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1 Introduction

The Q-background deformation [1] of supersymmetric gauge theories provides a useful reg-
ularization procedure to study their non-perturbative effects [2-4]. The Q-background
is the curved geometry which admits the action of the U(1) vector fields. Since this
background violates the translational symmetry, supersymmetry is explicitly broken. One
can however introduce the constant R-symmetry Wilson line gauge field to retain a part
of supersymmetry.

The scalar supercharge, which is obtained by the topological twist of supersymme-
try [5], is a particularly important ingredient in the deformed theory because it is used to
perform the path-integral exactly via the localization formula. For the Q-deformed N = 2
supersymmetric gauge theories [2, 3], the supercharge is nilpotent up to the gauge transfor-
mation and the U(1)? rotation (see also [6] for their explicit off-shell transformations). The
Q-deformed N = 2 super Yang-Mills theory is also realized by the dimensional reduction
of the N/ =1 super Yang-Mills theory in the six-dimensional background [3].

It is interesting to explore the ten-dimensional 2-background and their dimensional
reduction to lower dimensions for studying the various (2-deformed theories in a systematic
way. In the previous paper [7], we studied the four-dimensional ' = 4 super Yang-Mills
theory in the ten-dimensional Q-background [8] (see also [9-12] for different generalization).
Starting from the ten-dimensional N' = 1 super Yang-Mills theory in the general curved
background with torsion, we considered its dimensional reduction to four dimensions. We
examined the parallel spinor conditions and the torsion constraints for the existence of the
spinor associated with the scalar supercharges in the four-dimensional theory. The constant
SU(4); R-symmetry Wilson line gauge field, which is necessary to preserve supersymmetry,



is identified with the contorsion. We solved the parallel spinor conditions and the torsion
constraints for the (2-backgrounds. We obtained the on-shell deformed scalar supersymme-
tries associated with the three different topological twists, the half, the Vafa-Witten and
the Marcus twists [13-15], which were classified by Yamron [13]. These twists correspond
to the theories with the single scalar supercharge, the two charges with the same chirality,
the two charges with opposite chirality, respectively.

In this paper we will study further the Q-deformed N = 4 super Yang-Mills theory.
We are particularly interested in the off-shell supersymmetries, which are deformed non-
trivially in the ©2-background. We will introduce the auxiliary fields to construct the scalar
supersymmetry acting on them. It will be shown that the deformed scalar supercharges
form the algebra, where they are nilpotent and their anti-commutator vanishes up to the
gauge transformation and the Lorentz rotation associated with the U(1) vector fields.

Based on the construction of the off-shell supersymmetry algebra, we will study the
cohomological properties of the 2-deformed action. We will show that the deformed ac-
tion is written in the exact form with respect to the deformed scalar supercharges. Our
results show that the twisted N' = 4 super Yang-Mills theories are also well-defined in
the Q-backgrounds.

The organization of this paper is as follows. In section 2, we review the four-dimensional
N = 4 super Yang-Mills theory in the Q-background. We will introduce three types of the
topological twists and the on-shell scalar supersymmetries. In section 3, we will introduce
the auxiliary fields to the theory and study the deformed supersymmetry transformations
off-shell. We show that the action is written in the exact form with respect to the scalar su-
percharges. Section 4 is devoted for conclusion and discussions. In appendix we summarize
the Dirac matrices in four and six dimensions.

2 Q-deformed N = 4 super Yang-Mills theory and on-shell
supersymmetries

In this section, we review the Q-deformation of N' = 4 super Yang-Mills theory. This
theory is obtained by the dimensional reduction of the N' = 1 super Yang-Mills theory in
the ten-dimensional spacetime with the metric [8]

ds?y = (da:“+4)2 + (da* + diaj“+4)2 . (2.1)

Here 2#, 297 (u=1,---,4, a = 1,--- ,6) are the spacetime coordinates. Q*, = Q" x,
are the U(1)® vector fields acting on x#. The constant matrices ,,, are anti-symmetric
and satisfy the commutation relations:

Qo — Q5 Qpva = 0. (2.2)
In the following we use the representation of the matrices €2,,,, which are parametrized as
0 €0 0
1
Qo = _ga 8 8 _(ig : (2.3)
0 0 0
where €., €2 are real constants.

a’ ~a



We now compactify the z°,--- ,2'0 directions on the six-torus T® and perform the
dimensional reduction to four dimensions. The ten-dimensional Lorentz group SO(10)
becomes SO(4) x SO(6); where SO(4) is the four-dimensional Lorentz group and SO(6) ~
SU(4)s is the R-symmetry group. We further introduce the constant SU(4); R-symmetry
Wilson line gauge field (A,)“ g. Here the index a labels the vector representation of SO(6);
while A labels the (anti)fundamental representation of SU(4);. Then the dimensionally
reduced action is given by [§]

1 1 |
S = poe d*z Tr [4F"”FW + Ao DAy + §(Dﬂgﬁa — F, )’

. . 1
(2a)™ s [0 Ap] = 5

(ia)AB At [¢a, AB]

= N =

< [©ar p] + 9% Dy — 90 D yypq — iF,, QU QY

2
_% ((Ebic)A Boe (Aa)? 4 — (Eaic)A Be (Ap)P A))

)
RS

((Ba)*” RaDyulp + (Sa) 4 A1 DuAP )

_l_
[Nl S S RO IS

Qv (Z)"? Ba" R + (Sa) 4y Ao A7)
1
2
Here A, (1 = 1,2,3,4) is a gauge field, AL Aga (6 = 1,2, A = 1,2,3,4) are Weyl
fermions and ¢, (a = 1,---,6) are real scalar fields. The fields are in the adjoint represen-
tation of a gauge group. The constant x denotes the normalization of the Lie algebra of
the gauge group and g is the gauge coupling constant. The indices a, & represent left and
right spinors of the Lorentz group SO(4) ~ SU(2)1, x SU(2)g. These indices are raised and

lowered by the anti-symmetric symbols €.z, €44 with €'? = —¢15 = 1. The conventions of
AB

