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1 Introduction

Two years ago, Steven Weinberg [1] argued that the use of Dirac’s projective lightcone

realization for compactified four-dimensional (4D) Minkowski space [2] greatly simplifies

the calculation of Green’s functions in conformally-invariant field theories (see also [3]).

Clearly, this was not the first paper in which (d + 2)-dimensional methods were used

to study conformal theories in d dimensions, see, e.g., [4–12]. Nevertheless, Weinberg’s

work has stimulated some renewed interest in Dirac’s construction [2] and its implica-

tions. In particular, ref. [13] considered a 4D N = 1 supersymmetric extension of the

projective lightcone formalism of [2]. A generalization of [13] to the case N > 1 was at-

tempted in [14]. Specifically, refs. [13, 14] suggested to describe conformally compactified
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N -extended Minkowski superspace, M4|4N , in terms of graded two-forms on the dual su-

pertwistor space. Here we demonstrate how to derive such a description starting from the

standard supertwistor realization for M4|4N , see [15] and references therein. Our discussion

is more complete and differs in some details.

We also present a new realization for compactified 4D N = 2 harmonic/projective

superspace building on the formulation given in [15]. Finally, we generalize our construction

to the case of conformally compactified 3D N -extended Minkowski superspace M
3|2N and

its harmonic/projective extensions [16] (see [17] for an alternative construction).

This paper is organized as follows. Section 2 is devoted to non-supersymmetric warm-

up exercises. Here we describe three different realizations for conformally compactified

Minkowski space in four dimensions, M
4, and prove their equivalence. In section 3 we

start by recalling the standard supertwistor realization for M
4|4N . Then we introduce

a novel bi-supertwistor realization for M
4|4N . After that we prove the equivalence of

these two realizations. Section 4 is devoted to a new realization for compactified 4D

N = 2 harmonic/projective superspace, M4|8 × CP 1. In sections 5 to 7, we generalize the

construction to three space-time dimensions. Concluding comments are given in section 8.

The main body of the paper is accompanied by a technical appendix devoted to spinors in

4 + 2 dimensions.

2 Compactified 4D Minkowski space

In this section we describe three different realizations for conformally compactified Minkowski

space in four dimensions.

2.1 Dirac’s realization in d space-time dimensions

We start by recalling the projective light cone formalism of [2] (see also Weyl’s book [18]).

Consider a flat space R
d,2 parametrized by Cartesian coordinates

X â = (Xa, Xd+1, Xd+2) , a = 0, 1, . . . , d− 1 (2.1)

and endowed with the metic η
âb̂

= diag(−1,+1, . . . ,+1,−1). Let us inroduce the cone C
in R

d,2 defined by

η
âb̂
X âX b̂ = 0 . (2.2)

The space of all straight lines belonging to C and passing through the origin of Rd,2 is

known as Dirac’s conformal space [2] or compactified Minkowski space, M
d. It can be

defined as the quotient space of C − {0} with respect to the equivalence relation

X â ∼ λX â , λ ∈ R− {0} (2.3)

which identifies all points on a straight line in R
d,2. The conformal group in d dimensions,

O(d, 2)/Z2, with Z2 = {±1d+2}, naturally acts on M
d. It may be seen that M

d is a

homogeneous space of the connected conformal group, which is SO0(d, 2) if d is odd and

SO0(d, 2)/Z2 if d is even.
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It follows that the global structure of Md as a topological space is

M
d = (Sd−1 × S1)/Z2 . (2.4)

Indeed, the constraint (2.2) and the ‘gauge’ freedom (2.3) can be used to choose Xa such

that

(X0)2 + (Xd+2)2 =
d−1∑

i=1

(Xi)2 + (Xd+1)2 = 1 . (2.5)

For such a choice, the equivalence relation (2.3) still allows us to identify X â and −X â,

which is the reason for Z2 in (2.4). In four dimensions, M4 is the same topological space

as the group manifold U(2). In three dimensions, M3 can be identified with U(2)/O(2).

Minkowski space M
d ≡ R

d−1,1 can be identified, e.g., with the open dense domain of

M
d on which Xd+1 +Xd+2 6= 0.1 This domain can be parametrized by variables

xa =
Xa

Xd+1 +Xd+2
(2.6)

which are invariant under the identification (2.3). In terms of these coordinates, one obtains

a standard action of the conformal group in M
d. Thus xa can be identified with Cartesian

coordinates for Minkowski space.

In the remainder of this section our consideration is restricted to the case d = 4.

2.2 Twistor realization

Here we recall the so-called twistor realization2 of compactified Minkowski space M
4 as

the set of null two-dimensional subspaces in the twistor space, C4, equipped with the inner

product

〈T, S〉 = T †ΩS , Ω =

(
0 12

12 0

)
, (2.7)

for any twistors T, S ∈ C
4. The components of a twistor T and its dual T̄ := T †Ω are

denoted as

T = (Tα̂) =

(
fα

h̄
.

α

)
, T̄ = (T̄ α̂) = (hα, f̄.α) . (2.8)

By construction, the inner product (2.7) is invariant under the action of the group

SU(2, 2) which is the two to one covering of the group SO0(4, 2), which in turn is the two

to one covering of the connected conformal group, SO0(4, 2)/Z2. The elements of SU(2, 2)

will be represented by block matrices

g = (gα̂
β̂) =

(
A iB

−iC D

)
∈ SL(4,C) , g†Ω g = Ω , (2.9)

1The closed subset C3 := M
d
− M

d can be identified with a lightcone in R
d−1,1. Indeed, the points of

C3 can be uniquely parametrized by (D + 2)-vectors of the form X â = (za,− 1

2
, 1

2
), where za ∈ R

d−1,1 is

null, zaza = 0.
2This realization has been known since the 1960s, see [10, 19–23] and references therein.
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where A,B,C and D are 2× 2 matrices. Under the action of SU(2, 2), the twistor Tα̂ and

its dual T̄ α̂ transform as follows:

Tα̂ → gα̂
β̂T

β̂
, T̄ α̂ → T̄ β̂(g−1)

β̂
α̂ . (2.10)

These two representations are inequivalent.

We denote by M
4
T the space of null two-planes through the origin in C

4. Given such a

two-plane, it is generated by two linearly independent twistors, Tµ = (T 1, T 2), subject to

the null conditions

〈Tµ, T ν〉 ≡ T̄µT ν = 0 , µ, ν = 1, 2 . (2.11)

The basis chosen, {Tµ}, is defined only modulo the equivalence relation

{Tµ} ∼ {T̃µ} , T̃µ = T ν Cν
µ , C ∈ GL(2,C) . (2.12)

The two bases, {Tµ} and {T̃µ}, define one and the same two-plane in C
4.

Minkowski space, M
4 ≡ R

3,1, can be embedded into M
4
T as a dense open subset.

Consider the open domain of M4
T consisting of those null two-planes which have the form

(Tα̂
µ) =

(
Fα

µ

H
.

