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1 Introduction

Anyons are particles in 2+1 dimensions with fractional statistics; they are neither bosonic

nor fermionic. One can model anyons as particles carrying both electric charge and mag-

netic flux. As two such particles circle each other, they collect an Aharonov-Bohm phase θ

given by the product of the charge with the flux. Anyons in zero magnetic field have been

shown through a variety of computations to form a superfluid [1–4] or superconductor, if

they couple to a dynamical electromagnetic field. Evidence for this was given by direct

computation of the relevant pole in the current-current correlator, or by exhibiting the

vanishing of the Chern-Simons term in the effective field theory. Anyonic superfluidity is

not associated with the spontaneous violation of a symmetry; instead, there is a massless

mode whose existence is implied by the spontaneous violation of a fact, in this case, the

fact that orthogonal translation generators commute [1, 5]. Alternatively, the existence of

a such a massless mode can be seen by a sum rule [1].

There is a close connection between the descriptions of the fractional quantum Hall

effect and of superfluidity and superconductivity. Starting with a Lagrangian for a bosonic

superfluid L(Φ), one can couple it to a statistical gauge field,1 add a Chern-Simons term

with a fractional level, and end up with a description of the fractional quantum Hall state

with particles obeying fractional statistics.2 In modern language, this procedure is an

SL(2,Z) transformation.

1In this paper, statistical gauge field corresponds to a gauge field integrated in the path integral but

without an F 2 term, while background fields are not integrated in the path integral.
2For a nice review, see [6].
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Starting with a fluid of anyons, one can imagine taking a mean field approximation in

which we consider them as fermions moving in a background of a homogeneous magnetic

field induced by all the other anyons. The fermions will occupy Landau levels. If the phase

aquired by the anyons is such that θ = π(1− 1
NL

) for some integer NL, then the fermions

will be in a quantum Hall state with NL filled Landau levels.

Quantum Hall states are gapped, incompressible, and have a filling fraction defined by

ν =
2πD

B
, (1.1)

where D is the charge density and B is the magnetic field. The excitations are local

fluctuations of the charge density. Since the Landau levels are full, in order to make an

excitation, one needs to move a charge carrier from one level to the next, at the cost of a

finite amount of energy.

However, one could imagine another kind of excitation, one which we typically do not

consider when discussing a quantum Hall state. Usually, we consider fluctuations with the

magnetic field held fixed. Instead, we can allow a perturbation where both the charge

density and magnetic field fluctuate. The change in the local magnetic field will affect the

degeneracy of the Landau levels and will accommodate the fluctuation of charge with no

extra cost in energy provided

δD =
ν

2π
δB . (1.2)

This is exactly [7, 8] the gapless excitation of the anyon fluid, a signal of superfluidity. The

velocity of the gapless mode for the case θ = π(1− 1
NL

) is [1] v ∼ √
NL

√
B
m . A similar story

holds for the fractional quantum Hall state, where the anyons carry 1
ν units of flux per unit

of charge.

To be a superfluid, the massless excitations must have a linear dispersion, ω ∼ vk for

small k. In addition, the massless mode must not be part of a continuum of states, unlike,

for instance, the zero sound. One way to test whether the massless mode is discrete is

to turn on a nonzero temperature. Let us use the intuition from the original quantum

Hall state description. The quantum Hall state is gapped and is therefore unaffected by

temperatures much smaller than the gap. Because it is related to the quantum Hall state

description by an SL(2,Z) transformation, the gapless anyon fluid should be similarly

robust against the effects of temperature.

1.1 Alternative quantization

Since we want a holographic description of anyons, a natural starting point is to look

at alternative quantization of a bulk gauge field in asymptotic AdS4 spacetime [9] (see

also [10]). The usual Dirichlet boundary condition imposed on the gauge field stems from

using a bulk action which, after holographic renormalization and imposing the equation of

motion, has the property that

δSD =

∫

boundary
JµδA

µ , (1.3)
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where Jµ = δSD

δAµ is a conserved current interpreted as the conserved current in the CFT.

Consistency of the variation principle or, equivalently, requiring no flux through the time-

like boundary at infinity requires imposing the condition that Aµ is fixed at the boundary.

However, this is not the only consistent boundary condition one can impose on a gauge field

in AdS4. Both independent solutions of the linear equation of motion for the bulk gauge

field are normalizable, and one can consider the theory with other boundary conditions,

which again guarantee that no information is lost through time-like infinity [11, 12]. For

example, one can start with a new bulk action

SN = SD −
∫

boundary
JµA

µ , (1.4)

where N stands for Neumann boundary conditions. The variation now gives

δSN = −
∫

boundary
AµδJµ . (1.5)

Now we see that with this action, one instead needs to fix Jµ at the boundary. To make

things more symmetric, and for later formalism, it is convenient to introduce a new quantity

vν : Since ∂µJµ = 0, one can write Jµ = 1
2π ǫµρν∂

ρvν . Therefore, vν is defined only up to

gauge transformations. The variation of the action is now

δSN = − 1

2π

∫

boundary
ǫµρν∂

ρAνδvµ ≡ −
∫

boundary
J∗
µδv

µ , (1.6)

where the new current J∗
µ = 1

2π ǫµρν∂
ρAν ≡ Bµ.

