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1 Introduction

A precision determination of the parameters of the Standard Model (SM) is mandatory for

a stringent test of the theory and eventually to identify the effects of new physics. Decades

of large-scale experimental efforts have been devoted to testing the SM. At high energies

LEP has examined the gauge structure of the SM with great precision without any serious

hint of effects beyond the SM. The flavor structure of the SM has been verified in many

ways, and in particular at the B factories of SLAC and KEK. In both respects, the flavor

and the gauge structure, the SM has so far passed all the tests.

A sound theoretical foundation is needed to perform such tests along with precise

data. Methods have been developed in heavy flavor physics over the last two decades

that allow systematic and controllable calculations. As an example, the determination of

the CKM matrix element Vcb employing the heavy mass expansion has reached a relative

theoretical uncertainty of about two percent; its extraction from inclusive semileptonic

decays is presently believed to be most precise.

The determination of Vcb from the exclusive decay B → D∗`ν̄ requires the knowledge

of the form factor at the zero-recoil point where the velocities of the initial and final states

are equal, v · v′=1. In the heavy quark limit the form factor is normalized to unity owing

to the heavy quark symmetries; the precision determination of Vcb requires to control the

deviation from the symmetry limit.

The zero-recoil version of the heavy quark sum rules was proposed back in the 1990s

to estimate the scale of the nonperturbative corrections, which turned out significant, even

considering that the effects are driven by the moderate charm mass. As soon as the first

experimental B → D∗`ν̄ data were available, these early analyses suggested a value of Vcb
in agreement with the inclusive value, but were unable to make precise predictions because

of the poor knowledge of the important heavy quark hadronic parameters.

A model-independent accurate calculation of the formfactor may be expected from

QCD lattice simulations provided they measure directly its deviation from unity. The

value for the form factor F(1) obtained in existing lattice calculations leads to smaller

Vcb compared to the values from the inclusive determination. The latter meanwhile has

become quite mature both experimentally and theoretically.

The significant progress in our understanding of heavy mesons brought about by all

the precision data in the B sector calls for a reappraisal of the heavy quark expansion

for F(1). In particular, the focus has shifted from deriving upper bounds to obtaining an

actual prediction for F(1) with an informative and motivated error estimate.

In the present paper we discuss the technical details of the analysis that led to the

results reported in ref. [1]. Our estimate for the central value of the formfactor at v · v′=1

is appreciably lower than lattice estimates, which in turn appear marginally compatible

with the unitarity bound. Consequently, the value of Vcb extracted using our formfactor

is larger and happens to be close to the inclusive one, although it still suffers from larger

theory uncertainty.

In the course of the analysis of the zero-recoil sum rule we have found a fruitful link

among three apparently unrelated topics in heavy meson phenomenology: the value of
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F(1), the hyperfine splitting in B and D, and the ‘1
2 >

3
2 ’ puzzle. We have observed that if

the transition amplitudes into the ‘radial’ and/or D-wave states are enhanced with respect

to the naive quark models one can simultaneously find a lower F(1), thus reconciling

exclusive and inclusive Vcb, explain the ‘1
2 >

3
2 ’ puzzle, and describe the mass dependence

of the hyperfine splitting.

The paper is divided in two parts. The first part describes the principal ingredients

required for the evaluation of F(1). Our general approach, outlined in section 2, is essen-

tially an implementation of the Heavy Quark sum rules laid down in ref. [2]. Technically,

we formulate it in a somewhat different way which has several advantages. To eventually

sharpen the estimate, a number of points had to be improved.

First, the perturbative corrections should be calculated with the hard cutoff consistent

with the Wilsonian ‘kinetic’ renormalization scheme. This is a nontrivial point which

caused confusion in the past literature. We present a method to obtain the leading αs-

corrections together with all BLM-improvement terms as a function of the cutoff scale µ,

avoiding an expansion in µ/mQ. This is the subject of section 3 where the numeric results

are also presented, including known second-order non-BLM terms.

Section 4 discusses power corrections in the short-distance expansion of the scattering

amplitude off the heavy quark; these correspond to the power corrections in the sum rules.

We find a noticeable impact of the 1/m3
c corrections lowering F(1), and estimate higher-

order effects in the framework of the recent analysis [3] of 1/m4
Q and 1/m5

Q corrections in

the inclusive decays.

Section 5 presents the novel evaluation of the inelastic contributions to the unitarity

relation, which uses as an input the hyperfine splitting of B and D mesons. We found

that the usual nonlocal D = 3 correlators for heavy quark mesons are rather large, and

this yields a large inelastic contribution which significantly exceeds the naive estimates of

the past. This in turn lowers the expected central value of F(1) down to about 0.86. We

have also refined the estimate of the D(∗)π continuum contribution to the inelastic contri-

bution, which supports its overall numerical significance. Independently of the hyperfine

constraints, the continuum contributions lowers the unitarity upper bound for F(1).

The conclusions of the first part focussing on F(1) are summarized in section 8, with

the numeric values given in eqs. (8.1), (8.2) and (8.3).

Section 6 opens the second, more theoretical part, where we scrutinize, in a model-

independent way, the higher excited heavy quark states contributing to the inelastic tran-

sitions. In the heavy quark limit these belong to the radial or D-wave states. This is the

framework which allowed us to relate the mass dependence of the hyperfine splitting to

F(1) in an informative way. Within the same framework we could link the observed en-

hancement of the nonlocal effects to the significant inclusive yield of higher-excited states

beyond D, D∗ and their P -wave excitations, thereby substantiating a possible resolution

of the so-called ‘1
2 >

3
2 ’ puzzle. As a byproduct of the model-independent description we

analyze the nonfactorizable effects in the higher-dimension expectation values, and we give

numeric estimates for some representative combinations. The non-resonant D(∗)π con-

tinuum has been studied in the same heavy-quark limit setting, relying on the soft-pion

approximation.
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Figure 1. The analytic structure of T zr(ε) and the integration contour yielding the sum rule.

Distant cuts are shown along with the physical cut. The radius of the circle is εM .

In section 7 we discuss certain theoretical aspects related to both the present and the

lattice analyses of F(1). We also briefly mention what can be gained applying our approach

to the vector B→D transitions. The main conclusions are summarized in section 8.

The appendices contain several of the details omitted from the main text. They mostly

concern the perturbative calculations; there we discuss some of the conceptual aspects and

also give the concrete expressions required in the analysis of F(1).

2 The framework

We consider the zero-recoil (~q = 0) forward scattering amplitude T zr(ε) of the flavor-

changing axial current c̄~γγ5b off a B meson at rest:

T zr(ε) =

∫
d3x

∫
dx0 e

−ix0(MB−MD∗−ε) 1

2MB
〈B|1

3
iT c̄γkγ5b(x) b̄γkγ5c(0)|B〉 , (2.1)

where ε is the excitation energy above MD∗ in the B → Xc transition (the point ε = 0

corresponds to the elastic B → D∗ transition). The amplitude T zr(ε) is an analytic function

of ε and has a physical decay cut at ε≥ 0, and other ‘distant’ singularities at |ε|& 2mc.

The analytic structure of T zr(ε) is illustrated by figure 1.

We consider the contour integral

I0(εM ) = − 1

2πi

∮
|ε|=εM

T zr(ε) dε (2.2)

with the contour running counterclockwise from the upper side of the cut, see figure 1.

Using the analytic properties of T zr(ε) the integration contour can be shrunk onto the

decay cut; the discontinuity there is related to the weak transition amplitude squared of

the axial current into the final charm state with mass MX =MD∗+ε. If we explicitly single

out the elastic transition contribution B→D∗ at ε=0 then

I0(εM ) = F2(1) + Iinel(εM ), Iinel(εM )≡ 1

2πi

∫ εM

ε>0
discT zr(ε) dε (2.3)

holds, where Iinel(εM ) is related to the sum of the differential decay probabilities, in the

zero recoil kinematics, into the excited states with mass up to MD∗+εM .

– 4 –
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The OPE allows us to calculate the amplitude in (2.1) — and hence I0(εM ) — in

the short-distance expansion provided |ε| is sufficiently large compared to the ordinary

hadronic mass scale. It should be noted that strong interaction corrections are driven not

only by |ε|, but also by the proximity to distant singularities. Therefore, εM cannot be

taken too large either, and the hierarchy εM�2mc has to be observed.

The sum rule eq. (2.3) can be cast in the form

F(1) =
√
I0(εM )−Iinel(εM ) (2.4)

which is the master identity for the considerations to follow. Since Iinel(εM ) is strictly

positive, we get an upper bound on the formfactor

F(1) ≤
√
I0(εM ) (2.5)

which relies only on the OPE calculation of I0. Note that this bound depends on the

parameter εM , while eq. (2.4) is independent of εM since the dependence in I0 and Iinel

cancel. Furthermore, including an estimate of Iinel(εM ) we obtain an evaluation of F(1).

The correlator in eq. (2.1) can be computed using the OPE, resulting in an expansion of

T zr(ε) in inverse powers of the masses mc and mb. This yields the corresponding expansion

of I0(εM ). This OPE takes the following general form:

I0(εM ) = ξpert
A (εM , µ) +

∑
k

Ck(εM , µ)

1
2MB
〈B|Ok|B〉µ
mdk−3
Q

(2.6)

= ξpert
A (εM , µ)−∆1/m2

Q
(εM , µ)−∆1/m3

Q
(εM , µ)−∆1/m4

Q
(εM , µ)− . . .

≡ ξpert
A (εM , µ)−∆A(εM , µ),

where Ok are local b-quark operators b̄ . . . b of increasing dimension dk≥5, Ck(εM , µ) are

Wilson coefficients for power-suppressed terms, and ξpert
A is the short-distance renormaliza-

tion (corresponding to the Wilson coefficient of the unit operator), which is unity at tree

level. We have also introduced a Wilsonian cutoff µ used to separate long and short dis-

tances. The complete result does not depend on µ since the µ-dependence cancels between

the Wilson coefficients and the matrix elements of the operators. At tree level ∆A does

not depend on εM . In practical applications of the OPE it is convenient to choose µ in the

same range of εM , and therefore we will often set µ= εM , in which case we will also use

ξpert
A (µ) ≡ ξpert

A (µ, µ).

3 Perturbative corrections

The leading perturbative renormalization factor ξpert
A (εM , µ) can be expanded in powers of

αs. In the Wilsonian OPE all infrared physics is removed from perturbative corrections;

the perturbative series for ξpert
A is then free from infrared renormalons. The exact form

of the perturbative coefficients depends on the concrete definition of the higher-dimension

operators used in the OPE; we consistently assume the scheme of refs. [4, 5] often referred

to as “kinetic” (or Small Velocity); see also ref. [6]. Here we describe a compact method
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to calculate ξpert
A in this scheme; the details as well as the justification of the method can

be found in appendix B.

For the theoretical analysis we need to keep µ and εM distinct. Their role is different:

εM specifies the observable I0(εM ) under study, the energy integral of the spectral density.

I0(εM ) depends on εM , and the same applies to the Wilson coefficient ξpert
A for its leading

term in the OPE. On the contrary, µ is a technical tool employed in the OPE to separate

‘soft’ and ‘hard’ physics. Since I0(εM ) should not depend on µ, the same applies to the

right-hand side of eq. (2.6). While ξpert
A does depend on µ once the perturbative corrections

are included, this dependence is canceled by the µ-dependence of the power-suppressed

expectation values.

The εM -dependence of I0 is governed by the inelastic spectral density winel:

dI0(εM )

dεM
=

dIinel(εM )

dεM
≡ winel(εM ). (3.1)

The same holds for the εM -dependence of ξpert
A (εM , µ) as long as only the perturbative part

of the inelastic spectral density is considered:1

dξpert
A (εM , µ)

dεM
= wpert(εM ), (3.2)

where wpert(ε) ≡ wpert
inel (ε).

Although both εM and µ should be sufficiently large, in a fixed-order perturbative

expression one can formally set them equal to zero in ξpert
A (εM , µ). It is evident from the

definition of I0(εM ) that this would yield a ‘purely perturbative’ renormalization factor ηA
for the zero-recoil axial current to this order, as it is commonly defined in HQET:

ξpert
A (0, 0) = η2

A. (3.3)

We need, however to keep both mass parameters nonvanishing. Eq. (3.2) allows one to

pass to non-vanishing εM . In general, the µ-independence of the overall result is used to

fix ξpert
A at non-vanishing µ.

A relation similar to eq. (3.3) holds for a physical choice of the arguments in ξpert
A if

the perturbative calculation of the renormalization factor ηA is performed with an infrared

cutoff µ, and provided µ is close to εM . There is also a perturbative contribution to Iinel,

whose soft part is removed by the same cutoff. The precise relation is not trivial, however,

even at one loop. An extensive discussion is given in appendix B.

A direct calculation of the Wilson coefficients implies an infrared cutoff on the internal

gluon momentum in the Feynman diagrams. The contribution of soft gluons is subtracted

from ηA by a term δηsoft
A . In one-loop diagrams, see figure 2, the kinetic scheme cuts off

the Feynman integral at |~k|<µ yet the integration over k0 is always performed from −∞
to ∞. While the integral is dominated by small k0. |~k| , a power-suppressed contribution

comes also from large k0∼mQ. This piece is not soft and would not be properly accounted

for if attributed to the matrix elements in the OPE.
1This is true in general for εM � µ, or if we neglect O(αs) contributions to the Wilson coefficients of

the power suppressed operators.
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Jµ
A

k

b c

(a)

+ ++ + + α

γ β
+

k0
❥

(b)

Figure 2. a) Vertex diagram contributing to ηA. b) poles in the complex k0-plane encountered in

the one-loop diagrams. The standard Feynman propagators lead to contour α (blue); upon closing

it into the lower half-plane the integral equals the sum of the three residues. The calculation of

δηsoftA (µ) requires to pick up only the ‘near’ gluon pole (red), and is obtained by integration over

contour β (the bypass in green).

This brings us to an important point: the subtraction of the full |~k| < µ one-loop

contribution to ηA would not yield the correct Wilson coefficient, leading to spurious terms,

formally of order O(µ3/m3
Q). The correct subtraction includes only the residue of the ‘near’

gluon pole at k0 = |~k|−i0 in the calculation of the integral over k0. The other two residues

encountered in the conventional Feynman diagram calculation upon closing the k0 contour

into the lower half-plane, see figure 2b, correspond in fact to hard physics with gluon

virtuality ∼2mQ and must be left to the hard Wilson coefficients.

The different physics associated with the ‘distant’ poles in the diagram located near

k0 = 2mQ+~k 2/2mQ can be intuitively understood: picking up the corresponding residue

would leave the gluon propagator hard, k2 ≈ 4m2
Q for small ~k. These poles are actually

related to the divergence of the power expansion in ~k/mQ when the soft scale µ is increased

towards mQ. They contribute terms ∼ d3~k/m3
Q ∝ µ3/m3

Q and are seen starting at order

1/m3
Q in the OPE. A detailed discussion of this technical point is given in appendix B. The

validity of this prescription in the kinetic scheme is explicitly checked by the µ-independence

of the OPE relations beyond order 1/m2
Q. The matching of the µ-dependence of ξA to that

of the OPE expectation values is demonstrated in appendix C. We have also verified this

for the 1/mQ expansion of the heavy hadron mass.

As a result, the Feynman integration must be modified to exclude the residues of

the distant poles in the k0 plane from the calculation of δηsoft
A . The complete one-loop

expression for ξpert
A (εM , µ) accounting for the εM -dependence, eq. (3.2), takes the following

form:

ξpert
A (εM , µ) = η2

A − 2 δηsoft
A (µ)−

∫ µ′

εM

dεwpert(ε), (3.4)

where µ′ corresponds to the excitation energy of the inelastic transition with emission of a

gluon with energy ω= |~k|=µ,

µ′=µ+
√
m2
c+µ2−mc. (3.5)

– 7 –
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+ ++ + + +

k0
❥

Figure 3. The poles in the integrand and the integration contour in the complex k0 plane for

calculating the Wilson coefficient. At ~k 2 +λ2 > µ2 the integration is performed in the standard

way, dashed line. At ~k 2+λ2<µ2 the ‘near’ gluon pole (red) is moved above the real axis, and the

integration contour changes to pass below it, along the green short-dashed path. λ stands for the

gluon mass.

The last term in eq. (3.4) describes, at µ=εM , the recoil correction in the relation between

the normalization point and the upper limit of energy integration in I0. Let us note that

the recipe for calculating the combined contribution of the first two terms in eq. (3.4) can

also be formulated as changing, for |~k|<µ, the bypass prescription for the gluon pole at

k0 = |~k| from k0+i0 to k0−i0, see figure 3. In other words, the proper Wilsonian prescription

consists in discarding the gluon pole contribution for gluons softer than the cutoff.

The one-loop renormalization factor ηA without a cutoff is well known:

ηA = 1 +
3

4
CF

αs
π

(
mb+mc

mb−mc
ln
mb

mc
− 8

3

)
+O(α2

s) ; (3.6)

the explicit calculations yield for δηsoft
A (µ)

δηsoft
A (µ)=−CF g

2
s

4

∫
|~k |<µ

d3~k

(2π)3|~k|

(
1

m2
c

+
2

3mcmb
+

1

m2
b

)
=−CFαs

π

µ2

4

(
1

m2
c

+
2

3mcmb
+

1

m2
b

)
(3.7)

and the O(αs) inelastic spectral density is

wpert(ε) = CF
αs
π

M2−m2
c

12M3m2
b

(
2M2 + 3m2

b + 2mbmc +m2
c

)
, M=mc+ε; (3.8)

M is the invariant hadronic mass in the final state. The integral of the one-loop spectral

function that appears in (3.4) is

∫ εM

µ′
dεwpert(ε) = CF

αs
π

(εM−µ′)(εM+2mc+µ
′)

24m2
b (εM+mc)2

2εM (εM+2mc) (3.9)

+
m2
c

(
m2
c−3m2

b−2mbmc + 4mcµ
′ + 2µ′2

)
(mc + µ′)2

− (3mb−mc)(mb+mc)

12m2
b

ln
mc+µ

′

mc+εM

 .

Combining these in eq. (3.4) we obtain the one-loop ξpert
A (εM , µ) as an explicit function of

µ/mQ. The numeric dependence on µ can be seen in the first-order plot in figure 4.
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Our analysis of the one-loop corrections can be readily extended to include higher-

order BLM corrections which describe the effect of the running of αs in one-loop diagrams;

a complete BLM-summation is also possible. A detailed discussion of the technique, in

the context of the Wilsonian OPE, can be found in the appendix of ref. [7].2 We have

recapitulated the salient points in appendix A. In practice, a fictitious gluon mass λ is

introduced in the one-loop diagrams, and eventually a weighted integral over λ2 is taken.

Consequently, the above discussion concerning the Wilsonian cutoff and the OPE applies

also to the BLM corrections of any order.

The case of a massive gluon requires the following kinematic modifications. Since the

gluon energy is now

ω =

√
~k 2+λ2,

the range of soft gluon momenta ~k shrinks, |~k|<
√
µ2−λ2 and the cutoff in the diagrams

is now triggered by

θ(µ2−λ2−~k 2). (3.10)

Notably, no subtraction is necessary at λ > µ. The recoil energy is also modified and µ′ in

eqs. (3.5) is given by

µ′=
√
m2
c+µ2−λ2−mc+µ; (3.11)

the perturbative inelastic spectral density is given in appendix C, eq. (C.1).

In the Feynman diagrams the relevant gluon pole is now located at k0 =
√
~k 2+λ2

rather than at k0 = |~k |; this makes the explicit expression for δηsoft
A more cumbersome:

δηsoft
A (µ) = CF g

2
s

∫
k0<µ

d3~k

(2π)32k0

(
2m2

b−2mbk0−2k2
0 +λ2

(2mbk0−λ2)2

+
2m2

c−2mck0−2k2
0 +λ2

(2mck0−λ2)2
− 2

2mbmc−(mb+mc)k0+ 2
3
~k 2+λ2

(2mbk0−λ2)(2mck0−λ2)

)
; (3.12)

the integral can be solved analytically, resulting in a lengthy expression. The expression

for ηA at nonvanishing gluon mass is given in eq. (C.2) of appendix C.

Combining these elements in eq. (3.4) we obtain the one-loop correction to ξpert
A at

arbitrary gluon mass λ, ξpert
A (εM , µ;λ2). Assuming µ=εM , for λ2>µ2 the last two terms

in eq. (3.4) are absent at λ2 > µ2 and one simply has ξpert
A (µ;λ2) = η2

A(λ2). Using the

formulas of appendix A one readily obtains the BLM corrections of arbitrary order or the

resummed result. We performed the final integration over the gluon mass numerically.

The explicit expression for ηA(λ2) at small λ2 shows non-analytic terms in λ2, starting

with λ2

m2
Q

lnλ2. They signal the infrared sensitivity of ηA and the emergence of infrared

renormalons, which in turn makes it impossible to assign a definite value to the purely

perturbative ηA, and leads to a significant numerical instability from the higher-order

2There was a typo in eq. (A.6) of paper [8] for the BLM-resummed expression which unfortunately

propagated into the later paper [7], eq. (A.20); in that equation Λ2
V must be replaced by Λ2

QCD (the

conventional MS one) in the denominator of the power term. The correct expression is given here in

appendix A, eq. (A.2).
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corrections. Non-analytic terms are also present in δηsoft
A , and they precisely offset those in

ηA(λ2): the combined ξpert
A (εM , µ) in eq. (3.4) is an analytic function of λ2 in the vicinity of

zero at any positive µ. The radius of convergence of the Taylor series in λ2 is precisely µ2.

The cancellation of all the non-analytic pieces is most simply seen directly in the integral

representation for ηA−δηsoft
A (µ), upon closing the contour over the residues at positive k0.

The recoil integral describes the effect of shifting the normalization point and is purely

short-distance. Indeed, the one-loop spectral density wpert(ε;λ2) is explicitly analytic at

small λ2 for ε>µ where |~k | is of order µ. Consequently, there are no formal obstacles in

deriving either any higher-order BLM coefficient or the fully resummed BLM value for the

Wilson coefficient ξpert
A (εM , µ); apart from the ultraviolet domain, its perturbative series

has a finite radius of convergence, at least in the BLM approximation.

The advantage of the method described in this section is that it allows to calculate

the full µ-dependence of the Wilson coefficient. It does not apply to non-BLM corrections,

starting with O(α2
s). In that case, the µ-dependence of ξpert

A has to be determined, order

by order in 1/mQ, applying the normalization point independence of the OPE relations,

and using the initial condition eq. (3.3). This was done for the non-BLM O(α2
s) corrections

in ref. [9], through O(1/m2
Q); in particular, the two-loop spectral density wpert(ε) was

calculated there to this accuracy. The corresponding non-BLM coefficient was found to be

small numerically, which suggests that omitted terms O(α2
s µ

3/m3
Q) and higher should not

have a noticeable impact.

