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1 Introduction

Any conformal field theory (CFT) in d dimensions can be placed on the d-sphere Sd in a

canonical, conformally invariant way, by using the stereographic map from flat Euclidean

space. It is natural to study the partition function ZSd of the CFT compactified on Sd, or

the associated free energy,

Fd = − logZSd . (1.1)

Since the sphere is compact, Fd does not suffer from infrared (IR) ambiguities. How-

ever, it is generally divergent in the ultraviolet (UV). For instance, it may contain power

divergences,

Fd ∼ (Λr)d + · · · , (1.2)

where r is the radius of the sphere and Λ is a UV cutoff. (The ellipsis denotes less diver-

gent terms.) These power divergences depend on r and are inconsistent with conformal

invariance. They should be set to zero by a local counterterm. In the example (1.2) the

divergence can be canceled by adjusting the cosmological constant counterterm
∫

Sd

√
g ddx .

What remains after all power divergences have been eliminated depends on whether

the number of dimensions is even or odd. If d is even, the free energy contains a logarithmic

term in the radius,

Fd ∼ a log (Λr) + (finite) , (1.3)
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which cannot be canceled by a local, diffeomorphism invariant counterterm. It reflects the

well-known trace anomaly. The coefficient a is an intrinsic observable of the CFT, while

the finite part of Fd depends on the choice of UV cutoff.

If d is odd, there are no local trace anomalies and we remain with a pure number Fd.

In unitary theories Fd is real.1 There are no diffeomorphism invariant counterterms that

can affect the value of Fd, and hence any UV cutoff that respects diffeomorphism invariance

leads to the same answer. For this reason, Fd is an intrinsic observable of the CFT.

In two and four dimensions, it was shown [1–4] that every unitary renormalization

group (RG) flow connecting a CFTUV at short distances to a CFTIR at long distances

must respect the inequality

aUV > aIR . (1.4)

See [5] for a discussion of the six-dimensional case. (Another quantity conjectured to

decrease under RG flow was recently discussed in [6].) It has been proposed [7–11] that a

similar inequality should hold in three dimensions,

FUV > FIR . (1.5)

(Since we will remain in three dimensions for the remainder of this paper, we have dropped

the subscript d = 3.) This conjectured F -theorem has been checked for a variety of

supersymmetric flows, and also for some non-supersymmetric ones; see for instance [12–

18]. Moreover, the free energy F on a three-sphere corresponds to a certain entanglement

entropy [8]. This relation has been used recently [19] to argue for (1.5).

In practice, the free energy F is not easy to compute. Much recent work has focused

on evaluating F in N = 2 superconformal theories (SCFTs). (The flat-space dynamics

of N = 2 theories in three dimensions was first studied in [20, 21]. These papers also

include a thorough discussion of the necessary superspace formalism, which we will use

throughout.) In such theories, it is possible to compute F exactly via lo alization [22],

which reduces the entire functional integral to a finite-dimensional matrix model [23–25].

In this approach, one embeds the SCFT into the deep IR of a renormalization group flow

from a free UV theory. The functional integral is then computed in this UV description

and reduces to an integral over a finite number of zero modes. (A similar reduction of the

functional integral occurs in certain four-dimensional field theories [26].)

Since this procedure breaks conformal invariance, the theory can no longer be placed

on the sphere in a canonical way. Nevertheless, it is possible to place the theory on S3 while

preserving supersymmetry, and explicit Lagrangians were constructed in [23–25]. A sys-

tematic approach to this subject was developed in [27], where supersymmetric Lagrangians

on curved manifolds were described in terms of background supergravity fields. This point

of view will be important below. One finds that if the non-conformal theory has a U(1)R
symmetry, it is possible to place it on S3 while preserving an SU(2|1)× SU(2) symmetry.

This superalgebra is a subalgebra of the superconformal algebra on the sphere, but as

emphasized in [27], its presence is not related to superconformal invariance.

1Since our entire discussion is in Euclidean signature, we will not distinguish between unitarity and

reflection positivity.
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The choice of SU(2|1) × SU(2) symmetry is not unique. It depends on a continuous

choice of R-symmetry in the UV, as well as a discrete choice of orientation on the sphere.2

Given any reference R-symmetry R0, the space of R-symmetries is parameterized by the

mixing with all Abelian flavor symmetries Qa,

R(t) = R0 +
∑

a

taQa . (1.6)

The free energy F (t) explicitly depends on the real parameters ta. Surprisingly, the func-

tion F (t) is complex-valued [23–25], even though we expect it to be real in a unitary theory.

This will be discussed extensively below. In order to make contact with the free energy

of the SCFT, we must find the values ta = ta∗, such that R(t∗) is the R-symmetry that

appears in the N = 2 superconformal algebra.

In this paper, we will show that the real part ReF (t) satisfies

∂

∂ta
ReF

∣

∣

∣

∣

t=t∗

= 0 ,
∂2

∂ta∂tb
ReF

∣

∣

∣

∣

t=t∗

= −π
2

2
τab . (1.7)

The matrix τab is determined by the flat-space two-point functions of the Abelian flavor

currents jµa at separated points,

〈jµa (x)jνb (0)〉 =
τab
16π2

(

δµν∂2 − ∂µ∂ν
) 1

x2
. (1.8)

In a unitary theory τab is a positive definite matrix.

These conditions can be stated as a maximization principle: the superconformal R-

symmetry R(t∗) locally maximizes ReF (t) over the space of trial R-symmetries R(t). The

local maximum ReF (t∗) is the SCFT partition function on S3. This F -maximization prin-

ciple is similar to a-maximization in four dimensions [28]. Analogously, it leads to (1.5) for

a wide variety of renormalization group flows. The first condition in (1.7) is the extrem-

ization condition proposed in [24]. The fact that the extremum should be a maximum was

conjectured in [9].

A corollary of (1.7) is that τab is constant on conformal manifolds, i.e. it does not

depend on deformations of the SCFT by exactly marginal operators, as long as these oper-

ators do not break the associated flavor symmetries. (See also [29] for a recent discussion

of conformal manifolds.) Another consequence of (1.7) is that τab can be obtained from

the same matrix integral that calculates the free energy, adding to the list of SCFT ob-

servables that can be computed exactly using localization. Below, we will discuss several

new observables that can also be extracted from F (t).

