced GW spectra is significantly smaller.

We have checked this fact in our numerical calculations, by computing the amplitude of

GW peak amplitude as a function of mb. We have chosen to demonstrate this effect within

the preheating scenario of section 4.4, but similar results are obtained for the scenarios in

sections 4.3 and 4.5.

We have found numerically that, as expected, the amplitude of the spectrum of GW

produced by fermions is almost independent of a very small bare mass mb � hΦI , where ΦI

is the initial amplitude of the scalar field. On the contrary, the GW amplitude is strongly

suppressed when the bare mass approaches the scale hΦI , since the fermionic decay of the

scalar field is then blocked due to the effective mass being forced to be always different

than zero.

As can be seen in figure 7, the function F(κp), which characterizes the peak amplitude

of the GW, drops to zero precisely when the bare mass mb approaches (from below) the

scale hΦI . Actually, it can be clearly appreciated that the amplitude of F(κp) starts falling

already at mb & 0.1hΦI . This occurs, because then the constraint (C.2) is satisfied only

during a short period of time and thus the effective mass (C.1) crosses around zero only

few times. In fact when mb & 0.24hΦI , the fermion’s effective mass simply never crosses
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around zero, and thus there is no fermion excitation nor production of GW. When mb

is sufficiently smaller than hΦI , the amplitude F(κp), and hence the GW background, is

insensitive for the bare mass as indicated by the plateau for small bare mass in figure (7).

Actually, the amplitude F(κp) is not exactly independent from the bare mass but there

is a mild negative slope. The reason for this is similar as above for the relatively high

bare mass. The amplitude Φ(t) decays in time and eventually hΦ(t) becomes smaller than

mb. Therefore this sets the end of GW generation earlier than than what it would be if

there was no bare mass. The smaller mb the later this happens, thus the bigger the GW

amplitude, and hence the negativeness of the slope (with increasing mb).

In summary, it is clear that the effect of a fermionic bare mass on the amplitude of the

GW is simply, either negligible if mb � hΦI or, on the contrary, a terminator if mb & hΦI .

Therefore, this justifies completely our assumption of taking mb = 0 in the calculations in

sections 4.1–4.5.

D Comparison — Gravitational waves produced by bosons

Instead of the Dirac equation (3.1), a scalar field X in a FRW background evolves according

to the Klein-Gordon equation, as

X ′′ + 2HX ′ −∇2X + a2m2
χX = 0, (D.1)

where m2
X ≡

d2V (X )
dX 2 is its effective mass, and V (X ) its potential and over primes denoting

derivatives with respect conformal time. If the scalar field X is coupled to another scalar

field ϕ, e.g. the inflaton at preheating, or an spectator field in the thermal era, the dynamics

of the latter will provide an effective mass to the former. For example, if the two fields

interact as Lint = −1
2g

2ϕ2X 2, then we have m2
X = g2ϕ2. Rescaling the scalar field as

χ = aX , we then obtain the eom at sub-horizon scales (k � H, a′′a ) for X , as

χ′′ −∇2χ+ a2m2
χχ = 0 (D.2)

The quantized scalar field can be written like

χ(x, t) =

∫
dk

(2π)3 e
−ik·x

[
âkχk(t) + â†−kχ

∗
k(t)

]
, (D.3)

where the creation/annihilation operator satisfy the canonical commutation relations

[âk, â
†
k′ ] = (2π)3 δ(3)(k− k′), (D.4)

with other commutators vanishing. The definition of the (initial) vacuum state is given by

âk|0〉 = 0, as usual. From eq. (D.2) we obtain eom for χk as

χ′′k +
(
k2 + a2m2

χ

)
χk = 0. (D.5)

The source of gravitational waves is the TT-part of the anisotropic stress tensor, given by

ΠTT
ij = {∂iX ∂jX}TT . (D.6)
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By substituining the quantized field eq. (D.3) in eq. (D.6), we obtain in Fourier space

ΠTT
ij (k, t) =

Λij,lm(k̂)

a2(t)

∫
dp

(2π)3 plpm

(
âpχp(t) + â†−pχ

∗
p(t)

)
×

×
(
âk−pχk−p(t) + â†−(k−p)χ

∗
k−p(t)

)
, (D.7)

where Λij,lm(k̂) is the TT-projection operator, defined in eq. (2.5). To obtain the GW

spectrum we need to calculate the Unequal-Time-Correlator (UTC)

〈0|ΠTT
ij (k, t)ΠTT∗

ij (k′, t′)|0〉 ≡ (2π)3Π2(k, t, t′)δ(3)(k− k) (D.8)

The only combination of creation/annihilation operators which contributes to such VEV,

turns out to be

〈0|âpâk−pâ†qâ
†
k′−q|0〉 = (2π)6 [δ(3)(k− p− q) + δ(3)(p− q)

]
δ(3)(k− k′), (D.9)

