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Abstract: We study the phase diagram of SU(2) Yang-Mills theory with one adjoint Weyl

fermion on R3 × S1 as a function of the fermion mass m and the compactification scale L.

This theory reduces to thermal pure gauge theory as m → ∞ and to circle-compactified

(non-thermal) supersymmetric gluodynamics in the limit m→ 0. In the m-L plane, there

is a line of center-symmetry changing phase transitions. In the limit m →∞, this transi-

tion takes place at Lc = 1/Tc, where Tc is the critical temperature of the deconfinement

transition in pure Yang-Mills theory. We show that near m = 0, the critical compactifi-

cation scale Lc can be computed using semi-classical methods and that the transition is

of second order. This suggests that the deconfining phase transition in pure Yang-Mills

theory is continuously connected to a transition that can be studied at weak coupling.

The center-symmetry changing phase transition arises from the competition of perturba-

tive contributions and monopole-instantons that destabilize the center, and topological

molecules (neutral bions) that stabilize the center. The contribution of molecules can be

computed using supersymmetry in the limit m = 0, and via the Bogomolnyi-Zinn-Justin

(BZJ) prescription in non-supersymmetric gauge theory. Finally, we also give a detailed

discussion of an issue that has not received proper attention in the context of N=1 theories

— the non-cancellation of nonzero-mode determinants around supersymmetric BPS and

KK monopole-instanton backgrounds on R3 × S1. We explain why the non-cancellation

is required for consistency with holomorphy and supersymmetry and perform an explicit

calculation of the one-loop determinant ratio.
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1 Introduction

Consider a quantum mechanical system with a potential with multiple degenerate minima.

The ground state energy (as well as the energies of higher eigenstates) has a weak coupling

expansion of the form

E(g) = Epert. + Enonpert. = E0 [1 +O(g)] + e−1/g [1 +O(g)] +O(e−2/g) . (1.1)

Since e−1/g has an essential singularity at g = 0 it is impossible to express this contribution

as a perturbative series in g, and hence this term1 is intrinsically non-perturbative. Some

1The exponentially small terms may also be multiplied by additional negative powers and logarithms

of g.
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of the most interesting phenomena in quantum mechanics — tunneling, the absence of

spontaneous symmetry breaking, the formation of energy-bands in periodic potentials —

are due to e−1/g effects. Although the leading term and the exponentially small contribu-

tions in (1.1) are intertwined in a deep way, as typical inaccuracies of perturbation theory

are expressed in terms of functions with essential singularities as above, there is a sense

in which (1.1) should be seen as a double expansion, a perturbative expansion in g and a

non-perturbative expansion in e−1/g.

In this paper, we will use this double expansion to study the phase diagram of an

asymptotically free gauge theory with strong coupling scale Λ on R3 × S1. In a theory

without fermions the compactification scale on the S1 circle can always be given a thermal

interpretation. At small S1, of size L � Λ−1, it is well-known that such theories are

amenable to a perturbative treatment. A less widely appreciated fact is that, if certain

conditions are satisfied, such theories are also amenable to non-perturbative semi-classical

studies. Let Ω = P exp
[
i
∫
S1 A4dx4

]
denote the gauge holonomy (or Wilson line) in the

compact direction, which, classically, is a “flat direction”. We expect that quantum effects

will induce a potential for the holonomy Ω of the form:

V (Ω) = Vpert.(Ω) + Vnonpert.(Ω) , (1.2)

where Vpert. is the contribution of the perturbative loop-expansion in g2 and Vnonpert.(Ω)

is a non-perturbative expansion, presumably containing terms of the form e−c/g
2
. The

perturbative term Vpert. was initially computed in [1], and the calculation was extended to

higher order in [2–4]. Although the perturbative potential Vpert.(Ω) is by now part of the

standard books of thermal field theory, Vnonpert.(Ω) has not received as much attention.

The perturbative calculation of the effective potential for the Wilson line in pure SU(N)

Yang-Mills theory on R3 × S1 with small L = β gives [1]:

Vpert.(Ω) = − 2

π2β4

∞∑
n=1

1

n4
|trΩn|2(1 +O(g2)), (1.3)

leading to the conclusion that at small β the theory is in a deconfined phase, with broken

center-symmetry 〈 1
N trΩ〉 = 1. If one thinks in terms of eigenvalues of Ω, the potential (1.3)

generates an attraction among the eigenvalues. In other words, the effective mass-squared

for the Wilson line is negative.

Based on numerical simulations on the lattice we know that the deconfinement tran-

sition in pure Yang-Mills theory takes place at a temperature of order Λ: Td = aΛ where

a is a pure number of order one. At one-loop order in perturbation theory, (1.3) shows

that the center-symmetry is broken. Higher order corrections do not alter this conclusion;

there is no effect at any order in perturbation theory that competes with center symmetry

breaking. Hence, the phase transition must be induced by Vnonpert.(Ω). Disregarding such

non-perturbative effects, one would conclude that one cannot explore the transition as the

temperature is lowered, from the deconfined to the confined phase, using weak coupling

techniques.

In this work, we propose a strategy to analytically study the center-symmetry changing

phase transition in four dimensional gauge theories based on an observation discussed in [5].
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Figure 1. The thermal deconfinement phase transition in pure Yang Mills (YM) theory can be

accessed through a non-thermal (quantum) phase transition in supersymmetric Yang Mills (SYM)

theory deformed by a gluino mass term. In the massless limit, the supersymmetric theory does

not have a phase transition. The phase transition at small-m is analytically calculable and, by

decoupling, it is connected to thermal deconfinement phase transition in pure YM theory.

The main idea, schematically shown in figure 1, is as follows: It is well-known that N = 1

SYM with periodic boundary conditions for fermions does not have a phase transition as

a function of radius. In fact, for a supersymmetric gauge theory with Hamiltonian H and

fermion number operator F ,

Z̃SYM(L) = tr
[
e−LH(−1)F

]
(1.4)

is the supersymmetric (Witten) index and is independent of radius. In softly broken su-

persymmetric theory, however, this quantity does not have an interpretation as an index.

Consider adding a small mass for the fermion in N = 1 SYM. Eq. (1.4) is still well-defined,

and can be interpreted as a twisted partition function. The twisted partition function is

a signed sum over the states in the bosonic and fermionic Hilbert spaces, HB and HF ,

according to the Z2 = (−1)F grading,

Z̃SYM(L,m) = ZB − ZF =
∑
n∈HB

e−LEn −
∑
n∈HF

e−LEn . (1.5)

This is different from the ordinary partition function, ZSYM(β,m) = ZB + ZF by the

over-all sign of the contribution of fermionic states.

The twisted partition function, despite being a non-thermal quantity for general values

of the fermion mass m, is immensely useful as a tool that continuously connects the thermal

phase transition in pure Yang Mills theory with a semi-classically calculable transition on

R3 × S1
β. A similar continuity argument at finite baryon density was made in [6]. For

m 6= 0, (1.5) should be viewed as probing the phase structure of the theory as a function
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of radius L (which does not generally have an interpretation as inverse temperature). As

emphasized, the twisted partition function is manifestly non-thermal. Yet, it can be used

to study aspects of a genuine (thermal) deconfinement phase transition in certain limits.

This is due to the the following decoupling argument. If the mass of the fermion is infinite,

or much larger than the strong scale of N = 1 SYM, Z̃(L,m) reduces to the ordinary

thermal partition function of pure Yang-Mills theory:

Z̃SYM(L,m)
∣∣∣
m→∞

=⇒ ZYM(β) = tr[e−βH ] , β ≡ L . (1.6)

In this limit, because the heavy fermion decouples, we may identify the circumference L

with the inverse temperature β. For a heavy fermion, the choice of the boundary condition

is immaterial.

In this work, we will show that the center-symmetry changing phase transition at small

m can be computed semi-classically.2 In this limit the transition takes place at small L,

as shown in figure 1. The physics of the transition is quite interesting. It is based on the

competition between topological molecules, called “neutral bions” or “center-stabilizing

bions”, and semi-classical monopole-instanton effects, as well as perturbative effects. We

will argue that these effects are also present at large m, in the pure gauge theory, but that

in this limit the effect cannot be reliably computed using semi-classical methods.

2 Mass deformation of N = 1 super-Yang-Mills on S1 × R3

2.1 Perturbation theory

Classical vacua of the theory on R3 × S1 are labeled by the expectation value of the Wilson

line

Ω = exp

[
i

∫
A4dx4

]
. (2.1)

When LΛ � 1, non-zero frequency Kaluza-Klein modes are weakly coupled and may be

integrated out perturbatively. If we consider periodic boundary conditions for both the

gauge fields and the adjoint Weyl fermions, Aµ(L) = Aµ(0) and λ(L) = +λ(0), the one-

loop effective potential for the Wilson line is [5, 7]:

V SYM
pert. [Ω,m] =

2

π2L4

∞∑
n=1

[
−1 +

1

2
(nLm)2K2(nLm)

]
|tr Ωn|2

n4
. (2.2)

Here m is the fermion mass and K2(z) is the modified Bessel function of the second kind,

with asymptotic behavior

K2(z) =

{
2
z2 − 1

2 +O(z2) , z � 1 ;√
π
2z e

−z , z � 1 .
(2.3)

2In order to be precise, we note that the small-m, small-L calculability of the transition applies outside

of a finite strip around the phase transition line in figure 1. As usual in second order phase transitions,

fluctuations become strong near the critical point and the renormalization group equations describing the

critical theory — in the case at hand, in the 3d Ising universality class — are nonperturbative. However,

in the weak coupling small-m, small-L regime, the width of the strongly fluctuating critical region is small,

controlled by powers of the small parameter LΛ, and the critical values of the mass mc at fixed L (or critical

size Lc at fixed m) can be reliably determined up to small corrections.

– 4 –
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As the mass m → ∞, the fermions decouple regardless of their boundary conditions,

and the effective potential (2.2) reduces to the pure gauge result given in (1.3), with the

identification L = β:

V SYM
pert. [Ω,m]

∣∣
m→∞ = V YM

pert.[Ω](1 +O(e−Lm)) . (2.4)

In the opposite limit of massless fermion, the one-loop potential vanishes:

V SYM
pert. [Ω,m = 0] = 0 . (2.5)

In fact, because of supersymmetry and the fact that (perturbatively) the theory possesses

a moduli space of vacua, the m = 0 SYM theory does not generate a potential for the

Wilson line to any order in perturbation theory. At a typical point on the moduli space, a

nonzero background Wilson line is turned on:

Ω =

(
ei∆θ/2

e−i∆θ/2

)
, (2.6)

and the SU(2) gauge group abelianizes down to U(1). Here, ∆θ is the separation between

the eigenvalues of the Wilson line. Non-perturbatively, the moduli space is lifted due

to effects leading to ∆θ = π, i.e., to a center-symmetric holonomy. This effect will be

described in two complementary ways in the next section.

We now turn on a small mass corresponding to soft supersymmetry breaking, m� Λ.

In the small LΛ . 1 regime, we also have mL � 1. In this case, using the small-z

asymptote of (2.3), we observe that the leading term at O(m0) cancels and an O(m2)

potential is induced. The effective potential becomes (up to O(m4) corrections):

VSYM[Ω] = − m2

2π2L2

∞∑
n=1

1

n2
|tr Ωn|2 = −m

2

L2
B2

(
∆θ

2π

)
, (2.7)

where B2(x) = x2 − x + 1
6 is the second Bernoulli polynomial (the last equality above is

valid when ∆θ ∈ [0, 2π]).

Within the domain of validity of the perturbative analysis, (2.7) shows that Wilson

lines with all winding numbers are unstable when the fermion mass is non-zero, despite the

use of periodic boundary condition for fermions. Consequently, the nf = 1 theory at any

non-zero mass m and sufficiently small L will have completely broken center symmetry.

