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implied by CKM unitarity and direct determination from Kaon semi-leptonic modes. In

this paper we predict the three leading strange τ branching ratios, using dispersive param-

eterizations of the hadronic form factors and taking as experimental input the measured

Kaon decay rates and the τ → Kπντ decay spectrum. We then use our results to reevaluate

Vus, for which we find |Vus| = 0.2207± 0.0027, in better agreement with CKM unitarity.
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1 Introduction

Inclusive hadronic decays of the τ lepton provide a unique laboratory to study QCD at

low energy [1]. However, predicting exclusive decay rates is a notoriously difficult task,

that requires knowing the relevant non-perturbative form factors over a wide kinematical

range. While near threshold rigorous chiral perturbation theory (ChPT) methods can be

employed, the allowed kinematical region extends well into the resonance domain, where

different non-perturbative tools are needed, such as a combination of dispersion relations

and data.

Focusing on τ decays into strange hadrons (see table 1, adapted from ref. [2]) one

notices that Γ10 ≡ Γτ−→K−ντ , Γ16 ≡ Γτ−→K−π0ντ and Γ35 ≡ Γτ−→π−K̄0ντ , which represent

68% of the total strange width, are crossed channels from kaon physics. This suggests that,

assuming lepton universality, one can predict Γτ−→K−ντ , Γτ−→K−π0ντ and Γτ−→π−K̄0ντ

using the following ingredients: (i) kaon branching ratios (BRs), precisely measured; (ii)

shape of the Kπ form factors determined by a combined fit to the K`3 decay distribution
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Branching fraction HFAG Winter 2012 fit

Γ10 = K−ντ (0.6955± 0.0096) · 10−2

Γ16 = K−π0ντ (0.4322± 0.0149) · 10−2

Γ23 = K−2π0ντ (ex. K0) (0.0630± 0.0222) · 10−2

Γ28 = K−3π0ντ (ex. K0, η) (0.0419± 0.0218) · 10−2

Γ35 = π−K̄0ντ (0.8206± 0.0182) · 10−2

Γ40 = π−K̄0π0ντ (0.3649± 0.0108) · 10−2

Γ44 = π−K̄0π0π0ντ (0.0269± 0.0230) · 10−2

Γ53 = K̄0h−h−h+ντ (0.0222± 0.0202) · 10−2

Γ128 = K−ηντ (0.0153± 0.0008) · 10−2

Γ130 = K−π0ηντ (0.0048± 0.0012) · 10−2

Γ132 = π−K̄0ηντ (0.0094± 0.0015) · 10−2

Γ151 = K−ωντ (0.0410± 0.0092) · 10−2

Γ801 = K−φντ (φ→ KK) (0.0037± 0.0014) · 10−2

Γ802 = K−π−π+ντ (ex. K0, ω) (0.2923± 0.0068) · 10−2

Γ803 = K−π−π+π0ντ (ex. K0, ω, η) (0.0411± 0.0143) · 10−2

Γ110 = X−s ντ (2.8746± 0.0498) · 10−2

Table 1. HFAG Winter 2012 Tau branching fractions to strange final states [2].

and the τ− → Kπντ invariant mass distribution using a dispersive parametrization for the

form factors as presented in refs. [3, 4]; (iii) theoretical input on the electromagnetic and

isospin breaking corrections.

The primary purpose of this work is to predict the leading strange τ branching ratios

along the lines outlined above. We will then use the predicted BRs to update the extraction

of Vus from inclusive τ decays [5, 6] and explore how this affects the 3.4σ discrepancy with

the extractions of Vus based on CKM unitarity and kaon decays [7].

The paper is organized as follows. In section 2 we review the prediction of τ → Kντ
from Kµ2. In section 3 we discuss all the ingredients needed to predict τ → Kπντ branching

ratios in the Standard Model and give our results and error estimates. In section 4 we work

out the implications of the new predicted strange BRs on the inclusive extraction of Vus,

and in section 5 we give our conclusions.

2 τ → Kντ from Kµ2 rate in the Standard Model

Assuming τ − µ universality in the charged weak current, the τ → Kντ decay rate can be

predicted from the K → µνµ decay rate:

BR(τ → Kντ ) =
m3
τ

2mKm2
µ

SτEW

SKEW

(
1−m2

K/m
2
τ

1−m2
µ/m

2
K

)2
ττ
τK

R
τ/K
EM BR(Kµ2) , (2.1)

with ττ = 290.6(1.0) fs [8] and τK = 12.384(15) ns [7] the charged τ and kaon lifetime

respectively. S
τ/K
EW represent the short distance electroweak radiative corrections [9, 10]

– 2 –



J
H
E
P
1
0
(
2
0
1
3
)
0
7
0

evaluated at the scale µ = mτ and µ = mρ, respectively. The long-distance electromagnetic

corrections are given by R
τ/K
EM = 1.0090(22) [11]. Using eq. (2.1) one finds

BR(τ → Kντ ) = (0.713± 0.003) · 10−2 . (2.2)

3 τ → Kπντ branching ratios in the Standard Model

3.1 Relating K → π`ν̄` and τ → K̄πντ rates

The decays τ → Kπντ and K → π`ν̄` (` = e, µ) are generated by the same underlying

quark-lepton level operator in the charged current effective Lagrangian (with the replace-

ment τ ↔ `). This is true in the Standard Model (SM) and in any extension that respects

lepton universality. Therefore, the hadronic matrix elements for the above two processes are

related by crossing. Considering only the SM operator, the K → π`ν̄` amplitude involves

〈π(pπ)|s̄γµu|K(pK)〉= (pK + pπ)µf
Kπ
+ (t) + (pK − pπ)µf

Kπ
− (t) , (3.1)