αµ

)
, det(Fα

µ) 6= 0 . (2.13)

Then, choosing C = F−1 in (2.12) and making use of the null condition (2.11) leads to the

basis

(Tα̂
µ) =

(
δα

β

−ix
.

αβ

)
, x

.

αβ := xm(σ̃m)
.

αβ , xm = (xm)∗ . (2.14)

The group element (2.9) acts on x̃ = (x
.

αβ) by the fractional linear transformation

x̃′ = (C +Dx̃)(A+Bx̃)−1 , (2.15)

which is a standard conformal transformation in Minkowski space M
4. Therefore the open

domain of M4
T introduced can indeed be identified with Minkowski space.

Let us show that M
4
T is equivalent to the compactified Minkowski space introduced

in the previous subsection. Using the two twistors Tµ, which describe a point in M
4
T, we

define the following 4× 4 matrix:

Y
α̂β̂

:= Tα̂
µT

β̂
νεµν , εµν = −ενµ , ε12 = −1 . (2.16)

This matrix is antisymmetric,

Y
α̂β̂

= −Y
β̂α̂
, (2.17)

and defined modulo the equivalence relation

Y
α̂β̂
∼ c Y

α̂β̂
, c = det(Cα̂

β̂) ∈ C− {0} . (2.18)
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It is characterized by the algebraic properties

Y[α̂β̂Yγ̂]δ̂ = 0 ←→ Y[α̂β̂Yγ̂δ̂] = 0 . (2.19)

Using the dual twistors T̄ , we can define

Ȳ α̂β̂ := εµν T̄
µ α̂T̄ ν β̂ . (2.20)

The matrices Y = (Y
α̂β̂

) and ˜̄Y = (Ȳ α̂β̂) are related to each other as follows

˜̄Y = −ΩY †Ω . (2.21)

As a consequence of (2.11), we have

Ȳ α̂γ̂Y
γ̂β̂

= 0 . (2.22)

Introduce six-vectors Y â and Ȳ â defined by

Y â :=
1

4
(Σâ)

β̂γ̂
Y β̂γ̂ , Ȳ â :=

1

4
(Σâ)

β̂γ̂
Ȳ β̂γ̂ , (2.23)

with Y α̂β̂ := 1
2ε

α̂β̂γ̂δ̂Y
γ̂δ̂
. These six-vectors are mutually null,

η
âb̂
Y âY b̂ = η

âb̂
Ȳ âȲ b̂ = η

âb̂
Y âȲ b̂ = 0 . (2.24)

The first two relations follow from (A.36), while the third is a consequence of (2.22).

Moreover, it follows from (2.22) that

Y âȲ b̂(Σ
âb̂
)γ̂

δ̂ = 0 , (2.25)

and therefore the mutually conjugate six-vectors Y â and Ȳ â = (Y â)∗ are linearly depen-

dent. This means that

Y â = eiϕX â , Ȳ â = e−iϕX â , ϕ ∈ R , (2.26)

for some real null six-vector X â. By construction, X â is defined modulo the equivalence

relation (2.3). In summary, we have defined an injective3 map F : M
4
T → M

4. This

map is in fact onto, and therefore one-to-one. To prove this, we associate with X â the

antisymmetric matrix

X
α̂β̂

:= X â(Σâ)β̂γ̂ . (2.27)

For its conjugate ˜̄X = (X̄ α̂β̂) defined according to (2.21) we obtain

X̄ α̂β̂ =
1

2
εα̂β̂γ̂δ̂X

γ̂δ̂
≡ X α̂β̂ . (2.28)

The matrices X
α̂β̂

and X̄ α̂β̂ obey the properties (2.19) and (2.22). It turns out that X
α̂β̂

defines a null two-plane in C
4. This follows from the discussion below.

3For completeness, we prove that the map F is injective. Suppose this is not true and there exist

two different two-planes that are mapped by D to the same point of M4. Then we can choose the bases

Tµ = (T, S) and T ′µ = (T ′, S′) for the two-planes under consideration such that T ∧ S = T ′
∧ S′ (here

we think of Yα̂β̂ defined by (2.16) as an element of ∧
2
C

4). Let us introduce a basis for C
4 consisting

of Tµ and two additional vectors Wµ. Without loss of generality, we can choose T ′ and S′ such that

T ′ = T + tµW
µ and S′ = S + sµW

µ, for some complex parameters tµ and sµ. Now, since Tµ and Wµ are

linearly independent, the condition T ∧ S = T ′
∧ S′ tells us that tµ = sµ = 0. As a result, Tµ and T ′µ

define one and the same two-plane, which contradicts the assumption.
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2.3 Bi-twistor realization

There exists an alternative realization for M4
T. Let us denote by L the set of all non-zero

complex antisymmetric matrices Y
α̂β̂

= −Y
β̂α̂

which obey the algebraic constraints

Y[α̂β̂Yγ̂δ̂] = 0 , (2.29a)

Ȳ α̂γ̂Y
γ̂β̂

= 0 , ˜̄Y := −ΩY †Ω . (2.29b)

We introduce the quotient space M
4
BT = L/∼, where the equivalence relation is defined by

Y
α̂β̂
∼ c Y

α̂β̂
, c ∈ C− {0} . (2.30)

We will show that M4
BT can be naturally identified with M

4
T.

It follows from (2.29a) that Y
α̂β̂

is decomposable, that is

Y
α̂β̂

= Tα̂Sβ̂ − Tβ̂Sα̂ , (2.31)

for some linearly independent twistors Tα̂ and Sα̂, see e.g. [23] for the proof. Now,

eq. (2.29b) is equivalent to

Ȳ α̂γ̂Y
γ̂β̂

= T̄ α̂
{
〈S, T 〉S

β̂
− 〈S, S〉T

β̂

}
+ S̄α̂

{
〈T, S〉T

β̂
− 〈T, T 〉S

β̂

}
= 0 . (2.32)

Since T̄ α̂ and S̄α̂ are linearly independent dual twistors, the expressions in figure brackets

must vanish. Since Tα̂ and Sα̂ are linearly independent, we conclude that

〈T, T 〉 = 〈S, T 〉 = 〈T, S〉 = 〈S, S〉 = 0 , (2.33)

and therefore the two-plane in C
4 associated with Tα̂ and Sα̂ is null. We finally choose

Tµ = (T, S).

