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1 Introduction

Anomalies appear in the context of relativistic quantum field theories. In four dimen-

sions chiral anomalies [1, 2] involve triangle diagrams with either only vector currents or

vector currents and the energy momentum tensor, in which case one speaks of a (mixed

gauge-) gravitational anomaly [3, 4]. They are responsible for the breakdown of a classi-

cal symmetry due to quantum effects. If the symmetry is local anomalies impose severe

restrictions on the structure and definition of gauge theories (for comprehensive reviews

on anomalies see [5–7]). In the case of a symmetry generated by TA, and considering

only right-handed fermions, the presence of a chiral anomaly in vacuum is encoded in a

non-vanishing dABC = 1
2tr (TA{TB, TC}). The corresponding parameter in the case of the

gravitational anomaly is bA = tr (TA).

Recently, it has been pointed out that at finite temperature and density, anomalies are

responsible for the appearance of new non-dissipative transport phenomena [8–22]. In the

chiral magnetic effect an external magnetic field induces a current parallel to it

Jµ = σBB
µ (1.1)

where σB is the chiral magnetic conductivity and Bµ = 1
2ǫ

µνρλuνFρλ. A second effect is the

chiral vortical effect. It refers to the creation of a current parallel to vortices in the fluid

Jµ = σV ω
µ (1.2)

with ωµ = ǫµνρλuν∂ρuλ being the vorticity vector and uµ the fluid four-velocity.
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The contribution of the gravitational anomaly to these transport coefficients was first

obtained in a weakly coupled gas of chiral fermions in [23]. A holographic model that

confirmed these findings at strongly coupling was developed and studied in [24].

The chiral magnetic and the chiral vortical conductivities can be calculated from first

principles via the Kubo formulae [25] (Latin letters denote purely spatial indices)

σB = lim
pn→0

i

2pc

∑

a,b

ǫabc

〈

JaJb
〉

(ω = 0, ~p) (1.3)

σV = lim
pn→0

i

2pc

∑

a,b

ǫabc

〈

JaT b
0

〉

(ω = 0, ~p) (1.4)

There are related transport coefficients for the energy current T 0µ

T 0µ = σǫ
BB

µ , (1.5)

T 0µ = σǫ
V ω

µ . (1.6)

They are calculated via the Kubo formulae

σǫ
B = lim

pn→0

i

2pc

∑

a,b

ǫabc

〈

T a
0 J

b
〉

(ω = 0, ~p) (1.7)

σǫ
V = lim

pn→0

i

2pc

∑

a,b

ǫabc

〈

T a
0 T

b
0

〉

(ω = 0, ~p) (1.8)

The role played by the gravitational anomaly was further studied in [26], where an ideal

Weyl gas in arbitrary even dimensions was considered. This leads to a generalization of

the anomalous conductivities valid for any (even) dimension and an expression that relates

the anomaly induced transport coefficients to the anomaly polynomial of the Ideal Weyl

gas. Furthermore, in [27], a definition for the local entropy current for higher-curvature

gravitational theories was proposed and the Fluid/Gravity correspondence was applied to

compute the first order conductivities in the presence of the gravitational anomaly.

Within the gauge-gravity duality the running with the holographic coordinate can be

interpreted as a type of renormalization group (RG) flow in the dual field theory [28, 29].

The first application of this holographic flow to transport coefficients is [30] where it was

shown that the electric conductivity and the shear viscosity have a trivial flow. It is

known now that some of the transport coefficients indeed present a non-trivial flow (see,

for instance [31, 32]). The extension to finite chemical potential has been studied in [33, 34]

and in [35] the flow is analyzed in the framework of the Gauss-Bonnet-Maxwell theory.

Recently, there is a renewed interest in this subject due to the explicit holographic

construction of the Wilsonian Renormalization Group [36–38], which has made possible

to show that multi-trace deformations in the effective action are induced after integrating

out high energy modes. This approach has also served to study in detail the holographic

dual of cutoff scale [39]. Finally, in [40] it was pointed out that all the apparently different

frameworks used over time to study the holographic flow are actually equivalent.

It is natural to analyze the holographic flow of the anomalous conductivities as well. In

this paper we present several approaches to compute the different flows and show that all
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the methods lead to the same results as expected. In section 2 the setup is presented. We

interpret the holographic flow, defined as in [30], as a cutoff flow that arises by varying the

holographic cutoff at finite holographic coordinate value r = Λ. Section 3 studies the case of

gauge fields without taking into account the backreaction onto metric perturbations. Then

we generalize the previous approach to include also the metric perturbations and present

a non-covariant method to calculate the flow equations for the retarded Green’s functions.

Somewhat surprisingly we do find a non-trivial flow but give it a natural interpretation as

a cutoff flow of an effective chemical potential. The flow of the correlators is computed by

explicitly solving the equations of motion for a system restricted to live between the black

brane horizon and a hyper surface placed at finite r = Λ, which acts as a boundary. The

section ends with a discussion regarding the compatibility of the results so obtained with

the flow equations. It is shown that both approaches are in agreement. In section 4 the

attention is focused on the gravitational anomaly. We discuss subtleties concerning the

definition of a Dirichlet problem and the necessity for the inclusion of a boundary term to

ensure that the correct form for the divergence of the current is found. Contrary to what

happens for the chemical potential, we find that the temperature term stemming from the

gravitational anomaly does not flow.

We conclude in section 5 with a discussion.

2 Setup

Lets show how transport coefficients flow with a variation of the holographic cutoff scale.

We define the theory with a cutoff as:

S =
1

e2

∫

r<Λ

√−g

(

−1

4
FMNFMN .

)

(2.1)

We consider this theory in a general black brane background of the form

ds2 = −gttdt
2 + grrdr

2 + giid(x
i)2 . (2.2)

We assume that the above metric has an event horizon at r = rH and that every

component depends only on r. The boundary is placed at r = Λ. The metric is also

assumed to be regular except at the horizon and possibly in the limit Λ → ∞. The current

of the holographic dual field theory is

Jµ =
1

e2
√−gFµr

∣

∣

∣

∣

r=Λ

. (2.3)

In the gauge Ar = 0 the x-component of its variation due to a small perturbation of

the gauge field reads

Jx =
−1

e2
√−ggxxgrrȧ(x, r)

∣

∣

∣

∣

r=Λ

(2.4)

where ȧ = da/dr is the r-derivative of the aforementioned perturbation.
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We define a(x, r) as a(x, r) = a(r)
a(Λ)a

(0)(x), so that it is normalized at the boundary to

a(x,Λ) = a(0)(x) and a(r) solves the radial wave equation

ä(r) +
1

2
ȧ(r)

(

gttġtt + gxxġxx − grrġrr
)

+ grr
(

ω2gtt − k2gxx
)

a(r) = 0 (2.5)

On the other hand, we define the electric conductivity at the boundary as Jx =

σE(Λ)E(Λ), where E(Λ) = −iωa(0) is the external applied electric field. Comparing this

to equation (2.4) we conclude

σE(Λ) =
−i

e2ω

√−ggxxgrr
ȧ(r)

a(Λ)

∣

∣

∣

∣

r=Λ

(2.6)

Varying the cutoff Λ → Λ+dΛ we find the for the differential of the electric conductivity

dσE(Λ)

dΛ
=

−i

e2ω

[

d

dr

(√−ggxxgrr
da(r)/dr

a(r)

)]

r=Λ

(2.7)

This equation shows that we can study the flow of the transport coefficients with

the cutoff reformulating it as the evolution with respect to the coordinate r, by formally

identifying r with Λ.

