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Abstract: The conventional S-matrix approach to the (tree level) open string low energy

effective lagrangian assumes that, in order to obtain all its bosonic α′N order terms, it is

necessary to know the open string (tree level) (N+2)-point amplitude of massless bosons, at

least expanded at that order in α′. In this work we clarify that the previous claim is indeed

valid for the bosonic open string, but for the supersymmetric one the situation is much more

better than that: there are constraints in the kinematical bosonic terms of the amplitude

(probably due to Spacetime Supersymmetry) such that a much lower open superstring

n-point amplitude is needed to find all the α′N order terms. In this ‘revisited’ S-matrix

approach we have checked that, at least up to α′4 order, using these kinematical constraints

and only the known open superstring 4-point amplitude, it is possible to determine all the

bosonic terms of the low energy effective lagrangian. The sort of results that we obtain

seem to agree completely with the ones achieved by the method of BPS configurations,

proposed about ten years ago. By means of the KLT relations, our results can be mapped

to the NS-NS sector of the low energy effective lagrangian of the type II string theories

implying that there one can also find kinematical constraints in the N -point amplitudes

and that important informations can be inferred, at least up to α′4 order, by only using

the (tree level) 4-point amplitude.
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1 Introduction

The low energy effective lagrangian in String Theory is a very old subject, dating back to

the beginnings of the theory, when it became clear that, in the limit of very low energies,

it reproduces the (tree level) scattering amplitudes of General Relativity and Yang-Mills

theories. More precisely, it was known that it adds α′ correction terms to the lagrangians

of these theories [1], where α′ is the string fundamental constant.

In the mid-eighties , after the understanding that consistency conditions of String The-

ory (quantum conformal invariance) demand that the extrema of the low energy effective

action be related to the zeroes of the Sigma model beta function [2, 3], interest arised

in calculating exactly the first α′ correction terms in the low energy effective actions of

superstrings [3, 4]. One of the amazing results that was found by that time is that the

Born-Infeld lagrangian (and its corresponding supersymmetric version, in the case of super-

strings) is the low energy effective lagrangian for abelian open strings, as long as Fµν is kept

constant [3, 5]. This result was reproduced afterwards as well, independently, in [6–8].1

Unfortunately, in the nonabelian case there is not such a nice result. There does exist

a ‘Symmetrized Trace’ proposal for the nonabelian Born-Infeld lagrangian [10], and this

proposal indeed works at α′2 order, but is clear from the [D,D]· = [F, ·] identity (see

eq. (A.8)), that covariant derivative terms are as important as the ones without derivatives

and, therefore, they cannot be ignored as it happens in the abelian theory. Also, it is clear

that the Symmetrized Trace prescription does not work already at α′3 order since the usual

Born-Infeld lagrangian only contains even powers of α′ and it is known that the α′3 terms

are not zero in the nonabelian low energy effective action [11–16].

Another approach that could be used to obtain the low energy effective action is κ-

symmetry. Although this approach works in the abelian case, it was seen in [17] that in

the nonabelian case it fails at α′3 order. So, for the nonabelian case, besides the results

obtained in [18] and [19], there does not exist an all α′ order result (like the Born-Infeld

one, in the abelian case).2,3

1Recently, using a pure spinor framework, the abelian supersymmetric Born-Infeld theory has been for-

mulated by means of a polynomial lagrangian which, besides the free term, contains only 4-point interaction

terms [9].
2The results in [18] and [19] have been obtained using 4 and 5-point amplitudes and, therefore, only

determine terms of the nonabelian lagrangian which are sensible to those n-point amplitudes. For example,

the α′
4
F 6 terms are not present in these references.

3A later and independent calculation of the D2nF 4 terms, at every α′ order, was done in [20], also

considering the open superstring 4-point amplitude.
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In the mid-nineties, after the discovery that D-branes participate in String Theory as

non-perturbative objects [21] and that D-brane effective actions can be obtained equiv-

alently by means of low energy limit of open superstring interactions [22], new interest

arised in the calculation of terms of the low energy effective lagrangian (see [14, 23–26], for

example). Before the work in [16], the S-matrix approach for the α′ correction terms in the

low energy effective action had been only used with knowledge of 4-point amplitudes [12],

which was already insufficient to determine all the α′3 terms. Alternative methods, mainly

based on Supersymmetry, arised to obtain the complete list of nonabelian terms at each

order in α′, whenever possible [13, 15, 27–34]. In some cases these methods obtained the

complete superinvariant at a given order in α′, either in component fields [29, 30, 33, 34]

or in terms of superfields [28, 31] (in the case of D=4). In some other cases these methods

could only obtain some of the bosonic and fermionic terms, like in [15], but they were

capable of proving that there is a unique superinvariant at that α′ order. The thing is

that, in order to go to higher orders in α′, these Supersymmetry based methods usually

require to know, at some moment, all the bosonic and fermionic terms of the lagrangian at

a lower order in α′, and this demands an enormous effort. In order to get contact with the

open superstring low energy effective lagrangian (OSLEEL) all these methods required at

some moment information from the (tree level) open superstring 4-point amplitude.

There is an additional alternative method that was not mentioned in the previous

paragraph because it is not directly related to Supersymmetry, but it has the virtue of

obtaining the bosonic terms of the OSLEEL correctly [14] without having to deal with

the fermionic ones. Besides the α′2 terms, the results obtained by this method have been

checked at α′3 order [16, 35] and there is evidence, in the self consistency of its calculations

and also when considering its abelian limit, that its bosonic α′4 terms are also correct [25].

This method consists in working with BPS configurations in the deformed Yang-Mills

lagrangian [36] and it is due to Koerber and Sevrin.

Actually, a complete low energy description of D-branes not only depends on the

Dirac-Born-Infeld lagrangian (which already describes interactions between open and closed

strings), but also on the Wess-Zumino lagrangian (which considers the interactions between

open strings and the Ramnod-Ramond sector of closed strings; see, for example, the intro-

duction of [37] for a recent review on the subject and references [38, 39] for several attempts

with non-BPS branes.). A revival on S-matrix calculations to determine the D-brane low

energy effective lagrangian terms (besides the pure gauge field ones) and also to determine

the Wess-Zumino lagrangian terms is been going on this year [40, 41].

In this work we will focus only in gauge boson string interactions. We propose a

‘revisited’ S-matrix approach to obtain the bosonic terms of the (tree level) OSLEEL. We

have called it ‘revisited’ in order to distinguish it from the ‘conventional’ one because it

consists in a convenient way of dealing with the S-matrix calculations. The procedure

takes into account an important kinematical constraint that arises in the calculations of

the scattering amplitudes of open superstrings, namely, the absence of (ζ · k)N terms in

the N -point scattering amplitude of gauge bosons. This constraint is not expected to

– 2 –
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be present in the corresponding calculations with open bosonic strings.4 It leads to a

set of conditions that the coefficients of the OSLEEL should obey, reducing enormously

the number of unknown ones present in that lagrangian at a given order in α′. These

conditions are such that, at least up to α′4 order, all bosonic terms of the OSLEEL can

be determined by purely using the known open superstring 4-point amplitude. No higher

N -point amplitude from Open Superstring Theory is required5 and this is the main remark

of our revisited S-matrix method. This is the same type of result obtained by the method

of BPS configurations [25].

The structure of this work is as follows. In section 2 we do a brief review of the

conventional S-matrix approach to the low energy effective lagrangian in Open String

Theory. We present enough material to claim that the way this method works, when

considered at the level of the bosonic terms of the low energy effective lagrangian, it

apparently makes no difference between the bosonic and the supersymmetric open string

calculations. In section 3 we present the ‘revisited’ S-matrix method approach to the

OSLEEL, explaining its main difference with the conventional one. As concrete examples

of the ‘revisited’ S-matrix method, in sections 4 and 5 we apply it to the determination of

the OSLEEL up to α′4 order.6 In section 6 we end this work by giving a brief summary

of our work and also mentioning future contributions that will come out as results that

arose from our present investigation. We also comment there on the implications that our

results have for the NS-NS sector of the type II String Theories once one considers the

KLT relations [43].

The main body of this work is complemented with a series of appendices which are

important to support claims and intermediate calculations which were omitted on it.

Through out this work all our scattering amplitude calculations are tree level ones

and, therefore, the terms of the low energy effective lagrangian that we deal with are only

‘single’ trace ones. Every time that we refer to a scattering amplitude it is understood that

it is a tree level one (unless explicitly specified something different).

2 Brief review of gauge boson scattering amplitudes and low energy

effective theory in Open String Theory

In this section we briefly review the conventional S-matrix approach to the low energy

effective lagrangian in Open Superstring Theory.

4As will be seen on this work, it is a confirmed fact that the constraint does not appear in 3 and 4-point

amplitudes and, based on a general argument, it is not expected to appear in higher N -point amplitudes,

as well.
5Notice that, since the bosonic terms at α′

4
order have the general form F 6 +D2F 5 +D4F 4, in order to

find explicitly those terms the ‘conventional’ S-matrix method would require an open superstring 6-point

amplitude, expanded at that α′ order.
6We remind the reader that α′

4
is the highest order for which the nonabelian bosonic terms of the

OSLEEL have been completely obtained explicitly up to this moment [25]. In ref. [34], using a spinorial

cohomology approach (which is related to the pure spinor formalism in D=10), a proof has been given for

the existence of α′
4

superinvariant as a deformation of the α′
2

one and an algorithm is provided to find all

its terms, but there it is not given an explicit expression of the bosonic α′
4

terms.

In the case of the abelian theory at α′
4

order, a supersymmetric version of it has been obtained in [42].
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2.1 Tree level gauge boson interactions in Open String Theory

Tree level scattering amplitudes of bosonic states in (non-abelian) Open Superstring Theory

are given by a sum of (color ordered) subamplitudes [44]:

AN = i(2π)10δ10(k1 + . . .+ kN )

[
tr(λa1λa2 . . . λaN ) A(1, 2, . . . , N) +

(
non− cyclic

permutations

) ]
,

(2.1)

where the subamplitude A(1, 2, . . . , N) is given by an integrated vacuum average of vertex

operators inserted on the boundary of a disk in the ordering (1, 2, . . . , N) [45, 46]:

A(1, 2, . . . , N) = gN−2

∫
dµ(z) < V̂1(z1, k1)V̂2(z2, k2) . . . V̂N (zN , kN ) > , N ≥ 3 . (2.2)

In (2.2) g is the open string coupling constant and dµ(z) is the SL(2,R) invariant measure

associated to the coordinates z1, z2, . . ., zN .

In formula (2.1) AN has been written as a sum of (N −1)! contributions, each of them

containing a trace color factor. In the case of Bosonic Open String Theory these factors

terms are generally independent, but in the case of Supersymmetric Open String Theory

the gauge group matrices λa’s are in the adjoint representation (see eq. (A.4)) and this

implies that in those (N − 1)! trace factors only half of them are independent, because in

that representation it is valid that

tr(λa1λa2 . . . λaN ) = (−1)N tr(λaNλaN−1 . . . λa1) . (2.3)

This fact will be of importance in the results that we will present in section 5 (based on

the calculations the we explain in appendix F).

In the case of the open superstring, described in the F1 picture (old covariant ap-

proach) [45],7

V̂ (ζ, k, z) = λ : (ζ · ∂X̂(z)− i(2α′)(ζ · ψ̂)(k · ψ̂)) eik·X̂(z) : , (2.4)

and after introducing convenient Grassmann variables θi and φj , (2.2) may be proved to

become8

A(1, 2, . . . , N) = 2
gN−2

(2α′)2
(xN−1−x1)(xN−x1)

∫ xN−1

0
dxN−2

∫ xN−2

0
dxN−3 . . .

∫ x3

0
dx2 ×

×
∫
dθ1 . . . dθN−2

N∏
p<q

(xq − xp − θqθp)2α′kp·kq ×
∫
dφ1 . . . dφN

×exp

 N∑
i 6=j

(2α′)1(θj − θi)φj(ζj · ki)− 1/2 (2α′)1φjφi(ζj · ζi)
xj − xi − θjθi

 . (2.5)

7The factors λ, which appears in (2.4), is a constant which depends on α′ and may be explicitly deter-

mined by demanding unitarity relation for the N -point amplitude to be satisfied [46].
8In (2.5) it is only understood that θN−1 = θN = 0. We will afterwards set x1 = 0, xN−1 = 1, xN = +∞.

Formula (2.5) has been taken from eq. (2.2) of [16] and then a rescaling in the φi variables, by a factor of

(2α′)7/4, has been done.
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The subamplitude A(1, . . . , N), given in (2.5), satisfies important symmetries, such as (on-

shell) gauge invariance, cyclic symmetry and twisting (world-sheet parity) symmetry [44].

These symmetries provide a non trivial test that the explicit kinematical expression of

A(1, . . . , N) should obey.

Recently, it has been proved that the set of all N -point color ordered subamplitudes,

in bosonic as well as supersymmetric Open String Theory, can be expanded in a minimal

basis of (N − 3)! subamplitudes [47, 48].

In the next subsection we will explicitly see that the open string coupling constant g

may be identified with the Yang-Mills coupling constant, gYM.

2.1.1 3 and 4-point amplitudes

On kinematical basis it may be argued that the 3-point amplitude, A3, for massless external

states is zero, unless all three momenta are collinear. Along the formulas we presented in

the previous subsection this can be seen in equation (2.1), since for N = 3 (and k2
1 = k2

2 =

k2
3 = 0) we have that δ10(k1 + k2 + k3) = 0.9

But the 3-point subamplitude, A(1, 2, 3), is not zero. Its expression is important, for

instance, in the determination of the low energy effective lagrangian.

Using formula (2.5) in the case of N = 3 leads to [44]

A(1, 2, 3) = 2g
[

(ζ1 · k2)(ζ2 · ζ3) + (ζ2 · k3)(ζ3 · ζ1) + (ζ3 · k1)(ζ1 · ζ2)
]
, (2.6)

that is, it agrees exactly with the corresponding Yang-Mills 3-point subamplitude, after

identifying g with gYM.

