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ABSTRACT: The purpose of this paper is to formulate the Dirac-Born-Infeld (DBI) action
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gauge. We derive generalized Lie derivatives corresponding to the diffeomorphism and B-
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1 Introduction

It is known that the low-energy effective theory for a single D-brane in slowly varying
approximation is described by the Dirac-Born-Infeld (DBI) action. Although it is derived
from the analysis of disk amplitudes in string worldsheet theory [1-5], it is not obvious
why such an action appears from the target space viewpoint. It is an interesting question
whether the DBI action can be characterized from the geometrical set up and symmetry
principle without referring to string theory.

In the field theory, the spontaneous symmetry breaking and its non-linear realization
is a powerful method to determine a low energy effective action. In the presence of an
extended object like a D-brane, the invariance under the Poincaré transformation in the
target Minkowski space is broken, and the scalar fields describing transverse displacements
can be identified as Nambu-Goldstone (NG) bosons [6, 7] for the broken translational
symmetries. The full Poincaré group symmetry is then non-linearly realized on the scalar
fields, and their effective theory is governed by the Nambu-Goto action with derivative
corrections [8-11].

Recently, this kind of argument is extended to include a U(1) gauge field on a D-
brane. In [12], the transformation law of the gauge fields under the full Poincaré symmetry
was found, and it was argued that the DBI action is the unique invariant term under the
broken Lorentz symmetry in the lowest approximation. In [13], this transformation law
was explained using compensating diffeomorphisms to keep the static gauge, and it was
shown that the gauge field is a covariant field under the broken Poincaré symmetry. Thus,
in their approach the gauge field does not appear as a NG boson and in this sense it does
not explain why gauge fields should appear in the low energy theory.

In this paper, we formulate the D-brane in the framework of the generalized geometry,
we show that not only the scalar field but also the gauge field on the D-brane naturally
appears as a NG boson, and the DBI action is characterized as a generalization of the
Nambu-Goto action.

The basic idea is quite simple. Since a T-duality transformation exchanges a scalar
field and a component of a gauge field, we would expect that the latter should also be a NG
boson for some broken symmetry. On the other hand, T-duality mixes the metric and the
B-field in the bulk, as well as their associated symmetries (generalized isometry). Thus,
these considerations suggest that a gauge field is a NG boson for a spontaneously broken
gauge transformation for a B-field. To formulate an effective theory following this idea, we
need an appropriate framework to incorporate the properties of T-duality together with
the symmetry and its spontaneous breaking into a geometrical picture. The generalized
geometry proposed by Hitchin provides such a framework [14].

The generalized geometry is a generalization of differential geometry, in which a pair
consisting of a tangent and a cotangent bundle is regarded as a single generalized tangent
bundle. As a result, vector fields and 1-forms are combined into generalized vector fields,
where the Lie bracket of vector fields is generalized to the Courant bracket. Despite of the
simplicity of the idea, this generalization unifies various distinct structures as follows: a
generalized complex structure unifies both a complex structure and a symplectic structure,



and a generalized Riemannian structure unifies a Riemannian metric and a B-field. These
unifications are the reflection of the properties of the closed string and the T-duality in
superstring theory.

Several approaches have been proposed that describe D-branes in the framework of the
generalized geometry [15-18], (see also [19], a nice review on this subject.). However, they
are not sufficient for our purpose. Thus, we need to develop a formulation of D-branes in
generalized geometry further, and that is another purpose of this paper. Here, we seek for
a formulation where we do not need to impose any extra condition from string theory, like
T-duality, by hand. In such a formulation, all these stringy informations should be built
in the geometrical framework a priori. The advantage of such an approach shed some light
on the properties of the effective theory as we see in the following.

This paper is organized as follows. The first part of this paper is devoted to the
geometrical formulation of the D-brane valid for arbitrary spacetimes, not restricted to
Minkowski spacetime. After a preparation for some facts on the generalized geometry
in section 2, we start with introducing a Dirac structure as a local description of a D-
brane in section 3, where the gauge field and the scalar fields are treated on an equal
footing. We emphasize that this structure characterizes a spacetime admitting D-branes

independent of closed string structure as a generalized Riemannian structure. Then we
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study the symmetry transformation of Diff (M) x 2 (M) associated with the generalized
tangent bundle and its action on the Dirac structure in section 4. Using this formulation,
we derive the non-linear transformation law for gauge and scalar fields in a purely geometric
way. This non-linear transformation law will lead us to the interpretation of the gauge field
as a Nambu-Goldstone boson for broken B-field gauge transformations. Restricting to the

Poincaré symmetry, our result coincides with the non-linear transformation found in [12].

Next, in addition to the Dirac structure, a generalized Riemannian structure is con-
sidered in section 5. By introducing the notion of the metric seen by the Dirac structure,
remarkably, we obtain a Buscher-like rule of a generalized metric without using T-duality.

In section 6, we study the invariance of the DBI action under the non-linear transfor-
mation given in this paper. We also discuss how the DBI action is characterized by the
full symmetry. By specializing to the Minkowski spacetime, this analysis also shows the
difference between broken translational symmetries and broken Lorentz symmetries, where
the NG bosons appear associated only with the former. We also conclude that the gauge
field is interpreted as a Nambu-Goldstone boson.

2 Preliminary

In this section, we briefly review basic facts on generalized geometry, proposed originally
by Hitchin [14] and developed by Gualtieri [15] and introduce notations used in this paper.
Further details are found in [20-22]. Review articles for physicists are for example in [19,
23, 24].



2.1 Generalized tangent bundle

Let M be a smooth D-dimensional manifold corresponding to a target spacetime. A
generalized tangent bundle over M,

TM =TM & T*M (2.1)

is a sum of the corresponding tangent bundle and cotangent bundle. We denote a section
of a generalized bundle as a formal sum v + ¢ € T'(TM), where v = vy, € T'(TM)
(M =0,---,D —1) is a vector field and ¢ = &yda™ € T(T*M) is a differential 1-form.
The space of sections, I'(TM) is equipped with

- an anchor map 7 : I'(TM) — I'(T'M), given by a projection onto vector fields

(v +§) =, (2:2)

- a fiberwise non-degenerate symmetric bilinear form (canonical inner product)

T
(-t &0 ) = 3 + ) = 5 (Z) (3 (1)) (n) , (23)

- the Dorfman bracket
[U + 57 v+ 77] - [U, U} + £u77 - ’Lvdé., (24)

where the first term in the r.h.s. is the ordinary Lie bracket of vector fields, 1, is an
interior product , i.e. 1,n = uM 1y and L, is the Lie derivative along a vector field w.

These structures (together with their compatibility conditions) make I'(TA/) a Courant
algebroid [25, 26]. It is a natural generalization of the Lie algebroid structure on vector
fields I'(T'M). We sometimes abbreviate the symbol I'(TM) as TM in the following.

Due to the canonical inner product (2.3), the generalized tangent bundle has the
structure group O(D, D). A structure group GL(D) of T'M is a subgroup of O(D, D).

Note that we work with the Dorfman bracket rather than the Courant bracket which
is the anti-symmetrization of the Dorfman bracket. In the presence of closed 3-form (H-
flux), it is known that the Courant algebroid structure is modified either by replacing the
bracket by its H-twisted version, or by twisting the generalized tangent bundle glued by
using B-field transformation (see below) in addition to diffeomorphism. In this paper, we
will concentrate on the case of vanishing H-flux for simplicity, but it is possible to include
an H-flux.

2.2 Symmetry of the Courant algebroid

As the tangent bundle T'M has the diffeomorphism Diff (M) as its symmetry, the general-
ized tangent bundle possesses the symmetry Diff (M) x Q2

closed

(M), a semi-direct product
of the following two transformations:



- Diff(M): for a diffeomorphism f : M — M of the base manifold,
Fe@ T TM 5 TM, ut & fu(u) + (), (2:5)

is induced on TM, where f, : TM — TM and f*:T*M — T*M are a pushforward
and a pullback, respectively. It is called a generalized pushforward and denoted by
the same symbol f, = f. ® f*~ L.

- B-field transformation: for a closed 2-form B € Q2 __ (M), it is defined as

closed

B TM — TM, U4 & ut €+ 1,B, (2.6)
which shift a 1-form.

It is shown that these two transformations form the automorphism group of the Courant
algebroid [15]. The corresponding infinitesimal version, the derivation Der(TM ), is gener-
ated by a pair of a vector field and a 2-form (X, B) € TM @ A*T*M. A generalized Lie
derivative L x py acting on TM is defined as [27]

Lixpy(u+§)=Lx(u+E)+ub, (2.7)

where Lx is the ordinary Lie derivative. Note that if B = —dA is an exact 2-form written
by a 1-form A, the above generalized Lie derivative reduces to the Dorfman bracket. We
denote this case by L(x _qay(u + &) = Lxia(u+E) = [X + A, u+¢]. Thus, the Dorfman
bracket (2.4) is a sum of an ordinary Lie derivative (first two terms) and a NS-NS B-field
gauge transformation (last term).