3 Compactified 4D Minkowski superspace

Supertwistor space C
4|N was introduced by Ferber [24] as a supersymmetric extension of

the twistor space. The elements of C4|N are called supertwistors. We use capital boldface

letters, T ,S, . . . , to denote supertwistors, for instance

T = (TA) =

(
T α̂

T i

)
, i = 1, . . . ,N . (3.1)

The supertwistor space is equipped with the inner product

〈T ,S〉 = T
†ΩS , Ω =




0 12 0

12 0 0

0 0 −1N


 =

(
Ω 0

0 −1N

)
. (3.2)

This inner product is invariant under the N -extended superconformal group SU(2, 2|N )

spanned by supermatrices of the form

g = (gA
B) ∈ SL(4|N ) , g†Ω g = Ω . (3.3)
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Associated with a supertwistor T , eq. (3.1), is its dual

T̄ := T
†Ω = (T̄

A
) = (T̄

α̂
,−T̄ i

) , T̄
i
:= (T i)

∗ . (3.4)

The superconformal group acts on TA and T̄
A
as follows:

TA → gA
B
TB , T̄

A → T̄
B
(g−1)B

A . (3.5)

3.1 Supertwistor realization

In complete analogy with the bosonic construction described in the previous section, com-

pactified Minkowski superspace4 M4|4N is defined to be the space of null two-planes through

the origin in C
4|N [25, 26]. Given such a two-plane, it is generated by two supertwistors

T
µ = (TA

µ), with µ = 1, 2, such that (i) the bodies5 of T α̂
1 and T α̂

2 are linearly inde-

pendent twistors; and (ii) these supertwistors obey the equations

〈T µ,T ν〉 ≡ T̄
µ
T

ν = 0 , µ, ν = 1, 2 . (3.6)

The basis chosen, {Tµ}, is defined modulo the equivalence relation

{T µ} ∼ {T̃ µ} , T̃
µ
= T

ν Cν
µ , C ∈ GL(2,C) . (3.7)

The two bases, {T µ} and {T̃ µ}, define one and the same two-plane in C
4|N . It may be

shown that M4|4N is a homogeneous space of SU(2, 2|N ).

The standard N -extended Minkowski superspace, M4|4N or more traditionally R
4|4N ,

can be identified with a certain open domain of M4|4N on which the upper 2 × 2 matrix

block of the supermatrix

(TA
µ) =




T α
µ

T
.

αµ

T i
µ


 (3.8)

is non-singular. The freedom to choose the basis, eq. (3.7), can be used to fix Tα
µ = δα

µ.

In this gauge, the supermatrix (TA
µ) takes the form have

(TA
µ) =




δα
β

−ix
.

αβ
+

2 θi
β


 , x

.

αβ
+ := xm+ σ̃m

.

αβ . (3.9)

Due to (3.6), the bosonic x̃+ = (x
.

αβ
+ ) and fermionic θ = (θi

β) variables obey the reality

condition

x̃+ − x̃− = 4i θ† θ , x̃− = (x̃+)
† . (3.10)

It is solved by

x
.

αβ
± = x

.

αβ ± 2i θ̄
.

αiθβi , θ̄
.

αi = (θαi )
∗ , x̃† = x̃ , (3.11)

4The case N = 4 is known to be somewhat special. Since off-shell supersymmetric theories exist for

N = 1, 2, 3, here we do not dwell on the special features of N = 4.
5See [27] for the necessary information about infinite dimensional Grassmann algebra Λ∞.
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with z = (xa, θαi , θ̄
i
.

α
) the coordinates of N -extended Minkowski superspace R

4|4N . We

see that the supertwistors in the Minkowski chart (3.9) are parametrized by the chiral

coordinates xa+ and θαi . More details on the supertwistor construction for M
4|4N can be

found, e.g., in [15].

We can elaborate on implications of the construction presented. Using the two super-

twistors T µ, which describe a point of M4|4N , we define the following supermatrix

Y AB := TA
µ
TB

νεµν , εµν = −ενµ , ε12 = −1 . (3.12)

It is graded antisymmetric,

Y AB = −(−1)ǫAǫBY BA , (3.13)

and defined modulo the equivalence relation

Y AB ∼ cY AB , c = det(Cα̂
β̂) ∈ C− {0} . (3.14)

The important property of this supermatrix is

Y [ABY C}D = 0 ←→ Y [ABY CD} = 0 , (3.15)

where [. . .} denotes the graded antisymmetrization of indices.

It should be emphasized that the supermatrix Y AB defined by (3.12) is non-zero, and

so is the body of its bosonic block Y
α̂β̂

. This follows from an easily verified statement: if

TA and SA are two supertwistors such that the bodies of T α̂ and Sα̂ are non-zero, then it

holds that

T [ASB} = 0 ←→ TA = λSA . (3.16)

If the bodies of T α̂ and Sα̂ vanish, however, it is easy to construct two supertwistors TA

and SA such that T [ASB} = 0 but TA 6= λSA for any λ.

In the Minkowski chart, choosing the gauge (3.9) gives

Y AB =




εαβ −ix+α

.

β 2θαj

ix+
.

α
β

1
2ε
.

α
.

βx+
.

γγx+γ
.

γ − 2ix+
.

αγθγj

− 2θiβ 2i θiγx+
.

βγ 4θiθj




. (3.17)

Using the dual supertwistors T̄
µ
allows us to define another supermatrix

Ȳ
AB

:= εµνȲ
µA

Ȳ
ν B

. (3.18)

The supermatrices Y = (Y AB) and Ȳ = (Ȳ
AB

) are related to each other as

Ȳ = −ΩY
†Ω . (3.19)

where the definition of Y † is the same as for ordinary matrices. The null conditions (3.6)

give

Ȳ
AC

Y CB = 0 . (3.20)
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3.2 Bi-supertwistor realization

We give an alternative realization of compactified Minkowski superspace M
4|4N . In the

space of all complex graded antisymmetric matrices, Y AB = −(−1)ǫAǫBY BA, we consider

a surface L consisting of those supermatrices which obey the algebraic constraints

Y [ABY CD} = 0 , (3.21a)

Ȳ
AC

Y CB = 0 , (3.21b)

and satisfy the following condition: for each supermatrix Y ∈ L, the body of its bosonic

block Y
α̂β̂

defined by

Y =

(
Y

α̂β̂
Y α̂j

Y
iβ̂

Y ij

)
(3.22)

is a non-zero antisymmetric 4× 4 matrix. Our goal is to show that the superspace M
4|4N

can be identified with the space of equivalence classes in L with respect to the equivalence

relation

Y AB ∼ cY AB , c ∈ C− {0} . (3.23)

It is natural to think of Y AB as a graded two-form on the dual supertwistor space.

Let us first demonstrate that eq. (3.21a) implies that Y AB is decomposable provided

the body of Y
α̂β̂

is non-zero. This means that Y AB can be represented as

Y AB = TASB − (−1)ǫAǫBTBSA , (3.24)

for some supertwistors TA and SA. It follows from eq. (3.21a) that

T [AY BC} = 0 , (3.25)

where TA := V
B
Y BA, for any dual supertwistor V A. Since the body of Y

α̂β̂
is non-zero,

it is possible to choose V A such that the body of T α̂ is non-zero. The properties of TA and

Y AB are such that we can apply a generalization of Cartan’s lemma.6 This generalization

states that the condition (3.25) implies the validity of (3.24), for some supertwistor SA

such that the body of Sα̂ is non-zero. It is clear that the bodies of T α̂ and Sα̂ are

linearly independent twistors. Since Y AB is defined modulo arbitrary re-scalings, eq. (3.23),

one can see that the two supertwistors T
µ := (T ,S) are defined modulo the equivalence

relation (3.7).