(E(z)AB AAAD (Aa>D B —

_l’_

(Sa) 4 A (AQ)” DAD} . (249)

four- and six-dimensional Dirac matrices o#, a#, (£,)*P, (34)ap are given in appendix.
The gauge covariant derivative is defined by D, * = 0, * +i[A,, *|. The field strength of
the gauge field is F,, = 0, A, — 0, A, +i[Au, A

The action (2.4) is also obtained by replacing the following terms in the undeformed
action as

[Pas o] — [as 6] + Q% Doy — Q% Dypa — 1F, Q%
1 =\ A — \A
=5 (220" bee (A0)” 4 = (Sa20) " o (A0 1)
D, s — Dypq — Fl,Q0,

[ A — [io A] + QDA %QMUWAA + (A4 pAB,

[Pasha] — [ ] +iUD A = Qe Ra — A (Aa)” 4. (2.5)

For generic €2, and (As)? B, supersymmetry of the theory is broken explicitly. How-
ever, a part of supersymmetry is recovered when 2,,, and (Aa)A B satisfy certain con-
ditions. When the matrices Q,,, are (anti)self-dual and (A,)4p = 0, the theory has



anti-chiral (chiral) half of the N' = 4 supersymmetry [8]. When Q,,, are neither self-dual
nor anti-self-dual, the supersymmetry condition can be studied by the parallel spinor con-
ditions in ten-dimensional Q2-background with the torsion, where the torsion is identified
with the R-symmetry Wilson line gauge field. We can solve the parallel spinor conditions
and the constraints for the torsion in the 2-background, which preserve gauge symmetry
in four dimensions and supersymmetry associated with the topological twist. These condi-
tions are satisfied for special €2,,,, and (Aa)A 5. Then we obtain the topologically twisted
supersymmetries deformed by Q,,, and (A,)*5 [7].

The topological twist is to pick an embedding of the Lorentz group SO(4) ~ SU(2), x
SU(2)g into the R-symmetry group SU(4); and to define a new Lorentz group. Let us
take the SU(2)1, x SU(2) g subgroup of SU(4); such that the index A is decomposed into
A’ =1,2 and A = 3,4. Here A’ and A are indices for the two-dimensional representations
of SU(2) g and SU(2), respectively. The vector index a is also decomposed into @’ = 1,2
which corresponds to the two SU(2)g x SU(2)./ singlets, and @ = 3,---,6 which labels
the SU(2) g x SU(2)/ bifundamental representation.

Topological twists in N' = 4 super Yang-Mills theory are classified into three types [13].
They are called the half twist, the Vafa-Witten twist [14] and the Marcus twist [15] (or the
GL twist in [16]). In the following subsections, we summarize the three types of topological
twists and the deformed supersymmetries.

2.1 The half twist

In the case of the half twist, we replace SU(2)gr by the diagonal subgroup of SU(2)z x
SU(2)r. The new Lorentz group becomes SU(2); x [SU(2)r % SU(2)R]diag.- Here the
subscript “diag” stands for the diagonal subgroup which means that the spinor index &
and the R-symmetry index A" are identified. The Weyl fermions Aﬁl and /_\él are rewritten

as follows,
AA’ 15A'A 1 — v A’ [_\ AA/ 1 A'B’ i A
o = 5% + B ()" oA, a T 5€ (") apr Ay - (2.6)
We redefine the scalar field as
AB v AB _ i e
= — Ea as = ——F= Ea a - 27
v 7 (Za)™ PAB NG (2a) 459 (2.7)

Then using the matrix representations of (EQ)AB and (ia) AB, the scalar fields are decom-

AB ABp A8 _ EAB'P Pap 2
v =\ Lip __iBs |0 PABT | ’ (2:8)
@ —€ 2 SDAB’ _EAB(‘O

posed as

where ¢, ¢ are the SU(2) g x SU(2) 1 singlets and goA/B belongs to the SU(2) gz x SU(2) 1/
bifundamental representation.

The supercharges QdAl and le are decomposed into the scalar Q) , the tensor QW
and the vector @,. In [7] we examined the torsion and the parallel spinor conditions for



preserving Q. The solution to the conditions is given by

0 €, 0 0
Q - —Gi/ O 0 0 (A /)AB _ %(fé/ + 62/)7’3 0
pra 0 0 0 _53/ ) a 0 ma/TB )
0 0¢€ 0
Qe = (Aa)* 5 =0, (a' =1,2, a=3,4,5,6), (2.9)

where m, are real parameters. The Wilson line gauge fields (A)" 5, (A)? 5 are identified

with the mass matrices M4 5= mr3, M A 5= m7? of the adjoint hypermultiplet of the
N = 2* theory [4, 8]. Here we defined

1 _ 1
A= — (A —iAy), A=— (A1 +1iAs),
\/5( 1 2) \/E( 1 2)
1 1
m=—(m; —1tms), m=——=(m1 +1ima). 2.10
\/Q( 1 2) ﬁ( 1 2) (2.10)
We note that the matrices
0 €0 0 0 &0 0
-1 00 0 _ —-e 00 0
Qu: 5 QI/: _ 5
" 0 00 —¢ " 0 00 —&
0 06 0 0 0& 0
ei:i(ei—ieg), Ei:i(eﬁﬂeg), (i=1,2) (2.11)
V2 V2

characterize the Q-background defined in six dimensions [1, 6]. The Q-transformations
are given by

QAN = Aua
QAM = _2\/5 (Du‘ﬂ - F;WQV) )
Q‘P = QMA/M

P
QA = —2i ([, §] + i D,@ — i Dy + iQ*QVE,,)
Q]\'LW = _2Fu_1/ —1 (5.”1/)5@ |:SOdA7 ¢Ag:| ’
Q(pa/x _ _ﬁ[—\m’
QA = 2i (|, ™| + i Dt + MA 5P ) — O (5,,)° o™,

QAL = V2 (o), D™ (2.12)
Here Q* and Q* are defined by
O =Qz,, QO =0"g,. (2.13)

The superscript & stands for the (anti)self-dual part of a tensor X,

1 -
X =5 (XW + XW) : (2.14)



where XW = %GWPJXW is the dual of X, and €., is the totally antisymmetric tensor
with €134 = 1. The supercharge @ is nilpotent up to the gauge transformation, the Lorentz
rotation associated with the U(1)x U(1) rotation generated by €, and the SU(2), rotation.
In fact, the nilpotency of @ on the fermions fXW and Aé holds by imposing the equations
of motion.