In the CFT, the Neumann boundary condition is related to the Dirichlet boundary

condition by an S operation, giving a new CFT which includes a gauge field. One can

now consider more general modified boundary terms for the bulk action. Since JµA
µ =

1
2π ǫµρν∂

ρvνAµ we can consider adding more general such terms with vµ and Aµ that are

invariant under gauge transformations:

vµ, Aµ → vµ + ∂µV , Aµ + ∂µΛ . (1.7)

Thus, we can write

Sgen = SD +
1

2π

∫

boundary
[a1ǫµρνA

µ∂ρvν + a2ǫµρνA
µ∂ρAν + a3ǫµρνv

µ∂ρvν ] . (1.8)

Now the variation of the action takes the form

δSgen =

∫

boundary
(asJµ + bsBµ)(csδv

µ + dsδA
µ) , (1.9)

where

asds = 1 + a1, bscs = a1, bsds = 2a2, ascs = 2a3 . (1.10)

Evidently, asds − bscs = 1 and so
(

as bs
cs ds

)

(1.11)
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forms an SL(2,R) matrix. The new boundary condition holds csv
µ + dsA

µ fixed, or in

gauge invariant form,

B∗
µ = csJµ + dsBµ = fixed → δB∗

µ = 0 . (1.12)

The new current is just

J∗
µ = asJµ + bsBµ . (1.13)

Since

Jµ ∼ Fµu ≡ Eµ , (1.14)

where u is an inverse radial coordinate with the boundary at u = 0, we see that this

SL(2,R) action is an electric-magnetic duality transformation. We do not mean that the

bulk action has to be invariant under this transformation. One only needs that the equation

of motion for the bulk gauge field reduces near the boundary to the free equation, so that

one can choose mixed boundary conditions.

If the bulk theory has only integer electric and magnetic charges, as in string theory,

for consistency the SL(2,R) transformations must be restricted to a subset SL(2,Z), acting

on approprietly normalized quantities.

From the point of view of the dual CFT, the SL(2,Z) transformations are certain

operators changing one CFT to another [9]. For example, starting with a Lagrangian

L̃(Φ, A) for the fields of the CFT Φ coupled to an external vector field A, the S operation,

for which as = ds = 0 and bs = 1 = −cs, yields the same Lagrangian but now with A as a

dynamical field. The new CFT also has a conserved U(1) current 1
2π ǫµρν∂

ρAν , and one can

couple to an external vector field C by 1
2π ǫµρνC

µ∂ρAν . So, the pair that transforms under

SL(2,Z) are Jµ and Bµ. The new boundary condition can be read from the Aµ equation

of motion.

The T operation, where as = bs = ds = 1 and cs = 0, just adds a Chern-Simons term

for the external vector field (say Cµ),

1

2π
ǫµρνC

µ∂ρCν . (1.15)

The SL(2,Z) transformations are generated by S and T transformations, which do not

commute with each other.

From equation (1.12), we see that the new current is a current of particles carrying

(with respect to the original definitions) cs/ds units of original magnetic flux for each unit

of original charge. These are anyons.

In this paper, we consider a holographic model of a fractional quantum Hall state and

impose alternative boundary conditions appropriate to change it into an anyonic fluid in

zero magnetic field. We then show that this fluid is a superfluid by analyzing the fluc-

tuations and exhibiting a gapless mode in the current-current correlation function. Since

the original fermions were strongly coupled through an SU(N) gauge field, the resulting

anyons should also be considered as strongly coupled.
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2 Holographic model

We will begin with the D3-D7’ model of the fractional quantum Hall effect [13].3 This

model has a rich phenomenology, with both a gapped quantum Hall phase and a ungapped

metallic phase [25–30]. We will focus here on the gapped quantum Hall phase, whose

fluctuations were analyzed in [31].

2.1 D7-brane action

The model consists of a probe D7-brane in the background of N D3-branes, oriented such

that their intersection is (2 + 1)-dimensional. The metric of the D3-brane background is

ds210 =
r2

L2
(−h(r)dt2 + dx2 + dy2 + dz2) +

L2

r2

(

dr2

h(r)
+ r2dΩ2

5

)

, (2.1)

where h(r) = 1− r4
T

r4
and

dΩ2
5 = dψ2 + cos2 ψ(dθ2 + sin2 θdφ2) + sin2 ψ(dα2 + sin2 αdβ2) . (2.2)

The AdS radius is given by L2 =
√
4πgsNα

′ =
√
λα′, and the temperature is T = rT

πL2 .

In addition, the RR four-form C
(4)
txyz = − r4

L4 . The angles have the following ranges: ψ ∈
[0, π/2], θ, α ∈ [0, π], and φ, β ∈ [0, 2π].

We will consider embeddings of the D7-brane which span the t, x, y, and r directions

and wrap the two S2’s. For the fluctuation analysis, it is convenient to introduce the

Cartesian coordinates [31]

ρ = r sinψ (2.3)

R = r cosψ . (2.4)

We take R as the worldvolume coordinate, while ρ(R) and z(R) describe the embedding.