We can use now the equation of motion for the perturbation a(r) and the definition of

the conductivity (2.6) to derive the flow equation

dσE(ω, k)

dΛ
= −iω

[

e2√−g
grrgxxσ

2
E +

√−g

e2
gxx

(

gtt +
k2

ω2
gxx
)]

(2.8)

This the flow equation first derived in [30]. It can be solved by demanding infalling

boundary conditions on the horizon. In particular the flow for the DC conductivity turns

out to be trivial σ̇E = 0. In this case the electric conductivity is completely determined by

its value on the horizon via the membrane paradigm

σE(Λ) = σE(rH) =
1

e2
. (2.9)

3 Flow of anomalous conductivities

We will apply now the strategy outlined before to the anomalous transport coefficients. Two

models will be considered. First we discuss a model in which we neglect the backreaction

of the gauge field fluctuations on the metric. We will study the interplay between two

U(1) symmetries which we call vector and axial ones. This allows to model the chiral

magnetic and the chiral separation effect. A second model will use only one anomalous

U(1) symmetry but we will also include the backreaction onto the metric. This allows

to study also the flow of the chiral vortical conductivity and the flow of the anomalous

transport coefficients related to the energy current.
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3.1 Vector and axial symmetries

We will apply the aforementioned strategy to the chiral magnetic conductivity [41]. Its

proper definition requires the interplay between a vector like U(1) symmetry and an axial

U(1) symmetry. Holographic models have been investigated in [42–44]. The model allows

for the definition of the chiral magnetic conductivity and axial conductivities involving

external axial magnetic fields. Its action is given by [44]

S =

∫ √−g

(

− 1

4g2V
F V
MNFMN

V − 1

4g2A
FA
MNFMN

A +

+
κ

2
ǫMNPQRAM

(

FA
NPF

A
QR + 3F V

NPF
V
QR

)

)

(3.1)

where V stands for ’vector’ and A for ’axial’. The Lagrangian contains two Maxwell actions

for vector and axial gauge fields and a particular choice of Chern-Simons term. In what

follows, we will stick to the notation of [44]; concretely, we define the epsilon symbol as

ǫ(ABCDE) = −√−gǫABCDE , with ǫ(rtxyz) = 1 (r corresponds to the fifth coordinate).

From the boundary term of this action, after perturbing both the axial and the vector

gauge fields, we obtain an expression for the boundary theory currents

Jµ =

(

1

g2V

√−gFµr
V + 6κǫµνρλAνF

V
ρλ

)
∣

∣

∣

∣

r=Λ

, (3.2)

Jµ
5 =

(

1

g2A

√−gFµr
A + 2κǫµνρλAνF

A
ρλ

)∣

∣

∣

∣

r=Λ

, (3.3)

where ǫµνρλ ≡ ǫrµνρλ. The coefficients in front of the Chern-Simons terms are crucial to

ensure that the vector current is non-anomalous DµJ
µ
V = 0. The axial current is anomalous

DµJ
µ
5 = −κ

2 ǫ
µνρλ

(

3F V
µνF

V
ρλ + FA

µνF
A
ρλ

)

[44]. Comparing with the standard result from the

one loop triangle calculation, we find κ = − Nc
24π2 for a dual strongly coupled SU(Nc)

gauge theory for a mass less Dirac fermion in the fundamental representation. Note also

that both currents are invariant under vector gauge transformations but not under axial

gauge transformations.

The equations of motion for the gauge fields are

1

g2A
∇NFNM

A +
3κ

2
ǫMNPQR(FA

NPF
A
QR + F V

NPF
V
QR) = 0 (3.4)

1

g2V
∇NFNM

V + 3κǫMNPQR(FA
NPF

V
QR) = 0 (3.5)

In order to study the flow of the conductivities with the fifth coordinate, we will proceed

as follows:

• We introduce an axial and vector perturbation of the gauge fields

AM = A
(0)
M + aM (y, t, r) (3.6)

VM = V
(0)
M + vM (y, t, t) (3.7)

We switch on perturbations only in the z and x-directions (transverse directions):

az(y, t, r), vz(y, t, r), ax(y, t, r), vx(y, t, r)
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• Since the Chern-Simons contribution to the current depends only on the intrinsic

gauge fields on the cutoff surface, its flow is trivial. The non-trivial part of a possible

flow is completely contained in the covariant currents

J (1)x =

(

1

g2V

√−gF
(1)xr
V

)∣

∣

∣

∣

r=Λ

(3.8)

J
(1)x
5 =

(

1

g2A

√−gF
(1)xr
A

)
∣

∣

∣

∣

r=Λ

(3.9)

• We define our transport coefficients as the response to the perturbations and in terms

of the previously defined covariant currents as

J (1)x = σCMEǫ(rtxyz)F
(1)V
yz + σaxialǫ(rtxyz)F

(1)A
yz , (3.10)

J
(1)x
5 = σaxialǫ(rtxyz)F

(1)V
yz + σ55ǫ(rtxyz)F

(1)A
yz , (3.11)

σaxial defines the vector current generated by an external axial magnetic field. Ob-

serve that, in order not to have F
(1)xr
{A,V } = 0 identically, one has to turn on the

perturbations ax(y, t, r), vx(y, t, r). However, these do not play a role when studying

the flow of the anomalous conductivities for they induce contributions that tend to

zero in the low ω, low k limit, very much as occurs in [30].

The value of the background gauge fields is [44]

A
(0)
0 = α− µ5r

2
H

r2
(3.12)

V
(0)
0 = γ − µr2H

r2
(3.13)

The integration constants α and γ can be fixed by e.g. demanding that the gauge fields

vanish on the horizon. In any case the covariant currents do not depend on these integration

constants. The consistent currents (3.2), (3.3) do however depend on them through the

Chern-Simons currents. For a discussion of this dependence see [43, 44].

The procedure consists of using the equations of motion to find the value of ∂rσ, where

σ a generic conductivity defined at some hyper surface r = Λ. In fact, we only need the

equations of motion projected onto x and the Bianchi identity associated with the indices

(r, y, z) to obtain an expression of the derivative with respect to r of the different transport

coefficients. From the simple form of our metric it can be seen that the vector normal to

a hyper surface of x=constant reads nx
µ =

√
gxx(0, 0, 1, 0, 0). Hence, for the vector gauge

field we have

nx
M

[

1

g2V
∇NFNM

V + 3κǫMNPQR(FA
NPF

V
QR)

]

= 0 (3.14)

Taking advantage of the relation ∇NFNM = 1√−g
∂N
(√−gFNM

)

and the definition of

the currents (3.8) and (3.9), we arrive at

∂rJ
(1)x = −12κ

√−gǫrtxyz
(

F
A(0)
tr F V (1)

yz + FA(1)
yz F

V (0)
tr

)

(3.15)
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where we have neglected F
(1)tx
V ; F

(1)yx
V for these modes lead to vanishing contributions in

the low momentum and low frequency limit, as mentioned before. Besides, we have carried

out the contraction ǫxNPQRFA
NPF

V
QR = −4ǫrtxyz(FA

trF
V
yz + FA

ytF
V
rz + FA

tzF
V
ry + (A ↔ V )).

