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1 Introduction and summary of results

String theory compactified on a d-dimensional torus is invariant under the group O(d, d|Z)

of T-duality transformations [1]. This is the subgroup of U-dualities realized as automor-

phisms of the worldsheet sigma model. It is, however, also a subgroup of the much larger

continuous group O(d, d|R), which is the group of symmetries of the classical low-energy
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supergravity theory. This larger continuous symmetry is broken by quantum effects, in

particular by the fact that the string momentum and winding vectors are quantized.

In this paper we show that a certain relic of O(d, d|R) does survive as a symmetry

of a subset of observables, at leading order in the string-loop expansion but to all orders

in α′. These “quasi-symmetries” are implemented on the string worldsheet by topological

interfaces (also referred to as defect lines). Topological interfaces have played a role in

various contexts in recent years, see for example [2–20].

We are interested in topological interfaces between d-dimensional torus models which

preserve a û(1)2d current algebra. It turns out that they are associated to elements Λ̂ ∈
O(d, d|Q), the group of O(d, d)-matrices with rational entries. Their action on perturbative

string states transforms an integer momentum and winding vector γ̂ ∈ Zd,d to Λ̂γ̂ whenever

this is consistent with charge quantization, i.e. whenever Λ̂γ̂ is also in Zd,d; otherwise it

projects the string state to zero. We will argue that the transformation also rescales the

effective string-coupling constant by

λeff 7→ λeff

√
ind(Λ̂) . (1.1)

Here, ind(Λ̂) denotes the index of the sublattice of charges that survives the projection,

i.e. the smallest positive integer K such that KΛ̂ has only integer entries. Clearly these

transformations can only be inverted if K = 1, in which case they are the familiar T-

dualities of string theory. The transformations for general K do not form a group but

rather a semi-group. It turns out to be a semi-group extension of O(d, d|Q).

Topological interfaces for the free boson compactified on a circle, i.e. for d = 1 have

been analyzed in [8, 9]. We extend this analysis to torus models of arbitrary dimension

d ≥ 1, and also to theories with N = (1, 1) worldsheet supersymmetry. Following [9] we

actually compute the composition, or “fusion” of the more general superconformal but not

necessarily topological interfaces. These do not separately commute with left and right

moving superconformal algebras of the bulk SCFTs as is the case for topological ones, but

only with the diagonal subalgebra.1 In the purely bosonic CFT this requires the intro-

duction of a regulator and the subtraction of a divergent Casimir energy. For interfaces

preserving a mutually compatible supersymmetry, on the other hand, the divergent Casimir

energy cancels between bosons and fermions and there is no need for an infinite subtrac-

tion.2 The finite part of this energy contributes to the g factor of the fusion product, just

as expected from Cardy’s consistency condition [27].

Non-topological interfaces can be used to parallel transform the torus CFT along mod-

uli space. This makes it possible to pull-back all interfaces to defects in a fixed, reference

CFT, and to associate to them a universal defect algebra. The calculation of this algebra

of non-topological defects is the main technical result in the present paper.

1Such conformal interfaces arise as generic fixed points of renormalization-group flows, see for instance [3,

6, 21–26] and references therein.
2This was shown to be also the case for N = (2, 2) supersymmetric interfaces between Landau-Ginzburg

models in [24]. For the free theories considered in this paper N = (1, 1) supersymmetry is sufficient to

remove the singularities of fusion [3].
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On a different note, conformal interfaces and defects can be realized as quantum

junctions and quantum impurities in (1 + 1)-dimensional systems (for an introduction

see [28, 29]). Our results on the fusion of such defects could thus find more direct applica-

tions in the study of the infrared properties of condensed-matter or statistical-mechanical

systems. A by-product of our results is, for instance, the calculation of the fusion of

conformal defects in the critical two-dimensional Ising model.

Conformal interfaces on the superstring worldsheet have been constructed recently

in [30]. There, the Green-Schwarz formulation was used instead of the NSR formulation

employed in this paper, and space-time instead of worldsheet supersymmetry was imposed.

It was furthermore argued that the requirement of space-time supersymmetry forces the

interface either to be topological or to be a (totally-reflecting) tensor product of super-

symmetric D-branes. Since the O(d, d|Q) quasi-symmetries are implemented on the NSR

worldsheet by topological interfaces, it should be possible to rederive our results in the

Green-Schwarz formulation adopted in [30] as well. However, we will not pursue this ap-

proach here.

The effective action for the moduli and the associated u(1)2d Abelian gauge fields of

toroidally-compactified string theory reads [31]

S = M2
Planck

∫
d10−dx

√−g
[

1

8
Tr(∂µM

−1∂µM)− 1

4
(Fµν)T (M−1)Fµν

]
, (1.2)

where

M =

(
G−1 −G−1B

BG−1 G−BG−1B

)
(1.3)

is a symmetric O(d, d) matrix that obeys Mη̂M = η̂, with η̂ = ( 0 1
1 0 ). Here G is the

metric of the torus in the string frame, B the NS 2-form field and Fµν a 2d-vector of gauge

field strengths; MPlanck is the Planck scale of the effective (super)gravity. This action is

invariant under the global O(d, d) transformations Fµν 7→ Λ̂Fµν and M 7→ Λ̂M Λ̂T with

Λ̂T η̂Λ̂ = η̂. Charge quantization restricts Λ̂ to the T-duality subgroup O(d, d|Z).

The topological interfaces constructed in this paper are associated to elements Λ̂ of the

larger group O(d, d|Q), but they project out sublattices of charges whenever Λ̂ /∈ O(d, d|Z).

The matrix M can be expressed in terms of an auxiliary “vielbein” field

M = 2UTU ↔M−1 = 2 (Uη̂)T (Uη̂) . (1.4)

Using this vielbein one can define a vector of “physical” charges γ = Uη̂γ̂, associated

to a vector of integer charges γ̂. The physical-charge vectors γ take values in an even

self-dual lattice Γd,d of left and right momenta, with metric η = diag(1,−1). A general

(super)conformal interface transforms γ to Λγ with Λ ∈ O(d, d). It is topological if Λ ∈
O(d) × O(d). Physical properties, such as the mass of a fundamental string, only depend

on γ modulo arbitrary O(d)×O(d) rotations.

One of the most interesting aspects of our analysis is the way in which the semi-group

of topological interfaces acts on D-branes and on their Ramond charges. It turns out that

just as the masses of fundamental string states, also the D-brane masses stay invariant.

– 3 –
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The vectors of integer Ramond charges, on the other hand, transform according to the

spinor representation:

γ̂D → Ŝ γ̂D , with Ŝ :=

√
ind(Λ̂)S(Λ̂) ∈ GL(2d|Z) . (1.5)

Here S is the spinor representation of O(d, d|Q), while the square root of the index in the

above expression can be interpreted as the rescaling (1.1) of the effective string coupling.

Interestingly, the latter ensures that Ŝ acts as an endomorphism on the space of integer-

component spinors.3 This should be contrasted to Λ̂ whose action was restricted to a

sublattice of the lattice of integer-component vectors.

The transformations (1.5) also have a nice geometric meaning. Namely, we show that

the action of all superconformal û(1)2d preserving interfaces on the space of Ramond ground

states descends from the action of geometric integral transformations on D-branes. If in-

vertible, such transformations are known as Fourier-Mukai transformations, and it is indeed

well known that T-dualities can be realized by Fourier-Mukai transformations [35–37].

Although a topological interface with index K 6= 1 cannot be inverted, its fusion

with its parity-transform always yields a sum of invertible defects. The authors of [7]

have argued very generally that interfaces with the above property separate CFTs that

are related by orbifold constructions, and in particular preserve the sphere correlation

functions of invariant untwisted states. Our results provide a concrete application of these

ideas to the torus theories. The interfaces associated to elements of O(d, d|Q) and O(d, d|Z)

are, in the language of [7], examples respectively of “duality defects” and the subclass of

“group-like defects”.

Let us stress that O(d, d|Q) is not an exact symmetry of string theory but an orbifold

equivalence, i.e. a classical invariance of a subset of observables. It does, however, survive

α′ corrections. It remains to be seen whether this “quasi-symmetry” has any profound

meaning, or whether it is related to other fascinating glimpses on the arithmetic properties

of string theory (see e.g. [38] and references therein).

The rest of the paper gives the technical details behind the claims made in this intro-

duction. We begin in section 2 with the construction of interfaces between bosonic circle

theories that preserve û(1)2 symmetry. We present both the explicit interface operators,

and the corresponding boundary states of the two-boson theory that is obtained by folding

the worldsheet along the interface. This material is already contained in [3, 9]. But we

formulate it in a way that easily generalizes to higher target-space dimensions.

In section 3 we extend the construction of section 2 to superconformal interfaces be-

tween N = (1, 1) supersymmetric c = 3/2 circle theories. We emphasize the GSO projec-

tion, and in particular establish a precise correspondence of superconformal interfaces in

the GSO projected theory and Cardy defects in the Ising model [2].

In section 4 we derive the fusion of the û(1)2-preserving superconformal interfaces

between the c = 3/2 circle theories. We show that fusion is non-singular for interfaces

3The T-duality group O(d, d|Z) is usually defined as the stabilizer of the lattice of fundamental-string

charges, which transform in the vector representation of the continuous group. That the same discrete

group also stabilizes the lattice of spinor charges is a subtle mathematical fact, see for instance [32–34].

The transformation (1.5) is the generalization of this statement to the semi-group extension of O(d, d|Q).

– 4 –
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preserving the same supersymmetry, even if none of these interfaces is topological. We

also explain how any interface can be parallel-transported to a defect in a given reference

bulk theory, and compute the monoid of superconformal defects. This monoid turns out

to be a semi-group extension of O(1, 1|Q), tensored for the GSO projected theory with the

fusion algebra of the Ising model. We furthermore show that parallel transport provides

a one-to-one correspondence of û(1)2-preserving superconformal defects in circle theories

and the û(1)2-preserving topological interfaces starting in any given circle theory. This

correspondence is compatible with fusion, so that the category of û(1)2-preserving topolog-

ical interfaces between circle theories can be completely described in terms of the monoid

of û(1)2-preserving superconformal defects. General conformal defects of the Ising model

have been studied in [21, 23]. A by-product of our analysis is the fusion algebra of these

Ising defects.

In section 5 we explain the relation between the defect monoid and the O(1, 1|Q)

quasi-symmetries of the supergravity action. In particular, we describe their action on

perturbative string states on the one hand and D-brane charges on the other.

Section 6 contains the generalization to target space dimension d > 1. We construct

the û(1)2d-preserving superconformal interfaces between d-dimensional torus models, and

calculate their fusion. As in the case of d = 1, also for arbitrary d, parallel transport

reduces the fusion structure to the monoid of defects in a fixed reference torus model. We

determine this monoid to be the extension (6.54) of O(d, d|Q) by the semi-group of maximal

rank sublattices of Zd,d (where multiplication is given by intersection). In addition we

also calculate the fusion of these defects with û(1)2d-preserving superconformal boundary

conditions. We tried to keep this section to some extent self contained, so as to make it

readable independently of the detailed discussion of the d = 1 case in sections 2–4. It can

therefore also serve as an overview of our analysis of interfaces.

In section 7 we relate the action of the superconformal interfaces to geometric integral

transformations. More precisely, we show that the interfaces act on Ramond ground states

in the same way that the corresonding geometric integral transformations act on D-brane

charges. Even though we did not attempt to prove it, we believe that this is in fact true on

the level of the full D-brane category, and that the interfaces fuse as the respective integral

transformations compose.

Finally, in section 8 we establish the one-to-one correspondence between conformal

defect lines and topological interfaces in torus models. This extends the relation between

the defect monoid on one hand, andO(d, d|Q) quasi-symmetries of the effective supergravity

action after compactification on a torus of arbitrary dimension d ≥ 1.

In appendix A we collect some conventions, and in appendix B we prove an identity

relating indices of certain sublattices which is needed for the calculation of the fusion

of interfaces.

2 Free-boson interfaces preserving û(1)2

We begin with a review of interfaces between two c = 1 conformal field theories of free

bosons compactified on a circles. We limit ourselves to interfaces preserving two û(1) Kac-

– 5 –
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Moody symmetries. These interfaces were constructed and discussed in references [3, 9].

Here, we give a description that will easily generalize to higher target-space dimensions.

2.1 Interface operators versus boundary states

As explained in the above references, there are two different ways to think about interfaces:

as operators mapping the states of CFT2 on the circle to those of CFT1; or as boundary

conditions in the tensor-product theory CFT1⊗CFT2∗, where CFT2∗ is the parity trans-

form of CFT2. These two approaches are technically equivalent, but it will be useful in

the sequel to keep them both at hand.

In this section CFT1 and CFT2 are theories of a free massless bosonic field φ, com-

pactified on circles of radii R1 and R2 respectively. Our conventions for φ are detailed in

appendix A.

In the first approach, conformal invariance is equivalent to the statement that the

interface operator I1,2 : H2 → H1 between the Hilbert spaces of the two CFTs commutes

with the Virasoro algebra {Ln− L̃−n, n ∈ Z}. Since the Virasoro generators are quadratic

in the û(1) currents, the gluing conditions for the latter must be of the form(
a1
n

−ã1
−n

)
I1,2 = I1,2 Λ

(
a2
n

−ã2
−n

)
for Λ ∈ O(1, 1) . (2.1)

Here a1 and a2 are the modes of the left-moving û(1) currents of CFT1 and CFT2 respec-

tively, while ã1 and ã2 are the modes of the right-moving currents. The matrix Λ obeys

ΛT ηΛ = η with η = diag(1,−1).

We stress that (2.1) does not describe all possible conformal gluing conditions of

CFT1 with CFT2. First we have assumed that two affine û(1) symmetries are preserved.

Furthermore, taking an invertible gluing matrix Λ discards the possibility that the interface

factorizes into separate boundary conditions for the currents of CFT1 and CFT2. In

theories with d > 1 bosons this assumption eliminates interfaces at which some of the

currents of CFT2 (and also of CFT1) are fully reflected. Such non-generic interfaces can

be analyzed separately, when needed.

To convert interfaces to boundary states one reflects CFT2 to CFT2∗, so that both

conformal theories are now defined on the half-cylinder τ ≥ 0. This exchanges the left-

and right-moving modes (
a2
n

ã2
n

)
7→
(
−ã2
−n

−a2
−n

)
. (2.2)

The gluing conditions then become conformal boundary conditions for the tensor-product

theory CFT1⊗CFT2∗. This is a two-boson theory whose target space is an orthogonal

torus. The folding operation converts the interface into a boundary state that satisfies the

gluing conditions4 [(
a1
n

−ã1
−n

)
+ Λ

(
ã2
−n
−a2

n

)]
|I1,2〉〉 = 0 . (2.3)

4Throughout this article, we use double kets to distinguish boundary states from normal CFT states

(created by local operators) which are denoted by a single ket.

– 6 –
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One can put these conditions in the equivalent but more standard form5[(
a1
n

a2
n

)
+O

(
ã1
−n
ã2
−n

)]
|I1,2〉〉 = 0 , (2.4)

where O is the orthogonal matrix

O(Λ) =

(
Λ12Λ−1

22 Λ11 − Λ12Λ−1
22 Λ21

Λ−1
22 −Λ−1

22 Λ21

)
. (2.5)

The inverse to relation (2.5) is

Λ(O) =

(
O12 −O11O−1

21 O22 O11O−1
21

−O−1
21 O22 O−1

21

)
. (2.6)

Anticipating the generalization to higher target-space dimension d, we have written

equations (2.5) and (2.6) so that they hold for current modes that are d-dimensional vectors.

It is nevertheless instructive to make the mapping between O(2) and O(1, 1) matrices more

explicit. One notes that O(2) has two disconnected components, while the number of

disconnected components in O(1, 1) is four. These are related as follows:

O =

(
cos(2ϑ) sin(2ϑ)

−sin(2ϑ) cos(2ϑ)

)
↔ Λ = ±

(
coshα sinhα

sinhα coshα

)(
1 0

0 −1

)
,

O =

(
cos(2ϑ) sin(2ϑ)

sin(2ϑ) −cos(2ϑ)

)
↔ Λ = ±

(
coshα sinhα

sinhα coshα

)
, (2.7)

where the rotation angle 2ϑ ∈ (−π, π] is related to the rapidity α ∈ (−∞,∞) as follows:

tanhα = cos(2ϑ) , (2.8)

and the sign± corresponds, respectively, to the ranges ϑ > 0 or ϑ < 0. Crossing the singular

value ϑ = 0 amounts to jumping among the two disconnected components of O(1, 1) related

by the reflection −1. Note that the identity gluing condition for an interface corresponds

to a permutation gluing condition for the associated boundary condition, which glues the

left (right) û(1) current of CFT1 to the right (left) current of CFT2∗.

Let us give a name to the sign that distinguishes the two components of the orthogo-

nal group,

detΛ = −detO def
= ε . (2.9)

As shown in [9], when ε = +1 the interface corresponds to a D1-brane in the folded theory

subtending an angle ϑ to the φ1 axis.6 For fixed compactification radii Ri this angle cannot

vary continuously, but is subject to the rationality condition

tanϑ =
k2R2

k1R1
if ε = +1 . (2.10)

5In reference [9] the symbol S was used in place of the orthogonal matrix O. Here we prefer to save this

symbol for the spinor representation of O(1, 1).
6This is the reason for including the factor of 2 in the definition of the rotation angle.
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Here, k1, k2 are arbitrary integers — the winding numbers of the associated D1-brane,

which we take to be coprime in the following. For ε = −1 the folded interface corresponds

to a D2/D0 bound state, and the rationality condition reads

tanϑ =
2k2R1R2

k1
if ε = −1 . (2.11)

In this case, the integers (k1, k2) are respectively the number of D2 -branes and the gauge

flux threading through them. The latter is forced to be integer by Dirac’s quantization

condition.

We also quote here the explicit form of the bosonic boundary states from reference [9]:

|O, ϕ〉〉bos =

∞∏
n=1

e
1
n
Oija

i
−nã

j
−n |O, ϕ〉bos , (2.12)

where the ground states for ε = 1 and ε = −1 are respectively given by

|O, ϕ〉bos =

√
k1k2

sin (2ϑ)

∞∑
N,M=−∞

eiNϕ1+iMϕ2 |k2N, k1N, k1M,−k2M〉 , and

|O, ϕ〉bos =

√
k1k2

sin (2ϑ)

∞∑
N,M=−∞

eiNϕ1+iMϕ2 |k1M,−k1N, k2N, k2M〉 . (2.13)

Here, |N1, N2,M1,M2〉 denotes the highest-weight state with integer momenta (N1, N2)

and winding numbers (M1,M2) in the two torus directions, while ϕ parametrizes angle

moduli of the boundary state (position and Wilson lines of the corresponding D-brane).