On the other hand, the fact that the one loop potential is small, of O(m2), implies that

exponentially small semi-classical effects can compete with the perturbative potential.

2.2 Non-perturbative effects at m = 0 via supersymmetry

In the classical background (2.6), and at weak coupling, the Wilson line (2.1) behaves as

an adjoint Higgs field. The theory at short distances is described by non-abelian SU(2),

and at long distances, it is described by an abelian U(1) subgroup. Using abelian duality,

εµνλ∂λσ = 4πL
g2 Fµν for µ, ν = 1, 2, 3, we may map the gauge field to a spin-zero dual-photon

σ. It is also useful to define the exponent of gauge holonomy (2.6):

b ≡ 4π

g2
∆θ . (2.8)

– 5 –
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The kinetic terms of the fields σ and b are

L =
1

2

g2

(4π)2L

[
(∂ib)

2 + (∂iσ)2
]
. (2.9)

In terms of superfields this corresponds to a Kähler potential:

K =
g2

2(4π)2L
B†B , (2.10)

for the chiral superfield B, whose lowest component3 is b− iσ; the fermionic component is

the component of the gluino field λ which remains massless along the Coulomb branch (2.6).

The effective Lagrangian following from (2.10) gives the long-distance perturbative descrip-

tion of the theory on R3 × S1 — essentially a massless free-field theory.

The non-perturbative dynamics of the theory is quite rich: due to the compact topol-

ogy of the “adjoint Higgs” (2.1), there are two types of elementary monopole-instantons,

M1 and M2. These are sometimes called 3d instanton and twisted-instanton, or BPS-

monopole-instanton and KK-monopole-instanton, see [8, 9]. The Nye-Singer index theorem

implies two fermionic zero-modes for each [10, 11]. The 4d BPST instanton (in the long

distance regime) can be viewed as a composite of these two. The monopole-instantons give

rise to ’t Hooft vertices, or amplitudes, of the form:

M1 = e−b+iσλλ, M2 = ηe+b−iσλλ,

M1 = e−b−iσλ̄λ̄, M2 = ηe+b+iσλ̄λ̄, (2.11)

where η = e
− 8π2

g2 = e−2S0 is the 4d instanton amplitude (we set the topological theta angle

to zero). Since (2.11) carry just two zero modes, they generate a superpotential, given by:

WR3×S1 =
M3
PV L

g2

(
e−B + ηeB

)
=

2M3
PV L

g2
e−S0 cosh

(
B− 4π2

g2

)
, (2.12)

where the coupling is normalized at the cutoff scale MPV ; details of the instanton calcula-

tion leading to (2.12) can be found in [12]. Thus, the infrared Lagrangian is given by (2.10)

and (2.12):

L =

∫
d4θ K +

(∫
d2θ W + h.c.

)
, (2.13)

and the scalar potential can be easily found:

V (b, σ) ≡ K−1
B†B

∣∣∣∣∂W∂B

∣∣∣∣2 =
64π2M6

PV L
3e−2S0

g6

(
cosh

(
2

(
b− 4π2

g2

))
− cos 2σ

)
, (2.14)

3We note that the relation between B and b is, in fact, nonlinear, see eq. (A.35), due to the perturbative

corrections to the moduli space metric along the Coulomb branch. These are also reflected in the non-

cancellation of the one-loop fermion and boson nonzero mode determinants around the BPS and KK

monopole-instantons, see appendix A for a detailed discussion. As these subtleties represent subleading

corrections to the Kähler metric (2.10), we ignore them in the main text.
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where KB†B is the mixed second derivative of the Kähler potential. Furthermore, it is

convenient to introduce, instead of b of eq. (2.8), the shifted field:

b ≡ 4π2

g2
+ b′ ,

∆θ

2π
=

g2

8π2
b′ +

1

2
. (2.15)

Finally, to rewrite the potential in terms of the strong-coupling scale Λ and the S1 size L,

we use the relations:
M3
PV

g2
e
− 4π2

g2 = Λ3 ,
4π2

g2
≈ 3 log

1

ΛL
. (2.16)

These relations express the fact that the scale for the coupling of the effective theory is

set by the compactification scale L. We use the one-loop running coupling constant in the

prefactors and two-loop running in the exponent of the instanton amplitude.

Thus, using (2.15) and (2.16), we obtain the final expression for the scalar poten-

tial (2.14):

Vbion(b′, σ) = 48L3Λ6 log
1

ΛL

(
cosh 2b′ − cos 2σ

)
. (2.17)

Note that if the superpotential W is determined by BPS and KK monopole-instantons

then the scalar potential is governed by (correlated) monopole-anti-monopole pairs. We

have therefore denoted the scalar potential by Vbion. We will make this relationship more

explicit in the following section.

The potential Vbion for the b′-field, ∼ cosh(2b′), generates a non-perturbative repulsive

interaction between the eigenvalues of the Wilson line around S1: it is minimized at 〈b′〉 = 0,

which, from (2.15), corresponds to maximally separated eigenvalues, 〈∆θ〉 = π, or in terms

of the Wilson line:

〈Ω〉 = 〈eiA4L〉 =

(
ei
π
2

e−i
π
2

)
, 〈trΩ〉 = 0 , (2.18)

up to gauge rotations. This is the center-symmetric vacuum of the theory on R3 × S1. On

the other hand, the Vbion potential for the σ field has two minima, located at

〈σ〉 = {0, π} , (2.19)

associated with discrete chiral symmetry breaking. Evidently, in the effective lagrangian,

the mass gap for gauge fluctuations σ is generated by the operator e±2iσ, and for the

spin-zero scalar (the fluctuation of gauge holonomy b′) it is generated by e±2b′ .

Expanding the action around the center-symmetric gauge holonomy and using compo-

nent notation, we find the effective lagrangian:

L =
1

2

g(L)2

(4π)2L

[
(∂ib

′)2 + (∂iσ)2
]

+ i
L

g2
λ̄σi∂iλ+ αe

− 4π2

g2(L)

[(
e−b

′+iσ + e+b′−iσ
)
λλ+ c.c.

]

+ β
e
− 8π2

g2(L)

L3

[
e−2b′ + e2b′ − e−2iσ − e2iσ

]
. (2.20)

– 7 –
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We expressed the Lagrangian in component notation to elucidate the physical origin of the

various terms.4

2.3 Non-perturbative effects at m = 0 via topological molecules

We now provide a derivation of the bosonic potential without the use of supersymmetry.

This formalism will apply to both supersymmetric and non-supersymmetric theories. As

discussed in refs. [13, 14], in general gauge theories with massless adjoint fermions (i.e., not

only in the supersymmetric single massless Weyl flavor case nf = 1), the 3d instanton and

twisted instanton do not generate a mass gap for the gauge fluctuations because of their

fermionic zero mode structure. The zero modes are determined by the index theorem [10,

11], and the corresponding instanton amplitudes have the form given in (2.11) or the

generalization thereof for the nf > 1 case.

Unlike the superpotential, which arises due to monopole-instantons with exactly two

zero modes, the associated bosonic potential must be induced by topological molecules

which do not have any fermionic zero modes. The bosonic potential is generated by cor-

related monopole-anti-monopole pairs. To second order in the semi-classical expansion,

the possibilities are the following: [M1M1], [M2M2], [M1M2], [M2M1]. These objects

can be viewed as composites of (2.11). The magnetic and topological charges and the

amplitudes associated with these instanton-anti-instanton events are:

composite (Qm, QT ) amplitude

[M1M1] (0, 0) e−2b′

[M2M2] (0, 0) e+2b′

[M1M2] (+2, 0) e+2iσ

[M2M1] (−2, 0) e−2iσ . (2.21)

The action and interaction due to massless boson exchange of two fundamental monopole

instantons with (bosonic) amplitudes enbb
′+inmσ and en

′
bb
′+in′mσ is (here nb, nm = ±1):

S(r) = 2S0 + Sint =
8π2

g2
+
(
−nbn′b + nmn

′
m

) 4πL

g2r
(2.22)

where r = |r| is the separation between two instanton events. The interaction proportional

to nbn
′
b is due to the exchange of the massless A4 modulus and the one proportional to

nmn
′
m is due to the exchange of the dual photon (“magneto static”). The interaction term

is repulsive for (−nbn′b+nmn′m) > 0, attractive for (−nbn′b+nmn′m) < 0 and zero otherwise.

The fermion-induced interactions will be considered below.

4In order not to clutter notation, we kept only the exponential dependence of the coupling g2(L) in the

non-perturbative terms in (2.20), i.e., we absorbed the numerical coefficients and the log 1
LΛ

dependence in

the prefactors α and β; these can be recovered from (2.12), (2.17).
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2.3.1 Magnetic bions, quasi-zero modes, and the mass gap for the dual photon

All the topological molecules contributing to the bosonic potential have vanishing topo-

logical charge, i.e., they are indistinguishable from the perturbative vacuum in that sense.

However, the [M1M2] (and its anti-molecule) events carry two units of magnetic charge.

The prefactor of the amplitude can be found as follows.

The M1 instanton has four bosonic zero modes. Three of these are the positions

x ∈ R3 and one is related to the internal U(1) symmetry. Note that there is no size

modulus associated with monopole-instantons, unlike the 4d BPST instanton. This is one

of the reasons that we can do reliable semi-classical analysis. Let an M2 be located at y.

Because of the interaction which depends on the separation of the two events, r = x− y,

the relative coordinate is no longer an exact zero mode, while the “center of mass” position

R = (x + y)/2 of the two events is an exact zero mode. The relative coordinate is now

a quasi-zero mode. This is to say that the operator of the quadratic fluctuations in the

background of M1 and M2 has, in its spectrum, an exact zero mode, a low lying quasi-

zero mode and parametrically separated Gaussian fluctuations. The latter modes can be

trivially integrated out. The zero and quasi-zero modes are particularly important. In

particular, the integrals over the quasi-zero modes need to be done exactly.

The magnetic bion amplitude associated with a bion located at R can be found by in-

tegrating over the quasi-zero mode exactly. Below, we write the expression for the nf flavor

theory for later convenience. The amplitude associated with an [M1M2] composite is:

[M1M2] ∼ Ae−2S0e2iσ, (2.23)

where

A =

∫
d3r e

−
(

2× 4πL
g2r

+4nf log r
)

= 4πI(λ, nf ) , λ ≡ g2

8πL
. (2.24)

The meaning of the terms in the exponent is as follows: 2× 4πL
g2r

accounts for the repulsion

due to exchange of σ and b-scalars, and 4nf log r is the attraction due to fermion zero mode

exchange. Consequently, there is a single saddle-point in the quasi-zero mode integral, given

(for nf = 1) by:

rb =
4πL

g2
, (2.25)

which can be interpreted as the magnetic bion size. The bion size is much larger than

monopole-size, but much smaller than (uncorrelated) inter-monopole separation. Conse-

quently, a representation of the partition function as a dilute gas of magnetic bions is

justified. The integral in (2.24) is given by:

I(λ, nf ) =

∫
dr e−( 1

λr
+(4nf−2) log r) = λ4nf−3Γ(4nf − 3), (2.26)

where nf = 1 for SYM. The way to check that this is self-consistent is as follows. The

interaction term for the magnetic bion in (2.22) must be parametrically smaller than the

leading action in order for the relative coordinate to deserve the name quasi-zero mode.

Just saying that 2S0 � Sint, or equivalently, r � L
π , is not sufficiently good, because this
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does not preclude the O(1) changes in the combined action, 2S0. It must be such that

|Sint| ∼ O(g2) × (2S0) � (2S0). Indeed, the action of the magnetic bion configuration

associated with r = rb, given in (2.22), takes the form

S(rb) = 2S0

(
1 +O(g2)

)
(2.27)

Since the interaction changes the action only by parametrically small O(g2) effects, the

magnetic bion topological molecule can be viewed as a quasi-solution.