The Bianchi identity to first order associated with indices (r, y, z) reads

∂rF
{V,A}(1)
yz + ∂yF

{V,A}(1)
zr + ∂zF

{V,A}(1)
ry = 0 (3.16)

Assuming ∂zF
{V,A}(1)
ry ∼ grrgyy∂zJ

y(1) = 0 we obtain

∂rF
{V,A}(1)
yz = −gzzgrr√−g

g2{V,A}∂yJ
(1)z
{V,A} (3.17)

Now, making use of these ingredients, the computation of ∂rσ is immediate:

∂rσCME = lim
ω,k→0

[

∂rJ
x(1)

ǫ(rtxyz)F
V (1)
yz

− Jx(1)

(ǫ(rtxyz)F
V (1)
yz )2

∂rF
V (1)
yz

]

aM=0

(3.18)

Plugging (3.15) and (3.17) into (3.18) we find, in momentum space

∂rσCME = lim
ω,k→0

[

12κF
A(0)
tr + ikσCME

gzzgrr√−g
g2V

J (1)z

ǫ(rtxyz)F
V (1)
yz

]

(3.19)

Taking the limit ω, k → 0 and substituting F
V (0)
tr = −∂rA

(0)
0 = −2

µ5r2H
r3

, we get the

following flow equation for the chiral magnetic conductivity

∂rσCME = −24κ
µ5rH
r3

(3.20)

whose solution is

σCME = C + 12κ
µ5r

2
H

r2
. (3.21)

C is an integration constant that we must fix. In order to do that, we impose in-

falling boundary conditions for the perturbations (or, equivalently, regularity at the horizon

r = rH [44]). This in turn implies that the fields must depend only on the combination

dv = dt+
√

grr
gtt

dr [30]. Therefore, in the Ar = 0 gauge, we have

∂rAx =

√

grr
gtt

∂tAx at r = rH (3.22)

This condition forces directly J (1)x(r = rH) to be

j(1)x(r = rH) ∼ F (1)xr(r = rH) ∼ Ei (3.23)

Imposing these infalling boundary conditions results therefore in a vanishing chiral

magnetic conductivity at the horizon for the covariant current.1 Thus the integration

constant C can be fixed simply by the condition

σCME(r = rH) = 0 → C = −12κµ5 =
Ncµ5

2π2
(3.24)

(Recall that κ = − Nc
24π2 ).

1Note that the consistent currents might have non-vanishing chiral magnetic conductivity on the horizon

due to the Chern-Simons contribution and depending on the value of the integration constant α.
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The transport coefficients (3.10) and (3.11) can be calculated in an analogous way.

For the axial current the projected equation is

nxM

[

1

g2A
∇NFNM

A +
3κ

2
ǫMNPQR(FA

NPF
A
QR + F V

NPF
V
QR)

]

= 0 (3.25)

which implies

∂rj
(1)x
5 =

√−g12κǫrtxyz
(

2µ5

r3
F (1)A
yz +

2µ

r3
F (1)V
yz

)

(3.26)

The values of the conductivities at r = Λ then read

σCME(Λ) =
Ncµ5

2π2

(

1− r2H
Λ2

)

(3.27)

σaxial(Λ) =
Ncµ

2π2

(

1− r2H
Λ2

)

(3.28)

σ55(Λ) =
Ncµ5

2π2

(

1− r2H
Λ2

)

(3.29)

As expected, the result in the limit r → ∞ is precisely the one obtained in [44] using

AdS/CFT techniques.

In view of the topological nature and the non-renormalization theorem for the chiral

magnetic conductivity it is at first sight somewhat surprising to find a non-trivial flow. This

flow becomes however natural if we define the chemical potential in its elementary way as

the energy needed to introduce one unit of charge into the ensemble. In the holographic dual

this corresponds to bring a unit of charge from the boundary, now situated at r = Λ behind

the horizon. The energy difference between a unit of charge at the boundary and a unit

of charge at the horizon is just given by A0(Λ)−A0(rH) = µ(Λ). This defines an effective

chemical potential in the theory equipped with the cutoff Λ. In fact the definition of such

an effective chemical potential is natural even in field theory. If we have a momentum

cutoff of order Λ we can localize a unit charge only inside a volume within a radius of order

1/Λ. Thermalizing this unit of charge means spreading it out over the entire ensemble.

The difference in energy between the two configurations, the unit of charge localized within

1/Λ and spread out over the ensemble again is the effective chemical potential.

All the anomalous conductivities can therefore be expressed in the form

σ(Λ) =
Ncµ(Λ)

2π2
. (3.30)

The are linear in the chemical potential and the numerical coefficient is independent of the

cutoff. In this sense they obey the expected non-renormalization theorem.

3.2 Inclusion of metric perturbations

In this section we compute the flow equations for the Green’s functions associated with

generic response. The method can be described as follows: we need to consider two equa-

tions. One is the constitutive equation

〈Oj〉 =
N
∑

i

Gi
jφi (3.31)

– 8 –
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and the other one is the covariant holographic definition of the one-point functions, evalu-

ated on some perturbed state. Generically, these would be a functional of the perturbations

and its derivatives (the dot means d/dr. We will be using both notations indistinctly).

〈Oj〉 = −
N
∑

i

(F i
jφi +Hi

jφ̇i) (3.32)

Taking the r-derivative in both equations, we can force them to be equal. Observe

that, from (3.32), we expect terms containing Hi
jφ̈i. After using the equations of motion,

we will be left with some expression involving only φ and φ̇. Then, by equating (3.31)

and (3.32), it is possible to find a formula for φ̇j =
∑N

i Ki
jφi so that eventually we are able

to write the r-derivative of (3.32) as an expansion in the perturbations only.

On the other hand, differentiating (3.31) and using again φ̇j =
∑N

i Ki
jφi, we are lead to

an expression in terms of Gi
j , Ġ

i
j and φi.

Imposing that the r-derivative of (3.32) and that of (3.31) are identical, we finally

arrive at

0 =
N
∑

i

Ai
jφi (3.33)

where Ai
j is a functional of Gi

j and their first derivatives. Assuming now that the different

perturbations are independent from each other, we get N independent equations

Ai
j = 0 (3.34)

which are nothing but differential equations for Gi
j . Remarkable enough, the flow equations

for the retarded correlators are of first order in r-derivatives.

3.2.1 Application to the anomalous conductivities

In what follows we will derive the flow equations in the presence of a pure gauge Chern-

Simons term (no gravitational anomaly) by using the procedure detailed in the previous

section. The model reads

S = SEH + SGH +
1

16πG

∫

r<Λ

√−g

(

−1

4
FMNFMN +

κ

3
ǫMNPQRAMFNPFQR

)

(3.35)

where SEH denotes the Einstein-Hilbert action with negative cosmological constant and

SGH is the Gibbons-Hawking term on the boundary r = Λ. The Chern-Simons coupling is

here related to the anomaly for a single chiral fermion by κ = −G/(2π).