3.1 Numerical analysis

The perturbative corrections ξpert
A (εM ) appear to be small for values of εM between 0.6 GeV

and 1 GeV. Taking, for instance, εM = µ = 0.75 GeV, mc = 1.2 GeV, mb = 4.6 GeV and

assuming αs(mb)=0.22 we get√
ξpert
A = 1− 0.022 + (0.005− 0.004) + 0.002− 0.0015 + . . . (3.13)

Here the first term is the tree-level value, the second is the O(αs) term evaluated with

αs = 0.3, which corresponds to the strong coupling evaluated at an intermediate scale

between mc and mb. The two values in brackets show the shift, relative the one-loop

evaluation with αs=0.3, due to O(α2
s) corrections (positive for the BLM part and negative

from the non-BLM contribution); the last two terms are the O(β2
0α

3
s) and O(β3

0α
4
s), which

may serve as an estimate of even higher-order perturbative corrections.

Figure 4 shows the dependence of
√
ξpert
A (µ) on µ at different orders in αs assuming

αMS
s (mb) = 0.22. For µ between 0.7 and 0.8 GeV the value of

√
ξpert
A (µ) is close to 0.98,

and we associate to it a rather conservative 1% uncertainty:√
ξpert
A (0.75 GeV) = 0.98± 0.01 .

We emphasize that the observed stability of the perturbative expansion applies only to

the perturbative renormalization factor in the Wilsonian OPE, and that the quoted value

refers to the specific renormalization scheme which is used in the present analysis.
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√

ξ
pert

A
(µ)
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Figure 4.
√
ξpertA (µ) as a function of µ for mb = 4.6 GeV, mc = 1.2 GeV, αs(mb) = 0.22. The

curves represent the one-loop result evaluated with αs = 0.3 (blue), one-loop plus first order BLM

(green), complete O(α2
s) (red), two-loop plus third-order BLM (maroon).

Let us note here an observation that is relevant when the termsO(1/m3
Q) and higher are

accounted for. As mentioned in the previous subsection, the calculation of the perturbative

factor ξpert
A (µ) which neglects the subtleties related to the ‘distant’ poles yields the correct

result through order µ2/m2
Q, and one needs an improved method only to account for the

terms µ3/m3
Q and higher. Numerically the two methods yield very close results to order αs

and β0α
2
s, but the difference starts to accumulate systematically from order β2

0α
3
s on, even

though parametrically the difference between the two methods is still only of order 1/m3
Q.

For instance, the fully resummed results for the two prescriptions to calculate ξpert
A (µ) differ

by about 2%. This is in contrast with the case of the total b→ c `ν width, where there is

no visible difference between the result truncated at order α2
s and the fully resummed one.

The reason is that the current renormalization at zero recoil has an intrinsically lower scale

driven by the charm mass, in contrast to mb for Γsl(B).

4 Power corrections to I0

In this section we investigate the power corrections in the right-hand (OPE) side of the

sum rule eq. (2.6). The leading power corrections to I0 were calculated in refs. [2, 10] to

order 1/m2
Q and in ref. [11] to order 1/m3

Q and read

∆1/m2 =
µ2
G

3m2
c

+
µ2
π−µ2

G

4

(
1

m2
c

+
2

3mcmb
+

1

m2
b

)
, (4.1)

∆1/m3 =
ρ3
D −

1
3ρ

3
LS

4m3
c

+
1

12mb

(
1

m2
c

+
1

mcmb
+

3

m2
b

)
(ρ3
D + ρ3

LS) . (4.2)

The nonperturbative parameters µ2
π, µ2

G, ρ3
D and ρ3

LS all depend on the hard Wilsonian

cutoff. In the renormalization scheme we have adopted the inequalities µ2
π(µ) ≥ µ2

G(µ),

ρ3
D(µ)≥−ρ3

LS(µ) hold at arbitrary normalization point µ. The nonperturbative contribu-

tions in eqs. (4.1), (4.2) are therefore positive.
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To remain on the conservative side for numeric estimates we can adopt the low values

µ2
π(0.75 GeV) = 0.4 GeV2, ρ3

D(0.75 GeV) = 0.15 GeV3, and the quark masses mc = 1.2 GeV

and mb = 4.6 GeV (the scale dependence of the latter plays a role here only at the level

formally beyond the accuracy of the calculation). The dependence on µ2
G and on ρ3

LS is

minimal and their precise values do not matter; we use for them 0.3 GeV2 and −0.12 GeV3,

respectively. We then get

∆1/m2 = 0.091, ∆1/m3 = 0.028 . (4.3)

It is interesting to compare these estimates with those derived from the constraints

on the expectation values of dimension 5 and 6 operators from the semileptonic B-decay

moments. If we employ the values of the OPE parameters extracted from the latest official

HFAG fit to inclusive semileptonic and radiative decay distributions [12, 13], for µ =

0.75 GeV we find

∆1/m2 + ∆1/m3 = 0.102± 0.017 ,

which is consistent with (4.3). As discussed in [13], this HFAG fit to semileptonic moments

depends on several assumptions and does not yet incorporate certain higher-order effects

that may be important, including the complete α2
s-corrections [14–16]. In particular, more

realistic ansätze for the theoretical correlations have been considered in [17], leading to

larger values of the ∆A, with bigger errors. Typically, one then has

∆1/m2 + ∆1/m3 = 0.11± 0.03 . (4.4)

On the other hand, combining the semileptonic moments alone with a high precision de-

termination of the charm mass [18] yields [17]

∆1/m2 = 0.090± 0.013, ∆1/m3 = 0.029± 0.008 , (4.5)

in remarkable agreement with eq. (4.3).

The important question is how well the power expansion for the sum rule converges.

Recently, the OPE for the semileptonic B-meson structure functions has been extended to

order 1/m4
Q and 1/m5

Q [3, 19]. Applying the analysis to the structure functions mediated

by the axial and by the vector currents separately, we find3

16m4
c ∆1/m4 = −

(
3+

4

3
y+y4

)
m1 +

(
2

3
y− 2

3
y2− 2

3
y3−2y4

)
(m2+m5)

−
(

1 +
4

9
y +

1

3
y4
)
m4 +

(
1+

4

3
y−y4

)
m6 −

4

3
ym7 +

(
1

4
+

1

3
y− 1

4
y4
)
m8,

3We thank S. Turczyk for providing us with the input needed for this calculation.
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16m5
c ∆1/m5

Q
= −

(
2+

4

3
y− 2

3
y2
)
r1 +

(
6+4y+

1

2
y2+

2

3
y3+

4

3
y4+2y5

)
(r2−r3)

+

(
6+4y− 16

3
y2+

2

3
y3+2y5

)
r4 −

(
2+4y+

1

3
y3+

1

3
y4+y5

)
r5

−
(

2+
4

3
y+

23

6
y2+

1

3
y3+y4+y5

)
r6 +

(
2+

4

3
y+

7

6
y2+

1

3
y3+y4+y5

)
r7

+

(
2

3
− 4

3
y+

2

3
y2
)
r8 −

(
2+y+

14

3
y2− 2

3
y3− 2

3
y4−3y5

)
(r9−r12)

−
(

2+y+
7

2
y2− 2

3
y3− 4

3
y4−3y5

)
(r10−r11)−

(
2+6y+

26

3
y2− 2

3
y3− 2

3
y4−4y5

)
r13

−
(

2−4y+
16

3
y2− 2

3
y3−2y5

)
r14 +

(
4

3
− 1

3
y+4y2− 2

3
y3− 2

3
y4−3y5

)
r15

+

(
2

3
+

11

3
y+4y2− 1

3
y3− 1

3
y4−2y5

)
r16 +

(
2

3
− 4

3
y− 23

6
y2− 1

3
y3−y4−y5

)
r17

−
(

4

3
+

7

3
y+

17

6
y2− 2

3
y3− 4

3
y4−3y5

)
r18, (4.6)

where y=mc/mb and the D=7 and D=8 expectation values m1−9 and r1−18 are defined

in ref. [3]. These can be evaluated in the ground-state factorization approximation. Using

the expressions given in ref. [3] we obtain the estimates

∆1/m4 ' −0.023 , ∆1/m5'−0.013 . (4.7)

It is worth noting that retaining only the terms suppressed by the powers of 1/mc (i.e.,

evaluating the higher-order corrections in the limit mb → ∞) yields a perfect numeric

approximation to the full expression. In the ground state saturation approximation the

dominant contributions to ∆1/m4 and ∆1/m5 are those of m4,8 and r2,10, respectively,

without significant cancellations. We then observe that the power series for I0 appears

well-behaved at the required level of precision.

For what concerns the loop corrections to ∆A, the αs-correction to the Wilson co-

efficient for the kinetic operator in eq. (4.1) was calculated in ref. [9] and turned out

numerically insignificant. Generally larger αs-corrections are expected in the chromomag-

netic and Darwin coefficient functions. However, the dependence on µ2
G in eq. (4.1) turns

out negligible; therefore perturbative corrections are not expected to introduce significant

numerical changes in the estimate of ∆1/m2 . At order 1/m3
Q, even if radiative corrections

change the coefficient for the Darwin term by 30% the effect on the sum rule would still

be small.

Taking into account all the available information, our estimate for the total power

correction at εM =0.75 GeV is

∆A = 0.105 (4.8)

with a 0.015 uncertainty due to higher orders. On the theoretical grounds, larger values of

µ2
π and/or ρ3

D are actually favored; they tend to increase ∆A. Combining the above with

the perturbative corrections we arrive at an estimate for I0 and, according to eq. (2.5), at

a bound on the form factor, which in terms of the central values at εM =0.75 GeV is

F(1) < 0.925 . (4.9)
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As stated above, the upper bound in eq. (2.5) depends on εM , becoming stronger for

smaller εM . It is advantageous to choose the minimal value of εM for which the OPE-based

short-distance expansion of the integral (2.2) for I0(εM ) sets in. This directly depends on

how low one can push the renormalization scale µ while still observing the expectation

values actual µ-dependence in the kinetic scheme approximated by the perturbative one.

Since in this scheme µ2
π(µ) ≥ µ2

G(µ) holds for arbitrary µ, in essence this boils down to

the question at which scale µmin the spin sum rule and the one for µ2
G get approximately

saturated, e.g. µ2
G(µmin)'0.3 GeV2. The only vital assumption in the analysis is that the

onset of the short-distance regime is not unexpectedly delayed in actual QCD and hence

does not require εM > 1 GeV. This principal question can and should be verified on the

lattice. This will complement already available evidence from preliminary lattice data [20]

as well as from the successful experimental confirmation [21, 22] in nonleptonic B decays

of the predicted 3
2

−
-dominance.

5 Estimates of Iinel

We now turn to the actual estimate for the inelastic contribution. On general grounds [10]

Iinel is expected to be comparable to the power correction ∆A considered above; therefore

the inelastic contributions should be important numerically.

Our starting point is the first moment of the scattering amplitude spectral density

given by the contour integral

I1(εM ) = − 1

2πi

∮
|ε|=εM

T zr(ε) εdε ; (5.1)

we can write

Iinel(εM ) =
I1(εM )

ε̃
, (5.2)

where ε̃ is an average excitation energy which depends on εM . For moderate εM the integral

is expected to be dominated by the lowest ‘radial’ excitations4 of the ground state, with

ε̃ ≈ εrad ≈ 700 MeV. The first moment I1(εM ) can also be calculated in the OPE [2]; the

result reads

I1 =
−(ρ3

πG+ρ3
A)

3m2
c

+
−2ρ3

ππ−ρ3
πG

3mcmb
+
ρ3
ππ+ρ

3
πG+ρ3

S+ρ3
A

4

(
1

m2
c

+
2

3mcmb
+

1

m2
b

)
+O

(
1

m3
Q

)
.

(5.3)

4These excited states play an important role in the analysis of power corrections in the HQE, and we

clarify our terminology. In the heavy quark limit these are either the true radial excitations of the ground

state, or the counterparts of the D-waves. The former have spin-parity of the light cloud 1
2

+
while for the

latter it is 3
2

+
. At finite quark masses by “radial excitation” we refer to the descendants of any hyperfine

multiplet member of these heavy-quark states. More details are addressed in section 6.
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The nonlocal zero momentum transfer correlators ρ3
ππ, ρ3

πG, ρ3
S and ρ3

A have been introduced

in [2] and are given by

ρ3
ππ =

∫
d4x

1

4MB
〈B|iT{b̄~π 2b(x), b̄~π 2b(0)}|B〉′,

ρ3
πG =

∫
d4x

1

2MB
〈B|iT{b̄~π 2b(x), b̄~σ ~Bb(0)}|B〉′,

1

3
ρ3
Sδijδkl +

1

6
ρ3
A(δikδjl − δilδjk) =

∫
d4x

1

4MB
〈B|iT{b̄σiBkb(x), b̄σjBlb(0)}|B〉′, (5.4)

where ~B denotes the chromomagnetic field strength operator. The prime indicates that

the ground-state contribution is subtracted — otherwise the integral diverges at large x0

where the correlators approach a constant determined by the ground-state factorization

contribution.

At higher orders in 1/mQ the expansion (5.3) will include, along with the local ex-

pectation values of higher dimensional operators, more intricate nonlocal T -products. The

latter are poorly known. Since our goal is only to obtain a reasonable estimate, we discard

higher-order corrections and keep only the leading O(1/m2
Q) terms. This implies that the

expectation values can be considered in the static theory. The nonlocal correlators ap-

pear in I1 because the energy variable ε is defined with respect to the physical threshold

q0 =MB−MD∗ rather than relative to the parton-level threshold at q0 =mb−mc native

to the OPE. The terms given by the local operators cancel out in I1 to the leading order,

as becomes transparent in the quantum-mechanical interpretation of ref. [2], section 6.

The latter also explains the explicit field-theoretic expression for winel(ε), which is given

in section 6.1. It is important to stress that the third term in (5.3) is positive since the

combination ρ3
ππ+ρ3

πG+ρ3
S +ρ3

A is actually equivalent to the correlator of two identical

operators b̄(~σ~π)2b.

An important piece of information is provided by the heavy quark mass dependence

of the hyperfine splitting ∆M2, which allows us to estimate the overall magnitude of

the nonlocal correlators in eqs. (5.3). The 1/mQ scaling of the vector-pseudoscalar mass

splitting is nonperturbatively affected by the values of two D= 3 spin-triplet parameters,

ρ3
LS and ρ3

πG+ρ3
A:

MB∗ −MB =
2

3

µ2
G

mb
+
ρ3
πG+ρ3

A−ρ3
LS

3m2
b

+O
(

1

m3
b

)
, (5.5)

and likewise for charm. Since the spin-orbit expectation value is reasonably constrained

by the heavy quark sum rules, (5.5) yields information on the combination

−(ρ3
πG+ρ3

A).

A preliminary analysis was outlined in ref. [6] and indicated a large value exceeding the

naive expectations. We reconsider it carefully in section 6 and confirm the observation. This

combination enters directly the expression (5.3) for Iinel and is particularly important, as

will become clear in the following subsection, where we combine the theoretical expressions

for Iinel with the numerical analysis of the hyperfine splitting to arrive at our estimate for

Iinel. Additional technical details are given in section 6.3.
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5.1 Numerical estimate of Iinel

It turns out advantageous to analyze Iinel from the perspective of the BPS approximation

for B mesons [23]. In the BPS limit µ2
π=µ2

G and, since µ2
π−µ2

G=〈(~σ~π)2〉 in the B meson,

one concludes that b̄(~σ~π)b|B〉 = 0. This would also imply −ρ3
LS = ρ3

D. The deviation

from the BPS limit is quantified by the smallness of the difference µ2
π−µ2

G compared to

µ2
π itself [23]. Many remarkable relations hold in the BPS limit; for instance, among the

spectral densities of the correlators of b̄~π2b and b̄~σ ~Bb that we will introduce in section 6,

ρ
( 1
2

+
)

p (ω) = ρ
( 1
2

+
)

pg (ω) = ρ
( 1
2

+
)

g (ω), ρ
( 3
2

+
)

f (ω) = ρ
( 3
2

+
)

fg (ω) = ρ
( 3
2

+
)

g (ω), (5.6)

and among their integrals determining the ρ3 correlators:

ρ3
πG = −2ρ3

ππ, ρ3
πG+ρ3

A = −(ρ3
ππ+ρ3

S). (5.7)

In the BPS limit I1 in eq. (5.3) is then given by the same combination of the nonlocal

correlators that drives, besides ρ3
LS , the hyperfine splitting to order 1/m2

Q, cf. eq. (5.5):

I1
BPS
=
−(ρ3

πG + ρ3
A)

3m2
c

+O
(

1

m3
c

)
. (5.8)

The second term in eq. (5.3) for I1 is of the first order in the deviation from BPS;

as such it is not sign-definite. However, it is suppressed by the b-quark mass. The third

term is of the second order in the BPS violation and is positive; it comes with a large

coefficient. Therefore, the full expression develops only a shallow minimum where the

whole sum differs from the BPS value by a factor of no less than 0.93, see section 6.3.1.

In fact, I1 may exceed the BPS value by a larger amount, although our analysis favors a

negative sign for the second term. This typically results, at small deviations, in an overall

slight decrease.

A simple minimal — and most physical — ansatz for the spectral densities determining

the correlators elucidates the role of the constraints the correlators obey to. It assumes

that they are saturated by a single multiplet of excited states, for each angular momentum

of light degrees of freedom. Apart from the excitation mass gap the relevant contributions

are then determined by three residues; they are introduced in section 6.1 and are denoted

by P, G (for the radially excited 1
2

+
) and by g (for the 3

2

+
state), see eqs. (6.15), (6.16).

In the BPS limit P =G.

At a fixed hyperfine constraint on −(ρ3
πG+ρ3

A) the full expression for I1 in eq. (5.3)

depends on two dimensionless ratios, P/G and on the relative contribution of the 3
2

+

state proportional to g2. The minimum value for I1 occurs where the latter vanishes,

g = 0; whenever 3
2

+
dominates, I1 uniformly approaches its BPS value. The value of

P/G for which there is a minimum depends only on the ratio of the quark masses, see

eq. (6.42). Figure 5 shows the variation of I1/I
BPS
1 with P/G for a few values of the

relative contribution ν of the 3
2

+
state into the combination determining the hyperfine

splitting. More details of the analysis are given in section 6.3.1.
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Figure 5. Variation of I1/I
BPS
1 with P/G for different relative contribution ν of 3

2

+
to 1

2

+
states

to the hyperfine splitting, ν = 0 (blue), 0.5 (red), 0.8 (green).

Neglecting a possible few percent relative decrease in I1 we should, therefore, adopt

the BPS relation eq. (5.8) as a reasonably accurate lower bound estimate; this leads to the

estimate

Iinel(εM ≈0.75 GeV) &
0.45 GeV3 + (κ+0.2) · 0.35 GeV3

3m2
c ε̃

, (5.9)

where the dimensionless κ, introduced in eq. (6.30), parameterizes the exact value of the

correlator −(ρ2
πG+ρ3

A). κ is uncertain due to unknown higher power corrections and due

to the limited accuracy of the perturbative renormalization. Here εM is assumed to be

around 0.75 GeV to include the families of the lowest ‘radial’ excitations. Our analysis in

section 6.2 suggests that κ is relatively small, between −0.4 and 0.

Equating ε̃ in eq. (5.9) with εrad ' 700 MeV we estimate

Iinel & 0.14 . (5.10)

We recall that, in contrast to the OPE for I0(µ), this estimate assumes only the leading

µhadr/mQ pieces in the transition amplitudes. The subleading 1/mc corrections can be

numerically significant — this is illustrated, for instance, by eq. (4.3) — and can potentially

modify the actual Iinel by as much as 30% of the estimate, even though the inclusive sums

like Iinel are usually affected less than the individual transitions.

The precise value of µ2
π is not yet well known; it mainly affects the degree of proximity

of actual B mesons to the BPS regime. The BPS expansion would become more qualita-

tive than quantitative if µ2
π eventually exceeds 0.45 GeV2 by a significant amount. At the

same time, as illustrated in this section, this would not affect significantly our estimates.

Moreover, larger µ2
π lowers the model-independent upper bound which only assumes posi-

tivity of the inelastic contribution. Complementarily, from the full set of the heavy quark

sum rules we should expect larger transition amplitudes to the excited states at larger µ2
π.

This conforms the physical intuition which suggests
√
µ2
π to quantify the mass scale µhadr

governing the strength of the suppressed transition amplitudes ∝ µhadr/mQ. There is no a

priori reason to have small power corrections in F(1) at large µ2
π.
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5.2 Continuum D(∗)π contribution

The resonant states are expected to dominate the inelastic transitions at low excitation

energy. Continuum effects are formally 1/Nc suppressed and are usually numerically small,

unless the chiral singularity for the soft pion is strong enough; in the case of Iinel it is only

logarithmic. Here we give the continuum states D(∗)π a dedicated consideration since they

populate the lowest energy domain and are characterized by an average excitation gap

that can be noticeably lower than εrad. Moreover, these states contribute to the deviation

from the BPS regime, possibly dominating the deviation in the low-energy regime. In this

subsection we compute their contribution to the zero recoil sum rule with the soft pion

technique (see [24] for a review). Complementary theoretical considerations can be found

in section 6.4. Here we follow and extend the analysis of ref. [10].

Both Dπ and D∗π channels contribute to Iinel. The Dπ amplitude is given by the

sum of the two pole graphs in figure 6. The pion vertex is parameterized by the effective

Lagrangian

Lχ = 2 gD∗Dπ(MDD
∗
µD∂

µπ + rMBB
∗
µB∂

µπ). (5.11)

where r = gB∗Bπ/gD∗Dπ; heavy quark symmetry implies r = 1. In the heavy quark limit

the two diagrams in figure 6 cancel each other; all inelastic transitions vanish due to

heavy quark symmetry. A nonvanishing result emerges once the mass shifts in the virtual

propagators of heavy mesons are accounted for, or due to r 6= 1. The amplitude, for a

charged pion, then becomes

1

2
√
MBMD

〈D−π+| ~A |B+〉 = −gD∗Dπ ~pπ
(

1

ε
− r

ε+∆

)
, (5.12)

where (Eπ, ~pπ) is the pion four-momentum and we have neglected subleading terms. We

have set the weak vertex to unity, which is legitimate to the first order in the deviations

of F(1) from unity. In terms of the D meson energy, ED, the excitation energy is ε =

ED +Eπ−MD∗ ' Eπ +MD −MD∗ + ~p 2
π/2MD. ∆ represents a power correction: ∆ '

2/3µ2
G (1/mc+1/mb)+O(~p 2

π/mQ). Expanding the amplitude in powers of 1/mQ we would

get, for r=1,
1

2
√
MBMD

〈D−π+| ~A|B+〉 = −gD∗Dπ ~pπ
∆

ε2
,

which has the correct scaling ∝ 1/mQ for non-diagonal transitions that violate the heavy

quark symmetry. However, the hadronic mass scale in the denominator of the amplitude

is peculiar: it is the pion energy Eπ, which for a light pion can be significantly lower than

the typical QCD mass gap εrad.