2.3 Dirac structure

A skew-symmetry is absent for the Dorfman bracket due to the second and third terms
of (2.4). We can find a subbundle in which the Dorfman bracket becomes the Lie bracket.
A Dirac structure [25] is defined as a subbundle L C TM of rank D such that

- isotropic: L is self-orthogonal L = L*, i.e. (a,b) = 0 for Ya,b € I'(L)
- involutive: L is closed under the Dorfman bracket, i.e. [a,b] € I'(L) for Ya,b € T'(L).

Obviously, a Dirac subbundle L has the structure of a Lie algebroid, where the anchor map
p: L —TMis p=mo with ¢+ being the inclusion of L into TM. For the general theory
of Lie algebroids, see [28]. The simplest examples of Dirac structures are TM with p = id.
and T*M with p = 0. It is known that any Lie algebroid defines a (singular) foliation.

Note that if both a subbundle L C TM and its dual bundle L* are Dirac structures
and the generalized tangent bundle TM splits as TM = L & L*, it is called a generalized
product structure [16, 19]. Historically, the notion of Courant algebroid, given in [26] with
its primary example, is a Lie bialgebroid A& A* given by a pair of Lie algebroids A and A*.

A more familiar structure is a generalized complex structure, where a subbundle and
its dual belong to the complexified generalized tangent bundle TCA, but we do not use it
in this article.



2.4 Generalized Riemannian structure

A generalized Riemannian structure (generalized metric) is defined as a positive definite
subbundle C; C TM of rank D of the generalized tangent bundle, i.e., the canonical inner
product restricted to C is positive definite, (A4, A) > 0 for all non-zero sections A € I'(CY.).
By defining C'_ as the orthogonal complement of C'y, which is a negative definite subbundle,
the generalized tangent bundle splits as TM = C; @ C_. Thus specifying the generalized
metric Cy is equivalent to a reduction of the structure group from O(D, D) to O(D)xO(D).

Since C4+ NT*M = {0}, the generalized metric can be also written as the graph of the
map E =g+ B:TM — T*M, namely C is written as

Cy={Vi=v+(g+B)w)|veTM}, (2.8)

where ¢ is an ordinary Riemannian metric and B is a two-form identified as a NS-NS B-
field. Indeed, one has (Vi,V[) = g(v,v’) and C, is positive definite, i.e., the canonical
inner product restricted to C'y defines an ordinary Riemannian structure. Correspondingly,
the negative-definite subbundle C_ is given by the graph of the map —g + B as

C_={V_=v+(—g+B)v)|veTM}. (2.9)

The generalized Riemannian structure is also specified by a self-adjoint orthogonal
endomorphism G : TM — TM such that G* = GTG = 1 and (A,GA) > 0 for all
A #0e(TM). Then, the subbundles C are expressed as the +1-eigenspaces of G, i.e.
Cy+ = Ker(1 F G). Solving the eigenvalue equation

GVy =+Vy (2.10)

for Vi € I'(Cy) given in (2.8), (2.9), the generalized metric G is given by

G- ( 9B ) (2.11)
g—Bg B Byg
as a matrix of a map I'TM @ T*M) — I'(TM & T*M).

As we have seen, there are various ways to characterize a generalized Riemannian
structure, that are mathematically equivalent. However, physically it is not apparent which
part of the generalized metric such as g, g — Bg~' B, or G should be used in a Lagrangian
or a Hamiltonian of the effective theory. In a first quantized string, or in the double
field theory [29], G plays a primary role. In this paper, after studying D-branes without
imposing this structure, we give another way to describe a generalized metric suitable for
D-branes.

3 D-branes as Dirac structures

In this section, we describe a D-brane as a Dirac structure, in which the scalar fields and
a gauge field on the D-brane are treated on an equal footing.

Starting with a conventional description of a D-brane as an embedding of a worldvol-
ume into a target spacetime, we rewrite it as a leaf of a foliation of that spacetime. This



description is easily generalized to incorporate a gauge field by using a diffeomorphism and
a B-field gauge transformation. We will see that this process can be also understood as a
construction using a generalized connection.

3.1 Embedding of a D-brane and foliations

Let us first describe the conventional picture for a D-brane. A worldvolume X of a Dp-brane
is a (p+ 1)-dimensional manifold embedded into a D-dimensional target space M by a map
@ : 2% < M. In addition, a D-brane is associated with a complex line bundle V' — ¥ with
a connection. The possible embedding maps and the possible choices of connections are
regarded as the dynamical degrees of freedom associated to a D-brane. Here we focus on
embedding maps and reformulate them in a form such that the relation to the generalized
geometry is apparent.

Here, we take the worldvolume ¥ = RPT! and a target space M = R” as Euclidean
spaces for simplicity, but our argument is applicable to any curved manifold if we consider
its local structure.

Let us recall the notion of the static gauge in some detail. For given coordinates o
(a=0,---,p) on a worldvolume ¥ and ™ (M =0,--- D —1) on a target space M, a map
@ : ¥ < M is specified by D functions M (c) on ¥. Among them, we fix a reference map
¢ as (2%(0),2%(0)) = (6%,0) (a=0,-++ ,p,i=p+1,--- ,D—1) such that the submanifold
©(X) is a hypersurface in M represented by 2’ = 0, which is called the static gauge.! This
enables us to identify the coordinates of the worldvolume ¥ and the embedded submanifold
(X)), ie., z* = 0% Note that the map ¢ induces a pushforward (dy), : T, — T,y M on
corresponding tangent spaces. A vector v*d/0c® € T,¥ at a point p € ¥ also maps to a
vector v%0,, € Tw(p)M at ¢ € M with abbreviation 9, = 9/dz“.

A D-brane can fluctuate around a fixed configuration. In the static gauge, such dy-
namical degrees of freedom are transverse displacements represented by scalar fields ®¢(c)
on the worldvolume Y. They give a new embedding map

0p X — M, (z%(0),2'(0)) = (o, ®*(0)). (3.1)

It is equivalent to a new hypersurface z! = ®(2%) in M. Similarly, its pushforward is

0 .
(d<,0<1>)p : TpE — T<P¢>(p)M7 va% — ,Ua(aa 4 aaq)zal) (32)

The scalar fields determine both the position of the D-brane as well as the basis of tangent
vectors.

We would like to rewrite these settings purely on the target space M, without recourse
to the worldvolume Y. For this, it is useful to think of a foliation of the target space
M, by considering infinitely many copies of submanifolds simultaneously (see figure 1). A
submanifold ¢(X) ~ ¥ wrapped by a D-brane is considered as a leaf of this foliation. It is

!Note that it is always possible locally for any manifold M: For a point on a submanifold p € (%),
one can choose a open cover {U,} of M and local coordinates 2™ such that ¢(X) N U, is represented by
(x“,xi = 0) in the neighborhood of p. Then, by using a diffeomorphism on the worldvolume ¥, we can
choose coordinates o on X as 0 = z“.



( a D-brane = aleaf )

Figure 1. Schematic picture of the foliated structure, where a D-brane is identified with a cer-
tain leaf.

equivalent to specify a subbundle A C TM over M, where A = {v*(z)0,} is a set of vector
field tangent to leaf directions.? Its restriction to a particular leaf is Alg = T'S. For this
we demand that the global existence of the foliation structure, which is equivalent to the
condition that the submanifold ¥ is a leaf of the foliation and is an integrable submanifold
of M. In the case of the Minkowski spacetime, this assumption is valid for any point p.
Similarly, the map ¢¢ defines another foliation on M.

Now the change of embedding caused by the scalar fields is written in the target space
M, without recourse to the worldvolume Y. Let ® = ®/(2%)d; € TM be a vector field
defined on the whole target space M, whose coefficient functions are z’-independent.® Tt
generates a diffeomorphism as a Lie derivative —Lg. Its action on the subbundle A is

e Fept(z®, 110, = v (2%, 2" — B (22)) (D4 + 0, D)), (3.3)

which relates two subbundles A = span{9,} and e ** A = span{d, + 9,99, }.4

In summary, a D-brane is described as a leaf of a foliation, and a transverse fluctuation
of a D-brane corresponds to a deformation of the foliation. This target space picture of
D-branes is easily extended in terms of generalized geometry to include gauge fields as we
will see next.

3.2 Generalized embedding and Dirac structure

Here we extend the previous formulation of D-brane to the framework of generalized geom-
etry. Given a target space M with its local coordinates (2%, ') and its generalized tangent

2(dp), is extended to a pushforward of vector fields ¢. : TS — TM]|, sy, when restricted on the
submanifold, but it is not defined on the whole M.

3We sometimes call a vector field ® = ®°9; made out of scalar fields ®' as “scalar fields”. This termi-
nology originates form the viewpoint of the worldvolume 3. Do not confuse!

4Note the minus sign in the argument. If va(x“,xi) is a function on M peaked at z' = 0,
v® (2%, 2" — ®'(z*)) has a peak at ' = ®(2%).