Since we need now the precise equations of motion for the metric fluctuations we will

specialize the analysis to a Reissner-Nordstrom AdS Black Brane

ds2 =
r2

L2

(

−f(r)dt2 + d~x2
)

+
L2

r2f(r)
dr2 (3.36)

A(0) = φ(r)dt = −µr2H
r2

(3.37)
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The integration constant in the gauge field is set that it vanishes for r → ∞. The

horizon of the black hole is located at r = rH and the blackening factor is f(r) = 1 −
ML2

r4
+ Q2L2

r6
. The parameters M,Q are related to the chemical potential at infinity µ and

rH by M =
r4H
L2 + Q2

r2H
, Q =

µr2H√
3
. Finally, the Hawking temperature is given by

T =
r2H

4πL2
ḟ(rH) =

2r2HM − 3Q2

2πr5H
(3.38)

In what follows, we consider perturbations of momentum k in the y-direction at zero

frequency. It is only necessary to turn on the shear sector, that is, the perturbations are

written as aα, h
α
t , where α = x, z.2 It is more convenient to work with the coordinate

u =
r2H
r2

instead of r.

The equations of motion for the perturbations derived from (3.35), when ω = 0 and to

O(k), read

0 = B′′
α(u) +

f ′(u)
f(u)

B′
α(u)−

hα
′

t (u)

f(u)
+ ikǫαβκ̄

Bβ(u)

f(u)
, (3.39)

0 = hα
′′

t (u)− hα
′

t (u)

u
− 3auB′

α(u) (3.40)

where κ̄ = 4µκL3

r2H
.

The operators that we will be working with have the following form when evaluated

in a perturbed state (for further details see [25])

δJα =
r2H

8πGL3

(

f(u)a′α − µhαt
)

(3.41)

δtαt =
r4Hf(u)

8πGL5u

(

h′αt − 3

u
hαt

)

(3.42)

where the prime stands for d/du. Differentiating (3.41) and (3.42) we are left with

(δJα)′ =
r2H

8πGL3

(

a′′α(u)f(u) + a′α(u)f
′(u)− µh′αt

)

(3.43)

(δtαt )
′ =

r4Hf(u)

8πGL5u

(

h′′αt + h′αt

[

f ′(u)
f(u)

− 4

u

]

+ hαt

[

6

u2
− 3f ′(u)

uf(u)

])

(3.44)

In order to handle the φ′′
i terms, we evaluate the above expressions on-shell, yielding

(δJα)′ = − r2H
8πGL3

κ̄ikǫαβaβ (3.45)

(δtαt )
′ =

r4Hf(u)

8πGL5u

(

h′αt

[

f ′(u)
f(u)

− 3

u

]

+ hαt

[

6

u2
− 3f ′(u)

uf(u)

]

+
3au

µ
a′α

)

(3.46)

Now, observe that, since h′αt = 8πGL5u
r4Hf(u)

δtαt + 3
uh

α
t and a′α =

(

8πGL3

r2H
δJα + µhαt

)

1
f(u) ,

eq. (3.46) turns into

(δtαt )
′ =

3r4Hf(u)

8πGL5u

[

au

f(u)
− 1

u2

]

hαt +

[

f ′(u)
f(u)

− 3

u

]

δtαt +
3r2Ha

L2µ
δJα (3.47)

2At zero frequency the fields hα
y decouple from the system and thus will not be considered (see [24]).
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Plugging the constitutive relations (ǫxz ≡ 1)

δJα
const = Gxxδαβaβ +Gxzǫαβaβ + P xtδαβhtβ + P ztǫαβhtβ (3.48)

δtαt const = Gxx
ǫ δαβaβ +Gxz

ǫ ǫαβaβ + P xt
ǫ δαβhtβ + P zt

ǫ ǫαβhtβ (3.49)

into (3.47), the remaining equation for (δtαt )
′ involves only φi and Gi

j .

On the other hand, we can take the u-derivative of (3.48)–(3.49) explicitly and then

make use of (3.41)–(3.42) to end up having an equation in terms of φi, G
i
j and G′i

j .

Finally, imposing (δJα
const)

′ = (δJα)′ and (δtαt const)
′ = (δtαt )

′ and assuming that the

perturbations φi are independent from each other, we find

G′xx +
8πGL3

f(u)r2H

(

(Gxx)2 − (Gxz)2
)

− 8πGL5u

r4Hf2(u)

(

P xtGxx
ǫ − P ztGxz

ǫ

)

= 0 (3.50)

G′xz +
16πGL3

f(u)r2H
GxxGxz − 8πGL5u

r4Hf2(u)

(

P xtGxz
ǫ + P ztGxx

ǫ

)

=− r2H
8πGL3

κ̄ik (3.51)

P ′xt+Gxx

(

−µ+
8πGL3

f(u)r2H
P xt

)

−
(

8πGL3

f(u)r2H
Gxz− 8πGL5u

r4Hf2(u)
P zt
ǫ

)

P zt+

+P xt

(

−8πGL5u

r4Hf2(u)
P xt
ǫ − f ′(u)

f(u)
+

3

u

)

= 0 (3.52)

P ′zt +Gxz

(

−µ+
8πGL3

f(u)r2H
P xt

)

− 8πGL5u

f2(u)r4H
P xtP zt

ǫ +

+P zt

(

−8πGL5u

f2(u)r4H
P xt
ǫ +

3

u
− f ′(u)

f(u)
+

8πGL3

f(u)r2H
Gxx

)

= 0 (3.53)

G′xx
ǫ +

8πGL3

f(u)r2H
(Gxx

ǫ Gxx −Gxz
ǫ Gxz)− 8πGL5u

r4Hf2(u)
P xt
ǫ Gxx

ǫ +
8πGL5u

r4Hf2(u)
P zt
ǫ Gxz

ǫ =

= −Gxx
ǫ

(

3

u
− f ′(u)

f(u)

)

+ µGxx (3.54)

G′xz
ǫ +

8πGL3

f(u)r2H
(Gxx

ǫ Gxz +Gxz
ǫ Gxx)− 8πGL5u

r4Hf2(u)

(

P xt
ǫ Gxz

ǫ + P zt
ǫ Gxx

ǫ

)

=

= −Gxz
ǫ

(

3

u
− f ′(u)

f(u)

)

+ µGxz (3.55)

P ′xt
ǫ +Gxx

ǫ

(

−µ+
8πGL3

f(u)r2H
P xt

)

− 8πGL3

f(u)r2H
Gxz

ǫ P zt+P xt
ǫ

(

−8πGL5u

r4Hf2(u)
P xt
ǫ +

3

u
− f ′(u)

f(u)

)

+

+
8πGL5u

r4Hf2(u)

(

P zt
ǫ

)2
= −P xt

ǫ

(

3

u
− f ′(u)

f(u)

)

+ µP xt − 3r4H
8πGL5u

f(u)

(

au− f(u)

u2

)

(3.56)

P ′zt
ǫ +Gxz

ǫ

(

8πGL3

f(u)r2H
P xt − µ

)

+
8πGL3

f(u)r2H
Gxx

ǫ P zt − 8πGL5u

f2(u)r4H
P xt
ǫ P zt

ǫ +

+P zt
ǫ

(

−8πGL5u

f2(u)r4H
P xt
ǫ +

3

u
− f ′(u)

f(u)

)

= −P zt
ǫ

(

3

u
− f ′(u)

f(u)

)

+ µP zt (3.57)

By directly studying the structure of the solutions to (3.39)–(3.40), it can be realized

that Gxx = P xt = Gxx
ǫ = 0 for ω = 0 and to first order in k. Furthermore, all the
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anomalous correlators are of order k or higher. A more detailed study of (3.50)–(3.57) is

left for section 3.3.1.