For stability, we turn on a flux through one S2 [13, 32]

2πα′Fαβ =
fL2

2
sinα . (2.5)

With flux only on one S2, a constant z is a solution to the equations of motion. We can

thus set it to zero in what follows. The induced metric on the D7-brane is then

ds2D7 =
r2

L2

(

−h dt2 + dx2 + dy2
)

+
L2R2

r2
dΩ

(1)2
2 +

L2ρ2

r2
dΩ

(2)2
2

+
L2

r2

(

R2

hr2
+
ρ2

r2
− 2

(

1

h
− 1

)

ρR

r2
ρ′ +

(

ρ2

hr2
+
R2

r2

)

ρ′2
)

dR2 , (2.6)

where primes denote derivatives with respect to R. To include a background charge density

and magnetic field, we turn on:

2πα′Fxy = b , 2πα′FRt = a′0 , (2.7)

3For an earlier use of a closely related system, see [14], and for other holographic approaches to the

quantum Hall effect, see [15–21]. In addition, the D2-D8’ model [22–24], a close cousin of the D3-D7’

model, exhibits analogous properties to those presented here, including anyonic superfluidity.
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Finally, we perform the following rescaling of the coordinates and gauge fields:

R = L
√
bR̃ , ρ = L

√
bρ̃ , r = L

√
br̃ , a0 = L

√
bã0 , (2.8)

which scales out b and L.

The D7-brane action in these coordinates is

S = −N
∫

dR̃

(

R̃2

√

f2 + 4
ρ̃4

r̃4

√

1 + r̃−4
√
A− c(R̃)ã′0

)

, (2.9)

where N = 8π2T7V3L
5b3/2 and

r̃2A = R̃2 − r̃2ã′20 − 2(h− 1)R̃ρ̃ρ̃′ + hR̃2ρ̃′2 + ρ̃2(h+ ρ̃′2) . (2.10)

The pull-back of the RR-potential onto the worldvolume, c(R̃), is given by

c(R̃) = arctan(ρ̃/R̃)− 1

4
sin(4 arctan(ρ̃/R̃))− ψ∞ +

1

4
sin(4ψ∞) , (2.11)

where

ψ∞ = lim
R̃→∞

arctan
ρ̃

R̃
, (2.12)

which is related to the flux f by

f2 = 4 sin2 ψ∞ − 8 sin4 ψ∞ . (2.13)

2.2 Background equations of motion

The equation of motion for the gauge field, integrated once, gives

g̃

h
(1 + r̃−4)ã′0 =

d

b
− 2c(R̃) ≡ d̃

b
, (2.14)

where

g̃ =
2hR̃2

√

f2 + 4 ρ̃4

r̃4√
1 + r̃−4

√
A

(2.15)

and d is proportional to the charge density D. These can be solved:

ã′0 =
d̃

b

h

g̃(1 + r̃−4)
=
d̃

b

√

√

√

√

√

√

r̃−2
(

R̃2 − 2(h− 1)R̃ρ̃ρ̃′ + hR̃2ρ̃′2 + ρ̃2(h+ ρ̃′2)
)

(

d̃
b

)2
+ 4R̃4(1 + r̃−4)

(

f2 + 4 ρ̃4

r̃4

)

g̃ =
h

1 + r̃−4

√

√

√

√

√

√

(

d̃
b

)2
+ 4R̃4(1 + r̃−4)

(

f2 + 4 ρ̃4

r̃4

)

r̃−2
(

R̃2 − 2(h− 1)R̃ρ̃ρ̃′ + hR̃2ρ̃′2 + ρ̃2(h+ ρ̃′2)
) . (2.16)
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The embedding scalar equation of motion is

∂R̃

(

(1 + r̃−4)g̃

hr̃2

{

(hR̃2 + ρ̃2)ρ̃′ + (1− h)R̃ρ̃
}

)

(2.17)

= −2ã′0∂ρ̃c(R̃) +
32hR̃6ρ̃3

g̃r̃6
−

8hR̃4ρ
(

f2 + 4 ρ̃4

r̃4

)

g̃r̃6(1 + r̃−4)
+

g̃

2h
(1 + r̃−4)∂ρ̃A ,

where

∂ρ̃c(R̃) =
8R̃3ρ̃2

r̃6
(2.18)

∂ρ̃A =
2

r̃4
(1− h)(R̃ρ̃′ − ρ̃)(R̃2 − 2ρ̃2 + 3R̃ρ̃ρ̃′).

2.3 Minkowski embeddings

In this system there are two types of embeddings: black hole (BH) embeddings, where

the D7-brane enters the horizon at r̃ = r̃T , and Minkowski (MN) embeddings, where the

D7-brane caps off at some r̃0 > r̃T . We will focus here exclusively on MN embeddings.

The D7-brane can end smoothly if the tip is located at ψ = π/2 (i.e., R̃ = 0) where the

S2 without wrapped flux degenerates. The tip can not support any local charge density,

so a MN embedding requires d̃ = 0, implying

d

b
= 2c(0) = π − 2ψ∞ +

1

2
sin(4ψ∞) ≡ πν

N
. (2.19)

Here ν = 2πD
B is the filling fraction, and D and B are the physical charge density and

magnetic field. From (2.19), we see that ν is fixed by the choice of ψ∞, or actually of f .

For a fixed ψ∞, the leading UV behavior of an embedding is characterized by

m̃ = r̃−∆+ sin

(

arctan

(

ρ̃

R̃

)

− ψ∞

)

, (2.20)

where

∆± = −3

2
± 1

2

√

73− 48

cos2 ψ∞
. (2.21)

The dimensionless parameter m̃ is proportional to the mass m of the fermions in the dual

boundary theory:

m̃ =
2πα′m

Lb−∆+/2
. (2.22)

The relationship between m̃ and ρ̃0 for various temperatures is given in figure 1.