Now, in the case of N = 4, the expressions for the gauge boson subamplitude is given

by [44]

A(1, 2, 3, 4) = 8 g2 α′
2 Γ(−α′s)Γ(−α′t)
Γ(1− α′s− α′t)

K(ζ1, k1; ζ2, k2; ζ3, k3; ζ4, k4) , (2.7)

where K is the 4-point kinematic factor (which contain no poles) given in formula (C.1) of

appendix C.

The s and t appearing in (2.7) are part of the Mandelstam variables:

s = −(k1 + k2)2 , t = −(k1 + k4)2 , u = −(k1 + k3)2 . (2.8)

These variables satisfy the condition

s+ t+ u = 0 . (2.9)

Using momentum conservation, the physical state and the mass shell conditions (ζj ·kj = 0

and k2
j = 0, respectively), it is not difficult to see that the 3 and 4-point subamplitudes that

we have presented in this subsection satisfy (on-shell) gauge invariance, cyclic symmetry

and world-sheet parity (that in ref. [19] we have called ‘twisting’ symmetry).

9Unless kµi = 0 for one of the three states, which really means that there are only two physical states

at all.

– 5 –
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2.2 Explicit structure of the low energy effective lagrangian up to α′3 order

In this subsection we will concentrate on the bosonic terms of the OSLEEL. Here we will

not give the details of how to construct a complete list of independent terms at each order

in α′ in Leff . It is well known that the procedure to do so involves using integration by

parts, the Bianchi identity, (A.9), and the [D,D]· = [F, ·] identity, (A.8). In the literature

this has been done up to α′4 terms (see [10, 14, 26] and [25], for example). We will quote

a reference whenever we need this list of terms at some order in α′.

It is important to remark that the explicit structure of the terms of the low energy

effective lagrangian will not just be the one that one arrives to following the procedure

mentioned up to here since this lagrangian needs only to reproduce on − shell scattering

amplitudes. It turns out that some terms of the lagragian are not sensible to S-matrix

calculations, or equivalently, their coefficients will not remain unchanged under field redef-

initions, so they are of no importance for the low energy effective lagrangian. Those terms

will be discarded after being identified.

2.2.1 Low energy effective lagrangian up to α′2 terms

The calculation on the nonabelian Born-Infeld lagrangian up to α′2 terms has been done

in many places in the literature. We will follow section 7 of Tseytlin’s paper [10], where

it was found that one possibility of writing down the lagrangian as a sum of independent

terms is the following:

Leff =
1

g2
tr

[
− 1

4
FµνFµν + (2α′)1

(
a1F

λ
µ F ν

λ F µ
ν + a2D

λF µ
λ DρFρµ

)
+

(2α′)2
(
a3F

µλF νλF
ρ
µ Fνρ + a4F

µ
λF

λ
ν F νρFµρ + a5F

µνFµνF
λρFλρ +

a6F
µνF λρFµνFλρ + a7F

µνDλFµνD
ρFρλ + a8D

λFλµD
ρFρνF

µν +

a9D
ρDλFµλDρD

σFσµ

)
+O((2α′)

3
)

]
. (2.10)

It was seen in [10] that, after examining the possibility of field redefinitions, the coefficients

{a2, a7, a8, a9} remain arbitrary and thus are not sensible to any S-matrix calculation, so

they may be chosen to be zero, leading to

Leff =
1

g2
tr

[
− 1

4
FµνFµν + (2α′)1a1F

λ
µ F ν

λ F µ
ν +

(2α′)2
(
a3F

µλF νλF
ρ
µ Fνρ + a4F

µ
λF

λ
ν F νρFµρ +

a5F
µνFµνF

λρFλρ + a6F
µνF λρFµνFλρ

)
+O((2α′)

3
)

]
. (2.11)

2.2.2 Low energy effective lagrangian at α′3 order

In [14], for the α′3 terms in (2.11) it was found a 36-dimensional basis (containing 6 F 5

terms, 24 D2F 4 terms, 5 D4F 3 terms and 1 D6F 2 term). After discarding the terms which

– 6 –
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are sensible to field redefinitions, in [14] it was seen that that the remaining lagrangian has

the following 13 terms:

Leff
(3) =

(2α′)3

g2
tr
[
a10F

ν
µ F λ

ν F ρ
λ F

σ
ρ F µ

σ +a11 F
ν
µ F λ

ν F ρ
λ F

µ
σ F σ

ρ +a12 F
ν
µ F λ

ν F µ
σ F ρ

λ F
σ
ρ +

a13F
ν
µ F σ

ρ F λ
ν F µ

σ F ρ
λ +a14F

ν
µ F λ

ν F µ
λ F σ

ρ F ρ
σ +a15F

ν
µ F λ

ν F σ
ρ F µ

λ F ρ
σ +

a16

(
DµF

λ
ν

)(
DµF ρ

λ

)
F ν
σ F σ

ρ +a17

(
DµF

λ
ν

)
F ν
σ

(
DµF ρ

λ

)
F σ
ρ +

a18

(
DµF

λ
ν

)(
DµF ν

λ

)
F σ
ρ F ρ

σ +a19

(
DµF

λ
ν

)
F σ
ρ

(
DµF ν

λ

)
F ρ
σ +

a20

(
DσF

ν
µ

)
F ρ
λ

(
DµF λ

ν

)
F σ
ρ +a21F

ν
µ

(
DµF λ

ν

)
F σ
ρ

(
DσF

ρ
λ

)
+

a22F
ν
µ

(
DµF ρ

λ

)(
DσF

λ
ν

)
F σ
ρ

]
.

(2.12)

2.3 Basics of the conventional S-matrix approach to the low energy effective

lagrangian

The conventional S-matrix method consists in determining the coefficients of the low energy

effective lagragian using the known expression of the on-shell scattering amplitudes from

String Theory. More specifically, in the case of the bosonic terms, in order to determine

the α′N order terms in Leff it is necessary to know the previous α′k order terms of it

(k = 1, . . . , N − 1)10 and it is also necessary to know the (N + 2)-point gauge boson

amplitude (where N ≥ 1) from Open String theory, expanded at that order in α′. For

example, to determine the (2α′)F 3 terms it is necessary to know the 3-point amplitude,

to determine the (2α′)2F 4 terms it is necessary to know the 4-point amplitude, and so on.

What one does is to compute the (N + 2)-point gauge boson subamplitude from the α′N

order terms of Leff and then compares this expression (which is a linear function of the

unknown coefficients aj) with the corresponding one coming from String Theory at that α′

order. This determines uniquely those coefficients. For example, in the case of the 3-point

subamplitude that comes from Leff in (2.11), using Feynman rules it is easy to arrive at

the following expression for it:11

A(1, 2, 3) = AYM(1, 2, 3) + 6 i a1 g (2α′)1 (ζ1 · k2)(ζ2 · k3)(ζ3 · k1) . (2.13)

Comparing this expression with the one for A(1, 2, 3), given in (2.6), respectively, we

find that a1 = 0 for the supersymmetric open string. In this case there is only one

equation for a1.

It is known that the analogue procedure in the case of the 4-point subamplitude,

leads to [3]

a3 = π2/12 , a4 = π2/24 , a5 = −π2/48 , a6 = −π2/96 . (2.14)

An important fact, about the determination of the previous coefficients, is that the linear

system of equations for them is overdetermined (consistently). This means that it is not

10In the case of the open superstring it is only necessary to know the previous α′
k

order terms, with

k = 1, . . . , N − 2.
11Along this work AYM(1, . . . , N) will denote the tree level Yang-Mills N -point subamplitude.

– 7 –
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necessary to know the complete expression of the amplitude in order to find the coefficients.

For example, in the case of the 4-point amplitude it is sufficient to compare the (ζ · ζ)2

terms of (2.7) with the corresponding ones of A(1, 2, 3, 4), at α′ and α′2 order [3]. What

happens is that the terms of the amplitude that were not considered to find the coefficients

aj can all be determined from the first ones by demanding (on-shell) gauge invariance and

cyclic symmetry.

For N ≥ 5, at first sight, there arise two complications in the S-matrix computations

of Open Superstring Theory:

1. The number of terms that appear in the N -point subamplitude grows considerably.

2. The determination of the numerical coefficients of each kinematical term of the sub-

amplitude is not straight forward (as in the N = 4 case).

For example, in the case of N = 5 direct application of formula (2.5) leads to an expression

which has more than 140 terms, of the following form:12

A(1, 2, 3, 4, 5) = 2 g3 (2α′)2
{
L3(ζ1 · ζ2)(ζ3 · ζ4)(ζ5 · k2)(k1 · k3) +(

44 (ζ · ζ)2(ζ · k)(k · k) terms
)

+

K2(ζ1 · ζ4)(ζ5 · k2)(ζ2 · k1)(ζ3 · k4) +(
99 (ζ · ζ)(ζ · k)3 terms

)}
. (2.15)

In this last formula L3 and K2 are momentum dependent factors (which also depend on

α′) given by double integrals:{
L3

K2

}
=

∫ 1

0
dx3

∫ x3

0
dx2x

2α′α12
2 (1−x2)2α′α24x2α′α13

3 (1−x3)2α′α34(x3−x2)2α′α23

{ 1
x2x3(1−x3)

1
x2(1−x3)

}
,

(2.16)

where αij = ki ·kj . They can be calculated in terms of Beta and Hypergeometric functions.

Although not immediately, the coefficients of the first terms of their α′ expansion can be

obtained,13 for example [16]

K2 =
1

(2α′)2

{
1

α12 α34

}
− ζ(2)

{
α51 α12 − α12 α34 + α34 α45

α12 α34

}
+

ζ(3)(2α′)

{
α2

12α51−α2
34α12+α2

45α34+α2
51α12−α2

12α34+α2
34α45−2α12α23α34

α12 α34

}
+

O((2α′)2) . (2.17)

The complication mentioned above, in item 1, has been recently circumvented in ref. [51]

by finding a general compact formula for the open superstring N -point subamplitude: it

can be shortly written in terms of a basis of (N − 3)! Yang-Mills subamplitudes, each of

12See eq. (5.29) of [16] for the complete detailed formula.
13These coefficients can be calculated, for example, using techniques of Harmonic Polylogarithms [49] or

Harmonic Sums [50], which are nowadays perfectly understood.
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them being multiplied by an identified (N − 3)-dimensional multiple integral.14 So this

avoids enormously dealing with long expressions like the one in (2.15), but still, in order

to obtain the (2α′)N−2FN terms of the low energy effective lagrangian, it is necessary to

compute the α′N−2 coefficients of the mentioned (N − 3)-dimensional multiple integrals

(like the ones in (2.16) and (2.18)).

For example, besides the case of K2 (mentioned in (2.16) and (2.17)), in the case of the

6-point amplitude, one of the many triple integrals that appears is the following [52, 53]:

I3 =

∫ 1

0
dx4

∫ x4

0
dx3

∫ x3

0
dx2 x2

2α′α12 x3
2α′α13 x4

2α′α14−1 (x3−x2)2α′α23−1 (x4−x2)2α′α24 ·

(x4−x3)2α′α34−1(1−x2)2α′α25−1 (1−x3)2α′α35(1−x4)2α′α45 ,

(2.18)

which has an α′ expansion which begins like [54]15

I3 =
1

(2α′)3

[(
1

α23α16t234
+

1

α34α56t234

)
+

(
1

α34α16t234
+

1

α23α56t234

)]
+

ζ(2)

(2α′)1

[
−
(

α16

α23t234
+

α56

t234α34

)
+

(
1

α56
+

1

α16

)
−
(

α23

t234α56
+

α34

t234α16

)
+

(
1

α23
+

1

α34

)
−(

α23

t234α16
+

α34

t234α56

)
−
(

α12

α56α34
+

α45

α23α16

)
−
(

α56

α23t234
+

α16

t234α34

)
−(

t345

α34α16
+

t123

α23α56

)]
+O((2α′)0) , (2.19)

where, besides αij = ki · kj , in (2.19) we are calling tijk = αij + αik + αkj [52].

So, at the end, in order to calculate the coefficients of the open string low energy

effective lagrangian at a given order in α′, the main difficulty that nowadays exists is

the one mentioned above, in item 2, namely, finding the explicit α′ expansion of certain

(N − 3)-multiple integrals (for N ≥ 7).

So this is the basics of the conventional S-matrix method. Although here we only men-

tioned the scattering amplitudes of gauge bosons, in the case of Open Superstring Theory

it applies exactly in the same way to obtain the fermionic terms of the OSLEEL, by con-

sidering the scattering amplitudes of bosons and fermions. We have called it ‘conventional’

in order to distinguish it from the ‘revisited’ one, that we will present in this work.

What we would like to remark at this point is that, independently of working in

Bosonic or in Supersymmetric Open String Theory,16 as long as we are considering only

14In fact, the result of ref. [51] is much more complete, in the sense that the whole N -point subamplitude

(the one that includes gauge bosons and gauginos) has been calculated in terms of Super Yang-Mills N -point

subamplitudes, using a Pure Spinor formalism.
15In the literature, the α′ expansions of tree level 6-point integrals seem to have first appeared in ref. [52].

On this reference a detailed study of the open superstring 6-point amplitude was done. It was also explained

there how to compute the coefficients of the kinematical terms using Euler sums, but due to the lengthness

of the formulas, not all of the α′ expansions were explicitly given. The result we have cited for eq. (2.19),

namely ref. [54], has calculated this expansion independently of the calculations of ref. [52], using Harmonic

Sums techniques [50].
16The N -point amplitude for gauge bosons in the case of Bosonic open String Theory has a known

expression, similar to the one we have reviewed in eq. (2.5).
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interactions of gauge bosons, the conventional S-matrix approach to the low energy effective

lagrangian makes no difference between the calculations done with done with A(1, . . . , N)

in the bosonic or in the supersymmetric theory: in both cases one has to deal with α′

expansions of (N − 3)-multiple integrals and with kinematic expressions and one has to

match these amplitudes with the ones that come from the same general low energy effective

lagrangian, that is, the one that is given by eqs. (2.11) and (2.12), and higher order α′ terms.

Apparently, there is no peculiarity (besides dealing with extra Grassmann variables) in

computing gauge boson interaction terms when one deals with a supersymmetric theory.