Figure 2. Fluctuations can be described by using a diffeomorphism generated by a vector field
defined by the scalar field ®°.

bundle TM, let us define a subbundle L = span{d,,dz'} C TM over M. A section has
the form

Vp = v4(x)0, + &(x)dx' € L. (3.4)

It is a generalization of a subbundle A C TM as L = A& Ann(A), where Ann(A) C T*M
denotes an annihilator of A in TM.®> The sections of the dual bundle L* = span{9;, dz®} =
Ann(A)* & A* have the form

Vie = vi(m)ai +&o(z)dz® € L™ (3.5)

It is easy to show that both subbundles L and L* are Dirac structures and they define a
generalized product structure TM & T*M = L & L*.

Conversely, a generalized product structure TM & T*M = L@ L* is a structure added
on the target space that admit a D-brane as a leaf of a foliation [16, 19]. The subbundle
L plays the role of the static gauge, as we have discussed. Our proposal in this paper is
that all the geometric information realized on a D-brane is seen by this Dirac structure L.
To demonstrate this proposal, we will consider the fluctuations on the D-brane (®?, A,),
non-linearly realized symmetries and a metric seen by D-brane and show that they can be
characterized geometrically by using the notion of the Dirac structure.

The fluctuations are also incorporated into our formulation as follows. We can combine
the scalar fields ® = ®(2%)d; and the one-form gauge field A = A,(2%)dz® into a general-
ized vector ®+ A € L*. We assume here that their coefficient functions are z’-independent.
It is then natural to consider a generalized Lie derivative Loy 4 for a diffeomorphism and
a B-field gauge transformation. By acting it on L, we have another subbundle Lz

Ly =e **+AL C TM, (3.6)

SAnn(A) = {€ e D(T*M)|VV € I'(A), (£, V) = 0}.



dyt = dz* — 0,P'dz®

Figure 3. The schematic picture of the basis along the leaf L and normal to the leaf.

with its sections having the form
V = 0%(2)(0a + 0aP 0+ Fopda®) + & (z)(dz® — 9, D' dx?), (3.7)

where F, = 0,Ap — OpAq. Here F in our notation Lz denotes a generalized field strength
corresponding to a generalized vector ® + A. (see the next subsection.)

It is straightforward to verify that Lz is a Dirac structure, by using the Bianchi identity
dF = 0. We will also show that the dual L* remains unchanged under this operation. Their
sum reproduces the total space of the generalized tangent bundle, L @& L* = TM, so that
the generalized product structure is intact. Therefore, fluctuations ® + A can be regarded
as a deformation of a generalized product structure.

A Dirac structure is automatically a Lie algebroid. For our L, its structure is specified
by the basis e, 1= 0, + 0,P%0; + Fypda® and €' := da’ — 9,9'dz® as

p(ea) = 8(1 + aa(biaiv P(el) = 07 (38)

[ea, €] = [ea, €] = [¢',e/] =0 (3.9)

where the bracket of the generalized vectors is understood to be the Dorfman bracket. Note
that this Lie bracket relation is the same as that of L where the fluctuations are absent
(P + A = 0). This is a special kind of Lie algebroid with vanishing structure functions,
which means that a deformed leaf of L is still an integrable submanifold. In this case, the
basis of the Lie algebroid can be represented by a coordinate basis. Namely, if we define
new coordinates y¢ = 2% and y' = ' — ®(2%), where the D-brane is specified by 3 = 0,
then the basis of the algebroid can be written by
0
dy°

=0y = 0y + 0,9°9;, dy' = da’ — dP*, (3.10)

At each point p € M, the former span the directions along a leaf of Lz, while the latter
span the directions normal to a leaf in 7,7 M. See figure 3.

We close this section with a remark. In a general target space M and its covering
{Us}, ® + A may be defined only locally on each open set U,. They may be globally
non-trivial, and we need to glue them in the overlapping region of an open covering.

,10,



3.3 Generalized connections

Here we show that the combination A + ® € L* can also be regarded as a generalization
of a connection 1-form. Given a Lie algebroid L, one can formulate a differential calculus
(I(A®L*),dr) [26]. In our case, the exterior differential is locally written as dy, = dz®0,.
For a complex line bundle V' — M, which is a L-module, a generalized connection D on a
vector bundle V' is defined as a linear map

D:I(V) = T(V® LY, (3.11)

which satisfies the Leibniz rule D(sf) = D(s)f +s® (drf) for s € I'(V) and Vf € C>®(M).
Let D = d;+ A+® be such a generalized connection (it is possible because A+® € L*).

In particular, directional derivatives along basis d, and dz* in I'(L), we have
D, = Dy, = 04 + Aq, (3.12)
D' = Dy,i = . (3.13)

A generalized field strength is defined for V, W € I'(L) as (note [V, W] = 0)

F(V,W) = [Dv,Dw] — Diyw). (3.14)
Then we have
Fap = Fupy = 0uAp — BAa, F,J=0,8, Fiy=-0,9", Fi=0. (3.15)
or equivalently,
F = % wdz® A da® + 0,d'dz N 9; € T(ALY). (3.16)

With this field strength, the Dirac structure Lx in (3.6) is now written as a graph of
the map F : L — L*, that is, Lr = {V + F(V)|V € L}. In fact, a section for this graph
is written for V € L as

V 4+ F(V) = 0%(x)(0g + 0.9'0; + Fupda®) + &(x)(da’ — 0,9°dz®) € T(Lz), (3.17)

which coincides with (3.7). Note that the dual L* is invariant under this deformation,
ie., L% = L*, since F(L*) = 0. As is clear from this construction, the gauge field A is
actually a U(1)-connection on leaves defined by L, and there is a U(1) gauge symmetry
A — A+ dp )\, which leads to the same Dirac structure Lx. By pulling-back this to a leaf,
it is identified as a gauge field on a D-brane. On the other hand, the scalar field @ is a
connection that lifts a curve in a leaf of L to a curve in a leaf of L.

This is another construction of a Dirac structure, referred to as a deformation of
Dirac structures. In general, for an arbitrary Lie algebroid L and a tensor F € T'(A2L*),
the condition that a graph Ly = {V 4+ F(L)|V € L} is a Dirac structure of a Courant
algebroid L& L* has been already obtained in [26] by dF + 3[F, F| = 0, where the second
term is a Schouten bracket in I'(A®L*). It turns out that our assumption that A, and
®’ are z’-independent is too restrictive to define a possible Dirac structure, and can be

— 11 —



relaxed. For an arbitrary fluctuation ® + A, it reduces to two conditions 9;(9,®) = 0
and 0, Fye + OpFrg + 0. Fyp = 0, proved in the appendix A.1. Our analysis in the following
sections is valid for ® + A satisfying these two conditions. Note also that this construction
is globally well-defined for any manifold M as opposed to our previous description by Lie
derivative, Lr = e %*+AL, where ® + A is locally defined. For Lz to be globally defined
by this description, we need to glue the local generalized vectors ® + A on an overlapping
region by a diffeomorphism and a U(1l) gauge transformation. As a result, any Dirac
structure in TM has the form of a B-field transformation of a foliation L = Ag @& Ann(Ag)
as Lp = 'L [15, 25).5

In summary, a spacetime which admits a D-brane is characterized by a Dirac structure
L, and the fluctuation on a D-brane is regarded as a deformation Lr. We can formulate
this deformation either by an action of a generalized Lie derivative or by a graph of a
generalized curvature. This shows the symmetric role of scalar (embedding) and gauge
fields (connection). In any case, it defines a possible “shape” of a D-brane in the target
space. A choice of a leaf corresponds to the spontaneously symmetry breaking, that we
will elaborate on next.

4 Symmetry for Dirac structures

In this section, we study the role of the symmetry of the target space for a Dirac structure
Lx corresponding to a D-brane, in terms of generalized geometry. We clarify the struc-
ture for the hierarchy of spontaneous symmetry breakings accompanied by the foliation
preserving and leaf preserving diffeomorphism and its generalization. Then we obtain the
non-linear transformation law for scalar and gauge fields for broken symmetries.

4.1 Symmetry preserved by a Dirac structure

The symmetry group of a generalized tangent bundle TM is Diff(M) x Q2 (M), a
semi-direct product of diffeomorphisms and B-field transformations. Since the closed 2-
form is exact and in our case M = RP, a B-field transformation reduces to a gauge
transformation. Thus, an infinitesimal transformation is labeled by the combination e4+A €
TM of a vector field and a 1-form, and it acts as a generalized Lie derivative —L.4z on the
generalized tangent bundle TM. Note that an exact 1-form A = d\ does not generate the
transformation of any symmetry. In the following, it is also useful to decompose it w.r.t.

the generalized product structure TM = L & L* as
€E=¢ teL= eMaM =¢e%0, + Giai
A=A+ A= Apyda™ = Agda’ + Agda®.

Note that ¢y + A, € L and e, + A € L™

We would like to find a subgroup of Diff (M) x Q% (M) that preserves L. i.e., e+ A

that satisfies L — L., AL = L. Thus we need the action of a generalized Lie derivative L4z

(4.1)

on a Dirac structure L. For a section of the Dirac structure L,

V = v%(2)d, + &(x)da' € (L), (4.2)

SHere Ag = span{d.}.
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the action of the generalized Lie derivative is obtained as

LeiaV = (eM0yv" — v°0pe") 00 + (€M 0 + &0:€7 — vPOp Ay )da’

ba i j b A a (43)
— 0’0" 0; + (gjaae —v 8[1) a])dx .