The g-factor is the coefficient of the N = M = 0 ground state. Another important

parameter is the reflection coefficient R, defined quite generally in reference [23]. For the

bosonic interfaces at hand, these two parameters are given by [3, 9]

gbos =

√
k1k2

sin(2ϑ)
, R = cos2(2ϑ) . (2.14)

Note that while R varies continuously with the angle ϑ, the g-factor depends non-trivially

on its arithmetic properties. In string theory the g-factor is the (normalized) mass of the D-

brane, viewed as a point particle in the non-compact spacetime. This (for ε = +1) depends

on the length — not only on the orientation angle of the D1-brane. The quantization

condition (2.10) ensures that this length, and hence the interface entropy, is finite.

Using the behavior (2.2) of the modes under folding, the boundary states are easily

unfolded to interface operators. The mode contributions can be formally expressed as

products of exponentials In,bos
1,2 . For n > 0

In,bos
1,2 = exp

(
1

n
(a1
−nO11ã

1
−n − a1

−nO12a
2
n − ã1

−nOt21ã
2
n + a2

nOt22ã
2
n)

)
, (2.15)

– 8 –
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while the zero-mode contributions are given by

I0,bos
1,2 =

√
k1k2

sin(2ϑ)

∞∑
N,M=−∞

eiNϕ1+iMϕ2 |k2N, k1M 〉〈k1N, k2M | , and

I0,bos
1,2 =

√
k1k2

sin(2ϑ)

∞∑
N,M=−∞

eiNϕ1+iMϕ2 |k1M,k2N 〉〈k1N, k2M | (2.16)

for ε = det Λ = +1 and −1, respectively. Using a slightly abusive notation we may express

the complete interface operator as

Ibos
1,2 =

∏
n≥0

In,bos
1,2 , (2.17)

with the implicit understanding that the positive-frequency modes of CFT1 act on the

left and those of CFT2 on the right of the map I0,bos
1,2 . This latter map implements the

zero-mode gluing conditions on the ground states of the two û(1) Kac-Moody algebras.

2.2 Quantization and sublattices

The quantization conditions (2.10) and (2.11) cannot be generalized as such to higher

target-space dimensions. To put them in a more convenient form, note that in addition

to the O(1, 1) matrix Λ which enters in the gluing of the û(1) currents, the interface is

characterized by the choice of the bulk radii, R1 of CFT1 and R2 of CFT2. More explicitly,

the corresponding charge lattices can be written as (here j = 1, 2)

Γj =

{(
N/2Rj + MRj

−N/2Rj + MRj

)∣∣∣N,M ∈ Z

}
= Uj Z1,1 , (2.18)

where the matrices

Uj =

(
1/2Rj Rj

−1/2Rj Rj

)
(2.19)

are the “vielbeins” introduced in (1.4) and Z1,1 is the lattice of integer momenta and

windings. The transformation (2.18) corresponds precisely to the change of basis from the

physical left and right u(1) charges7 to integer momentum and winding, which has been

mentioned in the introduction.

Note that states of CFT2 with physical charge vector γ ∈ Γ2 are mapped to states of

CFT1 with physical charge vector Λγ. If Λγ ∈ Γ1 then |Λγ〉〈γ| does indeed contribute to

the zero-mode operator I0,bos
1,2 . Otherwise, all CFT2 states in the û(1)2 module with highest-

weight vector |γ〉 are mapped to zero by I1,2. The CFT2 charge vectors that contribute to

the zero-mode sum lie therefore in the intersection sublattice of physical charges

ΓΛ
1,2 := {γ ∈ Γ2|Λγ ∈ Γ1} = Γ2 ∩ Λ−1Γ1 = Γ2 ∩ Λ−1U1U

−1
2 Γ2 . (2.20)

This is mapped by Λ to the sublattice of CFT1 charge vectors

ΓΛ−1

2,1 := {γ ∈ Γ1|Λ−1γ ∈ Γ2} = Γ1 ∩ ΛΓ2 = Γ1 ∩ ΛU2U
−1
1 Γ1 , (2.21)

7Note that in our conventions Γj is the lattice of charges (j0,−j̃0).
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where Γ1 = U1U
−1
2 Γ2. The quantization conditions (2.10), (2.11) ensure that ΓΛ

1,2 is a

maximal-rank sublattice of Γ2 (or equivalently that ΓΛ−1

2,1 is a maximal-rank sublattice of

Γ1). Gluing matrices obeying this maximal-rank condition will be referred to as “admissi-

ble” gluing matrices.

This condition is more transparent in the canonical basis of integer winding and mo-

mentum. The gluing of these integer-charge vectors is implemented by Λ̂ := U−1
1 ΛU2.8

This is a O(1, 1) matrix that leaves invariant the (off-diagonal) metric η̂ = ( 0 1
1 0 ) on Z1,1.

It can be read off easily from the zero-mode maps (2.16) with the result:

Λ̂ =

(
k2/k1 0

0 k1/k2

)
or Λ̂ =

(
0 1

1 0

)(
k2/k1 0

0 k1/k2

)
(2.22)

for ε = +1 or ε = −1, respectively. In this canonical basis the admissible gluing conditions

are, therefore, in one-to-one correspondence with elements of O(1, 1|Q), the group of O(1, 1)

matrices with rational entries. This form of the quantization condition will generalize easily

to higher target-space dimension.

For general k1, k2, the transformations (2.22) do not map all integer vectors to integer

vectors. Only the sublattice

U−1
2 ΓΛ

1,2 = Z1,1 ∩ Λ̂−1Z1,1 = k1Z⊕ k2Z (2.23)

is mapped back to Z1,1, more precisely to the sublattice

U−1
1 ΓΛ−1

2,1 = Z1,1 ∩ Λ̂Z1,1 = k2Z⊕ k1Z or k1Z⊕ k2Z (2.24)

for ε = +1 and ε = −1, respectively. The index

ind(Λ̂) := ind(Z1,1 ∩ Λ̂−1Z1,1 ⊂ Z1,1) = |k1k2| (2.25)

of this intertwiner sublattice in the charge lattice Z1,1 will play a key role in what follows.

It is convenient to define the projector

ΠΛ̂|γ̂〉 :=

{
|γ̂〉 if Λ̂γ̂ ∈ Z1,1 ,

0 otherwise
(2.26)

on sectors with charges in this sublattice. Using these definitions and the identities |Λ22| =
coshα = | sin(2ϑ)|−1, see (2.7) and (2.8), we can put the ground state maps (2.16) in the

more elegant form

I0,bos
1,2 =

√
ind(Λ̂) |Λ22|

∑
γ̂∈Z1,1

e2πiϕ(γ̂)|Λ̂γ̂〉〈γ̂|ΠΛ̂ , (2.27)

where ϕ is some linear form on Z1,1. This expression easily generalizes to higher dimensions.

8Strictly-speaking, the matrix Λ̂ defined in the introduction is η̂U−1
1 ΛU2η̂. Henceforth, we will absorb

the η̂ by redefining the vector of integer charges.
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We conclude this section with the following remark: the interfaces discussed here can

be uniquely specified by the data (Λ̂, ϕ, U1, U2), where Λ̂ ∈ O(1, 1|Q) while Uj ∈ O(1, 1|R)

determine the bulk radii. Interestingly, in the expression (2.27) for the zero-mode sum only

Λ22 depends on these bulk radii. Furthermore, as explained in reference [9], to any choice

of the discrete data Λ̂ and of R2 there corresponds an R1,

R1 = fΛ̂(R2) :=


∣∣∣∣k2

k1

∣∣∣∣R2 if ε = +1∣∣∣∣k1

k2

∣∣∣∣ 1

2R2
if ε = −1 ,

(2.28)

such that |Λ22| = |sin(2ϑ)| = 1 and the g-factor is minimized. Indeed from (2.19), (2.22)

and (2.28) one can compute Λ = U1Λ̂U−1
2 = diag(±1,±1), so that the gluing matrix for

the u(1)2 currents is a O(1)×O(1) matrix. This means that these interfaces commute with

both, the left and right Virasoro algebra, and are therefore topological. For a given Λ̂,

they exist for any R2, and the corresponding interface operators do not exhibit an explicit

R2 dependence.

A more detailed discussion of this point in the context of torus models of arbitrary

target space dimension d can be found in section 8.

3 N = 1 supersymmetry

We will now extend the discussion of the previous section to the N = (1, 1) supersym-

metric CFT, consisting of a free boson φ and a free Majorana fermion with left and right

components ψ and ψ̃. Interfaces preserving N = 1 supersymmetry have been constructed

in reference [3]. Here we complete this construction in the GSO projected theory, where

the interface operators can have a non-trivial Ramond sector.

3.1 Superconformal û(1) invariant boundary states

As a warm up we will first consider the superconformal boundary states of the c = 3/2

theory. We limit ourselves to states preserving a û(1) symmetry — for a more general

discussion see references [39, 40]. Besides the Virasoro generators {Ln−L̃−n, n ∈ Z}, these

states are annihilated by the combinations {Gr−iηSG̃−r, ∀r} of modes of the left and right

supersymmetry currents. The choice of gluing condition ηS = ±1 specifies which of the

two possible supersymmetries is preserved. Notice the factor of i in these combinations; it

ensures that the supersymmetry generators anticommute into the Virasoro generators that

annihilate the boundary state.

States preserving a û(1) symmetry are annihilated by the combinations {an−εã−n, n ∈
Z} of modes of the left and right û(1) currents. The choice of the sign ε = 1 or ε = −1

distinguishes between Dirichlet and Neumann boundary conditions.9 In combination with

superconformal invariance these gluing conditions force separate gluing conditions on the

fermionic fields. Namely, the fermionic modes {ψr − iε ψ̃−r, ∀r} with ε ≡ εηS also have to

9This is consistent with the notation of the previous subsections since −ε can be considered as a one-

dimensional orthogonal gluing matrix.
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annihilate the boundary state. Having to satisfy gluing conditions for bosons and fermions

independently, the boundary states factorize into tensor products of bosonic and fermionic

boundary states,

|B〉〉full = |B〉〉bos ⊗ |B〉〉ferm . (3.1)

The Dirichlet and Neumann boundary states for the boson are well-known (see for

example [41, 42] and references therein) but we repeat them here for the reader’s conve-

nience:

D : |+, ϕ〉〉bos =
∞∏
n=1

exp

(
1

n
a−nã−n

) (
1√
2R

∞∑
N=−∞

e−iNϕ|N, 0〉
)
,

N : |−, ϕ〉〉bos =

∞∏
n=1

exp

(
− 1

n
a−nã−n

) (√
R

∞∑
M=−∞

e−iMϕ|0,M〉
)
, (3.2)

where |N,M〉 is the normalized ground state in a given momentum and winding sector,

and the angle ϕ corresponds, in string-theoretic language, to the position of a D-particle

on the circle or the Wilson line of a winding D-string. The g-factors of the above boundary

states,
√
R or

√
1/2R, will be important for our discussion later on.

The fermionic boundary states are linear combinations of

|NS, ε〉〉 =
∏

r∈N− 1
2

eiεψ−rψ̃−r |0〉NS , |R, ε〉〉 = 2
1
4

∏
r∈N

eiεψ−rψ̃−r |ε〉R , (3.3)

where N denotes the set of positive integers. Our conventions for the fermion field are given

in appendix A. The normalized Ramond ground states |ε〉R form a representation of the

algebra of fermionic zero modes,10

ψ0|±〉R =
1√
2
e±iπ/4|∓〉R , ψ̃0|±〉R =

1√
2
e∓iπ/4|∓〉R . (3.4)

The cylinder partition functions associated with the above boundary states can be com-

puted using standard techniques. Setting H = L0 + L̃0 for the Hamiltonian and q = e−τ

(with τ real) one finds:

〈〈NS, ε| qH |NS, ε 〉〉 = q−
1
24

∏
r∈N−1/2

(1 + q2r) =

∣∣∣∣θ3

η

∣∣∣∣1/2 ,
〈〈NS, ε| qH |NS,−ε 〉〉 = q−

1
24

∏
r∈N−1/2

(1− q2r) =

∣∣∣∣θ4

η

∣∣∣∣1/2 ,
〈〈R, ε| qH |R, ε 〉〉 =

√
2 q

1
12

∏
r∈N

(1 + q2r) =

∣∣∣∣θ2

η

∣∣∣∣1/2 . (3.5)

Here η and θa denote the familiar Dedekind-eta and Jacobi-theta functions. The partition

function between Ramond contributions of opposite ε vanishes.

10Note that the factor i in the boundary conditions is not compatible with the Majorana property of the

spinor field, which implies that ψ0 and ψ̃0 can be chosen real. It is however compatible with the Majorana

condition in Euclidean time, ψ∗r = iψ̃r.
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The boundary states of the unprojected fermion theory are the states |NS,±〉〉. We are

interested in the boundary states of the GSO projected theory, which can be thought of

as an orbifold by the Z2 group generated by the operator (−1)F+F̃ . Here F and F̃ denote

left and right fermion numbers respectively. Since |NS,±〉〉 are invariant under the orbifold

group, they must be resolved by additional contributions from the twisted sectors — the

Ramond sector in the case at hand. This gives

|ε〉〉ferm =
1√
2

(|NS, ε〉〉 ± |R, ε〉〉) , (3.6)

with the normalization |Z2|−1/2 = 1/
√

2 chosen as usual so that the identity appears in

the direct (open-string) channel with multiplicity one. To obtain the boundary states in

the orbifold theory, one only needs to project on the invariant subsectors, which is done by

taking appropriately normalized orbits under the action of the orbifold group.

Since (−1)F+F̃ anti-commutes with all the fermionic modes ψr and ψ̃r, its action is

completely determined by its action on the ground states |0〉NS and |ε〉R. On the NS ground

state it acts trivially, but there are two consistent choices on the twisted, i.e. the Ramond

ground states:

(−1)F+F̃ =

{
−2iψ0ψ̃0 0A

2iψ0ψ̃0 0B
. (3.7)

By reference to string theory, we call the two choices “type 0A” and “type 0B”. They are

related by the Z2 duality that exchanges the spin with the disorder operator of the Ising

model, which is the orbifold CFT.

The construction of the projected boundary states in orbifold theories has been dis-

cussed in [43]. One simply sums the images under the action of the orbifold group G, and

normalizes the result by (|StabG|/|G|)
1
2 , where the stabilizer StabG is the subgroup of G

which leaves the original unprojected boundary state invariant.11 It can be seen that in

addition to |NS, ε〉〉 also |R,−〉〉 is invariant under the Z2 action in the 0A orbifold, while

|R,+〉〉 is invariant in the 0B orbifold. On the other hand (−1)F+F̃ multiplies |R,+〉〉 (re-

spectively |R,−〉〉) by −1. Thus, applying the orbifold construction to the boundary states

(3.6) yields the boundary states

|charged,±〉〉0A
ferm =

1√
2

(|NS,−〉〉 ± |R,−〉〉) , (3.8)

|neutral〉〉0A
ferm = |NS,+〉〉

for the 0A orbifold, and

|charged,±〉〉0B
ferm =

1√
2

(|NS,+〉〉 ± |R,+〉〉) , (3.9)

|neutral〉〉0B
ferm = |NS,−〉〉

11Note that the resolution of the boundary states with non-trivial stabilizer has been taken care of in the

intermdiate step (3.7).
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for the 0B orbifold. By reference to string theory, we call a boundary condition charged if

it has a non-vanishing R-charge, i.e. if it couples to the Ramond ground states.

Another way of stating this result is that the fermion-parity projection eliminates |+〉R
in the type-0A theory, and |−〉R in the type-0B theory. The projection also removes the

Ishibashi states built on these Ramond ground states, leaving three independent boundary

states in each theory. Cardy’s condition [27] fixes the precise linear combinations.

Indeed, the GSO-orbifold of the free fermionic theory is nothing but the Ising model,

a well-known rational CFT with three primary fields of conformal weights h = h̃ =

0, 1/2, 1/16. Boundary states in this theory can be obtained by means of Cardy’s con-

struction, which expresses them in terms of the associated Ishibashi states as [27]

spin up : |0〉〉C =
1√
2
|0〉〉Ish +

1√
2
|1
2
〉〉Ish +

1

21/4
| 1

16
〉〉Ish ,

spin down : |1
2
〉〉C =

1√
2
|0〉〉Ish +

1√
2
|1
2
〉〉Ish −

1

21/4
| 1

16
〉〉Ish ,

spin free : | 1

16
〉〉C = |0〉〉Ish − |

1

2
〉〉Ish . (3.10)

The boundary conditions of the Ising spin are indicated on the left.

One can easily identify the states in (3.3) with the Ising Ishibashi states by comparing

the cylinder partition functions. The result is

|NS,±〉〉 = |0〉〉Ish ∓ |
1

2
〉〉Ish and |R,−〉〉 = 2−

1
4 | 1

16
〉〉Ish . (3.11)

Thus, the boundary states constructed above are related with the Ising boundary states by

|charged,+〉〉0A
ferm = |0〉〉C , spin up ,

|charged,−〉〉0A
ferm = |1

2
〉〉C , spin down ,

|neutral〉〉0A
ferm = | 1

16
〉〉C , spin free . (3.12)

The charged states correspond to the fixed-spin boundary conditions of the Ising model;

they have non-vanishing one-point functions with the Ramond ground state. The neutral

boundary state, on the other hand, corresponds to the free-spin boundary condition of the

Ising model; its one-point function with the Ramond vacuum vanishes.