The amplitude of eq. (5.12) at r=1 gives rise to the spectral density

wDπinel =
g2
D∗Dπ

12π2
|~pπ|3

∆2

ε2(ε+ ∆)2
; (5.13)

the logarithmic chiral singularity that emerges upon integration in the heavy quark limit

is regulated by the spin symmetry breaking term 2/3µ2
G (1/mc+1/mb) in ∆, even for a

massless pion. As noted in [10], however, the constant term is numerically larger than the
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Figure 6. Pole diagrams for the B→D+π amplitude.

chiral logarithm, ln ∆. The contribution due to neutral pions is half of the one related to

charged pions.

The B→Dπ amplitude in eq. (5.12) in fact receives additional relativistic corrections;

it is unique because of the soft pion enhancement we have discussed. Since this enhancement

is mild in the integrated probability, the regular contribution to the amplitude should be

included. In the actual calculations we use the complete relativistic propagators for B∗

and D∗ and invariant vertices, and do not rely on an expansion in 1/mQ. In other words,

we only use the soft-pion Lagrangian to model the pion emission amplitude, assuming that

the couplings do not vary significantly with energy. In effect, this implies a certain form

for the contact terms which appear in the chiral Lagrangian at the subleading 1/mQ order.

In the calculation of the integrated inelastic probability, there is a subtlety that requires

some care and was discussed already in [10]. Since MD∗ > MD +mπ, the point ε = 0

corresponds to |~pπ| ' 39 MeV and the integration extends to small negative ε. At ε = 0

the integral has a singularity related to the Dπ decay of the unstable D∗, which should

be distinguished from the actual continuum contribution, and has to be removed. In

practice, the physical regularization is to introduce the Breit-Wigner factor , replacing

1/ε2 in eq. (5.13) by 1/(ε2 +Γ2/4), where Γ is the decay width of D∗. In actuality Γ

is small compared even to the energy release in D∗→Dπ. Therefore including the width

serves only to regularize the integral. Adopting it, integration around ε=0 yields unity, the

probability of B→D∗ we start with, where D∗ is represented by the Dπ-resonance. The

integration over ε is then carried out with |ε|>εmin�Γ. The resulting inelastic integral

does not depend on the choice of εmin as long as Γ� εmin�MD∗−MD−mπ holds. An

accurate analysis shows that for all practical purposes the integral can simply be evaluated

by setting mπ=MD∗−MD.

It turns out that numerically the most important effect comes from the difference in

the pion-meson couplings in the charm and beauty sectors, r 6= 1. Various studies suggest

r . 1 [25]. Figure 7 shows the integrated wDπinel as a function of the upper cutoff on the

pion momentum, pmax
π , for a few values of r. Formally, pmax

π is related to the maximum

excitation energy εM :

εM =
√

(pmax
π )2 +m2

π +
√

(pmax
π )2 +M2

D −MD∗ ;

however, a lower cutoff may effectively be set by the domain of applicability of the soft-
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Figure 7. Nonresonant Dπ contribution including both charged and neutral pion depending on

the maximal pion momentum, at gD∗Dπ = 4.9 GeV−1 which corresponds to ΓD∗+ = 96 keV. The

plots show, from bottom to top, r=1, 0.8, 0.6 and 0.4.

0.3 0.4 0.5 0.6 0.7 0.8
0.000

0.005

0.010

0.015

0.020

0.025

D∗π

pπ
max
, GeV

Figure 8. Nonresonant D∗π contribution depending on the maximal pion momentum, at gD∗D∗π=

4.9 GeV−1. The solid lines correspond, from bottom to top, to r̃=1, 0.8 and 0.6, while the dashed

line refers to r̃=1.3.

pion approximation. It is reasonable to stop at least somewhat below the expected ‘radial’

resonance domain, around pmax
π ≈ 0.6 GeV: even if the amplitude grows with ~pπ, at some

point this contribution starts to belong to the resonant radial excitations and should be

excluded to avoid double counting.

The D∗π channel has been considered only in ref. [1], even though it is required for

consistency with the spin-symmetry structure of the corrections already at 1/m2
Q. The

pattern of the 1/mQ mass corrections in the intermediate poles is now reversed, and the

contribution at low pion momentum is suppressed. Altogether it turns out very small unless

the difference between B∗Bπ and D∗Dπ vertices is appreciable. The numerical results are

shown in figure 8.5

5Due to a typo in the plotting notebook the plot in ref. [1] showed values larger by a factor of π.
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The calculation for D∗π proceeds in a way similar to the Dπ case. The ‘bare’ weak

vertices for the mesons are now

〈D∗(ε)|c̄γµγ5b|B〉 = 2
√
MBMD∗ ε

∗
µ ,

〈D∗(ε)|c̄γµγ5b|B∗(ε′)〉 = i
√
MB∗MD∗ εµνρλ ε

∗
νε
′
ρ

(
Pλ
MD∗

+
P ′λ
MB∗

)
, (5.14)

where P and P ′ are the four-momenta of D∗ and B∗ mesons, respectively. The pion

Lagrangian paralleling eq. (5.11) is

LD∗D∗π = 2 gD∗D∗π εµνρλ D
∗
µ ∂νD

∗
ρ ∂λπ, gD∗D∗π = r̃ gD∗Dπ, (5.15)

from which the D∗ → D∗π vertex is derived. The required diagrams mirror figures (6),

with D replaced by D∗. The point ε= 0 is now below the threshold and no subtleties in

the integration occurs. Again, the neutral pion contribution to winel is half of that for the

charged pion.

The pion couplings gB∗Bπ and gD∗D∗π have not been measured experimentally. There is

theoretical evidence that 1/mc corrections in the coupling should indeed be significant [25];

similar conclusions have been reported from the lattice studies [26]. The spin symmetry

violating difference between gD∗D∗π and gD∗Dπ is likewise expected to be significant. It was

considered in ref. [27] and found to be sizable, although with large numeric uncertainty.

We expect to have more accurate QCD sum rule estimates in the future.

We finally arrive at a few percent continuum contribution to Iinel:

ID
(∗)π

inel ≈ 3 to 5% .

This is about a fourth of the resonance estimate eq. (5.10) and therefore conforms to the

general expectation. A clarifying comment is in order in this respect.

The above estimate of the D(∗)π effects should not be added to the principal numeric

estimate of eq. (5.10). The corresponding hadronic states contribute to the nonlocal corre-

lators along with the resonant states and therefore have been accounted for in the observed

meson masses used there as inputs. We will come back to this subject in section 6.3. The

D(∗)π states effectively lower the average excitation energy ε̃ compared to εrad; however,

the continuum contribution is relatively suppressed and this is not a prominent effect. On

the other hand, should one discard the estimate of the inelastic contribution of eq. (5.10),

it is reasonable to include at least ID
(∗)π

inel in the unitarity upper bound for F(1); this lowers

it by about 2% down to approximately F(1)<0.90.

To conclude the first part of the paper, we refer the reader to section 8, where our

numeric conclusions for F(1) can be found, see eqs. (8.1), (8.2) and (8.3).

6 A closer look at the heavy quark excited states

The zero-recoil transition amplitudes between the B meson and the excited charm states

appeared in section 5, where they gave the part of the power-suppressed correction to

F(1) associated with the overlap of nonrelativistic wavefunctions. They are encountered
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in various applications of the heavy quark expansion, together with the spectrum of the

corresponding states, and deserve a dedicated analysis.

So far mostly the P -wave excitations of the ground-state mesons have been considered

in the literature. They play a primary role in the small velocity regime and enter the sum

rules which strongly constrain possible values of the main nonperturbative heavy quark

parameters [11, 28]. Here we extend the analysis to higher states, in particular to those

which are commonly referred to as radial or D-wave excitations, assuming the heavy quark

(static) limit. In the actual heavy mesons we may have additional excited states associated

with the interacting spin and gauge field degrees of freedom.

In our analysis we will use heavy quarks deprived of their spin [11, 28]; this is physically

motivated since in the static limit heavy quark spin degrees of freedom decouple, and

this greatly simplifies all the expressions, as long as no velocity change is considered.

This formalism leads in a simple and transparent manner to the trace formalism of the

rest frame; a discussion of the connection to the conventional formalism can be found in

Re. [3]. We remind that with spinless heavy quarks the ground-state heavy mesons are

spin-1
2 particles; the corresponding states are denoted by |Ω0〉 and their two-component

spinor wavefunctions, when needed explicitly, are denoted by Ψ0. The Pauli matrices ~σ act

on the spinor indices of the heavy hadron wavefunctions.

To specify our convention we set the parity of Ω0 positive. It is opposite to the parity

of actual D(∗) and B(∗) mesons which Ω0 describes in the heavy quark limit. Consequently,

the parity is likewise opposite for all the excited states. In particular, the P -wave states
1
2

−
and 3

2

−
describing the two conventional families of the ‘P -wave’ mesons are of negative

parity; the 1
2

+
and 3

2

+
states which are in the focus in this section, are conventional S and

D waves.

Translating the relations in this formalism to the case of expectation values in actual B

mesons is straightforward. The spin-singlet quantities are in a one-to-one correspondence.

For the spin-triplet ones the fact that ~σQ=−~σ for the spinless state like B meson (~σQ is the

spin matrix acting on the heavy quark indices) immediately gives the required translation.

6.1 Model-independent spectral representation

Heavy quark theory requires the tower of heavy quark transition matrix elements with

zero spatial momentum transfer, ordered according to the number of covariant deriva-

tives (heavy quark momentum). They enter both the expansion in velocity and the non-

relativistic 1/mQ expansion. In practice we are interested in the matrix elements of the

ground state.

The unit operator Q̄Q has trivial matrix elements at vanishing velocity change. The

operator Q̄πkQ with a single derivative describes the dipole transitions which connect Ω0

to the 1
2 and 3

2 P -wave states with negative parity. At the lowest order in the expansion we

need the general inclusive two-point correlator with two derivatives, or its absorptive part:

1

π
ImPjk(ω) =

1

2π

∫
d3x

∫
dx0 e

−iωx0 1

2MQ
〈Ω0|Q†πjQ(x) Q†πkQ(0)|Ω0〉

= T ( 1
2

−
)(ω)Ψ†0(δjk+σjk)Ψ0 + T ( 3

2

−
)(ω)Ψ†0(2δjk−σjk)Ψ0 ; (6.1)
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here and in what follows we use the notation

σiσj = δij + σij , σij = iεijkσk .

The two spectral densities generalize the conventional 1
2 and 3

2 SV amplitudes to continuum

states:

T ( 1
2

−
)(ω) = ω2 d|τ1/2(ω)|2

dω
, T ( 3

2

−
)(ω) = ω2 d|τ3/2(ω)|2

dω
; (6.2)

their relation to the inelastic part of the SV structure functions W±(ω) introduced in

ref. [29] is

W+(ω) =
2T ( 3

2

−
)(ω)+T ( 1

2

−
)(ω)

ω2
, W−(ω) =

2T ( 3
2

−
)(ω)−2T ( 1

2

−
)(ω)

ω2
, ω>0. (6.3)

To extend the analysis to the relevant radially excited states we consider the spectral

density of the general two-point correlation function of the products of two spatial covariant

derivatives acting on the heavy quark:

Rijkl(ω) =
1

2π

∫
d3x

∫
dx0 e

−iωx0 1

2MQ
〈Ω0|Q†πiπjQ(x)Q†πkπlQ(0)|Ω0〉 . (6.4)

It can be decomposed into the invariant structures corresponding to three possible classes

of the intermediate heavy quark states with j= 1
2 , j= 3

2 and j= 5
2 , respectively:

Rijkl(ω) = Ψ†0

[
1

9
ρ

( 1
2

+
)

p (ω)δijδkl −
1

18
ρ

( 1
2

+
)

pg (ω)(δijσkl+σijδkl) +
1

36
ρ

( 1
2

+
)

g (ω)σijσkl

]
Ψ0

+Ψ†0

[
1

200
ρ

( 3
2

+
)

f (ω)

(
δikδjl + δilδjk−

2

3
δijδkl+

1

2
(σikδjl+σilδjk+σjkδil + σjlδik)

)
+

1

80
ρ

( 3
2

+
)

fg (ω)

(
iεijkσl + iεijlσk + iεjklσi + iεiklσj −

2

3
(δijσkl + δklσij)

)
− 1

16
ρ

( 3
2

+
)

g (ω)

(
2

3
(δikδjl − δilδjk) +

1

3
(iεijkσl − iεijlσk)

)]
Ψ0 (6.5)

+
1

10
ρ( 5

2

+
)(ω) Ψ†0

[
3(δikδjl+δilδjk−

2

3
δijδkl)−(σikδjl+σilδjk+σjkδil+σjlδik)

]
Ψ0.

The meaning of the three invariant functions for j= 1
2 and j= 3

2 will become clear shortly.

The nonlocal correlators which are relevant to our analysis of Iinel have been introduced

in eqs. (5.4). In addition, it is also useful to introduce

ρ̃ππ =

∫
d4x i|x0|

1

4MB
〈B|iT{b̄~π 2b(x), b̄~π 2b(0)}|B〉′,

ρ̃πG =

∫
d4x i|x0|

1

2MB
〈B|iT{b̄~π 2b(x), b̄~σ ~Bb(0)}|B〉′,

1

3
ρ̃Sδijδkl +

1

6
ρ̃A(δikδjl − δilδjk) =

∫
d4x i|x0|

1

4MB
〈B|iT{b̄σiBkb(x), b̄σjBlb(0)}|B〉′.

(6.6)
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The extra factor i|x0| compared to eqs. (5.4) is simply an extra power of excitation en-

ergy ε in the denominator in the spectral representation, see eqs. (6.8) below. Using the

ρ̃ correlators one can directly write the inelastic contribution to the sum rule (2.3), cf.

eq. (5.3):

Iinel =
−(ρ̃πG+ρ̃A)

3m2
c

− 2ρ̃ππ+ρ̃πG
3mcmb

+
ρ̃ππ+ρ̃πG+ρ̃S+ρ̃A

4

(
1

m2
c

+
2

3mcmb
+

1

m2
b

)
+O

(
1

m3
Q

)
.

(6.7)

All these nonlocal correlators are readily expressed in terms of the above spectral

densities:

ρ3
ππ =

∫
dω

ρ
( 1
2

+
)

p (ω)

ω
ρ̃ππ =

∫
dω

ρ
( 1
2

+
)

p (ω)

ω2

−ρ3
πG =

∫
dω

2ρ
( 1
2

+
)

pg (ω)

ω
−ρ̃πG =

∫
dω

2ρ
( 1
2

+
)

pg (ω)

ω2

ρ3
S =

∫
dω

ρ( 1
2

+
)

g (ω)

3ω
+
ρ

( 3
2

+
)

g (ω)

2ω

 ρ̃S =

∫
dω

ρ( 1
2

+
)

g (ω)

3ω2
+
ρ

( 3
2

+
)

g (ω)

2ω2


ρ3
A =

∫
dω

2ρ
( 1
2

+
)

g (ω)

3ω
− ρ

( 3
2

+
)

g (ω)

2ω

 , ρ̃A =

∫
dω

2ρ
( 1
2

+
)

g (ω)

3ω2
− ρ

( 3
2

+
)

g (ω)

2ω2

 .

(6.8)

The integration runs over positive ω; the point ω= 0 is excluded. The integration is also

cut at large ω for ω>µ according to the normalization prescription in the kinetic scheme.

Note that neither ρ
( 3
2

+
)

f,fg nor ρ( 5
2

+
) can contribute above. Using these relations one can

express the 1/m2
Q inelastic transition probabilities for actual B mesons. The following form

appears particularly convenient for the analysis:

winel(ω) =

(
1

2mc
− 1

2mb

)2 ρ
( 1
2

+
)

p (ω)

ω2
+

(
1

2mc
− 1

2mb

)(
1

3mc
+

1

mb

)
ρ

( 1
2

+
)

pg (ω)

ω2

+
1

4

(
1

3mc
+

1

mb

)2 ρ
( 1
2

+
)

g (ω)

ω2
+

1

6m2
c

ρ
( 3
2

+
)

g (ω)

ω2
. (6.9)

The analogous representation for the vector current-induced transitions is given in eq. (D.1).

6.1.1 Intermediate state contributions

Here we consider the contribution of an individual positive-parity state to the above cor-

relators. Again, we first briefly remind what happens for the P -wave states.

Following ref. [11] we denote the 1
2 and 3

2 P -wave states by φ and χ and describe them

with the two-dimensional spinor φ and the non-relativistic Rarita-Schwinger spinors χj ,

respectively. There are successive families of these states which differ by their excitation
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energy εn = Mn−M0; we typically omit the index marking the excitation number. The
3
2 -spinors χj satisfy σjχj = 0 and the normalization fixes the sum over their polarizations:∑

λ

χi(λ)χ†j(λ) = δij −
1

3
σiσj . (6.10)

The dipole amplitudes are related to the conventional small-velocity amplitudes τ by

〈φ(n)|πj |Ω0〉 = εnτ
(n)
1/2φ

(n)†σjΨ0 , 〈χ(m)|πj |Ω0〉 =
√

3 εmτ
(m)
3/2 χ

(m)†
j Ψ0. (6.11)

The two-derivative heavy quark operators at vanishing total spatial momentum acting

on Ω0 may create 1
2

+
, 3

2

+
or 5

2

+
states. The ground state itself has jP = 1

2

+
; we will

always assume however that 1
2

+
refers to an excited multiplet. We describe the 1

2

+
, 3

2

+

and 5
2

+
states by a conventional spinor χ and by the Rarita-Schwinger spinors χj and χjl,

respectively, with the following constraints:6

σjχj = 0 ; χjk = χkj , χjj = 0, σjχjk = 0 . (6.12)

The sum over polarizations λ giving the spin part of the propagator equals to

2∑
λ=1

χ(λ)χ†(λ) = 1

4∑
λ=1

χi(λ)χ†j(λ) = δij −
1

3
σiσj

6∑
λ=1

χij(λ)χ†kl(λ) =
3

10
(δikδjl+δilδjk−

2

3
δijδkl)−

1

10
(σikδjl+σilδjk + σjkδil+σjlδik). (6.13)

Following the standard notation for the diagonal matrix element of the ground state,

〈Ω0|πkπl|Ω0〉 =
µ2
π

3
δkl Ψ

†
0Ψ0 −

µ2
G

6
Ψ†0σklΨ0 , (6.14)

we parameterize

〈1
2

+

|πkπl|Ω0〉 =
P

3
δkl χ

†Ψ0 −
G

6
χ†σklΨ0 . (6.15)

The transitions amplitude into 3
2

+
-states have a symmetric and an antisymmetric structure

parameterized by constants f and g:

〈3
2

+

|πkπl|Ω0〉 =
f

20
(χ†kσl + χ†lσk)Ψ0 +

g

4
iεklm χ

†
mΨ0 , (6.16)

while the 5
2

+
amplitude depends on a single parameter h:

〈5
2

+

|πkπl|Ω0〉 = hχ†klΨ0 . (6.17)

The residues P,G, f, g and h are different for each multiplet of the excited heavy state.

6The P -wave wave-functions will no longer appear in what follows and we use the same notation for the
3
2
-hadrons of opposite parity.
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A particular hadronic state with excitation energy εn is associated with the following

factorized contributions to the invariant spectral densities ρ
( 1
2

+
)

p,pg,g(ω), ρ
( 3
2

+
)

f,fg,g(ω) and ρ( 5
2

+
)(ω)

in eq. (6.5):

δρ
( 1
2

+
)

p (ω) = P 2 δ(ω−εn), δρ
( 1
2

+
)

g (ω) = G2 δ(ω−εn), δρ
( 1
2

+
)

pg (ω) = PGδ(ω−εn)

δρ
( 3
2

+
)

f (ω) = f2 δ(ω−εn), δρ
( 3
2

+
)

g (ω) = g2 δ(ω−εn), δρ
( 3
2

+
)

fg (ω) = fg δ(ω−εn)

δρ( 5
2

+
)(ω) = h2 δ(ω−εn). (6.18)

The ground-state contribution to Rijkl is located at ω=0 and is excluded from the nonlocal

correlators ρ3 and ρ̃ of eqs. (6.8); it is obtained by taking P(0) = µ2
π and G(0) = µ2

G with

ε0 =0.

The spin-5
2 contribution δρ( 5

2

+
)(ω) is given by the square of a single residue h and is

non-negative. The factorization relations lead to the Cauchy inequalities

(ρ
( 1
2

+
)

pg )2 ≤ ρ( 1
2

+
)

p ρ
( 1
2

+
)

g , (ρ
( 3
2

+
)

fg )2 ≤ ρ( 3
2

+
)

f ρ
( 3
2

+
)

g (6.19)

which turn into equalities for a particular single state contribution. Furthermore, one has

the general inequalities

2|ρ( 1
2

+
)

pg (ω)| ≤ ρ( 1
2

+
)

p + ρ
( 1
2

+
)

g , 2|ρ( 3
2

+
)

fg (ω)| ≤ ρ( 3
2

+
)

f + ρ
( 3
2

+
)

g , (6.20)

the first of which will soon be useful.

For completeness we mention the constraints imposed by the BPS limit for the ground

state, which assumes ~π~σ|Ω0〉 = 0. Similar to the ground-state expectation values, for

transitions into 1
2

+
states the BPS condition implies P =G; however the relations for the

excited states are accurate only to first order in the deviation from the BPS limit. No

constraint emerges on h, while for the transitions into 3
2

+
states BPS implies f=g:

〈3
2

+

|πk~π~σ|Ω0〉 =

(
1

4
f− 1

4
g

)
χ†kΨ0 . (6.21)

For the invariant structures in the spectral density Rijkl(ω) in eq. (6.5) the BPS condition

leads to the relations

ρ
( 1
2

+
)

p (ω) = ρ
( 1
2

+
)

pg (ω) = ρ
( 1
2

+
)

g (ω), ρ
( 3
2

+
)

f (ω) = ρ
( 3
2

+
)

fg (ω) = ρ
( 3
2

+
)

g (ω). (6.22)

Let us note that when the spin-1
2 degrees of freedom associated with light antiquark

in the meson decouple, as in the case of purely perturbative calculations, the correlator

decomposition can be based on the angular momentum only, L=0, 1, 2, of the intermediate

states composed of the QCD degrees of freedom still interacting with heavy quark:

RFact
ijkl (ω)=

[
ρ0(ω)

9
δijδkl +

ρ1(ω)

16
(δilδjk−δikδjl) +

ρ2(ω)

10
(δikδjl+δilδjk−

2

3
δijδkl)

]
Ψ†0Ψ0,

(6.23)
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with a trivial spinor structure. This would mean

ρ
( 1
2

+
)

p (ω) = ρ0(ω), ρ
( 1
2

+
)

g (ω) =
3

4
ρ1(ω), ρ

( 3
2

+
)

g (ω) = ρ1(ω),

ρ
( 3
2

+
)

f (ω) = 8ρ2(ω), ρ( 5
2

+
)(ω) =

1

5
ρ2(ω), ρ

( 1
2

+
)

pg (ω) = ρ
( 3
2

+
)

fg (ω) = 0. (6.24)

We will use these relations when address the perturbative µ-dependence later on.