=
∆Kπ

t
(pK − pπ)µf

Kπ
0 (t) +

[
(pK + pπ)µ −

∆Kπ

t
(pK + pπ)µ

]
fKπ+ (t) ,

where t = (pK − pπ)2 and ∆Kπ = m2
K − m2

π. The vector (scalar) form factors f+(t)

(f0(t)) represent the P-wave (S-wave) projection of the crossed channel matrix element

〈Kπ|s̄γµu|0〉. The scalar form factor f0(t) can be expressed in terms of f+(t) and f−(t)

as f0(t) = f+(t) + t/∆Kπf−(t), and by construction, f0(0) = f+(0). The hadronic matrix

element relevant for τ → Kπντ reads

〈K̄(pK)π(pπ)|s̄γµu|0〉=−
∆Kπ

s
(pK+pπ)µf

Kπ
0 (s)−

[
(pK−pπ)µ −

∆Kπ

s
(pK+pπ)µ

]
fKπ+ (s) ,

(3.2)

with in this case s = (pK + pπ)2. The decay rates for τ → Kπντ and K → π`ν̄` involve

integrals of the form factors over the appropriate phase space. The overall normalization,

common to both modes is controlled by fKπ+ (0). It is therefore convenient to factor out

fK
0π−

+ (0), denoted f+(0) in the following, in the K`3 and τ → Kπντ decay rates. The

phase space integrals depend then on the normalized form factors, defined by

f̄+(s) =
f+(s)

f+(0)
, f̄0(s) =

f0(s)

f+(0)
, f̄+(0) = f̄0(0) = 1 . (3.3)

With the above definitions for the hadronic form factors, the K`3 decay rate reads

Γ(K → π`ν̄`[γ]) =
G2
Fm

5
K

192π3
C2
K S

K
EW (|Vus|f+(0))2 I`K

(
1 + δK`EM + δKπSU(2)

)2
. (3.4)

Here SKEW represents the short distance electroweak radiative corrections [9, 10] evaluated

at the scale µ = mρ, CK the Clebsch-Gordan coefficients, equal to 1 for K0 and 1/
√

2

for K−. The quantity δK`EM encodes the channel dependent long-distance electromagnetic

corrections [12, 13], and δKπSU(2) the correction for strong isospin breaking. It is defined to
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parameterize the difference between the K− → π0 and K0 → π− form factors, so that

δK
0π−

SU(2) = 0 and δK
+π0

SU(2) 6= 0. Finally, the dimensionless phase space integral is given by

I`K =

∫ tmax

m2
`

dt
1

m8
K

λ3/2

(
1 +

m2
`

2t

)(
1−

m2
`

2t

)2(
|f̄+(t)|2 +

3m2
`∆

2
Kπ

(2t+m2
` )λ
|f̄0(t)|2

)
, (3.5)

with λ = [t− (mK +mπ)2][t− (mK −mπ)2] and tmax = (mK −mπ)2.

The τ → K̄πντ decay rate has a structure similar to Γ(K → π`ν̄`[γ]). Including

electromagnetic and strong isospin breaking corrections one has

Γ(τ → K̄πντ [γ]) =
G2
Fm

5
τ

96π3
C2
K SτEW (|Vus|f+(0))2 IτK

(
1 + δKτEM + δ̃KπSU(2)

)2
. (3.6)

SτEW represents the short distance electroweak radiative corrections [9, 10] evaluated at the

scale µ = mτ . CK is the Clebsch-Gordan coefficient defined above. δKτEM is the channel

dependent long-distance electromagnetic correction and δ̃KπSU(2) the correction for strong

isospin breaking. As before, δ̃K
0π−

SU(2) = 0 and δ̃K
+π0

SU(2) 6= 0. Note that δ̃KπSU(2) 6= δKπSU(2) because

the K and τ decay rates involve integrals of the form factors over very different energy

regions. Finally, the dimensionless phase space integral , IτK is given by

IτK =
1

m2
τ

∫ m2
τ

sKπ

ds

s
√
s

(
1− s

m2
τ

)2 [(
1 +

2s

m2
τ

)
q3
Kπ(s)|f̄+(s)|2 +

3∆2
Kπ

4s
qKπ(s)|f̄0(s)|2

]
, (3.7)

with sKπ = (mK + mπ)2 and qKπ the kaon momentum in the rest frame of the hadronic

system:

qKπ =
1

2
√
s

√
(s− sKπ) (s− tKπ)× θ (s− sKπ) , tKπ = (mK −mπ)2 . (3.8)

Taking the ratios of eqs. (3.4) and (3.6) and multiplying by the ratio of τ and K

lifetimes, one obtains the following relation for BR(τ → K̄πντ ) in terms of the crossed

channel branching fraction BR(K → π`ν̄`):

BR(τ → K̄πντ ) =
2m5

τ

m5
K

SτEW

SKEW

IτK
I`K

(
1 + δKτEM + δ̃KπSU(2)

)2

(
1 + δK`EM + δKπSU(2)

)2

ττ
τK

BR(K → πeν̄e) . (3.9)

We will use the above formula to predict BR(τ → K̄πντ ). All the theoretical and exper-

imental quantities involving K`3 decays in eq. (3.9) are very accurately known [7]. The

key new ingredients are the phase space integrals IτK , that require knowledge of the form

factors over a wide energy range, and the electromagnetic and isospin-breaking corrections

relevant to the τ decays, δKτEM and δ̃KπSU(2). In what follows, we describe in detail the eval-

uation of these three input quantities. Before doing that, we make the following general

observations about our approach:

• In order to compute IτK (see eq. (3.7)), we determine f̄K
0π−

+,0 (s) by a combined fit to

the K`3 decay distribution and the τ− → KSπ
−ντ invariant mass distribution using

a dispersive parametrization for the form factors [3, 4].
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• Calculations of δKτEM and δ̃K
+π0

SU(2) 6= 0 are not as robust as the corresponding quantities

for K decays, because a rigorous ChPT analysis can only be performed in a corner

of τ decay phase space. However, we will provide in this paper first estimates for

these quantities. In order to estimate the electromagnetic effects we will use a point-

like description of pions and kaons, neglecting all structure-dependent effects both in

loops with virtual photons and Bremsstrahlung amplitudes. For the strong isospin

breaking effects, we will obtain a rough estimate by using a parameterization of the

s dependence of the form factor based on a simple resonance model. In both cases

we will assign conservative uncertainties to the results we obtain.