The magnetic bion molecules described in this section are responsible for the generation

of a mass gap for the dual photon (the potential for σ in (2.20)) in SYM on R3 × S1, and

they generate the confining string tension. In the following section we will study a second

type of topological molecule, which is more subtle to identify, but plays an important role

in the center-symmetry realization.

2.3.2 Neutral (center-stabilizing) bions and the BZJ prescription

Consider now the other possible composite from the list (2.21), the [M1M1] composite

which carries no magnetic and topological charge (the [M2M2] is treated similarly). Here,

the integral over the quasi-zero mode is, naively:

[M1M1] ∼ Anaivee
−2S0e±2b′ , (2.28)

where:

Anaive(g
2) =

∫
d3r e

−
(
−2× 4π

g2r
+4nf log r

)
= 4πĨ(λ, nf ) ,

Ĩ(λ, nf ) =

∫
dr e−(− 1

λr
+(4nf−2) log r) . (2.29)

Now, the interactions between constituents due to σ and b exchange are both attractive,

while the fermion zero mode induced attraction is not altered (it remains attractive). The

integral, (2.29), as it stands, is dominated by the small r regime, where not only (2.29) is

incorrect, it is also hard to make sense of constituents as the interaction becomes large.

This is in sharp contrast with the magnetic bion (2.26) [14, 15].

At first sight, this may seem to prevent us from computing the contribution from

these pairs, but this is not actually the case. We will reach a satisfactory resolution of

the problem, via the Bogomolnyi-Zinn-Justin prescription: The integrals over the quasi-

zero modes of attractive instanton-anti-instanton molecules can be calculated in a manner

initially described by Bogomolnyi [16] in the context of quantum mechanics. The relation

between this prescription and the Borel procedure was pointed out in the same context by

Zinn-Justin [17], see also [18]. The prescription is to analytically continue the coupling g2

in the instanton-anti-instanton interaction to −g2. This turns the attractive Coulomb force

into a repulsive one. Then we calculate the resulting integral exactly, without any Gaussian

approximations. Finally, we analytically continue the final result back to positive g2.

Recall that, very often for a non-Borel summable series, when g2 is continued to −g2,

the series become Borel summable. However, one needs to continue back to positive g2.
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Depending on the path that one takes the coupling to the positive g2, the Borel sum typ-

ically produces an ambiguous (non-perturbative) imaginary part. This is a manifestation

of non-Borel summability. In the quantum mechanical examples that refs. [16] and [17]

studied, the ambiguity in the Borel sum is canceled by the ambiguity associated with the

attractive instanton-anti-instanton molecule. The prescription for the topological molecules

may be viewed as consistently extending the Borel prescription for perturbative sums to

non-perturbative sectors with vanishing quantum numbers. For a fuller discussion of these

phenomena in field theory, see [19].

This prescription will give an overall phase between the magnetic bion amplitude and

center-stabilizing bion amplitude. This phase difference is physical and crucial for our

considerations. Following the prescription, when we modify Ĩ(λ, nf ) → Ĩ(−λ, nf ) (recall

that λ ≡ g2/8πL) the Coulomb-interaction becomes repulsive and we can evaluate the

integral over the quasi-zero mode. In fact, it is equal to the integral I(λ, nf ) for the

magnetic bion computed in the previous section. Next, we substitute g2 → −g2 (λ→ −λ)

to obtain the final result for the center-stabilizing bion amplitude. To summarize, the

generalization of the BZJ prescription to field theory results in the chain:

Ĩ(λ, nf ) → Ĩ(−λ, nf ) = I(λ, nf ) → I(−λ, nf ) = (−λ)3−4nf Γ(4nf − 3) = −I(λ, nf ) .

(2.30)

The last equality is only valid for integer nf and gives an overall sign of the center-stabilizing

bion amplitude opposite that for the magnetic bion. We note that this line of reasoning

has a close parallel in supersymmetric quantum mechanics [21].

The importance of the relative sign between the magnetic bion amplitude and center-

stabilizing bion amplitude is worth noting, as it is a physical consequence of our prescrip-

tion. As a result, we obtain for their combined contribution:

V (b, σ) ∼ η cosh 2b′ − η cos 2σ = e−2S0
[
(1 + 2b′ 2 + . . .)− (1− 2σ2 + . . .)

]
= 2e−2S0

(
b′ 2 + σ2

)
, (2.31)

the same result that we obtained earlier by using holomorphy. The crucial point here is the

cancellation of the “cosmological constant” term in the potential. Recall that in a super-

symmetric theory with unbroken supersymmetry, the expectation value of Hamiltonian is

positive semi-definite and 〈Ψn|H|Ψn〉 ≥ 0, and that the bound is saturated for the ground

state 〈Ψ0|H|Ψ0〉 = 0. If the relative sign was not present, the ground state energy would

not vanish, implying a breakdown of supersymmetry. Equally importantly, the absence of

the relative sign between the [M1M1] and [M1M2] amplitudes would lead to the presence

of a relative sign between the mass term for the two scalars of the form
(
b′ 2 − σ2

)
, signaling

an instability. Clearly, neither is the case.

2.4 Center-stabilizing vs. center-breaking effects in softly broken SYM

As explained in section 2.1 there is no perturbative contribution to the Wilson line effective

potential for m = 0, but there is a non-perturbatively induced potential which ensures
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unbroken center symmetry in the supersymmetric theory on R3 × S1. This potential, as

explained above, is due to center-stabilizing bions.

We now turn on a small but non-zero m. At small L, one expects a competition

between the one-loop O(m2) potential for the Wilson line and the non-perturbatively in-

duced superpotential, leading to non-uniformity in the m → 0 and L → 0 limits. Taking

m→ 0 first, the theory lands on the center-symmetric phase. If, instead, the L→ 0 limit

is taken first, the theory lands on the center-broken phase. The transition line separating

center-symmetric and center-broken phases must emerge from the L = m = 0 corner of

the phase diagram, as illustrated for an SU(2) theory on figure 1. Let us now describe the

center-symmetry breaking dynamics in some more detail.

Adding a soft mass term for the fermions reduces the N = 1 supersymmetry to N = 0

and has the effect of lifting the fermion zero modes from the instanton amplitudes (2.11).

The mass perturbation is:

∆Lm =
m

g2
trλλ+ h.c. . (2.32)

The insertion of mass terms lifts the zero modes of the monopole-instanton amplitudes (2.11)

which now contribute to the potential for σ and b. The corresponding calculation is pre-

sented in the appendix, and the result for the monopole-instanton contribution to the scalar

potential, to leading order in m (mL� 1), takes the form:

Vmon. = 24mLΛ3 cosσ

(
log

1

ΛL
cosh b′ − 1

3
b′ sinh b′

)
. (2.33)

Despite the addition of a fermion mass term, the fermion-attraction mechanism giving

rise to magnetic and center-stabilizing bions is still operative, provided the fermion mass

is smaller than the inverse size of the bions, rb = 4πL
g2 from (2.25), i.e., for mL < g2

4π

(below, we shall see that this condition is obeyed in the regime where we can study the

competition between center-breaking and center-stabilizing effects). Thus, adding the bion

and monopole non-perturbative contributions (eqs. (2.17) and (2.33), respectively) to the

the perturbative contribution (2.7), recalling (2.15), we obtain the full scalar potential:

Vtotal = 48L3Λ6 log
1

ΛL

(
cosh 2b′ − cos 2σ

)
+ 24mLΛ3 cosσ

(
log

1

ΛL
cosh b′ − 1

3
b′ sinh b′

)
− m2

36L log2 1
ΛL

(b′)2 . (2.34)

It is convenient to introduce dimensionless masses, compactification scale, and potential:

m̃ ≡ m

Λ
, L̃ ≡ ΛL , Ṽ ≡ L3Vtotal

48L̃6 log L̃−1
. (2.35)

The final result for the scalar potential of the mass-deformed SYM theory is:

Ṽ = cosh 2b′ − cos 2σ +
1

2

m̃

L̃2
cosσ

(
cosh b′ − 1

3 log L̃−1
b′ sinh b′

)
− 1

1728

(
m̃

L̃2

)2 1

log3 L̃−1
(b′)2 . (2.36)
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The physics that this potential encapsulates is our main result. Before we study the

relative importance of the various terms in (2.36), let us summarize the region of validity

of the scalar potential. It was derived using weak-coupling semi-classical calculations at

small L, whose validity requires that ΛL � 1. The validity of the fermion-pairing bion

mechanism further requires mL log 1
ΛL � 1; the usual soft-breaking condition m � Λ

is then automatically satisfied. In other words, both dimensionless parameters m̃ and L̃

from (2.35) are small.

We can now use the potential (2.36) to study the symmetry realization of the theory

as the parameters are varied:

1. Consider the domain:
m̃

8L̃2
� 1 , (2.37)

In this domain, the bion-induced center-stabilizing term (cosh 2b′) dominates over

both the monopole and perturbative contributions, both of which favor center-

symmetry breaking, as we show below. In the regime of small m̃
8L̃2

, with m̃ > 0

(recall that we set the θ-angle to zero), the vacuum with 〈σ〉 = π, 〈b′〉 = 0 repre-

sents the global minimum of Ṽ , while the one with 〈σ〉 = 0 is only metastable. In

this regime, 〈tr Ω〉 = 0, with unbroken center symmetry. To see this explicitly, we

expand (2.36) around 〈σ〉 = π, 〈b′〉 = 0, to quadratic order in the fluctuations δσ

and δb′:

Ṽ = 2

(
1− m̃

8L̃2

[
1 +

2

3 log L̃
− m̃

L̃2

1

432 log3 L̃

]) (
δb′
)2

+ 2

(
1 +

m̃

8L̃2

)
(δσ)2 , (2.38)

where we have dropped the constant Ṽ (b′=0, σ=π). In the regime (2.37) there is a

mass gap for the dual photon and the theory is in the confining phase with unbroken

center-symmetry.

2. It is clear from (2.38) that, as we depart the regime (2.37), center-symmetry becomes

destabilized. The leading center-breaking effect, in the region where the semi-classical

analysis is valid, is due to the non-perturbative monopole-instanton term, which tends

to reduce the mass of the Wilson line. The effect of the center-destabilizing pertur-

bative contribution, given by the last term in (2.36), is suppressed both numerically

and parametrically, by the large factor | log3 L̃|.

Thus, keeping m̃ small and fixed, as we further decrease L̃, the theory leaves the con-

fining domain (2.37). The monopole term becomes the most dominant and destabi-

lizes the 〈b′〉 = 0 center-symmetric vacuum. As eq. (2.38) shows, the center-symmetry

destabilization is continuous. At L̃ = L̃c where

L̃2
c =

m̃

8

[
1 +O

(
1

log L̃
,

m̃

L̃2 log3 L̃

)]
, (2.39)

the center-symmetric vacuum gets destabilized and the two eigenvalues of the holon-

omy smoothly approach each other.

– 13 –



J
H
E
P
1
0
(
2
0
1
2
)
1
1
5

The potential (2.36) can be used to study the physics until the semi-classical descrip-

tion breaks down (this occurs when the scale of SU(2) → U(1) breaking governed by the

eigenvalue difference ∆θ times 1
L becomes comparable to the strong-coupling scale Λ). The

evolution of the eigenvalues leads to spontaneous breaking of the Z2 center symmetry,

〈12tr Ω〉 = ±1, and the appearance of two vacua. In the center broken phase, we expect

that these two vacua are continuously connected to the two thermal equilibrium states of

pure Yang-Mills theory as m̃→∞.

One crucial point here is the following. In the confined phase, the effective description

of the dynamics is given in terms of the Wilson line Ω (the b′-field) and dual photon σ.

On the other hand, σ is not a well-defined notion in the “deep” deconfined phase where

the SU(2) gauge symmetry is fully restored and the abelianization of the dynamics is lost.

In other words, the combined potential (2.36) is strictly valid beyond L ≥ Lc(m) and for

a range L . Lc(m) provided the eigenvalues are sufficiently apart. For most of the range

L < Lc(m), the potential is solely in terms of Ω, without σ.

