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1 Introduction

The Ω-background deformation [1] of supersymmetric gauge theories provides a useful reg-

ularization procedure to study their non-perturbative effects [2–4]. The Ω-background

is the curved geometry which admits the action of the U(1) vector fields. Since this

background violates the translational symmetry, supersymmetry is explicitly broken. One

can however introduce the constant R-symmetry Wilson line gauge field to retain a part

of supersymmetry.

The scalar supercharge, which is obtained by the topological twist of supersymme-

try [5], is a particularly important ingredient in the deformed theory because it is used to

perform the path-integral exactly via the localization formula. For the Ω-deformed N = 2

supersymmetric gauge theories [2, 3], the supercharge is nilpotent up to the gauge transfor-

mation and the U(1)2 rotation (see also [6] for their explicit off-shell transformations). The

Ω-deformed N = 2 super Yang-Mills theory is also realized by the dimensional reduction

of the N = 1 super Yang-Mills theory in the six-dimensional background [3].

It is interesting to explore the ten-dimensional Ω-background and their dimensional

reduction to lower dimensions for studying the various Ω-deformed theories in a systematic

way. In the previous paper [7], we studied the four-dimensional N = 4 super Yang-Mills

theory in the ten-dimensional Ω-background [8] (see also [9–12] for different generalization).

Starting from the ten-dimensional N = 1 super Yang-Mills theory in the general curved

background with torsion, we considered its dimensional reduction to four dimensions. We

examined the parallel spinor conditions and the torsion constraints for the existence of the

spinor associated with the scalar supercharges in the four-dimensional theory. The constant

SU(4)I R-symmetry Wilson line gauge field, which is necessary to preserve supersymmetry,
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is identified with the contorsion. We solved the parallel spinor conditions and the torsion

constraints for the Ω-backgrounds. We obtained the on-shell deformed scalar supersymme-

tries associated with the three different topological twists, the half, the Vafa-Witten and

the Marcus twists [13–15], which were classified by Yamron [13]. These twists correspond

to the theories with the single scalar supercharge, the two charges with the same chirality,

the two charges with opposite chirality, respectively.

In this paper we will study further the Ω-deformed N = 4 super Yang-Mills theory.

We are particularly interested in the off-shell supersymmetries, which are deformed non-

trivially in the Ω-background. We will introduce the auxiliary fields to construct the scalar

supersymmetry acting on them. It will be shown that the deformed scalar supercharges

form the algebra, where they are nilpotent and their anti-commutator vanishes up to the

gauge transformation and the Lorentz rotation associated with the U(1) vector fields.

Based on the construction of the off-shell supersymmetry algebra, we will study the

cohomological properties of the Ω-deformed action. We will show that the deformed ac-

tion is written in the exact form with respect to the deformed scalar supercharges. Our

results show that the twisted N = 4 super Yang-Mills theories are also well-defined in

the Ω-backgrounds.

The organization of this paper is as follows. In section 2, we review the four-dimensional

N = 4 super Yang-Mills theory in the Ω-background. We will introduce three types of the

topological twists and the on-shell scalar supersymmetries. In section 3, we will introduce

the auxiliary fields to the theory and study the deformed supersymmetry transformations

off-shell. We show that the action is written in the exact form with respect to the scalar su-

percharges. Section 4 is devoted for conclusion and discussions. In appendix we summarize

the Dirac matrices in four and six dimensions.

2 Ω-deformed N = 4 super Yang-Mills theory and on-shell

supersymmetries

In this section, we review the Ω-deformation of N = 4 super Yang-Mills theory. This

theory is obtained by the dimensional reduction of the N = 1 super Yang-Mills theory in

the ten-dimensional spacetime with the metric [8]

ds210 =
(
dxa+4

)2
+
(
dxµ +Ωµ

adx
a+4
)2
. (2.1)

Here xµ, xa+4 (µ = 1, · · · , 4, a = 1, · · · , 6) are the spacetime coordinates. Ωµ
a = Ωµν

axν
are the U(1)6 vector fields acting on xµ. The constant matrices Ωµνa are anti-symmetric

and satisfy the commutation relations:

Ωµ
ρ
aΩρνb − Ωµ

ρ
bΩρνa = 0 . (2.2)

In the following we use the representation of the matrices Ωµνa, which are parametrized as

Ωµνa =




0 ǫ1a 0 0

−ǫ1a 0 0 0

0 0 0 −ǫ2a
0 0 ǫ2a 0


 , (2.3)

where ǫ1a, ǫ
2
a are real constants.
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We now compactify the x5, · · · , x10 directions on the six-torus T6 and perform the

dimensional reduction to four dimensions. The ten-dimensional Lorentz group SO(10)

becomes SO(4)×SO(6)I where SO(4) is the four-dimensional Lorentz group and SO(6)I ≃
SU(4)I is the R-symmetry group. We further introduce the constant SU(4)I R-symmetry

Wilson line gauge field (Aa)
A
B. Here the index a labels the vector representation of SO(6)I

while A labels the (anti)fundamental representation of SU(4)I . Then the dimensionally

reduced action is given by [8]

S =
1

κg2

∫
d4x Tr

[
1

4
FµνFµν + ΛAσµDµΛ̄A +

1

2

(
Dµϕa − FµνΩ

ν
a

)2

− 1

2
(Σa)

AB Λ̄A

[
ϕa, Λ̄B

]
− 1

2

(
Σ̄a

)
AB

ΛA
[
ϕa,Λ

B
]

− 1

4

(
[ϕa, ϕb] + iΩµ

aDµϕb − iΩµ
bDµϕa − iFµνΩ

µ
aΩ

ν
b

−1

2

((
ΣbΣ̄c

)A
Bϕc (Aa)

B
A −

(
ΣaΣ̄c

)A
Bϕc (Ab)

B
A

))2

− i

2
Ωµ
a

(
(Σa)

AB Λ̄ADµΛ̄B +
(
Σ̄a

)
AB

ΛADµΛ
B
)

+
i

4
Ωµνa

(
(Σa)

AB Λ̄Aσ̄
µνΛ̄B +

(
Σ̄a

)
AB

ΛAσµνΛB
)

+
1

2
(Σa)

AB Λ̄AΛ̄D (Aa)
D

B − 1

2

(
Σ̄a

)
AB

ΛA (Aa)
B

DΛ
D

]
. (2.4)

Here Aµ (µ = 1, 2, 3, 4) is a gauge field, ΛA
α , Λ̄α̇A (α, α̇ = 1, 2, A = 1, 2, 3, 4) are Weyl

fermions and ϕa (a = 1, · · · , 6) are real scalar fields. The fields are in the adjoint represen-

tation of a gauge group. The constant κ denotes the normalization of the Lie algebra of

the gauge group and g is the gauge coupling constant. The indices α, α̇ represent left and

right spinors of the Lorentz group SO(4) ≃ SU(2)L×SU(2)R. These indices are raised and

lowered by the anti-symmetric symbols ǫαβ , ǫα̇β̇ with ǫ12 = −ǫ12 = 1. The conventions of

four- and six-dimensional Dirac matrices σµ, σ̄µ, (Σa)
AB, (Σ̄a)AB are given in appendix.

The gauge covariant derivative is defined by Dµ∗ = ∂µ ∗ +i[Aµ, ∗]. The field strength of

the gauge field is Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ].

The action (2.4) is also obtained by replacing the following terms in the undeformed

action as

[ϕa, ϕb] −→ [ϕa, ϕb] + iΩµ
aDµϕb − iΩµ

bDµϕa − iFµνΩ
µ
aΩ

ν
b

− 1

2

((
ΣbΣ̄c

)A
Bϕc (Aa)

B
A −

(
ΣaΣ̄c

)A
Bϕc (Ab)

B
A

)
,

Dµϕa −→ Dµϕa − FµνΩ
ν
a,

[
ϕa,Λ

A
]
−→

[
ϕa,Λ

A
]
+ iΩµ

aDµΛ
A − i

2
Ωµνaσ

µνΛA + (Aa)
A

BΛ
B,

[
ϕa, Λ̄A

]
−→

[
ϕa, Λ̄A

]
+ iΩµ

aDµΛ̄A − i

2
Ωµνaσ̄

µνΛ̄A − Λ̄B (Aa)
B

A . (2.5)

For generic Ωµνa and (Aa)
A
B, supersymmetry of the theory is broken explicitly. How-

ever, a part of supersymmetry is recovered when Ωµνa and (Aa)
A
B satisfy certain con-

ditions. When the matrices Ωµνa are (anti)self-dual and (Aa)
A
B = 0, the theory has
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anti-chiral (chiral) half of the N = 4 supersymmetry [8]. When Ωµνa are neither self-dual

nor anti-self-dual, the supersymmetry condition can be studied by the parallel spinor con-

ditions in ten-dimensional Ω-background with the torsion, where the torsion is identified

with the R-symmetry Wilson line gauge field. We can solve the parallel spinor conditions

and the constraints for the torsion in the Ω-background, which preserve gauge symmetry

in four dimensions and supersymmetry associated with the topological twist. These condi-

tions are satisfied for special Ωµνa and (Aa)
A
B. Then we obtain the topologically twisted

supersymmetries deformed by Ωµνa and (Aa)
A
B [7].