Starting from the graded antisymmetric supermatrix (3.24), we introduce its conjugate

Ȳ
AB

, eq. (3.19), and compute the left-hand side of (3.21b). Then eq. (3.21b) becomes

equivalent to

Ȳ
AC

Y CB = T̄
A
{
〈S,T 〉SB − 〈S,S〉TB

}

+S̄
A
{
〈T ,S〉TB − 〈T ,T 〉SB

}
= 0 . (3.26)

6For completeness, we recall the formulation of Cartan’s lemma, see e.g. [23, 28]. Consider a finite

dimensional vector space V . Let ω ∈ ∧
pV be a p-vector, and ϕ ∈ V be a non-zero one-vector such that

ϕ ∧ ω = 0. Then there exists a (p− 1)-vector η such that ω = ϕ ∧ η.

– 9 –
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Since the bodies of T̄
α̂
and S̄

α̂
are linearly independent, we conclude that the two ex-

pressions in figure brackets must vanish. Since the bodies of T α̂ and Sα̂ are linearly

independent, we end up with the null conditions

〈T ,T 〉 = 〈T ,S〉 = 〈S,T 〉 = 〈S,S〉 = 0 . (3.27)

As a result, we have demonstrated that the bi-supertwistor realization introduced is com-

pletely equivalent to the standard supertwistor realization of M4|4N described in the pre-

vious subsection.

The constraints (3.21a) and (3.21b) for N = 1 were identified in the third version

of [13]. Ref. [14] closely followed the first version of [13] and did not provide the correct

constraints. The constraint (3.21a) and a considerable part of the bi-supertwistor construc-

tion for general N , including eq. (3.17), were known to Siegel in the mid 1990s [35, 36].

The equivalence between the supertwistor and bi-supertwistor formulations was not proved

in [13, 35, 36].

4 Compactified 4D N = 2 harmonic/projective superspace

As is well known, all N = 2 supersymmetric theories in four dimensions are naturally for-

mulated in the superspace R4|8×CP 1 introduced for the first time by Rosly [29]. Depending

on the specific superfield methods employed to construct off-shell N = 2 supersymmetric

theories, this superspace is called harmonic [30, 31] or projective [32–34]. Here we start

by describing the conformally compactified version of R4|8 × CP 1 following ref. [15] which

built on the earlier publications [37–39]. After that we introduce a new bi-supertwistor

realization for this compactified superspace.

Ordinary supertwistors introduced by Ferber [24],

(TA) =

(
T α̂

T i

)
, (4.1)

are characterized by the following Grassmann parities of their components:

ǫ(TA) = ǫA =

{
0 A = α̂

1 A = i
. (4.2)

Such supertwistors are often called even. One can also consider odd supertwistors,

(ΞA) =

(
Ξα̂

Ξi

)
, (4.3)

with opposite Grassmann parities

ǫ(ΞA) = 1 + ǫA (mod 2) . (4.4)

Both even and odd supertwistors should be used [37, 38] in order to define harmonic-like

superspaces in extended conformal supersymmetry.
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Now, we accompany the two even supertwistors T
µ, which occur in the construction

of the compactified N = 2 superspace M
4|8, by an odd supertwistor Ξ such that the body

of Ξi is non-zero. These supertwistors are required to obey the null conditions

〈T µ,T ν〉 = 〈T µ,Ξ〉 = 0 , µ, ν = 1, 2 , (4.5)

and are defined modulo the equivalence relation

(Ξ,T µ) ∼ (Ξ,T ν)

(
d 0

ρν Cν
µ

)
,

(
d 0

ρ C

)
∈ GL(1|2) , (4.6)

with ρν anticommuting complex parameters. The superspace obtained can be seen to be

M
4|8 × CP 1. It is a homogeneous space of SU(2, 2|2).
To understand the global structure of the superspace introduced, it is convenient to

restrict our consideration to its Minkowski chart defined the same way as in the previous

section. The freedom to perform equivalence transformations (4.6) allows us to choose T
µ

and Ξ to look like

(TA
µ) =




δα
β

−ix
.

αβ
+

2 θi
β


 , (ΞA) =




0

2θ̄
.

αjvj
vi


 , vi ∈ C

2 − {0} . (4.7)

The isotwistor vi is defined modulo the equivalence relation

vi ∼ d vi , d ∈ C− {0} . (4.8)

This shows that the superspace under consideration is indeed M
4|8 × CP 1.

We are in a position to formulate a bi-supertwistor realization for M
4|8 × CP 1. It is

given in terms of complex variables (Y AB,ΞA), where Y AB obeys the conditions given in

subsection 3.2, while Ξ is an odd supertwistor such that (i) the body of Ξi is non-zero;7

and (ii) Ξ obeys the condition

Ȳ
AB

ΞB = 0 . (4.9)

The variables (Y AB,ΞA) are defined modulo the equivalence relation

(ΞA,Y AB) ∼ (Ξ′
A,Y

′
AB) = (ΞA,Y AC)

(
d 0

ρC c δCB

)
, (4.10)

where c, d ∈ C− {0}, and ρC is an odd dual supertwistor.

Let us introduce a superfield of the general form (n ≥ 0):

Φ(n)(Y , Ȳ ,Ξ, Ξ̄) =

∞∑

k=0

Ξ̄
Bk . . . Ξ̄

B1

(Ξ̄
C
ΞC)k

ΦB1...Bk

A1...An+k(Y , Ȳ )ΞAn+k
. . .ΞA1

, (4.11)

7This condition implies that the body of Ξ̄
C
ΞC is non-zero, that is (Ξ̄

C
ΞC)

−1 is well defined.
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where the Fourier coefficients ΦB1...Bk

A1...An+k(Y , Ȳ ) have the following properties: (i)

they are homogeneous functions of Y ’s and their conjugates,

ΦB1...Bk

A1...An+k(cY , c̄Ȳ ) = c−∆ c̄−∆̄ΦB1...Bk

A1...An+k(Y , Ȳ ) , (4.12)

for some parameter ∆ and ∆̄;

(ii) they are graded antisymmetric in their A-indices and separately in their B-indices,

ΦB1...Bk

A1...An+k(Y , Ȳ ) = Φ[B1...Bk}
[A1...An+k}(Y , Ȳ ) ; (4.13)

(iii) they are tensors at the point (Y , Ȳ ) of M4|8, that is

Ȳ
CD

ΦDB2...Bk

A1...An+k(Y , Ȳ ) = 0 , (4.14a)

ΦB1...Bk

A1...An+k−1D(Y , Ȳ )Y DC = 0 . (4.14b)

These tensor conditions guarantee that Φ(n)(Y , Ȳ ,Ξ, Ξ̄) changes under the equivalence

transformation (4.10) as follows:

Φ(n)(Y ′, Ȳ ′
,Ξ′, Ξ̄′

) = dn c−∆ c̄−∆̄Φ(n)(Y , Ȳ ,Ξ, Ξ̄) . (4.15)

eq. (4.11) defines a superconformal Fourier expansion. Without loss of generality, the

Fourier coefficients in (4.11) can be subject to an irreducibility condition that a super-

trace of any A-index with a B-index vanish.