Let us now go back to the c = 3
2 theory and put together the bosonic and fermionic

states. In the unprojected theory this gives

|ε, ϕ, ηS〉〉full = |ε, ϕ〉〉bos ⊗ |NS, εηS〉〉 (3.13)

where |ε, ϕ〉〉bos is one of the states (3.2). After GSO projection, on the other hand, on

finds for instance in the type 0A model

|ε, ϕ, ηS〉〉full = |ε, ϕ〉〉bos ⊗
√
|StabG|
|G|

∑
Z2 orbit

|εηS〉〉ferm (3.14)

= |ε, ϕ〉〉bos ⊗ |h〉〉C , (3.15)
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Dirichlet Neumann

charged - +

neutral + -

Table 1. The value of ηS determining which superconformal symmetry is preserved by boundary

states of the c = 3
2 type-0A model. The boundary states are tensor products of a Dirchlet or

Neumann boundary state for the boson with a fermion state in (3.8) or (3.12). Charged states are

doubly-degenerate. In the type-0B theory the sign of ηS has to be reversed.

where |εηS〉〉ferm was defined in (3.6) and the orbit sum gives one of the three Cardy states

of the Ising model, as just explained.

The supersymmetry preserved by boundary states in the GSO projected theories is

summarized in table 1. As shown there, a charged Neumann and a neutral Dirichlet state

preserve the ηS = +1 supersymmetry in the type 0A model. The second supersymmetry,

ηS = −1, is preserved by a neutral Dirichlet and a charged Neumann state.

Let us recapitulate all the signs that entered the construction of boundary states. The

gluing condition of the û(1) current is determined by ε, and the unbroken supersymmetry

by ηS. Together these fix the gluing condition ε = εηS of the fermionic field. If the Ishibashi

state implementing this gluing condition in the Ramond sector survives the GSO projection,

the boundary state is charged — i.e. it has non-vanishing overlap with the Ramond ground

state. If it does not the (superconformal) boundary state is neutral.

We close this subsection with two remarks. First by analogy with the g-factor, which

is the projection of a boundary state on the NS ground state, one can define the Ramond

charge(s) as the projection onto Ramond ground state(s). In the case at hand, these

two quantities are related in a way reminiscent of a BPS condition for supersymmetric D-

branes. There is however no space-time supersymmetry in the present context; the relation

is accidental as will become clear later.

The second remark concerns the cylinder partition function. As is well known, for

any two boundary states preserving the same superymmetry, i.e. with the same ηS, this

partition function is finite in the limit τ → 0. The singular behavior in the bosonic sectors

is exactly cancelled by the contribution of the fermions, as follows from the absence of

tachyons in the open-string channel. The generalization of this fact to superconformal

interfaces will be important in the discussion of fusion.

3.2 Supersymmetric û(1)2 invariant interfaces

Similarly to boundary conditions, also superconformal interfaces between two N = (1, 1)

circle theories which preserve a û(1)2 current algebra factorize into separate interfaces

between the bosonic and the fermionic parts of the theories. The bosonic interfaces have

been discussed in section 2. Here we will construct the fermionic interfaces. Again, several

signs enter the discussion which require particular care.

The most general intertwining of the superconformal generators depends on three signs,

which can be organized conveniently as follows [3]:

(G1
r − iη1

S G̃
1
−r)I1,2 = ηI1,2(G2

r − iη2
S G̃

2
−r) . (3.16)
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Here η1
S, η

2
S = ±1 define the unbroken supersymmetries of the bulk theories, while the over-

all sign η = ±1 accounts for automorphisms of the N = 1 algebra. Given a defect operator

I1,2 implementing the gluing condition for a given η, the defect operators (−1)F1+F̃1I1,2

and I1,2(−1)F2+F̃2 satisfy gluing conditions for the opposite η. They can be regarded as

fusion products of the defect I1,2 with the topological defects associated to (−1)Fi+F̃i .

For any given interface the values of η1
S and η2

S are fixed, whereas in order to implement

the GSO projection both signs of η have to be taken into account.

Equation (3.16), together with the gluing conditions (2.1) for the bosonic modes, imply

the gluing conditions (
ψ1
r

−iη1
S ψ̃

1
−r

)
I12 = I12 ηΛ

(
ψ2
r

−iη2
S ψ̃

2
−r

)
(3.17)

for the fermions. Here Λ is the same O(1, 1) matrix as for the bosons. To lighten the

notation we absorb the various signs in a Lorentz matrix for the fermion fields,

ΛF = η

(
1 0

0 η1
S

)
Λ

(
1 0

0 η2
S

)
, (3.18)

in terms of which the gluing conditions take the simpler form(
ψ1
r

−i ψ̃1
−r

)
I12 = I12 ΛF

(
ψ2
r

−i ψ̃2
−r

)
. (3.19)

Folding CFT2 as in section 2 amounts to applying the time-reversal transformation

(ψ, ψ̃) → (ψ∗, ψ̃∗)iγ0, where the right-hand side is evaluated at time −τ . Spelled out in

terms of the modes this reads12 (
ψ2
r

ψ̃2
r

)
→
(
−iψ̃2

−r
iψ2
−r

)
. (3.20)

Notice that this operation exchanges the type-0A with the type-0B models, c.f. (3.7). The

commutation relations (3.17) turn into the boundary gluing conditions[(
ψ1
r

ψ2
r

)
+ iOF

(
ψ̃1
−r
ψ̃2
−r

)]
|I (η)

12 〉〉 = 0 , (3.21)

where the orthogonal matrix OF is related to ΛF as in equation (2.5). Notice for future

reference that flipping the sign of ΛF changes the sign of the off-diagonal blocs of OF, that

is it conjugates this latter matrix with the matrix diag(+1,−1).

The general solution to (3.21) is a linear combination of boundary states in the NS

and the R sectors:

|NS,OF〉〉 =
∏

r∈N− 1
2

e−i(OF)ijψ
i
−rψ̃

j
−r |0〉NS , (3.22)

|R,OF〉〉 =
∏
r∈N

√
2 e−i(OF)ijψ

i
−rψ̃

j
−r |OF〉R , (3.23)

12We have fixed the arbitrary phase of the transformation so as to leave invariant the Wick-rotated

Majorana condition ψ∗r = iψ̃r.
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where |OF〉R is a normalized Ramond ground state, which depends on OF in a way that

we will specify.

Note that mixed-sector interfaces, with CFT1 in the NS sector and CFT2 in the R sec-

tor or vice versa, are only compatible with supersymmetry if the two sides in equation (3.16)

vanish separately. Such interfaces are totally-reflecting, and we will not consider them here.

The Ramond ground states in the folded theory represent the algebra of the zero

modes ψj0 and −iψ̃j0. This is the Clifford algebra of R2,2, so these states transform as

a four-component O(2, 2) spinor. The gluing conditions (3.21) for the zero modes yield

two linear constraints, which therefore determine uniquely the ground state |OF〉R. We

can construct this state more explicitly starting with the identity matrix, OF = 1. The

conditions (3.21) in this case imply that |1〉R is the (normalized) pure-spinor state:

γj=1,2
+ |1〉R = 0 , where γj±

def
=

1√
2

(
ψj0 ± iψ̃j0

)
. (3.24)

Using the same notation as in (3.4) we can write |1〉R = |+ +〉R , where the two chiralities

refer to the decomposition O(2, 2) ⊃ O(1, 1)×O(1, 1). The general Ramond ground state

is obtained by a spinor rotation:

|OF〉R = S(OF)|1〉R , (3.25)

where S(O) denotes the spinor representation of O considered as an element of the O(2)

subgroup of O(2, 2) which only acts on the left part of the spinor.13 That (3.25) indeed

enforces the required gluing conditions on the zero modes follows from the identity:

Ojl S(O)ψl0 S(O)−1 = ψj0 , (3.26)

where we use the fact that
√

2ψl0 obey the Clifford algebra of R2, and are thus represented

by the gamma matrices of O(2).

We can give an even more explicit form of the state (3.25) by first expressing S(OF)

in terms of the O(2) generator iψ1
0ψ

2
0, then using the fact that γj+ annihilates |1〉R . For

instance, if OF is a pure rotation by an angle 2ϑ this operation gives

|OF〉R = (cosϑ1 + 2 sinϑψ1
0ψ

2
0 )|+ +〉R

= cosϑ |+ +〉R + sinϑ | − −〉R = cosϑ etanϑ γ1
−γ

2
− |+ +〉R . (3.27)

In case OF is not continuously-connected to the identity, we decompose it as a rotation

by an angle 2ϑ times a reflection (of say direction 2). Using the reflection in spinor space,

this gives

|OF〉R = cosϑ etanϑ γ1
−γ

2
+ |+−〉R . (3.28)

One can obtain these formulae in a different way, which easily generalizes to higher

dimensions, by formulating the gluing conditions (3.21) of the zero modes in terms of the γ±:[(
γ1

+

γ2
+

)
+ F

(
γ1
−
γ2
−

)]
|OF〉R = 0 . (3.29)

13Because this subgroup is compact, |OF〉R is also a normalized state.
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Here, F is the antisymmetric matrix defined by

OF = (1 + F)−1(1−F) ⇐⇒ F = (1−OF)(1 +OF)−1 . (3.30)

The normalized solution of equations (3.29) then reads

|OF〉R = [det(1−F)]−
1
2 exp

(
−1

2
Fjl γl−γj−

)
|1〉R . (3.31)

This expression is again only valid when OF is in the identity compoment of O(2). If

detOF = −1, one of its eigenvalues is −1 and the denominator in the right-hand-side

of (3.30) is zero. In this case, we write OF as a continuous rotation times a reflection. The

effect of the latter is to replace |1〉R by a pure spinor of opposite O(2, 2) chirality.

Like their bosonic counterparts, also the fermionic boundary states (3.22) and (3.23)

can be unfolded to defect operators using the behavior (3.20) of the fermionic modes

under folding. The result can be formally expressed as products
∏
r>0 I

r,ferm
1,2 I0,ferm

1,2 of

exponentials, where

Ir,ferm
1,2 = exp

(
−iψ1

−rO11ψ̃
1
−r + ψ1

−rO12ψ
2
r + ψ̃1

−rOt21ψ̃
2
r + iψ2

rOt22ψ̃
2
r

)
(3.32)

with modes of CFT1 and CFT2 acting respectively on the left and right of maps on the

fermionic ground states. The matrix O in this expression is the one pertaining to the

fermions, OF, but we have dropped the subscript F to uncharge the notation. Since the

NS ground state is unique, the corresponding map is trivial:

I0,NS
1,2 = |0〉1NS

2
NS〈0| . (3.33)

The story is less trivial in the Ramond sector where the zero-mode map can

be written as

I0,R
1,2 =

√
| sin(2ϑ)| ıR1,2 S(ΛF) . (3.34)

Here S(ΛF) is the spinor representation of theO(1, 1) matrix ΛF, and ıR1,2 is the isomorphism

between Ramond ground states of CFT2 and CFT1,

ıR1,2 = |+〉1R 2
R〈+| + |−〉1R 2

R〈−| . (3.35)

That (3.34) is, up to normalization, the correct map follows directly from the gluing con-

ditions (3.19) for the zero modes, and from the O(1, 1) invariance of the gamma matrices.

To fix the normalization, one can unfold for instance the ground state (3.28), which cor-

responds to a gluing matrix ΛF of unit determinant. Using the fact that |±〉2R unfolds to
2
R〈∓|, as dictated by the unfolding (3.20) for the zero modes, one finds

|OF〉R 7→ cosϑ|+〉1R 2
R〈+| + sinϑ|−〉1R 2

R〈−| =
√
|sin(2ϑ)|

2
ıR1,2 S(ΛF) . (3.36)

The second step follows from the fact that detS(ΛF) = ±1 for ϑ ∈ [0,±π/2]. Indeed, as

was explained in section 2, the matrix ΛF corresponding to a rotation angle ϑ ∈ [0,±π/2]

has the property that ±ΛF is continuously connected to the identity. Thus detS(±ΛF) = 1,

and since S(−1) =
(

1 0
0 −1

)
we deduce that detS(ΛF) = ±1 as claimed. Multiplying by an

extra
√

2 from (3.23), gives the normalization of the zero-mode map in (3.34).
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3.3 Fermion-parity projections

Let us take stock of the results of the previous subsection. For any choice of the bosonic

gluing matrix Λ, or of its orthogonal counterpart O, and for any choice of the super-

symmetry signs η, ηjS , which enter in the gluing condition (3.16), we have constructed

the fermionic boundary states |NS,OF〉〉 and |R,OF〉〉 that implement these gluing con-

ditions in the Neveu-Schwarz and Ramond sectors. Unfolding yields the corresponding

interface operators

INS
1,2 =

∏
r∈N− 1

2

Ir,ferm
1,2 I0,NS

1,2 , and IR
1,2 =

∏
r∈N

Ir,ferm
1,2 I0,R

1,2 . (3.37)

In the unprojected theory there is only a NS sector, so the complete interface operators read

I full
1,2 (Λ, ϕ, ηiS, η) = Ibos

1,2 (Λ, ϕ)⊗ INS
1,2 (ΛF) . (3.38)

We will now implement the fermion-parity or GSO projections, which add a twisted (Ra-

mond) sector to the interface operators.

This is similar to the discussion of the projection of boundary states in section 3.1.

The only difference is that now we have to project in both CFT1 and CFT2 separately.

Thus, we have to take a Z2 × Z2 orbifold, and we have four possible projections given by

the choice of 0A or 0B orbifolds in each of the two CFTs. We distinguish these possibilities

pairwise by defining the new sign

ζ =

{
+1 if CFT1 and CFT2 are of same GSO type,

−1 if CFT1 and CFT2 are of opposite type.
(3.39)

In the following discussion we will perform the projection on the boundary states in the

folded picture. For this it is important to recall that under folding of CFT2 0A and 0B

models are interchanged.

We will perform the orbifold in two steps, first by projecting with respect to the

diagonal Z2 generated by (−1)F+F̃ := (−1)F1+F̃1+F2+F̃2 and then by projecting with respect

to the remaining Z2 generated by (−1)F1+F̃1 .

The operator (−1)F+F̃ leaves the NS state invariant. Hence, as in section 3.1 we resolve

it by the addition of the twisted, i.e. Ramond-Ramond sector:

|OF,±〉〉ferm =
1√
2

(|NS,OF〉〉 ± |R,OF〉〉) . (3.40)

Next, we have to implement the GSO projection. Since (−1)F+F̃ commutes with the

exponentials in (3.22) and (3.23), its action on the boundary state is determined by the

action on the respective ground states. Using (3.7) one finds

(−1)F+F̃ |NS,OF〉〉 = |NS,OF〉〉
and (−1)F+F̃ |R,OF〉〉 = −ζ detOF|R,OF〉〉 , (3.41)
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D1 D2/D0

charged + -

neutral - +

Table 2. The value of η1Sη
2
S that determines which superconformal algebras are preserved by

an interface between two theories of the same type (both type-0A or both type-0B). The geo-

metric interpretation of the folded boundary condition depends only on ε, as discussed in the

previous subsection.

where in the Ramond case, up to the factor −ζ which comes from the choice of orbifold

and the folding, (−1)F+F̃ is the chirality of the ground state spinor which equals the

determinant det(OF).

We thus see that the Ramond contribution to a boundary state survives the (−1)F+F̃

projection if det(OF) = −det(ΛF) = −η1
Sη

2
S det(Λ) = −ζ, or equivalently if

ε = η1
S η

2
S ζ . (3.42)

When this condition is satisfied the interface has a non-trivial R component — we say that it

is “charged”. Otherwise the interface is “neutral”, i.e. it projects out all the Ramond states.

The situation is summarized in table 2. For any choice of theories on either side,

and for any choice of the preserved superconformal algebras, there exists both a (doubly-

degenerate) charged interface with ε = detΛ obeying the condition (3.42), and a neutral

interface that violates this condition. We have assumed in the table that CFT1 and CFT2

are of the same type, so that ζ = +1. Thus η1
Sη

2
S equals ε in the charged case, and −ε in

the neutral one. For theories of opposite type the signs are reversed.

The resulting boundary states in the projected theory arise by taking the appropriately

normalized orbits of (3.40) under the orbifold group, c.f. the discussion in section 3.1.

This yields

|OF; charged,±〉〉ferm =
1√
2

(|NS,OF〉〉 ± |R,OF〉〉) if detOF = −ζ,

and |OF; neutral〉〉ferm = |NS,OF〉〉 if detOF = ζ . (3.43)

When combined with bosonic boundary states, the above states correspond to GSO pro-

jected superconformal boundary conditions in c = 3 SCFTs. The sign ζ determines whether

these c=3 theories are of type 0A or type 0B. However, such states do not unfold to proper

interfaces among local theories, because the operator (−1)F+F̃ is a non-local operator after

unfolding. In order to obtain proper interfaces between separately GSO projected the-

ories one has to perform the remaining non-diagonal Z2 orbifold, generated for instance

by (−1)F1+F̃1 .

This second orbifold operation is simple if we exclude perfectly-reflecting defects,

i.e. those for which O is a diagonal matrix. Namely, the orbifold acts freely on the bound-

ary states:

(−)F1+F̃1 |NS or R,O(ΛF )〉〉 = |NS or R,O(−ΛF )〉〉 , (3.44)
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as follows from the definitions (3.22) and (3.23) of these states,14 and the fact that O(ΛF ) =

O(−ΛF ) only if O is diagonal (c.f. equations (2.5) and (2.6)). Furthermore, twisted sectors

of this second orbifold would correspond to having CFT1 in the NS (R) and CFT2 in

the R (NS) sector. As mentioned already in section 3.2, such sectors are only possible

for perfectly-reflecting defects, which we do not consider here. Thus, the second orbifold

construction simply gives

|O; any〉〉proj
ferm =

1√
2

(|O(ΛF ); any〉〉ferm + |O(−ΛF ); any〉〉ferm) , (3.45)

where “any” denotes the three possibilities in (3.43). Note that to avoid cumbersome

notation, we do not indicate here the dependence on ηiS, even though these signs determine

whether the interface is neutral or charged. Charged and neutral interfaces have different

g-factors, for the charged ones one obtains gcharged± = 1, whereas gneutral =
√

2.

Let us now collect our results. The complete projected interface operators for given

GSO types of CFT1 and CFT2 can be written as:

I full
1,2 (Λ, ϕ, ηiS) = Ibos

1,2 (Λ, ϕ)⊗ I ferm
1,2 (Λ, ηiS) , (3.46)

where the fermionic interface is charged if det Λ = ζη1
Sη

2
S:

I ferm, c±
1,2 (Λ, ηiS) =

1

2

(
INS

1,2 (ΛF)± IR
1,2(ΛF)

)
+ (η → −η) , (3.47)

or neutral if det Λ = −ζη1
Sη

2
S:

I ferm, n
1,2 (Λ, ηiS) =

1√
2
INS

1,2 (ΛF) + (η → −η) . (3.48)

From these normalizations, and taking into account that the NS ground state contributes

equally for the two values of η, one finds the following relations for the g-factors of the

projected interfaces: g = gbos in the charged case, and g =
√

2 gbos in the neutral one.