The topological twist is to pick an embedding of the Lorentz group SO(4) ≃ SU(2)L×
SU(2)R into the R-symmetry group SU(4)I and to define a new Lorentz group. Let us

take the SU(2)L′ × SU(2)R′ subgroup of SU(4)I such that the index A is decomposed into

A′ = 1, 2 and Â = 3, 4. Here A′ and Â are indices for the two-dimensional representations

of SU(2)R′ and SU(2)L′ , respectively. The vector index a is also decomposed into a′ = 1, 2

which corresponds to the two SU(2)R′ × SU(2)L′ singlets, and â = 3, · · · , 6 which labels

the SU(2)R′ × SU(2)L′ bifundamental representation.

Topological twists in N = 4 super Yang-Mills theory are classified into three types [13].

They are called the half twist, the Vafa-Witten twist [14] and the Marcus twist [15] (or the

GL twist in [16]). In the following subsections, we summarize the three types of topological

twists and the deformed supersymmetries.

2.1 The half twist

In the case of the half twist, we replace SU(2)R by the diagonal subgroup of SU(2)R′ ×
SU(2)R. The new Lorentz group becomes SU(2)L × [SU(2)R′ × SU(2)R]diag. Here the

subscript “diag” stands for the diagonal subgroup which means that the spinor index α̇

and the R-symmetry index A′ are identified. The Weyl fermions ΛA′

α and Λ̄A′

α̇ are rewritten

as follows,

Λ̄A′

α̇ =
1

2
δA

′

α̇ Λ̄ +
1

2
(σ̄µν)A

′

α̇Λ̄µν , ΛA′

α =
1

2
ǫA

′B′

(σµ)αB′ Λµ . (2.6)

We redefine the scalar field as

ϕAB =
i√
2
(Σa)

AB ϕa, ϕ̄AB = − i√
2

(
Σ̄a

)
AB

ϕa . (2.7)

Then using the matrix representations of (Σa)
AB and (Σ̄a)AB, the scalar fields are decom-

posed as

ϕAB =

(
ǫA

′B′

ϕ ϕA′B̂

ϕÂB′ −ǫÂB̂ϕ̄

)
, ϕ̄AB =

(
ǫA′B′ϕ̄ ϕ̄

A′B̂

ϕ̄
ÂB′ −ǫ

ÂB̂
ϕ

)
, (2.8)

where ϕ, ϕ̄ are the SU(2)R′ × SU(2)L′ singlets and ϕA′B̂ belongs to the SU(2)R′ × SU(2)L′

bifundamental representation.

The supercharges Q̄A′

α̇ and QA′

α are decomposed into the scalar Q̄ , the tensor Q̄µν

and the vector Qµ. In [7] we examined the torsion and the parallel spinor conditions for
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preserving Q̄. The solution to the conditions is given by

Ωµνa′ =




0 ǫ1a′ 0 0

−ǫ1a′ 0 0 0

0 0 0 −ǫ2a′
0 0 ǫ2a′ 0


 , (Aa′)

A
B =

(
1
4(ǫ

1
a′ + ǫ2a′)τ

3 0

0 ma′τ
3

)
,

Ωµνâ = (Aâ)
A

B = 0,
(
a′ = 1, 2, â = 3, 4, 5, 6

)
, (2.9)

where ma′ are real parameters. The Wilson line gauge fields (A)Â
B̂
, (Ā)Â

B̂
are identified

with the mass matrices M Â
B̂

= mτ3, M̄ Â
B̂

= m̄τ3 of the adjoint hypermultiplet of the

N = 2∗ theory [4, 8]. Here we defined

A =
1√
2
(A1 − iA2) , Ā =

1√
2
(A1 + iA2) ,

m =
1√
2
(m1 − im2) , m̄ =

1√
2
(m1 + im2) . (2.10)

We note that the matrices

Ωµν =




0 ǫ1 0 0

−ǫ1 0 0 0

0 0 0 −ǫ2
0 0 ǫ2 0


 , Ω̄µν =




0 ǭ1 0 0

−ǭ1 0 0 0

0 0 0 −ǭ2
0 0 ǭ2 0


 ,

ǫi =
1√
2

(
ǫi1 − iǫi2

)
, ǭi =

1√
2

(
ǫi1 + iǫi2

)
, (i = 1, 2) (2.11)

characterize the Ω-background defined in six dimensions [1, 6]. The Q̄-transformations

are given by

Q̄Aµ = Λµ,

Q̄Λµ = −2
√
2 (Dµϕ− FµνΩ

ν) ,

Q̄ϕ = ΩµΛµ,

Q̄ϕ̄ = −
√
2Λ̄ + Ω̄µΛµ,

Q̄Λ̄ = −2i
(
[ϕ, ϕ̄] + iΩµDµϕ̄− iΩ̄µDµϕ+ iΩ̄µΩνFµν

)
,

Q̄Λ̄µν = −2F−
µν − i (σ̄µν)

β̇
α̇

[
ϕα̇Â, ϕ̄

Âβ̇

]
,

Q̄ϕα̇Â = −
√
2Λ̄α̇Â,

Q̄Λ̄α̇Â = −2i
([
ϕ,ϕα̇Â

]
+ iΩµDµϕ

α̇Â +M Â
B̂
ϕα̇B̂

)
− Ωµν (σ̄µν)

α̇
β̇ϕ

β̇Â,

Q̄ΛÂ
α =

√
2 (σµ)α̇αDµϕ

α̇Â. (2.12)

Here Ωµ and Ω̄µ are defined by

Ωµ = Ωµνxν , Ω̄µ = Ω̄µνxν . (2.13)

The superscript ± stands for the (anti)self-dual part of a tensor Xµν :

X±
µν =

1

2

(
Xµν ± X̃µν

)
, (2.14)

– 5 –
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where X̃µν = 1
2ǫµνρσX

ρσ is the dual of Xµν and ǫµνρσ is the totally antisymmetric tensor

with ǫ1234 = 1. The supercharge Q̄ is nilpotent up to the gauge transformation, the Lorentz

rotation associated with the U(1)×U(1) rotation generated by Ωµ and the SU(2)L′ rotation.

In fact, the nilpotency of Q̄ on the fermions Λ̄µν and ΛÂ
α holds by imposing the equations

of motion.

2.2 The Vafa-Witten twist

In the case of the Vafa-Witten twist, we replace SU(2)R by the diagonal subgroup of

SU(2)L′×SU(2)R′×SU(2)R. The new Lorentz group becomes SU(2)L×[SU(2)L′×SU(2)R′×
SU(2)R]diag. The spinor index α̇ is identified with the R-symmetry index A′ and α̇ is also

identified with Â. We decompose the fermion fields as

ΛαA′ =
1

2
(σµ)αA′ Λµ, Λ

αÂ
=

1

2
(σµ)

αÂ
Λ̂µ,

Λ̄A′

α̇ =
1

2
δA

′

α̇ Λ̄ +
1

2
(σ̄µν)A

′

α̇Λ̄µν , Λ̄Â
α̇ =

1

2
δÂα̇

ˆ̄Λ +
1

2
(σ̄µν)Â α̇

ˆ̄Λµν . (2.15)

The scalar fields in (2.8) are further decomposed as

ϕA′B′

= ǫA
′B′

ϕ, ϕÂB̂ = −ǫÂB̂ϕ̄, ϕA′Â =
1

2
ǫA

′Âϕ̂+
1

2
ǫÂB̂ (σ̄µν)A

′

B̂
ϕ̂µν . (2.16)

The supercharges QA
α and Q̄α̇

A are decomposed into the two scalars Q̄, ˆ̄Q, the two vectors

Qµ, Q̂µ and the two tensor supercharges Q̄µν ,
ˆ̄Qµν .