From this result, we observe that £6”+ A, V always lies in L, that is a consequence that L
is involutive. On the other hand, L. LJFAHV produces in general a L*-component. It keeps
an element of L, iff gye’ = 0 and JpA, = 0.

The diffeomorphisms generated by (€%, ¢) with dye’ = 0 are nothing but the foliation
preserving diffeomorphisms, which we denote Fdiff (M, L). They map a leaf to another leaf
while preserving the foliation L. Therefore, assuming a Dirac structure on a target space
that admits a D-brane, breaks the symmetry from Diff (M) to Fdiff(M, L). To preserve
both L and L* of the generalized product structure L & L*, another condition 9;¢® = 0 is
necessary. Note that Fdiff (M, L) includes a global symmetry of the transverse displacement
of leaves generated by €' = const. Specifying a particular leaf L, at p € M as a D-brane
corresponds to the spontaneous symmetry breaking of this symmetry. The scalar fields
@' are the corresponding NG-bosons. In this case, Diff (M) is broken to a diffeomorphism
preserving the leaf L,, which we denote LDiff(M, L,),” and it is specified by a condition
€1lz, =0.

B-field gauge transformations are accompanied by this structure of diffeomorphisms.
Fdiff (M, L) is paired with gauge transformations that are generated by (A;, A,) with
IpAg = 0, or equivalently dp A = 0. Note that A € L* so that dpA| € A?L*. Therefore,
this condition says that the deformation of L by a tensor dpA| does not change L, i.e.,
L+ (dpAy)(L) = L. (On the other hand, Ly = L + F(L) is a true deformation.) In
particular, the transformation by a constant A, is a global gauge transformation, and a
gauge field A, can be considered as a NG-boson corresponding to this symmetry. This
will become more apparent after deriving the non-linear transformation laws for scalar and
gauge fields in the next section. Note also that in the presence of the gauge field, hidden
transformations by exact 1-forms A = d\ become visible as a U(1) gauge symmetry.

4.2 Non-linear transformation law

Here, we derive a non-linear transformation law for scalar and gauge fields ® + A under
the diffeomorphism and the B-field gauge transformations. The strategy is as follows. In
general, Diff (M) x Q24
structure is mapped to another Dirac structure. On the other hand, any Dirac structure

(M) is a Courant automorphism and it is guaranteed that a Dirac

can be written as a graph such as Lr = L+ F(L). Combining these, a Dirac structure Lr
is mapped to another Dirac structure Lz/. This determines a transformation law for the
tensor F.

We derive the formula in a slightly more general context, since in the next section it is
also used when we consider a generalized metric. See also the appendix A.2 for details. Let

"It is not a subgroup of Fdiff(M, L) in general. There is another notion of a leaf preserving diffeomor-
phism, which is a subgroup of Fdiff(M, L) generated by ¢* (¢! = 0) that maps each leaf to itself. But it is
too restrictive as a condition to keep a single leaf.
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Figure 4. The definition of the non-linear transformation 67" of the tensor 7" defining the C, and
0F of the tensor F defining Lr. They are defined by the deviation from a section given by the
image of V + 6V € L.

T € I'(L* ® L*) be a tensor and define a graph Ly = L+ T'(L), which need not be a Dirac
structure. On a section V 4+ T(V)) € Ly with V' € L, consider an action of a generalized
Lie derivative L. and rewrite it in the form (See figure 4)

—Lega(V+TV)) = —LepaV = Lera(T(V))

def.

(4.4)
< SV + T(5V) + (8T) (V).

Here 6V € L denotes the horizontal shift determined by projecting the transformed section
to the L-direction. Thus, the first two terms in (4.4) represent a shift along Ly, and the
remaining part denoted by 7" € T'(L* ® L*) gives a net deformation of the graph Lp. The
combination 77 = T + T is the desired tensor giving the transformed graph L.
Note that for a Dirac structure Lr, we can also derive the same formula by noting
that Ly = e~ “*+A L. In this case, the calculation reduces to a commutator [L.yx, Lot al.
From the result (A.14), we read off in the case of our Dirac structure Ly:

0Fap = —€M On Fap — 0a€“Fupy — FacOpe® — O Mg FPy + F P oy, (4.5a)
— F ROk Foy + FacOpe"Fy — FF0p ATy + 0y,
6F,) = —0F1, = —MoyF,) — 0,6 F, + F el — FFORe F,7 + 0a€, (4.5b)

or equivalently,

0Fab = (O + f[ajaj)(Ab] — & F ) — M Ty — (¢ — € F )0 Fa, (4.6a)

0F,) = (Oat Fo '00)(€ — €F7) = (" — F L )op 7. (4.6b)

When we evaluate them on the leaf of 2! = ®° using (3.15), they correspond to the
transformation law for a gauge field and scalar fields as

6A, = Ny — €Fry 4+ A0, 0%, (4.7a)
50" = €' — ¢°0,P", (4.7b)
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Here the terms including € and Ay represent unbroken symmetry, the ordinary diffeomor-

phism along leaves (worldvolume) and the unbroken B-field gauge transformation induced
on a leaf.® These transformations of unbroken symmetry are linear in the fields A, and ®?,
as desired. On the other hand, the first term in each line is inhomogeneous in the fields,
and it corresponds to the generators of broken symmetry. As we have discussed, the scalar
fields ® is a NG-boson for the global displacement, and the formula above is exactly the
non-linearly realized transformation law for a NG-boson. In the same way, we conclude
that a gauge field is a NG-boson for a broken global B-field gauge transformation.

Note that these transformation laws are the extension of non-linearly realized Poincaré
symmetry in [12, 13]. They derived the formula in the context of a field theory on a
worldvolume 3 and a compensating diffeomorphism. We reproduce and extend their result
in purely geometric terms. In particular, it becomes possible to treat a gauge field in a
same way as scalar fields, since a gauge field is also cast into a geometry.

5 Adding generalized metric

In the previous section, we analyzed the geometrical structure which is associated with a
D-brane and the open strings from the physical point of view. Independently, there is a
generalized Riemannian structure coming from the closed strings, as reviewed in section 2.
In this section, we consider both structures.

5.1 Generalized metric seen by a D-brane

Recall that a generalized metric is given by a graph Cy = {X + (¢ + B)(X) | X € TM}.
The main observation here is that the same argument can be applied not only to T M, but
also to any other Dirac structure L. This is possible because its dual Dirac structure L* is
also isotropic and the intersection L* N C. is the zero section only. Thus, the generalized
Riemannian structure is always written by a graph Cy = {V + ¢(V)|V € L} of some
appropriate tensor ¢t € A2L* viewed as a map t: L — L*.

In our case, given a Dirac structure L, a section of C'; is thus written as

Vi =004 + t70; + tapda®) + &(da’ +t1,da® +£90;) € T(CL). (5.1)

Since (5.1) and (2.8) are the expression of the same element in C'y, they should be identified.
This determines the tensor t € A2L*, and we find the relations (for a proof, see sectionA.3)

9 = EY, ty = —FEEM,

T (5.2)
t', = E* By, tap = Eap — Eax E¥ Eyp,.

where E7% is the inverse of Ej;, satistying EkjEji = 5;“.

These relations (5.2) are similar to the Buscher rule [30, 31], i.e., the T-duality rule for
a background field ¥ = g+ B. However, this is not exactly a T-duality, since a T-duality is
in general a map between two different spacetimes, and is an operation which exchanges a

8The term —e°F,, is rewritten as a ordinary tensor transformation by using a U(1) gauge transformation
Aq — Ag — 9a(e°Ae).
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basis of vector fields and a basis of 1-forms [32-34]. This means that the rule of exchanging
upper and lower indices lies at the heart of the T-duality rule.” On the other hand, (5.2)
shows that the mixing of a metric g and a B-field B is already seen without T-duality.

This observation sheds some light on the question raised in section 2. There are at
least three kinds of symmetric tensors g, ¢ — B¢~ !B and g~! that appear in a generalized
Riemannian structure. The first one is a positive definite metric defined on a graph u+ (g+
B)(u) € C4, which originates from closed strings. The others appear in the off-diagonal
elements of G in (2.11). Here g — Bg~!B is the restriction of G to TM, but TM is an
example of a Dirac structure, corresponding to a D9-brane in the case of 10-dimensional
spacetime M = R, Similarly, ¢! is the restriction to 7*M, which is the Dirac structure
corresponding to a D-instanton. This suggests that the latter two symmetric tensors are
closely related to open strings.'?

Coming back to our situation, let us write an endomorphism G in (2.11) as a matrix
in the basis of L @ L*. By solving the eigenvalue equation (2.10), we get

—s7ta st
G= (s —asla a31> ’ (53)
where s and a are symmetric and anti-symmetric parts of the tensor ¢ = s+a. By restricting
it to L, we obtain s — as~'a, which is a candidate of the metric seen by a D-brane without
fluctuations.