We will establish (1.7) by studying the free energy of the SCFT as a function of back-

ground gauge fields for the flavor currents jµa , as well as various background supergravity

fields. In theories with N = 2 supersymmetry, every flavor current is embedded in a real

linear superfield Ja and the corresponding background gauge field resides in a vector super-

field Va. The supergravity fields are embedded in a multiplet H. The free energy F [Va,H]

of the SCFT now depends on these sources.

2The orientation determines whether the bosonic SU(2) ⊂ SU(2|1) is the SU(2)l or the SU(2)r subgroup

of the SU(2)l × SU(2)r isometry group. Below, we will always assume the former.
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Localization allows us to compute F [Va,H] for certain special values of the background

fields Va,H. On a three-sphere, the answer turns out to violate several physical require-

ments: it is not real, in contradiction with unitarity, and it is not conformally invariant.

The imaginary part arises because we must assign imaginary values to some of the back-

ground fields in order to preserve rigid supersymmetry on the sphere [27]. The lack of

conformal invariance is more subtle. It reflects a new anomaly in three-dimensional N = 2

superconformal theories [30].

As we will see below, F [Va,H] may contain Chern-Simons terms in the background

fields, which capture contact terms in correlation functions of various currents. For in-

stance, a contact term

〈jµa (x)jνb (0)〉 = · · ·+ iκab
2π

εµνρ∂ρδ
(3)(x) , (1.9)

corresponds to a Chern-Simons term for the background gauge fields Va and Vb. Such

contact terms are thoroughly discussed in [30], where it is shown that they lead to new

observables in three-dimensional conformal field theories. Here we will use them to elucidate

various properties of the three-sphere partition function in N = 2 superconformal theories.

In particular, we explain why some of these terms are responsible for the fact that F [Va,H]

is not conformally invariant. Moreover, we show how the observables related to κab in (1.9)

can be computed exactly using localization.3

The outline of this paper is as follows. Section 2 summarizes necessary material

from [30]. We introduce the background fields Va, H and present various Chern-Simons

terms in these fields. We explain why they give rise to new observables and how some of

them lead to a violation of conformal invariance. In section 3 we place the theory on a

three-sphere and review the relevant supergravity background that leads to rigid super-

symmetry [27]. We then relate the linear and quadratic terms in the background gauge

fields Va to the flat-space quantities introduced in section 2. In section 4 we derive (1.7)

and clarify the relation to (1.5). Section 5 contains some simple examples.

2 Background fields and contact terms

In this section we discuss contact terms in two-point functions of conserved currents. In

theories withN = 2 supersymmetry, we distinguish between U(1) flavor currents and U(1)R
currents. These contact terms correspond to Chern-Simons terms in background gauge and

supergravity fields. Their fractional parts are meaningful physical observables and some

of them lead to a new anomaly in N = 2 superconformal theories. This section is a

summary of [30].

2.1 Non-supersymmetric theories

Consider a three-dimensional conformal field theory with a global, compact U(1) symmetry,

and the associated current jµ. We can couple it to a background gauge field aµ, and consider

3In this paper we explain how to compute the quantities τab and κab, which are associated with global

flavor symmetries, using localization. The corresponding observables for the R-symmetry, and other closely

related objects, can also be computed exactly. We leave a detailed discussion to future work.
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the free energy F [a], which is defined by

e−F [a] =

〈

exp
(

∫

d3x jµa
µ + · · ·

)

〉

. (2.1)

Here the ellipsis denotes higher-order terms in aµ that may be required in order to ensure

invariance of F [a] under background gauge transformations of aµ. A familiar example is

the seagull term aµa
µ|φ|2, which is needed when a charged scalar field φ is coupled to aµ.

We see from (2.1) that F [a] is the generating functional for connected correlation

functions of jµ. The two-point function 〈jµ(x)jν(0)〉 is constrained by current conservation

and conformal symmetry, so that

〈jµ(x)jν(0)〉 =
τ

16π2
(

∂2δµν − ∂µ∂ν
) 1

x2
+
iκ

2π
εµνρ∂

ρδ(3)(x) . (2.2)

Here τ and κ are dimensionless real constants. At separated points, only the first term

contributes, and unitarity implies that τ ≥ 0. (If τ = 0, then jµ is a redundant operator.)

The correlation function at separated points gives rise to a non-local term in F [a]. The

term proportional to κ is a contact term, whose sign is not constrained by unitarity. It

corresponds to a background Chern-Simons term in F [a],

iκ

4π

∫

d3x εµνρaµ∂νaρ . (2.3)

This term explicitly breaks parity.

Correlation functions at separated points are universal. They do not depend on short-

distance physics. By contrast, contact terms depend on the choice of UV cutoff. They can

be changed by adjusting local terms in the dynamical or background fields. Some contact

terms are determined by imposing symmetries. For instance, the seagull term discussed

above ensures current conservation. The contact term proportional to κ in (2.2) is not of

this type. Nevertheless, it possesses certain universality properties, as we will now review.

The Chern-Simons term (2.3) is invariant under small background gauge transforma-

tions, as required by current conservation. However, it is not the integral of a gauge-

invariant local density and this restricts the freedom in changing κ by adding a local

counterterm in the exponent of (2.1). This restriction arises because we can place the the-

ory on a curved manifold that allows non-trivial bundles for the background gauge field aµ.

Demanding invariance under large gauge transformations implies that κ can only be shifted

by an integer.4 Therefore, the fractional part of κ is universal and does not depend on

the short-distance physics. It is an intrinsic observable of the CFT. If we choose to set κ

to zero by a local counterterm, then F [a] is no longer invariant under large background

gauge transformations: its imaginary part shifts by an amount that is determined by the

observable described above and the topology of the gauge bundle.

As described in [30], there are different ways to calculate this observable in flat space.

Below, we will discuss its importance for supersymmetric theories on a three-sphere.