The solution to the parallel spinor and the torsion conditions for preserving Q̄ and ˆ̄Q is

Ωµνa′ =




0 ǫ1a′ 0 0

−ǫ1a′ 0 0 0

0 0 0 −ǫ2a′
0 0 ǫ2a′ 0


 , Ωµνâ =




0 ǫ1â 0 0

−ǫ1â 0 0 0

0 0 0 −ǫ2â
0 0 ǫ2â 0


 ,

(Aa′)
A

B =

(
1
4

(
ǫ1a′+ǫ

2
a′

)
τ3 0

0 1
4

(
ǫ1a′+ǫ

2
a′

)
τ3

)
, (Aâ)

A
B =

(
1
4

(
ǫ1â+ǫ

2
â

)
τ3 0

0 1
4

(
ǫ1â+ǫ

2
â

)
τ3

)
,

(
a′ = 1, 2, â = 5, 6

)
,

Ωµν3 = Ωµν4 = (A3)
A

B = (A4)
A

B = 0 . (2.17)

It is convenient to rewrite the Ω-background matrices Ωµνa as

ΩAB
µν =

i√
2
(Σa)

AB Ωa
µν , Ω̄µν

AB = − i√
2

(
Σ̄a

)
AB

Ωaµν ,

ΩAB
µ = ΩAB

µν x
ν , Ω̄µ

AB = Ω̄µν
ABxν . (2.18)

We further decompose these matrices as

ΩA′B′

µν = ǫA
′B′

Ωµν , ΩÂB̂
µν = −ǫÂB̂Ω̄µν , ΩA′Â

µν =
1

2
ǫA

′ÂΩ̂µν +
1

2
ǫÂB̂ (σ̄ρσ)A

′

B̂
Ω̂µν,ρσ,

(2.19)
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where Ω̂µν,ρσ satisfies the anti-self-dual condition with respect to the last two indices. From

the decomposition (2.19), we obtain

Ω̂µν =
√
2




0 ǫ16 0 0

−ǫ16 0 0 0

0 0 0 −ǫ26
0 0 ǫ26 0


 , Ω̂µν,12 = −Ω̂µν,34 = − 1√

2




0 ǫ15 0 0

−ǫ15 0 0 0

0 0 0 −ǫ25
0 0 ǫ25 0




Ω̂µν,ρσ = 0,
(
(ρ, σ) 6= (1, 2), (3, 4)

)
. (2.20)

The matrices Ωµν , Ω̄µν are given in (2.11). The Q̄-transformations are given by

Q̄Aµ = Λµ, Q̄Λµ = −2
√
2 (Dµϕ− FµνΩ

ν) , (2.21)

Q̄ϕ = ΩµΛµ,

Q̄ϕ̄ = −
√
2Λ̄ + Ω̄µΛµ, Q̄Λ̄ = −2i

(
[ϕ, ϕ̄] + iΩµDµϕ̄− iΩ̄µDµϕ+ iΩ̄µΩνFµν

)
,

Q̄Λ̄µν = −2F−
µν + i

(
[ϕ̂, ϕ̂µν ]+iΩ̂

ρDρϕ̂µν−iΩ̂ρ,
µνDρϕ̂+iΩ̂

ρ,
µνΩ̂

σFρσ−iΩ̂µ
ρϕ̂ρν+iΩ̂ν

ρϕ̂ρµ

)

− i

2

(
[ϕ̂µρ, ϕ̂ν

ρ] + iΩ̂ρ,
µσDρϕ̂ν

σ − iΩ̂ρ,
νσDρϕ̂µ

σ + Ω̂−
µν,ρσϕ̂

ρσ − Ω̂ρσ
ρσϕ̂µν

)
,

Q̄Λ̂µ = −
√
2
(
Dµϕ̂− FµνΩ̂

ν
)
− 2

√
2
(
Dνϕ̂µν − F νρΩ̂ρ,µν

)
,

Q̄ϕ̂ = −
√
2ˆ̄Λ + Ω̂µΛµ, Q̄ ˆ̄Λ = −2i

(
[ϕ, ϕ̂] + iΩµDµϕ̂− iΩ̂µDµϕ+ iΩ̂µΩνFµν

)
,

Q̄ϕ̂µν = −
√
2ˆ̄Λµν + Ω̂ρ,

µνΛρ,

Q̄ ˆ̄Λµν = −2i
(
[ϕ, ϕ̂µν ] + iΩρDρϕ̂µν − iΩ̂ρ,

µνDρϕ+ iΩ̂ρ,
µνΩ

σFρσ − iΩµ
ρϕ̂ρν + iΩν

ρϕ̂ρµ

)
.

Here Ω̂µ and Ω̂ρ,
µν are defined by

Ω̂µ = Ω̂µνxν , Ω̂ρ,
µν = Ω̂ρσ,

µν xσ, (2.22)

and Ω̂−
µν,ρσ is the anti-self-dual part of Ω̂µν,ρσ with respect to the first two indices. The

ˆ̄Q-transformations are also given by

ˆ̄QAµ = Λ̂µ,
ˆ̄QΛ̂µ = 2

√
2
(
Dµϕ̄− FµνΩ̄

ν
)
, (2.23)

ˆ̄Qϕ̄ = Ω̄µΛ̂µ,

ˆ̄Qϕ =
√
2ˆ̄Λ + ΩµΛ̂µ,

ˆ̄Q ˆ̄Λ = 2i
(
[ϕ, ϕ̄]+iΩµDµϕ̄− iΩ̄µDµϕ+ iΩ̄µΩνFµν

)
,

ˆ̄Q ˆ̄Λµν = −2F−
µν−i

(
[ϕ̂, ϕ̂µν ]+iΩ̂

ρDρϕ̂µν−iΩ̂ρ,
µνDρϕ̂+iΩ̂

ρ,
µνΩ̂

σFρσ−iΩ̂µ
ρϕ̂ρν+iΩ̂ν

ρϕ̂ρµ

)
,

− i

2

(
[ϕ̂µρ, ϕ̂ν

ρ] + iΩ̂ρ,
µσDρϕ̂ν

σ − iΩ̂ρ,
νσDρϕ̂µ

σ + Ω̂−
µν,ρσϕ̂

ρσ − Ω̂ρσ,
ρσϕ̂µν

)
,

ˆ̄QΛµ = −
√
2
(
Dµϕ̂− FµνΩ̂

ν
)
+ 2

√
2
(
Dνϕ̂µν − F νρΩ̂ρ,µν

)
,

ˆ̄Qϕ̂ =
√
2Λ̄ + Ω̂µΛ̂µ,

ˆ̄QΛ̄ = −2i
(
[ϕ̄, ϕ̂]+iΩ̄µDµϕ̂− iΩ̂µDµϕ̄+ iΩ̂µΩ̄νFµν

)
,

ˆ̄Qϕ̂µν =
√
2Λ̄µν + Ω̂ρ,

µνΛ̂ρ,

ˆ̄Q ˆ̄Λµν = −2i
(
[ϕ̄, ϕ̂µν ] + iΩ̄ρDρϕ̂µν − iΩ̂ρ,

µνDρϕ̄+ iΩ̂ρ,
µνΩ̄

σFρσ − iΩ̄µ
ρϕ̂ρν + iΩ̄ν

ρϕ̂ρµ

)
.
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We note that when ǫ1â = ǫ2â = 0 (â = 5, 6), the theory reduces to the Ω-deformed N = 2∗

theory with the mass parameters m = 1
4

(
ǫ1 + ǫ2

)
and m̄ = 1

4

(
ǭ1 + ǭ2

)
. In other words,

we have a supersymmetry enhancement in the Ω-deformed N = 2∗ theory by choosing the

mass parameters to the above special values. A similar enhancement of supersymmetry

was also discussed in [17, 18].

2.3 The Marcus twist

In the case of the Marcus twist, we replace SU(2)L by the diagonal subgroup of SU(2)L′ ×
SU(2)L and SU(2)R by the diagonal subgroup of SU(2)R′ × SU(2)R. The new Lorentz

group becomes [SU(2)L′ × SU(2)L]diag × [SU(2)R′ × SU(2)R]diag, where the indices α and

Â, α̇ and A′ are identified respectively. We decompose the Weyl fermions as

ΛA′

α =
1

2
ǫA

′β̇ (σµ)αβ̇ Λµ, Λ̄α̇
A′ = −1

2
δα̇A′Λ̄ +

1

2
(σ̄µν)α̇ A′Λ̄µν ,

Λ̄α̇Â =
1

2
(σ̄µ)α̇Â Λ̄µ, ΛÂ

α =
1

2
δÂαΛ +

1

2
(σµν)α

ÂΛµν . (2.24)

We define the field ϕµ as

ϕµ = (σµ)B̂A′ ϕ
A′B̂. (2.25)

The supercharges are decomposed into the two scalars Q and Q̄, the two vectors Qµ, Q̄µ

and the two tensor supercharges Qµν , Q̄µν . The solution to the parallel spinor and the

torsion conditions for preserving Q and Q̄ is given by

Ωµνa′ =




0 ǫ1a′ 0 0

−ǫ1a′ 0 0 0

0 0 0 −ǫ2a′
0 0 ǫ2a′ 0


 , (Aa′)

A
B =

(
1
4

(
ǫ1a′ + ǫ2a′

)
τ3 0

0 1
4

(
ǫ1a′ − ǫ2a′

)
τ3

)
,

Ωµνâ = (Aâ)
A

B = 0,
(
a′ = 1, 2, â = 3, 4, 5, 6

)
. (2.26)

The supersymmetry transformations generated by Q̄ and Q are

Q̄Aµ = Λµ, Q̄Λµ = −2
√
2 (Dµϕ− FµνΩ

ν) ,

Q̄ϕ = ΩµΛµ,

Q̄ϕ̄ = −
√
2Λ̄ + Ω̄µΛµ, Q̄Λ̄ = −2i

(
[ϕ, ϕ̄] + iΩµDµϕ̄− iΩ̄µDµϕ+ iΩ̄µΩνFµν

)
,

Q̄ϕµ = −
√
2Λ̄µ, Q̄Λ̄µ = −2i ([ϕ,ϕµ] + iΩνDνϕµ − iΩµ

νϕν) ,

Q̄Λ =
√
2Dµϕ

µ, Q̄Λµν =
√
2 (Dµϕν −Dνϕµ)