3.3 Flow of the transport coefficients as two point functions

As suggested in section 2, we could have determined the flow by simply considering the

system to be restricted to live between the horizon and a cutoff surface placed at Λ. It is

hence expected that the transport coefficients at the boundary can be computed by finding

the corresponding 2-point functions. The boundary value of the perturbations, whose bulk-

to-boundary propagator is normalized at the cutoff, work as the sources for the different

operators of the dual theory.

Henceforth, the perturbations will be rearranged in a vector Φ(u, xµ). It is more

convenient to use the Fourier transformed quantity

Φ(u, xµ) =

∫

ddk

(2π)d
ΦI
k(u)e

−iωt+i~k~x (3.58)

The explicit expression for Φk(u) is

Φ⊤
k (u) = (Bx(u), h

x
t (u), Bz(u), h

z
t (u)) (3.59)

being Bα = aα/µ. To proceed, one can follow [47] and assume the general form of a

boundary action

δS(2) =

∫

r=Λ

ddk

(2π)d
[

ΦI
−kAIJΦ

′J
k +ΦI

−kBIJΦ
J
k

]

(3.60)

In order to get the solution of the system (3.39)–(3.40) to first order in momentum we

expand the fields in the (dimensionless) quantity p = k
4πT . Hence

hαt (u) = h
(0),α
t (u) + ph

(1),α
t (u) (3.61)

Bα(u) = B(0)
α (u) + pB(1)

α (u) (3.62)

The system can be solved perturbatively. To calculate the retarded correlators at

r = Λ (or, equivalently, at u = uc ≡ r2H/Λ2) we only need to solve the equations for

the perturbations with infalling boundary conditions, on the one hand, and boundary

conditions ΦI
k(uc) = φI

k on the other [25]. This procedure should give us the desired Green’s

functions, after taking the variation of (3.60) with respect to the fields at u = uc (which

act as sources for their corresponding operators). Recall that, as explained in section 2,

the bulk-to-boundary propagator must be normalized at r = Λ, that is, if we have

ΦI
k(u) = F I

J (k, u)φ
J
k (3.63)

then F I
J (k, uc) = 1. Notice that the relation between the boundary value at u = uc and

that at u = 0 is simply φ
I (uc)
k = F I

J (k, uc)φ
J (0)
k , so that the solution is preserved by these

manipulations, as pointed out by [30] and [36–38]. The retarded two-point functions, from

which we are able to read directly the transport coefficients, then have the form

GIJ(k, uc) = −2 lim
u→uc

(

AIM

(

FM
J (k, u)

)′
+ BIJ

)

(3.64)
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Where the AIJ and BIJ matrices are [25]

A =
r4H

16πGL5
Diag

(

−3af(u),
1

u
,−3af(u),

1

u

)

(3.65)

BAdS+∂ =
r4H

16πGL5











0 3a 0 0

0 − 3
u2 0 0

0 0 0 3a

0 0 0 − 3
u2











(3.66)

Using again the the effective chemical potential

µ(Λ) = µ

(

1− r2H
Λ2

)

, (3.67)

the result for the anomalous correlators is

〈δJxδJz〉 = iµκk

2πG

(

1− r2H
Λ2

)

=
−ikµ(Λ)

4π2
(3.68)

〈δJxδtzt 〉 = 〈δtxt δJz〉 = − iκµ2k

4πG

(

1− r2H
Λ2

)2

=
ikµ(Λ)2

8π2
(3.69)

〈δtxt δtzt 〉 =
iκµ3k

6πG

(

1− r2H
Λ2

)3

=
−ikµ(Λ)3

12π2
(3.70)

Since limΛ→∞ µ(Λ) = µ, these correlators coincide essentially with the ones de-

rived in [25].3

3.3.1 Compatibility with the flow equations

The system of first order differential equations (3.50)–(3.57) must be compatible with the

result (3.68)–(3.70) encountered in the previous section. In order to check that it is so, the

dissipative correlators play an important role. In the case ω = 0 and to O(k), they read4

Gxx = P xt = Gxx
ǫ = 0 (3.71)

P xt
ǫ = − r4H

8πGL5u
f2(u)

(

f ′(u)
f(u)

− 3

u

)

(3.72)

This solution implies that Gxx and P xt = Gxx
ǫ are of order ω or higher, whereas P xt

ǫ

contains a part which is of order O(k0, ω0) (contact term). The remaining system, after

substituting (3.71), (3.72) and assuming that all the anomalous correlators are at least of

3The minus sign found in (3.69) with respect to the result of [25] is due to the fact that in this reference

the correlator that is studied is
〈

δJaδttb
〉

, that differs from
〈

δJaδtbt
〉

by a factor of (b represents a spatial

index) gttg
bb = −f(u) → −1 at infinity.

4The limit P xt
ǫ (u = 0) is not well defined because we have not included the corresponding counterterms

in (3.41), (3.42). The reason is that they do not affect the anomalous correlators.
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O(k), turns out to be (up to order k)

G′xx = 0 (3.73)

G′xz = − r2H
8πGL3

κ̄ik (3.74)

P ′xt = 0 (3.75)

P ′zt − µGxz = 0 (3.76)

G′xx
ǫ = 0 (3.77)

G′xz
ǫ = µGxz (3.78)

P ′xt
ǫ = −P xt

ǫ

(

3

u
− f ′(u)

f(u)

)

− 3r4H
8πGL5u

f(u)

(

au− f(u)

u2

)

(3.79)

P ′zt
ǫ − µGxz

ǫ = µP zt (3.80)

Equation (3.79) is in agreement with (3.72). In the end, the 2-point functions associ-

ated with dissipative transport coefficients decouple completely. Regarding the anomalous

correlators, the above system of equations can be integrated easily, leading to

Gxz =
r2H

8πGL3
κ̄ik (1− uc) (3.81)

P zt = Gxz
ǫ = −µ

r2H
16πGL3

κ̄ik (1− uc)
2 (3.82)

P xt
ǫ = µ2 r2H

24πGL3
κ̄ik (1− uc)

3 (3.83)

which is the same as (3.68)–(3.70). The role played by the Chern-Simons term in (3.35)

is crucial to ensure that Gxz presents a flow, for in its absence all the anomalous 2-point

functions identically vanish.

4 Gravitational anomaly

The study of the effect of the Gravitational Anomaly on the definition of the holographic

operators is a non-trivial task, for the term A ∧ R ∧ R has not a well defined Dirichlet

problem. This makes, strictly speaking, not possible to define generic operators. In [24],

the problem was circumvented by arguing that any possible contribution vanishes asymp-

totically. However, now we are interested in the value of the transport coefficients at finite

cutoff Λ, and therefore it is necessary to face this issue.

4.1 The model

The four dimensional axial gravitational anomaly is induced holographically by a Chern-

Simons term of the form [24]

SACS =
λ

16πG

∫

d5x
√−gǫMNPQRAMRA

BNPR
B
AQR (4.1)
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This action contributes to the boundary axial current as expected for a mixed anomaly.