6.2 Hyperfine splitting and the estimate of the correlators

The analysis of the spin structure and of the factorization properties does not constrain the

overall scale of the residues and the significance of the radially excited states, which can

however be estimated by considering the heavy quark mass dependence of the hyperfine

splitting ∆M2. This will allow us to fix the magnitude of the nonlocal correlators in

eqs. (5.3), (6.7).

The B−B∗ mass splitting basically fixes the value of µ2
G. The mass difference between

the beauty and charm states mainly reflects mb−mc. A comparison of MD∗−MD and

MB∗−MB hyperfine splittings gives information on higher dimensional correlators, and in

particular on the values of two D=3 spin-triplet parameters, ρ3
LS and ρ3

πG + ρ3
A:

∆MB = M∗B −MB =
2

3

µ2
G

mb
+
−ρ3

LS + ρ3
πG + ρ3

A

3m2
b

+O
(

1

m3
b

)
(6.25)

and likewise for charm. Following ref. [6], we explore this relation cast in a somewhat

different form.

As dictated by the heavy quark expansion, for sufficiently heavy quarks the difference

∆M2
Q=M2

Q∗−M2
Q for the vector and the pseudoscalar mesons approaches a constant. Yet

it has been noticed long ago that such a relation works well even for light quarks:

M2
ρ−M2

π 'M2
K∗−M2

K 'M2
D∗−M2

D 'M2
B∗−M2

B. (6.26)

Clearly, the heavy quark expansion cannot explain why such a relation extends down to the

light quarks. The approximate equality resembles the universality of the slope for Regge

trajectories and may root in the peculiarities of the strong dynamics. Moreover, actual

QCD predicts that such a relation must be violated for sufficiently heavy quarks due to the

perturbative renormalization of the chromomagnetic operator of the heavy quark which has

a nontrivial anomalous dimension. As was also noted long ago, the observed 12% decrease

in the mass square difference in the B system compared to D mesons fits reasonably well

the naive estimates of this perturbative evolution.

It is therefore tempting to assume the independence of the mass-square splitting as a

phenomenological property of soft strong dynamics yet to be understood, and to consider

its consequences in the context of the heavy quark expansion where we can vary the heavy

quark mass. Using the mass formulae we have

∆M2
Q=∆MQ(2MQ+∆MQ) =

4

3
cG(µ,mQ)µ2

G +
2

3

ρ3
πG + ρ3

A − ρ3
LS + 2Λµ2

G

mQ
+O

(
1

m2
Q

)
,

(6.27)
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where cG is the Wilson coefficient of the chromomagnetic operator in the heavy quark

Hamiltonian. If the perturbative mQ-evolution of cG accounted completely for the observed

difference between ∆M2
B and ∆M2

D, the mQ-independence of ∆M2
Q to the first nontrivial

order in 1/mQ would imply

− (−ρ3
LS + ρ3

πG + ρ3
A) ' 2Λµ2

G . (6.28)

This relation will guide our analysis below.

Numerically using Λ=600 MeV, µ2
G=0.3 GeV2 and ρ3

LS =−0.1 GeV3 we would get

− (ρ3
πG + ρ3

A) ≈ 0.45 GeV3 (6.29)

which indicates that the nonlocal correlators ρ3 are in general sizable. The negative sign

for ρ3
πG+ρ3

A is expected from BPS arguments [6].

To proceed more quantitatively we introduce a factor κ in eq. (6.28), to account for

the actual mismatch between the observed mass dependence and the dependence stemming

from cG:

− (−ρ3
LS + ρ3

πG + ρ3
A) = 2(1+κ) Λµ2

G . (6.30)

κ does not include higher power corrections, which we address later, and can be defined

through

κΛµ2
G = lim

mQ→∞
m2
Q

d

dmQ

[
3

4
∆M2

Q − cG(mQ)µ2
G

]
, (6.31)

where the logarithmic derivative of cGµ
2
G is related to the exact anomalous dimension of

the chromomagnetic operator, times ∆M2
Q.

In simple words, the soft part of ∆M2
Q, identified by subtracting the (Wilsonian) short-

distance renormalization factor, approaches a finite limit as mQ →∞. The assumption

underlying the approximation of small |κ| is that such a soft part is nearly a constant in a

wide range of heavy quark masses, as eq. (6.26) would naively suggest.

Let us now look at the perturbative renormalization cG. The one- and two-loop [30]

contributions are known. At first glance in the evolution from beauty to charm, namely

in the ratio cG(mc)/cG(mb), the two-loop contribution is quite sizable. However, the bulk

of the higher-loop perturbative enhancement comes from growing strong coupling at small

momenta of virtual gluons. This large-coupling domain must be removed from the pertur-

bative corrections to avoid double counting. The subtraction piece is power-suppressed yet

important for charm, especially in the effect of running of the strong coupling.

The numeric aspects are illustrated in figure 9 in the case of one-loop corrections,

using αs = 0.3. The cutoff effects are more important than higher-loop corrections. The

two-loop calculation of ref. [30], which strongly enhanced the first-order renormalization,

should not be used in the present context [6]. To get an accurate estimate in the following

we will employ the one-loop calculation of cG(mc)/cG(mb) with Wilsonian cutoff evaluated

at αs=0.3.

A precise determination of κ is not easy since only two data points exist on the ∆M2

curve in the heavy quark regime. Moreover, the perturbative treatment of charm may

have insufficient precision and higher power corrections for D(∗) may be significant. The
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1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

1.00

1.05

1.10

1.15

1.20
cG(mQ)/cG(mb)

mQ, GeV

Figure 9. The effect of removing the infrared piece belonging to the nonperturbative expectation

values, from the one-loop perturbative evolution from beauty to charm cG(mQ)/cG(mb), as a func-

ton of mQ. The solid curves correspond to µ= 0.8 GeV (blue), 0.7 GeV (red) and 0.6 GeV (green),

respectively; the dashed curve shows the naive perturbative result with no cutoff, all at αs = 0.3.

For comparison the dashed-dotted line shows the no-cutoff result at αs=0.22.

æ

æ æ

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.40

0.45

0.50

0.55

0.60
∆M2GeV

2

1/MP , GeV−1

B

D
K

π

Figure 10. The difference ∆M2 =M2
V−M2

P plotted as a function of the inverse meson mass 1/MP .

The three data points stand for beauty, charm and strangeness, the horizontal line shows the asymp-

totic value given by the ρ-π splitting. (The K point has been moved leftward.) Solid curves repre-

sent the expected perturbative evolution in the case all power corrections are neglected, using the

Wilsonian perturbative renormalization factor; they correspond to µ= 0.8 GeV, 0.7 GeV, 0.6 GeV,

respectively. The dashed curves shows the naive perturbative result without cutoff.

situation is illustrated in figure 10, where only the change in the perturbative coefficient cG
is considered. In other words, the continuous lines show the quantity (M2

B∗−M2
B)

cG(mQ)
cG(mb)

,

without power corrections associated with using the meson masses.7 Clearly, this approx-

imation is valid for sufficiently large masses.

7The physical masses depend on the pseudoscalar meson mass MP , viz. MB , MD, . . . whereas the

perturbative renormalization is expressed through the quark masses. To put them on the same plot and

to compare we evaluate the perturbative calculations at mQ = MPQ − Λ. The dependence on the precise

value of mQ is minor.

– 29 –



J
H
E
P
1
0
(
2
0
1
2
)
1
6
9

Let us now discuss the implications for the nonlocal correlators that follow from fig-

ure 10. The solid curves correspond to κ= 0, and do not include any power correction.

For κ 6= 0 a power correction appears according to eqs. (6.27) on top of the perturbative

renormalization. Therefore, if the actual ∆M2 below beauty goes lower than the pertur-

batively continued dependence, κ is positive; conversely, a negative κ corresponds to the

case where the actual ∆M2 increases steeper than the one computed perturbatively from

the beauty point. We also note that what matters here is actually the relative position of

the curves in the vicinity of the beauty point, or, more generally the difference in the slope

of the two curves at any sufficiently large mass where the 1/m3
Q and higher terms in the

masses can be neglected.

It looks improbable that the actual ∆M2 dependence on the inverse meson mass may

be significantly steeper around the B meson than the one-loop αs=0.22 perturbative curve,

because that would require an unnatural shape, perhaps with a maximum higher than the

charm point. Moreover, in that case sizable power corrections would be necessary to hit

the ∆M2
D point, and there would be no reason to expect a small value of the nonlocal

correlators. Since the ∆M2
D point in figure 10 is above the Wilsonian perturbative curves,

a somewhat steeper dependence on 1/MP is observed. Therefore, κ must be relatively

small and negative in the Wilsonian approach.

In order to obtain a numerical prediction for ∆M2 and refine eq. (6.29) we use the ex-

pansion for ∆M , eq. (6.25), and rewrite it, neglecting, as usual, the perturbative corrections

to power corrections, as

∆M(mQ) =
mb cG(mQ;µ)

mQ cG(mb;µ)

1− δ
mQ

1− δ
mb

∆M(mb)

[
1 +O

(
1

m2
Q

)]
, (6.32)

with the shortcut

δ =
−(ρ3

πG + ρ3
A − ρ3

LS)

2µ2
G

, or 1+κ =
δ

Λ
.

Higher order power terms modify the mQ-dependence of ∆M2. Therefore, in order

to obtain definite numerical values for the nonlocal correlators from ∆M2 in beauty and

charm we need to make assumptions on the higher-order terms O(1/m2
Q) in eq. (6.32). The

simplest option is to discard 1/m2
Q and higher terms in the mass difference. An alternative

way is to write the power correction factor as

∆M(mQ) =
2

3
cG(mQ)

µ2
G

mQ
· 1

1 + δ
mQ

(6.33)

as an ansatz for higher-order terms; it expresses them in terms of µ2
G and of the powers

of δ. The two forms have identical µ3
hadr/m

2
Q corrections but differ at higher orders. The

latter ansatz has the advantage of yielding a reasonable finite value even at small mQ.

To depict results graphically as a function of MP , for the pseudoscalar mass MP (mQ)

we use its conventional heavy quark expansion well described by just mQ+Λ due to the

proximity to the BPS regime (for even lighter quark, to continue the plots below charm we

use an ad-hoc extrapolation giving a reasonable behavior at small mQ).
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Figure 11. ∆M2 for different heavy quark masses computed under different assumptions for

higher-order power terms: no higher power term (left) and the ansatz in eq. (6.33) (right). The two

families of curves assume different values for 1+κ from top to bottom: 0.5, 0.55, 0.6 (left) and 0.7,

0.8, 0.9 (right), respectively. Λ=0.65 GeV, µ=0.8 GeV and αs=0.3.

Figure 11 shows the expected ∆M2 for three values of κ under the two assumptions

about higher-order terms. The difference illustrates the sensitivity to the unknown power

corrections in the meson masses. It is modest around the B mass scale, yet becomes

significant for charm. We have also tried alternative ansätze for power corrections and

found that κ always varies between −0.5 and 0. The extrapolation of the curves below

charm seems to suggest a preference for the smaller |κ|, as in the right of figures 11.

Moreover, higher order perturbative effects are qualitatively expected to increase 1 + κ.

We will therefore use κ = −0.2± 0.2, arriving at

2(1 + κ)Λµ2
G ≈ 2(0.8± 0.2) 0.65 · 0.35 GeV3 ' (0.35± 0.1) GeV3. (6.34)

Combining this estimate with the expected value ρ3
LS ≈ −0.1 GeV3 we end up with

− (ρ3
πG + ρ3

A) ≈ 0.45 GeV3, (6.35)

as in the original estimate, eq. (6.29). One of the reasons is that a larger value for Λ must

be used in the Wilsonian approach, which offsets a negative κ.

The main assumption employed in the above estimate is the possibility to quantita-

tively use the mass expansion for charm particles, assuming a reasonable magnitude of the

higher-order power corrections in a physical scheme. This assumption could be avoided

in the case an additional input from lattice calculations were available, with the squared

mass splitting reliably computed at one or more intermediate points for quarks heavier

than charm. The short-distance expansion there is in a better shape, perturbative correc-

tions under better control, and higher-order power corrections are less important. This

would allow to use the differential version of the constraint on the hyperfine splitting in the

large-mQ limit, namely eq. (6.31), fixing directly the slope. Even if a first-principle direct

measurement of ∆M2 with sufficient precision turns out difficult for large mass, any inter-

mediate point — and even a point somewhat below charm — would constrain the shape

of the curve thereby narrowing down the interval of possible values for the derivative.
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Eq. (6.35) is a strong constraint, especially useful in the analysis of the inelastic con-

tribution to F(1). This will be discussed in the next subsection. Here we only note that a

determination of −(ρ3
πG+ρ3

A) gives a model-independent constraint on the spectral densities

ρ
( 1
2

+
)

g , ρ
( 1
2

+
)

pg and ρ
( 3
2

+
)

g , which are informative due to the factorization property and to the

relation to the spectrum of physical states. Since the value in eq. (6.35) is quite large,

ρ
( 1
2

+
)

pg (ω) together with −ρ3
πG is most probably positive, unless the correlators are strongly

dominated by the 3
2

+
states. The predictive power sharpens significantly if additional dy-

namic information is used, for instance the proximity to the BPS limit or the saturation

by a limited number of the heavy quark multiplets.

We conclude this section noting that another interesting constraint on the nonlocal

correlators can be obtained from the difference of the spin-averaged B and D meson masses,

namely from

mb−mc = MB−MD +
µ2
π

2

(
1

mc
− 1

mb

)
+
ρ3
D−ρ̄3

4

(
1

m2
c

− 1

m2
b

)
+O

(
1

m3
Q

)
, (6.36)

where ρ̄3 =ρ3
ππ+ρ3

S . The use of this relation to determine ρ̄3 requires a good control of the

heavy quark mass difference and a precise knowledge of µ2
π and ρ3

D, which can in principle be

provided by the global fits to semileptonic moments. We have considered the fits employed

in section 4; they typically give ρ̄3 = (0.33 ± 0.17) GeV3. Notice that the semileptonic fits

determine µ2
π in the actual B meson, while its static approximation appears in eq. (6.36).

As the difference is BPS and 1/mb suppressed, it is certainly smaller than the fit uncertainty

on µ2
π, and we have neglected it. The value of ρ̄3 can be linked to (ρ3

πG + ρ3
A) since the

sum ρ3
ππ+ρ3

S+ρ3
πG+ρ3

A is positive definite, vanishes in the BPS limit, and receives only

second order corrections to the limit. Therefore, −(ρ3
πG+ρ3

A).(0.33±0.17) GeV3, which is

compatible with our primary estimate, eq. (6.35).

6.3 The hyperfine constraint and the excited states

The hyperfine splitting constraint eq. (6.35) fixes the overall scale of the correlators which

are the focus of our study:

∫
dω

ω

ρ( 3
2

+
)

g (ω)

2
+ 2ρ

( 1
2

+
)

pg (ω)− 2ρ
( 1
2

+
)

g (ω)

3

 ' 0.45 GeV3 + (κ+0.2) · 0.36 GeV3. (6.37)

The normalization point enters here as the upper cutoff in the integral over ω; we assume

it is around 0.8 GeV. At first glance we have a single relation among four spectral func-

tions; nevertheless this relation turns out to be very useful thanks to the positivity and

factorization properties discussed in section 6.1.1.

The principal observation is that according to the estimate eq. (6.35) the nonlocal

correlators are numerically large. The particular combination constrained significantly

exceeds the estimated size of the expectation values of local heavy quark operators of

D= 6, most notably ρ3
D which by itself is large. Alternatively, the value in eq. (6.35) can

be compared to Λ
3
: it exceeds it, even though Λ is already numerically large. Likewise, the
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square of the kinetic expectation value (µ2
π)2 can be used to gauge the scale of hadronic

parameters of mass dimension 3 if it is divided by a typical energy of the radial excitations,

yielding again a value close to 0.35 GeV3.

For more quantitative statements it is advantageous to separate the resonant and the

soft continuum contributions to the spectral densities: the inclusion of the continuum makes

the effective value of ω identified with εrad more uncertain numerically. The separation can

be done since the Ω0+π states are readily analyzed in the soft-pion technique; for instance,

section 5.2 estimated the continuum part of Iinel at actual values of mc and mb. This

analysis is performed in section 6.4 and suggests that a relatively small fraction should be

subtracted from the value in eq. (6.37) if we want to keep only the resonant contribution.

Once only the resonant contribution are retained, a meaningful approximation well

illustrating the physics of the constraints is a model where a single multiplet in each

channel involved is considered. This model has a very few parameters essentially reduced

to the residues P , G and g (f and h do not enter), and all the constraints can be easily

analyzed.

To gauge the size of the related hadronic parameters we take the sum of the two spin-

singlet nonlocal correlators ρ3
ππ and ρ3

S as a measure of their overall significance; each of

these correlators is positive. On the other hand, we have a relation

ρ3
ππ + ρ3

S = −(ρ3
πG + ρ3

A) +

∫
dω

ω

[
ρ

1
2

+
p − 2ρ

1
2

+
pg + ρ

1
2

+
g

]
. (6.38)

The last bracket on the right is positive; it can be represented as a correlator of a certain

operator. This shows that the l.h.s. of (6.38) always exceeds the combination −ρ3
πG−ρ3

A

fixed by the ‘hyperfine’ constraint; the minimum is attained at the BPS point where the

two combinations coincide. The inequality actually holds at arbitrary spectral parameter

ω; it is the numeric hyperfine constraint that applies only upon integration over the energy.

Eq. (6.38) shows that the 1/m2
Q spin-averaged meson mass shift must always be larger

than 3/4 times the 1/m2
Q correction to the hyperfine splitting. This is not difficult to trace

directly:
3δM∗B + δMB

4
=

3

4
(δM∗B − δMB) + δMB; (6.39)

δ1/m2
Q
MB receives a positive contribution (ρ3

D + ρ3
LS)/4m2

b from the local piece and a

negative contribution from the T -product of two (σπ)2. Both vanish at the BPS point.

The last positive term in eq. (6.38) is of the second order in the deviation from BPS,

therefore it may be a good approximation to neglect it in numerical estimates unless the

BPS is strongly violated in the actual B mesons. For what follows we do not need this

additional assumption, the positivity is sufficient.

Now we can see that the sum of the two correlators ρ3
ππ and ρ3

S is also quite large

numerically; this implies large 1/mQ corrections to the meson states, in particular averaged

over the spin multiplet. However, experiment tells us that the heavy quark symmetry works

reasonably well even in charm. This means the correlators driving power corrections should

not be excessively large. In order to have both ρ3
ππ and ρ3

S as small as possible, besides the
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BPS condition, we can assume that ρ3
ππ and ρ3

S are equal, in which case ρ
1
2

+

g = 3
4ρ

3
2

+

g must

hold upon corresponding integration over energy.

On the other hand, since the r.h.s. of eq. (6.37) is large, it is reasonable to expect that

ρ
( 1
2

+
)

pg is positive, and that ρ
( 1
2

+
)

p is not much smaller than ρ
( 1
2

+
)

g . In this case the left-hand

side is a sum of two positive contributions from 1
2

+
and 3

2

+
channels.

It makes sense to parameterize the relative contribution of the 1
2

+
and 3

2

+
states,

introducing a parameter ν:∫
dω

ω

ρ
( 3
2

+
)

g (ω)

2
≡ ν

∫
dω

ω

ρ( 3
2

+
)

g (ω)

2
+ 2ρ

( 1
2

+
)

pg (ω)− 2ρ
( 1
2

+
)

g (ω)

3

 , ν > 0. (6.40)

The large numeric value of the the r.h.s. of eq. (6.37) points at ν between 0 and 1 as the

most natural solution; ν exceeding unity is highly improbable.

6.3.1 Estimate of I1

The spectral representation together with the hyperfine constraint allows one to analyze

the possible values of Iinel. Ignoring a possible spread in the values of average excitation

energy we equate Iinel with I1/εrad or, equivalently, express the ρ̃ correlators in eq. (6.8)

through the conventional ρ3. The evaluation of Iinel then depends directly on the size of

the corresponding nonlocal correlators. For instance, the last positive term in eq. (5.3)

is immediately recognized as the square bracket in eq. (6.38); it is given solely by the

BPS-violating transitions into the 1
2

+
multiplet.

All the terms in I1 but the leading BPS piece fixed by the hyperfine constraint are

independent of the 3
2

+
contributions, and the l.h.s. of eq. (6.37) gets a positive piece from

them. Therefore the minimum of I1 is attained at vanishing ρ
( 3
2

+
)

g which also corresponds

to ρ3
A = 2ρ3

S .

We now refer to eq. (6.9) for the structure of Iinel and express it in terms of the

transition amplitudes P,G, g. At fixed G and g, Iinel is a quadratic trinomial in the ratio

P/G, with the positive leading power coefficient proportional to (1/mc−1/mb)
2. We recall

that in the BPS limit P/G=1. The hyperfine splitting implies an additional constraint on

P , G, g, which can be taken into account. The result is that

3m2
cI1

−(ρ3
πG+ρ3

A)
≥ 1− (1− ν)

m2
c

m2
b

' 1− 0.07(1− ν), (6.41)

and I1 has a minimum at a value of P/G > 1, whose exact position depends only on

the heavy quark mass ratio but not on g. The minimum is attained, with the inequality

saturated, at
P

G
=

1

3
+

2

3

mb+mc

mb−mc
' 1.47, (6.42)

where the numeric values correspond to mc/mb = 1.2/4.6. This result was referred to in

section 5.1. For ν = 0 it implies G ≈ 0.37 GeV2.

The minimum, however, is rather shallow, see figure 5, because the coefficient of the

term quadratic in P/G is large while the linear term is small. While I1 may, in principle,
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significantly exceed its BPS value IBPS
1 , eq. (5.8), for strong BPS violation if P/G is

negative, at more natural positive P/G (a regime where both ρ3
ππ and ρ3

s are not too large)

the value of I1/I
BPS
1 is typically slightly smaller than unity, as illustrated in figure 5.

6.3.2 The inclusive 1
2

+
and 3

2

+
yield

The hyperfine constraint implies relatively large values of the transition matrix elements

to 1
2

+
and/or 3

2

+
states and an enhancement of the overall yield of the corresponding

excited charm states in the semileptonic decays of actual B mesons. This is quantified

by the estimate of Iinel constituting, roughly speaking, 15% of the D∗ probability, in the

zero-recoil kinematics. This comparison does not include the phase-space suppression of

excited states resonances which becomes significant when one integrates over all available

phase space. Other kinematic effects may work in the opposite direction, however, and a

more substantiated estimate is desirable.