+ ,

Q̄Λ̄µν = −2F−
µν + i [ϕµ, ϕν ]

− , (2.27)

and

QAµ = Λ̄µ, QΛ̄µ = −2
√
2 (Dµϕ− FµνΩ

ν) ,

Qϕ = ΩµΛ̄µ,

Qϕ̄ =
√
2Λ + Ω̄µΛ̄µ, QΛ = 2i

(
[ϕ, ϕ̄]+iΩµDµϕ̄−iΩ̄µDµϕ+iΩ̄

µΩνFµν

)
,

Qϕµ =
√
2Λµ, QΛµ = 2i ([ϕ,ϕµ] + iΩνDνϕµ − iΩµ

νϕν) ,

QΛ̄ =
√
2Dµϕ

µ, QΛµν = −2F+
µν + i [ϕµ, ϕν ]

+ ,

QΛ̄µν = −
√
2 (Dµϕν −Dνϕµ)

− . (2.28)
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the half twist

ma′ =
1

4

(
ǫ1a′ − ǫ2a′

)

��

ma′ =
1

4

(
ǫ1a′ + ǫ2a′

)

&&▼
▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼
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▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

the Vafa-Witten twist

ǫ1â = ǫ2â = 0

��

the Marcus twist
the half twist with ma′ =

1
4

(
ǫ1a′ + ǫ2a′

)

= the Vafa-Witten twist with ǫ1â = ǫ2â = 0

Figure 1. The relations among the theories with the different twists.

The Ω-deformed theory corresponding to the Marcus twist can be obtained by choos-

ing the mass parameters m = 1
4

(
ǫ1 − ǫ2

)
and m̄ = 1

4

(
ǭ1 − ǭ2

)
in the Ω-deformed N = 2∗

theory. The relations among three types of the Ω-deformed theories are summarized in

figure 1. The Ω-deformed N = 2∗ theory with generic ǫ1 and ǫ2 has two special supersym-

metry enhancements at the mass parameters ma′ =
1
4

(
ǫ1a′ ± ǫ2a′

)
.

3 Off-shell supersymmetries and exactness of action

In order to compute the partition function and the correlation functions of observables with

the help of localization technique, we need to investigate off-shell supersymmetry [17]. In

this section, we study off-shell supersymmetry generated by the scalar supercharges in the

Ω-deformed N = 4 super Yang-Mills theories by introducing the auxiliary fields associated

with the fermions. For the undeformed case, the off-shell supersymmetry has been discussed

in [15, 16, 19–21].

3.1 The half twist

We begin with the half twist case. In the background (2.9), the action (2.4) is invari-

ant under the deformed on-shell Q̄-transformations (2.12). In order to get the off-shell

Q̄-supersymmetry, we introduce the auxiliary fields Dµν and KÂ
α associated with the

fermions Λ̄µν and ΛÂ
α . We add the Gaussian terms of these fields to the action. Then

the action becomes

S1 = S +
1

κg2

∫
d4x Tr

[
−1

2
(Dµν)

2 +
1

2
KÂ

αK
α

Â

]
. (3.1)

Now we modify the supersymmetry transformation of the fields Λ̄µν and ΛÂ
α as

Q̄Λ̄µν = 2Dµν − 2F−
µν − i (σ̄µν)

β̇
α̇

[
ϕα̇Â, ϕ̄

Âβ̇

]
,

Q̄ΛÂ
α = 2KÂ

α +
√
2 (σµ)αα̇Dµϕ

α̇Â. (3.2)
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Then the supersymmetry transformations of the fields Dµν and KÂ
α are determined from

the condition that the linear term in the auxiliary fields in the Q̄-transformation of the

Lagrangian vanishes. The result is

Q̄Dµν = (DµΛν −DνΛµ)
− −

√
2i (σ̄µν)

β̇
α̇

[
Λ̄α̇Â, ϕ̄

Âβ̇

]

+
√
2i
[
ϕ, Λ̄µν

]
−
√
2ΩρDρΛ̄µν +

√
2
(
Ωµ

ρΛ̄ρν − Ων
ρΛ̄ρµ

)
,

Q̄KÂ
α = (σµ)αα̇DµΛ̄

α̇Â − i√
2
(σµ)αα̇

[
Λµ, ϕ

α̇Â
]

+
√
2i

([
ϕ,ΛÂ

α

]
+ iΩµDµΛ

Â
α +M Â

B̂
ΛB̂

α − i

2
Ωµν (σµν)α

βΛÂ
β

)
. (3.3)

Then the action (3.1) is invariant under the Q̄-transformation. We redefine the auxiliary

fields as

Hµν = Dµν − F−
µν −

i

2
(σ̄µν)

β̇
α̇

[
ϕα̇Â, ϕ̄

Âβ̇

]
,

GÂ
α = KÂ

α +
1√
2
(σµ)αα̇Dµϕ

α̇Â, (3.4)

so that (3.2) takes a simple form

Q̄Λ̄µν = 2Hµν , Q̄ΛÂ
α = 2GÂ

α . (3.5)

Then the transformations for Hµν and GÂ
α become

Q̄Hµν =
√
2i
[
ϕ, Λ̄µν

]
−
√
2ΩρDρΛ̄µν +

√
2
(
Ωµ

ρΛ̄ρν − Ων
ρΛ̄ρµ

)
,

Q̄GÂ
α =

√
2i

([
ϕ,ΛÂ

α

]
+ iΩµDµΛ

Â
α +M Â

B̂
ΛB̂

α − i

2
Ωµν(σµν)α

βΛÂ
β

)
. (3.6)

We find that the Q̄2 action on a field Ψ results in the form,

Q̄2Ψ = 2
√
2
(
δgauge(ϕ) + δLorentz(Ω) + δflavor(M)

)
Ψ. (3.7)

Here the symbol δgauge(ϕ) stands for the gauge transformation by the parameter ϕ,

δLorentz(Ω) for the Lorentz transformation by the parameter Ωµν and δflavor(M) for the

SU(2)L′ rotation by the parameter M Â
B̂

defined in the subsection 2.1. We note that due

to the conditions (2.9) for the parameters, the rotations δLorentz(Ω) and δflavor(M) are re-

duced to the ones generated by their Cartan subgroups. The algebra of the symmetry

generated by Q̄ closes off-shell.

We next examine the Q̄-exactness of the action (3.1). This property is important to

study the cohomological structure of the theory. Using the transformations (3.5), (3.6)

and (2.12) for the other fields, we find that the action (3.1) is written in the Q̄-exact form:

S1 = Q̄Ξ1 +

∫
d4x

1

κg2
Tr

[
1

4
FµνF̃

µν

]
, (3.8)
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where Ξ1, which is called as the gauge fermion, is defined by

Ξ1 =

∫
d4x

1

κg2
Tr

[
−1

2
F−
µνΛ̄

µν − 1

4
HµνΛ̄

µν − 1

2
√
2
Λµ
(
Dµϕ̄− FµνΩ̄

ν
)

+
i

4
Λ̄
(
[ϕ, ϕ̄] + iΩµDµϕ̄− iΩ̄µDµϕ+ iΩ̄µΩνFµν

)

+
1

2
Λα

Â
GÂ

α − 1√
2
Λα

Â
(σµ)αα̇Dµϕ

α̇Â

− i

2
Λ̄α̇Â

([
ϕ̄, ϕ̄

Âα̇

]
+ iΩ̄µDµϕ̄Âα̇

− i

2
Ω̄µν (σ̄

µν)β̇ α̇ϕ̄Âβ̇
+ M̄ B̂

Â
ϕ̄
B̂α̇

)

− i

4
Λ̄µν (σ̄µν)

β̇
α̇

[
ϕα̇Â, ϕ̄

Âβ̇

]]
. (3.9)

In [6], we have shown that the N = 2 super Yang-Mills theory in the Ω-background

defined in six dimensions is written in the Q̄-exact form. When the N = 2 hypermultiplet

(ϕα̇Â,Λα
Â
, Λ̄α̇Â,KÂ

α ) is removed, the action (3.8) becomes that of the Ω-deformed N = 2

super Yang-Mills theory. Then the gauge fermion (3.9) indeed becomes the one which was

found in the Ω-deformed N = 2 super Yang-Mills theory.

3.2 The Vafa-Witten twist

In the case of the Vafa-Witten twist, we have obtained the two on-shell scalar supercharges

Q̄ and ˆ̄Q with the same chirality in subsection 2.2. The on-shell transformations by Q̄, ˆ̄Q

are (2.21) and (2.23). For the undeformed case, the off-shell supersymmetry transforma-

tions were constructed in [13, 19, 20].