For applications to type-II superstring theory separate GSO projections for left- and

right-moving fermions have to be imposed. This introduces additional twisted sectors —

mixed NS-R and R-NS sectors of CFT1 and CFT2. Following the same logic as above, only

interfaces which commute with the action of (−1)F acquire intertwiners for these mixed

sectors; all other interfaces map the NS-R and R-NS states of CFT2 to zero.

Interfaces commuting with (−1)F cannot mix the left and right worldsheet fermions,

i.e. the fermion-gluing matrix ΛF and by supersymmetry also the gluing matrix Λ for the

bosonic currents, c.f. (3.18), have to be elements of O(1) × O(1). Hence, such interfaces

are topological. In [30] it was argued that in the Green-Schwarz formulation space-time

supersymmetric interfaces are either topological or totally reflecting interfaces. In the NSR

formulation, on the other hand, the topological property follows from the requirement that

14Actually, there is an overall sign in the R sector which determines whether CFT1 is type 0A or 0B.

Since S(O) is only defined up to a sign for given O, we can always absorb the above overall sign by defining

the Ramond states such that the relation (3.44) holds.
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the interfaces do not project out the mixed NS-R and R-NS sectors, which correspond to

space-time fermions.

As alluded to above, the GSO projection of the fermionic part of the theory is nothing

but the Ising model, for which the conformal defect lines have been known. Let us briefly

comment on relation of the interfaces I ferm to these known defects. The simplest of those

are the topological ones, which can be constructed using the tools described in [2]. Here, the

modular invariant for the theory on either side of the defect is diagonal, and the defects

carry the same labels a as primary fields (in our case a runs over the representations

corresponding to the weights h = 0, 1/2, 1/16). The defects Ia act on a bulk field in the

representation (b, b̃) by multiplication by the quantum dimensions15

fa,b =
Sab
S0b

. (3.49)

Being topological, these defects act naturally on other interfaces via fusion. In particular,

the defect labelled by 0 is the identity defect, whereas the one labelled by 1/2 acts as the

identity in the NS sector, but inverts the Ramond charge. Finally, I1/16 does not couple

to Ramond ground states and hence maps charged interfaces to uncharged ones.

To translate to our language, we first pick ζ = 1 to ensure equal modular invariants on

either side of the interface, and set η1
S = η2

S. The fermionic interfaces I ferm are topological

if and only if the O(1, 1)-matrix Λ is diagonal, i.e. Λ = ±1 or Λ = ±diag(1,−1), where

the first case corresponds to charged and the second to uncharged interfaces. One can

then identify

I0 = I ferm,c+(Λ = 1)

I1/2 = I ferm,c−(Λ = 1)

I1/16 = I ferm,n(Λ = diag(1,−1)) .

General conformal defect lines in the Ising model have been constructed in [21, 23], where

the tensor product of two Ising models was identified with a Z2 orbifold of a free boson

compactified on a circle of radius 1. Via the folding trick, defects of the Ising model

were constructed as boundary conditions for a single free boson on this orbifold. The

latter come in two families, Dirichlet and Neumann boundary conditions. Both families

are parametrized by a circle valued parameter, the position of the Dirichlet brane and the

Wilson line parameter on the Neumann brane, respectively.

In our formalism, the fermionic interfaces in the GSO projected purely fermionic theory

are parametrized by Λ ∈ PO(1, 1) = O(1, 1)/{±1}. This group has two one-dimensional

components, distinguished by the sign of det(Λ), c.f. (2.7). The interfaces with det(Λ) = 1

are charged, and correspond to the Dirichlet boundary conditions of [21, 23]. The interfaces

with det(Λ) = −1 on the other hand are neutral and correspond to the Neumann boundary

conditions. Inclusion of purely reflective interfaces compactifies the two components of

PO(1, 1) to circles parametrized by the angle variables 2ϑ from (2.7), which corresponds

to position and Wilson line parameters of the Dirichlet and Neumann boundary states,

respectively.

15S denotes the modular S-matrix.
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CFT1 CFT2 CFT3

CFT1 CFT3

δ

I12 I23

I13 = I12 ! I23

Figure 1. The fusion of two interfaces corresponds to taking the size, δ, of the middle region to

zero. Only the τ axis is drawn in the figure. The σ coordinate parametrizes either a circular space,

or a periodic Euclidean time.

4 Fusion and the defect monoid

We now turn to the computation of fusion of the supersymmetric interfaces constructed

in the previous section. The fusion of û(1)2 preserving bosonic interfaces between circle

theories has already been calculated in [9]. Because of a divergent Casimir energy this

operation is in general singular, and requires regularization and renormalization. Only

when one of the interfaces is topological, meaning that it commutes with both left and

right Virasoro algebras, fusion is finite. In this section we extend the analysis of [9] to the

supersymmetric case. As anticipated in [3], N = 1 supersymmetry renders the fusion of

these free-field interfaces non-singular, because the divergent Casimir energies of bosons

and fermions cancel out.16

4.1 Classical versus quantum

Consider three conformal field theories (CFT3, CFT2 and CFT1) on the cylinder separated,

at τ = 0 and τ = δ, by interfaces I23 and I12. Fusion amounts to shrinking the middle

region to zero size δ → 0, so that CFT1 and CFT3 are separated by a new local interface

which we denote I12 � I23. This is shown schematically in figure 1.

On the level of classical gluing conditions fusion amounts to multiplication of O(1, 1|R)

matrices. Indeed, let Λ and Λ′ be the gluing matrices for the left and right û(1) currents

imposed by the interfaces I23 and I12, so that(
a1
n

−ã1
−n

)
= Λ′

(
a2
n

−ã2
−n

)∣∣∣
τ=δ

and

(
a2
n

−ã2
−n

)
= Λ

(
a3
n

−ã3
−n

)∣∣∣
τ=0

. (4.1)

Taking δ → 0 leads, by continuity, to the gluing condition(
a1
n

−ã1
−n

)
= Λ′Λ

(
a3
n

−ã3
−n

)∣∣∣
τ=δ=0

. (4.2)

16In interacting SCFTs, or for more general boundary conditions, the interface self-energy is not the only

potential counterterm. In principle, logarithmic divergences are allowed by N = 1 supersymmetry and

cannot in general be excluded.
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Likewise for the fermions, fusion leads to the gluing condition(
ψ1
r

−iη1
S ψ̃

1
−r

)
= η′ηΛ′Λ

(
ψ3
r

−iη3
S ψ̃

3
−r

)∣∣∣
τ=δ=0

, (4.3)

provided the two interfaces preserve the same supersymmetry in the middle region, so that

the factors of η2
S cancel out, c.f. equations (3.18) and (3.19). In the sequel we will always

assume this to be the case.

In the quantum theory, fusion is defined by the composition of interface operators,

which, as alluded to above, requires regularization. One defines

I12 � I23 := limδ→0Rδ[I12 e
−δHI23] , (4.4)

where H ≡ L0 + L̃0 is the Hamiltonian of CFT2. (We drop the - c12 term which commutes

with the interface operators and therefore does not contribute to our analysis.) Rδ denotes

the renormalization procedure which, by the usual arguments of quantum field theory, can

be achieved by local counterterms. For the superconformal interfaces we study here, fusion

turns out to be finite without renormalization, so that the symbol Rδ can be omitted.

Although the gluing conditions still compose according to multiplication in O(1, 1|R),

fusion of the quantum interfaces is much more subtle. Firstly, as we have seen in section 2,

the quantization of the u(1) charges restricts the gluing matrices to lie in dense subsets of

O(1, 1|R) which are isomorphic to the rational subgroup O(1, 1|Q). Furthermore, in order

to respect charge quantization the interface operators have to project to sublattices of the

charge lattice, while the remaining sectors are projected out. If this sublattice is a proper

sublattice, the respective interface is not invertible. As a result, the classical O(1, 1|R)

group is replaced in the quantum theory by a semi-group. Moreover, quantum interfaces

can be superposed, i.e. the associated operators are added. In particular the superposition

of interfaces with different values of the classically irrelevant moduli ϕ can give rise to

non-trivial effects.

For all these reasons the algebraic structure of quantum interfaces is richer and more

interesting than that of their classical counterparts. This will be discussed in the rest of

this paper.

4.2 Intertwiners for non-zero modes

We will perform the fusion (4.4) of the superconformal interfaces by separately compos-

ing the bosonic and fermionic interface operators. According to (2.17) and (3.37), these

latter can be written as tensor products of maps on the different frequency sectors of the

(free) CFTs:

I1,2 =
∏
n>0

In1,2 I
0
1,2 ≡ I>1,2I0

1,2 . (4.5)

As derived in section 3 the In1,2 for n > 0 can be expressed as exponentials of quadratic

expressions of the bosonic, respectively fermionic, modes, c.f. (2.15) and (3.32). We recall

that operators of CFT1 act on the zero-mode part from the left while the operators of

CFT2 act from the right.
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In order to obtain (4.4), we first calculate In1,2e
−δHIn2,3 for the tensor factors. The

bosonic expressions can be evaluated along the lines of [9]. Pushing the Hamiltonian in the

product I n,bos
1,2 e−δHI n,bos

2,3 to the left multiplies the oscillators a2
n and ã2

n in I n,bos
1,2 by a factor

e−δn. Furthermore, the oscillators of CFT1 and CFT3 commute with every other operator

in this calculation, and can be treated as c-numbers. This leaves us with the ground state

matrix element of exponentials that are either linear or quadratic in the oscillators of CFT2.

The identity

exp

(
1

n
van

)
f(a−n) = f(a−n + v) exp

(
1

n
van

)
, (4.6)

valid for any analytic function f and any commuting operator v, allows us to push to the

right in the matrix element all linear exponentials. We can then rearrange the quadratic

terms with the use of the identity17

〈0| exp

(
1

n
anM

′ ãn

)
exp

(
1

n
a−nM ã−n

)
= 〈0| det(1−M ′MT )−1 exp

(
1

n
an(1−M ′MT )−1M ′ ãn

)
. (4.7)

Finally, pushing the ensuing quadratic exponential through the linear terms on its right,

and doing some straightforward algebra, leads to the following result for the product:18

I n,bos
1,2 (O′)e−δHI n,bos

2,3 (O) = det(1− e−2nδO11O′22)−1 I n,bos
1,3 (O′′(e−δn)) , (4.8)

with

O′′(x) =

(
O′11+x2O′12(1−x2O11O′22)−1O11O′21 xO′12(1− x2O11O′22)−1O12

xO21(1− x2O′22O11)−1O′21 O22+x2O21(1−x2O′22O11)−1O′22O12

)
.

(4.9)

Collecting all the positive-frequency contributions of the bosonic intertwiners to (4.4)

we obtain

I>,bos
1,2 (O′)e−δHI>,bos

2,3 (O) =
∏
n>0

det(1− e−2δnO11O′22)−1In,bos
1,3 (O′′(e−δn)) . (4.10)

In the limit δ → 0 the matrices O′′(e−δn) converge to the orthogonal matrix associated via

(2.5) to the product of the gluing conditions Λ′ and Λ,

O′′(e−δn)
δ→0−→ O(Λ′Λ) . (4.11)

The product of determinants, on the other hand, exhibits a singular behavior in this limit

due to a divergent Casimir energy [9].

Repeating the calculation for the fermionic intertwiners yields

I r,ferm
1,2 (O′)e−δHI r,ferm

2,3 (O) = det(1− e−2rδO11O′22) I r,ferm
1,3 (O′′(e−δr)) , (4.12)

17The manipulations in this subsection are valid if the currents, and their modes an and ãn, are d-

dimensional vectors, so that M ′ and M are matrices.
18For the calculation we will indicate the dependence of the interfaces on the orthogonal matrices O =

O(Λ) instead of the O(d, d)-matrices Λ.
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which combines to

I>,ferm
1,2 (O′)e−δHI>,ferm

2,3 (O) =
∏
r>0

det(1− e−2δrO11O′22)Ir,ferm
1,3 (O′′(e−δr)) (4.13)

for the positive-frequency contributions to the fusion (4.4). The useful fermionic identities,

analogous to (4.6) and (4.7), are

exp (χψr) f(ψ−r) = f(ψ−r + χ) exp (χψr) (4.14)

for χ an operator anticommuting with the fermionic oscillators, and

〈0| exp (ψrM
′ ψ̃r) exp (ψ−rM ψ̃−r)

= 〈0| det(1−M ′MT ) exp
(
ψr(1−M ′MT )−1M ′ ψ̃r

)
. (4.15)

Note that the determinant factors in expression (4.13) appear with opposite exponent as

the ones in the corresponding bosonic formula (4.10).

When composing two superconformal interfaces, one should replace the matrices O′
andO in the expression (4.13) by the fermion-gluing matricesO′F andOF. Nevertheless, the

determinant that enters in the formulae for the bosons and fermions is the same. Indeed,

let (η′, η1
S, η

2
S) be the signs associated with I12, and (η, η2

S, η
3
S) those associated with I23,

c.f. (3.18). Then from (2.5) we find:

OF ≡ O(ΛF) =

(
η2

S Λ12Λ−1
22 ηΛ11 − ηΛ12Λ−1

22 Λ21

ηη2
Sη

3
S Λ−1

22 −η3
S Λ−1

22 Λ21

)
, (4.16)

and

O′F ≡ O(Λ′F) =

(
η1

S Λ′12(Λ′22)−1 η′ Λ′11 − η′ Λ′12(Λ′22)−1Λ′21

η′η1
Sη

2
S (Λ′22)−1 −η2

S (Λ′22)−1Λ′21

)
. (4.17)

It follows from these expressions that (OF)11(O′F)22 = O11O′22, i.e. all the supersymmetry-

related signs cancel in this particular combination. Crucial for this to happen is the as-

sumption that the interfaces preserve the same supersymmetry in the CFT2 region between

them, i.e. that the same sign η2
S is chosen for both I12 and I23.

Let us finally put together all the positive-mode bosonic and fermionic intertwiners

I>1,2 = I>,bos
1,2 ⊗ I>,ferm

1,2 . (4.18)

In the Ramond sector, where the fermionic-mode frequencies r are integer, the determinant

factors in (4.13) exactly cancel the ones from the bosonic intertwiners (4.10). Thus, one

can take the limit δ → 0 to obtain

I>1,2(Λ′, η′, η1
S , η

2
S) I>2,3(Λ, η, η2

S , η
3
S) = I>1,3(Λ′Λ, ηη′, η1

S , η
3
S) R sector . (4.19)

In the NS sector, on the other hand, the r are half integers, and the determinant factor

from the bosonic sector is not cancelled by the one from the fermionic sector. However,
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its singular behavior for δ → 0 does cancel. This can be seen with the help of the Euler-

Maclaurin formula, which implies

limδ→0

∑
n≥1

F (e−2δn) =
1

δ

∫ ∞
0

dxF (e−2x)− 1

2
F (1) +

δ

6
F ′(1) +O(δ2) , (4.20)

limδ→0

∑
n≥1

F (e−2δn+δ) =
1

δ

∫ ∞
0

dxF (e−2x)− δ

12
F ′(1) +O(δ2) . (4.21)

for any function F vanishing analytically at the origin. Substituting F (z) ≡ ln det(1 −
zO11O′22) one finds

I>1,2(Λ′, η′, η1
S , η

2
S) I>2,3(Λ, η, η2

S , η
3
S) = (4.22)√

det(1−O11O′22) I>1,3 (Λ′Λ, η′η, η1
S , η

3
S) NS sector .

The NS fermions precisely cancel the divergent Casimir energy of the bosons. The final

answer for the composition of oscillator intertwiners in the NS sector is identical to the

renormalized one in the purely bosonic model [9].

4.3 Zero modes and the defect monoid

It follows from (4.19) and (4.22) that the composition of positive-frequency parts of the

interface operators is consistent with the one in the classical theory, which is given by

group multiplication. In other words, if (Λ, η) and (Λ′, η′) are the data that determine

the positive-frequency parts I>2,3 and I>1,2, then the data in the positive-frequency part of

I1,3 = I1,2 � I2,3 is (Λ′Λ, η′η).19 The only subtlety is the appearance of the determinant in

the NS sector. As we will see, this is precisely what is needed in order for the g-factors to

compose as they should.

Consider first the unprojected theory, where the interface operators are those given

in (3.38). The identity maps (3.33) between NS-fermion ground states compose trivially,

I0,NS
1,2 I0,NS

2,3 = I0,NS
1,3 . (4.23)

To complete the calculation of (4.4) we therefore only have to compose the bosonic ground

state maps (2.27). A simple calculation gives

I0,bos
1,2 I0,bos

2,3 =

g(Λ′)
∑

γ̂′∈Z1,1

e2πiϕ′(γ̂′)|Λ̂′γ̂′〉〈γ̂′|ΠΛ̂′

g(Λ)
∑
γ̂∈Z1,1

e2πiϕ(γ̂)|Λ̂γ̂〉〈γ̂|ΠΛ̂


= g(Λ′)g(Λ)

∑
γ̂∈Z1,1

e2πi[ϕ′(Λ̂γ̂)+ϕ(γ̂)] |Λ̂′Λ̂γ̂〉〈γ̂|ΠΛ̂′Λ̂ΠΛ̂ , (4.24)

where g(Λ) =

√
ind(Λ̂)|Λ22| is the g-factor of the interface. The result looks like the ground

state map for an interface with gluing matrix Λ′Λ, except for two important differences:

19Without loss of generality, we will from now, and till further notice, set all the signs ηiS to +1, i.e. we will

assume that the unbroken supersymmetry is given by the same combination of left and right supercharges

in all CFTs.
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(i) in general g(Λ′)g(Λ) 6= g(Λ′Λ), and (ii) there is an extra projector, ΠΛ̂, in addition to

the projector ΠΛ̂′Λ̂.

Concerning the normalization, note that the product of g-factors should be multi-

plied by the determinant from the composition of the positive-frequency parts, c.f. equa-

tion (4.22). In the case at hand from (2.7) and (2.8) we find O11 = tanhα and

O′22 = ε′tanhα′, so that the product of the determinant and of the two g-factors yields√
det(1−O11O′22) g(Λ′)g(Λ) (4.25)

=
√
|k′1k′2k1k2|

√
(1 + ε′tanhα′tanhα)(coshα′coshα)

=
√
|k′1k′2k1k2|

√
cosh(α+ ε′α′) =

√
|k′1k′2k1k2|
ind(Λ̂′′)

g(Λ′′) .