2.2 The Vafa-Witten twist

In the case of the Vafa-Witten twist, we replace SU(2)r by the diagonal subgroup of
SU(2) 1 xSU(2) g xSU(2) g. The new Lorentz group becomes SU(2) 1, x[SU(2) 1, x SU(2) g X
SU(2)R]diag- The spinor index ¢ is identified with the R-symmetry index A" and & is also
identified with A. We decompose the fermion fields as

1

1
AozA/ = 5 (O-H)OCA’ Aua Aa = 5 (U )aA A,u»
e U | ro i 1 1 i
Ay = S0 At 5 (@)Y B, Ay = 505A+ 5 () sl (2.15)
The scalar fields in (2.8) are further decomposed as
g/ g’ AR AR _ 1A 1 A A 1AA_VA/ “
oM =Ty W=y M = St S () . (216)

The supercharges Qf and Q% are decomposed Ainto the two scalars Q, 62, the two vectors
@y, Qu and the two tensor supercharges Q,,, @ -

The solution to the parallel spinor and the torsion conditions for preserving Q and é is

0 €, 0 0 0 €0 0
g ,_ |- 00 0 0 _|-%000
e 0 0 0 —€ |’ e 0 00 —e |’
0 0¢€ 0 0 0¢€ 0
Ll 1273 0 1(1, .2).3 0
(Aa’)AB - 4 (€a +€a ) ’ 1/1 2 3 | (Ad)AB = 4 (6a+€a) ! 1/ 1 2\ 3 |
0 1(ewtea)T 0 Tlate)T
(' =1,2, a=5,6),
Qs = Qua = (As)' 5 = (A1) 5 = 0. (2.17)
It is convenient to rewrite the 2-background matrices €2, as
i AB ~ i e
Qﬁf - NG (Za)™" Qs Oy = 2 (EG)AB Qe
QP =il Ol = O, . (2.18)

We further decompose these matrices as

A'B' _ A'B AB ABG& ad 1 aigs 1 AB pornA! ¢
Q" =e Qs Q) =€ Qu, Q) =3¢ QW—f—ge (@) 5Qu,po

(2.19)



where Qw« po satisfies the anti-self-dual condition with respect to the last two indices. From
the decomposition (2.19), we obtain

0 €0 0 0 €0 0
- —e. 00 0 ~ A 1 £ 00 0
Q v — 2 6 y Q v = —Q v = —— 5
w=v2| 00 —e pt? LT 0 0 0 —e
0 0e 0 0 0e 0
Qumpa = Oa ((pa O') 7é (17 2)7 (374)) . (220)

The matrices €2, Q,, are given in (2.11). The Q-transformations are given by

QA, = A, QA = —2V2(Dyp — F,Q"), (2.21)
Q(’D = QMA;“
Qp = —V2A + Q'A,, QA = —2i ([p, §] + i D@ — i Dy + Q" Q" F,)

QA = =28, +1 ([95» Puv] +iQpDP¢W_iQp’uvDP¢+iQp’uvﬁano_mup@pu +inp¢pﬂ>
T/ . LA R LA « A A A R
2 ([90/‘/)’ ]+ i 1o Dp@r” — 18000 Dp 4y, oo™ — QPUW‘PW) ’

2
QA, = 2 (D,@ - FWQ") —2/2 (D”@,W - FWQ,,,W) ,
Q@ - _\@f\ + QMAM QK =2 ([907 85] + iQ“Dwﬁ - iQ#Du‘P + iQ#QVFW) )

Qb = —V2h, + QP A,
QA = —2i ([‘Pa Puv] + 1D P — Z'Qp’/ﬂ/Dp‘:" + Z‘QP’WQUFPU — 12, Do + iQV'D‘ﬁpH) '
Here Q* and Q* wv are defined by

o=, O, =0, 1, (2.22)

and Q;W’pa is the anti-self-dual part of QW,M with respect to the first two indices. The

Q-transformations are also given by

QA, = A,, QA, = 2v2 (Dup — F, Q) (2.23)

@@ = QHA;“

Qp = V2A + Q"4 QA = 2i ([p, @] +iQ D, — iQ" Do + iV F,)

© I3 I3 %
QA = —2F,, —i ([@, 95,“,}+iQpr<,?)W—iQ”’WDp@%—iQp’WQ”FPU—iQupcﬁpy+iQV”¢pﬂ) ,
i ~ ~ e P - A Ao N— ~po A TN
2 <[ pps P01+ 1o Dpdy” — i 06 D + €0, 1077 — Qpo” ‘PW> ’

éA,u = _\/5 (D;Ab - F;WQV) + 2\/5 (Dysb/u/ - FVpr,;w) )

Qp = V2R + A, OA = —2i ([@, G +iQ" D, ¢ — iV D, + z’Q“Q”FM,,> :
Q@/u/ = \/i/_x;w + Qp’ul/]\pa
QA = —2i ([@, Gu] + 19Dy, — i DB + QP Q0 Foy — i, G + z'QVP@W) .



We note that when €} = €2 =0 (a = 5,6), the theory reduces to the -deformed N = 2*
theory with the mass parameters m = i (61 + 62) and m = % (El + €2). In other words,
we have a supersymmetry enhancement in the Q-deformed N = 2* theory by choosing the
mass parameters to the above special values. A similar enhancement of supersymmetry
was also discussed in [17, 18].