We first consider the deformed off-shell supersymmetry generated by Q̄. Following [19,

20], we introduce the auxiliary fields Dµν , Kµ. Then we add the quadratic terms of the

auxiliary fields to the action (2.4) as

S2 = S +

∫
d4x

1

κg2
Tr

[
−1

2
(Dµν)

2 − 1

2
(Kµ)

2

]
. (3.10)

We modify the Q̄-transformations of the fields Λ̄µν , Λ̂µ as

Q̄Λ̄µν = 2Dµν − 2F−
µν

+ i
(
[ϕ̂, ϕ̂µν ] + iΩ̂ρDρϕ̂µν − iΩ̂ρ,

µνDρϕ̂+ iΩ̂ρ,
µνΩ̂

σFρσ − iΩ̂µ
ρϕ̂ρν + iΩ̂ν

ρϕ̂ρµ

)

− i

2

(
[ϕ̂µρ, ϕ̂ν

ρ] + iΩ̂ρ,
µσDρϕ̂ν

σ − iΩ̂ρ,
νσDρϕ̂µ

σ + Ω̂−
µν,ρσϕ̂

ρσ − Ω̂ρσ,
ρσϕ̂µν

)
,

Q̄Λ̂µ = 2Kµ −
√
2
(
Dµϕ̂− FµνΩ̂

ν
)
− 2

√
2
(
Dνϕ̂µν − F νρΩ̂ρ,µν

)
. (3.11)

As in the half twist case, we find that the supersymmetry transformations of the auxiliary
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fields are given by

Q̄Dµν = (DµΛν −DνΛµ)
− − i

2
√
2

[
ϕ̂µρ,

ˆ̄Λν
ρ
]
+

i

2
√
2

[
ϕ̂νρ,

ˆ̄Λµ
ρ
]

+
1

2
√
2
Ω̂ρ,

µσDρ
ˆ̄Λν

σ − 1

2
√
2
Ω̂ρ,

νσDρ
ˆ̄Λµ

σ − i

2
√
2
Ω̂−
µν,ρσ

ˆ̄Λρσ +
i

2
√
2
Ω̂ρσ,

ρσ ˆ̄Λµν

+
i√
2

[
ϕ̂, ˆ̄Λµν

]
− i√

2
Ω̂ρDρ

ˆ̄Λµν +
i√
2

(
Ω̂µ

ρ ˆ̄Λρν − Ω̂ν
ρ ˆ̄Λρµ

)

+
√
2i
[
ϕ, Λ̄µν

]
−
√
2ΩρDρΛ̄µν +

√
2
(
Ωµ

ρΛ̄ρν − Ων
ρΛ̄ρµ

)

− i√
2

[
ϕ̂µν ,

ˆ̄Λ
]
+

1√
2
Ω̂ρ,

µνDρ
ˆ̄Λ,

Q̄Kµ = −Dµ
ˆ̄Λ− 2Dν ˆ̄Λµν −

√
2i [ϕ̂µν ,Λ

ν ] +
√
2Ω̂ρ,

µνDρΛ
ν +

√
2Ω̂ρν,

µνΛρ

− i√
2
[ϕ̂,Λµ]−

1√
2
Ω̂ρDρΛµ +

1√
2
Ω̂µ

νΛν

+
√
2i
[
ϕ, Λ̂µ

]
−

√
2ΩρDρΛ̂µ +

√
2Ωµ

νΛ̂ν . (3.12)

We redefine the auxiliary fields as

Hµν = Dµν − F−
µν

+
i

2

(
[ϕ̂, ϕ̂µν ] + iΩ̂ρDρϕ̂µν − iΩ̂ρ,

µνDρϕ̂+ iΩ̂ρ,
µνΩ̂

σFρσ − iΩ̂µ
ρϕ̂ρν + iΩ̂ν

ρϕ̂ρµ

)

− i

4

(
[ϕ̂µρ, ϕ̂ν

ρ] + iΩ̂ρ,
µσDρϕ̂ν

σ − iΩ̂ρ,
νσDρϕ̂µ

σ + Ω̂−
µν,ρσϕ̂

ρσ − Ω̂ρσ,
ρσϕ̂µν

)
,

Gµ = Kµ − 1√
2

(
Dµϕ̂− FµνΩ̂

ν
)
−
√
2
(
Dνϕ̂µν − F νρΩ̂ρ,µν

)
, (3.13)

so that (3.12) is rewritten in a simple form as

Q̄Λ̄µν = 2Hµν , Q̄Λ̂µ = 2Gµ . (3.14)

Then the transformations of Hµν and Gµ become

Q̄Hµν =
√
2i
[
ϕ, Λ̄µν

]
−
√
2ΩρDρΛ̄µν +

√
2
(
Ωµ

ρΛ̄ρν − Ων
ρΛ̄ρµ

)
,

Q̄Gµ =
√
2i
[
ϕ, Λ̂µ

]
−
√
2ΩρDρΛ̂µ +

√
2Ωµ

νΛ̂ν . (3.15)

Using the transformations (3.14), (3.15), and (2.21) for the other fields, we find that the
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action (3.10) is written in the Q̄-exact form up to the topological term:

S2 = Q̄Ξ2 +

∫
d4x

1

κg2
Tr

[
1

4
FµνF̃

µν

]
, (3.16)

Ξ2 =

∫
d4x

1

κg2
Tr

[
−1

2
F−
µνΛ̄

µν − 1

4
HµνΛ̄

µν − 1

2
√
2
Λµ(Dµϕ̄− FµνΩ̄

ν)

+
i

4
Λ̄
(
[ϕ, ϕ̄] + iΩµDµϕ̄− iΩ̄µDµϕ+ iΩ̄µΩνFµν

)

− 1

4
GµΛ̂

µ − 1

2
√
2
Λ̂µ
(
Dµϕ̂− FµνΩ̂

ν
)
+

1√
2
Λ̂ν

(
Dµϕ̂

µν − FµρΩ̂
ρ,µν
)

+
i

4
ˆ̄Λ
(
[ϕ̄, ϕ̂] + iΩ̄µDµϕ̂− iΩ̂µDµϕ̄+ iΩ̂µΩ̄νFµν

)

− i

4
ˆ̄Λµν

(
[ϕ̄, ϕ̂µν ]+iΩ̄

ρDρϕ̂µν−iΩ̂ρ,
µνDρϕ̄+iΩ̂

ρ,
µνΩ̄

σFρσ−iΩ̄µ
ρϕ̂ρν+iΩ̄ν

ρϕ̂ρµ

)

+
i

4
Λ̄µν

(
[ϕ̂, ϕ̂µν ]+iΩ̂

ρDρϕ̂µν−iΩ̂ρ,
µνDρϕ̂+iΩ̂

ρ,
µνΩ̂

σFρσ−iΩ̂µ
ρϕ̂ρν+iΩ̂ν

ρϕ̂ρµ

)

− i

8
Λ̄µν

(
[ϕ̂µρ, ϕ̂ν

ρ]+iΩ̂ρ,
µσDρϕ̂ν

σ−iΩ̂ρ,
νσDρϕ̂µ

σ+Ω̂µν,ρσϕ̂
ρσ−Ω̂ρσ,

ρσϕ̂µν

)]
.

We next study the off-shell transformations generated by ˆ̄Q. We modify the
ˆ̄Q-transformations of ˆ̄Λµν , Λµ as

ˆ̄Q ˆ̄Λµν = 2Dµν − 2F−
µν

− i
(
[ϕ̂, ϕ̂µν ] + iΩ̂ρDρϕ̂µν − iΩ̂ρ,

µνDρϕ̂+ iΩ̂ρ,
µνΩ̂

σFρσ − iΩ̂µ
ρϕ̂ρν + iΩ̂ν

ρϕ̂ρµ

)

− i

2

(
[ϕ̂µρ, ϕ̂ν

ρ] + iΩ̂ρ,
µσDρϕ̂ν

σ − iΩ̂ρ,
νσDρϕ̂µ

σ + Ω̂−
µν,ρσϕ̂

ρσ − Ω̂ρσ,
ρσϕ̂µν

)
,

ˆ̄QΛµ = −2Kµ −
√
2
(
Dµϕ̂− FµνΩ̂

ν
)
+ 2

√
2
(
Dνϕ̂µν − F νρΩ̂ρ,µν

)
. (3.17)

The ˆ̄Q-transformations of the auxiliary fields are given by

ˆ̄QDµν =
(
DµΛ̂ν −DνΛ̂µ

)−
+

i

2
√
2

[
ϕ̂µρ, Λ̄ν

ρ
]
− i

2
√
2

[
ϕ̂νρ, Λ̄µ

ρ
]

− 1

2
√
2
Ω̂ρ,

µσDρΛ̄ν
σ +

1

2
√
2
Ω̂ρ,

νσDρΛ̄µ
σ +

i

2
√
2
Ω̂−
µν,ρσΛ̄

ρσ − i

2
√
2
Ω̂ρσ,

ρσΛ̄µν

+
i√
2

[
ϕ̂, Λ̄µν

]
− i√

2
Ω̂ρDρΛ̄µν +

i√
2

(
Ω̂µ

ρΛ̄ρν − Ω̂ν
ρΛ̄ρµ

)