The complete action reads

S =
1

16πG

∫

d5x
√−g

[

R+ 2Λc −
1

4
FMNFMN

]

+ SACS + SAEM + S∂ + SCSK (4.2)

Where

SAEM =
κ

48πG

∫

d5x
√−gǫMNPQRAMFNPFQR , (4.3)

S∂ = − 1

8πG

∫

∂

√
−hK , (4.4)

SCSK = − λ

2πG

∫

∂M
d4x

√
−hnM ǫMNPQRANKPLDQK

L
R . (4.5)

Adding SCSK ensures that the anomalous Ward identity for gauge transformations

depends only on the intrinsic curvature tensor on the boundary at r = Λ [24].

Indeed, the covariant current turns out to be

16πGJA = nB

[

FAB − 8ǫBACDEλKCFDDK
E
F

]

r=Λ
(4.6)

with a purely four dimensional divergence that on shell evaluates to

DµJ
µ = − 1

16πG
ǫopqr

[

κ

3
FopFqr + λRa

(4)bopR
b
(4)aqr

]

r=Λ

(4.7)

where ǫopqr ≡ ǫnopqr is the four dimensional epsilon tensor.

The aforementioned difficulties with the Dirichlet problem make the definition of the

stress tensor be much more involved. The main problem is that the bulk action contains a

term proportional to K̇ij and hence the variation of the on-shell action is going to depend

on δKij . Asymptotically there is a way to define the one point function which assumes

that in an AdS spacetime the r-derivative corresponds to the dilatation operator. Then, a

generic field φ = e(∆−d)rφ(0) + (subleading terms) fulfills δφ̇ = (∆ − d)e(∆−d)rδφ(0) + . . ..

This makes possible to express δKij in terms of the induced metric and hence to define the

one-point function of the energy-momentum tensor. After tedious computations one can

obtain that, asymptotically

T i
j =

√
−h

8πG

[

Ki
j −Khij + 4λǫ(iklm

(

1

2
FklR(4)j)m +∇n(AkR

n
(4)j)lm)

)]

r→∞
(4.8)

DiT
ij =

[

−JmFmj +AjDiJ
i
]

r→∞ (4.9)

In particular, (4.9) is consistent with what one would expect from a system subjected

to an external electromagnetic field. Notice also that all λ-terms vanish if the boundary

is flat.

At finite cutoff the previous analysis is not possible anymore, for the spacetime is not

AdS and thus one cannot write δKij in terms of δhij . Moreover, it is expected that several

terms that vanish at infinity would contribute to the energy-momentum tensor at r = Λ.

It is therefore necessary to consider the full higher-derivative system, in which in particular
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Kij is regarded as an independent variable, in order to be able to obtain an expression for

< T ij >. This is far from the purpose of this paper and will be analyzed elsewhere [45].

We will show however in the next section that the equations of motion turn out to be

second order in the shear sector. This allows to calculate the relevent two point functions

of energy-momentum tensor and current.

We also want to point out that the action (4.2) is covariant in the gravitational sector.

This was expected because our construction shifts the anomaly entirely to the U(1) sector,

leaving the gravitational sector non-anomalous. The holographic analogue to the Bardeen

counterterm for the Gravitational Anomaly would be

SBct =
λ

4πG

∫

d4x
√
−hAmKm =

λ

4πG

∫

d5x
d

dr

(√
−hAmKm

)

(4.10)

being Km = ǫmnkl
(

Γ̂p
nq∂kΓ̂

q
lp +

2
3 Γ̂

o
mpΓ̂

p
kqΓ̂

q
lo

)

(the ’hat’ here means ’four-dimensional’).

It fulfills DmKm = 1
4ǫ

ijklR̂m
nijR̂

n
mkl ([46]) and therefore eliminates the λ-term in (4.7).

However, since Km is non-covariant, the action (4.2) plus SBct will induce new terms in

DiT
ij , which the anomaly (now in the gravitational sector) is responsible for.

The bulk equations of motion are

GMN − ΛcgMN =
1

2
FMLFN

L − 1

8
F 2gMN + 2λǫLPQR(M∇B

(

FPLRB
N)

QR
)

, (4.11)

∇NFNM = −ǫMNPQR
(

κFNPFQR + λRA
BNPR

B
AQR

)

, (4.12)

4.2 Contribution of the gravitational anomaly

If we vary SACS , we are left with a term which spoils the variational problem

λ

2πG

∫

∂

√
−hǫmlqrAmDrK

v
q δKlv (4.13)

If we looked for a suitable counterterm to render the Dirichlet problem well-posed, we

would end up finding SCSK. Indeed, this boundary contribution was firstly conceived as

an analogue to the Gibbons-Hawking-York term. However, after varying SACS +SCSK one

realizes that the result

− λ

2πG

∫

∂

√
−hǫmlqrDrAmδKv

qKlv (4.14)

is still problematic. Even worse, (4.14) can not be canceled easily, for, for instance,

the ansatz

λ

2πG

∫

∂

√
−hǫmlqrDrAmKv

qKlv (4.15)

is automatically zero. Thus in principle, there is not a straightforward way of having a

well defined variational problem for this system.

On the other hand, as aforementioned, we need SCSK to have a four dimensional

anomalous Ward identity at the boundary, so we will keep it. A hypothetical generic

– 16 –



J
H
E
P
1
0
(
2
0
1
2
)
1
3
1

counterterm (if it exists) capable of solving all the problems, would probably ruin (4.7)

and therefore, by physical means, should not be considered.

Even though the variational problem is not well-posed, we will still be able to derive the

equations of motion by means of the analogue of the Euler-Lagrange equations for higher-

derivative theories. The difficulty therefore reduces to the question How to treat (4.14)

holographically? Note that in [47] it was implicitly assumed that the Dirichlet problem is

correctly defined, so we should go a little bit further in this case.

Specializing for the shear sector, which is the one that interests us, and at second order

in perturbations, (4.14) reads

− λ

2πG

∫

∂

√
−hǫmlqrDrδAmδKv

qKlv (4.16)

Other possible terms would vanish in the background (3.36). The strategy would

be the following: Since (4.16) does not affect two point functions involving only energy-

momentum tensors or only currents, we know how to compute the correlators 〈T x
t T

z
t 〉 and

〈JxJz〉. Eq. (4.16) only plays a role when calculating 〈T x
t J

z〉, 〈JxT z
t 〉, and hence those are

the ones for which the discussion of [47] does not apply.

Following the method detailed in section 3, it turns out that, taking only into account

the gravitational anomaly

〈JxJz〉 = 0 (4.17)

〈T x
t T

z
t 〉 = −ik

µ(1− uc)T
2

12
(4.18)

(note that we have directly substituted the value of λ for a single left-handed fermion

λ/G = − 1
48π ). The above results point again towards an effective chemical potential of the

form µ(1 − uc). Therefore, on physical grounds, we expect the appearance of an effective

temperature also. Note that the flows of the effective quantities must be consistent in

the sense that they must be the same, no matter what correlator we are focusing on.

Equations (4.17)–(4.18) hint at the existence of an effective temperature for the system;

this temperature does not flow with the cutoff scale, being always identical to the Hawking

temperature. This conclusion is in agreement with the asymptotic values of [24].