3 Revisiting the S-matrix approach to the low energy effective lagrangian

From the list of methods to arrive to the nonabelian low energy effective lagrangian that

were mentioned in the Introduction (section 1), for Open Superstring Theory, only the

S-matrix approach and the one that deals with BPS configurations (due to Koerber and

Sevrin) are capable of finding the bosonic terms without having to deal directly with the

fermionic ones. In this section we will present our revisited S-matrix approach.

The main observation of our revisited S-matrix approach is that, even if we are only

dealing with pure gauge boson interactions, there is difference in the calculations between

the S-matrix approach (at tree level) to Leff in the bosonic and the supersymmetric theory

of open strings. We will see that in the case of the supersymmetric theory of open strings

the aj coefficients of Leff satisfy constraints that come from the kinematical structure of

the gauge boson N -point amplitude, A(1, . . . , N).

The constraints for the aj coefficients of Leff that we will refer to in the next sub-

section are similar, if not the same, to the ones found in [14, 25] by the method of BPS

configurations.

Due to the fact that the equations for the aj coefficients are overdetermined (as we

mentioned in the previous subsection), the constraints that we have just mentioned will

diminish the number of unknowns, at a given α′ order, and it will not be necessary to

calculate α′ expansions of multiple integrals like the ones in (2.16) and (2.18) (or even

more complicated ones which appear in higher N -boson subamplitudes, with N ≥ 7) to

determine the value of the aj ’s. Our method seems to need only 4-point subamplitudes to

fix the aj coefficients. At least we have confirmed this up to α′4 terms, just like in [14, 25].

3.1 The basic idea of the method: an important constraint arises in the gauge

boson amplitudes of Open Superstring Theory

If we consider the N -point subamplitude of gauge bosons in the open superstring (see

eq. (2.5)), it is easy to see that the (ζ · k)N terms will only come out from integrating on

the xi variables a term of the following type:

T ∼
∫
dθ1 . . . dθN−2

∫
dφ1 . . . dφN PN (x, θ)

( N∑
i 6=j

(2α′)1(θj − θi)φj(ζj · ki)
xj − xi

)N
. (3.1)

Here PN (x, θ) corresponds to the θ expansion of the product of terms (xq−xp−θqθp)2α′kp·kq

in (2.5), where θN−1 = θN = 0.17

17See the second footnote on page 5.
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From the point of view of the φj Grassmann variables in (3.1), after expanding the ()N

term, it is easy to see that the coefficient of φ1φ2 . . . φN (which is the only nonzero product

of N φj variables) only contains products of N θi’s. Since θN−1 = θN = 0 this coefficient

is always zero and, therefore, T = 0.

So our main conclusion is that

A(1, . . . , N) does not contain (ζ · k)N terms , (3.2)

where A(1, . . . , N) is the N -point gauge boson amplitude in Open Superstring Theory.

It is easy to check that the 3 and 4-point amplitudes in Bosonic Open String Theory

do not satisfy the constraint in (3.2),18 respectively, and from the general formula for the

N -point gauge boson amplitude in this theory [44] we do not expect that the (ζ · k)N

terms to cancel among themselves, so we really expect that the constraint in (3.2) does

not happen in the case of Bosonic Open String Theory and that it is only a peculiarity of

Open Superstring Theory.19

It is this constraint that makes all the difference between the ‘conventional’ and the

‘revisited’ S-matrix approach to the low energy effective lagrangian in Open String Theory.

We will use it to find relations between the different coefficients of the bosonic terms

presented in eqs. (2.11) and (2.12), at each order in α′. We will do this in section 4 and we

will then determine the α′4 terms of the low energy effective lagrangian in section 5.

3.2 How the method works

Let us consider the bosonic part of the low energy effective lagrangian Leff . At order α′p

(p ≥ 2) its general term consists of (p− 1) subterms D2i−2F p+3−i (i = 1, . . . , p− 1):

L(p)
eff =

1

g2
(2α′)p

[
F p+2 +D2F p+1 +D4F p + . . .+D2p−4F 4

]
. (3.3)

As explicited in some cases in subsection 2.2, each subterm D2i−2F p+3−i really means a lin-

ear combination of independent terms of that type (with, up to now, unknown coefficients).

In order to determine L(p)
eff our ‘revisited’ S-matrix method works in two steps:

I. Reduction from the general basis to the constrained basis. In this step is where we

demand the constraint (3.2) in the N -point subamplitude calculated from L(p)
eff at

order α′p,20 where N = 4, . . . , (p + 2). This will lead to strong constraints between

the unknown coefficients of the lagrangian. These constraints consist on a system

of (N − 2)N linear equations for the aj coefficients.21 For increasing N (starting

18See, for example, ref. [3] for the 3-point amplitude and ref. [43] for the 4-point amplitude.
19The fact that a cancellation of the (ζ · k)N terms, among themselves, might happen, is already known

to occur in the case of the 4-point amplitude. In appendix C, in equations (C.1) and (C.3) we have written

the kinematic factor of this amplitude in two different, but on-shell equivalent, ways: the first one with no

(ζ · k)4 terms, but without manifest gauge invariance, and the second one containing (ζ · k)4 terms and

being manifestly gauge invariant.
20From p = 4 onwards, the method requires also the knowledge of L(2)

eff , . . . ,L
(p−2)
eff , in order to compute

the α′
p

contribution on the N -point subamplitude.
21After using momentum conservation to eliminate, say kN in terms of the other ki’s, and demanding

the physical state condition, there are only left (N − 2)N different (ζ · k)N = (ζ1 · ki1) . . . (ζN · kiN ) terms.
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from N ≥ 6, for example) this number of equations grows extremely rapidly, but it is

guaranteed that it always has nonzero solutions for at least some of the aj coefficients

because, in particular, the N -point amplitudes coming from the OSLEEL obey it and

it is known that in this lagrangian the α′pD2p−4F 4 terms are non zero.22 The previous

lines imply that the equations coming from demanding absence of (ζ ·k)N terms in the

N -point subamplitude should not be all linearly independent. In fact this is expected

to happen because the full subamplitude satisfies, among various properties, cyclic

invariance and (on-shell) gauge invariance, and this relates the coefficients of its

kinematical terms (in particular implying that the coefficients of the (ζ · k)N terms

are not all independent; that is, if some of the coefficients of these terms are zero,

then cyclic and gauge invariance can be used to derive that necessarily some other

coefficients of these type of kinematical terms are also zero).

Anyway, the solution to these constraints is such that at the end only a few of the aj
coefficients will still remain unknown, according to the following table:23

p Dimension of the general basis Dimension of the constrained basis

at order α′p at order α′p

1 1 0

2 4 1

3 13 1

4 96 0
...

...
...

(3.4)

On the previous table we understand by ‘dimension’ the number of independent

terms, at a given α′p order, whose coefficients are not sensible to field redefinitions.

The column saying ‘general basis’ specifies the number of coefficients that the ‘con-

ventional’ S-matrix approach would require to determine at that order, by means

of a (p + 2)-point open string amplitude.24 The column saying ‘constrained basis’

specifies the number of coefficients that the ‘revisited’ S-matrix method requires to

determine.
22It is well known that the α′ expansion of the 4-point amplitude has non zero coefficients from p = 2

onwards.
23There are some observations with respect to the table in (3.4):

1. We have included the case of p = 1, not considered in eq. (3.3), which simply states that there are no

F 3 terms at order α′
1

in the constrained case.

2. The informations about α′
4

order have been taken from [25], which we expect to agree completely

with our results.

3. At first glance, the fact that for p = 4 the constrained basis has dimension 0 might seem surprising

since this number is less than the corresponding one for p = 2 and p = 3. In section 5, in the second

paragraph after eq. (5.4) we explain the reason for this: it has to do with the fact that from p = 4

onwards, the constraint in eq. (3.2) makes the aj coefficients of L(p)
eff dependent on the ones from

L(2)
eff , . . . ,L

(p−2)
eff , as mentioned in footnote 20, on page 11.

24The dimension of the general basis in the case of p = 1, 2, 3 is precisely the number of undetermined

coefficients found in subsections 2.2.1 amd 2.2.2.
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Notice that on this step we are indeed using the open superstring N -point subampli-

tude, given in (2.5), where N = 4, . . . , (p+2), as the ‘conventional’ S-matrix approach

does. The important detail is that, due to the redundancy of information on that

formula we do not need to explicitly compute the complete expression for the scat-

tering subamplitude: we only use the part of it which is convenient to us, that is,

the absence of the (ζ · k)N terms. We do not expect that demanding the constraint

in (3.2) for N > p + 2 will lead to new (linearly independent) conditions for the aj
coefficients at α′p order.25

Having accepted that the kinematical constraints in (3.2) lead to non trivial solutions

for the aj coefficients it is natural to raise the question of how many undetermined

coefficients we are left with, or stated in another way, what is the dimension of the

constrained basis. In the table in (3.4) we see that for low values of N this number

is 1 or 0, but at this moment we do not have a clear answer about this dimension for

higher orders of α′.

II. Determination of the coefficients of the constrained basis. After step I the remaining

free coefficients in L(p)
eff would have to be determined using the explicit expression of a

lower open superstring N -point subamplitude (N < p+2) at α′p order. For example,

in the next two sections we will see that knowledge of the open superstring 4-point

subamplitude is enough to find not only the α′2 (as it happens with the conventional

S-matrix approach) but also the α′3 and the α′4 terms of the low energy effective

lagrangian.26

4 Applying the revisited S-matrix approach to obtain Leff up to α′3 order

4.1 Low energy effective lagrangian up to α′2 order

In this subsection we will reproduce, once again, the results mentioned in table (2.14) for

the lagrangian in (2.11) (in the case of Open Superstring Theory), but this time strictly

following the two steps of the ‘revisited’ method, mentioned in subsection 3.2.

We start considering the 3-point subamplitude. We already saw in subsection 2.3 that

the absence of (ζ ·k)3 terms on it imply the constraint a1 = 0 for the α′1 term. Since there

are no more cubic terms in Leff there are no more constraints for the aj coefficients coming

from the 3-point subamplitude.

Next, we consider the 4-point subamplitude. Using the corresponding Feynman rules

25This is similar to the fact that, after knowing the explicit expression of the open superstring (p + 2)-

point subamplitude at α′
p

order, any information obtained from a higher N -point amplitude at that α′

order is redundant.
26In [25] it was also seen that the 4-point subamplitude is enough to find the α′

4
terms, once the BPS

constraints in the bosonic terms are taken into account.
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from Leff in (2.11) (with a1 = 0) it leads to

A(1, 2, 3, 4) = AYM(1, 2, 3, 4) + g2 (2α′)2

(
a3K

(4)
3 (1, 2, 3, 4) + a4K

(4)
4 (1, 2, 3, 4) +

a5K
(4)
5 (1, 2, 3, 4) + a6K

(4)
6 (1, 2, 3, 4)

)
+O((2α′)

3
) , (4.1)

where the K
(4)
j (1, 2, 3, 4)’s (j = 3, 4, 5, 6) are known 4-point kinematical expressions given

in appendix D.

In that appendix we see that demanding the absence of (ζ · k)4 terms in the α′2

contribution to A(1, 2, 3, 4) implies that a3, a4, a5 and a6 should satisfy the following

constraints:

a3 = −8a6 , a4 = −4a6 , a5 = 2a6 . (4.2)

So, the conclusion of step I of our procedure (see subsection 3.2) is that the only possible

deformation of the bosonic part of the D=10 Super Yang-Mills lagrangian, allowed by Open

Superstring Theory, is given by:

Leff =
1

g2
tr

[
− 1

4
FµνFµν + a6 (2α′)2

(
− 8 FµλF νλF

ρ
µ Fνρ −

4 FµλF
λ
ν F νρFµρ + 2 FµνFµνF

λρFλρ +

FµνF λρFµνFλρ

)
+O((2α′)

3
)

]
. (4.3)

Notice that this is in perfect agreement with the well known fact that D=10 SYM has a

unique deformation at α′2 order [30, 55]. Also, it is important to mention that the result

we have arrived to in (4.3) is completely equivalent to the one obtained by the method of

BPS configurations [14].

Now we go to step II of our procedure. Using the constraints in (4.2) and the 4-point

kinematical expressions of K
(4)
j (1, 2, 3, 4)’s (j = 3, 4, 5, 6) (see appendix D), comparison

with the 4-point subamplitude (2.7) at order α′2 (after using momentum conservation and

the physical state condition) leads to

a6 = −π
2

96
, (4.4)

which is the known α′2 correction to the D=10 Yang-Mills lagrangian coming from Open

Superstring Theory [3, 4].

4.2 Low energy effective lagrangian at α′3 order

In appendix E we show that the absence of (ζ · k)4 terms in the 4-point subamplitude

of Leff
(3), given in (2.12), implies that the coefficients of its D2F 4 terms are constrained

to satisfy

− 2a16 = −2a17 = 8a19 = −a20 = a22 ,

a18 = a21 = 0 . (4.5)
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Figure 1. Feynman diagrams associated to the 5-point amplitude at α′
3

order.

Also in appendix E, we show that the absence of (ζ ·k)5 terms in the 5-point subamplitude of

Leff
(3) implies, besides (4.5), that the remaining coefficients of its F 5 terms are constrained

to satisfy

a11 = a13 = −2a15 = −i a22 ,

a10 = a12 = a14 = 0 . (4.6)

So, step I of our procedure leads us to only one possible deformation of the bosonic part of

the D=10 Super Yang-Mills lagrangian at order α′3, allowed by Open Superstring Theory:

Leff
(3) = −(2α′)3 a22

g2
tr

[
i F ν

µ F λ
ν F ρ

λ F
µ
σ F σ

ρ + i F ν
µ F σ

ρ F λ
ν F µ

σ F ρ
λ −

i

2
F ν
µ F λ

ν F σ
ρ F µ

λ F ρ
σ +

1

2

(
DµF

λ
ν

)(
DµF ρ

λ

)
F ν
σ F σ

ρ

1

2

(
DµF

λ
ν

)
F ν
σ

(
DµF ρ

λ

)
F σ
ρ −

1

8

(
DµF

λ
ν

)
F σ
ρ

(
DµF ν

λ

)
F ρ
σ +(

DσF
ν
µ

)
F ρ
λ

(
DµF λ

ν

)
F σ
ρ − F ν

µ

(
DµF ρ

λ

)(
DσF

λ
ν

)
F σ
ρ

]
.