−
√
2i
[
ϕ̄, ˆ̄Λµν

]
+
√
2Ω̄ρDρ

ˆ̄Λµν −
√
2
(
Ω̄µ

ρ ˆ̄Λρν − Ω̄ν
ρ ˆ̄Λρµ

)

+
i√
2

[
ϕ̂µν , Λ̄

]
− 1√

2
Ω̂ρ,

µνDρΛ̄,

ˆ̄QKµ = DµΛ̄ + 2DνΛ̄µν −
√
2i
[
ϕ̂µν , Λ̂

ν
]
+

√
2Ω̂ρ,

µνDρΛ̂
ν +

√
2Ω̂ρν,

µνΛ̂ρ

+
i√
2

[
ϕ̂, Λ̂µ

]
− 1√

2
Ω̂νDνΛ̂µ +

1√
2
Ω̂µ

νΛ̂ν

+
√
2i [ϕ̄,Λµ]−

√
2Ω̄νDνΛµ +

√
2Ω̄µ

νΛν . (3.18)

– 13 –



J
H
E
P
1
0
(
2
0
1
3
)
0
8
0

We redefine the auxiliary fields as

Ĥµν = Dµν − F−
µν

− i

2

(
[ϕ̂, ϕ̂µν ] + iΩ̂ρDρϕ̂µν − iΩ̂ρ,

µνDρϕ̂+ iΩ̂ρ,
µνΩ̂

σFρσ − iΩ̂µ
ρϕ̂ρν + iΩ̂ν

ρϕ̂ρµ

)

− i

4

(
[ϕ̂µρ, ϕ̂ν

ρ] + iΩ̂ρ,
µσDρϕ̂ν

σ − iΩ̂ρ,
νσDρϕ̂µ

σ + Ω̂−
µν,ρσϕ̂

ρσ − Ω̂ρσ,
ρσϕ̂µν

)
,

Ĝµ = Kµ +
1√
2

(
Dµϕ̂− FµνΩ̂

ν
)
−
√
2
(
Dνϕ̂µν − F νρΩ̂ρ,µν

)
, (3.19)

such that (3.18) is simply rewritten as

ˆ̄Q ˆ̄Λµν = 2Ĥµν ,
ˆ̄QΛµ = −2Ĝµ. (3.20)

Then the transformations for Ĥµν and Ĝµ are

ˆ̄QĤµν = −
√
2i
[
ϕ̄, ˆ̄Λµν

]
+
√
2Ω̄ρDρ

ˆ̄Λµν −
√
2
(
Ω̄µ

ρ ˆ̄Λρν − Ω̄ν
ρ ˆ̄Λρµ

)
,

ˆ̄QĜµ =
√
2i [ϕ̄,Λµ]−

√
2Ω̄νDνΛµ +

√
2Ω̄µ

νΛν . (3.21)

Using the transformations (3.17), (3.21) and (2.23) for the other fields, we find that the

action is written in the ˆ̄Q-exact form up to the topological term:

S2 =
ˆ̄QΞ′

2 +

∫
d4x

1

κg2
Tr

[
1

4
FµνF̃

µν

]
, (3.22)

Ξ′
2 =

∫
d4x

1

κg2
Tr

[
−1

2
F−
µν

ˆ̄Λµν − 1

4
Ĥµν

ˆ̄Λµν +
1

2
√
2
Λ̂µ (Dµϕ− FµνΩ

ν)

− i

4
ˆ̄Λ
(
[ϕ, ϕ̄] + iΩµDµϕ̄− iΩ̄µDµϕ+ iΩ̄µΩνFµν

)

− 1

4
ĜµΛ

µ +
1

2
√
2
Λµ
(
Dµϕ̂− FµνΩ̂

ν
)
− 1√

2
Λν

(
Dµϕ̂

µν − FµρΩ̂
ρ,µν
)

+
i

4
Λ̄
(
[ϕ, ϕ̂] + iΩµDµϕ̂− iΩ̂µDµϕ+ iΩ̂µΩνFµν

)

− i

4
Λ̄µν

(
[ϕ, ϕ̂µν ]+iΩ

ρDρϕ̂µν−iΩ̂ρ,
µνDρϕ+iΩ̂

ρ,
µνΩ

σFρσ−iΩµ
ρϕ̂ρν+iΩν

ρϕ̂ρµ

)

− i

4
ˆ̄Λµν

(
[ϕ̂, ϕ̂µν ]+iΩ̂

ρDρϕ̂µν−iΩ̂ρ,
µνDρϕ̂+iΩ̂

ρ,
µνΩ̂

σFρσ−iΩ̂µ
ρϕ̂ρν+iΩ̂ν

ρϕ̂ρµ

)

+
i

8
ˆ̄Λµν

(
[ϕ̂µρ, ϕ̂ν

ρ]+iΩ̂ρ,
µσDρϕ̂ν

σ−iΩ̂ρ,
νσDρϕ̂µ

σ+Ω̂µν,ρσϕ̂
ρσ−Ω̂ρσ,

ρσϕ̂µν

)]
.

The transformations of a field Ψ by Q̄ and ˆ̄Q satisfy the following off-shell algebra:

Q̄2Ψ = 2
√
2
(
δgauge(ϕ) + δLorentz(Ω)

)
Ψ,

ˆ̄Q2Ψ = −2
√
2
(
δgauge(ϕ̄) + δLorentz(Ω̄)

)
Ψ,

{Q̄, ˆ̄Q}Ψ = 2
√
2
(
δgauge(ϕ̂) + δLorentz(Ω̂)

)
Ψ. (3.23)

In the undeformed case, the action is written in the exact form by the two scalar

supercharges simultaneously [13, 14, 22]. We find that this is also true in the deformed
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theory. The action is expressed as

S2 = Q̄ ˆ̄QF +

∫
d4x

1

κg2
Tr

[
1

4
FµνF̃

µν

]
, (3.24)

where

F =

∫
d4x

1

κg2
Tr

[
− 1

2
√
2
ϕ̂µνF−

µν +
1

8
Λ̄µν ˆ̄Λµν +

1

8
ΛµΛµ − 1

8
Λ̄ˆ̄Λ +

i

24
√
2
ϕ̂µν

[
ϕ̂µ

λ, ϕ̂λν

]

+
1

16
√
2
ϕ̂µν

(
Ω̂ρ,

µσDρϕ̂ν
σ − Ω̂ρ,

νσDρϕ̂µ
σ − iΩ̂µν,ρσϕ̂

ρσ + iΩ̂ρσ,
ρσϕ̂µν

)

+
3

2
√
2
Ω̂[ρ,µν]

(
A[µFνρ] −

i

3
A[µAνAρ]

)]
. (3.25)

Here the three indices in the square bracket are totally antisymmetrized with the normal-

ization 1/3!. Note that F is gauge invariant. This is because the gauge transformation of

F by the gauge parameter α is computed as

δgauge(α)F =

∫
d4x

1

κg2
Tr

[
− 1

2
√
2

(
Ω̂ρ

µ,νρ − Ω̂ρ
ν,µρ
)
Fµνα

]
, (3.26)

and Ω̂ρ
µ,νρ is symmetric with respect to µ and ν from (2.20).

3.3 The Marcus twist

In the case of the Marcus twist, there are two scalar supercharges Q and Q̄, which have the

opposite chirality. As studied in [15, 16], in the undeformed case, one cannot make both Q

and Q̄ off-shell but can make only their linear combination off-shell. This charge plays an

important role for studying the generalized Langlands duality ofN = 4 theory compactified

on a Riemann surface [16]. Now we will examine whether this off-shell supersymmetry

structure is kept under the Ω-deformation.