2.3 The Marcus twist

In the case of the Marcus twist, we replace SU(2)1, by the diagonal subgroup of SU(2)/ x
SU(2)z, and SU(2)r by the diagonal subgroup of SU(2)r x SU(2)gr. The new Lorentz
group becomes [SU(2)r/ x SU(2)L]diag % [SU(2)r % SU(2)R]diag, Where the indices o and
A, & and A’ are identified respectively. We decompose the Weyl fermions as

/ 1 1y e 1 s+ 1 — . A
Aé = 56‘4 B (a“)QB Ay, Y= —553'1\ + 5 (@) arh
a1 - i1 s 1 i
A = 2 (@) Ay, Mg = 50aA+ 5 ()0 M (2:24)

We define the field ¢, as
A'B
QO;L = (O-;J,)BA/ Y2 B- (225)
The supercharges are decomposed into the two scalars Q and @, the two vectors Qu, Qu

and the two tensor supercharges @, QW. The solution to the parallel spinor and the
torsion conditions for preserving @ and @ is given by

0 €, 0 0
—, 0 0 0 A 1 (el +€)r3 0
Quuar = “ » (Aw =4 ¢ ’
. 0 0 0 —¢ o) 5 0 Lel, —e2) 73
0 0¢€, 0
Qe = (Aa)" 5 =0, (¢ =1,2, a=3,4,5,6). (2.26)
The supersymmetry transformations generated by @ and @ are
QA;L = A/u QA,u = —2\/§(D#g0 - F,UJ/QV) )
Q‘P = QHAW
Qp = —V2A + QA QA = =2i ([¢, @] + i Dy — i Dy + iQ*QVF)
QS% = _\@A/M Q[\u = —2i ([¢p, ‘Pu] + Z'QVDV%L - iQuVSOV) )
QA = ﬁD#QOM, QA,LLI/ - \/§(D#¢V - DVSOH)+’
QA;U/ = _2F;y +1 [Soua 901/]7 ) (227)
and
QA, = A, QA, = —2V2(Dyp — F,,Q"),
Q()D = QMI\HA
Qp = V2A + QA QA = 2i ([, @] +iQ DG — i Do +iQQV Fpy)
Qou = \/iAm QA = 2i([p, pu] +iQ" Dy — i 00)
QA = V2D,¢", QA = —2F% +i [ 0]
QAMV = _\@ (DMSOV - DV(PM)_ . (2‘28)
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Figure 1. The relations among the theories with the different twists.

The Q-deformed theory corresponding to the Marcus twist can be obtained by choos-
ing the mass parameters m = % (el — 62) and m = i (El — €2) in the Q-deformed N = 2*
theory. The relations among three types of the ()-deformed theories are summarized in
figure 1. The Q-deformed A = 2* theory with generic €' and €? has two special supersym-
metry enhancements at the mass parameters m, = i (6111' + GZ,).

3 Off-shell supersymmetries and exactness of action

In order to compute the partition function and the correlation functions of observables with
the help of localization technique, we need to investigate off-shell supersymmetry [17]. In
this section, we study off-shell supersymmetry generated by the scalar supercharges in the
Q-deformed N = 4 super Yang-Mills theories by introducing the auxiliary fields associated
with the fermions. For the undeformed case, the off-shell supersymmetry has been discussed
in [15, 16, 19-21].

3.1 The half twist

We begin with the half twist case. In the background (2.9), the action (2.4) is invari-
ant under the deformed on-shell Q-transformations (2.12). In order to get the off-shell
Q)-supersymmetry, we introduce the auxiliary fields D, and Kgf‘ associated with the
fermions A, and AZ. We add the Gaussian terms of these fields to the action. Then
the action becomes

1 4 1 2, 1.4

Now we modify the supersymmetry transformation of the fields /_\W and Aé as

QA = 2D, — 2F,, — i (5,0) & {«pd“‘, @Ag} :

QAL = 2K2 + V2 (01, D™ (3.2)



Then the supersymmetry transformations of the fields D, and K {i‘ are determined from
the condition that the linear term in the auxiliary fields in the Q-transformation of the
Lagrangian vanishes. The result is
QD = (DyAy — DyA,) ™ — V2i (5ul/)6 @ [AdA> ‘EAB]
+V2i [907 AHV] - \@QPDPZ\/«W +v2 (Qup/_\pv - va]\pu) g
_ 3 s .3
QKﬁ = (0")aa DuAaA - \ﬁ (0") o {AMHPQA}
+V2i <[¢, Ag} i DAL+ MAAP L — S (0,), 5A§> . (3.3)
Then the action (3.1) is invariant under the Q-transformation. We redefine the auxiliary

fields as

AN YA -
Hy,)/ == Dy,u - F#V — 5 (Uuu)ﬁd [SDaAaSDAg} )

R " 1 .
Gl =K+ 7 (0") wes D™, (3.4)
so that (3.2) takes a simple form
QM =2H,,,  QA}=2GA (3.5)

Then the transformations for H,, and Gé become

QHyw = V2i [0, 8] — V208 DA + V2 (PR, — QPR

OGA = V2 ([cp, Aé} i DAL + MALAB, — ;Q“”(aw)aﬁAé> . (3.6)
We find that the Q2 action on a field ¥ results in the form,

QZ\II - 2\/5( 5gauge(§0) + 5L0rentZ(Q) + 6ﬂav0r(M))\II- (37)

Here the symbol dgauge() stands for the gauge transformation by the parameter ¢,
OLorentz(§2) for the Lorentz transformation by the parameter €2, and égavor(M) for the
SU(2) 1/ rotation by the parameter M A 5 defined in the subsection 2.1. We note that due
to the conditions (2.9) for the parameters, the rotations ororentz(£2) and dgayor(M) are re-
duced to the ones generated by their Cartan subgroups. The algebra of the symmetry
generated by Q closes off-shell.