Finally, we can try to perform a (very rough) extrapolation of our result to pure

Yang-Mills theory and obtain an estimate of the critical temperature of the deconfining

phase transition. In the semi-classical domain, from (2.39), we find Tc
Λ = 1

LcΛ
∼
√

8Λ
m ,

which drops with m, but for m � Λ the result must become independent of m. Not

much is known numerically about the decoupling scale for a Weyl fermion in the adjoint

representation. In the case of Nc = 3 QCD with three flavors of fundamental fermions it is

known that relatively large values of the fermion mass, m & 5Λ, are needed in order for the

phase transition to approach the deconfinement transition of the pure gauge theory [22].

Assuming that the decoupling scale for an adjoint Weyl fermion is in the range mdec ∼
(5− 10)Λ we expect Tc ∼ (0.8− 1.3)Λ, broadly consistent with lattice data.

3 Pure Yang-Mills theory

In the previous section, we showed that for m̃ � 1 the center-symmetry restoring phase

transition can be described semi-classically. In this regime the transition is driven by

the competition between center-stabilizing topological molecules and center-destabilizing

monopole-instantons. In this section, we will show that the same mechanism also exists in

the pure gauge theory, even though in this case the effects cannot be computed reliably.

This implies that it is plausible that the deconfinement transition in pure gauge theory is

driven by the same topological phenomena that operate in the small m̃ limit.

3.1 Non-perturbative effects on the classical background

In this section, we will consider possible non-perturbative contributions to the potential

for the Wilson line in pure Yang Mills theory. The question is whether there are terms

that favor the center-symmetric vacuum and compete with the perturbative contributions

to V (Ω). We consider a classical background field on R3 × S1:

Ω =

(
ei∆θ/2

e−i∆θ/2

)
, (3.1)
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where ∆θ is the separation between the eigenvalues of Wilson line. In the classical back-

ground (3.1), and at weak coupling, the Wilson line behaves as an adjoint Higgs field

breaking the microscopic SU(2) symmetry down to U(1) at large distances. As before

there are two types of elementary monopole-instantons, M1 and M2. The amplitudes

associated with these instanton events are essentially the ones given by (2.11), but now

without the fermion zero modes:

M1 = e
− 4π
g2

∆θ+iσ ≡ e−b+iσ, M1 = e
− 4π
g2

∆θ−iσ ≡ e−b−iσ,

M2 = e
− 4π
g2

(2π−∆θ)−iσ ≡ ηe+b−iσ, M2 = e
− 4π
g2

(2π−∆θ)+iσ ≡ ηe+b+iσ .
(3.2)

The interaction between different monopole-instantons with magnetic charge nm and scalar

charge nb can be computed by using the two point correlator, as in (2.22):

〈enbb+inmσ(x)en̄bb+in̄mσ(y)〉0 = e−V (|x−y|) = e
− 4πL
g2|x−y|

(−nbn̄b+nmn̄m)
. (3.3)

This formula is true classically. At weak coupling, the b field may acquire a radiatively

induced mass. This modifies the potential as:

V (|x− y|) =
4πL

g2|x− y|
(−nbn̄be−mb|x−y| + nmn̄m) . (3.4)

In perturbation theory, there are three possibilities for m2
b (recall that mb is the mass for

the Wilson line, m2
b |trΩ|2, obtained by studying small fluctuations around the classical vac-

uum): i) In supersymmetric theories with supersymmetry preserving boundary conditions,

m2
b = 0 to all orders in perturbation theory. ii) If m2

b > 0, as is the case for QCD(adj)

with periodic boundary conditions for fermions [13, 14], then the potential is as in (3.4). In

particular, the b-exchange interaction is short range and has no effect on the long distance

effective theory. iii) If m2
b < 0, as in thermal YM, then there exists an instability of the

center-symmetric vacuum.

For our purposes we will consider mb = 0, because classically there is no mass gap for

the holonomy fluctuations. We can now write down the effective theory for an ensemble of

monopole-instantons. We get:

L =
1

2

g2

(4π)2L

[
(∂ib)

2 + (∂iσ)2
]
− (e−b + ηe+b) cosσ + . . . , (3.5)

where we have not attempted to determine the overall coefficient of the effective potential,

and we defined b ≡ 4π
g2 ∆θ. The ellipsis denote both perturbative and other non-perturbative

contributions. The effective potential in (3.5) arises by summing the contributions of the

different monopole-instantons in (3.2):

− V n.p.(∆θ, σ) = (M1 +M2 +M2 +M2)

= 2
[
e
− 4π
g2

∆θ
+ e
− 4π
g2

(2π−∆θ)
]

cosσ = 4e
− 4π2

g2 cosh b′ cosσ . (3.6)

We would like to make a number of comments regarding this potential:
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1) We note that the potential is not quite sensible as it is not manifestly periodic in ∆θ.

This problem can be addressed by taking into account the existence of an infinite

tower of monopole-instantons, see below.

2) We observe that the potential has an extremum at σ = 0 and ∆θ = 0 where the

semi-classical approximation is not reliable. For the stability of the center-symmetric

vacuum we must have a global minimum at ∆θ = π, and the sigma field must be non-

tachyonic there. However, around (∆θ, σ) = (π, 0), and also around (∆θ, σ) = (π, π),

the expansion of the potential in terms of small fluctuation yields:

V n.p.(b′, σ) = 2e
− 4π2

g2

{
−(δb′)2 + (δσ)2 + . . . for (∆θ, σ) = (π, 0)

+(δb′)2 − (δσ)2 + . . . for (∆θ, σ) = (π, π)
. (3.7)

At leading order in the semi-classical expansion, the Hessian around each of the two

center-symmetric saddle points is negative and we conclude that monopole-instanton

effects do not favor the center-symmetric vacuum.

In the following we will address both of these points. We will argue, in particular, that

topological molecules can stabilize the center.

1) Making the potential periodic: Because the ∆θ field is an angular variable there is

an infinite set of monopole-instantons on R3 × S1. For magnetic charge +1, there is

a tower of monopole-instantons with topological charges QT (nw) = ∆θ
2π + nw, nw ∈

Z. We observe that M1 and M2 are the nw = 0 and nw = −1 members of this

tower. Following [23] we define the generalized fugacity of the monopole-instanton

amplitude as:

F (∆θ)eiσ =

[∑
nw∈Z

e
− 4π
g2
|∆θ+2πnw|

]
eiσ, (3.8)

Clearly, F (∆θ + 2π) = F (∆θ) is a periodic function. Using Poisson resummation it

can be rewritten as:

F (∆θ) =
1

π

∑
ne∈Z

4π
g2(

4π
g2

)2
+n2

e

eine∆θ ≡ 1

π

(
1+2

∞∑
ne=1

cne cosne∆θ

)
, cne ≡

4π
g2(

4π
g2

)2
+n2

e

,

which, after using cosne∆θ = 1
2 |trΩ

ne |2 − 1, can be expressed in terms of the gauge

invariant Wilson line:

F (Ω) =
1

π

(
1 +

∞∑
ne=1

cne(|trΩne |2 − 2)

)
. (3.9)

The non-perturbatively induced potential, incorporating the entire Kaluza-Klein tower

of the monopole-instantons takes the form:

V n.p.(Ω, σ) = F (Ω) cosσ . (3.10)
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The extremum of (3.10) is at ∆θ = 0, σ = π. At this point center-symmetry is

broken, gauge symmetry is restored and the abelian long distance description is

invalid, exactly as for (3.6). Thus, the leading-order bosonic potential induced by

monopole-instantons does not appear to stabilize center symmetry.

2) Role of topological molecules: We showed that in N = 1 SYM5 monopole-instantons

carry fermionic zero modes and do not induce a bosonic potential. Instead, monopole-

instantons generate a fermion mass term. A bosonic potential appears at second order

in the semi-classical expansion through the terms induced by composites [MiMj].

The magnetic bion combinations [M1M2] + [M2M1] induce a mass gap for gauge

fluctuations, and the center stabilizing bions [M1M1]+[M2M2] stabilizes the center-

symmetric vacuum. We may therefore ask whether topological molecules induce

similar effects in pure Yang-Mills theory.

Symmetry permits, at second order in the semi-classical expansion, terms of the form:

− V (2)(b, σ) = c1η cos 2σ + c2

(
e−2b + η2e2b

)
+ c3

(
e−2b + η2e2b

)
cos 2σ + c4η (3.11)

The terms in (3.11), which can be made periodic in b by a procedure similar to the

one that led to (3.10), can be thought as due to molecular monopole-instantons of

the form:

[M1M2] ∼ e+2iσ , [M2M1] ∼ e−2iσ ,

[M1M1] ∼ e−2b , [M2M2] ∼ η2e+2b ,

[M1M2] ∼ η , [M1M2] ∼ η ,
[M1M1] ∼ e−2b+2iσ , [M1M1] ∼ e−2b−2iσ ,

[M2M2] ∼ η2e+2b−2iσ , [M2M2] ∼ η2e+2b+2iσ .

(3.12)

In section 2.3.2, we showed that there are SUSY and softly broken SUSY theories in

which we can reliably demonstrate that these molecules generate a center-symmetric

minimum. Below we will demonstrate, using the BZJ prescription, that topological

molecules also stabilize the center in pure YM theory. Clearly, in order for the second

order terms in (3.11) to be more important than the leading-order term in (3.10), we

have to push the expansion beyond the semi-classical domain. We will therefore not

attempt to perform a quantitative calculation. Our goal is to show that the same

mechanism that drives the center-symmetry changing transition in the softly broken

N = 1 theory also operates in pure Yang-Mills theory.

3.1.1 Quasi-zero modes and bion amplitudes

In this section, we will study the amplitude of topological molecules in the pure Yang-Mills

theory on the classical background. The amplitudes for the molecular monopole-instanton

events can be found by integrating over the relative separation quasi-zero mode between

its constituents. This will be similar to the study in section 2.3.2, where we performed

an analysis for the case of nf adjoint fermions, where nf = 1 corresponds to N = 1

5The same is true in N = 2 Seiberg-Witten theory softly broken to N = 1.
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SYM theory. The result for pure Yang Mills theory can be obtained by taking the limit

nf = ε→ 0 in (2.26), (2.29), and (2.30).

We begin with topological molecules of the type [M1M2]. The integral over the quasi-

zero mode is the same as in (2.26), except that we have to take the ε → 0 limit. We

find

I(λ, ε) = λ4ε−3Γ(4ε− 3) = λ−3

(
− 1

24ε
+

1

6

(
− log(λ) + γ − 11

6

)
+O(ε)

)
. (3.13)

The divergence in the ε → 0 limit is due to over-counting of uncorrelated monopole-

instanton events, which are already included in the dilute monopole-instanton gas approx-

imation. In theories with fermions, this long-distance divergence is cut-off by the fermion

zero mode exchange, both in quantum mechanical examples [21] and in quantum field the-

ories [19, 23]. In theories without fermions, in order not to double-count, this divergence

needs to be subtracted, see [16, 18] for a quantum mechanical example. Consequently, the

prefactor of the magnetic bion amplitude is:

c1(g) =
2πa2

3

(
8π

g2

)3(
− log

(
g2

8π

)
+ γ − 11

6

)
, (3.14)

where a is the coefficient of the one monopole-instanton amplitude, which is set to one

in (3.2) and which can be restored if desired.