4Here we follow the common practice of attributing the quantization of Chern-Simons levels to invariance

under large gauge transformations. A more careful treatment involves a definition of the Chern-Simons

term (2.3) using an extension of the gauge field aµ to an auxiliary four-manifold. Demanding that the answer

be independent of how we choose this four-manifold leads to the same quantization condition as above.
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2.2 Supersymmetric theories

In theories with N = 2 supersymmetry, we distinguish between U(1) flavor symmetries

and U(1)R symmetries. A global U(1) flavor current jµ is embedded in a real linear super-

field J , which satisfies D2J = D̄2J = 0.5 In components,

J = J + iθj + iθ̄j̄ + iθθ̄K −
(

θγµθ̄
)

jµ + · · · . (2.4)

Superconformal invariance implies that J,K, and jµ are conformal primaries of dimen-

sion ∆J = 1, ∆K = 2, and ∆jµ = 2. (Only J is a superconformal primary.) It follows that

the one-point functions of J and K vanish, while their two-point functions are related to

the two-point function (2.2) of jµ with τ = τff and κ = κff ,

〈J(x)J(0)〉 = τff
16π2

1

x2
,

〈K(x)K(0)〉 = τff
8π2

1

x4
, (2.5)

〈J(x)K(0)〉 = κff
2π

δ(3)(x) .

The subscript ff emphasizes the fact that we are considering the two-point function of a

flavor current. The constant τff is normalized so that τff = 1 for a free chiral superfield

of charge +1.

We can couple J to a background vector superfield,

V = · · ·+
(

θγµθ̄
)

aµ − iθθ̄σ − iθ2θ̄λ̄+ iθ̄2θλ− 1

2
θ2θ̄2D . (2.6)

Here aµ, σ, and D are real. Background gauge transformations shift V → V+ρ, σ, ν+ ¯ρ, σ, ν

with chiral ρ, σ, ν, so that σ and D are gauge invariant, while aµ transforms like an ordinary

gauge field. (The ellipsis denotes fields that are pure gauge modes and do not appear in

gauge-invariant functionals of V .) The coupling of J to V takes the form

2

∫

d4θJV = JD + jµa
µ +Kσ + (fermions) . (2.7)

Now the free energy F [V ] is a supersymmetric functional of the background gauge super-

field V . The supersymmetric generalization of the Chern-Simons term (2.3) takes the form

Fff = −κff
2π

∫

d3x

∫

d4θΣV =
κff
4π

∫

d3x (iεµνρaµ∂νaρ − 2σD) + (fermions) . (2.8)

Here the real linear superfield Σ = i
2D̄DV is the gauge-invariant field strength corre-

sponding to V . This Chern-Simons term captures the contact terms in the two-point

functions (2.2) and (2.5). It is conformally invariant.

A U(1)R current j
(R)
µ is embedded in a supercurrent multiplet Rµ, which also con-

tains the supersymmetry current Sµα, the energy-momentum tensor Tµν , a current j
(Z)
µ

5We follow the conventions of [31], continued to Euclidean signature. The gamma matrices are given

by (γµ)α
β =

(

σ3,−σ1,−σ2
)

, where σi are the Pauli matrices. The totally antisymmetric Levi-Civita

symbol is normalized so that ε123 = 1. Note the identity γµγν = δµν + iεµνργ
ρ.
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that corresponds to the central charge Z in the supersymmetry algebra, and a string cur-

rent εµνρ∂
ρJ (Z). All of these currents are conserved. See [31] for a thorough discussion of

supercurrent multiplets in three dimensions. In components,

Rµ = j(R)
µ − iθSµ − iθ̄S̄µ −

(

θγν θ̄
)

(

2Tµν + iεµνρ∂
ρJ (Z)

)

− iθθ̄
(

2j(Z)
µ + iεµνρ∂

νj(R)ρ
)

+ · · · . (2.9)

Note that there are additional factors of i in (2.9) compared to the formulas in [31], because

we are working in Euclidean signature. (In Lorentzian signature the superfield Rµ is real.)

TheR-multiplet couples to the linearized metric superfieldHµ. In Wess-Zumino gauge,

Hµ =
1

2

(

θγν θ̄
)

(hµν − iBµν)−
1

2
θθ̄Cµ − i

2
θ2θ̄ψ̄µ +

i

2
θ̄2θψµ +

1

2
θ2θ̄2 (Aµ − Vµ) . (2.10)

Here hµν is the linearized metric, so that gµν = δµν + 2hµν , and ψµα is the gravitino. The

vectors Cµ and Aµ are Abelian gauge fields, and Bµν is a two-form gauge field. We will

also need the following field strengths,

Vµ = −εµνρ∂νCρ , ∂µVµ = 0 ,

H =
1

2
εµνρ∂

µBνρ . (2.11)

As above, there are several unfamiliar factors of i in (2.10) that arise in Euclidean signature.

The coupling of Rµ to Hµ takes the form

2

∫

d4θRµHµ = Tµνh
µν − j(R)

µ

(

Aµ − 3

2
V µ

)

+ ij(Z)
µ Cµ − J (Z)H + (fermions) . (2.12)

Since the gauge field Aµ couples to the R-current, we see that the gauge freedom includes

local R-transformations. This is analogous to N = 1 new minimal supergravity in four

dimensions [32, 33]. For a recent discussion, see [34, 35].

If the theory is superconformal, the R-multiplet reduces to a smaller supercurrent.

Consequently, the linearized metric superfield Hµ enjoys more gauge freedom, which allows

us to set Bµν and Aµ − 1
2Vµ to zero. The combination Aµ − 3

2Vµ remains and transforms

like an Abelian gauge field.

Using Hµ, we can construct three Chern-Simons terms. They are derived in [30].

Surprisingly, not all of them are conformally invariant.6

• Gravitational Chern-Simons Term:

Fg =
κg

192π

∫ √
g d3x

(

iεµνρTr

(

ωµ∂νωρ +
2

3
ωµωνωρ

)

(2.13)

+ 4iεµνρ
(

Aµ − 3

2
Vµ

)

∂ν

(

Aρ −
3

2
Vρ

))

+ (fermions) .

6In order to write suitably covariant formulas, we will include some terms that go beyond linearized

supergravity, such as the measure factor
√
g. We also endow εµνρ with a factor of

√
g, so that it transforms

like a tensor. Consequently, the field strength Vµ = −εµνρ∂
νCρ is covariantly conserved, ∇µV

µ = 0.