One important consequence of the above discussion is that we will be able to predict

BR(τ− → K̄0π−ντ ) more accurately than BR(τ− → K−π0ντ ), since the latter involves the

poorly known δ̃K
+π0

SU(2) .

3.2 Kπ form factors

3.2.1 Parametrization of the form factors

To compute the phase space integrals, I`K , one needs to know the normalized Kπ form

factors, f̄+(s) and f̄0(s) in the two energy regions m2
` < s < (mK −mπ)2 (for K`3 decays)

and (mK + mπ)2 < s < m2
τ (for τ → K̄πντ ). To this end, a dispersive representation for

the form factors has been introduced in ref. [3]. Here we briefly recall the key ingredients

of the two parametrizations used. For more details see ref. [4]. For the scalar form factor, a

dispersion relation with three subtractions is written for lnf̄0(s), one at the Callan-Treiman

point and the other two at zero. This leads to the following representation for f̄0(s)

f̄0(s) = exp

[
s

∆Kπ

(
lnC + (s−∆Kπ)

(
lnC

∆Kπ
− λ′0
m2
π

)
+

∆Kπ s (s−∆Kπ)

π

∫ ∞
sKπ

ds′

s′2
φ0(s′)

(s′ −∆Kπ)(s′ − s− iε)

)]
. (3.10)

The two subtraction constants a priori unknown, lnC ≡ lnf̄0(∆Kπ) and λ′0, the slope of

the form factor (the third one being fixed since f̄0(0) ≡ 1, see eq. (3.3)), are determined

from a fit to the data. φ0(s) represents the phase of the form factor. In the low energy

region s ≤ scut we use the S-wave I = 1/2 Kπ scattering phase from ref. [14]. For the

high-energy region, see discussion below.

A dispersive representation for the vector form factor f̄+(s) is built in a similar

way [3, 15–17]. In this case the three subtractions are performed at s = 0. Hence the

dispersive representation for f̄+(s) reads:

f̄+(s) = exp

[
λ′+

s

m2
π

+
1

2

(
λ′′+ − λ′2+

)( s

m2
π

)2

+
s3

π

∫ ∞
sKπ

ds′

s′3
φ+(s′)

(s′ − s− iε)

]
. (3.11)

Use has been made of f̄+(0) ≡ 1 to fix one subtraction constant. λ′+ and λ′′+ are the two

other subtractions constants corresponding to the slope and curvature of the form factor.

They are determined from a fit to the data. As for the phase of the form factor, φ+(s), we
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parameterize it as tanφ+(s) = Imf̃+(s)/Ref̃+(s) in terms of a model for the form factor

f̃+(s) that includes two resonances K∗(892) and K∗(1414), with mixing parameter β, see

refs. [16–19]:

f̃+(s) =
m̃2
K∗ − κK∗H̃Kπ(0) + βs

D(m̃K∗ , Γ̃K∗)
− βs

D(m̃K∗′ , Γ̃K∗′ )
, (3.12)

with

D(m̃R, Γ̃R) = m̃2
R − s− κR Re H̃Kπ(s)− im̃RΓ̃R(s) . (3.13)

In this equation, m̃R and Γ̃R are model parameters and Γ̃R(s) and κR are given by:

Γ̃R(s) = Γ̃R
s

m̃2
R

σ3
Kπ(s)

σ3
Kπ(m̃2

R)
, κR =

Γ̃R
m̃R

192πFKFπ
σ3
Kπ(m̃2

R)
, (3.14)

with σKπ(s) = 2qKπ(s)/
√
s. H̃Kπ(s) is the Kπ loop function in ChPT [18, 19]. We

emphasize here that m̃R and Γ̃R are model parameters and do not correspond to the

physical resonance mass and width. To find them one has to find the poles of eq. (3.12)

or equivalently the zeros of eq. (3.13) on the second Riemann sheet. Note that this model

inspired by the Gounaris-Sakurai parametrization [3, 15–22] is built such that the good

properties of analyticity, unitarity and perturbative QCD are fulfilled. This model is only

valid in the τ decay region. Therefore we will use it for s ≤ scut ∼ m2
τ . Hence there will be

seven parameters to fit from the data: λ′+ and λ′′+ the slope and the curvature of the form

factor and the resonance parameters used to model the phase: m̃K∗ and Γ̃K∗ the mass and

decay width of K∗(892) and m̃K∗′ and Γ̃K∗′ the mass and decay width of K∗(1414) and β

the mixing parameter between the two resonances.

For the high-energy region of the dispersive integrals eqs. (3.10), (3.11), (s ≥ scut ∼ m2
τ )

the phase is unknown and following refs. [3, 4, 23, 24], we take a conservative interval

between 0 and 2π centered at the asymptotic value of the phase which is π. The use of a

three time subtracted dispersion relation reduces the impact of our ignorance of the phase

at relatively high energies. The price to pay is that the correct asymptotic behaviour of

the two form factors is subjected to a set of sum rules derived in [3, 4], which is used to

constrain our fit parameters.