Because the D7-brane avoids the horizon, there is a gap for charged fluctuations. The

size of the gap is given by the length of a string stretched from the horizon to the D7-brane

tip, which is proportional to ρ̃0 ≡ ρ̃(R̃ = 0). The neutral fluctuations, analyzed in [31], are

also gapped.

The conductivities for the MN phase were computed in [13]. The longitudinal conduc-

tivity is

σxx = 0 (2.23)

– 7 –



J
H
E
P
1
0
(
2
0
1
3
)
0
1
4

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Ρ
�

0

-5

-4

-3

-2

-1

0

m
�

Figure 1. m̃ vs ρ̃0 for MN embeddings, at various temperatures: from top to bottom, r̃T = 2, 1.5,

1.2, 1.1, and 0.

which is a consequence of the mass gap. The Hall conductivity is

σyx =
D

B
=

ν

2π
=

2Nc(0)

π
(2.24)

as expected for a quantum Hall fluid. Note that, in string theory, the charge density is the

number of strings per unit volume and the magnetic field is 2π times the D5-brane number

per unit volume. Therefore, the filling fraction ν = 2πD
B is always rational.

We can view this MN state in two different ways. In one description, we have a

theory with N species of quark, and the basic excitation is a quark with charge one and

mass m. Each species is then in a fractional quantum Hall state with filling fraction ν
N .

Alternatively, we can view the basic excitation as a baryon made out of N quarks, carrying

charge N and having mass of order N . Then, the filling fraction for the baryon is just ν.

In the bulk description, the baryons are represented by smeared D5-branes, which, due to

the background of a RR 3-form flux, source a charge on the D7-brane. The quarks are

then the zero-length strings stretching from the D5-branes to D7-brane.

2.4 Alternative quantization

The application of SL(2,Z) (or some subgroup of it) to quantum Hall systems has a long

history,4 and recently SL(2,Z) duality has been incorporated in holographic quantum Hall

models [37, 38]. To understand the role of SL(2,Z), let us start with a quantum Hall state,

with the conductivity given by (2.23) and (2.24) and gapped to neutral excitations. If we

turn on a constant background electric field in the x-direction Ex, we obtain a current in

the y-direction

Jy =
D

B
Ex. (2.25)

4See [33–36] and references therein.
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We perform the SL(2,Z) transformation on the current5 and the background electromag-

netic field given by (1.12) and (1.13):

J∗
x = 0, E∗

y = 0

J∗
y = asJy − bs

Ex

2π
, −E

∗
x

2π
= csJy − ds

Ex

2π

−D∗ = −asD + bs
B

2π
,

B∗

2π
= −csD + ds

B

2π
. (2.26)

Under this transformation, the filling fraction transforms6

ν∗ =
asν − bs
−csν + ds

(2.27)

and similarly for σyx. Thus, we can start with some filling fraction ν which is fixed by the

embedding, in particular, by ψ∞, and an SL(2,Z) transformation will yield a theory with

a different conserved current J∗
µ and a different filling fraction ν∗. The gravity dual for

the new theory has the same bulk action and thus the same equations of motion and the

same embedding. The only difference is in the boundary terms, as explained in section 1.1.

Consequently, the statistics of the excitations change under SL(2,Z) as well.

Starting with the Hall current (2.25), if we choose cs and ds such that csD−ds B
2π = 0,

we get that both E∗
x = 0 and B∗ = 0 while J∗

y 6= 0. We end up with a nonvanishing current

but without a background electric field driving it and without a background magnetic field.7

Hence, this is a candidate for an anyonic superfluid. Note that the original quantum Hall

state broke parity and time reversal invariance8 due to the external magnetic field. The

anyonic superfluid therefore also breaks parity and time reversal but without any external

magnetic field.

3 Fluctuation analysis

We now compute the spectrum of collective excitations around the candidate anyon super-

fluid. We analyze the fluctuations of all fields around the MN background as in [31] but

impose alternative boundary conditions on the bulk gauge fields. If this system really is a

superfluid, we expect to see a gapless excitation.

We work in radial gauge (aR̃ = 0) and consider fluctuations with the following wave-

like form:

δãµ = δãµ(R̃)e
−iωt+ikx (3.1)

δρ̃ = δρ̃(R̃)e−iωt+ikx . (3.2)

5The components of the current are Jµ = (−D, ~Ji), and also 2πBµ = (B,Ey,−Ex).
6In some conventions the filling fraction transforms under SL(2,Z) with opposite signs for cs and bs,

which is also an SL(2,Z) transformation.
7Note that this is not possible to achieve if σxx 6= 0.
8See [27] for how discrete symmetries act on the bulk solution.
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Fluctuations of the embedding coordinate z decouple completely, so we will ignore them

here. In order to completely scale out the magnetic field, we need to rescale the frequency

and momentum by

(ω, k) =

√
b

L
(ω̃, k̃) . (3.3)

It is useful to define the gauge-invariant combination

δex = iωδa1 + ikδa0 (3.4)

which rescales as δẽx = δex/b. Expanding the D7-brane action (2.9) to quadratic order, we

derive the fluctuation equations of motion. This system of coupled, linear equations can

be found in appendix A.

The boundary conditions for the fluctuations of the D7-brane worldvolume gauge field

using a general alternative quantization condition (1.12) can be put in the convenient form

0 = −nδFµu +
1

2
ǫµνρδF

νρ , (3.5)

where the indices µ, ν, and ρ are (2 + 1)-dimensional boundary coordinates, raised and

lowered by the flat metric ηµν , and the inverse radial coordinate u = L2/r.