We next examine the Q-exactness of the action (3.1). This property is important to
study the cohomological structure of the theory. Using the transformations (3.5), (3.6)
and (2.12) for the other fields, we find that the action (3.1) is written in the Q-exact form:

_ 1 1 ~
D= 4 v
Sy = Q= + /d il [4FWF“ } , (3.8)

,10,



where =1, which is called as the gauge fermion, is defined by

(8

/d4f1:gTr |: 1 A'ul/ iHMV./_X’LLV — WA“ ( — FMVQV)

+ fA ([p, @] + i Q" Dyp — i Dy + iUV E,)
a A « aA
+ 54561 —7A 1 (0")oa Dy
)

xad (1= - e _ i~ 3 5
A ([%@Ad]ﬂﬁ“Du@A — 5 (3" 4P 5+ M A%a)

R @ [ ey | (59)

In [6], we have shown that the N' = 2 super Yang-Mills theory in the Q-background
defined in six dimensions is written in the Q-exact form. When the A/ = 2 hypermultiplet
(goé‘A, A%, A4, K&“) is removed, the action (3.8) becomes that of the Q-deformed N = 2
super Yang-Mills theory. Then the gauge fermion (3.9) indeed becomes the one which was
found in the Q-deformed A = 2 super Yang-Mills theory.

3.2 The Vafa-Witten twist

In the case of the Vafa-Witten twist, we have obtained the two on-shell scalar supercharges
Q and Q with the same chirality in subsection 2.2. The on-shell transformations by Q, Q
are (2.21) and (2.23). For the undeformed case, the off-shell supersymmetry transforma-
tions were constructed in [13, 19, 20].

We first consider the deformed off-shell supersymmetry generated by Q. Following [19,
20], we introduce the auxiliary fields D,,,, K,. Then we add the quadratic terms of the
auxiliary fields to the action (2.4) as

Sy — S+/d4x12Tr [—1(1)“”)2— (K2 . (3.10)

kg
We modify the Q-transformations of the fields /_XW, Au as

QA = 2Dy, — 2F,,
+1 ([()57 Sa;w] + iQpDP@HV - iQf’vw,ngﬁ + iQp7uVQUFpo - iQup‘ﬁpv + iﬁv%pﬂ)
b
2
QA = 2K, = V3 (Dyp = Fu) = 2v2 (D" = F70y ) (3.11)

(Wum G+ i 1o Dp@n” — 18006 Dp@r” + Q50077 — Qpa,pUSb#”) ’
As in the half twist case, we find that the supersymmetry transformations of the auxiliary

— 11 —



fields are given by

_ -~ 7 . ~ 7 . ~
QDu = (Duby = Do) = 3o (G R?] + 7 [$vp, Ai?]
]. = 1 A ES 1, N ES ’L N 2
+ —07 DA — —OP DA — ——O AP O PN,
2v2 M 22 PRR oy p e 22 7t

(QupApv - vaj\pu)

DVKW —V2i [P A7 + \@QP’WD/JAV + ﬁQPV’MVAp
1 . 1 .
— e Ay — —OPD, A, + —O VA,
/2 (¢, Ayl /2 P
+v2i [, Au] = V2 DA, + V20,7 A, . (3.12)

We redefine the auxiliary fields as

Hy = Dy — Fo
+2 ([ D] + DB — i D + i QT F oy — i, + ZQVP%)

4 <[ pps ] + 197 16 Dpp” — i, Dpdp” + Qpy po P77 — Qpa,m‘ﬂ#”) ’

1

Gu =K~ 5 (Dut = Fu¥) = V2 (D@ = F*0p ) | (3.13)
so that (3.12) is rewritten in a simple form as
QAu, =2H,,, QA,=2G, (3.14)
Then the transformations of H,, and G, become
QH, = V2i [907 ‘/_\MV] - ﬁQpr/_\W +v2 (QMPI\PV - QVpAPH) )
QG = V2i [, Ay| = V2D A, + V2,1 A, (3.15)

Using the transformations (3.14), (3.15), and (2.21) for the other fields, we find that the
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action (3.10) is written in the Q-exact form up to the topological term:

_ 1 1 .
Sy = Q=9 + /d4$ 72T1" |:F#VFMV:| , (3.16)
_ 1 _
=, — 4 - v
=9 —/d X /4;92 TI‘|: 2F“VA'LLV ZH,UJ/AMV — ﬁAM(DP‘(’O — F,U,IIQ )
+ %I\ ([, @) + i Dy — iQ Dy + i F, )
1, ., 1 . ) . 1 ) .
LG - (Dug = Fu”) + 5 (Dup™ = Fupr)
+ 28 (Ip, ) + 19D — ¥ D, + iU F )
%j\ <907 QO,LW +ZQprS0;u/_ZQ 7p,u p<p+ZQp7p,VQ Fpa_iQup(ﬁpV"i‘in/p@pu)
- P Ay A A A
ZA <<p, Puv —|—zQprg0W i, D, o+, Fpa—zﬁupcpp,,—l—zﬁl,pcppu)
Z A A
gA ( Prps Pv” ‘*‘ZQP’WDP‘PV —i) oDy +qu po P’ Q 7PUSDM”>].

We next study the off-shell transformations generated by Q We modify the

Q transformations of AW, A, as

QAu = 2D, —2F,,

—i ([@a Puv] + iQpr@W - iQp’WDp@ + iQP’uVQUFpU - iQup@W + iQV'D@PN)

i
Q= ~2K, = V2 (Dup = Fu”) +2V2 (D" = F*Qp )

The é—transformations of the auxiliary fields are given by

. A N .
QD = (DuAV - DVAM) + 2\7 [SouvaV } 2{ [SOVP’A }
1
— QO oD,A7 —QF o DpM,7 AP?
M + 2\/’ +—=

DA, +

f \[(Q PR = 0 Ay )

= V2i 2, A | + V2D A~ V2 (2R — 0PA)
i 1 i

(@Al — —=OP DA,

NG [‘Pu ] N

QK = Dyl +2D" oy = Vi [ @y 37| V207, DAY + V20™ A,

+

>>

i R

+— @, A ——Q”DA +—Q
73 [P = Db 50

+V2i[@, ] — V29D, A, + V20,7 A,

N
/u/ po - Qpa
f ’ 2v2

2 ([‘ﬁﬂp’ Pl + iQp’uaDpSava — 06 Dppu” + Qo7 — Qpcr,pU@W) ’