– 7 –



J
H
E
P
1
0
(
2
0
1
2
)
0
5
3

Here ωµ is the spin connection. We see that the N = 2 completion of the usual grav-

itational Chern-Simons term also involves a Chern-Simons term for Aµ − 3
2Vµ. Like

the flavor-flavor term, the gravitational Chern-Simons term is conformally invariant.

It was previously studied in the context of N = 2 conformal supergravity [36], see

also [37, 38].

• Z-Z Chern-Simons Term:

Fzz=−κzz
4π

∫ √
g d3x

(

iεµνρ
(

Aµ−
1

2
Vµ

)

∂ν

(

Aρ−
1

2
Vρ

)

+
1

2
HR+· · ·

)

+(fermions) .

(2.14)

Here R is the Ricci scalar.7 The ellipsis denotes higher-order terms in the bosonic

fields, which go beyond linearized supergravity. The Z-Z Chern-Simons term is

not conformally invariant, as is clear from the presence of the Ricci scalar. This

lack of conformal invariance is related to the following fact: in a superconformal

theory, theR-multiplet reduces to a smaller supercurrent and the operators conjugate

to R, H and Aµ − 1
2Vµ are redundant.

• Flavor-R Chern-Simons Term:

Ffr = −κfr
2π

∫ √
g d3x

(

iεµνρaµ∂ν

(

Aρ −
1

2
Vρ

)

+
1

4
σR−DH + · · ·

)

+ (fermions) .

(2.15)

The meaning of the ellipsis is as in (2.14) above. Again, the presence of R, H,

and Aµ− 1
2Vµ shows that this term is not conformally invariant. The relative sign be-

tween the Chern-Simons terms (2.8) and (2.15) is due to the different couplings (2.7)

and (2.12) of jµ and j
(R)
µ to their respective background gauge fields. Unlike the con-

formal Chern Simons terms (2.8) and (2.13), the Z-Z term (2.14) and the flavor-R

term (2.15) are novel. Their lack of conformal invariance will be important below.

The Chern-Simons terms (2.8), (2.13), (2.14), and (2.15) summarize contact terms

in two-point functions of J and Rµ. As we stated above, the fractional parts of these

contact terms are meaningful physical observables. This is thoroughly explained in [30].

Using the background fields V and Hµ, we can construct two additional local terms: the

Fayet-Iliopoulos (FI) term,

FFI = Λ

∫ √
g d3x (D + · · · ) + (fermions) , (2.16)

and the Einstein-Hilbert term,

FEH = Λ

∫ √
g d3x (R+ · · · ) + (fermions) . (2.17)

These terms are not conformally invariant, and they are multiplied by an explicit power of

the UV cutoff Λ. They correspond to conventional contact terms, which can be adjusted

at will. Below we will use them to remove certain linear divergences. A finite coefficient

of (2.16) leads to a one-point function for J . In a scale-invariant theory it is natural to

set such a dimensionful finite coefficient to zero. More generally, the dynamical generation

7In our conventions, a d-dimensional sphere of radius r has scalar curvature R = − d(d−1)

r2
.
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of FI-terms is very constrained. For a recent discussion, see [31, 39, 40] and references

therein. Note that a cosmological constant counterterm proportional to Λ3 is not allowed

by supersymmetry.

2.3 A superconformal anomaly

As we have seen above, the two Chern-Simons terms (2.14) and (2.15) are not conformally

invariant. Moreover, we have argued that the fractional parts of their coefficients κzz
and κfr are meaningful physical observables. If these fractional parts are non-vanishing,

certain correlation functions have non-conformal contact terms. If we want to preserve

supersymmetry, we have to choose between the following:

1. Retain these Chern-Simons terms at the expense of conformal invariance. In this

case, the free energy is invariant under large background gauge transformations.

2. Restore conformal invariance by adding appropriate Chern-Simons counterterms with

fractional coefficients. In this case the free energy in the presence of topologically

nontrivial background fields is not invariant under large gauge transformations. Its

imaginary part, which encodes the fractional parts of κzz and κfr, is only well defined

if we specify additional geometric data. This is similar to the framing anomaly of [41].

This understanding is essential for our discussion below. A detailed explanation can be

found in [30]. The second option above is the less radical of the two (the idea of adding

Chern-Simons terms to a theory in order to ensure some physical requirements has already

appeared long ago in several contexts [41–44]), but we will explore both alternatives.

3 The free energy on a three-sphere

Coupling the flat-space theory to the background supergravity multiplet H renders it in-

variant under all background supergravity transformations. For certain expectation values

of the fields in H, the theory also preserves some amount of rigid supersymmetry [27]. Here

we are interested in round spheres [23–25, 27].8 In stereographic coordinates, the metric

takes the form

gµν =
4r4

(r2 + x2)2
δµν , (3.1)

where r is the radius of the sphere. In order to preserve supersymmetry, we must also turn

on a particular imaginary value for the background H-flux [27],

H = − i

r
. (3.2)

This expectation value explicitly violates unitarity, since H is real in a unitary theory.

Given a generic N = 2 theory with a choice of R-symmetry, the background fields (3.1)

and (3.2) preserve an SU(2|1) × SU(2) superalgebra. If the theory is superconformal,

8Recently, it was found that various squashed spheres also admit rigid supersymmetry [45–51]. Many of

our results can be generalized to these backgrounds.
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this is enhanced to the full superconformal algebra and the coupling to the background

fields in H reduces to the one obtained by the stereographic map from flat space. In this

case the imaginary value for H in (3.2) is harmless and does not lead to any violations

of unitarity [27].

In this section, we will study an N = 2 SCFT on a three-sphere and consider its

free energy F [V ] in the presence of a background gauge field V for the current J . For

our purposes, it is sufficient to analyze F [V ] for constant values of the background fields D

and σ. The other fields in V are set to zero. We will study F [V ] as a power series expansion

in D and σ around zero, starting with the free energy F [0] itself.