In the last step, we used that cosh(α + ε′α′) = |Λ′′22| where Λ′′ = Λ′Λ. Thus, if ind(Λ̂′′)

were equal to |k′1k′2k1k2|, we would precisely obtain g(Λ′′), i.e. the g-factor of an elementary

interface with gluing matrix Λ′′.

In general, however, ind(Λ̂′′) 6= |k′1k′2k1k2| so that the fusion of two simple interfaces

is not a simple interface, but rather the sum of several simple interfaces.20 To see this let

for example Λ′ = Λ−1, so that the composition of gluing matrices is the identity matrix,

Λ′′ = 1. Let also CFT1 and CFT3 be the same conformal theory, so that the interface I1,2

is the “would-be inverse” of the interface I2,3. Clearly, in this case k′1/k
′
2 = k2/k1 since

Λ̂′ is the inverse of Λ̂. For simplicity we set ϕ′ = ϕ = 0. The ground state map (4.24)

multiplied by the determinant from the positive-frequency modes then gives

|k1k2|ΠΛ̂ =
∑
N,M

k1,k2∑
n,m=0

e
2πi(Nn

k1
+Mm

k2
)|N,M〉〈N,M | , (4.26)

i.e. the sum of |k1k2| identity interfaces, with phase moduli arranged in a periodic array so

as to implement the projection on the charge sublattice k1Z⊕k2Z. Only for |k1| = |k2| = 1,

i.e. if Λ̂ ∈ O(1, 1|Z), does fusion yield the identity interface. For all other Λ̂ ∈ O(1, 1|Q)

the projector is non-trivial, and the corresponding interface operators cannot be inverted.

The algebraic structure of û(1)2 preserving interfaces in the unprojected-fermion theory

is the same as in the purely bosonic theory [8, 9], modulo a Z2 that changes the sign of

the fermion field. To describe this algebraic structure, we first note that two interfaces

can only be added if they separate the same CFTs. They can only be fused if the CFT to

the right of the first interface is the same as the CFT to the left of the second interface.

These conditions are automatically obeyed if we restrict attention to interfaces between

identical CFTs. We will call such interfaces “defect lines”.21 Two defects in the same CFT

can be always added and fused, and fusion is distributive over addition. If we also allowed

subtraction, these defects would form a ring. But subtraction is not a physical operation

20We adopt here the language of reference [7], and call “simple interfaces” those that cannot be written

as the sum of two other interfaces.
21In the literature the term “defect” is used interchangeably with the term “interface”.
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since negative g-factors correspond to imaginary entropy. So the set of defects is a monoid

(or semi-group) with respect to both, addition and fusion.

The monoid of conformal defect lines is independent of the continuous moduli of the

underlying CFT. This can be seen by fusing from both left and right with special invertible

interfaces (called “deformed identities” in [9]) which parallel transport the CFT along the

connected components of its moduli space [25]. In the case at hand, these are the interfaces

with Λ̂ = 1, ϕ = 0 and η = 1 in the notation of section 2.2.

Any û(1)2 preserving interface between circle theories can in this way be converted to

a û(1)2 preserving defect line in any given circle theory. Since this latter is irrelevant for

the algebraic structure of the defects, we do not have to indicate it explicitly. We therefore

parametrize the simple defects by (Λ̂, ϕ, η), where the gluing matrix Λ̂ ∈ O(1, 1|Q).

The fusion of any two defects can always be written as the sum of simple defects. The

rule for two simple defects reads

(Λ̂′, ϕ′, η′)� (Λ̂, ϕ, η) =
∑
ϕ′′

(Λ̂′Λ̂, ϕ′′, η′η) , (4.27)

where the sum runs over an array of K linear forms on the sublattice that is projected

out by ΠΛ̂′Λ̂. These forms have the following property: their exponentials are independent

functions which, when restricted to the (in general smaller) sublattice projected out by

ΠΛ̂′Λ̂ΠΛ̂ obey

e2πiϕ′′(γ̂) = e2πiϕ′(Λ̂γ̂)+ϕ(γ̂) when ΠΛ̂′Λ̂ΠΛ̂|γ̂〉 = |γ̂〉 . (4.28)

If we parametrize the matrices as in (2.22), with (k1, k2) and (k′1, k
′
2) coprime integers, then

the number K of terms in the sum is given by

K =

{
gcd(k1k

′
1, k2k

′
2) , detΛ̂ = 1 ,

gcd(k1k
′
2, k2k

′
1) , detΛ̂ = −1 .

(4.29)

The above rules determine completely the û(1)2 preserving defect monoid in the non-GSO

projected theories.

Consider next the GSO projected theories. Instead of the fermion sign η, elementary

interfaces are now characterized by their R charge: they can have charge ± or be neutral,

c.f. expressions (3.46), (3.47) and (3.48). As discussed in section 3.3, an interface is charged

if ζ det Λ̂ = ζ det Λ = +1 and it is neutral if ζ det Λ = −1, where ζ = ±1 distinguishes

whether the GSO projections on both sides of the interface are taken to be the same (+1)

or opposite (−1). If we insist that the GSO projection on both sides be the same, i.e. ζ = 1,

then the choice of Λ̂ and the R charge are correlated.

When fusing the projected interfaces, one has to compose separately the NS and the R

components of the interface operators. In the NS sector, the calculation only differs from the

one in the unprojected theories by an additional normalization factor 1/2 for the charged

interfaces and 1/
√

2 for the neutral ones. For simplicity, we suppress the dependence on

phase moduli ϕ, which is the same as in (4.27). Fusion of the NS components can be
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described by the following rules:

(Λ̂′, charge±)� (Λ̂, neutral) = (Λ̂′, neutral)� (Λ̂, charge±) = K(Λ̂′Λ̂, neutral) ,

(Λ̂′, neutral)� (Λ̂, neutral) = K
[
(Λ̂′Λ̂, charge +) + (Λ̂′Λ̂, charge−)

]
,

(Λ̂′, charge s′)� (Λ̂, charge s) = K(Λ̂′Λ̂, charge ss′) . (4.30)

Here K is the number of elementary defects with phase moduli in an appropriate array, as

discussed for the unprojected theory above.

Note that only in the third line do the R sectors actually contribute to the fusion

product. The neutral operators in the second line have of course no R-sector terms, con-

sistently with the fact that on the right-hand-side of the equation one sums over interfaces

with opposite R charge, so that the R-sector operators precisely cancel.

To verify that the R-sector operators compose as in the third line of (4.30), recall

the expression (3.34) for the ground state maps, and the expression for the defect g-factor

(which can be found in (2.16)). Combining these two expressions one finds

g(Λ′)I0,R
1,2 (Λ′) g(Λ)I0,R

2,3 (Λ) =
√
|k1k2k′1k

′
2| ıR1,3 S(Λ′Λ)

= K g(Λ′Λ) I0,R
1,3 (Λ′Λ) . (4.31)

Recall furthermore that there is no determinant from the positive-frequency modes in the R

sector, where the bosonic contribution exactly cancels the contribution of fermions. Finally,

IR
1,2 has a coefficient 1/2 in the full expression (3.47) for the interface operator, and we must

sum over the two possible values of η. Putting all these facts together one finds that the

R-sector operators compose indeed as indicated in the third line of (4.30).

The û(1)2 preserving defect algebra in the GSO projected c = 3/2 theory can be

described more succinctly as follows: it is the tensor product of the û(1)2 preserving defect

algebra in the bosonic c = 1 theory, tensored with the fusion algebra of the Ising model.

The latter reads

ε× ε = 1 , ε× σ = σ , σ × σ = 1 + ε . (4.32)

Identifying 1 and ε with the two charged interfaces, and σ with the neutral interface,

reproduces precisely the pattern (4.30) in the fermion sector.

This is not a coincidence. The conformal defects of the Ising model, analyzed in [2, 5,

21, 23], can be described in our language by the data (Λ, α)Ising, where α ∈ {1, ε, σ} labels

the R charge in the way just described, Λ and −Λ correspond to identical defects, and

detΛ = +1 for charged defects and −1 for the neutral ones. One may compute the fusion

of these defects, without associating them necessarily to the bosonic field, by subtracting

the divergent Casimir energies as in [9]. The result is

(Λ′, α′)Ising � (Λ, α)Ising = (Λ′Λ, α′ × α)Ising , (4.33)

where α′ × α is given by (4.32) and the sum of Ising primaries indicates in the above

equation the sum of the corresponding interface operators.
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The defect (Λ, α)Ising is topological if and only if Λ ∈ O(1) × O(1). The topological

defects of the Ising model are known to be in one-to-one correspondence with primary

fields, and their fusion algebra is the Verlinde algebra [2]. This provides a consistency

check of the more general analysis presented here.

5 Topological interfaces as quasi-symmetries

The defects described in the previous sections are specified by the following data: the

moduli of the bulk CFT, i.e. a radius R1 = R2, the gluing matrix Λ̂ ∈ O(1, 1|Q) of the

integer charges, and the phase moduli ϕ. Furthermore the fermionic gluing conditions

require some extra data: the sign η = ±1 in the unprojected theory, and in the GSO

projected theory, the Ramond charge (±, or neutral), or equivalently an Ising primary

(1, σ, ε). Again, we fix the preserved supersymmetry algebras by setting ηjS = 1. The

gluing matrix for the fermion fields is thus given by ηΛ, where Λ = U2Λ̂U−1
2 is the gluing

matrix for bosonic currents.

These defects are superconformal and preserve a û(1)2 current algebra. Generi-

cally, they are not topological. However, as explained in section 2.2, for any such de-

fect IR2,R2(Λ̂, ϕ), there is a unique radius R1 = fΛ̂(R2) such that parallel transport

yields a topological interface between the theories of radius R2 and R1. Explicitly

IR1,R2(Λ̂, ϕ) = DR1,R2 � IR2,R2(Λ̂, ϕ) where DR1,R2 is the deformed identity interface that

transports the theory from R2 to R1 = fΛ̂(R2), c.f. the previous subsection. In fact, this

was only explained for the bosonic components, but due to supersymmetry, it immediately

carries over to the fermions as well.

Since R2 is arbitrary, parallel transport indeed yields an isomorphism between the

fusion algebra of û(1)2-preserving conformal defect lines in any given circle theory (they are

all isomorphic), and the fusion algebra of û(1)2-preserving topological interfaces between

circle theories. To be more precise, for any radius R3, and any gluing matrices Λ̂′, Λ̂

there are radii R2 = fΛ̂(R3) and R1 = fΛ̂′(R2) such that the interfaces IR1,R2(Λ̂′, ϕ′) and

IR2,R3(Λ̂, ϕ) are topological and their fusion is given by parallel transport of the fusion of

the respective conformal defects in the theory with radius R3:

IR1,R2(Λ̂′, ϕ′)� IR2,R3(Λ̂, ϕ) = DR1,R3 � IR3,R3(Λ̂′, ϕ′)� IR3,R3(Λ̂, ϕ) . (5.1)

[We have suppressed the fermion-interface labels for simplicity].

Thus, the monoids of û(1)2-preserving conformal defects and topological interfaces in

torus models are isomorphic. The isomorphism actually breaks down if the requirement

of û(1)2-symmetry is dropped. This would allow for example the addition of defects with

different gluing conditions Λ̂ and Λ̂′, but topological interfaces can only be added if the

theories on both sides agree, i.e. if fΛ̂(R) = fΛ̂′(R).

In the next subsection, we will explain how the topological interfaces on the string

worldsheet are related to the O(1, 1|R) symmetry of classical supergravity compactified

on a circle.
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5.1 Action on perturbative string states

Consider first the purely bosonic theory and let Λ̂ be the gluing matrix for the integer

charges. If the topological condition R1 = fΛ̂(R2) is satisfied, the gluing condition Λ =

U−1
1 Λ̂U2 ∈ O(1) × O(1) = {diag(±1,±1)}, which implies that left and right Virasoro

algebras commute separately with the interface operator.

In the following, we will restrict our attention to the case Λ = 1. The other cases

can be obtained from this one by T-duality transformations, which are implemented by

invertible topological interfaces with Λ̂ ∈ O(1, 1|Z). Since T-duality is well understood [1],

we refrain from giving any more detail on these other cases here.

From the expressions (2.1) and (2.27) we deduce that the topological-interface operator

maps states in CFT2 to states in CFT1 as follows:(∏
{ni}

a†ni

)( ∏
{ñj}

ã†ñj

)
|γ̂〉 7→ e2πiϕ(γ̂)

√
|k1k2|

(∏
{ni}

a†ni

)( ∏
{ñj}

ã†ñj

)
|Λ̂γ̂〉 (5.2)

if γ̂ ∈ k1Z ⊗ k2Z, while all other states are mapped to zero. Here we used that Λ22 = 1

for Λ = 1.

The physical charge vector γ := Uγ̂ is preserved by the above map,

U1Λ̂γ̂ = Λ(U2γ̂) = U2γ̂ , (5.3)

and hence, the masses

M2
pert = 8γTγ +

∑
i

2ni +
∑
j

2̃nj . (5.4)

of perturbative string states are also preserved. [Our convention is α′ = 1/2]. This of

course is an immediate consequence of the property of topological interfaces to commute

with left and right Virasoro algebras combined with the fact that masses of perturbative

string states are proportional to (L0 + L̃0).

In a nutshell, topological interfaces transform moduli and perturbative charges in the

same way as the O(d, d|R) symmetry of the low-energy action. But they have the ‘integrity’

to only transform charges if this is consistent with charge quantization. In fact, the trans-

formations preserves a larger set of observables than the masses, as we will now explain.

Namely, any local operator V with u(1) charges γ̂ ∈ k1Z ⊗ k2Z is just multiplied

by the factor e2πiϕ(γ̂)
√
|k1k2| under the action of the interface operator. Thus, N -point

correlation functions on the sphere transform by a common multiplicative factor,

〈V1V2 · · ·VN 〉sphere 7→ |k1k2|N/2 〈V1V2 · · ·VN 〉sphere . (5.5)

Note that the phase factors drop out from the expression on the right due to the u(1)-

charge conservation.

Translated to string theory, (5.5) implies that the tree-level scattering amplitudes of

states with vertex operators Vj are invariant provided one also transforms the effective

string coupling constant according to

λc√
2πR

=: λeff 7→ λeff

√
|k1k2| . (5.6)
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Here, λc is the closed-string coupling constant in 26 dimensions, and λeff the effective

coupling after compactification on a circle of radius R. This effective coupling can be

defined as the common normalization of all vertex operators [44]. We stress that only a

part of the tree-level S-matrix is preserved by the topological map, the part restricted to

asymptotic states for which the O(1, 1|Q) transformation respects the charge quantization.

All other string states are projected out.

The rescaling (5.6) of the coupling is surprising, because it depends on arithmetic

properties of the O(1, 1|Q) gluing matrix. Since it amounts to a redefinition of the Planck

scale, it is invisible classically, even if all stringy α′ corrections are included in the closed-

string action. Nonetheless, it is crucial for the proper transformation of D-brane charges

and masses.

Before proceeding to the treatment of D-branes, let us comment on a relation of our

discussion with the orbifold construction. Indeed, since in the case at hand the quotient of

the circle radii R1/R2 = k2/k1 is rational, the theory with radius R1 can be obtained from

the one with radius R2 by orbifolding with respect to the shift symmetry

φ→ φ+ 2πR1 . (5.7)

The orbifold group generated by this symmetry is of order k1k2. The operator ΠΛ̂ for

Λ̂ = diag(k2/k1, k1/k2) projects on untwisted states of the orbifold, while all other states

in CFT1 arise as twisted sectors.

This viewpoint demystifies the relations (5.5). These relations express the well-known

fact that the parent and the orbifold theory share the same sphere amplitudes in the

untwisted sector.

Indeed, our construction fits in nicely with the general framework of topological in-

terfaces in rational CFTs put forward by Fröhlich et al [7]. These authors single out two

classes of special topological interfaces in RCFT: (i) the so-called “group-like” interfaces,

which describe automorphisms of CFTs, and which form a groupoid under fusion, and (ii)

the broader class of “duality interfaces”, which have the property that fusion with their

parity-transform results in a sum of group-like defects. It has been argued in [7] that du-

ality interfaces exist between a parent theory and any of its orbifold descendants, and that

such an interface is group-like only when the orbifold is the same CFT as the parent theory.

Although the arguments of [7] were made in the context of RCFT, they extend to the

circle theories studied here. All the topological interfaces associated to gluing matrices

Λ̂ ∈ O(1, 1|Q) are duality interfaces, whereas the ones with Λ̂ ∈ O(1, 1|Z) are group-

like. The parent and orbifold theories of [7] are nothing but the theories at radius R2,

respectively R1.

We may extend this analysis from the bosonic string theory to the type-0 or the type-II

superstring theories in the following way. We first note that for a bosonic gluing matrix

Λ = 1, the fermionic one is given by ΛF = ±1, c.f. (3.18). Thus, left (right) fermions of

CFT1 are glued to left (right) fermions of CFT2, i.e. the fermionic interface is automatically

topological as well. This of course is a consequence of supersymmetry. The mass of the

perturbative string states, which is still equal to the square root of 2(L0 + L̃0), is therefore

still preserved by the interface map as in the purely bosonic case.
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What needs to be checked is that the uniform rescaling (5.5) is also valid for states

in the Ramond sector. We focus on charged interfaces, since the neutral ones anyway

project out all Ramond states. Making use of |sin(2ϑ)| = |Λ22| = 1, and the property

S(±1) = ( 1 0
0 ±1 ) of the spinor representation, it follows from (3.34) that indeed all vertex

operators transform with the same normalization factor.

This argument applies to the type-0 superstrings. The type-II superstring theory has

separate GSO projections for the left- and right-moving fermion numbers. To implement

these projections, we have to tensor the c = 3/2 interfaces with the identity interface

for the nine remaining non-compact dimensions. Because ΛF = ±1, such topological

interfaces commute or anticommute with (−1)F and (−1)F̃ . In the first case the interface

must be resolved by the addition of new twisted contributions, which are intertwiners for

the mixed R-NS sectors of the type-II theories. The construction proceeds along the lines

described in section 3.3. It is tedious but straightforward to check that for the ensuing

topological interfaces, equation (5.5) still holds for states from all four sectors of the type-II

superstring theory.