Next, we consider the neutral bions [M1M1]. Here, the constituents interact attrac-

tively both due to σ and b-exchange, and we need to apply the BZJ prescription. The

result is:

c2(g) =
2πa2

3

(
−8π

g2

)3(
− log

(
− g

2

8π

)
+ γ − 11

6

)
= −c1(g)± (iπ)

2πa2

3

(
8π

g2

)3

. (3.15)

In analogy with the quantum mechanics example where the ambiguity associated with non-

Borel summability of the perturbation theory is canceled by the molecular instanton-anti-

instanton contribution [16, 17], we also expect the ambiguity associated with the non-Borel

summability of the pure YM theory on R3 × S1 to be canceled by the two-fold ambiguity

of the amplitude for neutral bions. This implies that the imaginary part in (3.14) must

cancel by large-orders in perturbation theory, and we discard that term. The remaining

term in (3.15) satisfies

c2(g) = −c1(g) . (3.16)

For a more detailed discussion of this conjecture and the available theoretical evidence in

its favor, see [19].

Next, consider the [M1M1] and [M2M2] amplitudes. Now, σ exchange is repul-

sive and b exchange is attractive, leading to a cancellation. This means that the self-

dual monopole-instanton events are not correlated, and the molecular amplitude vanishes,

c3(g) = 0. The same conclusion is also obtained in ref. [24].

For the [M1M2] amplitude, slightly more care is needed. The interaction again can-

cels between attractive σ exchange and repulsive b exchange. This would seem to imply
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c4(g) = 0, as in the previous case. However, [M1M2] molecules with sizes less than the

compactification scale correspond to ordinary BPST-instantons. Taking into account small

4d instantons corresponds to c4(g) ∼ η. Large 4d instantons do not exist because large

uncorrelated [M1M2] molecules are already included in the instanton-monopole contribu-

tion. This implies that there is a finite instanton term, but since the 4d-instanton does not

depend on the b and σ field we find that the leading semi-classical instanton contribution

only enters as a constant term in the effective action.

Combining the terms (3.14), (3.15), and (3.16) that appear at second order in the

semi-classical expansion we find:

V (2)(b, σ) = −c1η cos 2σ + c1

(
e−2b + η2e2b

)
. (3.17)

This is indeed the same result as in (softly broken) N = 1 supersymmetric theory. The

combined potential of monopole-instantons and bions is

V (1)(b, σ) + V (2)(b, σ) = −η1/2 cosh b′ cosσ − c1η cos 2σ + c1η cosh 2b′ , (3.18)

leading to:

m̃2
b′ =

[
−η1/2 + 4c1η

]
, (3.19)

m̃2
σ =

[
η1/2 + 4c1η

]
. (3.20)

Thus, we find that second-order effects in the semi-classical expansion, in particular neutral

bions, stabilize the center symmetry, without destabilizing the σ mode. As in the discussion

around (3.9) and (3.10), in order to make periodicity of the potential manifest, we may

sum over the Kaluza-Klein tower of the neutral bions. This leads to a center-stabilizing

potential for the Wilson line, given by Vb−tower(Ω) ∼
∑

n |trΩn|2, similar to (3.9). However,

as stated earlier, the stabilization of center-symmetry by the neutral bion induced potential

requires strong coupling where neutral bion term can overcome the monopole-instanton

induced instability as well as the perturbatively induced potential. In this regime, we

cannot perform a quantitative calculation. It is nevertheless intriguing that the same effect

that leads to center stabilization at weak coupling for softly broken N = 1 theory is present

in pure Yang Mills theory as well. For an attempt to connect semi-classical neutral bion

molecules to strong coupling effects and infrared renormalons, see the recent work [19].

3.1.2 Connecting monopole-instantons to dyon particles

The neutral bion induced potential (3.17), just like the monopole-instanton induced poten-

tial, is not manifestly periodic in ∆θ. This problem, as in the case of monopole-instantons,

can be addressed by taking into account the whole Kaluza-Klein tower of neutral bion

molecules. In this section, we will show that the tower of monopole-instantons can be

interpreted, via Poisson resummation, as the contribution from dyon particles.6

6A number of authors, see, e.g., [20] and references therein, refer to the monopole-instantons M1 and

M2 as “dyons”, because they are magnetically charged and self-dual. We believe that this choice of words is
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Consider the Poisson duality relation for the tower of monopole-instantons, see (3.9):

[∑
nw∈Z

e
− 4π
g2
|∆θ+2πnw|

]
eiσ =

 1

π

∑
ne∈Z

4π
g2(

4π
g2

)2
+ n2

e

eine∆θ

 eiσ . (3.21)

The phase eineLA4 = eine∆θ is the canonical coupling of a charged particle to a background

gauge field A4, and eiσ is a 3d instanton amplitude associated with magnetic charge one.

Consider a massive particle on R3,1 with magnetic and electric charge (nm, ne) and

mass M(nm,ne), called a dyon. By Gauss’ law, there is a combined electric and magnetic

flux coming out of this particle;∫
S2=∂R3

( ~E + i ~B) · d~Σ = ne + i
4π

g2
nm ≡ qe + iqm , (3.22)

where S2 = ∂R3 is a sphere at infinity. We can analytically continue to Euclidean time

(consider the theory on R4) and then compactify one of the directions, i.e., consider the

theory on R3 × S1.

A dyon particle whose world-line wraps the S1 corresponds to a finite action instanton,

S(nm,ne) = LM(nm,ne). The amplitude associated with the dyon is,

e−S(nm,ne)eineθe+inmθm ≡ e−LM(nm,ne)eineθe+inmσ , (3.23)

where eiθe and eiθm are electric and magnetic Wilson lines. The magnetic Wilson line is

naturally interpreted in terms of the dual photon7 σ. The duality relation (3.21) therefore

admits an interesting interpretation: its right hand side may be re-written as a sum over

massless/light dyons with charges (nm, ne) = (1, ne) whose world-lines wrap around the S1:

1

π

∑
ne∈Z

qm
q2
m + q2

e

e−LM(qm,qe)eineθe+iσ . (3.24)

In the classical background, the long distance dynamics is abelian and the sum over

monopole-instanton amplitudes maps, via Poisson resummation, to a sum over the electric

charges of the dyons.

From this point of view, we find (3.21) quite intriguing. This relation makes perfect

sense inN = 2 Seiberg-Witten theory [23]. In that context, on R4, the theory has a classical

not quite appropriate. The amplitude of a monopole-instanton has the form e−b+iσ ∼ e−A4+iσ. However, a

dyon particle with both electric and magnetic charge couples to (A4, σ) as eiqeA4+iqmσ, in both Minkowski

and Euclidean space. We will see that the Kaluza-Klein tower of monopole-instantons can be written as a

sum over dyons that exhibit the expected coupling for electrically and magnetically charged particles.
7We can see this starting from abelian duality in 4d, then compactify the theory on R3 × S1, and

finally match the result to 3d abelian duality. The abelian duality on 4d is expressed by FDµν = 1
2
εµνρσFµν

where Fµν = ∂µAν − ∂νAµ and FDµν = ∂µA
D
ν − ∂νADµ , where Aµ, A

D
µ are the original and the dual gauge

potential. Using dimensional reduction and splitting the duality relation into 4i and ij components, we

obtain ∂iA
D
4 = − 1

2
εijkFjk and FDij = εijk∂kA4. The first relation is the well-known abelian duality relation

in 3d, where we identify AD4 = σ ≡ θm and A4 = σD = θe. The monopole-instanton amplitude is naturally

expressed in terms of θm = σ and θe ≡ ∆θ.
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moduli space along which gauge symmetry is reduced to U(1) due to adjoint Higgsing by

the vev 〈Φ〉 = vT 3. In the semi-classical domain of the N = 2 theory, the Poisson duality

relation is reliable. Moreover, inN = 2 theory, the combination
∫
S2 v( ~E+i ~B)·d~Σ = Z(nm,ne)

appears as the central charge in the supersymmetry algebra.

In pure Yang-Mills theory, the combination of electric and magnetic charges
∫
S2( ~E +

i ~B) · d~Σ (without the vev) appears naturally. However, we also know that there is no

apparent adjoint Higgsing on R4 and it seems hard to make sense out of the Poisson

duality relation in that case. One can speculate that there may be a connection between

Poisson duality and the maximal abelian gauge proposal by ’t Hooft [25], which is based

on using a specific gauge condition applied to a composite operator to define an adjoint

Higgs field, and the corresponding abelianized SU(N)→ U(1)N−1 theory. In that case, of

course, monopoles (as well as dyons) appear. However, the theory is strongly coupled, and

the abelian dynamics is not well understood. This is a direction worthy of further pursuit.

4 Comments on the literature

In this section, we will attempt to clarify the relation between our work and previous

analytical approaches to the deconfinement transition in the literature.

The question whether one can study the deconfinement phase transition at weak cou-

pling was considered by Aharony et al. in [26]. These authors found a realization of this

idea in a finite spatial volume S3 × S1, but rejected the possibility that an example can be

found for an infinite spatial volume, in particular on R3 × S1. Ref. [26] studied large-N

(strictly, N = ∞) pure Yang-Mills theory on small S3 × S1 by integrating out the per-

turbatively weakly coupled modes and thus mapping the field theory to a matrix model.

This approach pushes the deconfinement transition to the weak coupling regime. However,

since they study gauge theory on a small sphere S3, approaching the thermodynamic limit

requires taking the infinite-N limit. In particular, the approach of [26] does not apply to

gauge theories of finite rank.

A way around the obstacle of analytical “intractability” of deconfinement in an infinite

spatial volume was found in refs. [27, 28] by compactifying the gauge theory on R2×S1
L×S1

β

where S1
L is a spatial circle and S1

β is the thermal circle. The size of the spatial circle provides

a tunable control parameter, the counter-part of S3 in the approach of [26]. The advantage

of this formalism is that the small volume theory is still a field theory in an infinite spatial

volume (as opposed to a matrix model), although it is R2 and not R3. The approach

of [27, 28] also works for finite rank gauge theories, mapping the deconfinement transition

to a phase transition in two-dimensional spin systems; the relevant spin systems are the

affine XY-spin models with symmetry breaking perturbations.

In the present paper, we gave a reliable semi-classical analysis of the center-symmetry

changing phase transition on R3×S1. The use of semi-classical methods in connection with

the center-symmetry changing transition was previously investigated in a series of papers

by Diakonov and collaborators [20, 24, 29, 30]:

1) The first of these papers, a review published in 2002 [29], suggests that center-

symmetry can be stabilized by monopole-instantons (dyons, in the language of Di-
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akonov et al.). Diakonov obtains the term V ∼ cosh 4π
g2 (π − ∆θ) in the monopole-

instanton induced potential, see (2.33) and (3.6), and observes that this contribution

has a minimum at the center symmetric point ∆θ = π. However, this conclusion is

based on neglecting the the cosσ term which arises from the coupling to the dual

photon. Indeed, we found that in the semi-classical case m� Λ monopole-instantons

favor center-symmetry breaking.

2) N = 1 SYM theory on R3 × S1 is presented as an example for center stabilization

by monopole-instantons in refs. [20, 24, 29]. This interpretation is common in the

literature but, as we showed above, it is physically not correct. Monopole-instantons

inN = 1 SYM have fermion zero modes, and they do not generate a bosonic potential

for the Wilson line. Rather, they generate a fermion bilinear which determines the

superpotential. The bosonic potential can be found via supersymmetry using V ∼
|∂W∂b |

2, as in section 2.2, or using the BZJ-prescription, as in section 2.3. In either

case the conclusion is that the physical mechanism generating the potential for the

Wilson line is related to topological molecules.

3) A quantitative theory of a confining ensemble of monopole-instantons was proposed

in [24]. The paper argues that one can analyze the vacuum of Yang-Mills theory by

semi-classical means, and that, furthermore, the only topological configurations that

contribute to the non-perturbative potential for the gauge holonomy satisfy: i) the

self-duality condition, and ii) a (magnetic) charge neutrality constraint. This means

that, contrary to item 1), instanton-monopoles [M1], [M2] and [M1], [M2] are ex-

cluded. The self-dual neutral objects are KvBLL-calorons [8, 9], 4d BPST instantons

at finite temperature and non-zero holonomy, and multi-calorons. Calorons can be

viewed as topological molecules of the form [M1M2] and [M1M2]. We observed

in (3.12) that at the classical level there is no coupling of instantons to the holonomy.