(3.17)

P7 A

(3.18)



We redefine the auxiliary fields as

HHV:DHV_F;;V

7 A A A “ A “ A A A ~ A ~
2 <[ s Puv] + QP Dy — 12 1 Dpp + i 11, Q7 Fpo — 182, Gy + ZQVP‘PW>

2
4 <[90W’ &1 + Q7 1o D — i 06 D + Q0P — on,‘w@#l’) ’
~ 1 ~ ~
Gu= Kt 5 (Dugb . FWQ”> V2 (D”@W . FVPQ,,,W) , (3.19)

such that (3.18) is simply rewritten as
QM =2H,,,  QA,=—2G,. (3.20)
Then the transformations for H uv and Gu are
Q= —V2i 2,8 | + V2D A — V2 (9 R — 00R,, )
QG = V2i[p, Ay — V2D, A, + V20,7 A, (3.21)

Using the transformations (3.17), (3.21) and (2.23) for the other fields, we find that the
action is written in the Q-exact form up to the topological term:

~ 1 1 -
Sy = Q=4 + / d'z —Tr [4FWF’“’], (3.22)

— if\ ([p, ¢] + i Dy@ — i Dy + QN E,,)

_ ié/ﬂw 4 2\1/§Au <Du¢ _ FWQ”> B %A” <DM¢>MV _ FWQP,W>

+ 2]\ ([go, @] +iQ Dy — iV Dy + iQ“Q”FW)

— i[\w/ ([gp, @uy]—i—iQprgﬁ,w—Z'QP’MVDPQO-FiQp’MVQonU—Z'Qup(ﬁpu"i‘igup@pu)
- ifvw ([@, gzpﬂ,,]+iQPDp¢W—z'QP’WD,,@jLiQf”WQUFpo—iﬂupcﬁpﬁiﬁy%w)
+ éj\w ([@upv 951/)]+iQp’u0DP@VU_Z'QP’WDPS%G‘FQW,W@M_mepo@w)] :

The transformations of a field ¥ by Q and 52 satisfy the following off-shell algebra:

Q2\I} = 2\@(5gauge(9@) + 5Lorentz(Q))\I/7
éQ\I’ — _2\/5( 5gauge(¢) + 5Lorentz(Q))‘1jv
{Q, QYT = 2V2( Sgauge(?) + OLorentz()) 0. (3.23)

In the undeformed case, the action is written in the exact form by the two scalar
supercharges simultaneously [13, 14, 22]. We find that this is also true in the deformed
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(heory. The action is expressed as
SQ - QQF + /d T ) Ir *FL F v (3 24)
,{/g 4 v ’ ’

where

AA +

1 1 1
d —T i o AWA L+ S AFA, — = [ , ,,]
f / xr I'|: + m -+ 8 " 8 24\/* SOH SO)\

212"

1 . . A .
16{ (QPWU o’ — O, D e _Zqu,po¢pU+ZQpa,pa¢#”)

A 5y 7
+ﬁ9[ﬁ,# ] <A[qu/p] — SA[#AVAP])] . (3.25)

Here the three indices in the square bracket are totally antisymmetrized with the normal-
ization 1/3!. Note that F is gauge invariant. This is because the gauge transformation of
F by the gauge parameter « is computed as

5gauge f /d4ﬂf TI'|: 2\/» (qu’yp — Qp’/’“p) F’ul,Oé:|, (326)

and Qp“’”p is symmetric with respect to p and v from (2.20).

3.3 The Marcus twist

In the case of the Marcus twist, there are two scalar supercharges @ and @, which have the
opposite chirality. As studied in [15, 16], in the undeformed case, one cannot make both @
and @ off-shell but can make only their linear combination off-shell. This charge plays an
important role for studying the generalized Langlands duality of N = 4 theory compactified
on a Riemann surface [16]. Now we will examine whether this off-shell supersymmetry
structure is kept under the 2-deformation.

We first study the off-shell supersymmetry generated by (. In order to construct
off-shell supersymmetry, we introduce the auxiliary fields K, K, D,,. Then we add the
quadratic terms of the auxiliary fields to the action (2.4) as

1

3 (Dw) =5

1 1
_ 4., — - 2 12
S3 =5+ /d T KgQﬂ [ 5 (Kuw)” = 5K*| . (3.27)

We modify the transformations of the fields A, A, J_XW as

QA = 2K +V2D,¢",
QA = 2K, +V2(Dupy — D)™,
QA = 2Dy, — 2F,, +i[ou, 0] - (3.28)

,15,



The transformations of the auxiliary fields are determined as

1

QK = D, A" — 7 (A, "] + V2i ([p, A] + iQD,A)
_ - _ i
QR = (Duly = Duly)" + 75l M) = lw M)
+ \/§Z [907 A,ul/] - \/§Q>\D)\A,uu + \/§ (Q,uAA)\y - QZ//\A)\M> 9
_ g _ o
@Dy = (DpAy — DyA,) ™ — NG ([0, Av] = [i00s Au])
+ V2 [, K] = V2R DAR + V2 (2 R = 2 ) (3.29)

We redefine the auxiliary fields as

1
G =K + 72Du§0'u’,

\f
G =K, + \}é(Dm — Dypp)t,
Hy =Dy = Fy + o) (330)
such that (3.29) takes a simple form as
QA =2G, QA =2G 0, QA =2H,,. (3.31)

Then the transformations for G, G, and H,, are given by
QG = V2i([p,A] +iQ"D,A),
QGHV = \/il[Spg A/u/] - \@Q)\D)\A;U/ + \/i(QM)\A)\I/ - QI/)\A)\,LL)7
QH, = V2i[p, Aw] — V29 DyA, + V2(Q, A0 — Q. A),). (3.32)

Using the transformations, (3.31), (3.32) and (2.27) for the other fields, we find that the
action (3.27) is written in the Q-exact form up to the topological term:

_ 1 1 _
— 0= 4
where

1 1 - = 1 _
Eg = /d4fE /-{‘792’]:‘1‘ |:2F‘LZIA'UIV + ZA“V [SDM, QOV] — ZHMVA#V
1

22
1  _ , ,
—AG+ iA (¢, @) + i Dy @ — Q" Dy + iQMQV )

1
- ZANVGWI + AHV (DMQOV - DV()O/L)+

1 1 _
+ ——AD,o* — ——A*(D,p — F,, Q0
902 nP 22 ( nP 2 )

i _ Ay A
— ZA“ ([gp, oul +iQ2" Dy, — i, go,,) . (3.34)
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We next study the transformations generated by ). We modify the transformations
of the fields A, A,y and AW as

QA =2K + V2D, ¢",
QA,LW :2K}LV 2F‘1AV + Z [So,ua (101/]+ 9
QA =2D,, — V2 (Dupy — Dypy) ™ (3.35)

We find that the transformations of the auxiliary fields are

QK = —D,A* — — [, @] + V2i ([p, A] +iQ“D,A)

V2
QK = (Du/_\u - D,,AM) % ([ops A] = [eow, AM])JF

+V2i [0, A] — V2P DAA, + V2 (Q,}AM — QVAAM) ,

@Dy = (Dubs = Do) = 2 ([ ] = [ )

+ V2 [, K] = V2R DARu + V2 (2 R — 2 ) - (3.36)

We redefine the auxiliary fields such that (3.35) takes a simple form as

)
G;w =K — F:;/ + ) [QD/HQOV]+7
1

H;/w =D — E (DMSOV - Duﬁau)i . (3.37)
Then (3.35) becomes

QA = 2G, QA = 2G,

pvo

QA,, =2H,. (3.38)
The transformations for G, G, and H,,, are

QG V2i ([@,A] +iQ“D,A)
= V2ilp, Au] = V2P DaAw + V2 (2 o — M) |
= V2i [p, A] — V2 DyA, + V2 (QMAI\M _ QJZ\M) . (3.39)

Again, we find that the action (3.27) is written in the Q-exact form up to the
topological term:

_ 1 1 ~
— = 4 v
53 == Q\_{B - /d €T 7‘92TI' |:4F,U,I/Fu :| s (340)
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where

_ 1 1 ' 1
23 = /d4x Tr[—F+ AP 4 iA“” [P, o]t — =Gl A

kg2 2 4
1M”H’ ! A (D D -
1 uv ﬁ ( pPv — u@u)
1

- ha - iA ([, @) + i Dy @ — i Dy + iQMQV )

1 - 1 - ~
+ —AD,,o* — ——A*(D,p — F,, Q0
92 ¥ 22 (u@ j )

(A =y = b
+ ZAM ([gp, ou] +iQ2" Dy, — i, <p,,) . (3.41)
The supercharges @ and Q satisfy the following on-shell relations on a field ¥

QQ\I’ - Q2\Ij - 2\/5( 5gauge($0) + 5Lorentz(Q))\I’, (342)
{Q,Q}v =0. (3.43)

We find that (3.42) holds off-shell for all the fields but (3.43) does not hold off-shell on
the fields A, /_XW, K,, and D,,. Therefore the algebra of symmetry generated by two
supercharges @ and Q does not close off-shell.

We can choose the linear combination of the two supercharges
Q=u@Q+vQ, wu,veC, (3.44)

such that Q becomes off-shell. In the undeformed case, when u? + v? # 0, the action is
shown to be the Q-exact form up to the topological term [16]. When u? + v? = 0, the
action is not written in the Q-exact form but it is Q-closed [15]. In the following, we show
that this property also holds in the deformed theory. Since the two supercharges @ and Q
satisfy the relations (3.42), (3.43) on-shell, Q satisfies the on-shell transformation

QQ\II = 2\/5(’&2 + 'UQ)((Sgauge((P) + 6Lorentz(Q))\I]- (345)

In the following, we study the off-shell generalization of the supersymmetry generated by
Q and examine the O-exactness of the action S3 in the cases where u? + v? # 0 and
2 2

u+ov°=0.

u? 4+ v? # 0 case. Since the algebra of @ and @ does not close on the fields A, A,
K, and D, off-shell, we need to re-examine the Q-transformations of these fields. The
on-shell Q-transformations of A, /_\W are

QA/JJ/ = 2U}U/7 Q*/_\,u,l/ = 2V/JI/7 (346)

where we have defined
7

) 1
UHV = —uF/j;, + §U [SO;L; 901/]+ + ﬁv (D#(Py - Du(Pu)+ >
1

_ i _ _
Viw = —vF,, + 3V [0, 0] — \/iu (Dupy — Dypp)™ . (3.47)
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We modify the transformation (3.46) as

QA =2V u? +v2 Ky, + 20U,
QAMV =2 V UQ + UQD,uV + 2VMV . (348)

The transformations of K, and D, are determined as in the Q- and Q-transformations.
We redefine the auxiliary fields as

gp,y =Vu? + v? Kul/ + U,ulla
Hy = Vu2 402Dy + Vi (3.49)

so that (3.48) becomes a simple form as
QA =26, QA = 2H . (3.50)
Then the transformations of G, and H,, are
QG = (u? +v%) (V2i [p, M) = V2 Dad + VE (9 0 — 220,))
QM — (1 +0%) (\@ (0, A ] — VI DR, + V2 (QMA[\A,, _ Q,/\/_\M» . (3.51)

The Q-transformations of the other fields are obtained from (3.44).