We rewrite the relationship (1.2) in the rescaled variables:

δd =

(

π − 2ψ∞ +
1

2
sin(4ψ∞)

)

δb . (3.6)

Comparing this with (3.5) and noting that

Fµu(u = 0) =
d

[4 cos4 ψ∞(f2 + 4 sin4 ψ∞)]1/2
, (3.7)

we find the parameter n is given in terms of the parameters of the SL(2,Z) transforma-

tion (2.27) by

n =
N

π[4 cos4 ψ∞(f2 + 4 sin4 ψ∞)]1/2
cs
ds

. (3.8)

In components, the boundary condition (3.5) is

nδ∂ua0 + ikδa2 = 0 (3.9)

nδ∂ua1 − iωδa2 = 0 (3.10)

−inδ∂ua2 + δex = 0 , (3.11)

where we have used δex = iωδa1 + ikδa0. We can now use the gauge constraint coming

from the equation of motion for δaz, which, for u→ 0, reads

kδ∂ua1 + ωδ∂ua0 = 0 . (3.12)

We can then show that both (3.9) and (3.10) end up giving the same boundary condition:

0 =
in

ω2 − k2
δ∂uex + δa2 . (3.13)
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Now we need to put the boundary conditions (3.13) and (3.11) in terms of the rescaled

radial coordinate R̃, which we will use in the numerical calculations. In terms of R̃ and

the other rescaled variables, the boundary conditions are

−in
ω̃2 − k̃2

R̃2

cosψ∞
δ∂R̃ẽx + δã2 = 0

in
R̃2

cosψ∞
δ∂R̃ã2 + δẽx = 0 . (3.14)

From equations (1.12) and (1.13), we see that if we vary the action twice with respect

to csδv
µ+dsδA

µ, we get the two-point function of the new current. If we vary with respect

to csδJ
µ + dsδBµ, we get the two-point function of asv

µ + bsA
µ, and then acting with the

operator ǫνρµ∂
ρ, we also get the two-point function of the new current.

We search for normal modes by looking for pairs (ω̃, k̃) for which there is a solution

to the fluctuation equations (A.1), (A.3)–(A.7) with the boundary conditions (3.14). We

use the fluctuation analysis techniques used in [31] and based on [39, 40]. As explained in

section 1, we expect that there will be a gapless mode for a certain ncrit,

ncrit =
[4 cos4 ψ∞(f2 + 4 sin4 ψ∞)]1/2

π − 2ψ∞ + 1
2 sin(4ψ∞)

. (3.15)

Of course, whether ncrit can be realized by an SL(2,Z) transformation (rather than an

SL(2,R) transformation) depends sensitively on ψ∞ and on the number of D3-branes N ,

so we will not worry about this.

3.1 Numerical results

At n = 0 and zero temperature, the spectrum of normal modes is gapped [31], as expected

in a quantum Hall state. The first excited state is due to a pole in the current-current

correlator, and the next mode comes from fluctuations of the embedding scalar ρ̃. In

figure 2(L), we show the masses ω̃(k̃ = 0) of the first two excited states as a function of

n. The mass of the embedding scalar fluctuation does not depend on n since it decouples

from the fluctuations of the gauge fields at zero momentum. The two lowest modes cross

at ncross. As described in [23, 31], near this level crossing, a magneto-roton develops in the

spectrum at some nonzero momentum.

As we approach ncrit, for which the transformed background magnetic field vanishes,

the mass of the lowest mode decreases, and at ncrit there is a gapless excitation, as expected

from (3.15). At this value of n, the system is a superfluid. Figure 2(R) shows the dispersion

of this massless mode for different values of m̃. We plot in figure 3(L) the velocity v = ω̃/k̃,

k̃ → 0, of the massless mode as a function of the mass parameter m̃. Figure 3(R) shows the

velocity for different values of the original filling fraction ν at n = 0, that is, for different

kinds of anyons.

To compare with the results for free anyons, [1] gives the velocity of the gapless mode

to be (in our notation) v ∼
√

ν
N

√
b

m̃ . Note that this result is independent of whether we

consider anyons to be made out of quarks and flux or baryons and flux. As can be seen

from figure 2, we find that v scales as 1/m̃ and ν0.4 and with constant offsets.

– 11 –
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Figure 2. Left: the mass of the lowest two normal modes as a function of n. We have chosen

m̃ = −3 and ψ∞ = 1

2
arccos

(

1

3

)

, which yields ncrit = 0.565. The modes cross at ncross ≈ −0.6.

Right: the dispersion of the gapless mode at ncrit for several values of m̃: The bottom blue curve

is m̃ = −3, the middle red curve is m̃ = −5, and the top brown curve is m̃ = −20.
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Figure 3. Left: the velocity of the gapless mode as a function of m̃. The points are computed

numerically and have been fit to the curve v = 0.693+0.328/m̃. Right: the velocity of the massless

mode as a function of the original filling fraction with m̃ = −20 . The curve to which the points

are fit is v = 0.62 + 0.38(ν/N − 0.70)0.40. In both plots T = 0.