3.2.2 Determination of the Kπ form factors from τ → Kπντ Belle data and

K`3 analyses

We perform a combined fit to the Belle data [25] as well as the K`3 data [7], along the lines

described in ref. [3]. We minimize the following quantity:

χ2=
∑
i

(
N theo
i −N exp

i

σNexp
i

)2

+

(
lnC − lnCK`3

λ′+ − λ
′K`3
+

)T
V −1

(
lnC − lnCK`3

λ′+ − λ
′K`3
+

)
(3.15)

+

(
α2s − αsr

2s

σαsr
2s

)2

+

(
α2v − αsr

2v

σαsr
2v

)2

,

where N exp
i and σNexp

i
are respectively, the experimental number of events and the cor-

responding uncertainty in the ith bin. The theoretical number of events in a given i
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bin is [18, 19]

N theo
i = Ntotbw

1

Γτ→Kπν

dΓτ→Kπν
d
√
s

(si) , (3.16)

with Ntot, the total number of events, bw the bin width and Γτ→Kπν the total decay rate

given in eq. (3.6). We fit the first 76 points from threshold sKπ to sfit ∼ 1.51 GeV2 where our

parametrization is expected to be reliable. Note that following refs. [16, 17, 19] we exclude

from the fit the points 5, 6 and 7 that exhibit a bump which is not present in the preliminary

BaBar data [26]. We have tested that including these points in the fit amounts to increase

the χ2 from 60/68 to 78/71 without any significant changes in the values of the parameters,

which remain within the error bars. The second term of eq. (3.15) encodes the constraints

coming from K`3 analyses where a dispersive parametrization has been used for the form

factors [23, 24]. We are using lnCK`3 = 0.2004± 0.0091, λ′K`3+ = (25.66± 0.41)× 10−3 and

ρ(lnC, λ′+) = −0.33 from ref. [7]. V represents the covariance matrix. In the minimization

we also impose the constraints given by the sum rules eqs. (15) and (18) of ref. [3, 4]1 with

α2s ≡ lnC
∆Kπ

− λ′0
m2
π

, α2v ≡ λ′′+ − λ′2+ and

αsr
2s ≡

∆Kπ

π

∫ ∞
sKπ

ds′

s′2
φ0(s′)

(s′ −∆Kπ)
, (3.17)

αsr
2v ≡

2m4
π

π

∫ ∞
sKπ

ds′
φ+(s′)

s′3
. (3.18)

The results of the fit are presented on figure 1 and in table 2 with the correlations

between the parameters in table 3. Table 2 displays the results for the fit to real data [25]

and also to projected data from a super-B factory, obtained by keeping the same central

values of current Belle data [25] and rescaling the errors according to the expected sensi-

tivity of a second generation B factory assuming an integrated luminosity of 40 ab−1, see

e.g. ref. [27]. Using these results we can compute the phase space integrals eqs. (3.5), (3.7)

given in tables 4 and 5.

3.3 Electromagnetic effects in τ → Kπντ

While the electromagnetic corrections are known for K`3 to order (e2p2) in

ChPT [12, 13, 28], they have never been computed in the case of τ → Kπντ . In this case

there are no rigorous methods to compute electromagnetic effects over the entire phase

space, because the kinematics of τ decays allows the hadronic invariant mass squared

s = (pK + pπ)2 to extend well beyond the chiral regime, all the way to s = m2
τ . While

resonance-model calculations are possible [29, 30], here we will give a first estimate of

the long-distance electromagnetic corrections to τ → Kπντ based on point-like mesons

and leading Low bremsstrahlung contributions, i.e. neglecting structure dependent effects.

With these approximations we provide the corrections to both differential and total rate

for the processes τ → Kπντ .

The leading O(α) long-distance EM corrections arise from one-loop corrections to

the decay amplitudes and real photon emission. Only the one-photon-inclusive decay

1The constraints from the other two sum-rules, see refs. [3, 4] are not imposed in the fit, see eq. (3.15),

since they are automatically satisfied due to the large band taken for φ0,as and φ+,as.
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Figure 1. Fit result for the spectrum of τ → Kπντ . The data in black are from Belle Col-

laboration [25]. The points in green are projected data for a second generation B factory with

integrated luminosity of 40 ab−1 with the same central values of current Belle data and rescaling

errors according to the expected sensitivity. The dashed violet line represents the scalar form factor

contribution. The dot-dashed blue line is the vector form factor contribution and the solid red line

gives the full result.

τ → Kπντ & K`3 τ → Kπντ & K`3

Belle 2nd generation B factory
(projected)

ln C 0.20352± 0.00890 0.19880± 0.00498

λ′0 × 103 13.824± 0.824 13.703± 0.521

m̃K∗ [MeV] 943.59± 0.58 943.76± 0.06

Γ̃K∗ [MeV] 67.064± 0.846 67.290± 0.088

m̃K∗′ [MeV] 1392.2± 57.6 1361.7± 6.3

Γ̃K∗′ [MeV] 296.67± 160.28 254.62± 17.45

β −0.0404± 0.0206 −0.0338± 0.0023

λ′+ × 103 25.621± 0.405 25.601± 0.277

λ′′+ × 103 1.2221± 0.0183 1.2150± 0.0090

χ2/d.o.f 60.2/68 28.1/71

Table 2. Results for the Kπ form factors parameters from a combined fit to τ → Kπντ and K`3.

Note that m̃R and Γ̃R are model parameters and do not correspond to the physical resonance mass

and width.

rate is infrared (IR) finite to O(α). Our approach here relies on the analysis of EM

corrections to K → π`ν̄` and τ → ππντ presented in refs. [12, 13] and [29, 30], respectively.