5.2 Action on D-branes

As alluded to above, interfaces not only transform perturbative string states, but also act

on D-branes. This action is given by fusion with the respective boundary condition.

We consider (super)string theory compactified on a d-dimensional torus, and take any

D-brane wrapped entirely around some of the torus directions, so that it looks like a point

particle in the non-compact spacetime. The D-brane can be described by a boundary state

|B〉〉 of the c = 3d/2 SCFT [we focus for definiteness on the type-0 supersymmetric case].

The mass of this point particle is proportional to the g-factor of the boundary state [45]

MB = 4(
√
π)7−dMPlanck gB , (5.8)

where MPlanck is the Planck mass in the effective (10 − d) dimensional theory. It is given

by (see for instance [46] and recall that α′ = 1/2)

M−2
Planck = 8π7 λ2

eff (5.9)

with the effective coupling λeff = λc/
√
Vd defined as above, where Vd denotes the volume

of the torus. Modulo a numerical constant, MB ∼ gB/λeff . It follows from this relation

that MB is preserved by the operation of the topological interfaces, as were the masses of

perturbative string states.

To understand this, let us fuse the D-brane state |B〉〉 with a charged topological inter-

face.22 Since the interface is topological, the g-factors of interface and D-brane multiply

gB 7→ gtop gB =
√
|k1k2| gB . (5.10)

22Recall that charged interfaces are the ones that extend the O(d, d|Q) action to Ramond states, and

which therefore act non-trivially on the Ramond charge. Notice also that boundary states are special

interfaces for which the CFT on one side is the trivial theory. Fusing an interface and a boundary is

therefore a special case of interface fusion.
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This follows from the fact that topological defect lines can be deformed as long as they do

not cross any operator insertion. We have used that gtop =
√
|k1k2| for any topological

interface, c.f. (2.27) with |Λ22| = 1. Combining (5.6) and (5.10) shows that the D-brane

masses are invariant, as claimed.

It is instructive to also look at the transformation of the D-brane charges. For a

single compact dimension there are two types of Ramond charge, proportional respectively

to the number of D0-branes and of wrapped D1-branes. We may arrange them in a 2-

component vector,

γ̂D :=

(
ND0

ND1

)
or γD :=

1

λeff

(
1√
2R

0

0
√
R

)(
ND0

ND1

)
, (5.11)

where following the same convention as in the perturbative case we use a hat to distin-

guish the vector of integer as opposed to physical charges. The physical charges are the

couplings to Ramond gauge fields that are canonically normalized (modulo an irrelevant

numerical constant).

Consider now the fusion with a charged topological interface of gluing matrix Λ̂ =

(
k2/k1 0

0 k1/k2
) where (k1, k2) are positive relatively-prime integers.23 Physical charges trans-

form with the spinor representation S(Λ) of the gluing matrix Λ for the currents. Since

Λ = 1 for the topological interfaces, physical charges change at most by a sign. The integer

Ramond charges, on the other hand, transform up to a sign with the following matrix:

√
|k1k2|S(Λ̂) =

√
|k1k2|

(√
k2/k1 0

0
√
k1/k2

)
=

(
k2 0

0 k1

)
. (5.12)

The square-root of the index in the left-hand-side is due to the transformation (5.6) of

the effective string coupling. It is crucial to ensure that the topological map respects the

quantization of Ramond charges.

We close this section by emphasizing how the transformation of perturbative states

differs from the transformation of D-branes. For |k1k2| 6= 1, the former is non-invertible

because it only acts on a sublattice of rank |k1k2| of the perturbative charge lattice. The

latter on the other hand acts as an endomorphism of the Ramond charge lattice, mapping

the entire lattice to a sublattice of rank |k1k2|. Both of these transformations are invertible

only for |k1k2| = 1,i.e. Λ̂ ∈ O(1, 1|Z)

The transformations of the integer charges are accompanied by a change of the radius

of the bulk CFT, as well as by the rescaling (5.6) of the effective string coupling constant.

The combined transformation leaves all the physical charges invariant up to signs.

23The GSO projection requires both the Λ̂ and −Λ̂ gluing conditions, so we can choose the ki to be

positive without loss of generality. As for the second branch of O(1, 1|Q) matrices, this can be obtained by

composition with Λ̂ = ( 0 1
1 0 ), c.f. (2.22). The corresponding topological interface implements the radius-

inverting T-duality transformation. For the action of T-dualities on D-branes see for example [47].
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6 Generalization to torus models

The results of the previous sections generalize in a mostly straightforward manner to

N = (1, 1) superconformal sigma models whose target spaces are tori of arbitrary

dimension d ≥ 1.

These “toroidal models” factorize into bosonic CFTs describing d free bosons compact-

ified on a torus, and the theory of d free Majorana fermions. They exhibit left and right

û(1)d symmetries, coming from the bosonic part, and they are determined by the choice of

the lattice of charges of the associated u(1)d ⊕ u(1)d zero mode subalgebra (left and right

momenta in string-theory language). These are even self-dual lattices Γ ⊂ Rd,d, which are

parametrized by the coset space

O(d|R)×O(d|R) \O(d, d|R) /O(d, d|Z) , (6.1)

where O(d, d|Z) is the group of discrete lattice automorphisms (the group of “T-dualities”

in string theory). One standard choice of parametrization is

Γ =

{(
1
2E
−1N ET (1 +B)M

−1
2E
−1N ET (1−B)M

)
= U

(
N

M

)∣∣∣N,M ∈ Zd
}

= UZd,d , (6.2)

where G = EET is the metric of the target space torus and B the antisymmetric Neveu-

Schwarz field. The matrix U is the “vielbein” introduced in equation (1.4). In our context,

it is convenient to work with the covering space of the coset (6.1) on which the T-dualities

and the O(d|R)×O(d|R) automorphisms are implemented by invertible interfaces.

In this section we will first construct û(1)2d-preserving interfaces between such torus

models, which also preserve a worldsheet supersymmetry, and then determine their fusion.

6.1 Superconformal interfaces preserving û(1)2d

As in the case of circle theories (d = 1) discussed in section 3, the requirement of supercon-

formal and û(1)2d symmetry forces the interfaces to factorize into interfaces for the bosonic

and fermionic degrees of freedom.

Bosonic interfaces in torus models

The construction of the bosonic interfaces is a straightforward extension of the discussion

in section 2.1. Since the energy momentum tensor is quadratic in the currents, the corre-

sponding interface operators I1,2 : H2 → H1 between the Hilbert spaces of the torus models

have to satisfy commutation relations(
a1
n

−ã1
−n

)
I1,2 = I1,2 Λ

(
a2
n

−ã2
−n

)
, Λ ∈ O(d, d|R) (6.3)

for the modes of the left and right û(1)d currents, which now are considered to be d-

dimensional vectors.
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Analogously to d = 1, these commutation relations can be realized by linear combina-

tions of intertwiners

Ibos,γ2
1,2 =

∏
n>0

In,bos
1,2 |Λγ2〉〈γ2| , (6.4)

where the exponentials

In,bos
1,2 = exp

(
1

n
(a1
−nO11ã

1
−n − a1

−nO12a
2
n − ã1

−nOt21ã
2
n + a2

nOt22ã
2
n)

)
(6.5)

are composed with maps on the ground states implementing the zero-mode gluing condi-

tions. In this expression, the modes of CFT1 and CFT2 act on the left respectively right

of the maps |Λγ2〉〈γ2|. Furthermore, the matrix O is related to the gluing matrix Λ by

O = O(Λ) =

(
Λ12Λ−1

22 Λ11 − Λ12Λ−1
22 Λ21

Λ−1
22 −Λ−1

22 Λ21

)
. (6.6)

This is an immediate generalization of the d = 1 case, where now the Λij are d×d blocks of

the O(d, d) matrix Λ in a basis in which the invariant metric is given by η = diag(1,−1).

It is easy to see that the matrix O is orthogonal, i.e. O(Λ) ∈ O(2d) whenever Λ ∈
O(d, d). The inverse to relation (6.6) is given by

Λ(O) =

(
O12 −O11O−1

21 O22 O11O−1
21

−O−1
21 O22 O−1

21

)
. (6.7)

Note that intertwiners (6.4) only exist for those charge vectors γ2 ∈ Γ2 of CFT2, which

under the gluing condition map to a charge vector of CFT1, in other words for all γ2 for

which γ1 = Λγ2 ∈ Γ1. These form a sublattice

ΓΛ
1,2 = {γ ∈ Γ2 |Λγ ∈ Γ1} = Γ2 ∩ Λ−1Γ1 (6.8)

of the charge lattice of CFT2. Similarly as in the case d = 1 one needs ΓΛ
1,2 to be a maximal-

rank sublattice of Γ2, in order to be able to solve Cardy’s condition for the interface. Gluing

conditions which satisfy this requirement, rank(ΓΛ
1,2) = 2d, will be referred to as admissible.

In the folded picture, the orthogonal matrix O determines the orientation and world-

volume gauge fields of a D-brane in the toroidal tensor-product theory CFT1⊗CFT2∗.

Admissibility translates to the conditions that this D-brane is compact, and its worldvol-

ume gauge fields obey Dirac’s quantization condition.

The admissibility condition is more transparent when expressed as a condition on the

gluing of the integer u(1)2d charges. Namely, representing the lattices of physical-charge

vectors Γi = UiZd,d with Ui the generalized vielbein defined in (6.2), it is easy to see that

ΓΛ
1,2 = U2

(
Zd,d ∩ (U−1

2 Λ−1U1)Zd,d
)

(6.9)

is a maximal-rank sublattice of Γ2 = U2Zd,d if and only if the matrix inside the nested

brackets has only rational entries. This can be written equivalently as

Λ̂
def
= U−1

1 ΛU2 ∈ O(d, d|Q) , (6.10)
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where Λ̂T η̂Λ̂ = η̂ with η̂ = ( 0 1
1 0 ).

For admissible gluing conditions one can construct the following (simple) interface

operators

Ibos
1,2 =

∏
n≥0

In,bos
1,2 , with I0,bos

1,2 = gΛ
1,2

∑
γ∈ΓΛ

1,2

e2πiϕ(γ)|Λγ〉〈γ| . (6.11)

Here ϕ ∈ (ΓΛ
1,2)∗ is some linear form on the lattice of intertwiners,24 and the normalization

constant (the g-factor)

gΛ
1,2 =

√
‖πΛ(ΓΛ

1,2)‖ (6.12)

is determined by the volume ‖πΛ(ΓΛ
1,2)‖ of the hybrid lattice

πΛ(ΓΛ
1,2) =

{(
π(γ)

π̃(Λ(γ))

) ∣∣∣ γ ∈ ΓΛ
1,2

}
. (6.13)

In this formula π and π̃ denote the projections on left and right charge vectors, respectively.

The above volume is given by the product of the index

ind(ΓΛ
1,2 ⊂ Γ2) = |Γ2/Γ

Λ
1,2| (6.14)

of the lattice of intertwiners in the lattice of all the charges of CFT2, and the volume of

the hybrid projection of the full charge lattice Γ2,

‖πΛ(Γ2)‖ =
∣∣∣det

((
1 0

0 0

)
+

(
0 0

0 1

)
Λ

)∣∣∣
=
∣∣det(Λ22)

∣∣ =
∣∣det(Λ11)

∣∣ . (6.15)

Hence, the g-factor can be written as

gΛ
1,2 =

√
|Γ2/ΓΛ

1,2| |det(Λ22)| . (6.16)

It is important to note that while the volume factor (6.15) depends on the matrix Λ, which

varies continuously with the moduli of the bulk CFTs, the index factor (6.14) depends

on arithmetic properties of the rational matrix Λ̂ which is the gluing matrix for integer

charge vectors.

It is straightforward to check that the index is determined by Λ̂ as follows:

|Γ2/Γ
Λ
1,2| = smallest K ∈ N such that KΛ̂ ∈ GL(2d,Z) . (6.17)

Put differently, K is the least common multiple of all (irreducible) denominators of the

matrix elements Λ̂ij . For d = 1, with the parametrization of the gluing condition chosen

in section 2.1, one finds

|Γ2/Γ
Λ
1,2| = |k1k2| , | det(Λ22)| = cosh(α) =

1

| sin(2ϑ)| . (6.18)

24In the folded picture it determines position and Wilson lines of the respective D-brane.
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The general expression (6.16) for the g-factor, valid for arbitrary d, specializes as it should

to the expression (2.14) which was obtained for d = 1.

We will refrain from showing here that the operators (6.11) indeed satisfy Cardy’s

consistency condition. This could be done, as in the one-dimensional case, by computing

the annulus partition functions in the folded theory, and checking the multiplicities in the

open-string channel. However, the analysis of the fusion of these operators, carried out in

section 6.2 below, will provide a stronger consistency check than Cardy’s condition.

The interfaces (6.11) are simple or elementary interfaces, meaning that their vacuum

is non-degenerate. Non-elementary interfaces consistent with the û(1)2d symmetry can be

obtained by summing simple ones with the same gluing condition Λ. In this way, it is

possible to obtain interfaces which only involve (maximal rank) sublattices L ⊂ ΓΛ
1,2 of

all the possible intertwiners for a given gluing condition. To project out all intertwiners

not in L one needs to sum over |ΓΛ
1,2/L| simple interfaces Ibos

1,2 (Λ, ϕi) with phase moduli ϕi
arranged in an appropriate periodic array. The resulting interface operators read

I0,bos
1,2 (Λ, ϕ, L) = gΛ

1,2|ΓΛ
1,2/L|

∑
γ∈L

e2πiϕ(γ)|Λγ〉〈γ| , (6.19)

where now ϕ is a linear form on L. Note that due to the summation, the normalization of

the defect received a factor of ind(L ⊂ ΓΛ
1,2) = |ΓΛ

1,2/L|.
Non-elementary interfaces are important in the discussion of fusion of interfaces.

Namely, as in the one-dimensional case, the composition of elementary interfaces with

gluing conditions Λ′ and Λ yields an interface with gluing condition Λ′Λ. But in general

not all intertwiners for Λ′Λ can be obtained by composing intertwiners for Λ′ and Λ. So, a

composition of two elementary interfaces produces a non-elementary interface in general.

In reference [9] it was shown that, for d = 1, the g-factor is minimized by topologi-

cal interfaces, and that furthermore g = 1 only for the group-like invertible defects that

generate the CFT isomorphisms. The following generalizes these results to any d:

Lemma. All û(1)2d invariant interfaces have gΛ
12 ≥

√
|Γ2/ΓΛ

1,2| ≥ 1. The first inequality is

saturated by topological interfaces for which Λ belongs to O(d)×O(d) so that |detΛ22| = 1.

Furthermore, all û(1)2d invariant interfaces with g = 1 generate isomorphisms of torus

CFTs.

Proof. It follows from Λ ∈ O(d, d) that

Λ22Λt22 = 1 + Λ21Λt21 =⇒ (detΛ22)2 = det(1 + Λ21Λt21) ≥ 1 , (6.20)

with equality holding if and only if Λ21 = Λ12 = 0. This in turn implies that Λ ∈
O(d) × O(d). In this case the interface operator commutes with left and right Virasoro

algebras separately, i.e. it corresponds to a topological interface. This can also be verified by

considering the reflection coefficient, which is zero if and only if the interface is topological.

Following [23] it can be calculated to be

R = 1− |detΛ22|−2 . (6.21)
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Clearly the absolute minimum g = 1 can only be attained by topological interfaces, for

which furthermore Λ : Γ2 → Γ1 is a lattice isomorphism. Being in O(d)×O(d) it therefore

realizes an isomorphism of CFTs. This shows the second part of the lemma.

Using the cover O(d|R) × O(d|R)\O(d, d|R) of the moduli space (6.1) to parametrize

toroidal CFTs, the interfaces with g = 1 can be parametrized by elements of the group

O(d, d|Z)nu(1)2d, where u(1)2d parametrizes the moduli ϕ of the interfaces, c.f. (6.11). As

will be shown in section 6.2, these defects indeed fuse according to the group multiplication

in O(d, d|Z) n u(1)2d. Furthermore, defects with g > 1 are not invertible with respect

to fusion.

Fermionic interfaces in torus models. Also the construction of the fermionic inter-

faces for general d parallels the discussion for d = 1 in section 3.2.

The aim is to construct superconformal interfaces between toroidal CFTs with specified

N = (1, 1) structures. The latter are determined by a choice of supercurrents, which we

take to be the normal ordered products

G =

d∑
i=1

: jiψi : , G̃ =

d∑
i=1

: ̃iψ̃i : , (6.22)

where the sums are taken over an orthonormal basis of Rd. This can always be attained

by O(d)×O(d)-rotations of the bosonic currents or the fermionic fields. The requirement

of supersymmetry

(G1
r − iη1

S G̃
1
−r)I1,2 = ηI1,2(G2

r − iη2
S G̃

2
−r) . (6.23)

combined with commutation relations (6.3) for the bosonic modes forces commutation

relations with the fermionic modes ψir, which are now regarded as d-component vectors:(
ψ1
r

−i ψ̃1
−r

)
I12 = I12 ΛF

(
ψ2
r

−i ψ̃2
−r

)
(6.24)

where the O(d, d) matrix ΛF is related to the bosonic gluing matrix Λ by

ΛF = η

(
1 0

0 η1
S1

)
Λ

(
1 0

0 η2
S1

)
, (6.25)

In complete analogy with the d = 1 case, one can write the fermionic intertwining

operators in the NS and R sectors as

INS
1,2 =

∏
r∈N− 1

2

Ir,ferm
1,2 I0,NS

1,2 , IR
1,2 =

∏
r∈N

Ir,ferm
1,2 I0,R

1,2 . (6.26)

Here the modes of CFT1 and CFT2 in the exponentials

Ir,ferm
1,2 = exp

(
−iψ1

−rOF
11ψ̃

1
−r + ψ1

−rOF
12ψ

2
r − ψ̃2

rOF
21ψ̃

1
−r − iψ̃2

rOF
22ψ

2
r

)
(6.27)
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act on the left respectively right of the maps I0,NS
1,2 and I0,R

1,2 between the NS and R ground

states of the theory. Since there is only a single ground state in the NS sector the ground

state part of the interface reads

I0,NS
1,2 = |0〉1NS

2
NS〈0| . (6.28)

To describe the map on the Ramond ground states, we recall that the fermionic zero

modes ψi0 and −iψ̃i0 for each of the two theories form the Clifford algebra of Rd,d and

transform under the fundamental representation of O(d, d). The induced representation on

the Ramond ground states is the spinor representation S, i.e.(
ψ0

−iψ̃0

)
S(ΛF) = S(ΛF)ΛF

(
ψ0

−iψ̃0

)
. (6.29)

Thus, if we denote by ıR1,2 the isomorphism between the Ramond ground states of CFT1 and

CFT2, commuting with the action of the fermionic zero modes, then the map ıR1,2 S(ΛF)

implements the zero mode part of the commutation relations (6.24).