As we saw in the previous section, superconformal invariance may be violated by certain

Chern-Simons contact terms. We can restore it by adding bare Chern-Simons counterterms

with appropriate fractional coefficients, but this forces us to give up on invariance under

large background gauge transformations. Here we will choose to retain the non-conformal

terms and preserve invariance under large gauge transformations, since this setup is nat-

ural in calculations based on localization. Only the Z-Z Chern-Simons term (2.14) and

the gravitational Chern-Simons term (2.13) can contribute to F [0]. On the sphere, the

imaginary value of H in (3.2) implies that Fzz reduces to a purely imaginary constant,

since the coefficient κzz in (2.14) is real. The value of this constant depends on non-linear

terms in the gravity fields, which are not captured by the linearized formula (2.14). The

gravitational Chern-Simons term is superconformal and it does not contribute on the round

sphere. In general, we will therefore find a complex F [0]. Its real part is the conventional

free energy of the SCFT, which must be real by unitarity. The imaginary part is due to a

Chern-Simons term in the supergravity background fields.

The terms linear in D and σ reflect the one-point functions of J and K. If our theory

were fully conformally invariant, these terms would be absent. However, in the presence of

the non-conformal flavor-R Chern-Simons term (2.15) this is not the case. On the sphere,

this term reduces to

Ffr =
κfr
2π

∫

S3

√
g d3x

(

σ

r2
− iD

r

)

. (3.3)

The explicit factor of i, which violates unitarity, is due to the imaginary value of H in (3.2).

The relative coefficient between σ and D depends on both the linearized terms that appear

explicitly in (2.15) and on non-linear terms, denoted by an ellipsis. Instead of computing

them, we can check that (3.3) is supersymmetric on the sphere. This term leads to non-

trivial one-point functions for J and K. However, the fact that κfr is real implies that

∂σ ImF
∣

∣

V=0
= 0 , ∂D ReF

∣

∣

V=0
= 0 . (3.4)

In order to understand the terms quadratic in D and σ, we must determine the two-

point functions of J and K on the sphere. At separated points, they are easily obtained

from the flat-space correlators (2.5) using the stereographic map,

〈J(x)J(y)〉S3 =
τff
16π2

1

s(x, y)2
, (3.5)

〈K(x)K(y)〉S3 =
τff
8π2

1

s(x, y)4
,

〈J(x)K(y)〉S3 = 0 .
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Here s(x, y) is the SO(4) invariant distance function on the sphere. In stereographic coor-

dinates,

s(x, y) =
2r2|x− y|

(r2 + x2)1/2(r2 + y2)1/2
. (3.6)

Since we are discussing constant values of D and σ, we need to integrate the two-point

functions in (3.5) over the sphere, and hence we will also need to understand possible

contact terms at coincident points. Contact terms are short-distance contributions, which

can be analyzed in flat space, and hence we can use results from section 2.

We begin by studying ∂2DF
∣

∣

V=0
. Since 〈J(x)J(y)〉 does not contain a contact term

on dimensional grounds, we can calculate ∂2DF
∣

∣

V=0
by integrating this two-point function

over separated points on the sphere,

1

r4
∂2F

∂D2

∣

∣

∣

∣

V=0

= − τff
16π2r4

∫

S3

√
g d3x

∫

S3

√
g d3y

1

s(x, y)2
= −π

2

4
τff < 0 . (3.7)

The answer is finite and only depends on the constant τff . The sign follows from unitarity.

The second derivative ∂2σF
∣

∣

V=0
involves the integrated two-point func-

tion 〈K(x)K(y)〉S3 , which has a non-integrable singularity at coincident points. Since the

resulting divergence is a short-distance effect, it can be understood in flat space. We can

regulate the divergence by excising a small sphere of radius 1
Λ around x = y. Now the

integral converges, but it leads to a contribution proportional to Λ. This contribution is

canceled by a contact term 〈K(x)K(0)〉 ∼ Λδ(3)(x− y). The divergence and the associated

contact term are related to the seagull term discussed in section 2. The removal of the

divergence is unambiguously fixed by supersymmetry and current conservation, so that

the answer is finite and well defined.9 This leads to

1

r2
∂2F

∂σ2

∣

∣

∣

∣

V=0

= − τff
8π2r2

∫

S3

√
g d3x

∫

S3

√
g d3y

1

s(x, y)4
=
π2

4
τff > 0 . (3.8)

Alternatively, we can evaluate the integral by analytic continuation of the exponent 4 in

the denominator from a region in which the integral is convergent. Note that we have

integrated a negative function to find a positive answer. This change of sign is not in

conflict with unitarity, because we had to subtract the divergence.

Finally, the mixed derivative ∂D∂σF
∣

∣

V=0
is obtained by integrating the two-point func-

tion 〈J(x)K(y)〉S3 , which vanishes at separated points. However, it may contain a non-

vanishing contact term (2.5), and hence it need not integrate to zero on the sphere. Such

a contact term gives rise to
1

r3
∂2F

∂D ∂σ

∣

∣

∣

∣

V=0

= −πκff . (3.9)

As we explained in section 2, the fractional part of κff is a well-defined observable in

the SCFT.
9To see this, note that in momentum space 〈J(p)J(−p)〉 ∼ 1

|p|
. Supersymmetry implies

that 〈K(p)K(−p)〉 ∼ p2〈J(p)J(−p)〉 ∼ |p|. Thus, a contact term proportional to Λ in 〈K(p)K(−p)〉 is

incompatible with the two-point function of J at separated points. This shows that any UV cutoff that

preserves supersymmetry does not allow a contact term, and hence it must lead to a finite and unambiguous

answer for
∫

d3x 〈K(x)K(0)〉. By contrast, excising a sphere of radius 1
Λ

does not respect supersymmetry,

and thus it requires a contact term.
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4 Localization and F -maximization

As we have explained in the introduction, localization embeds the SCFT of interest into

the deep IR of an RG flow from a free theory in the UV. We can then compute F [V ] on a

three-sphere for certain supersymmetric choices of V ,

σ = m, D =
im

r
, (4.1)

with all other fields in V vanishing. Here m is a real constant that can be thought of as a

real mass associated with the flavor symmetry that couples to V . Hence D is imaginary.