(4.7)

This result is also in perfect agreement with the fact that at α′3 there is a unique super-

symmetric deformation of the D=10 SYM lagrangian [15]. Koerber and Sevrin arrived to

this same result (4.7) in [14].

Demanding the 4-point subamplitude of the D2F 4 terms in (4.7) to agree with the

corresponding open superstring 4-point amplitude (2.7) at α′3 order, leads us to

a22 = 2 ζ(3) . (4.8)

An interesting aspect, that we have verified in appendix E, is that only demanding absence

of (ζ ·k)5 terms in the 5-point subamplitude of Leff
(3) (and not worrying about the absence

of the (ζ ·k)4 terms in the 4-point subamplitude, as we did to obtain the relations in (4.6)) is

enough information to arrive to the whole set of relations in (4.5) and (4.6) and, therefore,

to the expression of Leff
(3) given in eq. (4.7).

The results in (4.7) and (4.8) were first correctly obtained in [14] for the D=10 case.

They were confirmed by a 5-point open superstring amplitude calculation in [16].
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5 The low energy effective lagrangian at α′4 order

α′4 is the highest order for which all the bosonic terms of the OSLEEL have been explicitly

obtained in the literature up to this moment [25]. Since the method that has been used

to obtain these terms27 is not directly a String Theory one (like the conventional S matrix

or the Sigma model methods) it is of much importance to see how the revisited S matrix

method deals with them. We do this in the present section.

Since the calculations to obtain Leff
(4) are quite extense, we will not present here the

explicit list of a full basis of terms (with arbitrary coefficients) like we did in eqs. (2.11)

and (2.12), at lower orders in α′. We will just mention that this basis contains 96 terms [36],

we will present the final expression that we have obtained for Leff
(4) and we will leave the

details of the calculations to appendix F.

The expression that we have obtained for Leff
(4) is the following:

Leff
(4) =

(2α′)4π4

g2

(
LF 6 + LD2F 5 + LD4F 4

)
, (5.1)

where

LF 6 =
1

46080
tµ1ν1µ2ν2µ3ν3µ4ν4µ5ν5µ6ν6

(12) tr
(
Fµ1ν1Fµ2ν2Fµ3ν3Fµ4ν4Fµ5ν5Fµ6ν6

)
, (5.2)

LD2F 5 =
56 i

46080
tµ1ν1µ2ν2µ3ν3µ4ν4µ5ν5

(10) tr
(
Fµ1ν1Fµ2ν2Fµ3ν3D

αFµ4ν4DαFµ5ν5

)
+ (5.3)

i

46080
(η · t(8))

µ1ν1µ2ν2µ3ν3µ4ν4µ5ν5 tr
(
−169 DαFµ1ν1Fµ2ν2Fµ3ν3Fµ4ν4DαFµ5ν5 +

68 DαFµ1ν1DαFµ2ν2Fµ3ν3Fµ4ν4Fµ5ν5 +

237 Fµ1ν1D
αFµ2ν2DαFµ3ν3Fµ4ν4Fµ5ν5 +

237 Fµ1ν1D
αFµ2ν2Fµ3ν3DαFµ4ν4Fµ5ν5 +

267 Fµ1ν1Fµ2ν2D
αFµ3ν3DαFµ4ν4Fµ5ν5 +

16 Fµ1ν1Fµ2ν2Fµ3ν3D
αFµ4ν4DαFµ5ν5

)
−

i

5760
tµ1ν1µ2ν2µ3ν3µ4ν4

(8)

{
17 tr

(
Dµ5Fµ1ν1Fµ2ν2Fµ3ν3D

ν5Fµ4ν4Fµ5ν5

)
+

+ 2 tr
(
Fµ1ν1D

µ5Fµ2ν2D
ν5Fµ3ν3Fµ4ν4Fµ5ν5

)}
,

LD4F 4 = − 1

11520
tµ1ν1µ2ν2µ3ν3µ4ν4

(8) tr
(
DαFµ1ν1D(αDβ)Fµ2ν2D

βFµ3ν3Fµ4ν4 +

+ 8 DαFµ1ν1DαFµ2ν2D
βFµ3ν3DβFµ4ν4

)
. (5.4)

As expected, a new 12-index tensor t(12) (characteristic of 6-point scattering) has arisen. Its

explicit expression, as a sum of products of 6 ηµν ’s, can be obtained from formula (B.8) in

appendix B.4. η · t(8) and t(10) are 10-index tensors that already appeared in our expression

for the open superstring 5-point amplitude [19]. In appendices B.2 and B.3 we recall how to

construct them, respectively. t(8) is, of course, the well known 8-index tensor that appears

in 4 open superstring scattering [44]. In appendix B.2 we also recall how to construct it.

All these tensors are antisymmetric under the interchange of indices µi and νi.

27The method of BPS configurations.
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Figure 2. Feynman diagram that contributes to the 6-point amplitude at α′
4

order. This diagram

is responsible for fixing all the aj coefficients of L(4)
eff without using any explicit information from

Open Superstring Theory.

It is quite remarkable that we have obtained all coefficients and terms in the lagrangian

in (5.1) without using any scattering amplitude information from Open Superstring The-

ory at α′4 order (not even the 4-point amplitude). We have just demanded the (ζ · k)N

terms to be absent in the N -point amplitude of the general lagrangian at α′4 order (with

N = 4, 5, 6) and this has fixed all its coefficients. One might think that the best scenario

could have been that this last condition fixed the lagrangian coefficients up to a global

factor, as it happended with the α′2 and α′3 order contributions (see eqs. (4.3) and (4.7),

respectively) and then it should have been necessary to use information from the open su-

perstring 4-point amplitude at α′4 order. But what in fact happened is that even the global

coefficient has now been fixed by the condition of absence of (ζ · k)6 terms in the 6-point

amplitude.28 The reason for this is that, at α′4 order, the 6-point amplitude not only re-

ceives contributions from Feynman diagrams constructed with the Yang-Mills propagator,

the Yang-Mills vertices and the α′4 order vertices (and these last ones contain the originally

unknown aj coefficients), but it receives as well contributions from diagrams which contain

the α′2 order vertices (which coefficients are all known and proportional to π2). So the

linear system of equations for the unknown coefficients of Leff
(4) is not homogeneous and it

happens to have a unique solution, which leads to our result in eq. (5.1) (see more details

in appendix F).

The fact of finding all the α′4 terms of the low energy effective lagrangian without

needing to use any information from Open Superstring Theory at that α′ order also hap-

pened in the method of BPS configurations [25, 36]. It means that Leff
(4) (and its fermionic

completion) is the α′4 supersymmetric deformation of LSYM + (2α′)2L(2) (where L(2) is

the known first supersymmetric correction to the D=10 SYM lagrangian [29, 30]). In fact,

in [34] it was proved that this α′4 supersymmetric correction should exist (but it was not

computed explicitly) and Leff
(4) should match the bosonic part of the one given by the

algorithm of that reference.

In appendix F we have verified that our lagrangian in (5.1) bypasses the following tests:

1. The abelian limit of the LF 6 agrees with the corresponding F 6 terms of the (super-

symmetric) Born-Infeld lagrangian [3, 42].

28Since the coefficients of all α′
4

terms have been determined, that is the reason of why in the second

column of the table in eq. (3.4), for p = 4 we have written that the dimension of the constrained basis is 0.
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2. The 5-point amplitude obtained from LD2F 5 + LD4F 4 agrees exactly with the corre-

sponding one coming from Open Superstring Theory, obtained by us in [19], at α′4

order.

3. The 4-point amplitude obtained from LD4F 4 agrees with the corresponding one ob-

tained from the open superstring one, eq. (2.7), at α′4 order. In particular, this means

that the abelian limit of LD4F 4 should agree with the ∂4F 4 terms of [42, 56] since

those terms agree with the abelian 4-point amplitude of Open Superstring Theory.

These tests guarantee that our expression for Leff
(4) is correct up to terms which are

sensible to 6 and higher n-point amplitudes. They also confirm that the abelian 6-point

amplitude that comes from our low energy effective lagrangian is correct at α′4 order. But

there is still an additional nonabelian test for the F 6 terms, which is extremely important

and comes from the very nature of our revisited S-matrix method. This test makes direct

contact with Open Superstring Theory calculations at α′4 order: the 6-point amplitude

at α′4 order that can be computed from Leff , expanded up to α′4 order, where Leff
(4) is

the one that we have found in eq. (5.1) (with the corresponding expressions in (5.2), (5.3)

and (5.4)), and the corresponding amplitude from Open Superstring Theory, agree in the

fact that both of them have no (ζ ·k)6 terms. At this point, we claim that our expression for

Leff
(4) is in complete agreement with the nonabelian 6-point amplitude at α′4 order because

of the uniqueness of the expression that we have found for it (up to terms which are not

sensible to S-matrix calculations).29 It should happen that the remaining (ζ ·k)4(ζ · ζ) and

(ζ ·k)2(ζ ·ζ)2 terms of the nonabelian 6-point amplitude agree with the ones that come from

the corresponding open superstring 6-point amplitude or otherwise the N -point formula in

eq. (2.5) would be incorrect in the case of N = 6 (and we clearly do not believe this since

the vertex operator formalism in Open Superstring Theory leads to expressions for the

scattering amplitudes which respect basic properties like unitarity and gauge invariance).

It would be nice to verify the equivalence between the α′4 terms found by the method

of BPS configurations [25], ours and the ones proposed by the algorithm in [34], but this

would require huge additional calculations to be done. Koerber and Sevrin present their

α′4 order result in terms of symmetrized traces and commutators of covariant derivatives,

which is in fact a very compact way of writing the terms, but it is different from our way

of presenting the result in eq. (5.1). Our main worry has not been to write the final answer

in a short manner, but to write the terms in such a way that it is clear which ones are

sensible at least to 4, 5 and 6-point amplitudes. We just mention here that the result of

Koerber and Sevrin [25] also satisfies the test mentioned in item 1 and the abelian part of

the test in item 3 and that their method is self consistent in the sense of finding a unique

solution for a linear system of equations (for the coefficients in Leff
(4), for a given basis of

terms) which is overdetermined.

In appendix F we comment on the possibility of arriving to our result in eqs. (5.1)–(5.4),

much in the same spirit that me mentioned at the end of subsection 4.2, that is, by just

demanding the absense of (ζ · k)6 terms in the 6-point amplitude, while not imposing the

absense of (ζ · k)N terms in the 4 and 5-point amplitudes.

29And this expression has been obtained by means of an S-matrix method.
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6 Final remarks and future prospects

In this work we have presented a ‘revisited’ S-matrix approach to obtain the bosonic terms

of the open superstring low energy effective lagrangian (OSLEEL). It is just the well known

S-matrix approach, but we have called it ‘revisited’ because we have found a specific way

of using the information contained in open superstring scattering amplitudes, in such a

way that the calculations are simpler than the corresponding ones in the bosonic theory of

open strings. In order to obtain the OSLEEL α′p order terms, the method usually proceeds

in two steps.30 The first step consists in demanding the absence of (ζ · k)N terms in the

N -point (tree level) gauge boson subamplitude (constraint in eq. (3.2)), in the field theory

side, for N = 4, . . . , p + 2.31 Using these constraints at each α′p order, this step reduces

enormously the number of unkowns coefficients in the OSLEEL (in comparison to the

number of coefficients existing in the general lagrangian; for example of this comparison

see the table in (3.4)). The remaining unknowns are determined in the second step of

the method by matching the field theory N -point amplitude with information from the

N -point amplitude of Open Superstring Theory at α′p order (where N is expected to be

much lower than p+ 2; in fact, at least up to α′4 order terms, we have been able to obtain

the OSLEEL only using the N = 4 scattering amplitude of open superstrings). This is

the main difference with the ‘conventional’ S-matrix approach, in which it is generally

believed that an open superstring (p + 2)-point amplitude is needed (at least expanded

at α′p order) in order to fully determine the α′p order terms of the low energy effective

lagrangian (where p ≥ 2).

Although we have not further studied the α′p order terms for p ≥ 5, we expect our revis-

ited S-matrix approach to be capable, in principle, to determine completely the OSLEEL.

We will examine more carefully this issue on a forthcoming work [57] and we will also

examine there the possibility of the kinematical constraint in eq. (3.2) being valid in any

theory which consistently considers supersymmetric deformations of D=10 SYM theory,

not only Open Superstring Theory.

The sort of restrictions that arise for the coefficients of the bosonic terms of the

OSLEEL, in this ‘revisited’ S-matrix method, are similar to the ones found in the method

of BPS configurations (due to Koerber and Sevrin [14, 25, 35]32). Both methods agree in

their results up to α′3 order and probably agree at α′4 order, as well (see section 5 for more

details about this last comparison).

30Here we have said ‘usually’ because at α′
4

order the first step is enough to determine all the coefficients

of the OSLEEL, but for any other α′ order we expect both steps to be required.
31Here we have two observations:

1. The method applies also when N = 3, but the only case in which this has any relevance at all is

when proving that there are no α′
1

terms in the OSLEEL.

2. We have found that for the 5-point subamplitude (at α′
3

order), demanding this constraint just for

N = p + 2 is enough, but we are not sure if this also happens for the 6-point subamplitude at α′
4

order.

32This method was firstly applied to the abelian case in [27].
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The constraint (3.2), which is the crucial part of our ‘revisited’ S-matrix approach,

seems not to exist in Open Bosonic String Theory.33 This suggests that the reason for it is

Spacetime Supersymmetry (an inherent symmetry of Open Superstring Theory) and that

is why the ‘conventional’ S-matrix approach (which treats the bosonic and the supersym-

metric theory of open strings, at least in the determination of the bosonic terms of the

OSLEEL, on the same footing) does not include it.

We end this work by mentioning that there is a natural extension of the require-

ment (3.2) and its consequences for the OSLEEL, to the case of the Closed Superstring

Low Energy Effective Lagrangean (CSLEEL) of the NS-NS sector of the Type II Theories.