The claim in ref. [24] is that a potential for the Polyakov line can arise from the

collective coordinate measure. This contribution is formally of higher order in the

coupling constant.

In the pure gauge theory the critical temperature for deconfinement is of order Λ, and

it is clear that there cannot be a systematic semi-classical theory of the transition. The

continuity argument outlined in figure 1 provides a less ambitious program: We connect

the strongly coupled center-symmetry changing phase transition in Yang-Mills theory to a

semi-classical phase transition in mass-perturbed super-Yang-Mills theory on R3×S1. The

semi-classical calculation at small m provides two important lessons: a.) Both monopole-

instantons (self-dual and magnetically charged objects8) and neutral bions (non-self dual

and magnetically neutral objects like [M1M1]) contribute to the potential for the gauge

holonomy and b.) these are the leading contributions to the potential in the controllable

small-L,m regime. Thus, we believe that our results contradict the assumptions in [24].

8It is clear that there cannot be a general argument that rules out contributions from magnetically

charged objects. In particular, Polyakov’s solution to the Yang-Mills adjoint Higgs system on R3 [31] and

the solution of deformed Yang-Mills theory [32] on R3 × S1 map the gauge theory partition function to a

grand canonical ensemble of magnetic charges.
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Finally, we also note that detailed phenomenological studies of the effective lagrangian

for the Polyakov line in pure Yang-Mills theory were carried out by Pisarski and collab-

orators [33–36]. Center-stabilizing double-trace operators are considered in ref. [32] to

address a semi-classical mechanism of confinement and large-N volume independence, and

in ref. [37] to study phases with partial center symmetry breaking. The present study pro-

vides a microscopic explanation of the origin of the center-stabilizing double-trace terms

in these studies.

5 Conclusions and outlook

In this paper, we argued that the center-symmetry changing phase transition in thermal

Yang Mills theory is continuously connected to the phase transition in softly broken N = 1

theory on R3 × S1. We showed that for small values of the adjoint fermion mass m the

critical scale Lc is analytically calculable. We also provided theoretical evidence that the

same mechanism that drives the phase transition at small m, the competition between

center-stabilizing topological molecules and center-destabilizing monopole-instantons, also

exists in pure Yang Mills theory.

There are a number of directions worthy of further pursuit, including both numerical

and analytical studies:

1. The phase diagram in figure 1 can be explored with lattice methods that are available

today. Furthermore, lattice simulations can be used to study the role of neutral non-

self-dual topological defects (such as the neutral bions), for example, by using the

techniques of ref. [38].

2. One may generalize the semi-classical study of center-symmetry changing phase tran-

sition on R3 × S1 to all gauge groups, exploring the role of various topological exci-

tations in the symmetry realization and the nature of the phase transition.

We finish by making a few comments on the SU(N), N ≥ 3 case. Here, there are N -

types of monopole-instantons, associated with the (N−1) simple roots and one affine root.

As in the SU(2) theory, in the softly broken N = 1 theory, these monopole-instantons, as

well as perturbative one-loop fluctuations, tend to break center-symmetry. There are N -

types of magnetic bions and N -types of neutral bions. The magnetic bions, for all N ≥ 3,

unlike the N = 2 case, lead to a center-destabilizing potential. As in the SU(2) case, for

all N ≥ 3, the neutral bions lead to a center-stabilizing potential. For N ≥ 3 we found a

first order phase transition consistent with lattice gauge theory results.

Finally, we also note that the dependence of Tc on the topological angle θ can also be

studied within our approach, resulting in a decrease of Tc, in agreement with recent lattice

studies [39]. Details of the calculations including θ-dependence and higher rank groups will

be given elsewhere.
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A Supersymmetry and the non-cancelling nonzero-mode determinants

In this work, we have derived the effective lagrangian for the Polyakov line and the dual

photon by expanding around the supersymmetric limit of a massless Weyl fermion. In

deriving eqs. (2.14), (2.33), we have used the cancellation of nonzero mode determinants

in the N = 1 supersymmetric theory. This cancellation has also been used in many other

instances in the literature, for example in the calculation of the exact superpotential and

gluino condensate in N = 1 supersymmetric gauge theory on R3 × S1 [12, 40].

In this appendix we discuss an important issue that has not received proper attention

within the context of N = 1 supersymmetric theories on R3 × S1 — the fact that the

nonzero mode determinants in the field of a monopole do not precisely cancel. While we

will argue that this phenomenon has no significant effect on our main result, we include

this discussion for completeness, as it fills a gap in the literature on N = 1 theories on

R3 × S1.

The point is that in the supersymmetric theory, the determinants of nonzero mode

fluctuations around the BPS or KK monopole-instantons on R3 × S1 do not precisely

cancel, despite the fact that the solutions preserve one-half of the supersymmetry. This

noncancellation occurs essentially because of the slow fall-off of the monopole-instanton

background at infinity in R3 [42, 43]. The nonvanishing of the nonzero mode determinants

around supersymmetric monopole-instanton backgrounds in N = 1 theories on R3 × S1 is

the N = 1 counterpart of the mass and central-charge renormalization9 of BPS monopoles

in 4d N = 2 supersymmetric theories. As we will see, the non-cancellation of the nonzero

mode determinants is perfectly consistent and is, in fact, required by supersymmetry and

holomorphy.

In the context of purely 3d theories with extended supersymmetry, obtained by reduc-

ing N = 2 4d theories, this non-cancellation has been known since [41]. However, it was

not addressed in the original calculation of nonperturbative effects in N = 1 theories on

R3 × S1 [12, 40]. Only recently, a relevant calculation on R3 × S1 appeared in the liter-

ature [45], in the context of theories with N = 2 supersymmetry. While N = 2 theories

share many features with the N = 1 theory of interest to us, the most important difference

is that the branch of moduli space considered in [45] is the 4d Coulomb branch, where the

abelianization of the gauge group is due to a nonzero expectation value |a| of the adjoint

9See [44] for a recent review and references.
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Higgs matter supermultiplet. In particular, |a| � ΛN=2 was required for consistency of the

calculation of [45] (while an arbitrary |a|L was allowed). In contrast, we are interested in

the N = 1 theory where the adjoint Higgs field is absent and the abelianization is due, in-

stead, to a Wilson line expectation value. Thus, the result of [45] is not directly applicable

to the case of interest to us.

From the discussion in the previous paragraph, it is clear that a calculation relevant for

N = 1 theories on R3×S1 is not present in the literature. In what follows, we shall perform

this calculation. The novel ingredient that we will use is the Nye-Singer index theorem on

R3 × S1 [10] in backgrounds with nontrivial holonomy, in the form studied by two of us

(EP and MÜ) in [11]. We will also benefit from insight gained from refs. [41, 45, 49].

The main object of interest turns out to be the “index” I(M2), defined10 as:

I(M2) = tr
M2

∆− +M2
− tr

M2

∆+ +M2
, (A.1)

where ∆− = D†D = −DµD
µ − 1

2σµνF
µν and ∆+ = DD† = −DµD

µ, where D is the

Weyl operator and Dµ —the covariant derivative in the monopole-instanton background.

In a self-dual monopole-instanton self-dual background, it is the operator ∆− that has zero

modes; see, e.g., [46] for a review of this notation. To establish a relation between I(M2)

and the nonzero mode determinants, we note the identity:

Λ2
PV∫

µ2

dM2

M2
I(M2) = tr ln

∆+ + µ2

∆+ + Λ2
PV

− tr ln
∆− + µ2

∆− + Λ2
PV

= ln det
∆+ + µ2

∆+ + Λ2
PV

∆− + µ2

∆− + Λ2
PV

,

(A.2)

where ΛPV is the Pauli-Villars mass and µ is an auxiliary parameter which will be even-

tually taken to zero. We can now use (A.2) to define:

R = lim
µ→0

µ4 e

Λ2
PV∫
µ2

dM2

M2 I(M2)


3
4

=

(
det ∆+

det′∆−

det ∆− + Λ2
PV

det ∆+ + Λ2
PV

) 3
4

. (A.3)

Here, “det′” is the determinant with the zero modes omitted, i.e., det′∆− ≡ lim
µ→0

det ∆−+µ2

µ4 ,

using the fact that ∆− has two zero modes. The quantity R of (A.3) is, as is made clear from

the second identity, equal to the ratio of nonzero modes’ determinants around monopole-

instanton backgrounds appearing in the N = 1 theory. Notice also that R is equal to

the fluctuation determinant [45] for the N = 2 theory to the power of 3/2. The various

contributions making up the ratio in (A.3) are as follows: the adjoint fermion contribution

is (det′∆− det ∆+)
1
4 , while, in a 4d background Lorentz gauge, the gauge field determinant

is (det′∆−)−1 and the ghost determinant—(det ∆+)
1
2 , see [46] for details.

10We use quotation marks, since the value of the function I(0) is, indeed, the index of the adjoint Dirac

operator in a monopole-instanton background, but the quantity I(M2) itself depends on M2 [42].
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Our main goal here is to compute the ratio of determinants R (A.3). We will use the

expression for I(M2) from [11]:

I(M2) = I1 + I2(M2) =
2Lv

π
+

∞∑
p=−∞

(
2πp
L + v

|(2πp
L + v)2 +M2|

1
2

−
2πp
L − v

|(2πp
L − v)2 +M2|

1
2

)
,

I1 ≡
2Lv

π
. (A.4)

The definition of I2(M2) is evident; see also (A.6) below. The relation between v, the

expectation value of A4, and ∆θ, the angular distance between the eigenvalues of the

Polyakov loop, is:

∆θ = Lv ∈ (0, 2π) . (A.5)

We note that 2Lv
π = 4Q, where Q is the topological charge of the solution, which equals

1/2 at the center symmetric point v = π
L .

If L is set to zero and the p-sums restricted to p = 0, this is exactly the quantity

I(M2)R3 , found in [42], and yielding the well-known result I(0) = 2 for the adjoint repre-

sentation. Note that the function I(M2)R3 played a role in both [41], where it was used

directly, and [45], where the related difference between the density of states of ∆− and ∆+,

see [43], was used. The novelty on R3 × S1 is that a sum over Kaluza-Klein modes and

a contribution of the topological charge to the index (the non integer I1 term in (A.4))

appear. The first term in (A.4) is the bulk contribution to the index and the second — the

surface term. The surface term is given by the Kaluza-Klein sums in (A.4), defined using

zeta-function regularization; in fact, the second term in (A.4),

I2(M2) =
∞∑

p=−∞

(
2πp
L + v

|(2πp
L + v)2 +M2|

1
2

−
2πp
L − v

|(2πp
L − v)2 +M2|

1
2

)
, (A.6)

as shown in detail in [11], leads to:

I2(0) =
∞∑

p=−∞

(
sign

(
2πp

L
+ v

)
− (v → −v)

)
= −2Lv

π
− 2b−vL

2π
c+ 2bvL

2π
c, (A.7)

where bxc is the largest integer smaller than x. Thus, the topological charge contribution

to the index, I1, is canceled by the non integer contribution from the KK sum, I2(0), and

the index equals 2 for 0 < vL < 2π.

A.1 Calculating the ratio of nonzero mode determinants

In the previous section, we showed that I2(0) = 2. In this section we will use the expression

for I2(M2) to compute the ration of non-zero mode determinants R. We begin with the

expression for R given in (A.3), multiplied by e−S0 = e
− 4πvL
g2(ΛPV ) , where S0 is the classical
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action of a BPS monopole:

e−S0R = e−S0 lim
µ→0

µ4e
I1 log

Λ2
PV
µ2 e

Λ2
PV∫
µ2

I2(M2)

M2 dM2


3
4

= e
− 4πvL
g2(ΛPV )

+ 3Lv
π

log ΛPV L
lim
µ→0

µ4e
−I1 log µ2L2+

Λ2
PV∫
µ2

I2(M2)

M2 dM2


3
4

(A.8)

= e
− vL

π
4π2

g2(1/L) lim
µ→0

µ4e
−I1 log µ2L2+

Λ2
PV∫
µ2

I2(M2)

M2 dM2


3
4

≡ e−
vL
π

4π2

g2(1/L) R2 ,

where R2 is implicitly defined in the last line above. In other words, the UV divergent

contribution to R serves the purpose to renormalize the coupling from ΛPV to the scale 1
L .