The inclusion of the fluctuations is straightforward in this picture by using the general-
ized field strength F. Suppose that the generalized metric C is seen by a Dirac structure
Ly = L + F(L) through a tensor tr € L* ® L*. That is, C; = Lr +tx(Lr). Then a
section of Cy is written for V € L,

VA+FV)+tr(V+FV) =V + (tr+ F)(V), (5.4)

where we have used the fact that ¢tzF (V) = 0 since F(V) € L*. The vector in eq. (5.4)
should be identified with V' + ¢(V'), thus we have tx = t — F. Therefore, a generalized
field strength on a D-brane always appears as a shift of the tensor ¢ when considering a
generalized Riemannian structure. This is also true when we write G as a matrix of a map
Ly ® L% — Ly ® L%, that is,

= —s (o= F) 51
- (5_ (a—F)st(a—F) (a—]—")s—1>‘ (5.5)

By restriction of G to L, the metric on Lz is given by
sr s —(a—F)sa—F)eT(L*® L"), (5.6)

where the curvature F appears as a shift of the anti-symmetric part a € A2L* of the
generalized Riemannian structure. This fact plays a central role when considering the DBI
action in section 6.

9The lowering of the indices i and j in (5.2) to form a tensor tarn (i.e., t € D(A2T* M) for the T-dual
manifold M).

07t is interesting that g — Bg™' B is the symmetric part of (g + B) ™', which is already referred to as the
“open string metric” in the literature.
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5.2 Symmetry transformations of generalized metric

Before proceeding with the discussion, we study the effect of the symmetry Diff (M) x
QQ

Sosed (M) on a generalized Riemannian structure Cy C TM.
Recall that a metric ¢ and a B-field B are dynamical fields of a rank 2 tensor in
the target space M. That is, an infinitesimal transformation of F = ¢g + B is given as

0F = —L.4AFE by an action of a generalized Lie derivative, in components, as

0EyN = —ELaLEMN — 8M6LELN — EMLé?NeL + 6[MAN}. (5.7)

On the other hand, a generalized metric Cy is also defined as a graph of ¢t : L —
L*. Then, an action of a generalized Lie derivative L.y on C. reduces to a non-linear
transformation for the tensor ¢t € I'(L* ® L*) as argued in sectiond.2. The result is (replace
T with ¢ given in (A.14))

Otqp = —eMaMtab — Og€tep — tacOpe’ + 8[kAa}tkb + ta"f@[kAb}

— " Op€ ey + tacOpeth, — t O Aty + 0 Ay, (5.8a)
ot = —eMont — 0a€tJ +t,)Opel + 0 gt

— t Okt + tacORet™ — t O At + O4€, (5.8b)
5t'y = —eMopt'y + Ope'th, — ' Ope” + tF Oy

— 1 Opet ey, + ' Opeth, — o Ayt'y, — Oy’ (5.8¢)
5t = —eMOptT + Ope'th + 1% Oyl

— t*Opet 4+t et — t* o Nyt (5.8d)

At first sight, it is unexpected that such a non-linear law appears. However, it is consistent
with the tensor rule (5.7) above. In fact, the following diagram is shown to be commutative
(see appendix A.4 for detail):

EN EBLsE (5.9)

|

Here the vertical arrow represents the map given by the relation (5.2). The appearance
of the inhomogeneous terms in ¢ is simply due to the fixing of a Dirac structure L as
a reference frame, where the transformation of L itself is absorbed into that of a tensor
t. Therefore, such a inhomogeneous law is a general feature valid for any tensor in a
target space.
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By combining two results (4.5) and (5.8), the transformation law for a combination
tr =t — F is obtained:

Stray = —€M OnrtFay — Oactrey — tFacObe” + Oplapt 7% + L, Oy

— 1 Ot + tacOpeth, — tFo Ayt (5.10a)

+ FFope Fuy — FacOre Fhy + F 00y Fy,
Sty = —eMoytri — O0uctrd + trFOpe + Op Ayt

— t Rt + tacOpet™ — t O At + F P OReF,7, (5.10b)
Str'y = —eMontr'y + Ope't £y — tF Ope® + tF" O Ay

— tFOpet ey + t' Opeth, — RO Agt'y + T Ope Fop, (5.10c)
otr = —eM oyt 77 4 Ot 7 + t oy

— t*Opet I+t Opeth — tF oy AptH, (5.10d)

Remarkably, inhomogeneous terms dye’ and dpA, in (4.5) and (5.8) cancel each other,
and do not appear in the combination tr = ¢t — F. This is because tr represents a
difference between C'y and Lz, which is independent of the fixed frame L. This will be
ultimately related to a similar kind of cancellation found in [12] for the case of a non-
linearly realized Poincaré transformation, where it comes only from F. Here we emphasize
that the appearance of a combination tx = t — F and a cancellation of inhomogeneous
terms have geometric explanations.

6 Dirac-Born-Infeld action

So far we have studied the characterization and symmetry of D-brane and its fluctuations
form a target space viewpoint in the framework of the generalized geometry. In this section,
we focus on a field theory on a D-brane worldvolume ¥. In particular, we study the DBI
action. First, we give a simple proof of the invariance of the DBI action under the non-linear
realized spacetime symmetries. In the successive section, we show how to construct the
DBI action merely from the knowledge of the geometrical information and the symmetry
without referring to the string.

6.1 Invariance of Dirac-Born-Infeld Action

First we give here the proof that the DBI action has a symmetry under the transforma-
tion given in (4.7) of full Diff(M) x Q2

Slosed (M) transformation. This can be proven by

representing the DBI action as a product of the determinants of the two types of metrics
which we found in the analysis of the generalized Riemannian structure in the previous
section. As we see, their transformation under the generalized Lie derivative has a rather
simple form.

We first prove the following relation:

detig detis]: :\/det(gff{,(g + B) — F)g. (6.1)
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where ¢ is the Riemannian metric on T'M, ie., g € T*M ® T*M and sr is the metric on
Lr,ie., sF € L% ® L% given in (5.6). ¢y is the pullback of the embedding map defined
by the field ®, ¢ : ¥ < M.'" Thus determinants on the Lh.s. are those of the D x D
matrices, while the determinant on the r.h.s. is that of the (p+ 1) x (p+ 1) matrix which is
distinguished by the index ab. The r.h.s. of (6.1) is the Lagrangian Lppy of the DBI action.

This equation can be proven by combining the following relations of various determi-
nants.

1. Let s be the symmetric part of ¢ defined in eq. (5.2) and t¥ = E% the inverse matrix
of Ej;j, then
det s = det g(det t)? . (6.2)

2. From the definition (5.6) of sz,

det sdet sz = (dettr)? . (6.3)

3. Using the explicit expression for tr,

dettr = dett” det(p5(g+ B) — F)ap - (6.4)

The derivation of these relations are given in the appendix A.6. Using these relations it is
straightforward to prove the representation of the DBI action given in eq. (6.1):

1 1 1 1 1
detigdetisyr =———det4sdetrsr

det ¢
1 ——

=\/det(¢5(E) — F)a.

Here we have used (6.2) in the first equality, (6.3) in the second equality, and (6.4) for the
last step.

The integral of this scalar density (6.1) agrees with the DBI action

Spp1 = / \/det(gog(g%—B) — Fap dzO A - - A dxP (6.6)
va(X)

when evaluated on the leaf ¢ (X) of Lr at 2' = ®%(x). Manifestly, the DBI action is
invariant under the worldvolume diffeomorphism on the D-brane.

Now we can prove that the DBI action is not only invariant under the world volume
diffeomorphism but also under the full target space diffeomorphism and the B-field gauge
transformation. To this end, we rewrite (6.6) as an integral over the target space M as

Sppr = / Lppr 0PV (o — &' (29)) da® A - A daP T (6.7)
M

11Precisely, 3 here denotes the tensor structure of the pull-back as ¢3 (F)ab = Eab +(9aCI>iEib+Ea]-85<I>j+
0. P'0p, P E,; and it is defined not only on ¥ but on whole M.
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where Lppy is given in (6.1) and §(P~P~D (27 — &¥(2%)) is a Dirac’s delta function seen as
a distribution along z’-directions.

The infinitesimal transformation of the full diffeomorphism and the B-field gauge trans-
formation are parametrized by € + A, and are studied in the previous section (also sum-
marized in the appendix A.5). The transformation of the integrand Lppy is obtained from
that of det g

ddet g = —eMay  det g + det g {—28M6M} , (6.8)
and that of det s#
ddetsr = —eMay det sr + det s {—26766C + 20" — 4]-'Ckc'9kec} ) (6.9)
The result is
0Lppr = —eM Oy Lopr — (9.6 + 0.D%0).€%) Lppr. (6.10)

Except for the first term, this depends only on €%, i.e., other parameters ¢’ and Ay are
absent. This is the expected result since Lpprdaz® A - - - A daP is a section of det(A*) as we
will explain in the next section. On the other hand, the delta function transforms as

5[5(D7p71) (xz - (I)'L)]
= — M [P PV (20 — B — (Ope® — 9ed B* )8 PPV (27 — &), (6.11)

By combining them, we obtain
5 [Lppr 8PPV (i — qﬂ)} = Oy [eM.cDBI §O=P=1) (g _ cpi)] . (6.12)

Namely the transformation of the integrand in the DBI action (6.7) is a total derivative
and the DBI action is invariant under full target space diffeomorphisms and B-field gauge
transformations.