It should be mentioned that there exist two more equivalent realizations for the su-

perspace M
4|8×CP 1, which will be referred to as Type A and Type B formulations. Both

realizations are given in terms of complex variables (Y AB,ΞA,ΣA), where Y AB obeys the

conditions given in subsection 3.2, while Ξ and Σ are odd supertwistors such that (i) the

bodies of Ξi and Σi are non-zero; and (ii) Ξ and Σ obey the null conditions

Ȳ
AB

ΞB = 0 , Ȳ
AB

ΣB = 0 ; (4.16)

(iii) the odd supertwistor Ξ is defined modulo arbitrary equivalence transformations (4.10).

The two realizations differ in additional conditions (iv) and (v) imposed on Σ. Let us

describe these conditions.

In Type A formulation, the odd supertwistor Σ is required to (iv) obey the additional

null condition

Σ̄
B
ΞB = 0 ; (4.17)

as well as (v) be defined modulo the equivalence relation

ΣA ∼ Σ′
A = fΣA + Y ACκ

C , (4.18)

where f ∈ C−{0}, and κC is an arbitrary odd dual supertwistor. It follows that the bodies

of Ξi and Σi are linearly independent. One can see that no additional degrees of freedom

are associated with Σ.
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In Type B formulation, the odd supertwistor Σ is such that (iv) the bodies of Ξi and

Σi are linearly independent; and (v) Σ is defined modulo the equivalence relation8

ΣA ∼ Σ′
A = fΣA + gΞA + Y ACκ

C , (4.19)

where f ∈ C − {0}, g ∈ C, and κC is an arbitrary odd dual supertwistor. As in the

previous case of Type A formulation, no degrees of freedom are associated with Σ. Type B

formulation is the bi-supertwistor version of the so-called harmonic realization for M4|8 ×
CP 1 introduced in [15].

5 Compactified 3D Minkowski space

In the remainder of this paper, we present three-dimensional analogues of the four-dimensional

results discussed in sections 2 to 4. The (super)twistor realizations for 3D compactified

Minkowski space and its supersymmetric extensions were developed in [16]. Here we will

build on the constructions presented in [16]. The interested reader is referred to that paper

for more details, including the spinor conventions in 3 + 2 dimensions.

5.1 Twistor realization

Consider a symplectic four-dimensional real vector space. We can think of it as R4 equipped

with a skew-symmetric inner product:

〈T |S〉J := TTJ S ≡ Tα̂J α̂β̂S
β̂
= −〈S|T 〉J , J =

(
J α̂β̂

)
=

(
0 12

−12 0

)
, (5.1)

for any vectors T, S ∈ R
4. By construction, this inner product is invariant under the group9

Sp(4,R). We refer to this vector space as the 3D twistor space. Its elements T, S ∈ R
4 are

called 3D twistors.

The elements of the group Sp(4,R) can be represented by 4× 4 block matrices

g =
(
gα̂

β̂
)
=

(
A −B
−C D

)
∈ SL(4,R) , gT J g = J , (5.2)

where A,B, C and D are 2 × 2 matrices. The symplectic group Sp(4,R) is the two to one

covering of the connected component, SO0(3, 2), of the conformal group in three dimensions.

A twistor looks like

T = (Tα̂) =

(
fα
hα

)
, (5.3)

with the two-component vectors fα and hα being real commuting 3D spinors.

8If the equivalence relation (4.19) is replaced by (4.18), then we end up with a space M
4|8

× T ∗
CP 1,

where T ∗
CP 1 denotes the cotangent bundle of CP 1. One can think of T ∗

CP 1 as the complexification of

CP 1. The importance of superspace R
4|8

×T ∗
CP 1 in the context N = 2 supersymmetric sigma models has

recently been emphasized by Butter [40].
9This group was denoted Sp(2,R) in [16].
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A Lagrangian subspace of the twistor space is defined to be a maximal isotropic vector

subspace of R4. Such a subspace is necessarily two-dimensional. We denote by M
3
T the

space of all Lagrangian subspaces of R4. One can show that M
3
T is a homogeneous space

of the group Sp(4,R) and has the structure

M
3
T = U(2)/O(2) , (5.4)

see, e.g., [16, 41] for technical details.

Conformally compactified 3D Minkowski space can be identified with M
3
T. Indeed,

given a Lagrangian subspace, it is generated by two linearly independent twistors Tµ, with

µ = 1, 2, such that

〈T 1|T 2〉J = 0 . (5.5)

Obviously, the basis chosen, {Tµ}, is defined only modulo the equivalence relation

{Tµ} ∼ {T̃µ} , T̃µ = T ν Rν
µ , R ∈ GL(2,R) . (5.6)

Minkowski space M
3 ≡ R

2,1 can be identified with an open dense subset of M3
T consisting

of those Lagrangian subspaces which are described by 4× 2 matrices of the form:

(Tα̂
µ) =

(
Fα

µ

Hαµ

)
, detF 6= 0 . (5.7)

In accordance with the equivalence relation (5.6), we can choose F = 12. Then the null

condition gives

(Tα̂
µ) =

(
12

−x

)
, xT = x = (xαβ) ∈ Mat(2,R) . (5.8)

This is a standard matrix realization of 3D Minkowski space. The conformal transforma-

tion (5.2) acts on x as follows:

x′ = (C +Dx)(A+Bx)−1 . (5.9)

The Poincaré group corresponds to the subgroup of Sp(4,R) consisting of the matrices

g =

(
M 0

−aM (M−1)T

)
, a = aT ∈ Mat(2,R) , M ∈ SL(2,R) . (5.10)

5.2 Bi-twistor realization

We now describe an alternative, bi-twistor realization of M3. Let us denote by L the set of

all non-zero real antisymmetric matricesX
α̂β̂

= −X
β̂α̂

which obey the algebraic constraints

X[α̂β̂Xγ̂δ̂] = 0 , (5.11a)

Xα̂γ̂J
γ̂δ̂X

δ̂β̂
= 0 , (5.11b)

J β̂α̂X
α̂β̂

= 0. (5.11c)
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We introduce the quotient space M
3
BT = L/∼, where the equivalence relation is defined by

X
α̂β̂
∼ r X

α̂β̂
, r ∈ R− {0} . (5.12)

The twistor and bi-twistor realizations are related to each other as follows:

X
α̂β̂

:= Tα̂
µT

β̂
νεµν , εµν = −ενµ , ε12 = −1 . (5.13)

The proof is left to the reader as an exercise.