〈0|âpâ†−(k−p)âqâ
†
−(k′−q)|0〉 = (2π)6δ(3)(k)δ(3)(k′ − k), (D.10)

where we have used the commutation rule eq. (D.4). The last term, proportional to

δ(3)(k)δ(3)(k′), does not contribute to Π2(k, t, t′) at finite momenta k = k′ 6= 0. Thus

only the term eq. (D.9) survives, and we then find the UTC for bosons as

Π2(k, t, t′) =
1

4π2a2(t)a2(t′)

∫
dp dθ p6 sin5 θ χp(t)χk−p(t)χ∗k−p(t′)χ∗p(t′), (D.11)

where we have used the result

Λij,lm(k̂)
(
pi(k − p)j(k − p)lpm + pi(k − p)jpl(k − p)m

)
= p4 sin4 θ (D.12)

with θ the angle between p and k.

The spectrum of GW eq. (2.26) is then given by

dρGW

d log k
(k, t) =

Gk3

2π3a4(t)

∫
dp dθ p6 sin5 θ

(∣∣I(c)(k, p, θ, t)
∣∣2 +

∣∣I(s)(k, p, θ, t)
∣∣2) , (D.13)

with

I(c)(k, p, θ, t) ≡
∫ t

tI

dt′

a(t′)
cos(kt′)χk−p(t′)χp(t′) (D.14)

I(s)(k, p, θ, t) ≡
∫ t

tI

dt′

a(t′)
sin(kt′)χk−p(t′)χp(t′) (D.15)

The outcome is very similar, in the form, with the spectrum of gravitational waves produced

by fermions given in eqs. (3.47)–(3.49). We see that in the bosonic case, apart from different

multiplicative factors, there is a power p6 instead of p4 in the momentum integrand. The

’extra’ power p2 arises in the presence of bosons because the bosonic energy-momentum

tensor has two spatial derivatives, and not only one like in the fermionic case. Moreover,

in the case of the bosons there is a sin5 θ angular dependence, versus a sin3 θ dependence
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in the case of Fermions. This is again due to the structure of derivatives in the energy-

momentum tensors, which determine how many momenta variables are contracted with the

TT-projector Λij,lm, and thus ultimately how many powers of sin θ appear. Besides, in the

bosonic case there are no spinoral dof , and consequently there is no polarization indices ±,

as in the fermions. The GW by (scalar) bosons are sourced by scalar modes χk(t) satisfying

the Klein-Gordon eq. (D.2), instead of by fermionic mode functions uk,±(t) satisfying the

Dirac equation. The integrand in the I(x) functions, (uk−p,+(t)up,+(t)− uk−p,−(t)up,−(t)),

is then simply replaced by χk−p(t)χk(t).

Note that both bosonic vacuum expectation values, like the UTC Π2(k, t, t′), also

require regularization. This has not been an issue for bosonic sources in the literature,

since the bosonic UTC’s are typically introduced as theoretical Ansatzs, which are already

regularized. Or in the case of lattice simulations of bosonic fields, the ultraviolet (UV)

modes causing the divergence are not captured in the simulations, simply because the lattice

spacing is finite. Thus, despite the fact that one would also require a similar regularization

procedure for bosons as the one introduced for fermions in section 3.3, in practice there

has been no real need. The great difference between bosons and fermions sourcing GW,

is that the excited modes in the bosons — due to their bosonic nature –, develop a huge

hierarchical ratio of relative amplitudes between IR and UV modes, the IR having a much

greater amplitude than the UV ones. This is the case, for example, both in preheating

and in phase transitions. In the former the UV tail of the distributions are exponentially

suppressed, and in the latter the UV tail are power-law suppressed. If we were to include all

the infinite tower of bosonic UV modes (so, well beyond the numerically obtained UV tails),

we would encounter that they give rise to a divergence. However, due to the hierarchy of

amplitudes, it has been as common practice to extend the UV tails (obtained only for a

limited range of momenta) all the way up to infinite. This way, the otherwise divergent

contribution form the UV bosonic vacuum fluctuations (which are not excited in the GW

production process), is automatically removed. In the fermionic case, due to Pauli blocking,

there is no such a hierarchy of amplitude between the IR and the UV modes, since every

fermionic mode is ’Pauli blocked’. Therefore, in the case of fermions, one must necessarily

deal with regularization, as indeed we showed in detail in section 3.3.
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[70] J. Garćıa-Bellido, S. Mollerach and E. Roulet, Fermion production during preheating after

hybrid inflation, JHEP 02 (2000) 034 [hep-ph/0002076] [INSPIRE].

[71] J. Garćıa-Bellido and E. Ruiz Morales, Particle production from symmetry breaking after

inflation, Phys. Lett. B 536 (2002) 193 [hep-ph/0109230] [INSPIRE].

[72] F. Bezrukov, D. Gorbunov and M. Shaposhnikov, On initial conditions for the hot Big Bang,

JCAP 06 (2009) 029 [arXiv:0812.3622] [INSPIRE].
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