We first study the off-shell supersymmetry generated by Q̄. In order to construct

off-shell supersymmetry, we introduce the auxiliary fields K, Kµν , Dµν . Then we add the

quadratic terms of the auxiliary fields to the action (2.4) as

S3 = S +

∫
d4x

1

κg2
Tr

[
−1

2
(Dµν)

2 − 1

2
(Kµν)

2 − 1

2
K2

]
. (3.27)

We modify the transformations of the fields Λ, Λµν , Λ̄µν as

Q̄Λ = 2K +
√
2Dµϕ

µ,

Q̄Λµν = 2Kµν +
√
2 (Dµϕν −Dνϕµ)

+ ,

Q̄Λ̄µν = 2Dµν − 2F−
µν + i [ϕµ, ϕν ]

− . (3.28)
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The transformations of the auxiliary fields are determined as

Q̄K = DµΛ̄
µ − i√

2
[Λµ, ϕ

µ] +
√
2i ([ϕ,Λ] + iΩµDµΛ) ,

Q̄Kµν =
(
DµΛ̄ν −DνΛ̄µ

)+
+

i√
2
([ϕµ,Λν ]− [ϕν ,Λµ])

+

+
√
2i [ϕ,Λµν ]−

√
2ΩλDλΛµν +

√
2
(
Ωµ

λΛλν − Ων
λΛλµ

)
,

Q̄Dµν = (DµΛν −DνΛµ)
− − i√

2

([
ϕµ, Λ̄ν

]
−
[
ϕν , Λ̄µ

])−

+
√
2i
[
ϕ, Λ̄µν

]
−
√
2ΩλDλΛ̄µν +

√
2
(
Ωµ

λΛ̄λν − Ων
λΛ̄λµ

)
. (3.29)

We redefine the auxiliary fields as

G =K +
1√
2
Dµϕ

µ,

Gµν =Kµν +
1√
2
(Dµϕν −Dνϕµ)

+,

Hµν =Dµν − F−
µν +

i

2
[ϕµ, ϕν ]

−, (3.30)

such that (3.29) takes a simple form as

Q̄Λ = 2G, Q̄Λµν = 2Gµν , Q̄Λ̄µν = 2Hµν . (3.31)

Then the transformations for G, Gµν and Hµν are given by

Q̄G =
√
2i([ϕ,Λ] + iΩµDµΛ),

Q̄Gµν =
√
2i[ϕ,Λµν ]−

√
2ΩλDλΛµν +

√
2(Ωµ

λΛλν − Ων
λΛλµ),

Q̄Hµν =
√
2i[ϕ, Λ̄µν ]−

√
2ΩλDλΛ̄µν +

√
2(Ωµ

λΛ̄λν − Ων
λΛ̄λµ). (3.32)

Using the transformations, (3.31), (3.32) and (2.27) for the other fields, we find that the

action (3.27) is written in the Q̄-exact form up to the topological term:

S3 = Q̄Ξ3 +

∫
d4x

1

κg2
Tr

[
1

4
FµνF̃

µν

]
, (3.33)

where

Ξ3 =

∫
d4x

1

κg2
Tr

[
−1

2
F−
µνΛ̄

µν +
i

4
Λ̄µν [ϕµ, ϕν ]

− − 1

4
HµνΛ̄

µν

− 1

4
ΛµνG

µν +
1

2
√
2
Λµν (Dµϕν −Dνϕµ)

+

− 1

4
ΛG+

i

4
Λ̄
(
[ϕ, ϕ̄] + iΩµDµϕ̄− iΩ̄µDµϕ+ iΩ̄µΩνFµν

)

+
1

2
√
2
ΛDµϕ

µ − 1

2
√
2
Λµ
(
Dµϕ̄− FµνΩ̄

ν
)

− i

4
Λ̄µ
(
[ϕ̄, ϕµ] + iΩ̄νDνϕµ − iΩ̄µ

νϕν

)]
. (3.34)
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We next study the transformations generated by Q. We modify the transformations

of the fields Λ̄, Λµν and Λ̄µν as

QΛ̄ =2K +
√
2Dµϕ

µ,

QΛµν =2Kµν − 2F+
µν + i [ϕµ, ϕν ]

+ ,

QΛ̄µν =2Dµν −
√
2 (Dµϕν −Dνϕµ)

− . (3.35)

We find that the transformations of the auxiliary fields are

QK = −DµΛ
µ − i√

2

[
Λ̄µ, ϕ

µ
]
+
√
2i
([
ϕ, Λ̄

]
+ iΩµDµΛ̄

)
,

QKµν =
(
DµΛ̄ν −DνΛ̄µ

)+
+

i√
2
([ϕµ,Λν ]− [ϕν ,Λµ])

+

+
√
2i [ϕ,Λµν ]−

√
2ΩλDλΛµν +

√
2
(
Ωµ

λΛλν − Ων
λΛλµ

)
,

QDµν = (DµΛν −DνΛµ)
− − i√

2

([
ϕµ, Λ̄ν

]
−
[
ϕν , Λ̄µ

])−

+
√
2i
[
ϕ, Λ̄µν

]
−
√
2ΩλDλΛ̄µν +

√
2
(
Ωµ

λΛ̄λν − Ων
λΛ̄λµ

)
. (3.36)

We redefine the auxiliary fields such that (3.35) takes a simple form as

G′
µν = Kµν − F+

µν +
i

2
[ϕµ, ϕν ]

+ ,

H ′
µν = Dµν −

1√
2
(Dµϕν −Dνϕµ)

− . (3.37)

Then (3.35) becomes

QΛ̄ = 2G, QΛµν = 2G′
µν , QΛ̄µν = 2H ′

µν . (3.38)

The transformations for G, G′
µν and H ′

µν are

QG =
√
2i
([
ϕ, Λ̄

]
+ iΩµDµΛ̄

)
,

QG′
µν =

√
2i [ϕ,Λµν ]−

√
2ΩλDλΛµν +

√
2
(
Ωµ

λΛλν − Ων
λΛλµ

)
,

QH ′
µν =

√
2i
[
ϕ, Λ̄µν

]
−
√
2ΩλDλΛ̄µν +

√
2
(
Ωµ

λΛ̄λν − Ων
λΛ̄λµ

)
. (3.39)

Again, we find that the action (3.27) is written in the Q-exact form up to the

topological term:

S3 = QΞ̄3 −
∫
d4x

1

κg2
Tr

[
1

4
FµνF̃

µν

]
, (3.40)
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where

Ξ̄3 =

∫
d4x

1

κg2
Tr

[
−1

2
F+
µνΛ

µν +
i

4
Λµν [ϕµ, ϕν ]

+ − 1

4
G′

µνΛ
µν

− 1

4
Λ̄µνH ′

µν −
1

2
√
2
Λ̄µν (Dµϕν −Dνϕµ)

−

− 1

4
Λ̄G− i

4
Λ
(
[ϕ, ϕ̄] + iΩµDµϕ̄− iΩ̄µDµϕ+ iΩ̄µΩνFµν

)

+
1

2
√
2
Λ̄Dµϕ

µ − 1

2
√
2
Λ̄µ
(
Dµϕ̄− FµνΩ̄

ν
)

+
i

4
Λ̄µ
(
[ϕ̄, ϕµ] + iΩ̄νDνϕµ − iΩ̄µ

νϕν

)]
. (3.41)

The supercharges Q and Q̄ satisfy the following on-shell relations on a field Ψ

Q̄2Ψ = Q2Ψ = 2
√
2
(
δgauge(ϕ) + δLorentz(Ω)

)
Ψ, (3.42)

{Q, Q̄}Ψ = 0. (3.43)

We find that (3.42) holds off-shell for all the fields but (3.43) does not hold off-shell on

the fields Λµν , Λ̄µν , Kµν and Dµν . Therefore the algebra of symmetry generated by two

supercharges Q and Q̄ does not close off-shell.

We can choose the linear combination of the two supercharges

Q = uQ+ vQ̄, u, v ∈ C, (3.44)

such that Q becomes off-shell. In the undeformed case, when u2 + v2 6= 0, the action is

shown to be the Q-exact form up to the topological term [16]. When u2 + v2 = 0, the

action is not written in the Q-exact form but it is Q-closed [15]. In the following, we show

that this property also holds in the deformed theory. Since the two supercharges Q and Q̄

satisfy the relations (3.42), (3.43) on-shell, Q satisfies the on-shell transformation

Q2Ψ = 2
√
2(u2 + v2)(δgauge(ϕ) + δLorentz(Ω))Ψ. (3.45)

In the following, we study the off-shell generalization of the supersymmetry generated by

Q and examine the Q-exactness of the action S3 in the cases where u2 + v2 6= 0 and

u2 + v2 = 0.

u
2 + v

2 6= 0 case. Since the algebra of Q and Q̄ does not close on the fields Λµν , Λ̄µν ,

Kµν and Dµν off-shell, we need to re-examine the Q-transformations of these fields. The

on-shell Q-transformations of Λµν , Λ̄µν are

QΛµν = 2Uµν , QΛ̄µν = 2Vµν , (3.46)

where we have defined

Uµν ≡ −uF+
µν +

i

2
u [ϕµ, ϕν ]

+ +
1√
2
v (Dµϕν −Dνϕµ)

+ ,

Vµν ≡ −vF−
µν +

i

2
v [ϕµ, ϕν ]

− − 1√
2
u (Dµϕν −Dνϕµ)

− . (3.47)
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We modify the transformation (3.46) as

QΛµν = 2
√
u2 + v2Kµν + 2Uµν ,

QΛ̄µν = 2
√
u2 + v2Dµν + 2Vµν . (3.48)

The transformations of Kµν and Dµν are determined as in the Q- and Q̄-transformations.

We redefine the auxiliary fields as

Gµν =
√
u2 + v2Kµν + Uµν ,

Hµν =
√
u2 + v2Dµν + Vµν , (3.49)

so that (3.48) becomes a simple form as

QΛµν = 2Gµν , QΛ̄µν = 2Hµν . (3.50)

Then the transformations of Gµν and Hµν are

QGµν =
(
u2 + v2

) (√
2i [ϕ,Λµν ]−

√
2ΩλDλΛµν +

√
2
(
Ωµ

λΛλν − Ων
λΛλµ

))
,

QHµν =
(
u2 + v2

) (√
2i
[
ϕ, Λ̄µν

]
−
√
2ΩλDλΛ̄µν +

√
2
(
Ωµ

λΛ̄λν − Ων
λΛ̄λµ

))
. (3.51)

The Q-transformations of the other fields are obtained from (3.44).