Any other UV divergence at one loop would be in need of a counterterm and there is not

another one at one loop.

Next, we consider logR2 (omitting the explicit mention of the µ→ 0 limit to be taken

at the end and noticing that the upper limit of the integral can be taken to infinity):

logR2 = logµ3 − 3I1

2
logµL+

3

2

∞∫
µ

dM

M

(∑
p

2πp
L + v

|(2πp
L + v)2 +M2|

1
2

− (v → −v)

)
.(A.9)

Next, noting that
∫∞
µ

dM
M
√
A2+M2

= 1
|A|arcsinh |A|µ = 1

|A| ln
2|A|
µ +O(µ2), we find:

logR2 = log µ3 − 3I1

2
logµL+

3

2

∑
p

(
sign

(
2πp

L
+ v

)
log

2 |2πpL + v|
µ

− (v → −v)

)

= log µ3 − 3I1

2
logµL+

3

2

[∑
p

sign

(
p+

vL

2π

)
− (v → −v)

]
log

4π

µL
(A.10)

+
3

2

[∑
p

sign

(
p+

vL

2π

)
log |p+

vL

2π
| − (v → −v)

]
.

Before continuing, we recognize from (A.7) that one of the KK sums appearing in (A.10),∑
p sign(p+ vL

2π ) − (v → −v) = 2 − I1, giving rise, after substitution in (A.9) and using

I2 = 2Lv/π:

logR2

= logµ3− 3I1

2
logµL+

3

2
(2−I1) log

4π

µL
+

3

2

[∑
p

sign

(
p+

vL

2π

)
log |p+

vL

2π
|−(v →−v)

]

= 3 log
4π

L
− 3

Lv

π
log 4π +

3

2

[∑
p

sign

(
p+

vL

2π

)
log |p+

vL

2π
| − (v → −v)

]
. (A.11)

– 27 –



J
H
E
P
1
0
(
2
0
1
2
)
1
1
5

Now we can deal with the remaining KK sum, by writing it as an s-derivative of a function,

evaluated at s = 0:

logR2

= 3 log
4π

L
− 3

Lv

π
log 4π − 3

2

d

ds

[∑
p

sign(p+ vL
2π )

|p+ vL
2π |s

− (v → −v)

] ∣∣∣∣
s→0

. (A.12)

Next, we define the function:

H(s, a) =
∑
p

sign(p+ a)

|p+ a|s
, (A.13)

and rewrite (A.12) as:

logR2 = 3 log
4π

L
− 3

Lv

π
log 4π − 3

2
lim
s→0

d

ds

(
H

(
s,
vL

2π

)
−H

(
s,−vL

2π

))
. (A.14)

Now, for 1 > a > 0 we have:

H(s, a) =
∑
p≥0

1

|p+ a|s
−
∑
p≥0

1

|p+ 1− a|s
= ζ(s, a)− ζ(s, 1− a) , (A.15)

where ζ(s, a) =
∑

p≥0 |p+ a|−s is the incomplete zeta function, and similar for:

H(s,−a) =
∑
p≥0

1

|p+ 1− a|s
−
∑
p≥0

1

|p+ a|s
= ζ(s, 1− a)− ζ(s, a) . (A.16)

Thus, R2 is given by:

logR2 = 3 log
4π

L
− 3

Lv

π
log 4π + 3

(
ζ ′
(

0, 1− Lv

2π

)
− ζ ′

(
0,
Lv

2π

))
, (A.17)

which, upon plugging into (A.8), and using ζ ′(0, x) = ln Γ(x) − 1
2 log 2π yields for e−S0

times the ratio of determinants R in the BPS monopole background:

e−S0R

∣∣∣∣
BPS

=

(
4π

L

)3

e
− vL

π

[
4π2

g2(1/L)
+3 log 4π

]
+3(ζ′(0,1−Lv2π

)−ζ′(0,Lv
2π

))

=

(
4π

L

)3

e
− vL

π
4π2

g2( 4π
L

)
+3 log Γ(1−Lv

2π )−3 log Γ( vL2π )
. (A.18)

For the ratio of determinants around the KK monopole, we replace vL
2π → 1− vL

2π , yielding:

e−S0R

∣∣∣∣
KK

=

(
4π

L

)3

e
− 8π2

g2( 4π
L

)
+ vL

π
4π2

g2( 4π
L

)
−3 log Γ(1−Lv

2π )+3 log Γ( vL2π )
. (A.19)

We can now study the expansion of the Γ functions from (A.18) and (A.19) near the

center symmetric points:

3 log
Γ
(
1− Lv

2π

)
Γ
(
Lv
2π

) = −3ψ(1/2)

(
Lv

π
− 1

)
+O

((
Lv

π
− 1

)3
)

≈ 5.8903

(
Lv

π
− 1

)
, (A.20)
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Figure 2. The behavior of the ratio of nonzero mode determinants around a BPS monopole-

instanton, eq. (A.18). We define f(x) = 3(log Γ(1 − x) − log Γ(x)), where x = vL/2π. The

singularities of f(x) near the gauge-symmetry restoration points (x = 0, 1) are logarithmic and are,

in fact, required in order to take the proper 3d limit, see discussion around eq. (A.23)). Notice that

at the center-symmetric point the nonzero modes determinants cancel exactly, f(1/2) = 0, while

the slope there is −3ψ(1/2) ' 5.89, see eq. (A.20).

where we used the value ψ(1/2) = Γ′(1/2)/Γ(1/2) ≈ −1.96 of the digamma function. Thus,

we can rewrite (A.18) as:

e−S0R

∣∣∣∣
BPS

=

(
4π

L

)3

e
− 4π2

g2( 4π
L

)
−( vL

π
−1)

(
4π2

g2( 4π
L

)
+3(log Γ(1/2))′

)
+O((Lv

π
−1)3)

, (A.21)

as well as a similar expression for the KK monopole (A.19). Thus, near the center symmet-

ric point, we have that there is a small shift of the scale of the coupling constant away from

4π/L (using −1.96 ≈ − log 7.12, to a scale a few times lower than 1/R = 2π/L) and that

the exponential in e−S0R is a linear function of the deviation from the center symmetric

vacuum, vL
π − 1, up to cubic terms. The behavior of the ratio of one-loop determinants is

illustrated for general vL in figure 2.

It is of interest to also consider the neighborhood of vL = 0, in particular, if we wish to

take the 3d limit and compare with previous studies as a check on our calculation. In the

3d limit, we take L→ 0, but keep g2
3 = L/g2

4 fixed; as before, v is an arbitrary position on

the moduli space, which becomes noncompact in the 3d limit. The contribution of the KK

monopole vanishes in the 3d limit, as its action becomes infinite. Hence, we concentrate

on the BPS monopole amplitude. In this limit, we have that:

3 log
Γ
(
1− Lv

2π

)
Γ
(
Lv
2π

) ∣∣∣∣
Lv≈0

= −3 log
2π

Lv
+ 3γE

Lv

π
+O

((
Lv

π

)3
)
, (A.22)
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so we can write for (A.18):

e−S0R

∣∣∣∣
BPS

=

(
4π

L

)3

e
− vL

π
4π2

g2( 4π
L

)
−3 log 2π

vL
+3γE

Lv
π

+O((Lv
π

)3)

→ (2v)3 e
− 4πv

g23 , with L→ 0, fixed g2
3 =

L

g2
4(4π

L )
. (A.23)

We note that in this limit, our calculation exactly reproduces the 3d result of [41]. To

facilitate the comparison, we need to take into account the facts that v = mW in our nor-

malization and that our calculation is in the 4-supercharges theory, not the 8-supercharges

one, which changes the overall power of the dimensional pre factor from 2, as in eq. (26)

from [41], to 3 as in our (A.23). It is clear from the above that the non cancellation of the

determinants are required in order to have a smooth 3d limit.

A.2 Interpretation

The main question is, what is the interpretation of the cubic and higher terms in f(x)

away from the center symmetric point? It appears at first sight that they do not belong in

the superpotential, as they are not holomorphic functions of vL+ iσ. Further, any nonlin-

ear terms in this variable appearing in the exponent would be in conflict with symmetry

arguments.

We note that these questions arise already in the 3d supersymmetric theories and

have been addressed in some cases. Notably, in the 8-supercharges 3d theory, the BPS

monopole-instanton induced terms give rise to the four-fermi interaction [41]:

v

(g2
3)4

λ2ψ2e
− 4πv

g23
+iσ

.

Since the 8-supercharge theory admits no superpotential, this term, including the v-

dependent prefactor should be interpreted as arising from a component expansion of a

supersymmetric sigma model with a hyper-Käbler metric. In fact, as shown in [41], the

above four-fermi term is fully consistent with the semiclassical expansion of the Atiyah-

Hitchin metric.

On the other hand, in the 4-supercharges 3d theory, we have, from (A.23), after incor-

porating bosonic and fermionic zero modes, the following form for the monopole-instanton

induced fermion vertex:
v3

(g2
3)3

λ2e
− 4πv

g23
+iσ

.

It is natural to ask how this term is absorbed in an e−X superpotential, where X =
4πv
g2
3
− iσ, as argued long time ago [48]. The pre-exponential factor there and in subsequent

work was assumed to be a modulus-independent constant and has not been calculated

before, to the best of our knowledge. Thus the question regarding the incorporation of the

nonholomorphic ∼ v3 prefactor in a supersymmetric effective lagrangian applies to the 3d

4-supercharge theory as well.

We now proceed to address this issue by first writing down the fermion vertices that

accompany the BPS (A.18) and KK (A.19) monopole-instantons, performing the same
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steps as in [12]. We skip the details (of including the collective coordinates measure, etc.,

as they are identical to [12]) and note that the only difference is that we replace the Pauli-

Villars scale appearing in the fermion measure there with the ratio of determinants that we

calculated above. The fermion bilinear terms — the kinetic term and the ones that arise

due to the BPS and KK monopole-instantons — are (all couplings below are taken at the

scale 4π
L ):

Lferm =
L

g2
iλ̄σm∂mλ (A.24)

+

(
L

g2

)2 24π2L

g2

(
4π

L

)3 [
e
− vL

π
4π2

g2
+iσ+f( vL

2π
)

+ e
− 8π2

g2
+ vL

π
4π2

g2
−iσ−f( vL

2π
)
]
λλ ,

where

ef(x) =

(
Γ(1− x)

Γ(x)

)3

(A.25)

was already defined in the caption of figure 2. For future interpretation, it is also useful

to recall the original, not resummed, expression for f(x). This follows from (A.11) and, as

given below, is valid for 0 < x < 1:

f(x) = 3 lnx+ 3
∑
p>0

ln(p+ x)− ln(p− x) . (A.26)

Next, we rewrite (A.24), using b = 4π
g2 vL and expanding around the center-symmetric value

b ≡ 4π2

g2 + b′ (in other words, b′ is the fluctuation around the center symmetric vev):

Lferm =
L

g2
iλ̄σm∂mλ+

1

2

g2

16π2L
∂mb

′∂mb′ + . . . (A.27)

+
210π5

g6
e
− 4π2

g2

[
e−b

′+iσe
f

(
1
2

+ g2

8π2 b
′
)

+ eb
′−iσe

−f
(

1
2

+ g2

8π2 b
′
)]

λλ ,

where we included the kinetic term for b′ to leading order (subleading contributions to the b′

kinetic term, to be elaborated below, are denoted by dots). The main question we want to

address is how (A.27) can be incorporated in a supersymmetric effective lagrangian, given

the extra, seemingly nonholomorphic, dependence of the fermion ’t Hooft vertex on b′− iσ,

arising from the noncanceling determinants around the BPS and KK monopole-instantons.