The difference between the free anyon result and our strong-coupling result is not only

in the actual form of the function but also in the meaning of the filling fraction ν. To

see this, note that the free anyon result predicts that the velocity of the massless mode

changes when the filling fraction changes by one.9 In our case, the equation of motion

for the fluctuations depend only on ψ∞, and the boundary condition on n. Starting with

some filling fraction ν and some boundary condition labelled by n, we can make a T

transformation, which changes v → ν+1 and leaves n the same. While ν has changed, the

bulk fluctuations equation of motion has not, since the change came from a redefinition of

the conserved current via boundary terms. This means that the normal mode spectrum

will be unchanged. Figure 3(R) is a result of changing ψ∞.

Turning on a small nonzero temperature does not qualitatively change the system. In

particular, there is still a gapless mode at ncrit with an approximately linear dispersion, as

9In fact, [1] only considered situations where ν is a large integer.
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Figure 4. Left: the dispersion of the gaplesss mode with m̃ = −3 for different temperatures: The

blue curve is r̃T = 0, the red curve is r̃T = 1, and the green curve is r̃T = 1.16. Right: the velocity

of the massless mode as a function of temperature, also with m̃ = −3. At r̃T ≈ 1.17, the velocity

vanishes, and the massless mode changes into a pair of purely imaginary mode, one of which has

positive imaginary frequency, signaling an instability.

shown in figure 4(L). This is in contrast to the nonzero-temperature behavior of regular

holographic superfluids, where at nonzero temperature, the Goldstone mode frequency

acquires an imaginary part [39, 41]. For a sufficiently high temperature, however, the

massless mode velocity goes to zero, as can be seen in figure 4(R), and an instability sets

in. Note that as described in [13] (adapted to the current notation), as the temperature is

increased, at around r̃T ≈ 1.05 two BH solutions start to exist, and at around r̃T ≈ 1.23,

the MN embedding ceases to be a solution. Somewhere in between there is a first-order

phase transition to the metallic BH phase, which is not a superfluid.

3.2 Comments

Each value of n in figure 2(L) corresponds to an anyonic system in the presence of a residual

magnetic field B∗. As n → ncrit, this residual magnetic field vanishes. For any other n,

we have an anyonic system which is gapped in the presence of the residual magnetic field.

This is a quantum Hall state in which the charge carriers are anyons with filling fraction ν∗

depending on the SL(2,Z) transformation (2.27). However, n depends only on cs/ds (3.8)

and not as or bs. At ncrit, there is a gapless mode, and the anyonic system is a superfluid.

One can write solutions of the bulk equations of motion for a current flowing without any

electric field driving it. These are just a reinterpretation via the alternative quantization of

the original solutions for the quantum Hall state with an electric field driving a Hall current.

We can ask what happens when we increase the magnetic field for fixed anyonic statis-

tics, that is, for fixed n. This can be done by starting with a different ratio of charge to

magnetic field. In this case, we are no longer in a MN embedding but rather a BH embed-

ding. After changing the boundary conditions, the system is neither in a quantum Hall (for

general n) or superfluid (n = ncrit) state. Instead, it is in the metallic state represented by

a BH embedding.

If we want to add just a finite number of magnetic fluxes, we can do that by starting

with some extra amount of localized charge in the original theory. The charge is repre-
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sented by elementary strings stretching from the tip of the D7-brane to the horizon. If

there is a density of such strings, they will pull the D7-brane into the horizon. But, if

there are only a finite number of localized strings, they create local funnels connecting the

D7-brane to the horizon. In such places, locally σxx 6= 0. After the appropriate SL(2,Z)

transformation, the strings will become magnetic vortices inside the superfluid. However,

at their cores, there is a normal fluid since originally σxx 6= 0 there. If coupled to real,

dynamical electromagnetism, the anyonic superfluid will therefore be a type II supercon-

ductor. If the original quantum Hall system included impurities, there would be plateaux

in σyx; we could add some extra charges, and the system would remain in the gapped MN

phase. The transformed system would then be stable to the introduction of some magnetic

flux and would stay a superfluid even at some nonzero magnetic field.
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A Fluctuation equations of motion

In this appendix we will provide the equations of motion for all the fluctuation fields studied

in the bulk part of the paper. The equations are easy and straightforward to obtain, albeit

they are very long. To avoid extra clutter, we have omitted tildes in all the quantities.

The equation of motion for δat is:

∂RH = − ik
2
δayc

′(R)− gk2a′0P

h2r6
δρ+ kδex

(

4Gr4

g(1 + r4)
+
ga′20
h2r4

)

− ikδay∂R

(

ga′0
hr4

)

, (A.1)

where we introduced a fluctuation-dependent function H:

H =
16R3δρρ2

r6
+
g
(

1 + r4
) (

4Gh2r4R4 + g2
(

1 + r4
)

a′20
)

δa′t
4Gh3r8R4

−g
3P
(

1 + r4
)2
a′0δρ

′

4Gh3r10R4

+
1

4Gh3r12R4
g
(

1 + r4
)

δρa′0

(

− 16Gh2r6
(

2 + r4
)

R4ρ

1 + r4
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+8h2r4R4ρ
(

f2R2 +
(

4 + f2
)

ρ2
)

+g2
{

ρ
(

−h
(

r2+r6
)

+
(

5+3r4
)

R2 +
(

−2+7h+(−2+5h)r4
)

ρ2 − 2r2
(

2 + r4
)

a′20
)

+(−1 + h)R
(

r2 + r6 − 2
(

7 + 5r4
)

ρ2
)

ρ′

−ρ
(

r2 + r6 +
(

2− 7h+ 2r4 − 5hr4
)

R2 −
(

5 + 3r4
)

ρ2
)

ρ′2
}

)

. (A.2)

The equation of motion for δax reads:

∂R

(

g

ω
(kδa′t − δe′x)

)

(A.3)

= −iωδay∂R
(

ga′0
hr4

)

− gkωa′0P

h2r6
δρ+

gω

h2r4
(A+ a′20 )δex −

iω

2
δayc

′(R) .