This can easily be understood by means of the KLT relations [43]. A careful analysis of

the kinematics involved in these relations tells us that demanding the (ζ · k)N terms to be

absent in gauge boson N -point amplitudes of Open Superstring Theory implies that in the

interactions of gravitons and Kalb-Ramond states, in the Type II theories,34

the N -point amplitude contains neither (k ζ k)N nor (k ζ ζ k)1 (k ζ k)N−2 terms.

(6.1)

For example, if we consider the 3-point amplitude of gravitons and/or Kalb-Ramond states,

the constraints in (6.1) imply that terms like

(k2 ζ1 k2)(k3 ζ2 ζ3 k1) = (k2µζ1
µνk2ν)(k3ρζ2

ρσζ3σλk1
λ) , (6.2)

(k2 ζ1 k2)(k3 ζ2 k3)(k1 ζ3 k1) = (k2µζ1
µνk2ν)(k3ρζ2

ρσk3σ)(k1λζ3
λωk1ω) , (6.3)

should not appear in the amplitude. It can be easily checked that these terms do indeed

appear in the 3-point amplitude in the case of Closed Bosonic String Theory, at α′1 and

α′2 order, respectively. The fact that they should be absent in the supersymmetric case

implies that there should be no α′1 and no α′2 terms in the NS-NS sector of the low energy

effective lagrangian of the Type II String Theories, as it is well known.

The remaining dependence of the NS-NS sector of the CSLEEL can be simply obtained

recalling the result of ref. [59], where it was shown that, starting from the low energy

effective lagrangian of the pure gravitational sector of the Type II theories, the dependence

of it on the dilaton (φ) and the Kalb-Ramond field (Bµν) can be directly inferred from the

first one by just replacing the curvature tensor by the combination

R̄µν
λρ = Rµν

λρ + e−Φ ∇[µHν]
λρ − δ[µ

[λ∇ν]∇ρ]Φ , (6.4)

where Hµνλ = ∂[µBνλ].

So, if our revisited S-matrix approach is indeed capable of determining the complete

OSLEEL, it is likely to happen the same thing with the NS-NS sector of Closed Superstring

Theory.

33At least in the case of 3 and 4-point subamplitudes it is known not to happen and it is clear that in

the N -point subamplitude formula [44] the (ζ · k)N terms will show up, but we have not checked that for

N ≥ 5 those terms do not cancel each other.
34We have made some change in eq. (6.1), with respect to the first version of this work that we sent to

the hep-th Arxive, due to an observation by M. R. Garousi. In the way that we have now written this

equation, it is consistent for N = 4 with the forbidden kinematical terms mentioned by him, after eq. (23)

of [58].
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A Conventions and identities

A.1 Metric, symmetrization and antisymmetrization over spacetime indexes

We use the following convention for the Minkowski metric:

ηµν = diag(−,+, . . . ,+) . (A.1)

The symmetrization and antisymmetrization convention that we use, on the spacetime

indexes of a product of two vectors A and B, is the following:

A(µBν) =
1

2
(AµBν +AνBµ) , (A.2)

A[µBν] =
1

2
(AµBν −AνBµ) . (A.3)

A.2 Gauge group generators, field strength and covariant derivative

Gauge fields are matrices in the Lie group internal space, so that Aµ = Aµaλa, where the

λa are the generators in the adjoint representation,

(λa)bc = −ifabc , (A.4)

which satisfy the normalization relation

tr(λaλb) = δab . (A.5)

The field strength and the covariant derivative are defined by35

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ] , (A.6)

Dµφ = ∂µφ− i[Aµ, φ] , (A.7)

and they are related by the identity

[Dµ, Dν ]φ = −i [Fµν , φ] . (A.8)

Covariant derivatives of field strengths satisfy the Bianchi identity:

DµF νρ +DρFµν +DνF ρµ = 0 . (A.9)

35In contrast to the conventions that we used in [19], now the coupling constant g does not come in the

definitions (A.6) and (A.7), neither in the identity (A.8): it comes as a global 1/g2 factor in the whole low

energy effective lagrangian. See, for example, eqs. (2.11) and (2.12).
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B Vertices and tensors

B.1 Yang-Mills vertices
V

(3)
YM µ1µ2µ3

(k1, k2, k3) =−i[ ηµ1µ2(k1−k2)µ3 +ηµ2µ3(k2−k3)µ1 +ηµ3µ1(k3−k1)µ2 ],

(B.1)

V
(4)

YM µ1µ2µ3µ4
(k1, k2, k3, k4) =−[ ηµ1µ2ηµ3µ4−2ηµ1µ3ηµ2µ4 +ηµ4µ1ηµ2µ3 ]. (B.2)

B.2 t(8) and η · t(8) tensors

The t(8) tensor,36 characteristic of the 4 boson scattering amplitude, is antisymmetric on

each pair (µj , νj) (j = 1, 2, 3, 4) and is symmetric under any exchange of such of pairs. It

satisfies the identity:37

t(8)
µ1ν1µ2ν2µ3ν3µ4ν4

Aµ1ν1
1 Aµ2ν2

2 Aµ3ν3
3 Aµ4ν4

4 =

− 2

(
Tr(A1A2)Tr(A3A4) + Tr(A1A3)Tr(A2A4) + Tr(A1A4)Tr(A2A3)

)
+

+ 8

(
Tr(A1A2A3A4) + Tr(A1A3A2A4) + Tr(A1A3A4A2)

)
,

(B.3)

where the Aj tensors are antisymmetric and where ‘Tr’ means the trace over the spacetime

indexes.

A ten index tensor, which is also antisymmetric on each pair (µj , νj), can be constructed

from the Minkowski metric tensor and the t(8) one, as follows:

(η · t(8))
µ1ν1µ2ν2µ3ν3µ4ν4µ5ν5 = ην3ν4tµ3µ4µ5ν5µ1ν1µ2ν2

(8) + ηµ3µ4tν3ν4µ5ν5µ1ν1µ2ν2

(8) −
− ηµ3ν4tν3µ4µ5ν5µ1ν1µ2ν2

(8) − ην3µ4tµ3ν4µ5ν5µ1ν1µ2ν2

(8) . (B.4)

This tensor appears in the 5-point amplitude of the open superstring [19].38 It also changes

sign under a twisting transformation39 with respect to index 1, that is,

(η · t(8))
µ1ν1µ5ν5µ4ν4µ3ν3µ2ν2 = −(η · t(8))

µ1ν1µ2ν2µ3ν3µ4ν4µ5ν5 . (B.5)

It satisfies an identity similar to the one given in (B.3) for t(8):

(η · t(8))µ1ν1µ2ν2µ3ν3µ4ν4µ5ν5A
µ1ν1
1 Aµ2ν2

2 Aµ3ν3
3 Aµ4ν4

4 Aµ5ν5
5 =

+ 2 [Tr (A1A2) Tr (A3A4A5)+Tr (A2A5) Tr (A1A3A4)+Tr (A1A5) Tr (A2A3A4)]−
− 6 [Tr (A1A5) Tr (A2A4A3)+Tr (A1A2) Tr (A3A5A4)+Tr (A2A5) Tr (A1A4A3)] +

+ 4 [Tr (A1A2A4A3A5)− Tr (A1A2A3A4A5)− Tr (A1A2A5A3A4) +

+ Tr (A1A2A5A4A3)− Tr (A1A3A4A2A5) + Tr (A1A4A3A2A5)] +

+ 12 [Tr (A1A4A3A5A2)− Tr (A1A3A4A5A2)− Tr (A1A5A2A3A4) +

+ Tr (A1A5A2A4A3)− Tr (A1A5A3A4A2) + Tr (A1A5A4A3A2)] . (B.6)

36An explicit expression for it may be found in equation (4.A.21) of [44].
37Formula (B.3) has been taken from appendix A of [26].
38In ref. [19] we used a subindex ‘1’ for the η · t(8) tensor, as a reminder that the twisting relation that

it obeys, eq. (B.5), is realized with respect to the vertex ‘1’ on the disk, but on this paper we have omitted

that reminder and written that tensor with no subindex.
39See the third item of subsection 4.2 of [19] for further details about a twisting transformation on the disk.
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B.3 t(10) tensor

The t(10) tensor is another ten index tensor that appears in the 5-point amplitude of the

open superstring [19]. It is linearly independent to the (η · t(8))1 one. This tensor also

satisfies an identity similar to the one given in (B.3) for t(8):

t(10)
µ1ν1µ2ν2µ3ν3µ4ν4µ5ν5

Aµ1ν1
1 Aµ2ν2

2 Aµ3ν3
3 Aµ4ν4

4 Aµ5ν5
5 =

− 8 [ Tr(A1A2)Tr(A3A4A5) + Tr(A1A3)Tr(A2A4A5) + Tr(A1A4)Tr(A2A3A5)+

+ Tr(A1A5)Tr(A2A3A4) + Tr(A2A3)Tr(A1A4A5) + Tr(A2A4)Tr(A1A3A5)+

+ Tr(A2A5)Tr(A1A3A4) + Tr(A3A4)Tr(A1A2A5) + Tr(A3A5)Tr(A1A2A4)+

+Tr(A4A5)Tr(A1A2A3) ] + 48 Tr(A1A2A3A4A5) +

+ 16 [ Tr(A1A2A3A5A4) + Tr(A1A2A4A3A5) + Tr(A1A2A5A3A4)+

+ Tr(A1A2A4A5A3)− Tr(A1A2A5A4A3) + Tr(A1A3A2A4A5)−
− Tr(A1A3A2A5A4) + Tr(A1A4A2A3A5) + Tr(A1A5A2A3A4)−
−Tr(A1A4A2A5A3)− Tr(A1A5A2A4A3) ] ,

(B.7)

where the Aj fields are antisymmetric. From (B.7) an explicit expression of the t(10) tensor

may be obtained, once its symmetry properties are considered.

B.4 t(12) tensor

Consider the 12-index tensor s(12) which is obtained by means of the relation

s(12)
µ1ν1µ2ν2µ3ν3µ4ν4µ5ν5µ6ν6A

µ1ν1
1 Aµ2ν2

2 Aµ3ν3
3 Aµ4ν4

4 Aµ5ν5
5 Aµ6ν6

6 =

−144 Tr (A1A6) Tr (A2A5) Tr (A3A4)− 1396 Tr (A1A2A5A6) Tr (A3A4) +

+2260 Tr (A1A5A2A6) Tr (A3A4)− 2016 Tr (A1A5A6A2) Tr (A3A4) +

+4028 Tr (A1A6A2A5) Tr (A3A4)− 2172 Tr (A1A6A5A2) Tr (A3A4) +

+104 Tr (A1A4) Tr (A2A6) Tr (A3A5)− 80 Tr (A1A4) Tr (A2A5) Tr (A3A6)−
−64 Tr (A1A6) Tr (A2A3) Tr (A4A5) + 304 Tr (A1A5) Tr (A2A3) Tr (A4A6) +

+300 Tr (A1A3A5) Tr (A2A4A6)− 180 Tr (A1A3A5) Tr (A2A6A4)−
−1210 Tr (A1A2A6) Tr (A3A4A5) + 696 Tr (A1A2A6) Tr (A3A5A4) +

+220 Tr (A1A2A4) Tr (A3A5A6)− 4692 Tr (A1A4A2) Tr (A3A5A6)−
−660 Tr (A1A2A4) Tr (A3A6A5) + 1980 Tr (A1A4A2) Tr (A3A6A5)−
−4032 Tr (A1A3A2) Tr (A4A5A6)− 4316 Tr (A4A6) Tr (A1A2A3A5) +

+534 Tr (A3A6) Tr (A1A2A5A4) + 1602 Tr (A3A6) Tr (A1A4A5A2)−
−294 Tr (A2A5) Tr (A1A3A4A6)− 3124 Tr (A2A4) Tr (A1A3A5A6) +

−1228 Tr (A2A3) Tr (A1A4A5A6) + 3684 Tr (A2A3) Tr (A1A6A4A5) +

+1228 Tr (A2A4) Tr (A1A5A3A6) + 1228 Tr (A2A3) Tr (A1A5A4A6) +

+3684 Tr (A2A4) Tr (A1A6A3A5)− 882 Tr (A2A5) Tr (A1A6A4A3)−
−3684 Tr (A2A3) Tr (A1A6A5A4)− 144 Tr (A1A6) Tr (A2A3A5A4)−
−432 Tr (A1A6) Tr (A2A4A5A3) + 8240 Tr (A1A2A3A4A5A6) +

+7680 Tr (A1A2A4A3A5A6)−8256 Tr (A1A2A5A6A3A4)+2624 Tr (A1A2A6A4A3A5)+
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+9824 Tr (A1A3A2A4A5A6)−432 Tr (A1A3A2A4A6A5)−7840 Tr (A1A3A2A5A6A4)+

+9824 Tr (A1A3A4A2A5A6)+4032 Tr (A1A3A4A5A6A2)−4032 Tr (A1A3A4A6A5A2)−
−256 Tr (A1A3A5A2A4A6)+1120 Tr (A1A3A5A2A6A4)+4032 Tr (A1A3A5A6A4A2)−
−384 Tr (A1A3A6A2A5A4)−4032 Tr (A1A3A6A5A4A2)+9824 Tr (A1A4A2A3A5A6)+

+9824 Tr (A1A4A3A2A5A6)+4032 Tr (A1A4A3A5A6A2)+4032 Tr (A1A4A5A6A3A2)−
−4032 Tr (A1A4A6A5A3A2)−928 Tr (A1A5A2A3A4A6)−9824 Tr (A1A5A2A4A3A6)−
−9824 Tr (A1A5A3A2A4A6)−9824 Tr (A1A5A3A4A2A6)−9824 Tr (A1A5A4A2A3A6)−
−9824 Tr (A1A5A4A3A2A6)+4032 Tr (A1A5A6A3A4A2)+4032 Tr (A1A5A6A4A3A2) ,

(B.8)

where the Aj tensors are antisymmetric (j = 1, . . . , 6).