Adapting the arguments presented in refs. [12, 13] we find that long distance EM effects
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Parameter ln C λ′0 m̃K∗ Γ̃K∗ m̃K∗′ Γ̃K∗′ β λ′+ λ′′+

ln C 1 0.943 -0.093 -0.117 0.047 0.005 -0.003 0.342 0.135

λ′0 – 1 -0.066 -0.068 0.040 0.027 -0.067 0.318 0.266

m̃K∗ – – 1 0.951 0.196 0.240 -0.345 0.001 -0.250

Γ̃K∗ – – – 1 0.145 0.179 -0.273 0.017 -0.160

m̃K∗′ – – – – 1 0.926 -0.842 0.088 0.030

Γ̃K∗′ – – – – – 1 -0.917 0.088 0.030

β – – – – – – 1 -0.128 -0.018

λ′+ – – – – – – – 1 0.735

Table 3. Correlations between the parameters of the fit to Belle and K`3 data presented in table 2.

Integral result error exp theo

IτK0 0.50418 0.01762 0.01689 0.00501

IeK0 0.15472 0.00022 0.00022 0.00000

IτK0/I
e
K0 3.25864 0.11115 0.10634 0.03235

IτK+ 0.52387 0.01958 0.01889 0.00515

IeK+ 0.15909 0.00025 0.00025 0.00000

IτK+/I
e
K+ 3.29282 0.12032 0.11589 0.03235

Table 4. Phase space integrals for the charged and neutral modes of τ → Kπν and Ke3 as well

as their ratio using the results of the fit to Belle and K`3 data, see table 2. The experimental

uncertainty comes from the uncertainties from the fit parameters and the theoretical uncertainty

comes from the uncertainty of the phase of the form factors in the inelastic region, where a large

band of 2π has been taken, see section 2.3.1. The two uncertainties have been summed in quadrature

to give the final one.

Integral result error exp theo

IτK0 0.49590 0.00820 0.00662 0.00484

IeK0 0.15471 0.00015 0.00015 0.00000

IτK0/I
e
K0 3.20545 0.05060 0.03562 0.03130

IτK+ 0.51536 0.00858 0.00631 0.00498

IeK+ 0.15908 0.00017 0.00017 0.00000

IτK+/I
e
K+ 3.23973 0.05114 0.03635 0.03132

Table 5. Phase space integrals for the charged and neutral modes of τ → Kπν and Ke3 as well as

their ratio using the results of the fit to the projected 2nd generation of B-factories and K`3 data,

see table 2.
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in τ → Kπντ induce:2

(i) An overall correction grad(s, u) to the differential decay rate, that combines the effect

of soft real photon emission and the universal soft part of one-loop diagrams. The

virtual- and real-photon corrections are IR divergent and depend on the IR regulator

Mγ , while their sum is finite:

grad(s, u) ≡ α

2π
ΓC(u,m2

τ ,m
2
1,M

2
γ ) + gbrems(s, u,m

2
1,m

2
2,M

2
γ ) . (3.19)

The expression for ΓC(u,m2
τ ,m

2
1,M

2
γ ) can be found in refs. [12, 13] and is reported for

completeness in appendix B. gbrems(s, u,m
2
1,m

2
2,M

2
γ ) encodes the Bremsstrahlung ef-

fects in the leading Low approximation and its expression can be found in refs. [29, 30]

and appendix C.

(ii) Shifts to the form factors: f̄Kπ±,0 (s) → f̄Kπ±,0 (s) + δf̄Kπ±,0 (s, u). These shifts arise al-

ready when treating K and π as point-like as soon as one uses momentum-dependent

vertices for the weak hadronic current. δf̄±(u) are given by

δf̄K
−π0

± (u) =
α

4π

1

f+(0)

[
Γ1(u,m2

τ ,m
2
K)± Γ2(u,m2

τ ,m
2
K)
]

+ . . . , (3.20)

δf̄ K̄
0π−

± (u) =
α

4π

1

f+(0)

[
Γ2(u,m2

τ ,m
2
π)± Γ1(u,m2

τ ,m
2
π)
]

+ . . . , (3.21)

The dots denote structure-dependent corrections that are hard to estimate over all the

phase space. Near threshold, the ChPT expressions in terms of low-energy constants

can be found in refs. [12, 13]. The loop functions Γ1,2(u,m2
τ ,m

2
1) can be found in

refs. [12, 13] and in appendix B. Finally, in terms of the shifts δf̄Kπ± (u), the corrections

to the scalar form factor reads δf̄Kπ0 (s, u) ≡ δf̄Kπ+ (u) + s/∆Kπ δf̄
Kπ
− (u).

With the above prescriptions, and linearizing in the corrections to the form factors,

we obtain the following expression for the photon-inclusive double differential rate τ →
Kπντ [γ] decay:

dΓτ→Kπν[γ]

ds du
=
G2
FC

τ2
K S

τ
EW|f+(0)Vus|2

128π3m3
τ

[
DK̄π

+ (s, u)
(
|f̄+(s)|2 + 2Re

[
f̄+(s)δf̄∗+(u)

] )
+DK̄π

0 (s, u)
(
|f̄0(s)|2 + 2Re

[
f̄0(s)δf̄∗0 (s, u)

] )
(3.22)

+DK̄π
+0 (s, u)Re

[
f̄+(s)f̄∗0 (s)+f̄+(s)δf̄∗0 (s, u)+δf̄+(u)f̄∗0 (s)

]]
×
[
1+grad(s, u)

]
.