6 Compactified 3D Minkowski superspace

Consider the graded symplectic metric on R
4|N

J = (JAB) =

(
J α̂β̂ 0

0 i δIJ

)
, I, J = 1, . . . ,N . (6.1)

The 3D N -extended superconformal group OSp(N|4,R) consists of supermatrices g of the

form

gsTJ g = J , g =

(
A B

C D

)
, gsT =

(
AT −CT

BT DT

)
. (6.2)

Here the even matrices A,D and the odd matrix B have real matrix elements, while the

odd matrix C has purely imaginary matrix elements. Supermatrices g of this type are

called real, in accordance with [27].

The superconformal group OSp(N|4,R) naturally acts on supertwistor space R
4|N

spanned by elements of the form

T ≡ (TA) =

(
T α̂

iϕI

)
=




fα
hα

iϕI


 , ǫ(TA) = ǫA =

{
0 A = α̂

1 A = I
(6.3)

and endowed with the graded symplectic two-form J = 1
2J

AB dTB ∧ dTA. This action

preserves J , and thus the symplectic inner product on R
4|N defined by

〈T |S〉J := T
sT
J S = −〈S|T 〉J , T

sT =
(
T α̂ ,− iϕI

)
, (6.4)

with the graded symplectic matrix J defined in (6.1). Any element T ∈ R
4|N is called an

even real supertwistor.

6.1 Supertwistor realization

A Lagrangian subspace of R4|N is defined to be a maximal isotropic subspace of the su-

pertwistor space [16]. We denote by M
3|2N the space of all Lagrangian subspaces of R4|N .

Given such a subspace, it is generated by two supertwistors T µ such that

(i) the bodies of T α̂
1 and T α̂

2 are linearly independent twistors;
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(ii) T
1 and T

2 obey the null condition

〈T 1|T 2〉J = 0 ; (6.5)

(iii) T
1 and T

2 are defined only modulo the equivalence relation

{T µ} ∼ {T̃ µ} , T̃
µ
= T

ν Rν
µ , R ∈ GL(2,R) . (6.6)

A dense open subset M3|2N of M3|2N consists of those Lagrangian subspaces which are

described by supermatrices of the form

(
TA

µ
)
=



Fα

µ

Hαµ

i ΥI
µ


 , det(Fα

µ) 6= 0 . (6.7)

Using the equivalence relation (6.6) allows us to choose F = 12, and hence

(
TA

µ
)
=




δα
β

−xαβ + i
2ε

αβθ2

i
√
2 θI

β


 , xαβ = xβα , θ2 := θαI θαI . (6.8)

Here the bosonic xαβ and fermionic θαI ≡ θI
α parameters are real. Therefore, the subset

M
3|2N ⊂ M

3|2N introduced can be identified with R
3|2N . This subset is a transformation

space of the 3D N -extended super-Poincaré group, P(3|N ), which is a subgroup of the

superconformal group OSp(N|2,R), eq. (6.2), spanned by group elements of the form:

g = s(a, ǫ)h(M) , (6.9a)

s(a, ǫ) =




δα
β 0 0

−aαβ + i
2ε

αβǫ2 δαβ −
√
2ǫαJ

i
√
2 ǫI

β 0 δIJ


 , (6.9b)

h(M) =



M 0 0

0 (M−1)T 0

0 0 1N


 , M ∈ SL(2,R) . (6.9c)

In eq. (6.9b), the bosonic (aαβ = aβα) and fermionic (ǫI
α = ǫαI ≡ ǫαI ) parameters are

real. Evaluating the action of P(3|N ) on M
3|2N shows that this space is 3D N -extended

Minkowski superspace.

6.2 Bi-supertwistor realization

We give an alternative, bi-supertwistor realization of compactified Minkowski superspace

M
3|2N . In the space of all real graded antisymmetric matrices, XAB = −(−1)ǫAǫBXBA, we

consider a surface L consisting of those supermatrices which obey the algebraic constraints

X [ABXCD} = 0 , (6.10a)

(−1)ǫCXACJ
CD

XDB = 0 , (6.10b)

J
BA

XAB = 0, (6.10c)
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and satisfy the additional condition: for each supermatrix X ∈ L, the body of its bosonic

block X
α̂β̂

defined by

X =

(
X

α̂β̂
X α̂J

X
Iβ̂

XIJ

)
(6.11)

is a non-zero antisymmetric 4×4 matrix. The supermatrix X must be real in the following

sense [27]

(XAB)
∗ = (−1)ǫA+ǫB+ǫAǫBXAB . (6.12)

It turns out that compactified Minkowski superspace can be identified with the quotient

space M
3|2N
BT = L/ ∼, where the equivalence relation is defined by

XAB ∼ rXAB , r ∈ R− {0} . (6.13)

The supertwistor and bi-supertwistor realizations are related to each other as follows:

XAB := TA
µ
TB

νεµν , εµν = −ενµ , ε12 = −1 . (6.14)

This can be proved in complete analogy with the four-dimensional case considered in sec-

tion 3.

In the Minkowski chart, choosing the gauge (6.8) gives

XAB =




εαβ −xαβ − i
2δα

βθ2 i
√
2θαJ

xαβ + i
2δ

α
βθ

2 1
2ε

αβ
(
xγδxγδ +

1
2(θ

2)2
)
−i
√
2xαγθγJ − 1√

2
θαJθ

2

−i
√
2θIβ i

√
2θIγx

γβ + 1√
2
θI

βθ2 −2θIθJ




. (6.15)

7 Compactified N -extended harmonic/projective superspaces in three

dimensions

In [16, 17], new homogeneous spaces of the superconformal group OSp(N|2,R) were con-

structed that include M
3|2N as a submanifold. Their general structure is M

3|2N × X
N
m ,

where X
N
m is a compact manifold, for any integer 0 < m ≤ [N/2].10 Such superspaces

are nontrivial and have interesting applications for N > 2. The supertwistor formulation

for M
3|2N × X

N
m given in [16] makes use of both even and odd supertwistors. An odd

supertwistor looks like

Σ = (ΣA) =

(
Σα̂

ΣI

)
, ǫ(ΣA) = 1 + ǫA (mod 2) . (7.1)

10As usual, the notation [N/2] is used for the integer part of N/2.
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This supertwistor is called real if all the components ΣA are real. The super-transpose of

Σ is defined to coincide with the ordinary transpose,

ΣsT =
(
Σα̂,ΣI

)
, (7.2)

compare with eqs. (6.3) and (6.4). Here we present a bi-supertwistor formulation for the

superspaces M3|2N × X
N
m , but first we recall their supertwistor realization [16].