The normalization is fixed by Cardy’s condition which requires

trR2

((
I0,R

1,2

)∗
I0,R

1,2

)
= 2d , (6.30)

where the trace is over the Ramond ground states of CFT2. The factor of 2d on the

right-hand-side is absorbed by the transformation of the annulus partition function (in the

folded picture) between the closed-string and the open-string channels. It generalizes to

higher d the factor 2
1
2 in the formula (3.23) for the Ramond boundary state, c.f. (3.5). The

conjugation (·)∗ in CFT amounts to Hermitean-conjugation of the spinor matrix S(ΛF).

This does not give in general the inverse matrix because the group O(d, d) is not compact.

Instead one finds

S(ΛF)† = S

((
1 0

0 −1

)
Λ−1

F

(
1 0

0 −1

))
= S(ΛTF) (6.31)

Thus the left-hand-side of (6.30) is equal to the spinor trace trS(ΛTF ΛF).

To calculate this trace we note that the square of the spinor representation is isomorphic

to the sum of the exterior powers of the fundamental representations of O(d, d):

R := Λ∗Rd,d ∼= S ⊗ S . (6.32)

Moreover, for any A ∈ O(d, d)

trR
(
S(ATA)

)
= det(1 +ATA) = 22d|det(A11)|2 = 22d| det(A22)|2 . (6.33)

Taking everything together, the properly normalized Ramond ground state contribution of

the interface operator is given by

I0,R
1,2 =

1√
| det(Λ22)|

ıR1,2S(ΛF) . (6.34)

Here we have used the fact that the absolute values of the determinants of the 2-2 blocks

of bosonic gluing matrix Λ and fermionic gluing matrix ΛF agree. The normalization of

I0,R
1,2 exactly cancels the part of the bosonic g-factor (6.16) which continuously depends on

the gluing condition Λ.
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Fermion-parity projections

In the unprojected theory, where there is only an NS sector, the complete interface operators

are given by tensor products

I full
1,2 (Λ, ϕ, η) = Ibos

1,2 (Λ, ϕ)⊗ INS
1,2 (ΛF) , (6.35)

of bosonic and fermionic interface operators (6.11) and (6.26). For ease of notation we

suppress the dependence on η and ηiS .

The GSO-projection of these interfaces works exactly as in the one-dimensional case

discussed in section 3.3. It amounts to taking the orbifold with respect to the Z2 × Z2

generated by the (−1)Fi+F̃i . The complete operators are products of operators for bosons

and fermions,

I full
1,2 (Λ, ϕ, h) = Ibos

1,2 (Λ, ϕ)⊗ I ferm,h
1,2 (ΛF ) . (6.36)

The label h takes three values, which can be identified with the primary fields of the Ising

model (1, ε and σ). The first two values correspond to charged interfaces, which exist

whenever detΛF = ζ, while h = σ corresponds to (simple) neutral interfaces which exist if

detΛF = −ζ. We recall from section 3.3 that ζ distinguishes whether CFT1 and CFT2 are

of the same (ζ = 1) or of opposite (ζ = −1) GSO type.

The two charged fermionic interfaces are given by

I ferm, c±
1,2 =

1

2

(
INS

1,2 (ΛF)± IR
1,2(ΛF)

)
+ (η → −η) , (6.37)

while the neutral ones, which have no Ramond component, read

I ferm, n
1,2 =

1√
2
INS

1,2 (ΛF) + (η → −η) . (6.38)

Note that changing η to −η just multiplies ΛF with −1.

The η = ±1 terms in the sum correspond to the orbit of the interface operator when

acted upon by the fermion parity operator (−)F1+F̃1 . These orbits are normalized with the

standard 1/
√

2 factor.

From the above expressions, and taking into account that the NS ground state con-

tributes equally to the two terms of the orbit, one finds the following relations for the g

factors of the projected interfaces: g = gbos in the charged case, and g =
√

2 gbos in the

neutral one.

6.2 Fusion of interfaces

The fusion of the d ≥ 1 interfaces can now be analyzed easily using the same approach

which was applied to the treatment of the d = 1 case in section 4. Indeed, the calculations

for the fusion of the positive-frequency contributions carry over immediately:25

I>,bos
1,2 (O′)e−δHI>,bos

2,3 (O) =
∏
n>0

det(1− e−2δnO11O′22)−1In,bos
1,3 (O′′(e−δn)) ,

I>,ferm
1,2 (O′)e−δHI>,ferm

2,3 (O) =
∏
r>0

det(1− e−2δrO11O′22)Ir,ferm
1,3 (O′′(e−δr)) , (6.39)

25Here we indicate the dependence of the interfaces on the orthogonal matrices O = O(Λ).
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where the matrix O′′(x) depends on O, O′ and x as follows:

O′′(x) =

(
O′11+x2O′12(1−x2O11O′22)−1O11O′21 xO′12(1−x2O11O′22)−1O12

xO21(1− x2O′22O11)−1O′21 O22+x2O21(1−x2O′22O11)−1O′22O12

)
.

(6.40)

Just as in the d = 1 case, the matrices O′′(e−δn) appearing in these formulae converges to

O(Λ′Λ) for δ → 0, but the determinant factors exhibit a singular behavior in the limit.

The singular behavior cancels whenever the two interfaces I1,2 and I2,3 preserve the

same supersymmetry in CFT2, i.e. the two interfaces must have the same ηS for the CFT

in their middle.

In this case the determinant factors coming from bosons and fermions exactly cancel

each other in the Ramond sector. In the NS sector, on the other hand, the cancelation leaves

a finite remainder, which can be computed with the help of the Euler-Maclaurin formula

(4.21) as in the case d = 1. The result for the fusion of the combined positive-frequency

parts is

I>1,2(Λ′, η′) I>2,3(Λ, η) = (6.41)

I>1,3(Λ′Λ, η′η)×
{√

det(1−O11O′22) NS sector ,

1 R sector .

Let us next discuss the fusion of the zero-mode contributions, which can be composed

without a regulator. In the bosonic sector the result is

I0,bos
1,2 (Λ′)I0,bos

2,3 (Λ) =
|ΓΛ′Λ

1,3 /Γ
Λ′
1,2 � ΓΛ

2,3|√
det(1−O11O′22)

gΛ′Λ
1,3

∑
γ∈ΓΛ′

1,2�ΓΛ
2,3

e2πi(ϕ′Λ+ϕ)(γ)|Λ′Λγ〉〈γ| , (6.42)

where the lattice

ΓΛ′
1,2 � ΓΛ

2,3
def
= (Λ′Λ)−1Γ1 ∩ Λ−1Γ2 ∩ Γ3 (6.43)

is the sublattice of those intertwiners for the composed gluing condition Λ′Λ which can

be obtained by fusion of intertwiners of Λ′ and Λ respectively. Note that if Λ′ and Λ

are admissible gluing conditions, i.e. the lattices of intertwiners for both of them are of

maximal rank 2d, so is Λ′Λ. Moreover this is also true for ΓΛ′
1,2 � ΓΛ

2,3, which is a maximal-

rank sublattice of index

ind(ΓΛ′
1,2 � ΓΛ

2,3 ⊂ ΓΛ′Λ
1,3 ) = |ΓΛ′Λ

1,3 /Γ
Λ′
1,2 � ΓΛ

2,3| (6.44)

in ΓΛ′Λ
1,3 . Thus, setting aside for the moment the overall normalization, one sees that the

zero-mode contributions to the bosonic intertwiners multiply to one with composed gluing

conditions. In general however, the result is not an elementary intertwiner. Instead it

consists of |ΓΛ′Λ
1,3 /Γ

Λ′
1,2 � ΓΛ

2,3| elementary summands with different phases so as to project

on the sublattice ΓΛ′
1,2 � ΓΛ

2,3 of charges, c.f. the discussion around (6.19).

Let us now show that the normalization of the right-hand-side of (6.42) is indeed

correct. To show this we need to establish the identity(
gΛ′

1,2g
Λ
2,3

gΛ′Λ
1,3

)
=
|ΓΛ′Λ

1,3 /Γ
Λ′
1,2 � ΓΛ

2,3|√
det(1−O11O′22)

. (6.45)
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Consider first the factor of the g-functions (6.16) which depends continuously on the gluing

conditions. Using the relation (6.6) between O and Λ we find

(Λ′Λ)22 = Λ′21Λ12 + Λ′22Λ22 = Λ′22(1 + Λ′ −1
22 Λ′21Λ12Λ−1

22 )Λ22

= Λ′22(1−O′22O11)Λ22 ,

so that taking the determinants yields

det(1−O′22O11) = det(1−O11O′22) =
det((Λ′Λ)22)

det(Λ′22) det(Λ22)
. (6.46)

To complete the proof of (6.42) it remains to be shown that

K ′K

K ′′
≡
|Γ2/Γ

Λ′
1,2| |Γ3/Γ

Λ
2,3|

|Γ3/ΓΛ′Λ
1,3 |

= |ΓΛ′Λ
1,3 /Γ

Λ′
1,2 � ΓΛ

2,3|2 . (6.47)

This index identity is proved in appendix B.

The composition of the zero-mode contribution of the interfaces in the fermionic sectors

is simpler. In the NS sector it is actually trivial

I0,NS
1,2 I0,NS

2,3 = I0,NS
1,3 . (6.48)

Thus putting together (6.41), (6.42) and (6.48) we find, in the full unprojected theory, that

the composition of two simple defects with indices K ′ and K gives
√
K ′K/K ′′ defects with

index K ′′. The index identity (6.47) proves that this number is integer, as it should. The

defects that arise in this way have their phase moduli arranged in a periodic array, so as to

implement a projection on a sublattice of the lattice of all intertwiners that are compatible

with the transformation Λ′Λ.

The calculation in the GSO-projected theory goes through exactly as in the d = 1 case

discussed at the end of section 4.3. One only needs to check the composition of ground

state intertwiners (6.34) in the Ramond sector,

I0,R
1,2 (Λ′F)I0,R

2,3 (ΛF) =
√

det(1−O11O′22) I0,R
1,3 (Λ′FΛF) , (6.49)

where use was made here of (6.46). The final result for the fusion can be summarized as

follows: the fermionic part of GSO-projected interfaces is labelled by h = 1, ε, σ, corre-

sponding to the three primary fields of the Ising model. The fusion of these fermionic parts

follows the same pattern as the Verlinde algebra of the Ising model.

This is the only difference with the unprojected theory, where the fermionic part is

labelled by the sign η = ±1. Let us, for the rest of this section, fix the fermionic parts by

choosing the identity labels (η = 1, or h = 1) and concentrate on the algebra of the bosonic

parts, which is the same in the GSO-projected and in the unprojected theory.

We can give a more economic description of this algebra by enlarging the set of simple

interfaces to include interfaces IL1,2(Λ, ϕ), where L is any (maximal rank) sublattice of

ΓΛ
1,2. This latter is the lattice of intertwiners contributing to the simple interface with

gluing matrix Λ. If L = ΓΛ
1,2 the interface is simple, otherwise it is a sum of |ΓΛ

1,2/L|
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simple interfaces whose phase moduli are arranged so as to enforce the projection on L. In

terms of this larger set of basic interfaces, the fusion of two interfaces takes the following

elegant form:

IL
′

1,2(Λ′, ϕ′)� IL2,3(Λ, ϕ) = IΛ−1L′∩L
1,3 (Λ′Λ, ϕ′Λ + ϕ) . (6.50)

As mentioned before, it is clear that an interface IL1,2(Λ) is invertible if and only

if L = ΓΛ
1,2 = Γ2 is the full charge lattice. Parametrizing Γi = UiZd,d, this can only be

achieved for Λ̂ ≡ U−1
1 ΛU2 ∈ O(d, d|Z). A special class of such interfaces are the deformation

interfaces for which Λ̂ = 1,

D1,2 = IΓ2
1,2(U1U

−1
2 , 0) . (6.51)

These encode the effect of deformations of the underlying bulk CFTs [25]. One can use

them on both sides to transport any interface to a defect line in some reference torus

model CFT0,

IL1,2(Λ, ϕ) = D1,0 � IU0U
−1
2 L

0,0 (U0Λ̂U−1
0 , ϕU2U

−1
0 )�D0,2 . (6.52)

Since the deformation interfaces are invertible, the fusion of two arbitrary interfaces can

be completely determined by the fusion of the corresponding defect lines in the reference

CFT, which in turn does not depend on the choice of CFT0.

We may therefore drop the explicit dependence on CFT0 and characterize a defect by

the data (Λ̂, ϕ, L̂), where Λ̂ ∈ O(d, d|Q), ϕ is a linear form on Zd,d, and L̂ a maximal-rank

sublattice of the intertwiner lattice Zd,d∩ Λ̂−1Zd,d for the integer charges. The composition

rule for defect lines in this representation can be easily read off from (6.50):

(Λ̂′, ϕ′, L̂′)� (Λ̂, ϕ, L̂) = (Λ̂′Λ̂, ϕ′Λ̂ + ϕ, L̂ ∩ Λ̂−1L̂′) . (6.53)

We note that since Λ̂ ∈ O(d, d|Q), its inverse is also a matrix with rational entries so that

L̂ ∩ Λ̂−1L̂′ has maximal rank.

Invertible defects are those for which Λ̂ ∈ O(d, d|Z) and L̂ = Zd,d. They fuse according

to the group O(d, d|Z)nu(1)2d, where the u(1)2d is generated by the phases ϕ. The fusion

monoid D for the more general defects is then described by the semi-group extension

1 −→ S −→ D −→ O(d, d|Q) n u(1)2d −→ 1 (6.54)

of the group O(d, d|Q) n u(1)2d of all admissible gluing conditions and all phases by the

semi-group S, whose elements are maximal rank sublattices of Zd,d, and which multiply by

taking intersections.26

6.3 Fusion with boundary conditions

Finally, let us sketch how the interfaces defined above fuse with boundary conditions. Since

most of the calculations are similar to the ones done before, we will just state the result.

A general û(1)d preserving boundary condition in a d-dimensional torus model with

charge lattice Γ is determined by the following objects. First the left and right currents

26S consists of the defects (1, 0, L̂).
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are glued together by means of an orthogonal matrix Ω ∈ O(d), such that the respective

boundary state is annihilated by the combinations {an+Ωã−n |n}. Such a gluing condition

can only be realized by a boundary condition, if the lattice of Ishibashi states

ΓΩ = Γ ∩
{(
−Ωx

x

)
|x ∈ Rd

}
(6.55)

has rank d. This guarantees that the volume of the corresponding D-brane is finite, and

the worldvolume gauge fluxes quantized.

Then, as in section 3.1, for every choice of ηS ∈ {±1}, and ϕ ∈ (ΓΩ)∗ one finds a

supersymmetric and û(1)d invariant elementary boundary state |Ω, ϕ, ηS〉〉. In the GSO-

projected theory the sign of detΩ and ηS determine whether the D-brane is charged or

neutral, whereas in the unprojected theory these two signs are independent. Furthermore,

by summing suitable combintations of |ΓΩ/L| elementary boundary states one can construct

new boundary states which only couple to a maximal rank sublattice L ⊂ ΓΩ of possible

Ishibashi states. We denote the result by |Ω, ϕ, ηS〉〉L.

The fusion of interfaces with boundary states is easy to compute. If they preserve the

same supersymmetry, the fusion is non-singular and the result reads27

IL
′

1,2(Λ, ϕ′)� |Ω, ϕ〉〉L2 = (6.56)

|(Λ12 − Λ11Ω)(Λ22 − Λ21Ω)−1, (ϕ+ ϕ′)Λ−1〉〉Λ(L′∩L)
1 .

It is interesting to note that O(d, d) acts by fractional linear transformations on the gluing

conditions in O(d).

Using the invertible deformation interfaces, we can transport the above result to any

reference model CFT0 with charge lattice Γ = UZd,d. The fusion of a defect line with a

boundary condition in CFT0 can then be described by the action of the defect line on the

rank d sublattice U−1ΓΩ of those integer charges in Zd,d which couple to the boundary

state. This sublattice is defined to be the kernel of (1,Ω)U in Zd,d. Here, (1,Ω) is a

rectangular 2d× d matrix. The rank of ΓΩ equals d, if and only if the d× d matrix

Ω̂
def
= (U11 + ΩU12)−1(U21 + ΩU22) ∈ GL(d,Q) , (6.57)

i.e. it is invertible and has only rational entries. It follows from (6.56) that the O(d, d|Q)

matrix Λ̂ acts by fractional linear transformations on Ω̂, and that the corresponding lattices

compose according to Λ̂(L̂′ ∩ L̂).

7 Fusion of interfaces and geometric integral transformations

There is another useful formula for the Ramond ground state contribution of the interface

operators, which one obtains by first considering the associated folded boundary conditions.

As discussed explicitly in the one-dimensional case in section 3.2, the Ramond ground state

27We suppressed the ηS-dependence.
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contribution |OF〉R of the boundary states can be obtained by rewriting the folded gluing

conditions (3.21) for the zero modes in terms of

γj±
def
=

1√
2

(
ψj0 ± iψ̃j0

)
. (7.1)

This yields [(
γ1

+

γ2
+

)
+ F

(
γ1
−
γ2
−

)]
|OF〉R = 0 , (7.2)

where, F is the antisymmetric matrix defined by

OF = (1 + F)−1(1−F) ⇐⇒ F = (1−OF)(1 +OF)−1 . (7.3)

In case OF has an eigenvalue −1, we take F to be restricted to the orthogonal complement

of the respective eigenspace E−1(OF). Furthermore, we pick a normalized volume form

ωOF
on this eigenspace and insert into it the 2d-vector (γ1

−, γ
2
−). Denoting the result by

ωOF
(γi−) the normalized solution of equations (3.29) can be written as

|OF〉R = [det(1−F)]−
1
2 exp

(
−1

2
Fjl γl−γj−

)
ωOF

(γi−)|1〉R , (7.4)

where |1〉R is the normalized pure spinor state, i.e. the normalized state annihilated by

all the γi+. Multiplied by 2
d
2 gbos, this is the Ramond charge vector of the boundary state.