The expression for the Dalitz plot kinematic densities D+,0,+0(s, u) can be found in ap-

pendix A. Integrating over the u variable we obtain the EM-corrected distribution in the

2For the two decay modes we adopt this conventions for the particle four-momenta: τ−(pτ ) →
π−(p1)K0(p2)ντ (q) and τ−(pτ ) → K−(p1)π0(p2)ντ (q). The EM corrections involve the Mandelstam vari-

able u = (pτ − p1)2, where pτ and p1 denote the four-momentum of the τ and the charged meson (K or π)

in the final state. Moreover, m2
1 = p21 denotes the mass squared of the charged meson.
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Figure 2. Correction factors δ+EM(s) (left panel) and δ0EM(s) (right panel) to the vector and scalar

contribution to the differential decay rates of both τ → Kπντ modes.

Kπ invariant mass:

dΓKπ[γ]

ds
=
G2
FC

2
KSEW|f+(0)Vus|2m3

τ

96π3s
√
s

[(
1− s

m2
τ

)2((
1 +

2s

m2
τ

)
q3
Kπ(s)|f̄+(s)|2

[
1 + δ+

EM(s)
]

+
3∆2

Kπ

4s
qKπ(s) |f̄0(s)|2

[
1 + δ0

EM(s)
])

+ Re
[
f̄+(s)f̄∗0 (s)

]
δ+0

EM(s)

]
, (3.23)

with

δ+
EM(s) ≡

∫ umax(s)
umin(s) du D+(s, u)

(
|f̄+(s)|2 grad(s, u) + 2Re

[
f̄+(s)δf̄∗+(u)

])
∫ umax(s)
umin(s) du D+(s, u)|f̄+(s)|2

, (3.24)

δ0
EM(s) ≡

∫ umax(s)
umin(s) du D0(s, u)

(
|f̄0(s)|2 grad(s, u) + 2Re

[
f̄0(s)δf̄∗0 (s, u)

])
∫ umax(s)
umin(s) du D0(s, u)|f̄0(s)|2

, (3.25)

δ+0
EM(s) ≡ 3s

√
s

4m6
τ

∫ umax(s)

umin(s)
du D+0(s, u)

(
Re
[
f̄+(s)f̄∗0 (s)

]
grad(s, u)

+ Re
[
f̄+(s)δf̄∗0 (s, u) + δf̄+(u)f̄∗0 (s)

] )
. (3.26)

umin,max(s) can be found in the appendix. The functions δ+,0
EM(s) are shown on figure 2.

Further integrating the distribution (3.23) over s with and without electromagnetic correc-

tions, and taking the ratio, we get δKτEM. Assigning an uncertainty of ∼ α/π to the unknown

structure-dependent corrections, we get:

δK
−τ

EM = −(0.2± 0.2)% , δK̄
0τ

EM = −(0.15± 0.2)% . (3.27)

Note that a comparison between the leading Low approximation and the full calculation is

performed in refs. [29, 30], and it shows that it leads to a comparable correction to the decay

rate. Hence we expect this calculation to give a reasonable estimate for the electromagnetic

corrections to the τ → Kπντ total decay rates. We have introduced the EM correction

factors δ+,0,+0
EM (s) in the fitting procedure and we have found that these corrections do not

affect the determination of the form factors at the current level of precision.
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3.4 Isospin breaking corrections in τ → K−π0ντ

In order to estimate the strong isospin breaking effects, we focus on the dominant vector

form factor. We adopt a simple parameterization of the ratio fK
−π0

+ (s)/f K̄
0π−

+ (s) based

on a single vector meson resonance exchange. The ratio fK
−π0

+ (s)/f K̄
0π−

+ (s) differs from

unity because of (i) π0− η mixing and (ii) possible isospin-breaking effects in the coupling

of K∗− to Kπ. To leading order in isospin-breaking, the first effect is independent of s,

and completely controlled by the π0 − η mixing angle ε =
√

3
4

md−mu
ms−1/2(mu+md) = 1.16(13)×

10−2 [31]. The second effect can be estimated by using couplings of vector mesons to

Goldstone Bosons that involve insertions of quark mass matrices, such as those introduced

in ref. [32]. Requiring that the form factors in the isospin-symmetric limit fall off as 1/s,

single vector meson resonance exchange implies the parameterization:

fK
−π0

+ (s)/f K̄
0π−

+ (s) =
(

1 +
√

3 ε
) (

1 + g̃
m2
K

(4πFπ)2

s

m2
K∗

ε

)
. (3.28)

The only unknown parameter in the above expression is the coupling g̃ ∼ O(1), which we

vary between −2 and +2. This gives a first rough estimate of the effect of s-dependent

isospin breaking effect, namely δ̃K
−π0

SU(2) = ±0.5%. On the other hand, the constant part due

to π0 − η mixing is better known and is 100% correlated with the analogous K`3 quantity.

Putting the two ingredients together, this procedure leads to δ̃KπSU(2) = (2.9 ± 0.4mixing ±
0.5)%. We emphasize that this is a far-from-complete estimate of strong isospin breaking

effects, and it is only meant to provide a rough estimate of the central value and uncertainty

associated with these effects.

3.5 Branching ratios

Using eq. (3.9) we predict Br(τ− → K−π0ντ ) and Br(τ− → K̄0π−ντ ). In table 6 we

summarize the input values used for the predictions. We find for the branching ratios

BR(τ− → K̄0π−ντ ) = (0.857± 0.030) · 10−2 , (3.29)

BR(τ− → K−π0ντ ) = (0.471± 0.018) · 10−2 , (3.30)

with a 100% correlation. The error comes exclusively from the uncertainty on the τ phase

space integrals. In table 7 results for the 2nd generation of flavour factory with the error

budget can be found. One sees that the uncertainty coming from the evaluation of the

phase space integrals can be reduced by a factor of three. Then the uncertainties coming

from EM corrections start to matter.