Along with the two linearly independent even real supertwistors T 1 and T
2 obeying the

null condition (6.5), we also consider m odd complex supertwistors Σi, with i = 1, . . . ,m,

such that (i) the bodies of Σi are linearly independent; (ii) any linear combination of the

supertwistors T µ and Σi is null, that is

〈T µ|T ν〉J = 〈T µ|Σj〉J = 〈Σi|Σj〉J = 0 . (7.3)

The supertwistors T µ and Σi are defined modulo the equivalence relation

(T µ,Σi) ∼ (T ν ,Σj)

(
Rν

µ Bν
i

0 Dj
i

)
,

(
R B

0 D

)
∈ GL(2|m,C) , R ∈ GL(2,R) . (7.4)

We emphasize that the fermionic Bν
i and bosonic Dj

i matrix elements are complex. The

space M3|2N×XN
m is defined to consist of the equivalence classes associated with all possible

(T µ,Σi) under the above conditions.

It is necessary to point out two important features of the construction under consid-

eration. Firstly, the invariant inner product 〈 , 〉J possesses the property

〈T 1|T 2〉J = −(−1)ǫ1ǫ2〈T 2|T 1〉J , (7.5)

where ǫ1,2 denotes the Grassmann parity of T 1,2. Secondly, associated with the odd su-

pertwistors Σi = (ΣA
i) are their complex conjugates Σ̄

i
= (Σ̄A

i) which possess analogous

properties

〈T µ|Σ̄j〉J = 〈Σ̄i|Σ̄j〉J = 0 . (7.6)

It can be seen that the 2m supertwistors Σi and Σ̄
j
are linearly independent,

det 〈Σi|Σ̄j〉J 6= 0 . (7.7)

We are prepared to introduce a bi-supertwistor realization for M
3|2N × X

N
m . It is

given in terms of pairs (XAB,ΣA
i), where the bi-supertwistor XAB obeys the conditions

formulated in subsection 6.2. As to the odd supertwistors Σi, they must be such that (i)

the body of the N ×m matrix ΣI
j has rank m; and (ii) the null conditions hold

(−1)ǫBXABJ
BCΣC

i = ΣB
i
J

BC
XCA = 0 , ΣA

i
J

ABΣB
j = 0 . (7.8)

The superspaceM3|2N×XN
m is obtained by factorizing the space of all such pairs (XAB,ΣA

i)

with respect to the equivalence relation

(XAB,ΣA
i) ∼ (X̃AB, Σ̃A

i) , (7.9a)
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where

X̃AB = rXAB , r ∈ R− {0} , (7.9b)

Σ̃A
i = (−1)ǫBXABJ

BCΞC
i +ΣA

jDj
i , D ∈ GL(2,C) , (7.9c)

where Ξi are two arbitrary odd supertwistors. This realization for M3|2N × X
N
m is clearly

equivalent to the supertwistor one.

8 Conclusion

The bi-supertwistor realization for M4|4N is a natural supersymmetric extension of Dirac’s

projective lightcone construction for compactified Minkowski space. It was Ferrara [8]

who posed the problem of developing such a supersymmetric extension back in 1974. The

problem has finally been solved. The supertwistor realization for M4|4N can be viewed as

a square root of the bi-supertwistor one.

As shown in [13] (see also [42]) the bi-supertwistor realization for M
4|4 allows one to

derive compact expressions for certain correlation functions in N = 1 superconformal field

theories. The adequate superspace setting for N = 2 supersymmetric theories is known to

be not the conventional Minkowski superspace R4|8, but rather its harmonic/projective ex-

tension R
4|8×CP 1. We believe that the bi-supertwistor realization for M4|8×CP 1 proposed

in section 4 will be useful for (i) the calculation of correlation functions in N = 2 super-

conformal field theories; and (ii) the construction of a manifestly SU(2, 2|2) invariant for-
mulation for N = 2 superconformal field theories (compare, e.g., with non-supersymmetric

approaches [43, 44]). The superconformal Fourier expansion (4.11) is expected to be espe-

cially important in this context.
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A Spinors in 4 + 2 dimensions

In this appendix we collect the salient information about spinors in 4 + 2 dimensions. A

similar discussion can be found, e.g., in [10].

The gamma matrices in 4 + 2 dimensions, Γâ, obey the anti-commutation relations

{Γâ,Γb̂
} = −2η

âb̂
18 , η

âb̂
= diag(−1,+1,+1,+1,+1,−1) (A.1)

and can be chosen to look like

Γâ =

(
0 Σâ

Σ̃â 0

)
, (A.2)
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where the 4× 4 matrices Σâ and Σ̃â have the explicit form

Σâ = (Σa,Σ5,Σ6) = (iγa, γ5,14) ≡ (Σâ)α̂ β̂
, (A.3a)

Σ̃â = (Σ̃a, Σ̃5, Σ̃6) = (−iγa,−γ5,14) ≡ (Σ̃â)
α̂ β̂ . (A.3b)

Here γa are the gamma matrices in 3+ 1 dimensions, and γ5 := −iγ0γ1γ2γ3. Our choice of

γa coincides with that adopted in [27, 45], specifically

γa =

(
0 σa
σ̃a 0

)
, γ5 =

(
12 0

0 −12

)
, (A.4)

where

σa = (12, ~σ) ≡ (σa)α.α , σ̃a = (12,−~σ) ≡ (σ̃a)
.

αα . (A.5)

The matrices (A.3) obey the relations

ΣâΣ̃b̂
+Σ

b̂
Σ̃â = −2η

âb̂
14 , Σ̃âΣb̂

+ Σ̃
b̂
Σâ = −2η

âb̂
14 . (A.6)

For the matrix Γ7 := −iΓ0Γ1Γ2Γ3Γ5Γ6 we obtain

Γ7 =

(
14 0

0 −14

)
. (A.7)

The Dirac spinor representation of the double covering group of SO0(4, 2) is gener-

ated by

J
âb̂

:= −1

4
[Γâ,Γb̂

] =

(
Σ
âb̂

0

0 Σ̃
âb̂

)
, (A.8)

where

Σ
âb̂

:= −1

4
(ΣâΣ̃b̂

− Σ
b̂
Σ̃â) ≡ (Σ

âb̂
)α̂

β̂ , (A.9a)

Σ̃
âb̂

:= −1

4
(Σ̃âΣb̂

− Σ̃
b̂
Σâ) ≡ (Σ̃

âb̂
)α̂

β̂
. (A.9b)

The matrices Σ
âb̂

are the generators of the group SU(2, 2) defined by (2.9). The following

isomorphism holds: SO0(4, 2) ∼= SU(2, 2)/Z2.