The equation of motion for δay is as follows:

−∂R(ga′y) =
i

2
δexc

′(R) + iδex∂R

(

ga′0
hr4

)

− ikδρ∂R

(

gP

hr6

)

+δay

(

gω2a′20
h2r4

− 4Gr4(hk2r4 − (1 + r4)ω2)

g(1 + r4)2

)

+ i
gkRρ′

hr6
(1− h)δρ

−16i
kR3ρ2a′0

r6
δρ+ ikNδρ . (A.4)

Next we write down the δρ equation of motion,

−∂R
(

g3(1 + r4)3a′0P

4Gh3r10R4
δa′t

)

+ ∂R

(

g3(1 + r4)2P 2

4Gh3r12R4
δρ′
)

−∂R
(

g(1 + r4)

hr6
(hR2 + ρ2)δρ′

)

+ ∂R(Sδρ)

= −gka
′
0P

h2r6
δe′x + ikδay∂R

(

gP

hr6

)

− g

h2r8
δρ
(

hk2R4 − (1 +R4)ω2 + (hk2 − ω2)ρ2(2R2 + ρ2)− k2r2(hR2 + ρ2)a′20
)

−16
R3ρ2

r6
(ika′0δay + δa′t)− 32

R3ρa′0
r8

δρ(R2 − 2ρ2)

−Tδa′t − kUδay − V δρ−Wδρ′ . (A.5)

The δz equation of motion decouples from all the other fluctuations:

− ∂R

(

gr2
√

1 + r4δz′
)

= − gA

hr2

√

1 + r4k2δz +
g
√
1 + r4ω2

h2r2
(A+ a′20 )δz . (A.6)

Finally, the constraint stemming from maintaining the radial gauge, aR = 0, reads:

k

ω
g(δe′x − kδa′t)− ωH = 0 . (A.7)

The following background functions were introduced in the above equations,

P = (1− h)Rρ+ ρ′(hR2 + ρ2) (A.8)
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and

N =
8f2hR6ρ

gr4 + gr8
+
g
(

h
(

r2 + r6
)

−
(

5 + 7r4
)

R2
)

ρ

hr8 (1 + r4)

+

(

g2
(

2− 7h+ 2r4 − 9hr4
)

+ 8
(

4 + f2
)

h2r4R4
)

ρ3

ghr8 (1 + r4)

+
2g
(

2 + 3r4
)

ρa′20
hr6 (1 + r4)

− g(−1 + h)R
(

r2 + r6 − 2
(

7 + 9r4
)

ρ2
)

ρ′

hr8 (1 + r4)

+
gρ
(

r2 + r6 +
(

2− 7h+ 2r4 − 9hr4
)

R2 −
(

5 + 7r4
)

ρ2
)

ρ′2

hr8 (1 + r4)
, (A.9)

and

S =
g3P

(

1 + r4
) (

2 + r4
)

ρa′20
2Gh3r12R4

− g(1− h)R
(

r2 + r6 − 2
(

7 + 5r4
)

ρ2
)

hr8

+
g3P

(

1 + r4
)

ρ
(

h
(

r2 + r6
)

−
(

5 + 3r4
)

R2 +
(

2− 7h+ 2r4 − 5hr4
)

ρ2
)

4Gh3r14R4

−2gP
(

1 + r4
)

ρ
(

f2R2 +
(

4 + f2
)

ρ2
)

Ghr10

−2gρ
(

r2 + r6 +
(

2− 7h+ 2r4 − 5hr4
)

R2 −
(

5 + 3r4
)

ρ2
)

ρ′

hr8

−g
3(−1 + h)P

(

1 + r4
) (

r2 + r6 − 2
(

7 + 5r4
)

ρ2
)

ρ′

4Gh3r14R3

+
g3P

(

1 + r4
)

ρ
(

r2 + r6 +
(

2− 7h+ 2r4 − 5hr4
)

R2 −
(

5 + 3r4
)

ρ2
)

ρ′2

4Gh3r14R4
, (A.10)

and

T = −g
3
(

−1− r4
) (

2 + r4
)

ρa′30
2Gh3r10R4

+g3
(

1 + r4
)

ρ
(

h
(

r2 + r6
)

−
(

5 + 3r4
)

R2 +
(

2− 7h+ 2r4 − 5hr4
)

ρ2
)

4Gh3r12R4
a′0

−2gρ
(

−2Gr2
(

2 + r4
)

+ f2
(

1 + r4
)

R2 +
(

4 + f2
) (

1 + r4
)

ρ2
)

a′0
Ghr8

+
g3(−1 + h)

(

−1− r4
) (

r2 + r6 − 2
(

7 + 5r4
)

ρ2
)

a′0ρ
′

4Gh3r12R3

−g
3
(

−1− r4
)

ρ
(

r2 + r6 +
(

2− 7h+ 2r4 − 5hr4
)