This invariance itself is in some sense trivial, because a generalized Riemannian struc-
ture g + B is also transformed. Since a shape of a leaf and a metric on a leaf is changed
simultaneously, its volume is unchanged. We stress that the non-trivial thing here is the
invariance within the static gauge.

6.2 Non-linear symmetry and effective action

In this section, we analyze how much the non-linearly realized symmetry restricts the form
of the effective action.

We would like to find possible ingredients to build an effective action for a D-brane,
that is made out of fields A 4+ ® on the worldvolume, as well as a generalized metric g+ B.
Usually, an action is an integral over the worldvolume 3, and its integrand is a scalar
density under the diffeomorphism on the worldvolume. In our setting, where a reference
generalized product structure is fixed (static gauge), such a worldvolume object is given
by restricting a target space object to a leaf, as seen in the following.

Recall that a scalar density in a target space M can be considered as a section of
the determinant bundle det(7*M) over M associated with the cotangent bundle 7% M.
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It is equivalently seen as top forms AYPT*M. For example, a Riemannian'? metric on

TM, g:TM — T*M (or equivalently a tensor g € T*M & T*M) defines a volume form
V9 = detgda® A -+ A dzP7! as a section of det(T*M). Note that detg denotes the
determinant of a D x D matrix gy n. The volume form /g transforms as a scalar density
under Diff (M) by construction, and is invariant under the B-field gauge transformation. In
fact, by acting a generalized Lie derivative —L 45 on /g, we obtain a tensor transformation
law for its coefficient as
5y/det g = 9y (e +/det g) (6.13)
while the base dz® A - - - AdazP~! is kept unchanged. This relation is used in (6.8). Note that
there is another choice of a section VE = v/det Edz® A --- AdxP~! € det(T* M) defined by
a tensor E = g+ B. It is also a scalar density but is not invariant under the B-field gauge
transformation.
Similarly, associated with Dirac structures L or Lx, any tensor T € L* ® L* defines
a section of the determinant bundle det(L*) of the form /T := v/det Tda® A --- A daP A
Op+1 A -+ AOp—1. Note that det T is still a determinant of a D x D matrix, but with the

upper index for ¢ and j:
Top T/
( ab “.,> . (6.14)
T TY

The examples of the sections of det(L*) can be constructed from the tensors that we
have encountered in the previous section. They are v/, \/s, Vs —as1a, /IF and /sF.
Their transformation law is deduced from the non-linear transformation law studied in
section 5. Note that possible elements in det(7*M) or det(L*) are not independent but
related through

det E = \/det g \/det(g — Bg~1B),
dett = Vdet s \/det(s — as—1a),
dettr = Vdet sy/det sr, (6.15)

which are easily shown (see appendix A.6) and used in (6.3). It is interesting in its own
right that the Lh.s. of eq. (6.15) is bulk (closed string) metric, while the r.h.s. is a product
of open string metrics (see comments in section 5).

On the other hand, a scalar density in the worldvolume ¥ is a section of det(7T*X).
Since ¥ is a leaf of a foliation A C TM (that is Aly = TX), we need an element of
det(A*) as a scalar density on leaves. To this end, it is useful to decompose sections of
det(T*M) or det(L*) into a product of two sub-determinants. More precisely, under the
generalized product structure TM = L@ L* with L = A@® Ann(A), T*M and L* are split
as T*M = A* @ Ann(A) and L* = A* @ Ann*(A). Then one can write the corresponding
determinant bundles as

det(T*M) = det(A™) @ det(Ann(A)),
det(L*) = det(A*) ® det(Ann*(A)) = det(A*) @ det ™} (Ann(A)). (6.16)

12, /=det g for a Lorentzian signature.
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The former corresponds to (the square root of) an identity on determinants

Ay Bai
det |~ 7% ) = det(A — BD"'C)yp det Dij, (6.17)

valid for any D x D matrix with an invertible submatrix D, where the two determinants
on the r.h.s. are that those for (p+1) x (p+1) and (D —1—p) x (D — 1 — p) submatrices,
respectively. For the latter, indices ¢ and j should be raised. We give two examples
associated to the splittings of the determinant bundle in (6.16):

vVdet B = \/det tab\/det Eij,
Vidett = v/det EgVdet ¢, (6.18)

which is shown by virtue of the relation (5.2). Note that EY = t¥. The identity (6.4) is
an analogue of these, and also used in [35].

As a consequence of (6.16), we have det(L*) = det(T*M) @ det™*(Ann(A)). Corre-
sponding to this relation of the determinant bundle, we can find relations between the
determinants and among all there is an important identity

Vdet s = y/det g det t", (6.19)

which we have used in the proof of the invariance of the DBI action in (6.2), proved in the
appendix A.6. Essentially the same identity appears in the context of T-duality in [36].

The most important decomposition relating to the invariant effective action is the
following combination

det(T*M) @ det(L*) = det*(A*) @ det(Ann(A)) @ det ™! (Ann(A)), (6.20)

Using this type of combination of the determinants we can construct the object which
transforms as det(A*) and consequently has a desired transformation property, being
invariant under the worldvolume diffeomorphism, and a diffeomorphism transformation
generated by €| = €'0; cancels. Therefore, an integrand of the effective action on the
worldvolume should belong to this bundle. Still there are many choices of sections on
det(T*M) and det(L*). Any combinations of the one from (det g, det E') and the one from
(dett,det tp, det s,det(s —as 'a),det sp) are the candidate. We listed in the appendix A.5
the transformation of all those determinants.

Among possible tensors, it turns out that \/g € det(7*M) and /s7 € det(L*), where
sr is given in (5.6), are the correct tensors, that is, the last two factors in (6.20) are
canceled with each other as we saw in the previous section. Another good candidate is
to take dettr instead of det sy from the det(L*) but it is not invariant under the full
diffeomorphism.

6.3 Non-linear realized Poincaré symmetry

Here we fix a generalized Riemannian structure, g + B, as a background. In this case,
only a generalized isometry, a subgroup of Diff(M) x Q2

ClOSGd(M)7 acts as a symmetry.
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A generalized vector € + A € TM is called a generalized Killing vector if £L.g = 0 and
LB = dA (that is Lcia(g + B) = 0) [32]. They generate a Lie algebra of the isometry
group.'® In the case of dB = 0, the B-field gauge parameter A is not independent, and is
determined as A = ic B+ dA up to an arbitrary function A. The Lie algebra relation is then
written as [Le, i, B, Leytic, Bl = Lie e5)+iy,, B As already stated, the term dA plays no
role in the generalized Lie derivative.

In order to reproduce the result of [12], take the Lorentzian signature here and fix g+ B
to be the Minkowski metric ¢ = n and B = 0, which is a vacuum for string theory. Then,
its isometry group is the Poincaré group ISO(1,D — 1). We parametrize an infinitesimal
transformation as

e=eMay = (pM + WM ya™M)oyy, (6.21)

where pM is a translation and w™ y is a Lorentz transformation, satisfying wysn+wnar = 0.

In the presence of a generalized product structure, Diff (M) is broken to Fdiff (M, L) N
Fdiff (M, L*). Correspondingly, a generalized vector (6.21) satisfying the conditions 9,¢' =
0 = 0;¢” is an unbroken isometry. It leads to w,; = 0 and thus ISO(1, D — 1) is broken to
ISO(1,p) x ISO(D — 1 — p) of the form

€= (p" + w9, + (p + w'jz?)o;. (6.22)

Furthermore, by fixing a leaf at 2 = 0 as a D-brane, (6.21) should satisfy €'(z? = 0) = 0.
These conditions kill translations p' and we are left with the unbroken group ISO(1, p) x
SO(D — 1 — p), generated by

€= (pa + waba;b)(?a + wijl'jai. (6.23)

As we have seen, a tensor with respect to the Dirac structure L transforms inhomoge-
neously under of Diff (M) x Q3 _4(M). This is still true for the Poincaré subgroup. This
is precisely the non-linearly realized Poincaré symmetry. In fact, by substituting (6.21)
in (4.7), we reproduce the result of [12]. In particular the broken symmetry given by wg;
and p' is non-linearly realized.

Finally, we comment on the B-field gauge transformation. One may also fix only g but
take B as a dynamical field. Note that on a subbundle C, a B-field gauge transformation
is also seen as a shift of B, that is, B —+ B + dA. This is why it is usually called a gauge
transformation for B. If, moreover, the L-preserving condition 9, Ay = 0 is satisfied, then
the components of B along a leaf is invariant B,, — Bgp. This is usually said that “Byg
cannot be gauged away.” It is the spontaneous symmetry breaking of the B-field gauge
transformation given by A,. To restore the broken A, transformation, we need to add a
gauge field A,, which transforms according to (4.7).