So we resolve that (4.14) must be treated in such a way that 〈T x
t J

z〉, 〈JxT z
t 〉, at finite

cutoff, are consistent with a non-flowing temperature.

It turns out that the method to achieve it is precisely the one that one would anticipate

by general considerations: Taking advantage of the fact that the equations of motion for

the shear sector

0 = hα
′′

t (u)− hα
′

t (u)

u
− 3auB′

α(u) + iλ̄kǫαβ

[

(

24au3 − 6(1− f(u))
) Bβ(u)

u

+(9au3 − 6(1− f(u)))B′
β(u) + 2u(uhβ

′

t (u))′
]

, (4.19)

0 = B′′
α(u) +

f ′(u)
f(u)

B′
α(u)−

hα
′

t (u)

f(u)

+ikǫαβ

(

3

uf(u)
λ̄

(

2

a
(f(u)− 1) + 3u3

)

hβ
′

t (u) + κ̄
Bβ(u)

f(u)

)

, (4.20)
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happen to be of second order in derivatives (where λ̄ = 4µλL
r2H

), we can solve completely the

evolution as we did in section 3.3 (imposing in-falling B.C. at the Horizon and Dirichlet

B.C. at the boundary). Once the solutions are known (see the appendix), (4.14) will in

general give a well determined surface contribution (when evaluated on-shell) that must be

taken into account to calculate 〈T x
t J

z〉, 〈JxT z
t 〉. The result so obtained presents no flow in

the temperature part.

To be more concise, the boundary term (4.14) to be considered has the following form

− ikλr2Hǫαβ
2πGL4

∫

∂
uf ′(u)aβ(k)h

′α
t (−k) (4.21)

whose contribution, up to first order in k, is summarized

− ikλr2Hǫαβ
2πGL4

∫

∂
u
f ′2(u)
f(uc)

a
(0)
β (k)H̃

(0)
β (−k) (4.22)

(Notice the factor ∼ 1
f(Λ) introduced to normalize the perturbation (see the appendix)).

So the effect of (4.14) on the Green’s functions can be reformulated as a modification,

prescribed by (4.22), of the BIJ matrix.

Even though (4.22) only affects the correlator
〈

Tα
t J

β
〉

, SACS +SCSK induces automat-

ically a non-vanishing value for the components A14 = A∗
32 of the matrix A. These contri-

butions, which are perfectly treatable within the framework of [47], give rise to a correction

of
〈

JαT β
t

〉

which is precisely of the same form of the one implemented by (4.22). As will be

mentioned below, this turns out to be sufficient for the consistency condition (5.1) to hold.

The final form of the matrices AIJ and BIJ after implementing the shift driven by the

Gravitational Anomaly is given by

A =
r4H

16πGL5















−3af(u) 0 0 −4iλkL
r2H

uf ′(u)

0 1
u 0 i8λkLµ

r2H
u

0 4iλkL
r2H

uf ′(u) −3af(u) 0

0 − i8λkLµ
r2H

u 0 1
u















(4.23)

BAdS+∂ =
r4H

16πGL5













0 3a 0 0

0 − 3
u2 4iλkL9au3−6(1−f(u))

ur2H
0

0 0 0 3a

−4iλkL9au3−6(1−f(u))
ur2H

0 0 − 3
u2













(4.24)

B∂CS =
r4H

16πGL5













0 0 0 0

0 0 −4iλkL
r2H

uf ′(u)2

f(uc)
0

0 0 0 0
4iλkL
r2H

uf ′(u)2

f(uc)
0 0 0













(4.25)
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The resulting anomalous 2-point functions are

〈JxJz〉 = ikκ µ (1− uc)

2Gπ
= −ik

µ(Λ)

4π2
(4.26)

〈JxT z
t 〉 = − ikκ (1− uc)

2 µ2

4Gπ
− ikλ (−2 + a)2 r2H

2GL4π
= ik

(

µ2(1− uc)
2

8π2
+

T 2

24

)

(4.27)

〈T x
t J

z〉 = − ikκ (1− uc)
2 µ2

4Gπ
− ikλ (−2 + a)2 r2H

2GL4π
= ik

(

µ2(1− uc)
2

8π2
+

T 2

24

)

(4.28)

〈T x
t T

z
t 〉 =

ikκ (1−uc)
3 µ3

6Gπ
+ (1−uc)µ

ikλ (−2+a)2 r2H
GL4π

= −ik

(

µ3(1−uc)
3

12π2
+

µ(Λ)T 2

12

)

(4.29)

Observe that it is straightforward to verify that equations (4.26)–(4.29) are com-

patible with the asymptotic value computed in [24]. Notice also that the temperature

part remains constant as we move the boundary. The flow of the different correlators is

consistent with respect to each other and the hypothesis of an effective chemical potential

µ(Λ) = µ
(

1− r2H
Λ2

)

≡ µ(1 − uc) is reinforced by the results extracted from the terms

proportional to λ.

5 Discussion and conclusion

We have studied the holographic cutoff flow of the anomalous transport coefficients. This

has been done by defining a bottom up model that implements both the axial and the mixed

axial-gravitational anomalies. The flow has been studied by analyzing the dependence of

the anomalous Green’s functions on the radial position, Λ, of the boundary. We have

presented several prescriptions to compute such flow and finally obtained it by adapting

the method implemented in [24, 25] for the case Λ → ∞.

It is a remarkable fact that the chiral magnetic conductivity suffers from a flow even

in the non-backreacted case. In fact, this could have been anticipated by noticing that

regularity at the horizon imposes that in the deep IR the constitutive relations are only

compatible with an electric conductivity ([30]), so that if a system exhibits a chiral magnetic

conductivity in the UV it must be due to a non-trivial flow.

When considering the gravitational anomaly, a Dirichlet boundary condition is not

enough anymore to define the variational problem properly. A generic definition of suitable

operators, if any, therefore requires further discussion in this case. In this paper we have

simply focused on computing 2-point functions, without discussing general definitions of

the corresponding operators. The term which spoils the variational principle has been dealt

with by considering its effect on the on-shell action. This procedure, which can be seen to be

the most natural one by using physical arguments, yields 2-point functions that are consis-

tent and whose flows do not get in contradiction with the result found in the absence of grav-

itational anomaly. Moreover, in the spirit of [47], that the matrix of correlators GIJ obeys

d

du

(

G − G†
)

= 0 , (5.1)

represents a non-trivial consistency check.
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The result (4.26)–(4.29) shows that the temperature remains constant (Hawking tem-

perature) whereas the chemical potential presents a flow that is easily interpretable in

terms of the energy necessary to bring a unit of charge from the horizon to the boundary.

Observe, however, that all the correlators are written for a metric with gtt ∼ −r2f(r),

and hence there is an implicit redshift factor between observers living in one hypersurface

placed at r = Λ and another one at r = Λ′.

From the point of view of the boundary theory, these outcomes indicate that the

pure gauge Chern-Simons term does not affect the boundary operators but influences the

anomalous correlators through the flow equations, forcing them to have a non-vanishing

value at the boundary, whereas the gravitational-gauge Chern-Simons term happens not

to have any impact by means of the evolution equations, but to induce new covariant

contributions, that are first order in k, to the operators, so that the constant T 2 part is

present at any value of the r-coordinate.