4 Implications for the inclusive determination of Vus

The most precise determination of |Vus| from τ decays comes from the measurements of

inclusive |∆S| = 0 and |∆S| = 1 tau decay widths. Indeed one can build the theoreti-

cal quantity

δRτ,th =
Rτ,NS
|Vud|2

−
Rτ,S
|Vus|2

, (4.1)
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Parameter Value ref.

BR(K±e3) 0.05078(31) [7]

τK± (12.384± 0.015) ns [7]

ττ (290.6± 1.0) fs [8]

SKEW 1.0232± 0.0003 [9]

SτEW 1.0201± 0.0003 [10]

δK`EM(%) 0.050± 0.125 [28]

δK
−τ

EM -(0.2± 0.2) % section 3.3

δKπSU(2) 0.029± 0.004 [7, 33]

δ̃KπSU(2) 0.029± 0.006 section 3.4

IτK+/I
e
K+ 10.32059± 0.48240 table 4

Parameter Value ref.

BR(KLe3) 0.4056(9) [7]

τKL (51.16± 0.21) ns [7]

ττ (290.6± 1.0) fs [8]

SKEW 1.0232± 0.0003 [9]

SτEW 1.0201± 0.0003 [10]

δK`EM(%) 0.495± 0.110 [28]

δK̄
0τ

EM -(0.15± 0.2) % section 3.3

δKπSU(2) 0 [7, 33]

δ̃KπSU(2) 0 section 3.4

IτK+/I
e
K+ 10.21432± 0.43058 table 4

Table 6. Inputs used to compute τ− → K−π0ντ and τ− → K̄0π−ντ branching ratios.

Mode σ(BR) % err BR(Ke3) τK ττ IτK/I
e
K EM SU(2)

τ− → K̄0π−ντ ± 0.0122 1.45 0.22 0.41 0.34 1.24 0.46 0

τ− → K−π0ντ ± 0.0079 1.71 0.06 0.12 0.34 1.25 0.47 1.00

Table 7. Prediction for the uncertainty of the τ → Kπντ branching fraction in % from the Ke3

branching ratio using the 2nd generation of B factory projected results for the phase space integrals,

see table 5. The different sources of uncertainty are given. They have been summed in quadrature

to give the total one.

where Rτ is defined as

Rτ =
Γ[τ → hadrons ντ ]

Γ[τ → ν̄eeντ ]
. (4.2)

This quantity vanishes in the SU(3) limit and can be precisely determined within QCD

combining perturbative QCD and low energy data [5, 6, 34]. Hence, we can extract Vus
from eq. (4.1) using the theoretical estimate of δRτ,th and the precise measurements of

non-strange (Rτ,NS) and strange (Rτ,S) inclusive decays, and |Vud|. Following ref. [2], we

take δRτ,th = 0.240±0.032, with a systematic error on |Vus| that lies between the two more

recent estimates [35, 36]. We use |Vud| = 0.97425±0.00022 from the superallowed 0+ → 0+

nuclear β decays [37]. Using the HFAG Early 2012 averages from the τ branching fractions

reported in table 1 together with their reported statistical correlations and replacing the

τ → Kντ and τ → Kπντ results by our prediction in eq. (2.2) and eqs. (3.29), (3.30),

we obtain [2]

BRτ,S ≡ BR(τ → X−s ντ ) = (2.965± 0.066) · 10−2 . (4.3)

With this estimate and BRτ,NS = (61.85 ± 0.11)% and BRτ,e = (17.839 ± 0.028)% [2],

we get

|Vus| = 0.2207± 0.0027 . (4.4)
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0,21

0,21

0,22

0,22

0,23

0,23

0,24

0,24

0,25

0,25

Vus

τ -> Kν absolute (+ fK)

τ  branching fraction ratio

Kl2 /πl2 decays (+ fK/fπ)

τ -> s inclusive 

τ decays

Kaon and hyperon decays

Kl3 decays (+ f+(0))

Hyperon decays

τ -> Kν / τ -> πν (+ fK/fπ)

Figure 3. Determination of |Vus| from semileptonic, leptonic kaon decays [7], hyperon decays [38]

and inclusive and exclusive τ decays [2]. The errors bars correspond to the determination from

exclusive τ decays (blue), the inclusive hadronic τ decays (red), and our prediction (cyan). The

grey band displays the value of |Vus| assuming unitarity of the first row of the CKM matrix.

We summarize in figure 3 the different extractions of |Vus| from semileptonic and leptonic

kaon decays, hyperon and τ decays. Our prediction shifts the inclusive determination of

|Vus| towards the exclusive one by ∼ 1.5σ.

5 Conclusion

The experimental precision of data on leptonic and semileptonic kaon decays matched

by sub-percent theoretical calculations allowed the most accurate determination of Vus [7].

Assuming lepton universality, we use the same data in combination with the measurement of

the Kπ invariant mass distribution in the τ → Kπν decay and a dispersive parametrization

for the form factors [3, 4] to obtain a precise prediction for about 68% of the total strange

width. A first evaluation of electromagnetic and SU(2) breaking effects has been derived

to this purpose. We find:

BR(τ− → K−ντ ) = (0.713± 0.003) · 10−2 ,

BR(τ−→K̄0π−ντ ) = (0.857± 0.030) · 10−2 ,

BR(τ−→K−π0ντ ) = (0.471± 0.018) · 10−2 ,

B3 ≡ BR(τ→Kντ ) + BR(τ−→K̄0π−ντ ) + BR(τ−→K−π0ντ ) = (2.040± 0.048) · 10−2 .

B3 is 1.7σ higher with respect to the world average measured value. In addition we obtain a

determination of Vus from inclusive tau decays using the above prediction for the branching

ratios and the world average values for the rest of tau branching fractions. We find:

|Vus| = 0.2207± 0.0027 ,

– 14 –



J
H
E
P
1
0
(
2
0
1
3
)
0
7
0

and for the unitarity of the CKM quark mixing matrix as applied to the first row, we obtain:

1− |Vus|2 − |Vud|2 = 0.0021± 0.0013 (−1.6σ) .