For the reader not so interested in the details, the summary of the discussion of the fol-

lowing section is that after properly performing the supersymmetric “photon-dual photon”

duality transformation, the dimensionless chiral superfield B dual to the abelian vector

multiplet (in 3d, equivalent to a real linear multiplet), describing A4 and the 3d photon, is

such that its lowest component is:

B| = b′ − f
(

1

2
+

g2

8π2
b′
)
− iσ . (A.28)

In terms of the chiral superfield (A.28), the superpotential is holomorphic and is of the

well-known affine-Toda form, W ∼ e−B + eB. In the next section, we discuss the details of
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the duality transformation and the interpretation of the function f in (A.28) as encoding

perturbative corrections to the moduli space metric on R3 × S1. We recall again that f

is nonzero only away from the center-symmetric point, thus the extremal point of W (B),

B = 0, still corresponds to the center-symmetry preserving vacuum b′ = 0, in accord with

the conclusions from the earlier work [12, 40].

A.3 Linear-chiral superfield duality

The dimensional reduction of an abelian 4d vector multiplet to 3d is described as a real

linear multiplet, W , defined as:11

W =
1

2
σ̄3 α̇αD̄α̇DαV, (A.29)

where V is the usual real vector superfield in 4d (dimensional reduction in (A.29) as written

is performed along the x3 direction and, hence, the lowest component of (A.29) is W | = A3).

The field W obeys the linear multiplet relations D2W = D̄2W = 0 and is invariant under

the usual (3d) supergauge transformations V → V − i(Λ− Λ†). The lowest component of

W , as already indicated, is the real scalar in the 3d vector mulitiplet (i.e., is related by

rescaling to our fields b or b′), while the other terms in its superspace expansion involve

the fermions and the U(1) gauge field strength. As defined above, the dimension of W is

unity. The minimal kinetic term for the vector multiplet is given by the first term in the

D-term action given below: ∫
d4θd3x

(
− 1

2e2
W 2 − F (W )

)
, (A.30)

while the function F (W ) incorporates possible nonlinear corrections to the kinetic terms.

The action (A.30) is the most general two-derivative one involving the linear multiplet

(note that W can not appear in integrals over half-superspace). The coupling e2 in (A.30)

has unit mass dimension and denotes the 3d gauge coupling; clearly, e2 or another mass

scale must be present in F (W ). The kinetic term of the lowest component of W , which we

denote by w in this section (W | ≡ w), hoping not to cause confusion, reads:∫
d3x

1

2

(
1

e2
+ F ′′(w)

)
∂mw∂

mw . (A.31)

For the theory to make sense, the function 1
e2

+ F ′′(w) (the “tau-parameter,” or moduli

space metric), which also determines the effective U(1) coupling along the Coulomb branch,

has to be positive.

Linear-chiral duality is performed via a Legendre transformation as follows:∫
d4θd3x

(
− 1

2e2
W 2 − F (W ) + (B† +B)W

)
. (A.32)

The dimensionless chiral superfield B is introduced as a Lagrange multiplier and W is now

regarded as an unconstrained real superfield. Variation with respect to B and B†, taking

11Our notation, including the supercovariant derivatives and V , is that of Wess and Bagger [47].
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into account the chirality constraint DαB
† = D̄α̇B = 0, enforces the linear multiplet

conditions D̄2W = D2W = 0 on the real superfield W .

On the other hand, a variation of (A.32) with respect to W gives:12

B +B† =
1

e2
W + F ′(W ) . (A.33)

The equation of motion (A.33) can be inverted, e.g. perturbatively, to give W = e2(B +

B†)+ . . ., and upon plugging the solution of (A.33) in (A.32), one is left with a dual theory

of chiral superfields given by:∫
d4θd3x K(B +B†) =

∫
d4θd3x

(
e2

2
(B +B†)2 + . . .

)
=

∫
d4θd3x

(
e2B†B + . . .

)
,

(A.34)

where the dots denote higher order terms determined by the form of F (W ). For a recent

reference, see, for example, [49]. The point of the discussion above is that the relation

between the real part of the lowest component of the dual chiral superfield B and the

lowest component of the linear superfield W is simple — i.e., linear — only if the function

F (W ) is quadratic, i.e., if there are no nontrivial corrections to the kinetic terms of the

b′ ∼ w field. In general, this relation can be complicated.

In particular, in our case of interest, the duality transformation on R3×S1 is performed

after Kaluza-Klein modes are integrated out. Integrating out the KK modes generates

nontrivial corrections to the kinetic terms of A4 and 3d photon. As we will now see, these

perturbative corrections are precisely related to the function f (A.26) representing the ratio

of nonzero modes’ fermionic and bosonic determinants around the BPS and KK monopole

instantons. To see this, let us now apply the duality transformation to our theory. As

already noted, eq. (A.33) determines the lowest component of X in terms of w(x) and the

dual photon σ(x):

B| = 1

2e2
w +

1

2
F ′(w)− iσ , (A.35)

which, upon comparison to (A.28) immediately implies that:

b′(x) ≡ 1

2e2
w(x) and F ′(w) ≡ −2f

(
1

2
+

g2

16π2e2
w

)
. (A.36)

Then, we can use (A.36) to compare the leading order kinetic term of w, eq. (A.31), with

that of b′, eq. (A.27), and find:

e2 =
g2

64π2L
. (A.37)

We can now use the explicit form (A.26) of f and (A.37) to find that the corrections

to the kinetic term for w (A.31) are determined by the effective “tau parameter”:

1

e2
+ F ′′(w) =

64π2L

g2
− 8Lf ′

(
1

2
+ 4Lw

)
(A.38)

=
64π2L

g2
− 24L

1

x
+
∑
p>0

1

p− x
+

1

p+ x

 ∣∣∣∣
x→ 1

2
+4Lw

. (A.39)

In the last line, we used eq. (A.26) for f(x) and denoted f ′(x) ≡ df(x)/dx.

12Notice that this relation also implies that the fermion components of B are slightly different from the

fermionic components of W ; we will ignore this in what follows.

– 33 –



J
H
E
P
1
0
(
2
0
1
2
)
1
1
5

In order to interpret the corrections, we rewrite (A.38) as:

1

e2
+ F ′′(w) = 64π2

 L

g2
− 3L

8π2

1

x
+
∑
p>0

1

p− x
+

1

p+ x

 ∣∣∣∣
x→ 1

2
+4Lw

 (A.40)

It is most straightforward to first consider the purely-3d limit L → 0, L
g2 -fixed. In this

case, the sum over p > 0 in (A.40) drops out and only the first term in the square brackets

survives. Recall that g2 is taken at the scale 4π
L , which is now the 3d UV cutoff scale (the

bare 3d coupling is L
g2 ). The coupling (A.40) can be rewritten, using x = vL

2π , as:

1

e2
+ F ′′(w) = 64π2

(
L

g2
− 3L

8π2

2π

vL

)
= 64π2

(
L

g2
− 3

4πv

)
. (A.41)

The 3
4πv shift of L

g2 in (A.41) represents exactly the one-loop shift of the bare 3d gauge

coupling L
g2 due to integrating out the 3d heavy vector multiplet — the heavy W -boson

and superpartner, of mass ∼ v, along the Coulomb branch parameterized by v in an SU(2)

theory. This one-loop shift was calculated in [50], see eq. (83) there.13 Note that we

obtained the same result as [50] by a rather roundabout way — by calculating the ratio of

determinants of nonzero modes in the monopole-instanton background and then demanding

consistency of the result with holomorphy of the superpotential. While this may appear

miraculous, the matching of the results had to be true, by the power of supersymmetry.

Going back to finite-L, i.e. to R3× S1, the interpretation of the other terms appearing

in (A.40) is now clear. The sum over p > 0 represents the effect of the Kaluza-Klein

partners of the heavy vector multiplets on the unbroken-U(1) gauge coupling; recall that

at every KK level with p > 0, there are two heavy vector multiplets of mass 2pπ
L ± v.

We are not aware of an explicit perturbative calculation of this in a compactified N = 1

theory however, similar to the purely-3d four supercharge case and to the N = 2 4d

theory,14 and given the suggestive form of the KK sum in (A.40), it is natural to conjecture

that, by supersymmetry, the nonvanishing ratio of nonzero modes determinants around the

monopole-instanton solutions precisely encodes the one-loop corrections to the U(1) gauge

coupling.

In our discussion in the main text, we have ignored the non-canceling nonzero mode

determinants. This is because their net effect is to modify the Kähler potential for the

chiral superfield B, see eq. (A.35), by small loop-suppressed terms. Our main concern is

the competition between nonperturbative effects at weak coupling, while the perturbative

deformation of the Kähler potential (2.10) provides only small corrections to the leading

order semiclassical results.

13The factor of 64π2 represents an overall normalization factor; note that ref. [50] calculated precisely the

“running” of the 3d coupling from the bare value L
g2

to the value at scales below v, with a result exactly as

given in the brackets in (A.41).
14See section 4.1 in [51] for an expression, similar to (A.40), for the one-loop correction to the moduli

space metric of the N = 2 theory on R3 × S1, valid also on the Coulomb branch with only a Wilson line

turned on.
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B The monopole-induced potential in softly-broken SYM

In this appendix, we determine the prefactor of the monopole instanton amplitude in softly

broken N = 1 theory on R3 × S1. From [12], the collective coordinate measure for M1

(BPS) monopole-instantons in SU(2) gauge theory, is:∫
dµBPS =

M3
PV L

2πg2

∫
d3a dφ d2ζ e−b+iσ , (B.1)

where b = 〈b〉 + b(a), σ = 〈σ〉 + σ(a). The three-dimensional vector a denotes the collec-

tive coordinate representing the center of the monopole, φ is the angular U(1) collective

coordinate, ζα are the two Grassmann fermion zero mode coordinates, and the prefactor

represents the product of all collective coordinate Jacobians.

Now, we add the fermion mass term ∆Lm = m
g2 tr[λλ], see (2.32), to the Lagrangian

of SYM. In order to obtain the contribution of, for example, the M1 (or BPS) monopole-

instanton to the potential for b and σ, we saturate the integral over the fermion zero modes

by a single mass-term insertion:∫
dµBPS e

−∆Sm ≈ −
M3
PV L

g2

∫
d3a e−b+iσ

mL

g2

∫
d2ζ d3x tr

[
λ0(x− a)λ0(x− a)

]
, (B.2)

where ∆Sm =
∫
d4x∆Lm and λ0(x− a) is the fermion zero mode of the monopole located

at a. Next we note that L
g2

∫
d2ζ d3x tr[λ0λ0] is exactly the fermion zero-mode Jacobian

calculated in [41], which is equal to 2SM1
cl = 2b. Collecting all factors, we conclude that

the contribution of a M1 monopole-instanton to the potential is:

∆VM1 =
2mM3

PV L

g2
b e−b+iσ . (B.3)

Proceeding similarly, we find that the M2 (or KK) monopole-instanton contributes, using

its action SM2
cl = 8π2

g2 − b instead:

∆VM2 =
2mM3

PV L

g2

(
8π2

g2
− b
)
e
− 8π2

g2
+b−iσ

. (B.4)

To obtain the total O(m) contribution to the scalar potential, we now sum over the con-

tributions of the two monopole-instantons and their complex conjugates:

Vmon. = ∆VM1 + ∆VM2 + h.c. (B.5)

=
32π2mM3

PV L

g4
e
− 4π2

g2 cosσ

(
cosh b′ − g2

4π2
b′ sinh b′

)
. (B.6)

Finally, we use the relations (2.16), to cast Vmon. into the form given in (2.33).
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