The t(12) tensor appearing in eq. (5.2) is given by an averaged expression of the s(12),

such that the resulting tensor obeys the twisting relation (F.2) of appendix F:

t(12)
µ1ν1µ2ν2µ3ν3µ4ν4µ5ν5µ6ν6

=
1

2

(
s(12)
µ1ν1µ2ν2µ3ν3µ4ν4µ5ν5µ6ν6

+ s(12)
µ1ν1µ6ν6µ5ν5µ4ν4µ3ν3µ2ν2

)
. (B.9)

C The 4-point kinematical factor

The 4-point kinematic factor appearing in eq. (2.7) is given by [44]

K = −1

4

[
ts(ζ1 · ζ3)(ζ2 · ζ4) + su(ζ2 · ζ3)(ζ1 · ζ4) + ut(ζ1 · ζ2)(ζ3 · ζ4)

]
+

+
1

2
s
[
(ζ1 · k4)(ζ3 · k2)(ζ2 · ζ4) + (ζ2 · k3)(ζ4 · k1)(ζ1 · ζ3) +

+ (ζ1 · k3)(ζ4 · k2)(ζ2 · ζ3) + (ζ2 · k4)(ζ3 · k1)(ζ1 · ζ4)
]

+

+
1

2
t
[
(ζ2 · k1)(ζ4 · k3)(ζ3 · ζ1) + (ζ3 · k4)(ζ1 · k2)(ζ2 · ζ4) +

+ (ζ2 · k4)(ζ1 · k3)(ζ3 · ζ4) + (ζ3 · k1)(ζ4 · k2)(ζ2 · ζ1)
]

+

+
1

2
u
[
(ζ1 · k2)(ζ4 · k3)(ζ3 · ζ2) + (ζ3 · k4)(ζ2 · k1)(ζ1 · ζ4) +

+ (ζ1 · k4)(ζ2 · k3)(ζ3 · ζ4) + (ζ3 · k2)(ζ4 · k1)(ζ1 · ζ2)
]

(C.1)

and where {s, t, u} are the Mandelstam variables defined in (2.8).

Notice that the expression for K in (C.1) contains no (ζ · k)4 terms, but does not have

manifest (on-shell) gauge invariance. An alternative expression for it, which now has this

symmetry in a manifest way (due to the symmetries of the t(8) tensor), is the following [44]:

K = tµ1ν1µ2ν2µ3ν3µ4ν4

(8) ζ1
µ1
k1
ν1
ζ2
µ2
k2
ν2
ζ3
µ3
k3
ν3
ζ4
µ4
k4
ν4
. (C.2)

When explicitly expanded it becomes

K =
1

2

[
− (ζ1 · ζ4)(ζ3 · k1)(ζ2 · k4)(k2 · k3) + (ζ4 · k1)(ζ1 · ζ3)(ζ2 · k4)(k2 · k3)−

− (k1 · k4)(ζ1 · ζ3)(ζ2 · ζ4)(k2 · k3) + (ζ4 · k1)(ζ1 · k3)(k2 · k4)(ζ2 · ζ3) +
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+ (ζ1 · ζ4)(k1 · k3)(ζ2 · k4)(ζ3 · k2) + (ζ1 · ζ4)(ζ3 · k1)(k2 · k4)(ζ2 · k3)−
− (ζ1 · k4))(ζ3 · k1)(ζ4 · k2)(ζ2 · k3) + (k1 · k4)(ζ1 · ζ3)(ζ4 · k2)(ζ2 · k3) +

+ (ζ1 · k4)(ζ3 · k1)(ζ2 · ζ4)(k2 · k3) + (k1 · k4)(ζ1 · k3)(ζ2 · ζ4)(ζ3 · k2) +

+ (ζ1 · k4)(k1 · k3)(ζ4 · k2)(ζ2 · ζ3)− (k1 · k4)(ζ1 · k3)(ζ4 · k2)(ζ2 · ζ3)−
− (ζ4 · k1)(ζ1 · k3)(ζ2 · k4)(ζ3 · k2)− (ζ1 · ζ4)(k1 · k3)(k2 · k4)(ζ2 · ζ3)−
− (ζ3 · k1)(ζ2 · ζ4)(ζ1 · k3)(k2 · k4) + (ζ1 · ζ3)(ζ2 · ζ4)(k1 · k3)(k2 · k4)−
− (ζ1 · ζ3)(ζ4 · k2)(k1 · k3)(ζ2 · k4) + (ζ3 · k1)(ζ4 · k2)(ζ1 · k3)(ζ2 · k4)−
− (ζ4 · k1)(ζ1 · k4)(k2 · k3)(ζ2 · ζ3)− (ζ1 · ζ4)(k1 · k4)(ζ2 · k3)(ζ3 · k2)−
− (ζ4 · k1)(ζ1 · ζ3)(k2 · k4)(ζ2 · k3)− (ζ1 · k4)(k1 · k3)(ζ2 · ζ4)(ζ3 · k2)−
− (k1 · k2)(ζ2 · ζ4)(ζ1 · ζ3)(k3 · k4)− (k1 · k4)(k2 · k3)(ζ1 · ζ2)(ζ3 · ζ4)−
− (ζ4 · k1)(ζ2 · k3)(ζ1 · k2)(ζ3 · k4) + (ζ4 · k1)(ζ2 · ζ3)(ζ1 · k2)(k3 · k4)−
− (ζ1 · ζ4)(ζ2 · ζ3)(k1 · k2)(k3 · k4)− (ζ4 · k1)(ζ3 · k2)(ζ1 · ζ2)(k3 · k4) +

+ (k1 · k4)(ζ3 · k2)(ζ1 · ζ2)(ζ4 · k3) + (ζ1 · ζ4)(ζ2 · k3)(k1 · k2)(ζ3 · k4) +

+ (ζ4 · k1)(k2 · k3)(ζ1 · ζ2)(ζ3 · k4)− (ζ1 · ζ4)(k2 · k3)(ζ2 · k1)(ζ3 · k4) +

+ (ζ1 · k4)(k2 · k3)(ζ2 · k1)(ζ3 · ζ4)− (k1 · k4)(ζ2 · ζ3)(ζ1 · k2)(ζ4 · k3) +

+ (ζ1 · k4)(ζ2 · ζ3)(k1 · k2)(ζ4 · k3)− (ζ1 · k4)(ζ3 · k2)(ζ2 · k1)(ζ4 · k3) +

+ (k1 · k4)(ζ2 · k3)(ζ1 · k2)(ζ3 · ζ4)− (ζ1 · k4)(ζ2 · k3)(k1 · k2)(ζ3 · ζ4) +

+ (ζ1 · ζ4)(ζ3 · k2)(ζ2 · k1)(k3 · k4) + (ζ4 · k1)(ζ1 · k4)(ζ2 · k3)(ζ3 · k2) +

+ (ζ1 · ζ4)(k1 · k4)(k2 · k3)(ζ2 · ζ3)− (k1 · k2)(ζ1 · ζ2)(ζ3 · k4)(ζ4 · k3)−
− (ζ1 · k2)(ζ2 · k1)(k3 · k4)(ζ3 · ζ4) + (k1 · k2)(ζ1 · ζ2)(k3 · k4)(ζ3 · ζ4) +

+ (ζ1 · k2)(ζ2 · k1)(ζ3 · k4)(ζ4 · k3) + (ζ2 · k1)(ζ4 · k2)(ζ1 · ζ3)(k3 · k4)−
− (ζ1 · k2)(ζ2 · k4)(ζ3 · k1)(ζ4 · k3)− (k1 · k2)(ζ2 · k4)(ζ1 · k3)(ζ3 · ζ4) +

+ (ζ1 · k2)(ζ2 · k4)(k1 · k3)(ζ3 · ζ4) + (ζ2 · k1)(k2 · k4)(ζ1 · k3)(ζ3 · ζ4)−
− (ζ1 · ζ2)(k2 · k4)(k1 · k3)(ζ3 · ζ4)− (ζ2 · k1)(ζ4 · k2)(ζ1 · k3)(ζ3 · k4) +

+ (ζ1 · ζ2)(ζ4 · k2)(k1 · k3)(ζ3 · k4) + (k1 · k2)(ζ2 · k4)(ζ1 · ζ3)(ζ4 · k3)−
− (ζ2 · k1)(k2 · k4)(ζ1 · ζ3)(ζ4 · k3) + (k1 · k2)(ζ2 · ζ4)(ζ1 · k3)(ζ3 · k4)−
− (ζ1 · k2)(ζ2 · ζ4)(k1 · k3)(ζ3 · k4) + (ζ1 · k2)(ζ2 · ζ4)(ζ3 · k1)(k3 · k4)−

− (ζ1 · ζ2)(ζ4 · k2)(ζ3 · k1)(k3 · k4) + (ζ1 · ζ2)(k2 · k4)(ζ3 · k1)(ζ4 · k3)
]
. (C.3)

Notice that this expression does contain (ζ · k)4 terms,40 but the one in (C.1) does not.

This is just a mathematical artifact, in order to implement (on-shell) gauge symmetry in

a manifest way: when using momentum conservation and the physical state conditions all

(ζ · k)4 terms disappear in (C.3).

40See, for example, the second term in the ninth line of eq. (C.3).
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D α′2 kinematic calculations

Here we present the 4-point kinematical expressions introduced on equation (4.1)

K
(4)
3 = 2(ζ1.ζ3)(ζ2.ζ4)α2

12 + (ζ1.ζ4)(ζ2.k1)(ζ3.k1)α12 + (ζ1.ζ4)(ζ2.k3)(ζ3.k1)α12 −
−2(ζ1.k2)(ζ2.ζ4)(ζ3.k1)α12 + 2(ζ1.k3)(ζ2.ζ4)(ζ3.k2)α12 − (ζ1.k3)(ζ2.k1)(ζ3.ζ4)α12 −
−(ζ1.k3)(ζ2.k3)(ζ3.ζ4)α12 − 2(ζ1.ζ3)(ζ2.k1)(ζ4.k1)α12 − 2(ζ1.ζ3)(ζ2.k3)(ζ4.k1)α12 −
−2(ζ1.ζ3)(ζ2.k1)(ζ4.k2)α12 − (ζ1.k3)(ζ2.ζ3)(ζ4.k2)α12 + (ζ1.ζ2)(ζ3.k1)(ζ4.k2)α12 +

+2(ζ1.ζ3)(ζ2.ζ4)α13α12 + (ζ1.ζ4)(ζ2.ζ3)α2
13 + (ζ1.ζ3)(ζ2.ζ4)α2

13 + (ζ1.ζ2)(ζ3.ζ4)α2
13 +

+(ζ1.k2)(ζ2.k1)(ζ3.k1)(ζ4.k1) + (ζ1.k2)(ζ2.k3)(ζ3.k1)(ζ4.k1)− (ζ1.k3)(ζ2.k1)(ζ3.k2)(ζ4.k1)−
−(ζ1.k3)(ζ2.k3)(ζ3.k2)(ζ4.k1) + (ζ1.k2)(ζ2.k1)(ζ3.k1)(ζ4.k2)− (ζ1.k3)(ζ2.k1)(ζ3.k1)(ζ4.k2)−
−(ζ1.k3)(ζ2.k3)(ζ3.k1)(ζ4.k2)− (ζ1.k3)(ζ2.k1)(ζ3.k2)(ζ4.k2) + (ζ1.ζ4)(ζ2.k1)(ζ3.k1)α13 −
−2(ζ1.k2)(ζ2.ζ4)(ζ3.k1)α13 − (ζ1.k3)(ζ2.ζ4)(ζ3.k1)α13 + (ζ1.ζ4)(ζ2.k1)(ζ3.k2)α13 +

+(ζ1.ζ4)(ζ2.k3)(ζ3.k2)α13 − 2(ζ1.k2)(ζ2.ζ4)(ζ3.k2)α13 + (ζ1.k2)(ζ2.k1)(ζ3.ζ4)α13 −
−(ζ1.k3)(ζ2.k1)(ζ3.ζ4)α13 + (ζ1.k2)(ζ2.k3)(ζ3.ζ4)α13 − 2(ζ1.ζ3)(ζ2.k1)(ζ4.k1)α13 −
−(ζ1.k3)(ζ2.ζ3)(ζ4.k1)α13 + (ζ1.ζ2)(ζ3.k1)(ζ4.k1)α13 − (ζ1.ζ3)(ζ2.k1)(ζ4.k2)α13 +

+(ζ1.ζ3)(ζ2.k3)(ζ4.k2)α13 + (ζ1.k2)(ζ2.ζ3)(ζ4.k2)α13 + 2(ζ1.ζ2)(ζ3.k1)(ζ4.k2)α13 +

+(ζ1.ζ2)(ζ3.k2)(ζ4.k2)α13 (D.1)

K
(4)
4 = (ζ1.ζ4)(ζ2.ζ3)α2

12+(ζ1.ζ2)(ζ3.ζ4)α2
12+(ζ1.ζ4)(ζ2.k1)(ζ3.k1)α12+(ζ1.ζ4)(ζ2.k3)(ζ3.k1)α12+

+(ζ1.ζ4)(ζ2.k3)(ζ3.k2)α12 − (ζ1.k2)(ζ2.k1)(ζ3.ζ4)α12 − (ζ1.k3)(ζ2.k1)(ζ3.ζ4)α12 −
−(ζ1.k3)(ζ2.k3)(ζ3.ζ4)α12 − (ζ1.k2)(ζ2.ζ3)(ζ4.k1)α12 − (ζ1.k3)(ζ2.ζ3)(ζ4.k1)α12 −
−(ζ1.ζ2)(ζ3.k1)(ζ4.k1)α12 − (ζ1.ζ2)(ζ3.k2)(ζ4.k1)α12 − (ζ1.k3)(ζ2.ζ3)(ζ4.k2)α12 −
−(ζ1.ζ2)(ζ3.k2)(ζ4.k2)α12 + 2(ζ1.ζ2)(ζ3.ζ4)α13α12 + (ζ1.ζ2)(ζ3.ζ4)α2

13 −
−(ζ1.k2)(ζ2.k3)(ζ3.k1)(ζ4.k1) + (ζ1.k2)(ζ2.k1)(ζ3.k2)(ζ4.k1) + (ζ1.k3)(ζ2.k1)(ζ3.k2)(ζ4.k1)−
−(ζ1.k2)(ζ2.k3)(ζ3.k2)(ζ4.k1) + (ζ1.k2)(ζ2.k1)(ζ3.k2)(ζ4.k2) + (ζ1.k3)(ζ2.k1)(ζ3.k2)(ζ4.k2) +