Our preceding analysis constrains directly the 1/mQ squared transition amplitudes into

the corresponding hadronic states at zero velocity transfer. At first glance, this seems too

crude an estimate at non-zero recoil, where contributions not suppressed by 1/mQ appear.

However, since we consider states with the quantum numbers of radials or of D-waves, the

leading-order amplitude is proportional to the second power of the velocity of the charmed

meson — roughly speaking, it is generated by replacing the momentum operators πk with

mQvk. Since for excited mesons vk is always relatively small, the zero-recoil amplitude

receives only a minor correction when integrated over the whole phase space. Therefore,

we can retain only the 1/mQ part of the transition amplitude. For comparison, the leading

heavy-quark transition amplitude into the P -waves provides only a suppressed correction

to the 1/mQ term [31, 32], even though the leading amplitude in that case is of the first

order in the velocity, and the P -wave states are lighter.

We will therefore relate the transition probabilities into radially excited states directly

to the zero-recoil observables we have studied in the previous sections. The total yield is

also fed by vector-current transitions, even though we do not expect them to provide a

large contribution, as their amplitudes vanish in the BPS limit. These transitions can be

considered in the same way as the axial timelike component, see appendix D.

The total yields are roughly proportional to (MB−M)5≡∆5 where M is the mass of

the corresponding charm multiplet. Numerically we equate ∆ with MB−MD−εrad, leading

to ∆ ' 2.6 GeV. However, for ∆/MB & 0.5 relativistic effects modify significantly the

nonrelativistic ∆5 dependence. A more accurate approach is the following (see appendix D

for details). Instead of considering the transition amplitudes between the B meson and

all the excited mesons belonging to a multiplet, we evaluate the decay rate of the Ω0

spin-1
2 heavy state into the corresponding excited half-integer spin multiplets. The weak

current coupling of these fictitious hadrons is then fixed by the corresponding transition

probabilities near zero recoil.

In practice, we parameterize the transition amplitudes to 1
2

+
and 3

2

+
states, for axial

and vector currents, and compute the decay rate integrating over all the available phase

space. The overall normalization of the amplitudes is fixed at zero recoil by the corre-
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sponding nonlocal correlator. Let us illustrate this in the case of the transitions into 1
2

+

states.

The most general vector or axial vertices in terms of full Lorentz spinor wavefunctions

have the form

JAµ = gAχ̄γµγ5Ψ0 + bAχ̄iσµν
qν
MB

γ5Ψ0 + cA
qµ
MB

χ̄iγ5Ψ0,

JVµ = gV χ̄γµΨ0 + bV χ̄σµν
qν
MB

Ψ0 + cV
qµ
MB

χ̄Ψ0 . (6.43)

At zero recoil the effect of bA reduces to a change in gA of (MB−M)/MB bA, while the term

proportional to cA vanishes. However, for generic recoil these are all independent structures.

Similar considerations apply to the vector current. We neglect the additional contributions

at non-zero recoil and effectively set the formfactors bA,V , cA,V to zero. Likewise we

neglect the velocity-dependence of the formfactors. The corresponding decay rates are

then given by

Γ
( 1
2

)

V,A = |gV,A|2
G2
F |Vcb|2M5

B

192π3
zA,V (r), (6.44)

where

zA,V (r) =
z0(r)± z̃0(r)

2
, z0(r) = 1−8r+8r3−r4−12r2 ln r, (6.45)

r =
M2

M2
B

, z̃0(r) = 2
√
r
[
1 + 9r − 9r2 − r3 + 6r(1+r) ln r

]
,

are the weighted phase space factors for the axial and vector transitions, respectively; z0(r)

is the standard kinematic factor for V −A decays.

The value of |gA|2 is directly given by the 1
2

+
contribution in winel(ω) in eq. (6.9) for

one multiplet, see eq. (D.8), and the transition amplitudes G and P are constrained by

our analysis of the hyperfine splitting. For values that minimize I1 and ν = 0, one finds

gA ≈ G ≈ 0.4. |gV |2 follows from the analogous relations for vector-induced probabilities,

eqs. (D.1), (D.8). The vector-induced probability is significantly suppressed compared to

the axial one.

As already mentioned, we neglect additional recoil corrections. A justification for this

is the ‘extended’ SV regime relevant in the context of a large-5 expansion [4] where the

enhanced corrections reside in the lepton phase space. The deviations from the small-recoil

kinematics in the amplitude are not enhanced, but rather suppressed by the large power

of energy release decreasing the average recoil.

The case of the decays into the 3
2

+
is treated similarly — the details are given in ap-

pendix D. We describe these states by complete relativistic Rarita-Schwinger wavefunctions

at arbitrary velocity, and calculate the corresponding contribution to the (unpolarized)

structure functions of Ω0. Their integration yields the total decay rate, and we fix the

normalization of the formfactors at zero recoil.

In this way the decay rates are calculate separately for the 1
2

+
and 3

2

+
states and

separately for the axial and the vector transitions. Numerically we get for the combined

yield
Γrad

Γsl
≈ 0.07, (6.46)
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with the axial part strongly dominating (we have included perturbative corrections in the

denominator). For simplicity we assumed equal masses for the 1
2

+
and 3

2

+
states and put

them equal to MD+εrad≈MD+0.7 GeV. While the relative weight of 1
2

+
and 3

2

+
states

varies depending on their couplings, their sum is approximately fixed by the hyperfine

condition (6.37). The central values has been obtained assuming the equal contribution of
1
2

+
and 3

2

+
in the latter.

In our approach the total decay rate is computed in the heavy quark limit. We in-

cluded the 1/mQ symmetry-breaking terms which mediate the transitions in question, and

exploited the fact that the total decay rate does not depend on the exact mixing of the

final heavy-quark eigenstates in the actual QCD hadrons.

To apply the estimates to the yield of actual individual charmed mesons in QCD

one would need to properly construct the corresponding states in terms of 1
2

+
and 3

2

+

states. While straightforward in practice, this may yield unreliable predictions in practice

since the heavy quark symmetry is probably quite strongly violated for the excited charm

states. We expect much more robust predictions for the total yield summing up all the

associated channels. Such inclusive probabilities are insensitive to the details of the strong

Hamiltonian in the final states, are not affected by possible degeneracies and altogether

enjoy smaller preasymptotic corrections. Therefore, we view eq. (6.46) as a good starting

estimate of the overall yield of the descendants of the ‘radial’ states. It refines the earlier

estimate given in ref. [1], and probably represents a natural lower limit. A compatible

number has recently been suggested in ref. [33].

It is worth noting that the semileptonic phase space factor strongly suppresses the yield

of the states with higher mass; in particular, for a wide resonance with mass M=M̄+δ m

one has

(MB−M)5 = (∆−δ m)5 ≈ ∆5

(
1− δ m

600 MeV
+ . . .

)
(6.47)

This shows that for broad resonances the phase space factor averaged over the whole

decay kinematics significantly distorts the Breit-Wigner shape and shifts the apparent

peak towards lower mass. The factor in eq. (6.47) applied to a wide resonance may easily

mimic a typical non-resonant continuum yield with a threshold suppression.

The above estimate suggests that the total yield of the discussed ‘radial’ excitations

with mass below MD+1 GeV is expected to be, in terms of Γsl, at the 7% level. This

is close to what is observed in experiment, yet traditionally is attributed to the ‘wide’ 1
2

P -wave states. The conventional allocation creates a problem: theory predicts that the
3
2 -states must strongly dominate among the P -waves; they have been measured at the right

rate of about 10% of Γsl, see e.g. [34] for a discussion. We are therefore led to argue that

the decays into the 1
2

−
states are indeed suppressed, while the bulk of the experimentally

observed “wide” structure is actually the result of the significant fraction of the ‘radial’

states.

6.3.3 The radial and D-wave excited states

The phenomenological analysis earlier in this section suggests, as the most natural solution

that both the 1
2

+
true radial excitations and the 3

2

+
D-wave states contribute significantly

– 37 –



J
H
E
P
1
0
(
2
0
1
2
)
1
6
9

the spectral functions involved and are produced at appreciable rate in the semileptonic B

decays. At present we do not have accurate enough data to state which of the two channels

dominate; we have only observed that the solutions where one of them, say, the D-wave,

is small is disfavored.

In fact, the identification of the two families of states with the S- or D-waves is not

strict in the actual mesons in QCD even in the limit of a large mass mQ. For instance, the
3
2

+
states can instead be a result of excitation of gauge degrees of freedom. Whether this

is so or not is an open question, and the fact that we expect a numerically large transition

matrix element of the chromomagnetic field,

〈3
2

+

|Q̄BkQ|Ω0〉~q=0 =
g

4
χ†kΨ0 , (6.48)

is not directly related to it. It appears that so far the radial states attracted more attention

in the literature, while the D-waves were marginally considered [35]. At the same time we

expect the dominant mechanism for the production of the corresponding charmed states to

be the 1/mc-component of the amplitude, and it is qualitatively similar for both of them.

Their masses are also expected to be in the same range about 700 MeV above the ground

state.

A challenging question is how one can disentangle these states in experiment. In the

simplest constituent quark model one expects the hyperfine splitting inside the D-wave

multiplet to be particularly suppressed. However, it is not evident to which extent this

would be the property of the actual QCD states. Moreover, the hyperfine splitting may

well happen to be suppressed within the radially excited multiplet as well.

Some differences are expected in the decay pattern. (We reason in terms of the asymp-

totic states deprived of the heavy quark spin; the translation into the actual mesons is

standard.) The radially excited states can decay into the ground state Ω0 and a single pion

in the P -wave, or into Ω0 plus two pions in S-wave. We expect the dominant channel to be

the latter where two pions have a σ-meson enhancement; that is, they must predominantly

be in the isospin-singlet S-wave state.

This particular two-pion channel is not allowed for the 3
2

+
state which should then

decay mostly into Ω0 and a pion. A weaker two-pion channel cannot show the resonance

enhancement associated with σ-meson. We naturally expect the 3
2

+
states to have a smaller

width. It is possible that the excited mesons recently reported by BaBar [36] with mass

around 2.75 GeV are related to these states. The states with the lower mass around 2.6 GeV

may be the radial states.

Another decay chain where the first decay proceeds into a single pion in the S-wave

and a P -wave charm state, either 1
2

−
or 3

2

−
, can be competitive and may provide an

additional handle through the identification of the P -wave state via its subsequent decay.

These questions deserve further consideration. Since the two multiplets are expected to

have close masses, the actual excited vector D∗ states may show significant mixture, which

has to be considered.
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6.4 Nonresonant D(∗)π in the spectral representation

The special role of the nonresonant D(∗)π states manifested itself already in the analysis

of F(1). In the heavy quark limit we consider their counterpart, the non-resonant states

Ω0 + π (kaon or η may also be included). They are of special interest for a relatively soft

pion where its energy is essentially below the resonance excitation gap. This gap depends

on the orbital momentum of the pion: for the P -wave states it is about 400 MeV. Our

focus is on the radial (or D-wave) excitations where it is about 700 MeV.

The traditional classification over spin-parity of the light degrees of freedom is equally

applicable to multi-particle states, including the Ω0π continuum. They can be classified

in a way similar to the ground-state excitations, the analogies of P -waves etc., and only

have to be additionally labeled by the continuum excitation energy. In the static limit the

latter is equal to the pion energy. The quantum numbers of Ω0π are not fixed a priori: a

continuum state is generally a mixture with different quantum numbers depending on the

production amplitude. For instance, this would apply to the relative weight of the 3
2

−
and

1
2

−
states in P -wave.

The advantage of the expansion we employ is that only the heavy quark states with

vanishing total spatial momentum are involved, and they are considered in the static limit.

This fixes the structure of the transition amplitudes appearing to a particular order in the

1/mQ expansion; the relative weight of different spin-orbit multiplets is then determined as

well. In this section we obtain the decomposition into 1
2 , 3

2 etc. states for Ω0π and calculate

the corresponding spectral densities as a function of the pion energy. They then determine

the contributions to |τ1/2|2, |τ3/2|2, ρ3
ππ etc. For instance, we will see that the pion loop

has a τ1/2 = τ3/2 property [37]. The associated continuum states do not contribute to µ2
G

or ρ3
LS , yet they change the IW slope or Λ in a predictable way, and mediate a positive

contribution to µ2
π− µ2

G.

The Ω0π states at rest are uniquely characterized by the energy and by the pion orbital

momentum L. Indeed, the total angular momentum j consists of 1
2 of Ω0 and of L of pion:

L= j ± 1
2 . Its parity relative to parity of Ω0 is (−1)L+1. Therefore, the combination of j

and parity unambiguously specifies L. For instance, L=0 are 1
2

−
P -wave states, L=1 give

1
2

+
and 3

2

+
‘radial’ excitations and the 3

2

−
P -wave states require L=2.

The combination of the ‘P -waves’ appearing to the leading order in either 1/mQ or in

velocity is mediated explicitly by the operator Q̄i ~DQ; the relative mixture is determined by

a concrete form of the amplitude which involves the spin of Ω0. The most straightforward

approach is to consider the Ω0π contribution to the zero-recoil correlation function of

operators Q̄iDjQ and Q̄iDkQ, as we did in section 6.1, eq. (6.1).

The effective low-energy Lagrangian of the πΩ0Ω0-interaction corresponding to

eqs. (5.11) and (5.15) in relativistic notations is

Lchi = −gB∗BπΩ̄0γµγ5Ω0∂
µπ = −2gB∗BπMΩ Ω̄0iγ5Ω0π (6.49)

(total derivatives are omitted). The diagrams to be calculated are shown in figure 12 where

the heavy hadron lines now all refer to Ω0 and the solid vertex stands for the operator
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Ω0 Ω0 Ω0 Ω0 Ω0 Ω0

π π π

Figure 12. The pion emission diagrams in the static limit. The solid blocks denote the Q̄iDjQ

or Q̄iDjiDlQ operators with ~q=0. Pion carries spatial momentum ~k; incoming Ω0 have vanishing

spatial momentum and outgoing −~k.

Q̄iDjQ. The vertex is simple:

1

2MΩ0

〈Ω0(p2)|Q̄(i
←
Dj ±i

→
Dj)Q|Ω0(p1)〉 = (p2 ± p1)jΨ

†
0Ψ0, (6.50)

where we have generally distinguished the left and right derivatives for the case of different

momenta of Ω0. Since in our case the spatial momentum flowing into the vertex vanishes,

this specification is superfluous.

The diagram a) vanishes, while b) yields an amplitude with a simple spin structure:

1

2MΩ0

〈Ω0π|Q̄iDjQ|Ω0(0)〉 = −gB∗Bπ
kj
ω

Ψ†0i~σ
~kΨ0, (6.51)

where ~k is the pion momentum. The resulting correlator Pjk(ω) obtained by squaring the

amplitude and summing over polarizations of intermediate Ω0 has only a part symmetric

in j, k:

1

π
ImPjk(ω) =

g2
B∗Bπ

12π2

|~k|5

ω2
δjkΨ

†
0Ψ0. (6.52)

From this we read off

T ( 1
2

−
)(ω) = T ( 3

2

−
)(ω) =

g2
B∗Bπ

36π2
θ(ω−mπ)(ω2−m2

π)3/2

(
1−m

2
π

ω2

)
, (6.53)

where the overall factor refers to a single charged pion loop contribution. The neutral pion

additionally contributes a half of that. Relations (6.2) give the values of the corresponding

|τ1/2| and |τ3/2|, which are equal.

It is worth noting that the equality τ1/2 =τ3/2 is not an automatic property of quantum

numbers in the Dπ system. It rather follows from the form of the soft-pion amplitude for

heavy mesons. For instance, a structure Ψ̄0σjΨ0 would have produced only 1
2

−
but not 3

2

−
.

The relation generally changes already due to the final state interaction (FSI) in the Ω0π

system, although the latter is suppressed by extra powers of pion momentum. Before the

three-pion threshold the amplitude is completely characterized by the pion-Ω0 scattering

phases which are different in the 1
2

−
and 3

2

−
states, δ1/2(ω) and δ3/2(ω):

1

2MΩ0

〈(Ω0π)j |A|Ω0(0)〉 ∝ |A|eiδj(ω) (6.54)
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for arbitrary operator A. These phases, strictly speaking, should be included into τ1/2(ω)

and τ3/2(ω). The FSI phases also depend on the isospin state, I= 1
2 or I= 3

2 , but we now

abstract from the light flavor symmetries.

The scattering phases emerge via iterations of the Ω0-pion interaction along with renor-

malization of the coupling constant, and they must vanish in the limit of small pion four-

momentum due to the pseudoscalar nature of the interaction. This fixes the physical value

of the coupling as its value renormalized at the threshold. We identify this coupling with

the one in the ‘bare’ chiral Lagrangian eq. (6.49). Although the higher-order terms in

pion momentum, including both scattering phases, can formally be obtained in perturba-

tion theory in gB∗Bπ from the Yukawa-type Lagrangian in eq. (6.49), this would make no

sense for a number of evident physical reasons. What is relevant here is that even a naive

perturbative expansion yields different scattering phases δ1/2(ω) and δ3/2(ω).

The net effect of FSI is to introduce an effective phase eiδj(ω) in τj and to replace

the threshold gB∗Bπ in eq. (6.53) by an energy-dependent coupling. In principle, the

phases together with the couplings are constrained by analyticity of the amplitude and

its unitarity property which are restrictive before the higher thresholds open. However,

these may not fix the amplitude completely since the resulting relations are not local in

energy and depend on the multiparticle domain. Likewise, the solution generically admits

resonances in a particular channel whose number, position in energy and residues may vary.

We shall neglect all such effects in what follows, assuming that the bulk of them is

included in the resonance contributions, and subtracting the latter largely results in an

effective cutoff of the soft-pion amplitudes at a certain scale near or below the lowest

resonance. In particular, we attribute the difference between the 1
2

−
and 3

2

−
channels to

the resonant states.

Next on our list is L=1 producing the true 1
2

+
radial and 3

2

+
states; in our treatment

they will again appear along with the 5
2

+
‘D-wave’ states. For the heavy quark expansion

we need to calculate the matrix elements for the operator with two derivatives,

1

2MΩ0

〈Ω0π|Q̄iDjiDlQ|Ω0(0)〉, (6.55)

contracted with δjl, εmjl and (δmjδnl + δmlδnj− 2
3δmnδjl) to yield the spin-0, spin-1 and

spin-2 operators, respectively.

To evaluate the pole diagrams for them we need the couplings analogous to eq. (6.50),

at zero momentum transfer. These expectation values, however, are required over the heavy

hadron moving with a small momentum of order ω∼ µhadr. They are related by Lorentz

invariance to the generic rest frame matrix elements with up to two spatial derivatives.

Namely, the matrix elements of a product of any number of full covariant derivatives

mQvµ+πµ form a Lorentz tensor of the corresponding rank, and its value in an arbitrary

frame is obtained, regardless of mQ, from the rest frame components by the corresponding
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Lorentz transformation. In the case at hand we get

1

2MΩ0

〈Ω0(~p)|Q̄~π2Q|Ω0(~p)〉 = (~p 2+µ2
π)Ψ†0Ψ0,

1

2MΩ0

〈Ω0(~p)|Q̄(πjπl−πlπj)Q|Ω0(~p)〉 = −
µ2
G

3
Ψ†0σjlΨ0,

1

2MΩ0

(
δmjδnl+δmlδnj−

2

3
δmnδjl

)
〈Ω0(~p)|Q̄πjπlQ|Ω0(~p)〉 =

(
2pmpn−

2

3
δmn~p

2

)
Ψ†0Ψ0.

(6.56)

Additional p-independent terms are absent since no spin-2 or higher current can be con-

structed with a spin-1
2 particle at rest. Similar relations hold for any higher order product

as well; basically, the result for a non-zero momentum is obtained by incrementing each ~π

by ~p:

〈Ω0(~p)|Q̄πj1 . . . πjkQ|Ω0(~p)〉 = 〈Ω0(~p=0)|Q̄(πj1+pj1) . . . (πjk+pjk)Q|Ω0(~p=0)〉. (6.57)

Otherwise the calculation of the transition amplitude proceeds exactly like for P -waves

and yields

1

2MΩ0

〈Ω0π|Q̄πjπlQ|Ω0(0)〉 = gB∗Bπ
1

ω
Ψ†0 i

(
µ2
G

3
(kjσl−klσj) + (~σ~k)kjkl

)
Ψ0. (6.58)

The amplitude above calculated for spin-0 and spin-1 operators has a nontrivial ‘diag-

onal’ Ω0 matrix element at rest, with the diagram a) not vanishing. The ‘diagonal’ piece of

the matrix elements in eqs. (6.56) (in this case it is the value at ~p=0) is independent of the

momentum. The propagators in diagrams a) and b) have opposite sign; this contribution

then enters universally as a commutator with the pion interaction Hamiltonian, in accord

with stationary perturbation theory:

Amn =
[δH,H]mn
(Em−En)2

. (6.59)

For instance, the kinetic expectation value µ2
π always drops out, but a contribution remains

proportional to the chromomagnetic interaction µ2
G which does not commute with the spin-

dependent pion vertex. This yields the most IR-singular contribution for a soft pion due

to the double pole in eq. (6.59).

Strictly speaking, the pole diagrams with virtual Ω0 — they have a pole at ω=0 (~k is

assumed to be fixed, and the overall ~k from the pion interaction is factored out ) — does

not describe the pion emission amplitude completely. It contains a piece finite at ω = 0

coming from the contact interactions, see figure 12c. These contact vertices assume some

values in QCD; we only know they are proportional to ~k since the heavy quark operators

we consider are chirally sterile so that their (light flavor) axial charge vanishes:

lim
kµ→0

〈Ω0π
a(k)|Q̄iDjiDlQ|Ω0〉 = − 1

Fπ

∫
d3x 〈Ω0π

a|[Q̄iDjiDlQ(0), J
5(a)
0 (0, ~x)]|Ω0〉 = 0.

(6.60)
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Otherwise they are arbitrary, and we can only parameterize them by four constants of

dimension mass:

1

gB∗Bπ
〈Ω0π|Q̄iDjiDlQ|Ω0〉 = αΨ†0(kjσl−klσj)Ψ0 + β iεjlmkmΨ†0Ψ0 + γ δjlΨ

†
0i~σ

~kΨ0 +

τ iΨ†0

(
σjkl + σlkj −

2

3
δjl~σ~k

)
Ψ0, (6.61)

plus higher terms in k. Such terms are induced, in particular, by intermediate excited

heavy quark meson resonance states propagating in diagrams figure 12, a),b), with their

relative size depending on spin. Unequal meson-to-pion couplings in section 5.2 correspond

to particular values of the constants α to γ; based on the QCD sum rule analysis ref. [25]

they appear large. While these terms are parametrically smaller than the pole amplitudes

for small pion momenta, in general they contribute, especially the quantities regular in the

chiral limit.