In order to place the theory on the sphere, we must choose an R-symmetry. As explained

in [24, 25, 27], the real parameter m can be extended to complex values,

m→ m+
it

r
, (4.2)

where t parameterizes the choice of R-symmetry in the UV. The free energy computed via

localization is then a holomorphic function of m+ it
r .

In general, the UV R-symmetry parametrized by t does not coincide with the super-

conformal R-symmetry in the IR. This only happens for a special choice, t = t∗. In this

case F [m + it∗
r ] encodes the free-energy and various current correlation functions in the

SCFT on the sphere, exactly as in section 3. Expanding around m = 0, we write

F
[

m+
it∗
r

]

= F0 +mrF1 +
1

2
(mr)2F2 + · · · . (4.3)

As we explained in section 3, the Chern-Simons term (2.14) in the background grav-

ity fields leads to complex F0, but it only affects the imaginary part. This explains the

complex answers for F0 found in the localization computations of [23–25]. Alternatively,

we can remove the imaginary part by adding a Chern-Simons counterterm with appro-

priate fractional coefficient, at the expense of invariance under large background gauge

transformations. The real part of F0 is not affected. It appears in the F -theorem (1.5).

The first order term F1 arises because of the flavor-R Chern-Simons term (2.15), which

reduces to (3.3) on the three-sphere. Restricting to the supersymmetric subspace (4.1), we

find that

F1 = 2πκfr . (4.4)

This accounts for the non-vanishing, real F1 found in [23–25] and shows that κfr can be

computed using localization. As we explained above, this term is not compatible with

conformal symmetry. We can set it to zero and restore conformal invariance by adding an

appropriate flavor-R Chern-Simons counterterm, at the expense of invariance under large

background gauge transformations.

The imaginary part of F1 always vanishes, in accord with conformal symmetry. Using

holomorphy in m+ it
r , we thus find

∂

∂t
ReF

∣

∣

∣

∣

m=0,t=t∗

= −1

r

∂

∂m
ImF

∣

∣

∣

∣

m=0,t=t∗

= 0 . (4.5)

This is the condition proposed in [24].
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The real part of F2 arises from (3.7) and (3.8),

ReF2 =
1

r2
∂2

∂m2
ReF

∣

∣

∣

∣

m=0,t=t∗

=
π2

2
τff , (4.6)

while the imaginary part is due to the flavor-flavor Chern-Simons term (2.8). Using (3.9),

we obtain

ImF2 =
1

r2
∂2

∂m2
ImF

∣

∣

∣

∣

m=0,t=t∗

= −2πκff . (4.7)

Combining the real and imaginary parts,

F2 =
π2

2
τff − 2πiκff . (4.8)

Thus, both τff and κff are computable using localization.

If we denote by F (t) = F [0 + it
r ] the free energy for m = 0, we can summarize (4.5)

and (4.6) as follows,

∂

∂t
ReF

∣

∣

∣

∣

t=t∗

= 0 ,
∂2

∂t2
ReF

∣

∣

∣

∣

t=t∗

= −π
2

2
τff < 0 . (4.9)

The generalization to multiple Abelian flavor symmetries is straightforward and leads

to (1.7),
∂

∂ta
ReF

∣

∣

∣

∣

t=t∗

= 0 ,
∂2

∂ta∂tb
ReF

∣

∣

∣

∣

t=t∗

= −π
2

2
τab , (4.10)

where the matrix τab is determined by the flat-space two-point functions of the Abelian

flavor currents jµa at separated points,

〈jµa (x)jνb (0)〉 =
τab
16π2

(

δµν∂2 − ∂µ∂ν
) 1

x2
. (4.11)

Unitarity implies that τab is a positive definite matrix. Note that our condition on the

second derivatives is reminiscent of a similar condition in [52]. However, the precise relation

of [52] to the three-sphere partition function is not understood.

As an immediate corollary, we obtain a non-renormalization theorem for the two-

point function coefficients τab and κab. Since localization sets all chiral fields to zero, the

free energy is independent of all superpotential couplings, and hence all exactly marginal

deformations. Thus τab and κab are independent of exactly marginal deformations.

We would briefly like to mention the connection of (4.10) to the F -theorem (1.5). It

is analogous to the relationship between a-maximization and the a-theorem in four dimen-

sions [28]. Since relevant deformations in the UV generally break some flavor symmetries,

there are more flavor symmetries in the UV than in the IR. Maximizing over this larger

set in the UV should result in a larger value of F , thus establishing (1.5). This simple

argument applies to a wide variety of RG flows, but there are several caveats similar to

those discussed in [28]. An important restriction is that the argument only applies to flows

induced by superpotential deformations. For such flows, the free energy is the same func-

tion in the UV and in the IR, since it is independent of all superpotential couplings. One
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can say less about RG flows triggered by real mass terms, since the free energy depends on

them nontrivially.

One of the caveats emphasized in [28] is the existence of accidental symmetries in

the IR of many RG flows. Similarly, to use localization at the point t = t∗, we need to

find an RG flow with an R-symmetry that connects the SCFT in the IR to a free theory

in the UV. This is generally impossible if there are accidental symmetries in the IR.

Nevertheless, the maximization principle (4.10) holds. It would be interesting to find a

three-dimensional analog of [53], which would enable exact computations in the presence

of accidental symmetries. See [54] for recent work in this direction.

5 Examples

5.1 Free chiral superfield

Consider a free chiral superfield Φ of charge +1, coupled to σ and D in a background vector

multiplet. The action on the sphere is given by

S =

∫

S3

√
g d3x

(

|∇φ|2 − iψ̄γµ∇µψ + σ2|φ|2 −D|φ|2 + iσψ̄ψ +
3

4r2
|φ|2

)

. (5.1)

For constant σ and D, we can compute the partition function by performing the Gaussian

functional integral over φ and ψ,

F =
∞
∑

n=1

n2 log

(

n2 − 1

4
+ (σ2 −D)r2

)

−
∞
∑

n=1

n(n+ 1) log

(

(

n+
1

2

)2

+ (σr)2

)

. (5.2)

The two sums arise from the bosonic and the fermionic modes respectively. (The eigenvalues

of the relevant differential operators on S3 can be found in [15].) As expected, the leading

divergence cancels due to supersymmetry, but there are lower-order divergences.