The Hermitian conjugation properties of the gamma matrices are

(Γâ)
† = Γ0Γ6 Γâ Γ0Γ6 , (A.10)

hence

(J
âb̂
)† = Γ0Γ6 Jâb̂ Γ0Γ6 , (A.11)

This implies

(Σâ)
† = γ0Σ̃âγ0 , (Σ̃â)

† = γ0Σâγ0 , (A.12)
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and hence

(Σ
âb̂
)† = −γ0Σâb̂

γ0 , (Σ̃
âb̂
)† = γ0Σ̃âb̂

γ0 . (A.13)

It can be seen that γ0 coincides with the matrix Ω in eqs. (2.7) and (2.9).

Given a Dirac spinor

Ψ =

(
ψ

φ

)
, ψ = (ψα̂) , φ = (φα̂) . (A.14)

its Dirac conjugate is defined as follows:

Ψ := −iΨ†Γ0Γ6 = (ψ†γ0,−φ†γ0) , ψ†γ0 ≡ (ψ̄α̂) , φ†γ0 ≡ (φ̄α̂) . (A.15)

The infinitesimal SO(4, 2) transformation laws of these spinors are:

δΨ =
1

2
ωâb̂J

âb̂
Ψ , (A.16a)

δΨ = −1

2
Ψωâb̂J

âb̂
. (A.16b)

The Dirac spinor representation is a sum of two irreducible ones, one of which is the

twistor representation and the second is equivalent to its dual (contragredient). The twistor

representation is associated with spinors of the form

ΨL =

(
ψ

0

)
, ψ = (ψα̂) (A.17)

such that Γ7ΨL = ΨL. The Dirac conjugate of ΨL,

ΨL = (ψ̄, 0) , ψ̄ := ψ†γ0 = (ψ̄α̂) (A.18)

transforms according to the dual twistor representation. The infinitesimal SO(4, 2) trans-

formation laws of ΨL and ΨL are:

δψα̂ =
1

2
ωĉd̂(Σ

ĉd̂
)α̂

β̂ψ
β̂
, (A.19a)

δψ̄α̂ = −1

2
ψ̄β̂ωĉd̂(Σ

ĉd̂
)
β̂
α̂ . (A.19b)

Explicit calculations give

1

2
ωâb̂Σ

âb̂
=




1
2ω

abσab − τ12 −ibaσa
−iaaσ̃a 1

2ω
abσ̃ab + τ12


 , (A.20)

where the parameters τ = 1
2ω

56, aa = 1
2(ω

a6 − ωa5) and ba = 1
2(ω

a6 + ωa5) generate a

dilatation, a space-time transaction and a special conformal transformation respectively.

As usual, the 2× 2 matrices σab and σ̃ab denote the Lorentz generators of the (1/2, 0) and

(0,1/2) representations of the Lorentz group in four dimensions [27],

σab := −
1

4
(σaσ̃b − σbσ̃a) , σ̃ab := −

1

4
(σ̃aσb − σ̃bσa) . (A.21)
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Since the matrices Γâ and −ΓT
â constitute two representations of the same Clifford

algebra, eq. (A.1), and these representations are necessarily equivalent, we have

C−1ΓâC = −ΓT
â , (A.22)

hence

C−1J
âb̂
C = −JT

âb̂
, (A.23)

for some charge conjugation matrix C. It can be chosen as

C =

(
0 γ5C

−γ5C 0

)
≡
(

0 Cα̂
β̂

Cα̂
β̂

0

)
, (A.24)

with C the charge conjugation matrix in 3 + 1 dimensions, which is defined by

C−1γaC = −γTa −→ C−1γ5C = γT5 (A.25)

and can be chosen as

C =

(
εαβ 0

0 ε
.

α
.

β

)
, C−1 =

(
εαβ 0

0 ε
.

α
.

β

)
. (A.26)

Using the properties C† = CT = −C = C−1 gives

CT = C . (A.27)

The inverse of C is

C−1 =

(
0 (C−1)α̂

β̂

(C−1)α̂
β̂ 0

)
. (A.28)

Since C is symmetric, it holds that

Cα̂
β̂ = Cβ̂

α̂ , (C−1)α̂
β̂
= (C−1)

β̂
α̂ . (A.29)

Given a Dirac spinor Ψ, its charge conjugate spinor defined by

ΨC := CΨ
T

(A.30)

transforms as a Dirac spinor,

δΨC =
1

2
ωâb̂J

âb̂
ΨC . (A.31)

The transformation laws of Ψ, Ψ and ΨC show that

φα̂ := (C−1)α̂
β̂
φβ̂ = φβ̂(C−1)

β̂
α̂ (A.32)

transforms as a dual twistor, while

φ̄α̂ := Cα̂
β̂φ̄

β̂
= φ̄

β̂
Cβ̂

α̂ (A.33)
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transforms as a twistor. This means that the matrices (A.29) are invariant tensors of

SU(2, 2) which can be used to convert all underlined twistor indices, α̂, β̂, . . . , into twistor

indices, α̂, β̂, . . . , and therefore to completely get rid of the former.

The sigma matrices with twistor indices are

(Σâ)α̂β̂ := (Σâ)α̂γ̂C
γ̂
α̂ , (Σ̃â)

α̂β̂ := (C−1)α̂ γ̂(Σâ)
γ̂β̂ . (A.34)

Since (ΓâC)
T = −ΓâC, these matrices are antisymmetric,

(Σâ)α̂β̂ = −(Σâ)β̂α̂ , (Σ̃â)
α̂β̂ = −(Σ̃â)

β̂α̂ . (A.35)

The matrices (Σâ)α̂β̂ and (Σ̃â)
α̂β̂ obey the relations (A.6). The following completeness

relations hold:

1

2
ε
α̂β̂γ̂δ̂

(Σ̃â)γ̂δ̂ = (Σâ)α̂β̂ , (A.36a)

1

2
εα̂β̂γ̂δ̂(Σâ)γ̂δ̂ = (Σ̃â)α̂β̂ , (A.36b)

1

2
(Σâ)

α̂β̂
(Σâ)γ̂δ̂ = ε

α̂β̂γ̂δ̂
. (A.36c)

There is a one-to-one correspondence between complex vectors in 4+2 dimensions V â

and bi-twistors V
α̂β̂

= −V
β̂α̂

or V α̂β̂ = 1
2ε

α̂β̂γ̂δ̂V
γ̂δ̂
. It is described by the relations

V
α̂β̂

= V ĉ(Σĉ)α̂β̂ , V â =
1

4
(Σ̃â)γ̂δ̂V

γ̂δ̂
, (A.37a)

V α̂β̂ = V ĉ(Σ̃ĉ)
α̂β̂
, V â =

1

4
(Σâ)

γ̂δ̂V γ̂δ̂ . (A.37b)

It is convenient to use the matrix notation V := (V
α̂β̂

) and Ṽ := (V α̂β̂). If V̄ â is the complex

conjugate of V â, then the corresponding bi-twistor matrices ˜̄V := (V̄ α̂β̂) and V := (V
α̂β̂

)

are related to each other as in (2.21). Finally, if V â is real, then ˜̄V = Ṽ .
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