Now we construct the gauge fermion Z which satisfies S3 = QO=. Since we have
changed the transformations of A, A, K., and D,,, we decompose the gauge fermion
as 2 =20 + 2(2), where Z(1) is the linear terms in Ay and Z_XW and 2 does not contain
these fields. Using the transformations (3.48), (3.51) and the O-transformations of the
other fields, we find

= 1 1 1 1 1w 1
=0 = Yo —Tr | | SUWA™ — ~Gu A Vi A" — —H A ) | (3.52
u2 + 02 /dxHQQ [(QU“” 5 9nw gV 3 M (3.52)

In order to find = we take the following ansatz

2@ = o=} + b25. (3.53)

Here a, b are constants and =5, =4 are terms that do not contain Ayws Ay in 3 and Zs

respectively. Using the supersymmetry transformations (2.27), (2.28), we can show that
Z4 and =j are the exact forms as

E=QV,  E=-QV, (3.54)
where V' is given by
V= /d4x RNV lcp“ (Do — Fu ) |. (3.55)
kg? |8 4 K m

We can find the constants a, b such that

(1)

@ —uQ + Q) V, (3.56)

:u2+v2(
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and the action is written in the O-exact form. We find that the action can be written in
the Q-exact form up to the topological term:
~ ~ 1 u? —v? ~
Sy = (E<1> E<2>) /d4 Ry N I S O T 3.57
3=Q + + x,{gz 4(uZ +02) M (3.57)

The dependence on u and v of the topological term is the same as the undeformed case [16].
u?+v? = 0 case. In this case, we can choose (u,v) = (1,7). The supercharge Q = Q+iQ

is strictly nilpotent without using the gauge transformation and the Lorentz rotation. To
see this, we introduce the following linear combinations of the fields [15]:

V=Au+ \%‘Pw vu =A,— %%ﬂ
Fr = 0V — 0V +i [V, V], Fur = 0Vy =0,V +1 [V, V],
U= Ay —idy, P = Ay + iy,
n=A—iA, 7= A+ i,
Xuv = My — iy, Gt =G+lpdl,
T = G — My, b=p— %Qwu. (3.58)

We note that x,, = AWJrz'/_\W and i/w = G +iH,, are equal to X, and fwj, respectively.
From (2.27), (2.28), (3.50) and (3.51), the off-shell Q-transformations of these fields become

QVH = 20y, Qy,, =0,
QV, =0,
Qi = —4V2i (Do — FuY) Qp =0,
Qp = V2, Qn =0,
on = 4iG™T, oGt =0,
Oxuw = 2Ly, Q7,, =0, (3.59)

where we have defined the gauge covariant derivatives with respect to the gauge fields V,,,
f)# as follows,

Dy = Oy % +i [Vy, x|, Dyx = 0+ +i [V, ] . (3.60)

Now we examine the gauge fermion é, which is decomposed into the sum of =M and

=2, Starting from the ansatz (3.53), we have 2@ = —% (Q —iQ) V, where V is given

by (3.55). However we cannot construct =) in a similar way as (3.52) since Q7,, = 0.

1])

So, instead of using the transformations (3.59), we change the transformation of x,, by
eliminating Z,,, using its equation of motion. We define

QX,LW = _2fuu . (3.61)

The new Q-transformations are also nilpotent off-shell because QﬁW = 0. With respect
to Q we can take =(1) as

~ 1 1
=) — 4 v
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Then the action S3 is written as the sum of the Q-exact term and the other part:

S5 =0 (§<1> + §<2>> + S, (3.63)

1 i N i
4 cHV Vaid

S Pt o (20 - 2 )| G0
Here S% is not Q-exact but Q-closed. The deformed terms in S% are obtained from the
undeformed one by using (2.5). Although the undeformed part is independent of the
metric [15], the deformed part depends on the metric through €,,,.

4 Conclusion and discussions

In this paper, we have constructed the off-shell scalar supersymmetry associated with the
three different topological twists in the Q-deformed N = 4 super Yang-Mills theory. The
scalar supercharges form the closed algebra up to the gauge transformation, the Lorentz
rotation associated with the Q-vector fields, and the flavor rotation. We have shown that
the Q-deformed action is written in the exact form with respect to the scalar supercharges
up to topological terms except the case of the Marcus twist with u? 4+ v? = 0. The twisted
N = 4 super Yang-Mills theories can be naturally deformed in the Q-background.

It would be important to study the quantum aspects of the deformed theory since the
fixed point equations for the scalar supersymmetry are deformed by the -background,
which could change the partition function. For the half twist, the partition function is
indeed the same as the N' = 2* deformation [4]. For the Vafa-Witten twist, this would
be a generalization of [23]. Furthermore it would be an interesting problem to study the
S-duality of the Q-deformed N = 4 theory.

In [7] we showed that the Q2-deformed N = 4 theory has other on-shell supersymme-
try associated with the tensor supercharges. It would be interesting to study the off-shell
structure of the supersymmetry and its realization in dimensionally reduced theory [24, 25].
We also studied the deformed supersymmetries in the Nekrasov-Shatashvili limit [26]. In
this limit, on-shell supersymmetry is enhanced to N' = (2,2) supersymmetry in the case
of the half twist, N' = (4,4) supersymmetry in the Vafa-Witten and the Marcus twists,
where by the notation N' = (m,n) we mean that the theory has m chiral and n anti-chiral
supercharges. It is interesting to study the off-shell transformations of these supersymme-
tries and their BPS states [9-11]. In particular, one can study the BPS equations in the
Nekrasov-Shatashivili limit, which has been investigated in the N/ = 2 case [27, 28].
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A

Dirac matrices in four and six dimensions

The four-dimensional sigma matrices o#, 6# are defined by o = (iry,i79,i73,12), oH =

(—im, —iT2, —iT3, 12) where 7z (¢ = 1,2,3) are the Pauli matrices. The four-dimensional

Lorentz generators are defined by o = 1(c#6” — o¥5"), 6" = L(gto” — G"oh).

The Dirac matrices (£,)4? and (£,)p in six dimensions are defined by

i? 0 ™ 0 0 —7°
! (0@#’ 2 0 —72)" TS o0 )

0 —71 0 72
= 1 Ye = 2 )
7112 O 7 0 7 0
_ _ 0 _ 0o 73
) = , 5y = Si=| 5]
0 —72 —7° 0
- - 0 _ 0 72
= Y5 = Y = . Al
<—Z].2 0 ) < 7-1 ) 6 (7—2 0) ( )
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