7 Conclusion and discussion

In this paper, we describe a D-brane in the framework of generalized geometry by choosing
the static gauge and clarify the structure of the symmetry and its breaking. By introducing

'3Generalized Lie derivatives satisfy in general [Le, 1a,, Leptnn] = Liey 44, e+A5]-
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a generalized product structure to formulate the static gauge in this framework, scalar fields
®* and a gauge field A, are unified into a single object ® + A. This object can be regarded
either as a diffeomorphism and B-field gauge transformation parameter, or as a generalized
connection.

We have shown that both scalar fields and gauge field have a shift term in their trans-
formation law, from which we conclude that they are NG-bosons for broken translational
and B-field gauge transformation, respectively. We also found that the U(1) gauge sym-
metry appears as a trivial part of the B-field gauge symmetry. It is plausible that the
same conclusion can be justified in the language of field theory. There is already such an
analysis of the fluctuations around classical solutions in supergravity theory [37]. That a
gauge field is simultaneously a NG-boson is also known as the Stiickelberg mechanism, and
in fact, there are discussions of spontaneously broken symmetry in the field theory of a
3-form H-field coupled with a U(1) gauge field given in the refs. [38-40]. Since they discuss
in the different setting, the relation to our result still has to be clarified.

We have focused on the DBI action in this paper, and shown its invariance under the
full spacetime symmetry and also discussed that these symmetries give some restrictions
on the combination of the determinant of possible metrics. The DBI action is used as a
starting point to study BPS condition for a D-brane in a generalized calibration in [41-45],
where the DBI action comes form string theory calculation. Our discussion here supports
this assumption within the generalized geometry.

Note that the non-linearly realized symmetry can determine the functional form for
® + A and g + B only. To determine the overall factor 7}, (tension), the dilaton factor
e~? and the factor 27¢’ in front of F, other inputs are needed. In some papers [32, 46] a
O(D, D) invariant dilaton d is introduced by

e =72 /det g (7.1)

where ¢ is an ordinary physical dilaton field which appears in string theory, and which
transforms under the T-duality as ¢ — (f)—% Indet E;; [36]. The new dilaton e~24 also serves
as volume element in the target space [46]. Thus, if we introduce the new dilaton instead
of det1 g, then the correct dilaton term e~ can also be recovered. Because our argument
does not take into account T-dualities, we cannot distinguish these two possibilities at this
stage. But in the Ramond-Ramond coupling to D-branes, the dilaton ¢ is naturally defined
as a part of an O(D, D) spinor [32].

We expect that our result on the non-linear transformations leads to some constraints
which can determine possible higher derivative corrections to the DBI action, and also
can be used to analyze the Chern-Simons term describing the RR-coupling. The study
on the RR-coupling in the context of generalized geometry is initiated by [17]. The non-
abelian extension of the present formulation, corresponding to the system with multiple
D-branes, is also an important open problem. For a minimal version of this, namely
imposing non-linearly realized Lorentz boosts on the action for coinciding DO-branes, has
been initiated in [47].

To write the DBI action, we used various identities on determinants. A similar kind of
fractional determinants is found in [48, 49] in the context of M-theory branes, where the
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technique developed for the noncommutativity and Seiberg-Witten map was essential. It
is interesting whether our description of D-branes in terms of generalized geometry would
have some relation to the noncommutative geometry.

Although this paper is restricted to the local description, its global version can also
be considered, where the global existence of foliated structures will play an important role.
The classification problem of possible D-branes for a given target space in the context of
the generalized geometry is an interesting subject as well. In the presence of a generalized
complex structure, stable branes, called generalized complex branes, have been studied by
several authors initiated by [17, 50]. It should also be compared with the known charac-
terization of multiple D-branes by means of K-homology [51], which does not rely on the
complex structure.
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A Derivations and proofs

A.1 Condition for the Dirac structure

Here, we derive the condition that the graph Ly = L + F(L) is a Dirac structure. As
stated in section3.3, this condition was already given in [26] and we reproduce it here using
the local coordinate.

Recall that the sections of the subbundle Lx = L + F(L) have the form

V = 0%(2) (04 + 0,8 (2)0; + Fap(x)dz’) + &(2)(da’ — 9, (z)da’)
= e (v(2)8, + &(x)dy’), (A1)

where we allow components v® and £’ as well as ®* and A, to depend on both coordinates
2% and z'. In the second line, we used the notation introduced in section 2. Since Lr is
maximally isotropic (almost Dirac structure), it is sufficient to require the Dorfman bracket
to be involutive in order to be a Dirac structure.

First, we examine the Lie-involutive condition. Namely, if L is involutive, then under
the anchor map its image p : Ly — T'M should also be involutive with respect to the Lie
bracket of T'M. For tangent vectors of the form

p(V) = v%(2)(0g + 0,9 (2)0;) = v*(x)0a, (A.2)
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the Lie bracket in T'M is given by

[o(V), p(V')] = [v* D, v"*0y] (43)
= (vaéavlb — v’“éavb)éb + v’ [(%, 5b] '

Since [5(1, 517] = (0, P ajabqﬂ' — abqﬂaj 0,®")0; is not proportional to D4, the last term should
vanish in order for p(L) to be closed under the Lie bracket. Therefore, the condition is

D1 (0p®7) = 0, (A.4)

i.e. the field 9,®' is independent of 2.
Keeping this in mind, we examine the Dorfman-involutive condition. The Dorfman
bracket between generalized tangent vectors of the form (A.1) is given by

V. V'] = [e" (v 00 + &idy'), € (" 0y + €5y )]
= e"[0%0a + Gidy', 0" 0 + Edy’] — Lyag, Loy, AF (A.5)
= e/ [0 00, 0°00] + L5, &5 — 1,05, A(EidY") = 105, Ly, AF,
where we used the Courant automorphism for a B-transformation given by e’". The first

term lies in Lz, since [0,,dp] = 0 as is shown above. Since Lvaéadyi = 0 and d(dy') = 0,
the second and the third term are written as

L0564 = tyn,d(Edy") = 105, d(E5dy") — t,ng,d(Edy")

e (A.6)
— W Dulidy’ — By,

which is also an element in Lz. By using the fact that the exterior derivative of an arbitrary
form w is
dw = dz*0,w + dz'diw = dz*Oaw + dy'Oiw , (A7)
the last term in (A.5) can be written as
—lyad, Lv’bébdF = —Lyaj, Lv/bébéchedacc Adz® A dxf — vav'bc'?iFabdyi. (A.8)

Although the second term lies in Lz, the first term does not. Requiring the first term to
vanish for arbitrary v® and v, we obtain the following condition:

éanc + écha + 5cFab =0. (A.9)

The two equations (A.4) and (A.9) are the conditions to guarantee that Lr is a Dirac
structure.

A.2 Derivation of the non-linear transformation law

Let T € L* ® L* be a tensor and define its graph by Ly = L + T'(L). Consider an action
of a generalized Lie derivative LA (V +T(V)) on a section V +T(V) € Ly with V € L.
The first term, L., AV is already evaluated in (4.3). For the tensor 7" with the form

T = Top(2)dz® @ dab + T, (z)dz® ® 9; + T*(2i)0; @ da® + T (x)0; ® 9;, (A.10)
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the generalized Lie derivative acts on a tensor, like in the ordinary case, as

Lo (Typdz® @ da:b) = Moy Typdr® @ dab + OyeTda™ @ da®

+ TpeOne‘dr® & dCL'N,

Lon(T7dz ® ;) = MoyT, dz® @ 8; + OpeT, da™ @ 0;
— T, koM dz® ® Dy — Taka[kAN}dx“ ® dx”,

Loa(TH0; @ da®) = ey T40; @ da® — M TH 0y @ da®
+ T°.0Nn€D; @ da™ — O Ay Thda™ @ da,

Lon(TP0; 2 0;) = MoyT0; @ 0 — e T 0y @ 0; — TN 0; @ On

— O TH da™ @ 0; — Ty, Ay 0; @ da™.