+(ζ1.ζ4)(ζ2.k1)(ζ3.k1)α13 + (ζ1.ζ4)(ζ2.k1)(ζ3.k2)α13 − (ζ1.k2)(ζ2.k1)(ζ3.ζ4)α13 −
−(ζ1.k3)(ζ2.k1)(ζ3.ζ4)α13 + (ζ1.k2)(ζ2.k3)(ζ3.ζ4)α13 + (ζ1.k2)(ζ2.ζ3)(ζ4.k1)α13 −
−(ζ1.ζ2)(ζ3.k1)(ζ4.k1)α13 − 2(ζ1.ζ2)(ζ3.k2)(ζ4.k1)α13 + (ζ1.k2)(ζ2.ζ3)(ζ4.k2)α13

−(ζ1.ζ2)(ζ3.k2)(ζ4.k2)α13 (D.2)

K
(4)
5 = (ζ1.ζ4)(ζ2.ζ3)α2

12 + (ζ1.ζ2)(ζ3.ζ4)α2
12 + 2(ζ1.ζ4)(ζ2.ζ3)α13α12 + (ζ1.ζ4)(ζ2.ζ3)α2

13 +

+(ζ1.ζ4)(ζ2.k3)(ζ3.k2)α12 − (ζ3.ζ4)(ζ1.k2)(ζ2.k1)α12 − (ζ2.ζ3)(ζ1.k2)(ζ4.k1)α12 −
−(ζ2.ζ3)(ζ1.k3)(ζ4.k1)α12 − (ζ1.ζ2)(ζ3.k1)(ζ4.k1)α12 − (ζ1.ζ2)α12(ζ3.k2)(ζ4.k1)−
−(ζ1.ζ2)(ζ3.k1)(ζ4.k2)α12 − (ζ1.ζ2)(ζ3.k2)(ζ4.k2)α12 + (ζ1.ζ4)α13(ζ2.k3)(ζ3.k2)−
−(ζ2.ζ3)(ζ1.k2)(ζ4.k1)α13 − (ζ2.ζ3)(ζ1.k3)(ζ4.k1)α13 + (ζ1.k2)(ζ2.k1)(ζ3.k1)(ζ4.k1) +

+(ζ1.k2)(ζ2.k1)(ζ3.k2)(ζ4.k1)− (ζ1.k2)(ζ2.k3)(ζ3.k2)(ζ4.k1)− (ζ1.k3)(ζ2.k3)(ζ3.k2)(ζ4.k1) +

+(ζ1.k2)(ζ2.k1)(ζ3.k1)(ζ4.k2) + (ζ1.k2)(ζ2.k1)(ζ3.k2)(ζ4.k2) (D.3)

K
(4)
6 = (ζ1.ζ3)(ζ2.ζ4)α2

13 − (ζ2.ζ4)α13(ζ1.k3)(ζ3.k1) + (ζ1.ζ3)α13(ζ2.k1)(ζ4.k2) + (D.4)

+(ζ1.ζ3)α13(ζ2.k3)(ζ4.k2)− (ζ1.k3)(ζ2.k1)(ζ3.k1)(ζ4.k2)− (ζ1.k3)(ζ2.k3)(ζ3.k1)(ζ4.k2)

Now, demanding the absence of (ζ.k)4 terms in the following linear combination

a3K
(4)
3 + a4K

(4)
4 + a5K

(4)
5 + a6K

(4)
6 , (D.5)
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we obtain a set of 11 relations among the four unknowns a3, a4, a5 and a6, and we are left

with the following 3 independent equations:
a3 + 4 a5 = 0

2 a4 − a3 = 0

a3 + 8 a6 = 0

(D.6)

whose solution has already been shown at equation (4.2) and is rewritten here

a3 = −8 a6, a4 = −4 a6, a5 = 2 a6 . (D.7)

E α′3 kinematic calculations

In this appendix we give some details of the calculations related to the 4 and 5-point

subamplitude of Leff
(3), shown in (2.12). We do not consider the complete subamplitudes,

but we will take into account only the (ζ.k)n terms which are initially present in the

corresponding n-point subamplitude.

Here we will also adopt the convention

αij = ki · kj . (E.1)

E.1 (ζ · k)4 terms

The (ζ · k)4 terms presents in the 4-point subamplitude of Leff
(3) are given by:

A(ζ·k)4 = α13 ((ζ2 · k1) {(ζ4 · k2) [2(ζ4 · k1) (a21(ζ1 · k2) + (a16 − a17)(ζ1 · k3))−
− (ζ4 · k2) (2(a20 − a21 + a22)(ζ1 · k2) + (2a17 + a22)(ζ1 · k3))]

+(ζ3 · k1) [(ζ4 · k2) ((2(a17 − a20 + a21)− a22)(ζ1 · k2) + (a22 − 2(a17 + 8a19))(ζ1 · k3)) +

+(ζ4 · k1) ((2(a17 + a21) + a22)(ζ1 · k2) + 2(a20 + a22)(ζ1 · k3))]}+

+(ζ2 · k3) {(ζ1 · k2) [(ζ4 · k1) ((2a17 + a22)(ζ3 · k1) + 2(4a18 − a21)(ζ4 · k2)) −
− (ζ4 · k2) ((−2a16 + 2a20 + a22)(ζ3 · k1) + 2(a20 + a22)(ζ4 · k2))] +

+2(ζ1 · k3) [(−a16 + a17 − 4a18 + a21)(ζ4 · k1)(ζ4 · k2)+ +

+(−a16 + a17 + 8a19 + a20)(ζ3 · k1)(ζ4 · k2)]}) +

+α12 ((ζ2 · k1) {(ζ1 · k2) [8a18(ζ4 · k2) ((ζ4 · k1) + (ζ4 · k2)) +

+(ζ3 · k1) ((2a16 + 8a18 + a22)(ζ4 · k1) + (2a16 + 8a18 − 2a20 − a22)(ζ4 · k2))] +

+(ζ1 · k3) [(ζ4 · k1) (2(a20 + a22)(ζ3 · k1) + (2a16 + a22)(ζ4 · k2)) +

+(−2a16 + 2a20 + a22) ((ζ3 · k1) + (ζ4 · k2)) (ζ4 · k2)]}+

+(ζ2 · k3) {(ζ4 · k2) [2(a20 + a22)(ζ4 · k2)(ζ1 · k3)+

+(ζ4 · k1) (8a18(ζ1 · k2) + (2a16 + 8a18 + a22)(ζ1 · k3))] +

+(ζ3 · k1) [(ζ4 · k2) ((4a16 − 2a20)(ζ1 · k2) + (2a16 + a22)(ζ1 · k3)) +

+(ζ4 · k1) ((2a16 + a22)(ζ1 · k2) + 2(a20 + a22)(ζ1 · k3))]}) (E.2)

Now, we demand that A(ζ·k)4 = 0, which implies a set of 29 relations among the seven

coefficients a16, a17, a18, a19, a20, a21 and a22. However, we have only 6 independent

relations, resulting in

− 2a16 = −2a17 = 8a19 = −a20 = a22 and a18 = a21 = 0 , (E.3)

which has already been shown at expression (4.5).
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E.2 (ζ · k)5 terms

Let us consider the (ζ ·k)5 terms present in the 5-point subamplitude of Leff
(3). In this case,

we have to deal with an amplitude containing poles, which appears due to the presence

of 4-leg vertices produced by the terms D2F 4 in Leff
(3). Therefore, we can separate the

contributions (ζ · k)5 into two kinds of terms:

A(ζ·k)5 = A(ζ·k)5 +A(poles)
(ζ·k)5 (E.4)

where A(poles)
(ζ·k)5 and A(ζ·k)5 denote the terms with and without poles in the (ζ · k)5 contri-

bution to the 5-point subamplitude, respectively. In a first step, we demand that

A(poles)
(ζ·k)5 = 0 (E.5)

and we obtain a set of 706 equations for the coefficients a16, . . . , a22. Solving this system,

we find the following relations among the coefficients:

− 2a16 = −2a17 = 8a19 = −a20 = a22 and a18 = a21 = 0 . (E.6)

This is exactly the same result that we obtained when we demanded the absence of (ζ · k)4

terms in the 4-point subamplitude, eq. (E.3). Thus, requiring the absence of poles in the

(ζ · k)5 terms which are present in the 5-point subamplitude is equivalent to demanding

the absence of (ζ · k)4 terms in the 4-point subamplitude. Therefore, at α′3 order, we

just need to work with the 5-point subamplitude. So, including the information about the

absence of poles, eq. (E.6), and requiring the elimination of (ζ · k)5 terms, still present in

the 5-point subamplitude, we obtain a set of 95 relations among the remaining 6 coefficients

a10, . . . , a15 and the coefficient a22. Considering only the 6 linearly independent equations,

we obtain:

a11 = a13 = −2a15 = −ia22 and a10 = a12 = a14 = 0 , (E.7)

which is the result already presented in the main body of this work, in eq. (4.6).

F Some details of the α′4 calculations of Leff

Here we present some details about the derivation of the Lagrangian shown in eq. (5.1).

F.1 Determining the F 6, D2F 5 and the D4F 4 terms and their coefficients

It is known that using the fact that the gauge field matrices are in the adjoint repre-

sentation (A.4), integration by parts, the [D,D]· = −i[F, ·] relation (A.8), Bianchi iden-

tities (A.9), then a basis of terms can be found for the α′4 order terms, which has the

general form

L(4)
eff = (2α′)4tr

[ m1∑
i=1

ai (F 6)i +

m2∑
i=1

bi (D2F 5)i +

m3∑
i=1

ci (D4F 4)i

]
. (F.1)

From [36] we know that this basis of terms should be 96-dimensional, that is, it should

happen that m1 +m2 +m3 = 96 but, as we will see in the next lines, based on previously
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known expressions for the D2F 5 and the D4F 4 terms, we will work with and α′4 expression

which contains only 53 unknowns.

The explicit form of the {F 6, D2F 5, D4F 4} terms that we have used in our calculations

is the following:

1. F 6 terms. We have constructed them using the tensor structure tµ1ν1µ2ν2µ3ν3µ4ν4µ5ν5µ6ν6

(12)

tr(Fµ1ν1Fµ2ν2Fµ3ν3Fµ4ν4Fµ5ν5Fµ6ν6), where the t(12) tensor is antisymmetric on each

pair (µj νj) and also it satisfies the relation

tµ1ν1µ2ν2µ3ν3µ4ν4µ5ν5µ6ν6

(12) = + tµ1ν1µ6ν6µ5ν5µ4ν4µ3ν3µ2ν2

(12) , (F.2)

which corresponds to demanding invariance of the 6-point amplitude under a world-

sheet parity transformation (‘twisting’ on the disk with respect to index ‘1’).

The resulting t(12) tensor contains 28 free coefficients, that is, there are 28 independent

F 6 terms (m1 = 28 in (F.1)).

2. D2F 5 and D4F 4 terms. For these terms we first recall that we have explicitly de-

termined them (and their coefficients) in eqs. (5.16) and (5.17) of ref. [19], although

in that reference we did not worry in writing them in a reduced way (and we have

now confirmed that, in fact, this happens). So, in (F.1) we will use as an Ansatz the

complete list of groupped D2F 5 and D4F 4 terms of ref. [19], while keeping their bi
and ci coefficients free. By ‘groupped’ we mean that for the D2F 5 terms we have

used a list of 15 terms41 like tµ1ν1µ2ν2µ3ν3µ4ν4µ5ν5

(10) tr(Fµ1ν1Fµ2ν2Fµ3ν3D
αFµ4ν4DαFµ5ν5),

(η · t(8))
µ1ν1µ2ν2µ3ν3µ4ν4µ5ν5tr(Fµ1ν1Fµ2ν2D

αFµ3ν3DαFµ4ν4Fµ5ν5) and tµ4ν4µ5ν5µ1ν1µ2ν2

(8)

tr(Dµ3Fµ1ν1D
ν3Fµ2ν2Fµ3ν3Fµ4ν4Fµ5ν5).

Now, in the case of the D4F 4 terms of ref. [19] there is a subtlety: there we wrote

them as a group of 8 terms like tµ1ν1µ2ν2µ3ν3µ4ν4

(8) tr(D2D2Fµ1ν1Fµ2ν2Fµ3ν3Fµ4ν4),

tµ1ν1µ2ν2µ3ν3µ4ν4

(8) tr( DαFµ1ν1DαFµ2ν2D
βFµ3ν3DβFµ4ν4 ) and tµ1ν1µ2ν2µ3ν3µ4ν4

(8)

tr(D2Fµ1ν1Fµ2ν2D
βFµ3ν3DβFµ4ν4). In that list of 8 terms only 2 of them do not

contain a ‘quadratic’ covariant derivative D2 = DαDα. The 6 remaining ones can be

rewritten in terms of F 6 and D2F 5 terms after using the identity

D2Fµν = Dα(DαFµν) = Dµ(DαF
α
ν)−Dν(DαF

α
µ) + 2 i [Fαµ, Fν

α] . (F.3)

In fact, in the next subsection F.2 we have written explicitly various of these relations.

At the end, we are left just with two type of D4F 4 terms which do not contain

‘quadratic’ covariant derivatives:

tµ1ν1µ2ν2µ3ν3µ4ν4

(8) tr(DαFµ1ν1DαFµ2ν2D
βFµ3ν3DβFµ4ν4) and

tµ1ν1µ2ν2µ3ν3µ4ν4

(8) tr(DαFµ1ν1D(βDα)Fµ2ν2D
βFµ3ν3Fµ4ν4) . (F.4)

41See formula (5.16) of ref. [19] for more details.
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Now, with respect to the determination of the coefficientes {ai, bi, ci} in eq. (F.1), which we

have just seen that consists in a list of 28 + 15 + 8 = 51 numbers at all, we will determine

them consistently using our revisited S-matrix method.

First of all, demanding absence of (ζ · k)4 terms in the 4-point subamplitude leads

to no restrictions for the D4F 4 terms because the two that appear in (F.4) satisfy this

requirement independently.

Then, when we demand absence of terms (ζ · k)5 in the 5-point subamplitude of L(4)
eff ,

this procedure leads to a set of 471 non zero relations among the bi’s and the ci’s, from

which only 8 are linearly independent.