Instead of evaluating (5.2), we will calculate its derivative,

1

r2
∂F

∂D
=

∞
∑

n=1

(σ2 −D)r2 − 1
4

n2 − 1
4 + (σ2 −D)r2

−
∞
∑

n=1

1 (5.3)

=
π

2

√

(σ2 −D)r2 − 1

4
coth

[

π

√

(σ2 −D)r2 − 1

4

]

,

where we set
∑

n 1 → −1
2 by zeta function regularization.10 Similarly, we find

1

r

∂F

∂σ
= −πσr

√

(σ2 −D)r2 − 1

4
coth

[

π

√

(σ2 −D)r2 − 1

4

]

+ π

(

(σr)2 +
1

4

)

tanh(πσr) . (5.4)

10Equivalently, we can remove the divergence by an appropriate FI counterterm (2.16) for the background

vector multiplet.
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Note that (5.3) and (5.4) both vanish when σ = D = 0, as required by conformal invariance.

The derivative of the free energy on the supersymmetric subspace (4.1) is given by

1

r

∂F

∂m
= π

(

1

2
+ imr

)

tanh (πmr) . (5.5)

This exactly matches the result obtained via localization [24, 25].

We can also compute the second derivatives

1

r4
∂2F

∂D2

∣

∣

∣

∣

σ=D=0

= −π
2

4
,

1

r2
∂2F

∂σ2

∣

∣

∣

∣

σ=D=0

=
π2

4
, (5.6)

and therefore,
1

r2
∂2

∂m2
ReF

∣

∣

∣

∣

m=0

=
π2

2
. (5.7)

Since τff = 1 for a free chiral superfield of charge +1, these results are consistent

with (3.7), (3.8), and (4.6).

Finally, we discuss the mixed second derivatives,

1

r3
∂2F

∂D∂σ

∣

∣

∣

∣

σ=D=0

= 0 , lim
σr→±∞

1

r3
∂2F

∂D ∂σ

∣

∣

∣

∣

D=0

= ±π
2
. (5.8)

Comparing with (3.9), we see that κff vanishes in the UV theory. If we give the chiral

superfield a real mass by turning on a non-zero value for σ, the RG flow to the IR will

generate a contact term κff = −1
2 sgn(σ). This corresponds to the half-integer Chern-

Simons term that arises when we integrate out a massive fermion [42, 43]. Therefore

the free energy is not invariant under all large gauge transformations of the background

vector multiplet on arbitrary manifolds. In order to preserve invariance under large gauge

transformations, we must add a half-integer Chern-Simons term for the background gauge

field to (5.1).

Note that the first derivative (5.5) has infinitely many zeros. By holomorphy, this

means that F (t) has infinitely many extrema, even for a free chiral superfield. However,

only one physically acceptable extremum is a local maximum. The F -maximization prin-

ciple may help resolve similar ambiguities in less trivial examples.

5.2 Pure Chern-Simons theory

Consider a dynamical N = 2 Chern Simons theory with gauge group U(1) and integer

level k,
k

4π
(iεµνρAµ∂νAρ − 2σD) + (fermions) . (5.9)

Here Aµ denotes the dynamical gauge field rather than a background supergravity field.

This theory has an Abelian flavor symmetry with topological current jµ = i
2πε

µνρ∂νAρ,

whose correlation functions vanish at separated points. We can couple jµ to a background

gauge field aµ, which resides in a vector multiplet that also contains the bosons σa, Da,

and we also add a background Chern-Simons term for aµ,

1

2π
(iεµνρaµ∂νAρ − σaD −Daσ) +

q

4π
(iεµνρaµ∂νaρ − 2σaDa) + (fermions) . (5.10)
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Here q is an integer. This example is discussed at length in [30].

Naively integrating out Aµ generates a Chern-Simons term for aµ with fractional co-

efficient

κff = q − 1

k
. (5.11)

On the supersymmetric subspace (4.1) appropriate to the three-sphere, this term evalu-

ates to Fff = −iπκff (mr)2. We can compare it to the answer obtained via localization.

Following [23], we find that

e−F =

∫

d(σr) exp(iπr2(kσ2 + 2σm+ qm2)) =
1

√

|k|
ei sgn(k)π/4 exp(iπκff (mr)

2) . (5.12)

We see that the term in F proportional to m2 agrees with the flat-space calculation.

5.3 SQED with a Chern-Simons term

Consider N = 2 SQED with an integer level k Chern-Simons term for the dynamical U(1)v
gauge field and Nf chiral flavor pairs Qi, Q̃ĩ (i, ĩ = 1, . . . , Nf ) that carry charge ±1 un-

der U(1)v. The theory also has a global U(1)a flavor symmetry J under which Qi, Q̃ĩ

all carry charge +1. Here v and a stand for vector and axial respectively. The theory is

invariant under charge conjugation, which flips the sign of the dynamical U(1)v gauge field

and interchanges Qi ↔ Q̃ĩ. In the IR, the theory flows to an SCFT, which is labeled by

the integers k and Nf .

In [30], this model is analyzed in perturbation theory for k ≫ 1. Computing the

appropriate two-point functions of the axial flavor current and the R-current leads to

κff =
π2Nf

4k
+O

(

1

k3

)

, κfr = −Nf

2k
+O

(

1

k3

)

. (5.13)

We can now compare these flat-space calculations to the result obtained via localization [24,

25]. In the notation of (4.3), we find

F0 = Nf log 2 +
1

2
log |k| − iπ

4

(

sgn(k)− Nf

k

)

+O
(

1

k2

)

, (5.14)

F1 = −πNf

k
+O

(

1

k3

)

,

F2 = π2Nf − iπ3Nf

2k
+O

(

1

k2

)

.