There are also terms next order in pπ/µhadr. They would have the same scaling as the

last term in eq. (6.58). Nevertheless, we shall neglect them in what follows when address

the pion loop effects proper: we relegate the corresponding contributions to the effects of

resonances. This parallels the pole-dominance assumption employed in the calculation of

the D(∗)π amplitudes in section 5.2, however the Z-diagrams included in the relativistic

propagators of intermediate B∗ and D∗ mesons also induce such terms. If an argument can

be put forward that one should retain only the D∗ or B∗ in the normal diagrams, there is

no physical reason to exclude the higher states in the Z-diagrams: they all have the same

large virtuality. Therefore, it may be natural to assume that in aggregate the Z-induced

contact terms are suppressed or vanish in the nonrelativistic expansion.

The result for the pion loop in R(ω) takes the following form:

Rπijkl(ω) =
g2
B∗Bπ

12π2
θ(ω−mπ)

|~k|3

ω2
Ψ†0

[
(µ2
G)2

9
(2δikδjl−2δilδjk + δikσjl+δjlσik−δilσjk−δjkσil)

+
µ2
G

3

2~k 2

5
(δikσjl − δklσij + δijσkl − δjlσik) +

~k 4

5
(δijδkl + δikδjl + δilδjk)

]
Ψ0.

(6.62)

This can be decomposed into the invariant structures; introducing the common factor

W ≡
g2
B∗Bπ

12π2
θ(ω−mπ)

we get

ρ
( 1
2

+
)

p (ω) = W
3|~k|7

ω2
, ρ

( 1
2

+
)

pg (ω) = −W
4µ2

G|~k|5

ω2
, ρ

( 1
2

+
)

g (ω) = W
16(µ2

G)2|~k|3

3ω2
,

ρ
( 3
2

+
)

f (ω) = W
16|~k|7

ω2
, ρ

( 3
2

+
)

fg (ω) = W
8µ2

G|~k|5

3ω2
, ρ

( 3
2

+
)

g (ω) = W
16(µ2

G)2|~k|3

9ω2
, (6.63)

ρ( 5
2

+
)(ω) = W

2|~k|7

5ω2
.

The factorization properties stated in section 6.1.1 are manifest here.
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For practical applications it is important to include in the amplitude the next-to-

leading ‘contact’ terms described by α, β and γ in eq. (6.61); they can actually be derived

in a model-independent way and do not depend on the form of the resonance ansatz.

Calculating the full Rπijkl(ω) with them is straightforward, but we pospone it to future

work.

The above calculation of the pion loop can be readily generalized to higher-dimensional

heavy quark momentum operators, including the case of different number of derivatives in

the two vertices. The expressions are particularly simple where no timelike momentum or

antisymmetric spatial indices are involved; then the corresponding vertices simply amount

to products of pion momentum and the resulting integrals can be simply calculated.

We now return to our practical need. We are concerned with only the zero-momentum

correlators of the 1/mQ-terms in the heavy quark Lagrangian, and we use the above derived

spectral densities to estimate

δρ3
ππ ≈ 0.02 GeV3, δρ3

πG ≈ 0.065 GeV3, δρ3
S = δρ3

A ≈ 0.03 GeV3, (6.64)

and

δρ̃3
ππ ≈ 0.03 GeV2, δρ̃3

πG ≈ 0.1 GeV2, δρ̃3
S = δρ̃3

A ≈ 0.07 GeV2, (6.65)

where we have assumed the upper cutoff at ω = 700 MeV and have adopted gB∗Bπ =

4 GeV−1. The loops with charged and neutral pions are included, but not the kaon and

η contributions. Of special interest is the ‘hyperfine’ combination of eq. (6.35) for which

we get

δ(−ρ3
πG − ρ3

A) ≈ −0.09 GeV3; (6.66)

as expected, the pion contribution is suppressed, but it is negative and, taken at face value,

would strengthen the lower bound on the resonant contributions. This is due to the positive

sign of δρ3
πG, opposite to the BPS regime.

With the same choice for gB∗Bπ we would have

δ%2 ≈ 0.015
( ωmax

0.5 GeV

)2
, δΛ ≈

( ωmax

0.5 GeV

)3
10 MeV,

δµ2
π ≈

( ωmax

0.5 GeV

)4
0.006 GeV2, δρ3

D ≈
( ωmax

0.5 GeV

)5
0.0025 GeV3 (6.67)

where we have anticipated a lower effective cutoff in the P -wave channel (the spin-triplet

counterparts are not affected). We see that generally the pion loop contributes only a small

fraction of the nonlocal correlators and a tiny amount of the local expectation values. A

possible exception are quantities vanishing in the BPS limit where the pion loop may

constitute a significant part of the deviation.

The first calculation [38] of the chiral correction to the formfactor to order 1/m2
Q

accounted for the terms proportional to (µ2
G)2 from the HQS-breaking masses in the meson

propagators and picked up only the ρ̃3
S and ρ̃3

A pieces in eq. (6.65), yet leaves out ρ̃3
ππ and

ρ̃3
πG. We see, however that the latter contribution has the same size even though it is not

singular in the chiral limit.
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One can combine the above description of the nonresonant D(∗)π states with the

method of section 6.3.2 for the inclusive yield, to get an estimate of the total continuum

contribution to the inclusive yield. To that end one only needs to integrate the expressions

in eq. (6.63) over the mass of the Ω0π state; due to the strong phase-space suppression

the integral is effectively cut off at relatively soft pions. In this way we arrive at the yield

in the ball park of 1% of Γsl. This, however, refers to only the specified jP of the D(∗)π

states. The P -wave continuum is an independent channel.

6.5 Nonfactorizable contributions to higher-dimensional local expectation

values

The size of the expectation values of local heavy quark operators of D = 7 and D = 8 is

important to estimate the impact of higher-order power corrections both in beauty and

charm, to assess the accuracy of the OPE predictions and to study the convergence of

the OPE series. The relevant operators here are those which emerge in the calculation of

power corrections at tree level; they are sometimes called ‘color-through’ operators. Ref. [3]

illustrated their effect in inclusive B decays for the semileptonic b→ c transitions and for

B→Xs+γ used in measuring |Vcb|. They have also appeared in section 4 in our analysis

of B→D∗`ν at zero recoil.

In order to estimate the significance of the expectation values a ground-state factoriza-

tion method has been devised in ref. [3] which contains a derivation of the formalism and

the explicit expressions for the factorization contributions to all nine dimension-7, m1−9,

and eighteen dimension-8, r1−18, B-meson expectation values. Using the intermediate state

saturation representation of ref. [3] together with the relations elaborated in the previous

sections we can now supplement the ground-state factorization values with the contribu-

tions from the excited states: the analysis of hyperfine splitting allows to quantify their

effect. This enables us to assess the accuracy of the factorization ansatz, the potential

scale of the corrections to factorization and, ultimately, may elucidate the pattern of the

higher-order effects in a more quantitative manner.

Once again we start with infinitely heavy spinless quarks. The intermediate state

representation for the operators with four spatial derivatives reads

1

2MQ
〈Ω0|Q†πiπjπkπlQ(0)|Ω0〉 =

∫
dω Rijkl(ω), (6.68)

with Rijkl(ω) introduced in eq. (6.4). The factorization contribution is located at ω = 0;

the upper limit of integration over ω is determined by the normalization point assumed for

the operator. The non-factorized pieces take a different form for each class of intermedi-

ate states.
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Contracting indices in Rijkl(ω) and multiplying the tensor, for the spin-triplet opera-

tors, by the spin matrix with an appropriate index, we obtain for the actual B mesons

δnfm1 =
5

9
ρ

( 1
2

+
)

p +
1

30
ρ

( 3
2

+
)

f + 2ρ( 5
2

+
) δnfm3 = −2

3
ρ

( 1
2

+
)

g − ρ( 3
2

+
)

g

δnfm4 =
4

3
ρ

( 1
2

+
)

p + ρ
( 1
2

+
)

g − 1

10
ρ

( 3
2

+
)

f +
3

2
ρ

( 3
2

+
)

g − 6ρ( 5
2

+
)

δnfm6 =
2

3
ρ

( 1
2

+
)

g − 1

4
ρ

( 3
2

+
)

g δnfm7 = −8

3
ρ

( 1
2

+
)

pg − 2ρ
( 3
2

+
)

fg

δnfm8 = −8ρ
( 1
2

+
)

pg

δnfm9 = −10

3
ρ

( 1
2

+
)

pg + ρ
( 1
2

+
)

g − 3

20
ρ

( 3
2

+
)

f − ρ( 3
2

+
)

fg − 3

4
ρ

( 3
2

+
)

g + 6ρ( 5
2

+
) . (6.69)

In the above equations the integration over ω is assumed, it has not been shown explicitly

for compactness. We remind that m2 and m5 are given by the fourth moment of the stan-

dard SV (P -wave) structure functions and have no conventional ground-state factorizable

contributions.

For numeric estimates one simply considers the contributions of the individual multi-

plets of the excited states using their spectral densities in eq. (6.18). The contribution of
1
2

+
is obvious beforehand: it follows the factorizable one, see ref. [3], and only requires to

replace (µ2
π)2 by P 2, (µ2

G)2 by G2 and µ2
πµ

2
G by PG. The effect of the higher-spin states has

a different structure. Since the basis {m1 −m9} has been selected arbitrarily, the impact

of nonfactorizable contributions should be gauged in specific cases; this is easily done based

on eqs. (6.69).

To quantify the overall scale of the effect we consider here three representative com-

binations M1,M2,M3 corresponding to the expectation values b̄~π2~π2b, b̄(~σ ~B)(~σ ~B)b and

−b̄(~σ ~B)~π2b, respectively:

M1 = m1 +
1

2
m3 +

1

3
m4, M2 = −m3, M3 = −1

8
m8, (6.70)

for which we have

M1 = (µ2
π)2 +

∫
dω ρ

( 1
2

+
)

p (ω)

M2 =
2

3
(µ2
G)2 +

∫
dω

(
2

3
ρ

( 1
2

+
)

g (ω) + ρ
( 3
2

+
)

g (ω)

)
M3 = µ2

πµ
2
g +

∫
dω ρ

( 1
2

+
)

pg (ω). (6.71)

Numerically the corrections depend to some extent on the ratio of the 3
2

+
and 1

2

+
contri-

butions and on P/G in the latter. Taking, for instance, εrad≈700 MeV,
∫

dω ρ
( 1
2

+
)

g (ω) ≈∫
dω ρ

( 1
2

+
)

pg (ω) ≈
∫

dω ρ
( 3
2

+
)

g (ω) (P ≈G, see section 6.3) and using the hyperfine constraint

eq. (6.37) with κ≈−0.2 we obtain

M1 ≈ 0.2 GeV4
fact + 0.17 GeV4

n−fact

M2 ≈ 0.08 GeV4
fact + 0.28 GeV4

n−fact

M3 ≈ 0.15 GeV4
fact + 0.17 GeV4

n−fact. (6.72)
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A more definite value is obtained for the special combination

−1

5
m3 −

6

5
m6 −

1

4
m8

which has the same structure as the hyperfine constraint; here we get

− 1

5
m3−

6

5
m6−

1

4
m8 ' −

2

3
(µ2
G)2 +2µ2

πµ
2
G−εrad(ρ3

πG+ρ3
A) ≈ (0.23+0.32nf) GeV4. (6.73)

From this brief comparison we conclude that the factorization ansatz generally provides no

more than a reasonable starting approximation for the expectation values not affected by

cancellations.

The hyperfine constraint and the approximations we complemented it with have noth-

ing to say about the contribution of spin-5
2 states which require a different theoretical input.

Positivity and various relations between different nonfactorizable contributions are implicit

in eqs. (6.69); these constraints should, in principle, be applied only after the contributions

from the non-resonant continuum are subtracted.

The D=8 operators with five derivatives were found to contribute at a lower level to

the inclusive moments in B decays [3]; their precise expectation values are therefore less

important in practice. Nevertheless, in this case it would also be useful to have at least a

crude estimate of the potential error in the factorization ansatz, to be more confident in

the assessment of the impact of 1/m5
Q terms.

The nonfactorizable effects for the D = 8 operators can be analyzed along the same

lines as the D=7 operators, identifying iD0 adjacent to the intermediate state in question

with −ε. Most notably, the excited states contribute to a few combinations of ri which

vanish in the ground-state factorization:

r5 = −ωρ( 1
2

+
)

p (ω) ≈ −0.13 GeV5 r15 = −ω1

2
ρ

( 1
2

+
)

pg (ω) ≈ −0.06 GeV5

r6−r1 = −ω
(

1

3
ρ

( 1
2

+
)

p +
1

6
ρ

( 1
2

+
)

g +
1

20
ρ

( 3
2

+
)

f +
1

4
ρ

( 3
2

+
)

g + 3ρ( 5
2

+
)

)
r7 = −ω

(
1

3
ρ

( 1
2

+
)

p − 1

6
ρ

( 1
2

+
)

g +
1

20
ρ

( 3
2

+
)

f − 1

4
ρ

( 3
2

+
)

g + 3ρ( 5
2

+
)

)
r16 = −ω

(
−2

3
ρ

( 1
2

+
)

pg − 1

6
ρ

( 1
2

+
)

g − 3

40
ρ

( 3
2

+
)

f − 1

2
ρ

( 3
2

+
)

fg +
1

8
ρ

( 3
2

+
)

g + 3ρ( 5
2

+
)

)
r17−r8 = −ω

(
2

3
ρ

( 1
2

+
)

pg − 1

6
ρ

( 1
2

+
)

g − 3

40
ρ

( 3
2

+
)

f +
1

2
ρ

( 3
2

+
)

fg +
1

8
ρ

( 3
2

+
)

g + 3ρ( 5
2

+
)

)
r18 = −ω

(
1

6
ρ

( 1
2

+
)

g − 3

40
ρ

( 3
2

+
)

f − 1

8
ρ

( 3
2

+
)

g + 3ρ( 5
2

+
)

)
. (6.74)

In the above equations the integration over ω is again assumed; the numeric estimates for

r5 and r15 are obtained under the same assumptions as eqs. (6.72).

The most general analysis of the nonfactorizable corrections for the other operators

(except for r1 and r8 given by the fifth moment of the generalized SV structure functions)

requires considering

R̃ijkl(ω) =
1

2π

∫
d3x

∫
dx0 e

−iωx0 1

2MQ
〈Ω0|Q†πiπjQ(x)Q†πkπ0πlQ(0)|B〉 (6.75)
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which is an analogue of the tensor spectral densityRijkl(ω) in eq. (6.4). One of the operators

now includes an extra time derivative. The corresponding decomposition is lengthier than

eq. (6.5) since there is no symmetry between pairs of indices. The factorization of eqs. (6.18)

is modified for the new invariant structures: along with the transition matrix elements in

eqs. (6.15), (6.16) and (6.17) we need to introduce the similar ones P̃ , G̃, f̃ , g̃ and h̃ for

the operators Q̄πlπ0πlQ (it is assumed that π0 acts on the right which matters for non-

diagonal matrix elements). The analogue of eq. (6.68) for the operators with five derivatives

in terms of R̃ijkl(ω) holds and the general relations for the remaining ri similar to eqs. (6.69)

or (6.71) can readily be derived.

The hyperfine splitting constraint cannot, however be directly applied to R̃ijkl(ω) and

the corresponding tilded residues remain largely unconstrained even in the single excited

multiplet approximation. The BPS approximation in this case yields P̃ =G̃ and f̃= g̃, but

it is not too helpful. Therefore we do not quote here the corresponding expressions.

It is nevertheless possible to get a rough estimate by making the assumption that the

first P -wave excitation(s) approximately saturate, as an intermediate state, the transition

amplitudes into the radial or the D-wave states:

〈ρ|πjπ0πk|Ω0〉 ≈ 〈ρ|πj |P (1)
3
2

〉〈P (1)
3
2

|π0πk|Ω0〉+ 〈ρ|πj |P (1)
1
2

〉〈P (1)
1
2

|π0πk|Ω0〉, (6.76)

where ρ generically refers to the 1
2

+
, 3

2

+
or 5

2

+
states under consideration. This can also be

regarded as an approximate relation obtained by truncating the complete representation

πj |Ω0〉 =
∑
m

√
3εmτ

(m)
3/2 |χ

(m)〉j +
∑
n

εnτ
(n)
1/2 σj |φ

(k)〉 ≈
√

3ε
(1)
3/2τ

(1)
3/2 |χ

(1)〉j + ε
(1)
1/2τ

(1)
1/2 σj |φ

(1)〉

(6.77)

after the lowest P -wave families. Such an assumption seems to work satisfactorily for the

transition between the ground states, yet may be expected to degrade with higher initial

and/or final states. Identifying ε1/2 and ε3/2 with ε̃ this would yield

P̃ ≈ −ε̃P, G̃ ≈ −ε̃G, f̃ ≈ −ε̃f, g̃ ≈ −ε̃g, h̃ ≈ −ε̃h (6.78)

for individual residues, and

ρ̃( l
2

+
) ≈ −ε̃ ρ( l

2

+
) (6.79)

for all invariant tensor structures with l=1 and l=3, and, most generally,

R̃ijkl(ω) ≈ −ε̃ ·Rijkl(ω). (6.80)
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Adopting for orientation such an approximation we obtain

δnfr2 ≈ −ε̃ ρ
( 1
2

+
)

p ≈ −0.07 GeV5

δnfr3 ≈ −ε̃
(

1

3
ρ

( 1
2

+
)

p − 1

6
ρ

( 1
2

+
)

g +
1

20
ρ

( 3
2

+
)

f − 1

4
ρ

( 3
2

+
)

g + 3ρ( 5
2

+
)

)
δnfr4 ≈ −ε̃

(
1

3
ρ

( 1
2

+
)

p +
1

6
ρ

( 1
2

+
)

g +
1

20
ρ

( 3
2

+
)

f +
1

4
ρ

( 3
2

+
)

g + 3ρ( 5
2

+
)

)
δnfr9≈δnfr10 ≈ −ε̃ ρ

( 1
2

+
)

pg ≈ −0.07 GeV5

δnfr11≈δnfr12 ≈ −ε̃
(

1

6
ρ

( 1
2

+
)

g − 3

40
ρ

( 3
2

+
)

f − 1

8
ρ

( 3
2

+
)

g + 3ρ( 5
2

+
)

)
δnfr13 ≈ −ε̃

(
−2

3
ρ

( 1
2

+
)

pg − 1

6
ρ

( 1
2

+
)

g − 3

40
ρ

( 3
2

+
)

f − 1

2
ρ

( 3
2

+
)

fg +
1

8
ρ

( 3
2

+
)

g + 3ρ( 5
2

+
)

)
δnfr14 ≈ −ε̃

(
2

3
ρ

( 1
2

+
)

pg − 1

6
ρ

( 1
2

+
)

g − 3

40
ρ

( 3
2

+
)

f +
1

2
ρ

( 3
2

+
)

fg +
1

8
ρ

( 3
2

+
)

g + 3ρ( 5
2

+
)

)
(6.81)

where the integration over ω is assumed similar to eqs. (6.69). Taking ε̃ ≈ 400 MeV the

numerical estimates for the relevant combinations of the expectation values are then as

straightforward as those for the D = 7 operators. The nonfactorizable corrections to the

typical non-suppressed expectation values are of the order of 50 to 100%.

Bearing in mind the dependence of all the contributions on a few poorly known hadronic

parameters we cannot regard the calculation of general nonfactorizable effects accurate.

They should be used primarily to assess the potential scale of the corrections to factorization

and to clarify the expected sign pattern. The corrections associated with the 5
2

+
states,

for instance in 〈~π2~π2〉 or in 〈~π2π0~π
2〉 are largely unconstrained since only physics related

to the 1
2

+
and 3

2

+
have been considered.

The formalism employed in this subsection could be used together with the results of

section 6.4 to find the nonfactorizable contributions due to non-resonant states composed

of the ground-state multiplet and a pion. However, we expect these contributions to be

relatively small, as they come with higher powers of the excitation energy which is lower

for the soft pion continuum than for the principal resonances, and therefore we do not

consider them here.

6.5.1 Ground-state factorization and Nc

The expectation values like 〈Q̄~σ·~B×~BQ〉 or 〈Q̄~σ·~E×~EQ〉 are possible due to the non-Abelian

nature of QCD; in the factorization approximation they are proportional to 2
3(µ2

G)2 or to

−ε̃2µ2
G. Such expectation values must vanish, on the other hand, in the bound states of

Abelian theories like QED. In QCD proper one can consider similar time correlators for the

usual magnetic and/or electric fields; they would enter, for instance, the electromagnetic

corrections. The correlators can be decomposed into the same set of invariant spectral den-

sities with different residues. For such Abelian fields certain expectation values must vanish

reflecting the commutativity of the different components of the Abelian field strength. For
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instance, this is the case for the counterpart of the ρ3
A structure:∫

ω>0
dω ρAbel

A =

∫
ω>0

dω

(
2

3
ρ

( 1
2

+
)

g,Abel −
1

2
ρ

( 3
2

+
)

g,Abel

)
= −

2(µ2
G,Abel)

2

3
(6.82)

must hold for the Abelian analogies of the spectral densities and of the B-meson local

expectation values. This may be reminiscent of eqs. (6.24), but is more general. Such a

sum rule shows that the ground-state saturation itself may not be a universally applicable

approximation. Eq. (6.82) may even be regarded as an indication of the importance of the
3
2

+
state.

In actual QCD such local antisymmetric products of the guon field strength do not

need to vanish; all the considered correlators and the factorized pieces count as constants

in the large-Nc limit. One may think that the ground-state factorization approximation is

generally representative at not too small Nc.

6.5.2 Perturbative normalization point dependence

Having at our disposal the perturbative heavy quark spectral functions of eqs. (C.10)

and (C.5) we can easily incorporate the leading powerlike mixing for the operators to

order αs and to any BLM order using the preceding analysis. The corrections to the

expectation values are obtained from eqs. (6.69), (6.74), etc.; the B-meson spectral densities

themselves are given by eqs. (6.24). This gives the one-loop renormalization-scale evolution

of the expectation values, except for the scale-dependence of the factorizable contributions

themselves, like (µ2
π(µ))2, which in practice may be significant.