Now we construct the gauge fermion Ξ̂ which satisfies S3 = QΞ̂. Since we have

changed the transformations of Λµν , Λ̄µν , Kµν and Dµν , we decompose the gauge fermion

as Ξ̂ = Ξ̂(1)+Ξ̂(2), where Ξ̂(1) is the linear terms in Λµν and Λ̄µν and Ξ̂(2) does not contain

these fields. Using the transformations (3.48), (3.51) and the Q-transformations of the

other fields, we find

Ξ̂(1) =
1

u2 + v2

∫
d4x

1

κg2
Tr

[(
1

2
UµνΛ

µν − 1

2
GµνΛ

µν

)
+

(
1

2
VµνΛ̄

µν − 1

2
HµνΛ̄

µν

)]
. (3.52)

In order to find Ξ̂(2) we take the following ansatz

Ξ̂(2) = aΞ̄′
3 + bΞ′

3. (3.53)

Here a, b are constants and Ξ′
3, Ξ̄

′
3 are terms that do not contain Λµν , Λ̄µν in Ξ3 and Ξ̄3

respectively. Using the supersymmetry transformations (2.27), (2.28), we can show that

Ξ′
3 and Ξ̄′

3 are the exact forms as

Ξ′
3 = QV, Ξ̄′

3 = −Q̄V, (3.54)

where V is given by

V =

∫
d4x

1

κg2
Tr

[
1

8
ΛΛ̄− 1

4
ϕµ
(
Dµϕ̄− FµνΩ̄

ν
)]
. (3.55)

We can find the constants a, b such that

Ξ̂(2) =
1

u2 + v2
(
−uQ̄+ vQ

)
V, (3.56)
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and the action is written in the Q-exact form. We find that the action can be written in

the Q-exact form up to the topological term:

S3 = Q
(
Ξ̂(1) + Ξ̂(2)

)
+

∫
d4x

1

κg2
Tr

[
u2 − v2

4 (u2 + v2)
FµνF̃

µν

]
. (3.57)

The dependence on u and v of the topological term is the same as the undeformed case [16].

u
2+v

2 = 0 case. In this case, we can choose (u, v) = (1, i). The superchargeQ = Q+iQ̄

is strictly nilpotent without using the gauge transformation and the Lorentz rotation. To

see this, we introduce the following linear combinations of the fields [15]:

Vµ = Aµ +
i√
2
ϕµ, V̄µ = Aµ − i√

2
ϕµ,

Fµν = ∂µVν − ∂νVµ + i [Vµ,Vν ] , F̄µν = ∂µV̄ν − ∂ν V̄µ + i
[
V̄µ, V̄ν

]
,

ψµ = Λµ − iΛ̄µ, ψ̄µ = Λµ + iΛ̄µ,

η = Λ− iΛ̄, η̄ = Λ+ iΛ̄,

χµν = Λµν − iΛ̄µν , G+ = G+ [ϕ, ϕ̄] ,

Iµν = Gµν − iHµν , φ = ϕ− i√
2
Ωµϕµ. (3.58)

We note that χ̄µν = Λµν+iΛ̄µν and Īµν = Gµν+iHµν are equal to χ̃µν and Ĩµν , respectively.
From (2.27), (2.28), (3.50) and (3.51), the off-shell Q-transformations of these fields become

QVµ = 2iψµ, Qψµ = 0,

QV̄µ = 0,

Qψ̄µ = −4
√
2i
(
D̄µφ− F̄µνΩ

ν
)
, Qφ = 0,

Qϕ̄ =
√
2η, Qη = 0,

Qη̄ = 4iG+, QG+ = 0,

Qχµν = 2Iµν , QIµν = 0, (3.59)

where we have defined the gauge covariant derivatives with respect to the gauge fields Vµ,

V̄µ as follows,

Dµ∗ = ∂µ ∗+i [Vµ, ∗] , D̄µ∗ = ∂µ ∗+i
[
V̄µ, ∗

]
. (3.60)

Now we examine the gauge fermion Ξ̂, which is decomposed into the sum of Ξ̂(1) and

Ξ̂(2). Starting from the ansatz (3.53), we have Ξ̂(2) = − i
2

(
Q− iQ̄

)
V , where V is given

by (3.55). However we cannot construct Ξ̂(1) in a similar way as (3.52) since QIµν = 0.

So, instead of using the transformations (3.59), we change the transformation of χµν by

eliminating Iµν using its equation of motion. We define

Qχµν = −2F̄µν . (3.61)

The new Q-transformations are also nilpotent off-shell because QF̄µν = 0. With respect

to Q we can take Ξ̂(1) as

Ξ̂(1) =

∫
d4x

1

κg2
Tr

[
−1

8
χµνFµν

]
. (3.62)
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Then the action S3 is written as the sum of the Q-exact term and the other part:

S3 =Q
(
Ξ̂(1) + Ξ̂(2)

)
+ S′

3 , (3.63)

S′
3 =

∫
d4x

1

κg2
Tr

[
− i

4
χ̃µν

(
D̄µψ̄ν − D̄νψ̄µ

)
+

i

2
√
2
χ̃µν [φ, χµν ]

− 1

2
√
2
Ωλχ̃µνD̄λχµν +

1

2
√
2
χ̃µν

(
Ωµ

λχλν − Ων
λχλµ

)]
. (3.64)

Here S′
3 is not Q-exact but Q-closed. The deformed terms in S′

3 are obtained from the

undeformed one by using (2.5). Although the undeformed part is independent of the

metric [15], the deformed part depends on the metric through Ωµν .

4 Conclusion and discussions

In this paper, we have constructed the off-shell scalar supersymmetry associated with the

three different topological twists in the Ω-deformed N = 4 super Yang-Mills theory. The

scalar supercharges form the closed algebra up to the gauge transformation, the Lorentz

rotation associated with the Ω-vector fields, and the flavor rotation. We have shown that

the Ω-deformed action is written in the exact form with respect to the scalar supercharges

up to topological terms except the case of the Marcus twist with u2 + v2 = 0. The twisted

N = 4 super Yang-Mills theories can be naturally deformed in the Ω-background.

It would be important to study the quantum aspects of the deformed theory since the

fixed point equations for the scalar supersymmetry are deformed by the Ω-background,

which could change the partition function. For the half twist, the partition function is

indeed the same as the N = 2∗ deformation [4]. For the Vafa-Witten twist, this would

be a generalization of [23]. Furthermore it would be an interesting problem to study the

S-duality of the Ω-deformed N = 4 theory.

In [7] we showed that the Ω-deformed N = 4 theory has other on-shell supersymme-

try associated with the tensor supercharges. It would be interesting to study the off-shell

structure of the supersymmetry and its realization in dimensionally reduced theory [24, 25].

We also studied the deformed supersymmetries in the Nekrasov-Shatashvili limit [26]. In

this limit, on-shell supersymmetry is enhanced to N = (2, 2) supersymmetry in the case

of the half twist, N = (4, 4) supersymmetry in the Vafa-Witten and the Marcus twists,

where by the notation N = (m,n) we mean that the theory has m chiral and n anti-chiral

supercharges. It is interesting to study the off-shell transformations of these supersymme-

tries and their BPS states [9–11]. In particular, one can study the BPS equations in the

Nekrasov-Shatashivili limit, which has been investigated in the N = 2 case [27, 28].
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A Dirac matrices in four and six dimensions

The four-dimensional sigma matrices σµ, σ̄µ are defined by σµ = (iτ1, iτ2, iτ3,12), σ̄
µ =

(−iτ1,−iτ2,−iτ3,12) where τc̃ (c̃ = 1, 2, 3) are the Pauli matrices. The four-dimensional

Lorentz generators are defined by σµν = 1
4(σ

µσ̄ν − σν σ̄µ), σ̄µν = 1
4(σ̄

µσν − σ̄νσµ).

The Dirac matrices (Σa)
AB and (Σ̄a)AB in six dimensions are defined by

Σ1 =

(
iτ2 0

0 iτ2

)
, Σ2 =

(
τ2 0

0 −τ2

)
, Σ3 =

(
0 −τ3
τ3 0

)
,

Σ4 =

(
0 i12

−i12 0

)
, Σ5 =

(
0 −τ1
τ1 0

)
, Σ6 =

(
0 τ2

τ2 0

)
,

Σ̄1 =

(
−iτ2 0

0 −iτ2

)
, Σ̄2 =

(
τ2 0

0 −τ2

)
, Σ̄3 =

(
0 τ3

−τ3 0

)
,

Σ̄4 =

(
0 i12

−i12 0

)
, Σ̄5 =

(
0 τ1

−τ1 0

)
, Σ̄6 =

(
0 τ2

τ2 0

)
. (A.1)
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