R2 −
(

5 + 3r4
)

ρ2
)

a′0ρ
′2

4Gh3r12R4
, (A.11)

and

U =
8if2hR6ρ

gr4(1 + r4)
+
ig
(

h
(

r2 + r6
)

−
(

5 + 7r4
)

R2
)

ρ

hr8 (1 + r4)

+
i
(

g2
(

2− 7h+ 2r4 − 9hr4
)

+ 8
(

4 + f2
)

h2r4R4
)

ρ3

ghr8 (1 + r4)
+

2ig
(

2 + 3r4
)

ρa′20
hr6 (1 + r4)

− ig(−1 + h)R
(

r2 + r6 − 2
(

7 + 9r4
)

ρ2
)

ρ′

hr8 (1 + r4)

+
igρ
(

r2 + r6 +
(

2− 7h+ 2r4 − 9hr4
)

R2 −
(

5 + 7r4
)

ρ2
)

ρ′2

hr8 (1 + r4)
, (A.12)
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and

W = −g
3P
(

1 + r4
) (

2 + r4
)

ρa′20
2Gh3r12R4

−g
3P
(

1 + r4
)

ρ
(

r2 + r6 +
(

2− 7h+ 2r4 − 5hr4
)

R2 −
(

5 + 3r4
)

ρ2
)

ρ′2

4Gh3r14R4

+
g(1− h)R

(

r2 + r6 − 2
(

7 + 5r4
)

ρ2
)

hr8

+
2gρ

(

r2 + r6 +
(

2− 7h+ 2r4 − 5hr4
)

R2 −
(

5 + 3r4
)

ρ2
)

ρ′

hr8

+
1

4Gh3r14R4
gP
(

1 + r4
)

(

ρg2
(

−h
(

r2 + r6
)

+
(

5 + 3r4
)

R2
)

+
(

g2
(

−2 + 7h+ (−2 + 5h)r4
)

+ 8
(

4 + f2
)

h2r4R4
)

ρ3

+8ρf2h2r4R6 + g2(−1 + h)R
(

r2 + r6 − 2
(

7 + 5r4
)

ρ2
)

ρ′
)

, (A.13)

and finally

V = −g
3
(

2 + r4
)2
ρ2a′40

Gh3r12R4

+g
8
(

2 + r4
)

ρ2
(

f2R2 +
(

4 + f2
)

ρ2
)

a′20
Ghr10

+g

(

8h2r10
(

2 + r4
)

R4 − 16h2r8
(

10 + 3r4
)

R4ρ2
)

a′20
4h3r16R4

− 1

Gh3r14R4
g3
(

2 + r4
)

ρa′20

(

− (−1 + h)r2
(

1 + r4
)

Rρ′

+2(−1 + h)
(

7 + 5r4
)

Rρ2ρ′ − ρ3
(

−2
(

1 + r4
)

+ h
(

7 + 5r4
)

+
(

5 + 3r4
)

ρ′2
)

+ρ
(

h
(

r2 + r6
)

−
(

5 + 3r4
)

R2 +
(

r2 + r6 + (2− 7h)R2 + (2− 5h)r4R2
)

ρ′2
)

)

+
8hR4

(

f4R6 +
(

4 + f2
)

ρ2
(

3f2R4 + 3f2R2ρ2 +
(

4 + f2
)

ρ4
))

gGr8

+
1

hr10
g

(

h
(

r4 + r8
)

− r2
(

5 + 3r4
)

R2

+ρ2
{

r2
(

8− 33h+ 8r4 − 23hr4
)

− 2
(

−31 + h+ (−13 + h)r4
)

R2

+2
(

−25− 17r4 + h
(

55 + 29r4
))

ρ2
}

+2(−1 + h)Rρ
(

r2
(

19 + 13r4
)

+ 2
(

1 + r4
)

R2 − 2
(

55 + 29r4
)

ρ2
)

ρ′

+
{

r4 + r8 − hr2
(

5 + 3r4
)

R2 − 2(−1 + h)
(

1 + r4
)

R4

+ρ2
(

− 5r2
(

5 + 3r4
)

+ 2
(

−25− 17r4 + h
(

55 + 29r4
))

R2

+12
(

5 + 2r4
)

ρ2
)

}

ρ′2
)
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− 1

4Gh3r16R4
g
{

ρ
(

h
(

r2 + r6
)

−
(

5 + 3r4
)

R2 +
(

2− 7h+ 2r4 − 5hr4
)

ρ2
)

−(−1 + h)R
(

r2 + r6 − 2
(

7 + 5r4
)

ρ2
)

ρ′

+ρ
(

r2 + r6 +
(

2− 7h+ 2r4 − 5hr4
)

R2 −
(

5 + 3r4
)

ρ2
)

ρ′2
}

×
{

− 16ρf2h2r4R6 + 16ρ
(

4 + f2
)

h2r4R4

+ρ
(

g2
(

h
(

r2 + r6
)

−
(

5 + 3r4
)

R2
)

−
(

g2
(

−2 + 7h+ (−2 + 5h)r4
)))

ρ2

−g2(−1 + h)R
(

r2 + r6 − 2
(

7 + 5r4
)

ρ2
)

ρ′

+g2ρ
(

r2 + r6 +
(

2− 7h+ 2r4 − 5hr4
)

R2 −
(

5 + 3r4
)

ρ2
)

ρ′2
}

. (A.14)
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