As a typical example, the one-loop and two-loop BLM piece in the combination M2 in

eqs. (6.71) is

Mpert
2 (µ) = CF

αs(M̄)

π
µ4

[
1 +

β0αs
2π

(
ln
M̄

2µ
+

29

12

)]
, (6.83)

with M̄ denoting the normalization scale for αs (in the MS scheme). It is obtained using

eqs. (C.13). The first-order correction to M1 vanishes and the second-order term is negative

(although quite suppressed).8 Of course, the perturbative calculation is meaningful only

for not too low values of µ. At a numeric value of the strong coupling such estimates can

be used to gauge the relative importance of the scale-dependence effects. The one-loop

term with fixed αs=0.3 would yield

Mpert
2 (0.7 GeV) ≈ 0.03 GeV4,

and is relatively small for µ between 0.7 and 1 GeV.

To extend this to the complete set of D=8 operators including those in eqs. (6.81) an

additional class of the spectral functions would be needed where one of the pair products

πkπl is replaced by πkπ0πl, cf. eq. (6.75). The one-loop answer for it is simple, because the

8This shows a typical problem of applying naive non-Abelization to cases where the order-αs effect is

absent; the full O(α2
s) contribution to ρ2ππ is, of course positive, paralleling the similar term in the Abelian

theory.
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transition amplitude for such operators into a state with a single extra gluon amounts to

−ω times the amplitude for the corresponding operator without extra π0:

〈Qg|Q̄πkπ0πlQ|Q〉 = −k0〈Qg|Q̄πkπlQ|Q〉+O(g3
s).

In other words, ε̃= ω in terms of eqs. (6.81) to this accuracy. This exactly parallels the

result for the P -wave SV operators. In this way bothO(αs) and the higher BLM corrections

to the mixing are readily obtained for the D=8 operators alongside the power mixing for

D=7.

7 Discussion

7.1 On a resummation of the 1/mk
c corrections

The accuracy in the estimate of F(1) is limited, in particular, by significant higher-order

power corrections in 1/mc. We mention here a possibility to consider all these potentially

dangerous corrections together and, therefore, in a certain sense, to resum them. The price

to pay is the appearance of a limited number of new hadronic expectation values.

The idea is to apply the OPE to the reversed zero-recoil transition D∗→B instead of

B→D∗. At first glance this amounts only to exchanging c and b in eq. (2.1) and taking

the expectation values over the vector rather than pseudoscalar state.9 However, the axial

c̄b current produces not only B out of D∗, but also B∗. Therefore a scattering amplitude of

two arbitrary spatial components j, l should instead be considered, and the corresponding

indices contracted with the polarizations of D∗,

T̃ zr(q0) =

∫
d3x

∫
dx0 e

−iq0x0 1

2MD∗
〈D∗j |

1

3
iT c̄γjγ5b(x) b̄γkγ5c(0)|D∗k〉 . (7.1)

The analogue of eq. (2.6) will still contain terms with powers of 1/mc. However, they

only come from the nonrelativistic expansion of the full-QCD charm quark operators c̄Okc,

starting with the leading c̄c. Consequently, the full set of the 1/mk
c corrections originate

from the heavy charm expansion of the finite-mc expectation value over actual D∗ states,

〈D∗|c̄c|D∗〉. The latter is a physical quantity and can in principle be measured on the

lattice. Similarly, for a given power l of 1/mb all the terms 1/ml
b1/m

k
c come from the the

heavy charm expansion of the finite-mc expectation value of the corresponding c̄c operator

with l derivatives. Likewise, the 1/mc power effects in the inelastic transition amplitudes

combine to yield directly the non-diagonal transition probabilities for the finite-mc charm

states. The nontrivial explicit OPE corrections to the corresponding sum rule may only

depend on powers of 1/mb since they come from the dynamic expansion of the intermediate-

quark propagator. For what concerns the perturbative corrections, they are the same as in

the sum rule eq. (2.1), modulo the mc↔mb replacement.

An attractive element of such an approach is that the mc-dependence of these matrix

elements must be regular in the whole mc range and it should be possible to construct

9The fact that D∗ is not a stable particle is not an issue since the width of D∗ is extremely small. To

completely bypass the complication one may simply assume that the pion mass is a few MeV larger than

it is in reality; the properly defined B→D∗ formfactor may not depend on this.
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accurate interpolating functions, which would replace a large number of different coefficients

appearing in the expansion in 1/mc. Theory-wise, the regularity puts constraints on the

higher-order behavior of the 1/mc series and suggests that the series is sign-alternating,

implying numerical cancellations between successive orders for actual charm mass.

The series in 1/mb is not resummed in this approach. As was discussed in section 4,

numerically these corrections can be discarded to a good approximation, and retaining the

known leading 1/m2
b terms for them would be sufficient for all practical purposes.

Guided by the quantum-mechanical interpretation of the sum rules it is not difficult

to verify that the leading, 1/m2
Q corrections are identical to those in the direct approach,

separately for the local OPE piece and for the inelastic contribution. Therefore the actual

difference between the expansions would appear when the higher-order power corrections

are addressed.

7.2 Vector formfactor in B→D transitions

The present study focused on the B→D∗ decay mediated by the axial current. A similar

analysis may be applied to the B→D transitions where only the vector current contributes.

Two different aspects can be addressed here.

The direct zero-recoil vector-current analogue FD of FD∗ is related to the matrix

element 〈D|c̄γ0b|B〉 and does not determine the semileptonic decay rate near zero recoil

for massless leptons, unlike B→D∗. It can be measured in the decay B→D τντ whose

amplitude is proportional to mτ at ~q=0, and this may represent an interesting opportunity

for a new generation Super-B facility.

The more conventional decays B → D `ν with nearly massless leptons are P -wave

at small recoil and are more difficult to measure in this corner of the phase space. Of

the two general vector formfactors f+(q2) and f−(q2) the latter does not contribute for

massless leptons; the former, on the other hand, depends on both the time and the spatial

components of the current (see, e.g. ref. [23]). The spatial component assumes a change

of the heavy meson velocity, is not related to a conserved Noether current in the heavy

quark limit, and generally suffers from linear power corrections O(1/mQ). This fact fed, for

a long time, a theoretical prejudice against the precision evaluation of the corresponding

formfactor

F+ ≡
2
√
MBMD

MB +MD
f+

(
(MB−MD)2

)
.

It was nevertheless argued later [23], based on the BPS expansion, that in fact the power

corrections in F+ are smaller, and may even enjoy a better numeric control than in FD∗ :

F+ = 1.04± 0.01pert ± 0.01power. (7.2)

The analysis developed in the present paper can be applied to both formfactors, FD and

F+. For FD the required modifications are minimal. The case of F+ is somewhat different

both technically and conceptually; in particular, the physical interpretation is different,

and there is no simple probabilistic interpretation that would mean positivity already for

the 1/m2
Q corrections. The positivity holds for the leading 1/mQ power correction, however

it can simply be regarded as known within the required numeric precision.
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The analysis of the perturbative corrections follows closely that of section 3 in the case

of FD, with corrections generally smaller. This kind of analysis cannot be directly applied

to F+ due to subtleties at nonvanishing recoil; the treatment is more complicated here and

has to be analyzed ad hoc [23].

For what concerns the power corrections, we do not expect improvements in either

cases. The main reason is that the power corrections (in the kinetic scheme we consistently

use) are numerically small to start with, since they all vanish in the exact BPS limit.

Moreover, to any order in 1/mQ the terms are of the second order in the deviation from

the BPS limit [23], an analogue of the Ademollo-Gatto theorem [39] which applies to the

BPS expansion for both FD and F+. As a consequence, any numeric result strongly depends

on the degree of proximity of the actual-QCD dynamics in B mesons to the BPS limit, for

instance, on the excess of µ2
π over µ2

G. This appears as a significant cancellation between

terms belonging to different spin structures. It is therefore difficult to expect an increase

in defendable accuracy in FD and F+ unless the numerical aspects of the BPS breaking are

experimentally scrutinized. Once this aspect of the strong dynamics is studied, we would

have more theory constraints to improve the accuracy of the nonperturbative predictions,

in particular if the BPS regime turns out a good starting approximation.

7.3 Lattice determination of FD∗

The recent PDG policy has been to rely solely on the lattice evaluation of FD∗ for the

exclusive extraction of |Vcb| from the B→D∗`ν differential rate extrapolated to the no-

recoil kinematics. The lattice values for FD∗(1) have always been on the higher side, well

above 0.9 and carried small error bars, in particular since unquenched simulations were

first employed [40, 41]:

FD∗(1) = 0.924± 0.012± 0.019. (7.3)

An update of this result was presented by the FNAL-MILC collaboration [42] after our

first publication [1]. It has a lower central value,10

FD∗(1) = 0.902± 0.005± 0.016 (7.4)

and is closer to our number. The other recent lattice result is based on a quenched sim-

ulation by the Tor Vergata group [43], FD∗(1) = 0.924 ± 0.008 ± 0.005 and has an even

smaller nominal error.

Confronting our evaluation of FD∗(1) with the lattice ones, we should first emphasize

that the latter are not direct calculations of this formfactor. The lattice theory with heavy

quarks and continuum QCD are two different theories, and there is no limit at mQ a∼1 (a

is the lattice spacing) where they would coincide nonperturbatively. Present simulations do

not reach values of mca below about 0.3-0.4. The fact that the two theories share the same

heavy quark symmetry was emphasized as the key point behind the approach pursued by

the FNAL group [44]. However, it is the power-suppressed deviations from the symmetry

that matter in this case, and in principle they are different.

10The last FNAL paper included the electroweak decay enhancement factor 1.007 into F ; we have removed

it in eq. (7.4). We thank A. Kronfeld for the communication.
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This becomes transparent if one takes a closer look at the 1/mQ corrections. In QCD,

as a consequence of Lorentz symmetry, the mass entering the nonrelativistic kinetic energy

~p 2/2mQ is the same rest-energy mass mQ controlling also the power-suppressed terms in

the currents (from equations of motion and from the Foldy-Wouthuysen transformation),

the role of the correlators of the subleading operators, etc. No symmetry, however, enforces

their equality on the lattice, and all these terms are driven by different effective masses.

The FNAL lattice approach appreciates this complication [45]. To handle it the heavy

quark sector is modified by adding ad hoc power-suppressed terms allowing to change the

corresponding effective masses; in turn this changes the power corrections. The outcome

for the 1/mk
Q effects in F(1) is then determined by the ad hoc constants which have to

be specified through a matching. However, such a matching has only been performed at

tree level. Furthermore, the matching was performed only to the leading power effects,

corresponding to the 1/m2
Q corrections in F(1). All 1/m3

Q and higher effects are therefore

not under control,11 although it can be argued that these discretization effects are somewhat

suppressed for charm, at low a.

In view of these practical limitations the FNAL approach cannot be regarded a first-

principle evaluation of the zero-recoil B → D∗ formfactor in QCD. Some of the related

potential biases are included in the error budget detailed in their publications. However,

the error assignment may not be realistic. In fact, the recent value in eq. (7.4) has a reduced

discrepancy with the estimate eq. (8.3); a more conservative treatment of the systematic

errors would make it compatible with the central value of the present analysis.

We also note that, comparing the earlier and the more recent FNAL lattice simulations,

the group did not find a noticeable effect of the light quark unquenching. This differs

from the estimated size of the chiral loop contributions discussed in section 5.2 related

to the nonresonant states with light dynamic pions, although there may be no formal

contradiction.

The above reservations apply to the lattice determination of the vector B→D form-

factor F+ as well. In this case larger corrections to the symmetry limit were found [46]

F+ = 1.074± 0.018± 0.015

compared to the theoretical prediction in eq. (7.2). Here, however, the disagreement is less

significant than for FD∗ .12

8 Conclusions

The present study has been motivated by the need for an updated evaluation of the phe-

nomenologically important B→D∗ semileptonic transition formfactor near the zero-recoil

11Earlier FNAL evaluations [44] claimed to extract the principal 1/m3
Q terms, however they were deter-

mined in an effective theory essentially different from the actual QCD. The later analyses considered only

1/m2
Q corrections.

12More recently, the Tor Vergata group reported the value F+ = 1.026 ± 0.017, based on quenched

simulations [47] and a new preliminary value F+ = 1.058 ± 0.009stat [48] has been presented, where the

systematic uncertainty still needs to be evaluated.
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point, F(1), that could account for the latest progress in heavy quark theory. The main

numeric outcome has been reported in [1] and the details have been given here.

Numerically we conclude that the unitarity upper bound for the formfactor is

F(1) < 0.925 (8.1)

assuming only positivity of the inelastic contributions; this corresponds to the choice of

εM =0.75 GeV. Including the soft D(∗)π continuum the bound becomes

F(1) < 0.90 . (8.2)

These numbers refer to values of µ2
π close to its lower bound. The bounds on F(1) become

stronger if the actual µ2
π value is larger, which is more natural on theory grounds. Our

analysis of the inelastic transitions into the low-lying channels incorporating the constraints

following from the observed amount of the hyperfine splitting in B and D mesons allows

us to go beyond the unitarity upper bound and to obtain an estimate. The actual value

for F(1) comes out about

F(1) ≈ 0.86 (8.3)

at low values of µ2
π; it somewhat decreases at larger µ2

π and/or ρ3
D.

The quoted number for the unitarity bound in eq. (8.1) has a theoretical uncertainty

of about 1%, and eq. (8.2) a slightly larger error. The estimated central value has a larger

uncertainty, of around 2%. We quote here the value literally obtained in our estimate (for

low µ2
π, ρ3

D); it is not implied that this value peaks the expectation probability.

Thus, F(1) in excess of 0.9 would be consistent with unitarity and the short-distance

expansion of the QCD amplitude only under contrived assumptions. Values larger than 0.92

should be viewed in violation of unitarity assuming that the conventional short-distance

expansion in QCD works in the case of the zero-recoil scattering amplitude off heavy quarks.

In earlier analyses of the power corrections to F(1) the “wavefunction overlap” effect

used to be uncertain and, essentially was only parameterized; in the language of the heavy

quark sum rules it was

Iinel = χ ·∆ (8.4)

with ∆ the power corrections in the sum rule, cf. eq. (2.6), setting the scale of the nonper-

turbative effects in F(1). It was simply guessed following refs. [2, 10] that χ is somewhere

between 0 and 1 leading to an assumption χ=0.5±0.5. On the other hand we have linked

Iinel to measured hadronic parameters in the heavy mesons and found χ to be large,

χ ≈ 1.3÷ 1.7.

This is the main factor driving the prediction for F(1) down compared to earlier estimates,

along with a shift due to the higher-order power corrections.

Since our conclusion appears in some conflict with the lattice results for F(1), one may

examine how robust this conclusion is. We found that the phenomenology of the heavy

mesons suggests that the inelastic contributions, as well as the 1/m3
Q and higher-order

power corrections are numerically significant and that they lower the expected value for
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F(1). Our derivations, of course, use the power expansion for charm, and this may be a

vulnerable point for a precision prediction.

We emphasize, however, that a scenario with smaller corrections from the nonlocal

correlators or high orders would not be consistent. If the neglected higher-order effects

in charm are relatively small, our analysis of the hyperfine splitting is reliable. If, on the

contrary, the higher-order corrections in charm are too significant to affect the credibility

of the analysis, this would imply a higher overall mass scale of nonperturbative QCD in

heavy quarks. Then there would be no reason to expect small corrections to F(1) either.

Our numeric predictions involved a number of theoretical improvements. The first to

mention concerned the calculation of the Wilsonian perturbative renormalization factor

with a hard cutoff. We derived a general ansatz applicable to the one-loop level as well

as to arbitrary BLM order, which yields the perturbative correction in the kinetic scheme

with a full dependence on µ/mQ. It appears to be different from the naive prescription

for having a cut on the gluon momentum. For the zero-recoil transitions the difference

emerges starting with the terms O(1/m3
Q). Numerically it is important whenever the hard

scale is determined by the charm mass.

The other direction is the treatment of the inelastic contributions, along with a detailed

analysis of the continuum soft-pion states in the context of the heavy quark expansion.

We have presented a novel model-independent analysis of the transitions into the radi-

ally excited (or D-wave) states near the rest kinematics. So far the excited states considered

were mainly the P -wave states. The important new phenomenological constraint comes

from the hyperfine splitting in B and D: qualitatively, the latter tells us that the D=3 zero-

momentum nonlocal correlators are numerically large in actual QCD, and this enhances

the predicted size of the inelastic probabilities (the ‘overlap deficit’ in the formfactor) over

the naive expectations. The analysis of the spin-averaged B and D meson mass difference

supports the same conclusion, albeit with larger uncertainty. Using the hyperfine splitting,

one can then set a lower bound on the inelastic contribution. The bound is very close to

the value Iinel assumes in the BPS limit where a single combination of the four general

correlators determines both Iinel and the 1/mQ dependence of the hyperfine splitting.

A related implication of the hyperfine splitting analysis is the enhancement of the

transition amplitudes into the excited ‘radial’ charm states which must be dominated by

the 1/mc-suppressed terms rather than by the velocity-dependent component. This leads

to an increased yield of the wide charm hadronic structures from the decays of the ‘radial’

states, and would eliminate the ‘1
2 >

3
2 ’ puzzle if the observed wide yields are dominated

by them rather than by the 1
2 P -waves predicted to be suppressed. We emphasize that the

D-wave states must be produced along with true radially excited mesons, and may even

dominate. Some possibilities to distinguish them in experiment were discussed.

Therefore, we have identified a link among three apparently unrelated physics points:

the size of the hyperfine splitting in charm and beauty, the reduction in F(1) through

the enhanced nonlocal power corrections, and the resolution of the ‘1
2 >

3
2 ’ puzzle in the

semileptonic B decays.

On the theoretical side, yet another implication is manifest: we find significant cor-

rections to the factorization for higher-dimension heavy-quark expectation values. Our
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model-independent analysis provides the basis for a dedicated account of the nonfactoriz-

able effects from higher orders in 1/mQ [3], in particular for the semileptonic B-decay fits.

With respect to the D(∗)π states, we have expanded the treatment in a few aspects.

Our approach allowed us to account for their effect in the analysis of F(1) beyond the

leading order 1/m2
Q, relying instead on the soft-pion approximation. The subleading terms

turned out significant. In particular, the heavy quark symmetry-breaking corrections in

the heavy meson-to-pion couplings seem to yield the dominant effect.

Theoretically, we have presented a consistent treatment of the D(∗)π states in the heavy

quark approximation within the soft-pion approach. The decomposition of the P -wave into

the 1
2 - and the 3

2 -components has been addressed before yet remained largely unknown.

We briefly recapitulated it in section 6.4 and extended it to radial/D-wave states, with the

decomposition into the corresponding 1
2

+
-, 3

2

+
- and 5

2

+
-channels. This made it explicit that

earlier studies of the soft-pion corrections were incomplete: they accounted only for the

most singular effect at the softest pion momentum, however not dominant in the typical

configuration with |~kπ| ∼ µhadr. Typically, the pion loops yield negligible contributions,

with the notable exception of the contribution to the axial sum rule for F(1).

We conclude with the following remark. The pattern of the hyperfine splitting in B

and D mesons, in particular its precise mass dependence, is important for a few different

phenomena and draws novel qualitative conclusions for our understanding of the heavy

meson states. The precision interpretation of the splitting, on the other hand, may poten-

tially be hindered by higher-order effects in charm. A sufficiently accurate measurement

at a different heavy quark mass would radically improve the credibility of the hyperfine

analysis. We have pointed out that a first principle lattice determination of the hyperfine

splitting at better than 5% accuracy, if possible, can provide this information, and have

discussed how it can be used for mesons either heavier or lighter than charm.
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A BLM corrections and summation

The technique that allows the computation and summation of BLM corrections of order

βn0α
n+1
s has been concisely reviewed in ref. [8]; ref. [7] focussed upon its application to

Wilsonian OPE calculations. To BLM-dress a one-loop result one needs to evaluate the

generic one-loop correction A1

A = 1 +
αs
π
A1 + . . .
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with a fictitious gluon mass λ, A1(λ2), so that the conventional A1 is A1(0). The BLM

series in terms of the MS coupling αs normalized at the arbitrary scale M takes the form

ABLM = 1 + A1(0)
αs(M)

π
+

∞∑
n=0

4

β0

(
β0αs(M)

4π

)n+2

×

n
2∑

k=0

(−π2)kC
2k+1

n+1
·
∫

dλ2

λ2

[
ln
M2

λ2
+

5

3

]n−2k(
A1(0)

M2

M2 + e-5/3λ2
−A1(λ2)

)
, (A.1)

with C denoting the binomial coefficients. Let us remind that the integral over λ2 here

typically has two (or more) domains. The last term depending on A1(λ2) is integrated from

0 to the threshold value of the gluon mass if there is a threshold (in particular, it would be

set by µ in the Wilsonian calculations), whereas the first term in the same brackets should

always be integrated over all values of λ2 regardless of a cutoff or of kinematic details.

When the infrared part is removed from the one-loop diagram to leave a genuinely

short-distance correction, the corresponding A1(λ2) is a real analytic function in the vicinity

of zero. This allows to write an integral representation for the resummed series,

ABLM = 1 +A1(0)
αs(M)

π

+

∫ ∞
−∞

dt
β0
4

(
αs
π

)2(
1 + β0αs

4π (t− 5
3)
)2

+
(
β0
4 αs

)2

(
A1(0)

1

1 + et−
5
3

−A1(etM2)

)

− 4

β0

[
M2

M2−Λ2
QCD

A1(0)−A1(−Λ2
V )

]
, (A.2)

without any ambiguity associated with the last term; here

Λ2
QCD = M2 e

− 4π
β0αs(M) , Λ2

V = e
5
3 Λ2

QCD = M2 e
− 4π
β0αs(M)

+ 5
3 . (A.3)

B One-loop perturbative calculation with a Wilsonian cutoff

In this appendix we discuss aspects of the one-loop calculation of the leading Wilson

coefficient ξA. The reasoning is quite general and is applicable to other observables as well.

As in section 3, we need to distinguish between εM and Wilsonian µ, therefore we will deal

explicitly with ξpert
A (εM , µ) as it appears in eq. (2.6). The dependence of ξpert

A (εM , µ) on

εM is given by eq. (3.2). Since the right-hand side of eq. (2.6) must be µ-independent, and

ξpert
A must satisfy the ‘boundary condition’ eq. (3.3), one way to determine ξpert

A (εM , µ)

for arbitrary values of µ and (in principle) any order of perturbation theory is to use the

µ-dependence of the matrix elements and masses appearing in eq. (2.6).

Indeed, in perturbation theory the expectation values 〈B|Ok|B〉µ in eq. (2.6) typically

depend on µ in a powerlike way,

d〈B|Ok|B〉µ
dµ

∝ αs µdk−4, (B.1)
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where dk is the dimension of Ok; the same applies to the heavy quark masses on which

the Wilson coefficients generally depend. In this way the εM -dependence of ξpert
A (εM , µ)

is calculated explicitly while its µ-dependence emerges as an expansion in µ/mQ which is

necessarily truncated after a few terms. This is not a serious limitation if the hard OPE

scale is O(mb), but in our case the charm mass sets the lower hard scale in the problem

and the expansion in µ/mQ shows poor convergence.