(A.11)

By using these relations, L.ia(V + T(V)) can be written in the form of (4.4), or more
explicitly, by splitting 0V into the vector and 1-form as 0V = dv + §¢

Lon(VATWV)) = (=00 (80 + T,70; + Topda®) + (—6&)(da’ + T'ydx® + T ;)
+ v (=0T, 9)0; + (—0T.p)da} + &{(—0T%)dx® + (—0T)9;}.
(A.12)

Here the first line is the part of the graph of the 6V in the form of §V 4+ T'(6V'), with
50 = —eMApv® + 0P Oye® + vOT), FOpe® 4 TR0,
06 = —eMon& — §oie” + v O Ay — V' The 0 + 0T FOp A (A.13)
— ijcjaiGC + f]Tjka[kAZ]

The second line in (A.12) defines the non-linear transformation law for the tensor 7', where

6 = —EMaMTab — TpeOpe® — Ou€ Ty + a[kAa]T]% + Taka[k/\b]

— T, Ok Ty + TocOke“ T, — T,7 0 Ay T + 00 Ay, (A.14a)
0T, 7 = —eMOoyT,? — 0,€°T.7 + T, Oe’ + 0\ TH

— T, kT, 7 + TocOpeTH — T,F0p AgT" + 9ué’, (A.14b)
0T = —eM oy T, + Ope' Th — T'.04€ + Ty, Ay

— T 0Ty, + T 0k T, — T 0y Ay T, — D', (A.14c)
0T = —eM 9y T 4 9T + T 0yl

— T™*0e“T,? + T, 0T — T* Oy AT (A.14d)

A.3 Generalized metric as various graphs

Here we derive the formula (5.2), which relates two different tensors describing a same
generalized Riemannian structure. A generalized vector field V. in the positive-definite
subbundle C. is written either by using vy, € TM,

Vi =ovM(0y + Eyndz™) €y, (A.15)

— 27 —



as a graph of E = g+ B : TM — T*M, or is written by using w®d, + &dx’ € L,
Vi = w0y +tJ0j + tapda®) + &(da’ +t',da® +190;) € Oy, (A.16)

as a graph of ¢t : L — L*. By comparing (A.15) and (A.16), we obtain the following
relations

w = v°, (A.17)
wtJ 4 &t = v, (A.18)
wap + &it'y = v Eap, (A.19)
¢ = vMEyy, (A.20)

where we have used the independence of the basis {0,, 9;, dz®, dx'}. Substituting eqs. (A.17)
and (A.20) into eqgs. (A.18) and (A.19), the above relations lead to

v (t + Eat™) + o' (Bt — 67) =

0 (A.21)
U (tap + Eakt®, — Eap) + v' (Eigth, — Ep) = 0. ‘

Since these equations must hold for arbitrary v® and v*, we obtain the condition for the
tensor t € L* ® L* as:

t = B, ti = —EyEM,

- (A.22)
t', = E* By, tab = Eap — Eax E¥ By,

where E% is the inverse of E;; satisfying E% Ej, = 5,’;, existence of which is guaranteed by
the positive definiteness of C';. These are the equations given in (5.2).

A.4 Consistency between linear and non-linear transformation laws

We show here the consistency,i.e.,the commutativity of the diagram (5.9) stated in sec-
tion5.2. To this end, we take the “right-down” route £ — E + 6F — t + §t, and then
compare with (5.8), which coincides with the “down-right” route.
The action of a generalized Lie derivative —L.; on the tensor £ = g+ B is
OEyN = —ELaLEMN — 8M€LELN — EMLaNEL + a[MAN}. (A.23)
This defines E + 6E. We also need the action on the inverse E:

SE = —E*SEyEY = E™ ("0 Ey + Ope™ Ery + Epp0ie” — oy Ap) EY, (A.24)

which is derived from &(E; E*) = §Ej EM + By, 0B = 0.
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Substituting F + 0E to the relations (5.2), we obtain ¢ 4 6¢, where

Stah = 0Eop — 6 Eqx EM By, — Eg0EM By, — Eq, EMSEy,
= —€e"0pEu — 0ac"Ery — Ear.0pe” + 0, Ay
— (—€"0pEuy, — 0a€" Epiy — Eqr0ye"™ + 0, A ) EM By
— EuE™(e"01Ey + Ope" Ery + Ep0i€” — OpAp) EY Ej
— B BM (=0 By, — 01" By — Ey,0ye” + 93y
= —eMOnrtap — tacOpe® — Oucten + Opapt™y + Oy
— b Ot e + tacOket™, — t O Aty + Oy,
6t = —0E BN — By, 0EY
= —(—€"0LEar — 046" Ei, — Ear0re" + 0, Ay ) EM
— Eoi E* ("0 By + Ope" Epy + Egp0ie” — 0\ EY
= —eMonty — 0uety +tOpe + O Ao th
— b Ot + tacOpet? —t Foy Ayt + 0,
6ty = SE* By, + E*5Ey,
= B ("0 Ey + 0" Ep + Epp0ie” — 03 EY E,
+ E*(—€" 0L Eyy, — Oxe" Ery, — Er,0pe” + 0 Ay)
= —eMOpt", + Ope'th, — ' O + 1Oy
— tFOpet ey, + ' Opeth, — RO Ayt — D',
5t = 6B = E* ("0, Eyy + Ope" Epy + Ey0ie” — OppAp) EY
= Mt + Ottt + t* ol
— 1% 0ROt + 1! Opet™T — £ Ayt

These transformation rules agree with (5.8).

A.5 Non-linear transformation laws for various determinants

part of the tensor ¢t = s + a, given by

0Sqp = —GMaMSab — SacOpe’ — Ou€ Sy + a[kAa]Skb + Saka[k/\b]
— sakakecacb — aakﬁkecscb + sacﬁkecakb + aacakecskb
— 5" OpAnaty, — a Oy Aps'y,

05 = —eMonrs — Oacs? + s, Opel + Oy s
— sakakecacj — aakakecscj + SacOk€“a™ + agOpets™
- sak(?[kAl]alj - aaka[kAl]slj,

sty = —eMayysty + Opelsh, — st .Ope + sikﬁ[kAb]
— % 0peCam — aF ey + sicﬁkecakb + aicﬁkecskb

- sikﬁ[kAl]alb - aZk(?[kAl} Slb,
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paper. For this end, we need the transformation law for the symmetric/anti-symmetric

(A.25a)

(A.25D)
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85 = —eM sV 4 O’ shT + o€l
— s*0peca) — a*Opecs I + st Opecal + al O) et (A.25d)

- sika[kAl]alj - aZka[kA” Slj,
and

Saqy = —€M Orraay — aacObe® — Dacany + g hg)a®, + a Oy
— sakﬁkecscb — aakakecacb + sac(?kecskb + aacakecakb (A.26a)
- Saka[kAl]Slb - aaka[kAl]alb + Oy,

da) = —eMoya) — Oucfat + aforel + 8[kAa]akj
- sakakecscj — aakﬁkecacj + 8acORe’s" T + ageOneca? (A.26b)
— 50Ny s — a oA ya" + O,€,

da'y = —eMonraty, 4 Ope'a, — a’ Ope + aika[kAb]
— s%0Lesp — a*OReCa + sicakecskb + aicakecakb (A.26¢)
— sika[kAl]slb — aika[kA”alb — Opé’,

da7 = —Maya + Opela™l + a* ol
— s Opes ) — a*opetat + s OpetsM + at Opecaki (A.26d)

— Sika[kAl]Slj — alka[kA” alj.

The non-linear transformation laws for various determinants are summarized as

ddet g = —eMay det g + det g {—28M6M} , (A.27a)

Sdets = —eMys det s + det s {—28cec + 20" — 4ack8kec — 4aklalAk} , (A.27D)

ddet sy = —eMayy det sx + det s {—28cec + 20" — 4]:Ck'8kec} , (A.27¢)
Sdett = —eMay, det t + det ¢ [—28(;66 + 20" — 2ack8kec — 2akl(9[Ak}

+dett [(E7)P 0, Ay + (1) 2 0ue) — (t—l)biabei} , (A.27d)

ddett = —eMay, dett + det [28k6k — 20, ko€ — 2aklalAk} , (A.27¢)

Sdettr = —eMay dettr + det t - [—28060 + 20" — 2(ack + }"Ck)f)kec — 2aklalAk} )
(A.27f)

A.6 Identities on determinants

Here we prove 3 identities on determinants given in (6.2), (6.3) and (6.4) in section6.1 and
also used in section6.2. First we show the relation (6.2). We rewrite (5.2) as a matrix and
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decompose it into two matrices as

. (Eab — B EMEy —EgE J)

E* Eyy, E
—1
o 5(10 Eak Ecb 0 (A28)
0 Eiy Eip Or;j
def. 1
="m n,

where we defined two D x D matrices n and m. Then the matrix s, the symmetric part of
t, can also be written as

1 1
=5 (t+t7) =5 (m Intntm )
1
_ im—l (" + mnT) m—1T (A.29)
—mlgem T
By taking the determinant of (A.29), we have
det s = (detm) 2 det g = (det )% det g. (A.30)

Next, we show (6.3). Let us decompose a matrix ¢ = s + a into symmetric/anti-
symmetric parts. If the existence of s~! is assumed, one can show

D=

dett = (det(s + a) det(s + a))

1

(det s 'a) det(1 +as™1)s)?
1
3

[NIES

(1+
s(det1+s a)(1 —s! a))
=det s (

det(1 — s 'as™'a))

N

=dets (dets (s —as 'a))
= det%sdet%(s —as ta). (A.31)

Applying this relation to ¢z, we obtain (6.3).
Finally, by using the formula (6.17), we find the relation (6.4) as follows:

dottr — dot [ Bab = Bax BBy — Fop —EqrE¥ — 0,07
. E*Epy, 4 00" i

| . ) A.32
= det (Eap + 0,0 By + Ear 0, + 0,9 B0,/ — Fy ) det BV (A.32)

= det t" det(p} (g + B) — F)ap -
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