Finally, we have shown that measurements of the Kπ invariant mass distribution at a

second generation B factory with integrated luminosity of 40 ab−1 would reduce the un-

certainty in the τ → Kπντ BRs by a factor of three, and therefore further reduce the

error on Vus.

A Kinematic densities

The differential decay rate eq. (3.22) involves the kinematic functions

DK̄π
+ (s, u) =

m2
τ

2
(m2

τ − s) + 2m2
1m

2
2 − 2u (m2

τ − s+m2
1 +m2

2) + 2u2

−∆21

s
m2
τ (2u+ s−m2

τ − 2m2
2) +

∆2
21

s2

m2
τ

2
(m2

τ − s) , (A.1)

DK̄π
0 (s, u) =

∆2
21m

4
τ

2s2

(
1− s

m2
τ

)
, (A.2)

DK̄π
+0 (s, u) =

∆21m
2
τ

s

(
2u+ s−m2

τ − 2m2
2 −

∆21

s

(
m2
τ − s

))
, (A.3)

with ∆21 = m2
2 − m2

1. The above expressions are valid for both decay modes, with the

following conventions for the particle four-momenta: τ−(pτ ) → π−(p1)K0(p2)ντ (q) and

τ−(pτ ) → K−(p1)π0(p2)ντ (q). The Mandelstam variable u = (pτ − p1)2, where pτ and p1

denote the four-momentum of the τ and the charged meson (K or π) in the final state.

Moreover, m2
1 = p2

1 denotes the mass squared of the charged meson.

B Loop functions

We now give expressions for the loop functions characterizing virtual photon corrections.

We denote by M the charged meson mass, by m` → mτ the charged lepton mass, and

by Mγ the photon mass used as infrared regulator. In order to express the loop functions

Γ1,2,C in a compact way, it is useful to define the following intermediate variables:

R =
m2
`

M2
, Y = 1 +R− v

M2
, X =

Y −
√
Y 2 − 4R

2
√
R

. (B.1)

In terms of such variables, of the dilogarithm

Li2(x) = −
∫ 1

0

dt

t
ln(1− xt) , (B.2)

and the auxiliary functions

C(v,m2
` ,M

2) =
1

m`M

X

1−X2

[
− 1

2
ln2X + 2 lnX ln(1−X2)− π2

6
+

1

8
ln2R

+Li2(X2) + Li2

(
1− X√

R

)
+ Li2(1−X

√
R)
]
, (B.3)

F(v,m2
` ,M

2) =
2√
R

X

1−X2
lnX , (B.4)
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we have:

ΓC(v,m2
` ,M

2;M2
γ ) = 2M2Y C(v,m2

` ,M
2) + 2 ln

Mm`

M2
γ

(
1 +

XY lnX√
R(1−X2)

)
, (B.5)

and

Γ1(v,m2
` ,M

2) =
1

2

[
− lnR + (4− 3Y )F(v,m2

` ,M
2)
]
, (B.6)

Γ2(v,m2
` ,M

2) =
1

2

(
1−

m2
`

v

)[
−F(v,m2

` ,M
2)(1−R) + lnR

]
− 1

2
(3− Y )F(v,m2

` ,M
2) .

C Real photon emission

In refs. [29, 30] the function gbrems(s, u,m
2
1,m

2
2,M

2
γ ) is denoted by gbrems(s, u,M

2
γ ), omit-

ting the dependence on the meson masses m2
1,2. We report here the full expressions for

completeness. The Bremsstrahlung function is given by:

gbrems(s, u,Mγ) =
α

π
[J11(s, u,Mγ) + J20(s, u,Mγ) + J02(s, u,Mγ)] . (C.1)

J11(s, u,Mγ) = ln

(
2x+(s, u)γ̄

Mγ

)
1

β̄
ln

(
1 + β̄

1− β̄

)
(C.2)

+
1

β̄

{
Li2(1/Y2)− Li2(Y1) + ln2(−1/Y2)/4− ln2(−1/Y1)/4

}
, (C.3)

J20(s, u,Mγ) = ln

(
Mγ(m2

τ − s)
mτx+(s, u)

)
, (C.4)

J02(s, u,Mγ) = ln

(
Mγ(m2

τ +m2
2 − s− u)

m1x+(s, u)

)
. (C.5)

The auxiliary variables are:

x±(s, u) =
1

2m2
1

[
2m2

1 (m2
τ + s)− (s+m2

1 −M2
2 ) (m2

τ +m2
1 − u)

±
√
λ(s,m2

1,m
2
2)λ(u,m2

1,m
2
τ )

]
, (C.6)

Y1,2 =
1− 2ᾱ±

√
(1− 2ᾱ)2 − (1− β̄2)

1 + β̄
, (C.7)

ᾱ =
(m2

τ − s)(m2
τ +m2

2 − s− u)

(m2
1 +m2

τ − u)
· λ(u,m2

1,m
2
τ )

2 δ̄
, (C.8)

β̄ = −
√
λ(u,m2

1,m
2
τ )

m2
1 +m2

τ − u
, (C.9)

γ̄ =

√
λ(u,m2

1,m
2
τ )

2
√
δ̄

, (C.10)

δ̄ = −m4
2m

2
τ +m2

1(m2
τ − s)(m2

2 − u)− su(−m2
τ + s+ u)

+m2
2(−m4

τ + su+m2
τs+m2

τu) , (C.11)

with λ(x, y, z) = x2 + y2 + z2 − 2 (xy + xz + yz).
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