To overcome this drawback we have devised a method allowing to directly compute

the leading Wilson coefficient ξpert
A (εM , µ) as a function of µ/mQ, without an expansion,

in the one-loop approximation. The method is readily generalized to higher-order BLM

corrections. We have described its main points in section 3; below we provide additional

explanations.

The idea behind the approach is that in one-loop calculations there is a simple connec-

tion between the normalization point of the heavy quark operators in the kinetic scheme

and the hard cutoff on the gluon momentum k in the diagram. In order to preserve the

analiticity and the unitarity of the Feynman integrals no limit on integrations over k0 of

the gluon is imposed in the kinetic scheme: the separation of scales is performed based

on |~k|. In this way one computes the one-loop ξpert
A introducing an infrared cutoff on |~k|,

instead of taking the full integral d4k. In the b-quark static limit the step-function cutoff

factor

θ(|~k| − µ) (B.2)

in the Feynman integrand yields precisely the normalization at the scale µ. The remaining

part, the integral with θ(µ−|~k|) constitutes the power-suppressed terms described by higher-

dimension matrix elements in the OPE. In order to go beyond the static approximation

certain modifications of the cutoff in eq. (B.2) are required.

Let us remind why ξA is related to η2
A calculated with a cutoff. The reasoning is based

on considering the OPE relations in an ensemble of gluons with the spatial momentum

limited by µ in the b rest frame; the non-Abelian nature does not play a role at one-loop

level. All these gluons can be considered soft, and they satisfy the OPE sum rule where

the coefficients assume the tree level values. Having in mind how the sum rules are derived

(for pedagogical reviews see refs. [11, 28]), the integration in the sum rule must run over

all excitation energies, from 0 to ∞. However, in the soft gluon ensemble with |~k| < µ the

spectral density vanishes above the excitation energy

εM (µ) = µ+
√
m2
c+µ2−mc ; (B.3)

below εM (µ) it is the usual one-loop spectral density of QCD. At the same time, the

operator expectation values in such an ensemble are just the one-loop QCD expectation

values in the kinetic scheme normalized at µ.

We now turn to the subtleties beyond the static limit, and focus on the soft contribution

δηsoft
A to be subtracted from the one-loop ηA:

ηA −→ ηA − δηsoft
A = ηA − CF g2

s

∫
d4k

(2π)4i
θ(µ−|~k|) . . . (B.4)
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Here the ellipses denote the same propagators and vertices encountered in the calculation

of ηA itself; k is the gluon momentum in the diagram. There are three one-loop diagrams

— the vertex correction and the wavefunction renormalization for both b and c quark.

Let us consider the vertex diagram of figure 2a as an example. The integrand has a

general structure∫
d4k

(2π)4i

numerator

(k2
0−~k 2+i0)(m2

b−(mb−k0)2+~k 2−i0)(m2
c−(mc−k0)2+~k 2−i0)

. (B.5)

At given ~k the integral over k0 is convergent and is saturated at |k0| ∼ |~k|; the tails at

large |k0| &mQ contribute a power-suppressed piece. Since no cut on k0 is allowed, the

integration over k0 can be performed by closing the integration contour in the lower half-

plane, see figure 2b. There are three pairs of poles in the k0 plane,

k0 =±|~k|, k0 =mb±
√
m2
b + ~k 2, k0 =mc±

√
m2
c + ~k 2 . (B.6)

With the standard Feynman prescription, blue contour α, the integration over k0 results

in the sum of the three residues corresponding to the above poles. For the first pole we

have k0 < µ; however for the two other, distant, poles we have k0 &mQ� µ, regardless

of the cutoff. Since the OPE generally corresponds to an expansion in all components of

the gluon four-momentum, it is clear that the contributions to the integral associated with

the distant (black) poles may not correctly describe the OPE power-suppressed terms. We

recall that our goal is just to subtract the piece of the one-gluon loop correction to ηA
associated with the terms which have already been included in the power-suppressed OPE.

Indeed, it turns out that the OPE series for the soft piece correspond to the residue

of only the ‘near’ pole at k0 = |~k|, while the two other resides should be discarded. This

means changing the bypass prescription for the two distant poles, −i0→+i0, which moves

the k0 integration contour as shown by the green dashed line in figure 2b.

The 1/mQ expansion in the Feynman diagrams leading to the OPE series is essentially

the Taylor expansion of the heavy quark propagators in the integrand for small gluon

four-momentum k. Eq. (B.5) then becomes∫
d4k

(2π)4i

numerator

(k2
0−~k2+i0)

∑
n=0

(k2)n

(2mbk0−i0)n+1

∑
m=0

(k2)m

(2mck0−i0)m+1
; (B.7)

the poles at k0 = 0+i0 are descendants of the nonrelativistic poles located on the left of

k0 =0. To reproduce the nonrelativistic expansion we calculate the integral for each term

closing the contour in the lower k0 half-plane and picking up only the gluon pole k0 = |~k|.
This cannot be done for the original integral in eq. (B.5): its value is not equal to the sum

of the series, because large k0 beyond the convergence radius of expansion (B.7) contribute.

However, with the modified bypass prescription for the distant poles the integration contour

β in figure 2b can be shrunk to a contour γ (maroon) on which |k0|<2mc holds everywhere.

For the integral over contour γ the series converges absolutely and uniformly, still embracing

only the k0 = |~k| pole. This proves that the sum of the series obtained integrating term by
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term eq. (B.7) gives the integral over k0 of the original expression in eq. (B.5) yet with the

modified bypass for the distant poles along contour β.

Let us make the following general remark. At first glance, the terms in the expansion

of the Feynman diagrams and in the OPE series assume a somewhat different form: the

expectation values of the operators in the kinetic scheme are given by three-dimensional

integrals over spatial momentum of an on-shell gluon, k0 = |~k |, being defined through the

heavy quark structure functions: ∫
d3~k

(2π)32|~k |
P(~k) (B.8)

with P(~k) a polynomial. It is clear, however, that the two representations have the same

form once the k0 integration is performed closing the contour in the lower half-plane. That

is why integration over k0 plays an important role in our reasoning.

At this point it becomes transparent why the OPE series yield the expansion of the

sole contribution of the near pole with the on-shell gluon: the heavy quark propagators

appearing in the definition of the heavy quark expectation values in the effective theory

are nonrelativistic (static) propagators which have a single pole. The second, distant,

pole peculiar to relativistic particles is absent from them. Therefore, at any finite order

in the OPE power expansion there is no contributions associated with the distant poles,

k0≈2mQ in eq. (B.6). In this sense the distant singularities are related to the divergence

of the expansion in k/mQ rather than to the discontinuity of the individual terms.

So far we have considered the vertex diagram. The other two Feynman diagrams with

the wavefunction renormalization for external quark legs have the same structure; they

only depend on a single quark mass mQ = mb or mc, and the two pairs of the fermion

propagator poles are degenerate. Consequently all the above reasoning applies to them as

well.

Let us note that taking µ = εM the difference between µ′ and εM becomes power-

suppressed, the last term of eq. (3.4) becomes of order 1/m3
Q and can be neglected to

the leading order µ2/m2
Q. Therefore, it accounts for the recoil correction in the relation

between µ and εM and becomes relevant where the terms O(αsµ
3/m3

Q) are included. Its

form must already be clear from the preceding derivation: in the soft gluon ensemble the

emission of a gluon with energy ω yields an excitation energy ε=ω+
√
m2
c+ω2−mc in the

final state, and the spectral density is

wsoft(ε) = wpert(ε) θ(µ′−ε), µ′=µ+
√
m2
c+µ2−mc. (B.9)

This explains the integration limit in the last term in eq. (3.4).

The above discussion of the one-loop corrections is directly extended to incorporate any

higher-order BLM corrections as well, or even to perform the complete BLM-summation.

As detailed in appendix A, the same analysis must be repeated for the diagrams with

an arbitrary gluon mass λ. This has been stated already in section 3 where the related

technical modifications were listed. The necessary one-loop expressions at non-zero λ2 are

given in appendix C.
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C Details of the perturbative calculation

In this appendix we provide details omitted from the main text in section 3. In the case of

a massive gluon the one-loop inelastic perturbative spectral density determining the recoil

correction is given by

wpert(ε) = CF
αs
π

(
(M −mc)

2 − λ2
)√

(M2−(mc+λ)2)(M2−(mc−λ)2)

12M3(M −mc)2 (mbM2 −Mλ2 +mb(λ2 −m2
c))

2 θ(ε−λ)×[
2M6 − 4M3(4mb +mc)λ

2 + 4Mλ2(2mb +mc)(m
2
c − λ2)

+(3m2
b + 2mbmc +m2

c)(m
2
c − λ2)2 +M4(3m2

b + 2mbmc − 3m2
c + 4λ2)

+M2(4m2
cλ

2 − 4mbm
3
c + 6λ4 − 6m2

b(m
2
c − 2λ2)

]
. (C.1)

Here M = mc+ε is the invariant mass of the final state. The one-loop zero-recoil axial

current renormalization without a cutoff ηA=1+CF
αs
π η

(1)
A (λ2) +O(α2

s) is given by

η
(1)
A (λ2) =−9y + 2yz + 24 + 9yz2

24
− 9y2 − 7y2z − 6y − 6yz + 18 + 18z

24(1− z)
ln z

+
y
(
9y + 2yz − 6 + 2yz2 − 12z + 2yz3 − 6z2 + 9yz4

)
48

(ln y+2 ln z)

−9y3 − 7y3z − 24y2 + 8y2z + 12y + 44yz − 96

48y(1− z)
√

1− 4/y
ln

1 +
√

1− 4/y

1−
√

1− 4/y
(C.2)

−−44y − 8y2z2 + 7y3z4 + 96/z − 12yz + 24y2z3 − 9y3z5

48y(1− z)
√

1− 4/yz2
ln

1 +
√

1− 4/yz2

1−
√

1− 4/yz2
.

Here we have used y = λ2/m2
c and z = mc/mb. This expression coincides with the one

in eq. (B3) of ref. [49], where it was derived by a dispersion integral starting from the

Euclidean calculation of ref. [50].

The check of the µ-independence of the OPE sum rule, eq. (2.6), with the perturbative

factor calculated according to eq. (3.4) can be accomplished to an arbitrary BLM order at

once: it suffices to establish it at a given value of the gluon mass. We demonstrate it here

assuming εM =µ. The right-hand side of the sum rule depends on µ through ξpert
A (µ) and

through the heavy quark expectation values. Moreover, since all the µ-dependent com-

ponents of the perturbative calculation, including the expectation values and the inelastic

integral, can be written as three-dimension integrals∫
d3k

(2π)32k0
θ(µ− k0) . . . , k0 ≡

√
~k 2+λ2 (C.3)

with the same cutoff provided εM =µ, we may simply check the cancellation at the integrand

level at a given value of ~k 2 and λ2.

As the µ-dependence of the individual contributions starts at O(1/m2
Q), the first check

is provided by the terms αsµ
2/m2

Q [51]. At this order the power-suppressed component of

the OPE part of the sum rule (2.6) includes only the expectation values µ2
π and µ2

G which
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should be considered in the static limit; the latter then vanishes. The required expressions

have been given in refs. [7, 8]. In units of

CF g
2
s

∫
d3~k

(2π)32k0
(C.4)

we get

2 +
λ2

k2
0

,

(
1

m2
c

+
2

3mcmb
+

1

m2
b

) ~k 2

2k2
0

+

(
1

mc
− 1

mb

)2 λ2~k 2

4k4
0

(C.5)

for µ2
π and wpert, respectively.

Finally, the subtracted soft piece of ηA depends on µ. The expression for δηsoft
A (µ)

given in eq. (3.12) must be expanded in ~k and λ2:

δηsoft
A = CF g

2
s

∫
d3k

(2π)32k0

{
−1

2

[(
1

m2
c

+
2

3mcmb
+

1

m2
b

)
−λ

2

k2
0

2

3mcmb
− λ4

4k4
0

(
1

mc
− 1

mb

)2
]

− λ2

2k0

(
1

mc
+

1

mb

)[(
1

m2
c

− 2

3mcmb
+

1

m2
b

)
−λ

2

k2
0

1

3mcmb
− λ4

4k4
0

(
1

mc
− 1

mb

)2
]

+ . . .

}
,

(C.6)

where the first square bracket upon integration gives the leading µ2/m2
Q terms and the

second line yields µ3/m3
Q. Combining the above coefficients the µ-independence of the sum

rule is verified at order µ2/m2
Q.

A far deeper check is encountered at the level of µ3/m3
Q terms. At this order the proper

prescription to calculate the soft virtual correction δηpert
A discussed in appendix B becomes

essential. At this level one also needs to include the higher-dimension Darwin expectation

value as well as the 1/mb effects in the kinetic and chromomagnetic expectation values. The

latter are expressed in terms of the local ρ3
D and ρ3

LS and of the nonlocal expectation values.

Perturbatively ρ3
LS vanishes as do ρ3

πG and ρ3
A. The subleading term in the continuum

spectral density is also required and can be obtained directly expanding eq. (C.1).

By virtue of the SV sum rules the perturbative component of the Darwin expectation

value amounts to an integral of the same form (C.3), with the integrand given by the

product of the integrand for µ2
π and k0, the excitation energy for a static quark:

k0

(
2 +

λ2

k2
0

)
. (C.7)

Since µ2
G was defined in eq. (4.1) to include only the magnetic field piece −~σ · ~B but not

the lower-component term in the complete chromomagnetic operator, to order µ3/mQ it

acquires a contribution only from the nonlocal correlator ρ3
S ,

δαsµ
2
G =

1

mb
δαsρ

3
S . (C.8)

The value of µ2
π is perturbatively corrected, instead, by the correlator ρ3

ππ:

δαsµ
2
π = 2 +

λ2

k2
0

− 1

mb
δαsρ

3
ππ, (C.9)

where overal integration (C.4) is understood.
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Q Q

(a)

Q

(b)

Q

(c)

Q Q

Figure 13. One-gluon amplitude diagrams involved in the calculation of the O(αs) perturbative

spectral densities in the static limit. The square block denotes the operator in question.

To find one-loop δαsρ
3
ππ,S or, more generally, all the perturbative spectral densities in

eqs. (6.23), (6.24) one needs to square the sum of the diagrams shown in figure 13. The

answer is obtained immediately, in particular if a little trick [51] is used, which eliminates

two of the three diagrams, b and c, for the transition amplitude:

ρ0(ω) = CF
αs
π
λ2

(
ω2−λ2

) 3
2

ω2
, ρ1(ω) = CF

8αs
3π

(ω2−λ2)
3
2 , ρ2(ω) = CF

αs
π

(ω2−λ2)
5
2

ω2
.

(C.10)

The trick uses gauge invariance to say that one can use the simple gluon propagator

δij − kikj
k20

λ2 − k2
(C.11)

requiring to calculate only the spatial vertices; they come from the vertex emission but

not from the heavy quark lines. Using eqs. (6.23), (6.24) and (6.8) we obtain at once, for

instance,

δαsρ
3
ππ =

λ2~k 2

k3
0

, δαsρ
3
S = 2

~k 2

k0
, (C.12)

in the same units of eq. (C.4).

Finally, one needs the O(µ3/m3
Q) term in the expansion of δηsoft

A ; it is given in the

second line of eq. (C.6). Expanding eq. (C.1) through the next-to-leading order, on one

hand, and collecting all relevant terms from eqs. (C.6), (C.7) and (C.12) with the explicit

coefficients appearing in the sum rule, on the other hand, we arrive at the same integrand

in the both sides of the sum rule (2.6) at O(1/m3
Q), for arbitrary value of λ2.

For bookkeeping purposes we quote here the perturbatively calculated moments of the

spectral densities ρ0(ω), ρ1(ω) and ρ2(ω), as well as those of the P -wave spectral density

ρP(ω), defined in analogy to eq. (6.24) by the perturbative relation

T
1
2

−
(ω) = T

3
2

−
(ω) =

1

9
ρP (ω),
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see eq. (6.1). Their expressions to order αs and β0α
2
s are:∫ µ

0
ωkdω ρ0(ω) = −1

5
CF

β0

2

(αs
π

)2 µ4+k

4 + k∫ µ

0
ωkdω ρ1(ω) =

8

3
CF

αs(M)

π

µ4+k

4 + k

[
1 +

β0

2

αs
π

(
ln
M

2µ
+

13

6
+

1

4 + k

)]
∫ µ

0
ωkdω ρ2(ω) = CF

αs(M)

π

µ4+k

4 + k

[
1 +

β0

2

αs
π

(
ln
M

2µ
+

71

30
+

1

4 + k

)]
∫ µ

0
ωkdω ρP(ω) = 2CF

αs(M)

π

µ2+k

2 + k

[
1 +

β0

2

αs
π

(
ln
M

2µ
+

5

3
+

1

2 + k

)]
. (C.13)

The moments of ρP(ω) determine, beyond the IW slope, Λ, the kinetic and the Darwin

expectation values, the higher expectation values m2 and r1.

For completeness, we give here also the perturbative dependence on µ of ρ3
LS associated

with power mixing:

d

dµ
(−ρ3

LS) = CA
αs
π µ

2
G + CA

αs
2π

1

µ
ρ3
LS +O

(
α2
s

)
(C.14)

(the anomalous dimension of the spin-orbit operator coincides with that of the full chro-

momagnetic one). This implies the relation between the extrapolated ‘pole-scheme’ value

−ρ̃3
LS and the Wilsonian −ρ3

LS(µ):

− ρ̃3
LS = −ρ3

LS(µ)− CA αsπ µµ
2
G +O

(
α2
s

)
. (C.15)

D Transitions to the ‘radial’ states and the inclusive yield

The inelastic zero-recoil spectral density for the vector c̄γ0b current paralleling eq. (6.9) is

1

2πi
discT (V )

zr (ω) ≡ w(V )
inel(ω)=

(
1

2mc
− 1

2mb

)2 ρ
( 1
2

+
)

p (ω)−2ρ
( 1
2

+
)

pg (ω)+ρ
( 1
2

+
)

g (ω)

ω2
; (D.1)

no transitions into 3
2

+
occur. It is manifestly BPS-suppressed to the second order.

As stated in section 6.3.2, we evaluate the rate for a decay of the Ω0 spin-1
2 heavy state

into the corresponding excited half-integer–spin multiplets. The weak current coupling

of these fictitious hadrons is fixed by the corresponding transition probabilities near zero

recoil. Namely, the (unpolarized) zero-recoil structure functions are expressed through the

effective transition amplitudes; on the other hand, they are given by the 1/mQ expansion,

in our case to the second order, of the actual B-meson zero-recoil semileptonic structure

functions, cf. eqs. (6.9), (D.1).

There are more structure functions for a particle with spin than for actual B mesons.

However, considering the unpolarized states (for instance, averaging over spin) they are

reduced to the standard ones, and we use the same notations for them for decays of Ω0

as for B mesons in QCD. V -A interference (which is not relevant here) would require a

nonvanishing recoil kinematics.
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The unpolarized structure functions for the transitions into the 1
2

+
states are the same

as the tree-level ones for B decays [52]:

w1 =g2
A

(m1+m2)2−q2

2
+g2

V

(m1−m2)2−q2

2
, w2 =2(g2

A+g2
V )m2

1, w3 =2gAgVm1, (D.2)

with the overall factor π
m2

1
δ(q0−

m2
1−m2

2+q2

2m1
), where we have used the notation of eq. (6.43),

namely

〈1
2

+

|c̄γµγ5b|Ω0〉 = gA χ̄γµγ5Ψ0, 〈1
2

+

|c̄γµb|Ω0〉 = gV χ̄γµΨ0 . (D.3)

Note that here we use the full bispinors and assume their relativistic normalization. In this

context the mass m1 refers to the ground state in the beauty sector, m1'mb+Λ while m2

to the excited state for charm, m2'mc+Λ+εrad. Only w1,2 contribute to the total width;

it is given in eqs. (6.44), (6.45).

For transitions into 3
2

+
radial excitations we employ

〈3
2

+

|c̄γµγ5b|Ω0〉 = gA χ̄µΨ0, 〈3
2

+

|c̄γµb|Ω0〉 = gV χ̄µiγ5Ψ0 , (D.4)

where χµ are likewise fully relativistic Rarita-Schwinger wavefunctions. (The vector matrix

element is considered only for completeness; its transition amplitudes into 3
2

+
states involve

further suppression: either more powers of velocity, or extra 1/mQ or an additional overall

αs.) With this convention we have

w1 =

(
g2
A

(m1+m2)2−q2

3m2
1

+ g2
V

(m1−m2)2−q2

3m2
1

)
πδ(q0−

m2
1 −m2

2 + q2

2m1
), w2 =

m2
1

m2
2

w1,

w3 =0, w4 =m2
1w1, w5 =−m1

m2
2

w1.

(D.5)

Integrating over the full phase space we obtain the corresponding width

Γ
( 3
2

)

A,V =
G2
FM

5
0 |Vcb|2

192π3
g2
A,V z

( 3
2

)

A,V (r), r=
M2

3
2

M2
0

, (D.6)

with the phase space factors

z
( 3
2

)

A,V (r)=
1

2

(
z

( 3
2

)

0 (r)±z̃( 3
2

)

0 (r)

)
, z

( 3
2

)

0 (r) =
1

15r
− 2r − 2

3
r2 + 3r3 − 2

5
r4 − 4r2 ln r,

z̃
( 3
2

)

0 (r) =
1

6
√
r

+r3/2

(
12− 32

3
r− 3

2
r2+(6+8r) ln r

)
(D.7)

The singularity at r → 0 reflects here the ultraviolet problems of point-like higher-spin

particles. Note that all the components of the vector transition amplitude vanish at zero

recoil; the zero-recoil analysis does not constrain gV for 3
2

+
. However, for this very reason

it is generally suppressed by a higher power of the SV parameter ∆/M :

M5
0

192π3
z

( 3
2

)

A (r) ' ∆5

30π3
,

M5
0

192π3
z

( 3
2

)

V (r) ' 11 ∆2

84M2
0

∆5

30π3
at ∆�M0.
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Numerically, the yield in the vector channel is negligible for any relevant ratio M 3
2
/M0; the

vector current does not contribute to the production of 3
2

+
in our approximation.

The effective formfactors at zero recoil are obtained comparing the structure functions

in eqs. (D.2) or (D.5) in the zero-recoil kinematics (which is q2 = q2
0 = (m1−m2)2) with

those in eqs. (6.9), (D.1). In this way the constants gA, gV for 1
2

+
and gA for 3

2

+
above are

expressed through the amplitudes introduced in section 6.1:

εg
( 1
2

)

A =

(
1

mc
− 1

mb

)
P−G

2
+

2G

3mc
, εg

( 1
2

)

V =

(
1

mc
− 1

mb

)
P−G

2
, εg

( 3
2

)

A =
1√
6mc

g,

(D.8)

where ε is the mass gap for a particular state.
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