After that, we require the absence of (ζ · k)6 terms in the 6-point subamplitude. This

procedure leads to a set of 2511 non zero relations among the ai’s, the bi’s, the ci’s and

d1, from which 33 are linearly independent. Combining these 33 relations with those 8

independent relations coming from the 5-point subamplitude, we have reached a set of 41

independent relations. At this step there is an important subtlety that has to do with the

fact that the gauge group matrices λa’s are in the adjoint representation (see eq. (A.4)).

This implies that in the expression for the complete amplitude A6 (see in eq. (2.1)) there

are not (6 − 1)! = 120 terms, but only (6 − 1)!/2 = 60 ones, where the coefficient of

tr(λa1λa2λa3λa4λa5λa6) is not just A(1, 2, 3, 4, 5, 6), but A(1, 2, 3, 4, 5, 6) +A(6, 5, 4, 3, 2, 1).

So the absence of (ζ · k)6 terms should be demanded in A(1, 2, 3, 4, 5, 6) +A(6, 5, 4, 3, 2, 1)

and not only in A(1, 2, 3, 4, 5, 6).42

Our result is that, after this procedure is done, we arrive to a non homogeneous system

of linear equations for the {ai, bi, ci}’s which is consistently overdetermined. With it and

the one that we obtained before from the absence of (ζ · k)5 terms, we are able to find 39

coefficients and the remaining 12 ones remain completely arbitrary. After substituing this

solution in (F.1) the contributions of the 12 still arbitrary coefficients dissappear completely

due to identities like

tr
(
Fµ1ν1D

µ1Fµ2ν2Fµ3ν3Fµ4ν4D
ν1Fµ5ν5

)
tµ2ν2µ3ν3µ4ν4µ5ν5

(8) =

− tr
(
Dµ2Fµ1ν1Fµ2ν2D

ν2Fµ3ν3Fµ4ν4Fµ5ν5

)
tµ3ν3µ4ν4µ5ν5µ1ν1

(8) (F.5)

and

tr
(
Fµ1ν1Fµ2ν2Fµ3ν3D

αFµ4ν4DαFµ5ν5

)
tµ1ν1µ2ν2µ3ν3µ4ν4µ5ν5

(10) =

+ tr
(
Fµ1ν1Fµ2ν2D

αFµ3ν3DαFµ4ν4Fµ5ν5

)
tµ1ν1µ2ν2µ3ν3µ4ν4µ5ν5

(10) (F.6)

and more complicated ones (which, for simplicity, we have not written down here).

So, the conclusion is that, working with our Ansatz for the D2F 5 and D4F 4 terms,

our revisited S-matrix method leads to unique and completely determined lagrangian at

α′4, L(4)
eff , given in eq. (5.1) (together with the auxiliary equations (5.2), (5.3) and (5.4)) of

the main body of this work. At the end, there is no arbitrary coefficient in L(4)
eff .

42Stricitly speaking, this care should have also be taken with the absence of (ζ · k)4 and (ζ · k)5 terms,

in the 4 and 5-point subamplitudes, respectively, but we have checked that in those cases it has not made

any difference at all in the system of equations for the coefficients.
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Figure 3. Feynman diagrams associated to the 6-point amplitude at α′
4

order.

In the rest of this section of appendix F we give some further details about demanding

the absence of (ζ · k)6 in A(1, 2, 3, 4, 5, 6) +A(6, 5, 4, 3, 2, 1) at order α′4.

First of all, in figure 3 we have drawn all type of 6-point tree level Feynman diagrams

that arise at α′4 order.

i) We have checked that the diagrams with two propagators ((d) and (e) in figure 3) do

not contain (ζ · k)6 terms.

ii) We have checked that the relations among the bi’s and the ci’s obtained by demanding

absence of terms (ζ ·k)5 automatically avoid the presence of simple poles on the (ζ ·k)6

terms of A(1, 2, 3, 4, 5, 6) + A(6, 5, 4, 3, 2, 1), that is, the simple pole contributions to

the (ζ · k)6 terms of diagrams (b), (c), (d) and (e) of figure 3 is zero (after using

momentum conservation, the physical state and the on-shell conditions).

iii) Let us analyze more carefully the diagram (c) in figure 3. That diagram has con-

tributions from vertices coming LYM + (2α′)4L(4)
D4F 4 , but it also has contributions

from 4-point vertices that come from (2α′)2L(2)
F 4 , presented in eq. (4.3).43 This

is a crucial point in our calculations. It is due to the contribution of these last

terms that the linear system for the {ai, bi, ci}’s is non homogeneous. This sys-

tem arises from demanding absence of (ζ · k)6 in the contribution without poles in

A(1, 2, 3, 4, 5, 6) +A(6, 5, 4, 3, 2, 1).

iv) We have checked that, within the scheme that we have proposed as basis for the

D2F 5 and the D4F 4 terms, in order to arrive to the final expression for L(4)
eff we have

needed to use the information of both, absence of (ζ ·k)5 terms and absence of (ζ ·k)6

terms. If we only used the information that comes from demanding absence of (ζ ·k)6

terms, this is not enough to arrive to our final solution: there would still be some

undetermined coefficients in L(4)
eff .

We are not sure what might have happened if we had found a 96-dimensional basis of

F 6, D2F 5 and D4F 4 terms and then only demanded the absence of (ζ · k)6 terms: may be

that could have been a sufficient requirement to determine L(4)
eff completely, in the same way

as demanding absence of (ζ · k)5 terms in the 5-point amplitude was enough to determine

L(3)
eff completely (see the final part of subsection 4.2 in the main body of this work).

43It is not obvious to see, but it happens that the (ζ ·k)6 terms coming from the contributions of diagrams

(c) constructed with these vertices are terms which have no poles at all (after using momentum conservation,

the physical state and the on-shell conditions).
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F.2 Identities involving quadratic covariant derivatives

In this section of appendix F we only mention some of the identities that we refered to in

section F.1.

Using the identity in (F.3) and disconsidering the terms containing DαF
αµ (which do

not contribute in the on-shell scattering amplitudes) it can be proved that

tµ1ν1µ2ν2µ3ν3µ4ν4

(8) tr
(
DβFµ1ν1D

(2Dβ)Fµ2ν2Fµ3ν3Fµ4ν4

)
=

−i tr (Fµ1ν1D
µ1Fµ2ν2Fµ3ν3Fµ4ν4D

ν1Fµ5ν5) tµ2ν2µ3ν3µ4ν4µ5ν5

(8)

−i tr (Dµ3Fµ1ν1D
ν3Fµ2ν2Fµ3ν3Fµ4ν4Fµ5ν5) tµ4ν4µ5ν5µ1ν1µ2ν2

(8)

−i (η · t(8))
µ1ν1µ2ν2µ3ν3µ4ν4µ5ν5tr (Fµ1ν1DαFµ2ν2D

αFµ3ν3Fµ4ν4Fµ5ν5)

−i (η · t(8))
µ1ν1µ2ν2µ3ν3µ4ν4µ5ν5tr (Fµ1ν1DαFµ2ν2Fµ3ν3D

αFµ4ν4Fµ5ν5) , (F.7)

tµ1ν1µ2ν2µ3ν3µ4ν4

(8) tr
(
D2D2Fµ1ν1Fµ2ν2Fµ3ν3Fµ4ν4

)
=

−2i (η · t(8))
µ1ν1µ2ν2µ3ν3µ4ν4µ5ν5tr (Fµ1ν1Fµ2ν2DαFµ3ν3D

αFµ4ν4Fµ5ν5)

−2 (η · η · t(8))1
µ1ν1µ2ν2µ3ν3µ4ν4µ5ν5µ6ν6tr (Fµ1ν1Fµ2ν2Fµ3ν3Fµ4ν4Fµ5ν5Fµ6ν6)

−2 (η · η · t(8))2
µ1ν1µ2ν2µ3ν3µ4ν4µ5ν5µ6ν6tr (Fµ1ν1Fµ2ν2Fµ3ν3Fµ4ν4Fµ5ν5Fµ6ν6) ,

(F.8)

tµ1ν1µ2ν2µ3ν3µ4ν4

(8) tr
(
D2Fµ1ν1Fµ2ν2D

βFµ3ν3DβFµ4ν4

)
=

−i (η · t(8))
µ1ν1µ2ν2µ3ν3µ4ν4µ5ν5tr

(
DβFµ1ν1DβFµ2ν2Fµ3ν3Fµ4ν4Fµ5ν5

)
, (F.9)

tµ1ν1µ2ν2µ3ν3µ4ν4

(8) tr
(
D2Fµ1ν1D

2Fµ2ν2Fµ3ν3Fµ4ν4

)
=

(η · η · t(8))3
µ1ν1µ2ν2µ3ν3µ4ν4µ5ν5µ6ν6tr (Fµ1ν1Fµ2ν2Fµ3ν3Fµ4ν4Fµ5ν5Fµ6ν6) , (F.10)

tµ1ν1µ2ν2µ3ν3µ4ν4

(8) tr
(
D2Fµ1ν1Fµ2ν2D

2Fµ3ν3Fµ4ν4

)
=

(η · η · t(8))4
µ1ν1µ2ν2µ3ν3µ4ν4µ5ν5µ6ν6tr (Fµ1ν1Fµ2ν2Fµ3ν3Fµ4ν4Fµ5ν5Fµ6ν6) , (F.11)

where the (η · η · t(8))j 12-index tensors are defined by

(η · η · t(8))1
µ1ν1µ2ν2µ3ν3µ4ν4µ5ν5µ6ν6 = ηµ1ν5ην1ν6tµ5µ6µ2ν2µ3ν3µ4ν4

(8) +

+

(
7 terms coming from antisymmetrization

on (µ1ν1) (µ5ν5) and (µ6ν6)

)
, (F.12)

(η · η · t(8))2
µ1ν1µ2ν2µ3ν3µ4ν4µ5ν5µ6ν6 = ηµ1ν6ην5µ6tµ5ν1µ2ν2µ3ν3µ4ν4

(8) +

+

(
7 terms coming from antisymmetrization

on (µ1ν1) (µ5ν5) and (µ6ν6)

)
, (F.13)

(η · η · t(8))3
µ1ν1µ2ν2µ3ν3µ4ν4µ5ν5µ6ν6 = ηµ5ν6ηµ1µ2tν5µ6ν1ν2µ3ν3µ4ν4

(8) +

+

(
15 terms coming from antisymmetrization

on (µ1ν1) (µ2ν2) (µ5ν5) and (µ6ν6)

)
, (F.14)

(η · η · t(8))4
µ1ν1µ2ν2µ3ν3µ4ν4µ5ν5µ6ν6 = ηµ5µ6ηµ2µ3tν5ν6µ1ν1ν2ν3µ4ν4

(8) +

+

(
15 terms coming from antisymmetrization

on (µ2ν2) (µ3ν3) (µ5ν5) and (µ6ν6)

)
. (F.15)
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All these (η · η · t(8))j 12-index tensors can be expressed as linear combinations of the 28

t(12) 12-index tensors mentioned in the previous subsection F.1, in the construction of the

F 6 terms (item 1).

F.3 Tests for the α′4 terms

1. 4-point amplitude. We have checked that the 4-point amplitude, obtained from the

two D4F 4 terms mentioned in eq. (F.4), reproduces exactly (after considering the

coefficients that have been found for L(4)
eff ) the result from the open supertring 4-

point amplitude, eq. (2.7) of the main body of this work, at α′4 order.

2. 5-point amplitude. In our paper [19] we obtained that the open superstring 5-point

amplitude could be simplified to

A(1, 2, 3, 4, 5) = T ·AYM(1, 2, 3, 4, 5) +
(
2α′
)2
K3 ·AF 4(1, 2, 3, 4, 5) , (F.16)

where the α′4 contribution in the momentum factors T and (2α′)2K3 is given by(
2α′
)2
K3 =

(
2α′
)4 2

5
ζ(2)2 ( I

(2)
1 +

1

4
I

(2)
2 + I

(2)
3 ) , (F.17)

T =
(
2α′
)4 2

5
ζ(2)2 ( I

(4)
8 +

1

4
I

(4)
10 + I

(4)
13 + I

(4)
14 ) , (F.18)

with

I
(2)
1 = α2

12 + α2
23 + α2

34 + α2
45 + α2

51 , (F.19)

I
(2)
2 = α12α23 + α23α34 + α34α45 + α45α51 + α51α12 , (F.20)

I
(2)
3 = α12α34 + α23α45 + α34α51 + α45α12 + α51α23 . (F.21)

and

I
(4)
8 = α2

12α23α34 + α2
23α34α45 + α2

34α45α51 + α2
45α51α12 + α2

51α12α23 , (F.22)

I
(4)
10 = α2

12α23α51 + α2
23α34α12 + α2

34α45α23 + α2
45α51α34 + α2

51α12α45 , (F.23)

I
(4)
13 = α2

12α45α51 + α2
23α51α12 + α2

34α12α23 + α2
45α23α34 + α2

51α34α45 , (F.24)

I
(4)
14 = α12α23α34α45+α23α34α45α51+α34α45α51α12+α45α51α12α23+α51α12α23α34.

(F.25)

In formulas (F.19) to (F.25) we have used the convention αij = ki · kj .
We have checked that the 5-point amplitude coming from the D2F 5 and the D4F 4

terms agrees exactly with the one in (F.16) at α′4 order, once we have introduce the

known expressions of the AYM(1, 2, 3, 4, 5) and the AF 4(1, 2, 3, 4, 5) subamplitudes.

3. Abelian limit. We have checked that the abelian limit of our F 6 terms is given by

LAbelian = (2πα′)4
(
− 1

12
F µ2
µ1

F µ3
µ2

F µ4
µ3

F µ5
µ4

F µ6
µ5

F µ1
µ6

+

+
1

32
F µ2
µ1

F µ3
µ2

F µ4
µ3

F µ1
µ4

F µ6
µ5

F µ5
µ6
−

− 1

384
F µ2
µ1

F µ1
µ2

F µ4
µ3

F µ3
µ4

F µ6
µ5

F µ5
µ6

)
, (F.26)

which is the correct form for this limit as seen in the literature [25, 56].
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