A Solutions at zero frequency and normalized at finite cutoff uc

Case λ = 0.

Bα(u)= B̄α + H̄α(u− uc)−
iκ̄kǫαβ

2(1 + 4a)2(−1 + uc(−1 + auc))
×

×
(

(1 + 4a)(u− uc)(H̄
β + H̄βuc + a(3B̄β(2 + uc) + H̄β(4− uc(2 + 3uc))))+

+ 2
√
1 + 4a(−2 + a(−2 + 3u))(B̄β − H̄βuc)(−1 + uc(−1 + auc))

×
(

ArcTanh

[−1 + 2au√
1 + 4a

]

+ArcTanh

[

1− 2auc√
1 + 4a

])

)

(A.1)

Hα
t (u)= − 1

2(−1− 4a)3/2(−1 + uc)(−1 + uc(−1 + auc))2
(−1 + u)×

×
(

− 2(−1− 4a)3/2H̄α(−1 + u(−1 + au))(−1 + uc(−1 + auc))+

+ kκ̄ǫαβ(−i
(√

−1− 4a− i
√
1 + 4a

)

H̄β(1 + u)(1 + uc)+

+ a23B̄β
(

2i
√
−1− 4au2c + i

√
−1− 4auu2c +

√
1 + 4au2(2 + uc)

)

+

+ a2H̄β
(

2i
√
−1− 4a(2− 3uc)u

2
c+ (A.2)

+ i
√
−1− 4au(4− 3uc)u

2
c +

√
1 + 4au2(4− uc(2 + 3uc))

)

−

− 3iaB̄β(2
√
−1− 4a− 2i

√
1 + 4a+ 2

√
−1− 4auc − i

√
1 + 4auc)−

− 3iauB̄β
(√

−1− 4a− 2i
√
1 + 4a+

√
−1− 4auc − i

√
1 + 4auc

)

+

+ aH̄β(−4i
√
−1− 4a− 4

√
1 + 4a+

√
1 + 4au2(1 + uc))+

+ aH̄βuc
(

2i
√
−1− 4a+ 2

√
1 + 4a+ 7i

√
−1− 4auc + 3

√
1 + 4auc

)

+

+ uaH̄β(−4i
√
−1− 4a− 4

√
1 + 4a)+

+ uaH̄βuc
(

−i
√
−1− 4a+ 2

√
1 + 4a+ 4i

√
−1− 4auc + 3

√
1 + 4auc

)

)+
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+ 6iak(−1+u(−1+au))κ̄ǫαβ(B̄
β−H̄βuc)(−1+uc(−1+auc))ArcTan

[−1+2au√
−1−4a

]

+

+ 6ak(−1+u(−1+au))κ̄ǫαβ(B̄
β−H̄βuc)(−1+uc(−1+auc))ArcTanh

[

1−2auc√
1+4a

]

)

Case κ = 0.

Bα(u)=B̄α + H̄α(u− uc)+

+
1

6(2− a)a3
(−2 + a)kūcǫαβ

(

2i(−2 + a(−2 + 3u))ArcTanh
[

1−2au√
1+4a

]

(1 + 4a)3/2
×

×
(

4H̄β + a(3(1 + a(7 + 2a(7 + a)))B̄β + 4(8 + a(2 + a)(9 + 2a))H̄β−

− 3(1 + a(7 + 2a(7 + a)))H̄βuc)
)

+

+
a

b

(

− 2a
√
1 + 4a(u− uc)(6a(B̄

β − H̄β(−8 + u)) + 6a(B̄β − H̄β(−8 + u))uc−

− 8aH̄βu2c − 3a2
(

3B̄β(−4 + u)(1 + uc) + H̄β
(

u(10 + 3u) + u(10 + 3u)uc−

− 2(−8 + u)u2c − 4(7 + 6uc)
)

)

+ 8H̄β(1 + uc)+

+a4(H̄β(12+uc(18+(−59+12u(2+3u))uc))+3B̄β(2+uc(5+12(−1+u−uc)uc)))+

+ a39B̄β
(

4 + u(−4 + (−4 + uc)uc)− uc
(

−5 + uc + u2c
))

+

+ a3H̄β(29+(23−72uc)uc + 9u2(−4 + (−4 + uc)uc) + 6u(−4 + uc(−4 + 5uc))))+

+ (−2 + a(−2 + 3u))(−1 + uc(−1 + auc))(2(4H̄
β + a(3(1 + a(7+2a(7 + a)))B̄β+

+ 4(8 + a(2+a)(9+2a))H̄β − 3(1+a(7+2a(7 + a)))H̄βuc))ArcTanh

[

1− 2auc√
1 + 4a

]

+

+ (1 + a)(1 + 4a)3/2(−4H̄β + a(−3B̄β − 4H̄β + 3H̄βuc))×

× (Log[−1 + u(−1 + au)]− Log[−1 + uc(−1 + auc)]))

)

)

(A.3)

where a
b ≡ 1

(−1−4a)3/2(1+uc−au2
c)

Hα
t (u) = H̄α (−1 + u)(−1 + u(−1 + au))

(−1 + uc)(−1 + uc(−1 + auc))
+

(1− u)ǫαβ

2(−1− 4a)3/2a2
k
(

1+u− au2
)

ūc×

×
(

− 1

(−1 + u(−1 + au))(−1 + uc(−1 + auc))
2a

√
1 + 4a(u− uc)×

× (4H̄β(1 + u)(1 + uc) + aB̄β(3 + 5u+ 5(1 + u)uc)+

+ aH̄β
(

18 + u(25 + u) + 22uc + u(25 + u)uc − 4(1 + u)u2c
)

−
− 3a2B̄β

(

−5 + 2u2(1 + uc) + uc(−7 + 2uc) + u(−7 + 2(−3 + uc)uc)
)

+

+H̄βa2
(

18+24uc−22u2c − 6u3(1+uc) + u(39+5(7−5uc)uc)−u2
(

1+uc + u2c
))

+

+ 3a3B̄β
(

1− 8u2c − uuc(3 + 8uc) + 2u2(−4 + (−4 + uc)uc)
)

+
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+ H̄βa3(4− 4uc(2 + 5uc) + u2(−20 + (−20 + uc)uc) + 6u3(−4 + (−4 + uc)uc))−
− H̄βa3u(5 + 7uc(1 + 5uc)) + H̄βa4

(

4u+ 4uc + 6uuc+

+ (−2 + u(−5 + 4u(5 + 6u)))u2c
)

+ B̄βa4(2uc + u(2 + uc(5 + 24uuc))))+

+ 2(4H̄β + a(3(1 + a(7 + 2a(7 + a)))B̄β + 4(8 + a(2 + a)(9 + 2a))H̄β−

− 3(1+a(7+2a(7+a)))H̄βuc))

(

ArcTanh

[−1 + 2au√
1 + 4a

]

+ArcTanh

[

1− 2auc√
1 + 4a

])

+

+ (1 + a)(1 + 4a)3/2(−4H̄β + a(−3B̄β + H̄β(−4 + 3uc)))×

× (Log[−1 + u(−1 + au)]− Log[−1 + uc(−1 + auc)])

)

(A.4)
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