The real part of F0 is the conventional free energy for the SCFT in the IR. The imaginary

part of F0 corresponds to (2.14), whose coefficient we will not discuss here. The first

order term F1 exactly matches the contribution of the flavor-R term as in (4.4), while the

imaginary part vanishes to this order in 1
k . This is due to the fact that the mixing of the R-

current and the axial current only arises at O
(

1
k2

)

. Likewise, the imaginary part of F2 is

captured by the flavor-flavor term as in (4.7). Finally, the real part of F2 is in agreement

with (4.6), since the two-point function coefficient of J is given by τff = 2Nf +O
(

1
k2

)

.
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5.4 A theory with a gravity dual

Equation (1.7) can be checked in N = 2 SCFTs with AdS4 supergravity duals. The

AdS/CFT correspondence [55–57] relates global symmetries of the boundary theory to

gauge symmetries in the bulk. The boundary values aaµ of the bulk gauge fields Aa
µ act

as background gauge fields for the global symmetry currents jµa on the boundary. The

boundary free energy F [a] in the presence of these background fields is equal to the on-

shell supergravity action computed with the boundary conditions Aa
µ(x, z)|z=0 = aaµ(x).

The matrix τab defined by the two-point functions (1.8) of global currents on the boundary

is proportional to the matrix 1
g2
ab

of inverse gauge couplings that appears in the bulk Yang-

Mills term [58].

Consider M-theory on AdS4×X7, where X7 is a Sasaki-Einstein seven manifold. This

background preserves N = 2 supersymmetry on the three-dimensional boundary. The

isometries of X7 lead to AdS4 gauge fields upon KK reduction from 11-dimensional super-

gravity. Hence, they correspond to global symmetries of the dual SCFT3. Given a set of

Killing vectors Ka on X7 that are dual to the global symmetry currents jµa , the matrix τab
is given by [59]

τab =
32πN

3
2

3
√
6(Vol(X7))

3
2

∫

G(Ka,Kb) vol(X7) . (5.15)

Here G is the Sasaki-Einstein metric on X7 and vol(X7) is the corresponding volume form.

There are N units of flux threading X7. We can use (5.15) to compute τab in the gravity

dual and compare to the answer obtained via localization on the boundary, providing a

check of (1.7).

Consider, for instance, the theory depicted in figure 1. It is the well-known conifold

quiver with gauge group U(N) × U(N) and vanishing Chern-Simons levels, coupled to

two U(Nf ) flavor groups. The superpotential is given by

W = A1B1A2B2 −A1B2A2B1 +

Nf
∑

l=1

(

p1lA1q
l
1 + p2lA2q

l
2

)

. (5.16)

This theory describes N M2 branes on a ZNf
orbifold of the cone over Q1,1,1 ∼=

SU(2)×SU(2)×SU(2)
U(1)×U(1) . It is expected to flow to the SCFT dual to AdS4 × Q1,1,1/ZNf

in the

infrared [60, 61].

The large-N partition function of this theory as a function of the trial R-charges

was computed in [9]. For simplicity, we consider the free energy F (t) as a function

of a single mixing parameter t, which corresponds to the diagonal topological current11

jµ ∼ εµνρ
(

TrF
(1)
νρ +TrF

(2)
νρ

)

. Here F
(1)
µν and F

(2)
µν are the field strengths of the two U(N)

gauge groups. The function F (t) is maximized at t = 0 and its second derivative is given by

∂2F

∂t2

∣

∣

∣

∣

t=0

= − 20π

9
√
3

(

N

Nf

)
3
2

. (5.17)

11The current is normalized so that certain diagonal monopole operators have charge ±1.
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Figure 1. Flavored conifold quiver dual to M2-branes on the cone over Q1,1,1.

We will now compute the two-point function coefficient τff of jµ via the AdS/CFT

prescription (5.15). The Sasaki-Einstein metric on Q1,1,1 takes the form

ds2 =
1

16

(

dψ +
3
∑

i=1

cos θidφi

)2

+
1

8

3
∑

i=1

(dθ2i + sin2 θidφ
2
i ) , (5.18)

with ψ ∈ [0, 4π), φi ∈ [0, 2π), θi ∈ [0, π]. Using the results of [60], one can show that the

Killing vector of Q1,1,1 that corresponds to the current jµ is given by12

K =
1

Nf
(−∂φ1 + ∂φ2) . (5.19)

Substituting into (5.15) and using Vol(Q1,1,1/ZNf
) = π4

8Nf
, we find

τff =
40

9
√
3π

(

N

Nf

)
3
2

. (5.20)

Comparing (5.17) and (5.20), we find perfect agreement with (1.7).

As was pointed out in [9, 62], the F -maximization principle is closely related to the

volume minimization procedure of [63, 64]. It is natural to conjecture that the two pro-

cedures are in fact identical. In other words, the two functions that are being extremized

should be related, even away from their critical points. (A similar relation between a-

maximization in four dimensions and volume minimization was established in [65, 66].)

The example discussed above is consistent with this conjecture: both the free energy at the

critical point [9, 62] and its second derivative match.
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[36] M. Roček and P. van Nieuwenhuizen, N ≥ 2 Supersymmetric Chern-Simons Terms As d = 3

Extended Conformal Supergravity, Class. Quant. Grav. 3 (1986) 43 [INSPIRE].

[37] A. Achucarro and P. Townsend, A Chern-Simons Action for Three-Dimensional

anti-de Sitter Supergravity Theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].

[38] A. Achucarro and P. Townsend, Extended Supergravitites in d = 2 + 1 as Chern-Simons

Theories, Phys. Lett. B 229 (1989) 383 [INSPIRE].

[39] Z. Komargodski and N. Seiberg, Comments on the Fayet-Iliopoulos Term in Field Theory

and Supergravity, JHEP 06 (2009) 007 [arXiv:0904.1159] [INSPIRE].

[40] Z. Komargodski and N. Seiberg, Comments on Supercurrent Multiplets, Supersymmetric

Field Theories and Supergravity, JHEP 07 (2010) 017 [arXiv:1002.2228] [INSPIRE].

[41] E. Witten, Quantum Field Theory and the Jones Polynomial,

Commun. Math. Phys. 121 (1989) 351 [INSPIRE].

[42] A. Redlich, Gauge Noninvariance and Parity Violation of Three-Dimensional Fermions,

Phys. Rev. Lett. 52 (1984) 18 [INSPIRE].

[43] A. Redlich, Parity Violation and Gauge Noninvariance of the Effective Gauge Field Action

in Three-Dimensions, Phys. Rev. D 29 (1984) 2366 [INSPIRE].
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