In non-linear sigma models, Ramond charges of boundary conditions have a geometric

meaning as Chern characters of the associated D-branes (see e.g. section 1 of [48] for a

brief summary of the geometric aspects of Ramond charges).

The D-branes we are considering here are supported on affine subtori which are orthog-

onal to the −1-eigenspace of O. They are equipped with U(1)-bundles whose curvature can

be represented by the constant 2-form F = F . Identifying the γi− with constant one-forms

on the target space torus, we indeed find√
volT e

−FPD(W) =
√

volT Q
R(W, F ) (7.5)

for the Ramond charge vector of the corresponding D-brane. In this formula volT denotes

the volume of the target space torus, and PD(W) is the Poincaré dual of the D-brane world

volume W.

The state (7.4) can now be easily unfolded using the behavior of the γ± under folding.

Namely, using (3.20), one finds that

γ2
± 7→ ∓γ2

± . (7.6)

Thus, |OF〉R unfolds to

I0,R
1,2 = (det(1−F))−

1
2 exp

(
−1

2
Fjl γl−γj−

)
ωOF

(γ−) |1〉1R2
R〈−1| , (7.7)
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where as always, the modes of CFT1 and CFT2 act on the left, respectively right of the map

|1〉1R2
R〈−1| mapping the pure anti-spinor state of CFT2 to the pure spinor state of CFT1.28

Of course, also this formula has a geometric meaning. Here the γi− are the constant

one forms on the target space tori Ti of CFTi. Thus, up to the map |1〉1R2
R〈−1|, it is

nothing but √
volT1 volT2Q

R(W, F ) , (7.8)

the Ramond charge of the D-brane on T1×T2 associated to the respective folded boundary

state. However, while |1〉1R just corresponds to the 0-form 1 on T1, 2
R〈−1| maps a k-form ν

on T2 to
1

volT2

∫
T2

ν . (7.9)

Thus, including all normalizations, the interface operator restricted on the Ramond ground

states can be viewed geometrically as the following operation on forms ν on T2:

IΩ∗
1,2 : ν 7−→

√
volT1

volT2

∫
T2

QR(W, F ) ∧ π∗2(ν) , (7.10)

where πi : T1 × T2 → Ti are the projections on the factors.

Up to the square root normalization which is a relic of a particular choice of identifi-

cation of the ground states, this formula describes what happens to D-brane charges under

geometric integral transformations (see [35] for a discussion of these transformations). Any

D-brane W on a product X1×X2 defines such a transformation mapping D-branes W2 on

X2 to D-branes

W2 7→ (π1)∗(W ⊗ π∗2(W2)) (7.11)

on X1. W is referred to as the kernel of this transformation. If such a transformation is

invertible, it is often called Fourier-Mukai transform.

Thus, the interfaces act on Ramond ground states in the same way as the correspond-

ing geometric integral transformations do on cohomology — a point first alluded to in

reference [3]. We believe that this is in fact true on the level of the full D-brane cate-

gory, and that in particular interfaces fuse in the same way as the corresponding geometric

integral transformations compose.

That T-dualities can be described by Fourier-Mukai transformations has been known

for some time. More general geometric integral transformations on tori have been analyzed

in [36, 37]. Although we have not shown it in general, in all examples we have studied the

fusion of interfaces indeed agrees with the composition of the associated geometric integral

transformations.

In conclusion, we have two formulae for the action of the û(1)2d symmetric interface

operators on R-ground states. One involves the spin representation of O(d, d) times the

square root of the interface index, while the second one is the action induced by geometric

integral transformations. By definition, the latter has to be an endomorphism of the R-

charge lattice. We don’t know if the relation between these two, geometric and algebraic,

formulae has appeared before in the mathematics literature.

28The pure anti-spinor state | − 1〉R is the Ramond ground state anihilated by all the γ−’s. That the

state |1〉R folds to R〈−1| follows from the folding behavior (7.6) of the γi and the fact that γ∗± = γ∓.
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8 Topological realization of the defect monoid

There is an important special class of interfaces with the property that they commute with

both left and right Virasoro algebras separately [2, 6]. This means that correlation functions

do not change under the deformation of their positions as long as no other interfaces or field

insertions are crossed. For this reason they are called “topological”. If they are invertible

they realize honest isomorphisms of conformal field theories.

By definition, the û(1)2d preserving interfaces we have constructed are topological if

and only if their gluing condition Λ ∈ O(d)×O(d).

We have seen that by means of parallel transport, fusion of conformal interfaces can

be understood in terms of fusion of conformal defects in a single torus model. The latter is

given by (6.53). The corresponding monoid can be described as the semi-group extension

(6.54) of O(d, d|Q)nu(1)2d. In the following, we will explain how the topological interfaces

“inherit” this semi-group structure.

The deformation space of torus models is the space of even self-dual charge lattices

Γ ⊂ Rd,d. These are determined by the geometric and B-field moduli packaged in the

symmetric O(d, d) matrix M ≡ 2UTU , c.f. (1.3) and (1.4). The lattice Γ is the lattice of

“physical” charges. In terms of the lattice of integer charges it is given by Γ = UZd,d. Two

torus models are of course identified if they only differ by the choice of basis of left and

right û(1)d currents. Such a change of basis is implemented by the action of O(d)×O(d) on

the vielbein U from the left. This leaves M invariant. Thus the matrices M parametrize

the (homogeneous) coset space Dd = O(d)×O(d)\O(d, d|R).

In fact, two charge lattices UZd,d and U Λ̂Zd,d are identical, whenever Λ̂ ∈ O(d, d|Z) is

an automorphism of Zd,d. Thus, the moduli space of torus models is given by Dd/O(d, d|Z).

However, while the two charge lattices UZd,d and U Λ̂Zd,d agree, the automorphism Λ̂ acts

non-trivially on the charges. In particular taking the O(d, d|Z) orbifold of Dd creates

non-trivial monodromies on the bundle of CFT-Hilbert spaces over it. In general these

monodromies are not symmetries of the CFTs in the sense that they do not separately

commute with left and right Virasoro algebras.

Since we are interested in describing interfaces between different torus models, which

can be realized as operators between different fibers of the Hilbert space bundle, it is

convenient to work with the deformation space Dd on which the Hilbert space bundle is

trivial. A choice of flat connection then allows to identify all the fibers by means of parallel

transport. On the level of charges this is realized as a specific “gauge choice” for the

vielbein U , for instance the choice dictated by the Iwasawa decomposition of O(d, d|R), see

reference [47].

The deformation interfaces Dy′,y between any two torus models y and y′ incorpo-

rate the parallel transport in the Hilbert space bundle, hence they have gluing condition

U(y′)U(y)−1.

Consider now the set (6.52) of all interfaces obtained by parallel transport of a con-

formal defect. As was explained in section 6.2, a defect is uniquely specified by the data

(Λ̂, ϕ, L̂), where Λ̂ ∈ O(d, d|Q) is the gluing matrix for integer-charge vectors. If y and

y′ are the two torus CFTs on the left respectively right of the interface, then the gluing
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condition for their physical charges reads

Λ = U(y′)Λ̂U(y)−1 . (8.1)

It can be shown that for given y and Λ̂ there exists a unique y′ for which this interface

is topological, i.e. such that Λ ∈ O(d) × O(d). Indeed, suppose there were two theories

for which this was true, say y′ and y′′. Then both U(y′)Λ̂U(y)−1 and U(y′′)Λ̂U(y)−1

would be elements of O(d) × O(d), and hence so would U(y′′)U(y′)−1. This contradicts

our assumption that U(y) was a good parametrization of the coset space Dd, which proves

the claim.

Therefore, any given conformal defect (Λ̂, ϕ, L̂) of a reference torus model gives rise

to a topological interface between any given torus model y and a model y′ = f(y, Λ̂), with

the latter uniquely fixed by y and Λ̂. Clearly, the converse statement is also true: every

topological interface can be parallel transported by fusing with deformation interfaces on

the left and right to a unique defect in some reference CFT0. Hence, for all torus models

y, there exists a bijection between conformal defect lines and the topological interfaces

starting in y.

Being valid for all y, this bijection allows to pull back the fusion of arbitrary fusable

topological interfaces to the one of conformal defect lines. Thus, the fusion of topological

interfaces is a representation of the monoid of conformal defect lines in a fixed torus model.

Connection with effective supergravities. The relation of topological interfaces with

the O(d, d|R) symmetries of the low-energy supergravity has been discussed in the intro-

duction, and for d = 1 in section 5. The generalization to higher d is straightforward, so

we will only sketch it very briefly.

As alluded to in the introduction, the continuous O(d, d) symmetry of the effective

low-energy supergravity acts on the closed-string moduli, while leaving the physical charges

invariant modulo O(d) × O(d) rotations. Since the Einstein-frame metric does not trans-

form, also the masses of black hole solutions do not change. This fits in nicely with the fact

that topological interfaces, which implement the transformations on the string worldsheet

as we have proposed in this work, leave invariant the masses of both fundamental string

states and D-branes.

The mass-squared of a fundamental string is proportional to L0+L̃0 which by definition

commutes with topological interfaces. For D-branes the story is more subtle, but still

follows from general facts: the D-brane mass-formula (5.8); the fact that fusion with a

topological interfaces multiplies the g-factor of the boundary condition with the one of the

topological interface; the form gtop = |ind(Λ̂)|1/2 of the relevant topological interfaces here;

and, finally the rescaling of the string coupling with the interface index as in (1.1). Putting

all these facts together shows that D-brane masses are invariant under the transformations

by the topological interfaces considered here.

Note that the argument does not use properties of the boundary state; it even holds

for D-branes that break some, or all, of the û(1) symmetries.

As we argued for d = 1 above, also for higher d the classical symmetry group O(d, d|R)

is replaced in the quantum theory by a semi-group, the extension (6.54) of O(d, d|Q) by
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the semi-group of maximal-rank sublattices of Zd,d. This is necessary for the preservation

of charge quantization. As explained, this algebraic structure is completely captured by

the fusion algebra of conformal defect lines. Its action on boundary conditions defines a

homomorphism of this semi-group into [R+ × Spin(d, d)] ∩GL(2d|Z).

We end by repeating once more that non-invertible transformations in this semi-group

are not exact symmetries of string theory, but should be thought of as orbifold equiva-

lences. They are symmetries at leading order in the string coupling and all orders in α′.

Even though restricted in scope, such orbifold equivalences can have non-trivial conse-

quences, see for example [49]. It would be interesting to look for similar applications in

the present context.
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A Conventions

The fields of theN = (1, 1) SCFT are a free massless boson φ, and a free massless Majorana

fermion with (left, right) components (ψ, ψ̃). The mode expansion of φ on the circle

parametrized by σ ∈ [0, 2π] reads

φ = φ̂0 +
N̂

2R
τ + M̂Rσ +

∞∑
n6=0

i

2n

(
ane
−in(τ+σ) + ãne

−in(τ−σ)
)
, (A.1)

where N̂ , M̂ are the integer-valued momentum and winding operators, and R is the com-

pactification radius. The fermion mode expansions likewise read

(ψ, ψ̃) =
∑
r

(ψre
−ir(τ+σ) , ψ̃re

−ir(τ−σ)) (A.2)

with r integer in the Ramond sector, and half-integer in the Neveu-Schwarz sector. These

modes obey the reality conditions a†n = a−n, ψ†r = ψ−r and likewise for the right movers.

The canonical commutation relations are

[an, am] = [ãn, ãm] = nδn+m,0 and [φ̂0,
N̂

R
] = i , (A.3)

{ψr, ψs} = {ψ̃r, ψ̃s} = δr+s,0 . (A.4)
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The currents generating the two û(1) Kac-Moody algebras are

 = 2 ∂+φ ≡
∑
n∈Z

n e
in(τ+σ) , ̃ = 2 ∂−φ ≡

∑
n∈Z

̃n e
in(τ−σ) . (A.5)

Comparing with (A.1) gives

0 =
N̂

2R
+ M̂R and n = an for n 6= 0 ,

with similar expressions for the right movers. In terms of these modes the fermionic

generators of the super-Virasoro algebras read

Gr =
∑
n∈Z

nψr−n , G̃r =
∑
n∈Z

̃nψ̃r−n . (A.6)

B Proof of the index identity

In this appendix we prove the index identity (6.47). This identity is independent of the

moduli of the CFTs. Writing the charge lattices Γi = UiZd,d, and replacing the gluing

conditions Λ 7→ U1ΛU−1
2 , we can formulate it entirely with respect to Γ ≡ Γ0 = Zd,d.

Setting ΓΛ ≡ ΓΛ
0,0, the identity can be written as∣∣∣∣ Γ

ΓΛ′

∣∣∣∣ ∣∣∣∣ Γ

ΓΛ

∣∣∣∣ =

∣∣∣∣∣ ΓΛ′Λ

ΓΛ′ � ΓΛ

∣∣∣∣∣
2 ∣∣∣∣ Γ

ΓΛ′Λ

∣∣∣∣ . (B.1)

Here, all gluing conditions are admissible, i.e. Λ,Λ′ ∈ O(d, d|Q). Note that in the canonical

basis the O(d, d|Q) matrices have rational entries

Λ =

 p11/q11 p12/q12 . . . . . . p1 2d/q1 2d
...

...
...

...
...

p2d 1/q2d 1 p2d 2/q2d 2 . . . . . . p2d 2d/q2d 2d

 (B.2)

where (pab, qab) are pairs of relatively prime integers, and |Γ/ΓΛ| = lcm(qab). Similar

expressions can be written for Λ′ and Λ′′ = Λ′Λ. One implication of the index identity is

then that
lcm(q′ab)× lcm(qab)

lcm(q′′ab)
= K̃2 , K̃ ∈ N , (B.3)

i.e. the left-hand-side is a perfect square. Its square root is the index of the sublattice

ΓΛ′ � ΓΛ in ΓΛ′Λ.

To prove identity (B.1), we first rewrite it in the equivalent form

||ΓΛ′ || ||ΓΛ|| ||ΓΛ′Λ|| = ||ΓΛ′ � ΓΛ||2 , (B.4)

where ||L|| is the volume of a unit cell of the lattice L, and ||Γ|| = 1. Next note that

ΓΛ′ � ΓΛ = Γ ∩ Λ−1Γ ∩ (Λ′Λ)−1Γ is a sublattice of both ΓΛ and Λ−1ΓΛ′ , in addition to

ΓΛ′Λ. We can thus write (B.1) as∣∣∣∣ ΓΛ

ΓΛ′ � ΓΛ

∣∣∣∣
∣∣∣∣∣ Λ−1ΓΛ′

ΓΛ′ � ΓΛ

∣∣∣∣∣ =

∣∣∣∣ Γ

ΓΛ′Λ

∣∣∣∣ , (B.5)
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where we used the fact that O(d, d) transformations are volume preserving. It will be

actually easier to establish this identity in its dual form,∣∣∣∣∣(ΓΛ′ � ΓΛ)∗

(ΓΛ)∗

∣∣∣∣∣
∣∣∣∣∣(ΓΛ′ � ΓΛ)∗

(Λ−1ΓΛ′)∗

∣∣∣∣∣ =

∣∣∣∣∣(ΓΛ′Λ)∗

Γ

∣∣∣∣∣ . (B.6)

Here we employed the facts that Γ∗ = Γ is self-dual, and that (ΛL)∗ = ΛL∗, which holds

because O(d, d) transformations preserve the inner product.

To prove this last identity we will make repeated use of two more facts: (L1 ∩ L2)∗ =

L∗1 ∪ L∗2 for any two (maximal-rank) lattices L1 and L2, and

A ∪B
A

=
B

A ∩B
for any sets A and B. With the help of these identities we can express the first factor of

equation (B.6), as follows:∣∣∣∣∣(ΓΛ′ � ΓΛ)∗

(ΓΛ)∗

∣∣∣∣∣ =

∣∣∣∣Γ ∪ Λ−1Γ ∪ (Λ′Λ)−1Γ

Γ ∪ Λ−1Γ

∣∣∣∣ =

∣∣∣∣ (Λ′Λ)−1Γ

(Γ ∪ Λ−1Γ) ∩ (Λ′Λ)−1Γ

∣∣∣∣ . (B.7)

Rearranging the last denominator,

(Γ ∪ Λ−1Γ) ∩ (Λ′Λ)−1Γ = (Λ′Λ)−1(Λ′(Γ ∪ ΛΓ) ∩ Γ) = (Λ′Λ)−1(Λ′ΓΛ−1 ∪ Γ)∗ ,

and using also ||L∗|| = ||L||−1, leads to∣∣∣∣∣(ΓΛ′ � ΓΛ)∗

(ΓΛ)∗

∣∣∣∣∣ = ||Γ ∪ Λ′ΓΛ−1 ||−1 . (B.8)

Using the same reasoning, one can likewise establish the relation∣∣∣∣∣(ΓΛ′ � ΓΛ) ∗

Λ−1ΓΛ′ ∗

∣∣∣∣∣ = ||Γ ∪ Λ′−1ΓΛ||−1 . (B.9)

Now, the product of the two relations (B.8) and (B.9) can be written as∣∣∣∣∣(ΓΛ′ � ΓΛ)∗

(ΓΛ)∗

∣∣∣∣∣
∣∣∣∣∣(ΓΛ′ � ΓΛ) ∗

Λ−1ΓΛ′ ∗

∣∣∣∣∣ =

∣∣∣∣∣ Γ ∪ Λ−1ΓΛ′

(Λ′Λ)−1(Γ ∪ Λ′ΓΛ−1)∗

∣∣∣∣∣ , (B.10)

where the right-hand side makes sense since the denominator lattice,

(Λ′Λ)−1(Γ ∪ Λ′ΓΛ−1
)∗ = (Λ′Λ)−1Γ ∩ (Λ−1Γ ∪ Γ) ,

is contained in the numerator lattice,

Γ ∪ Λ′−1ΓΛ = Γ ∪ (Λ′−1Γ ∩ (ΛΛ′)−1Γ) ,

by virtue of the obvious relation A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) ⊆ (A ∩ B) ∪ C.

Simplifying the quotient by eliminating the summand (A∩B) in the numerator yields the

desired identity (B.6)∣∣∣∣∣(ΓΛ′ � ΓΛ)∗

(ΓΛ)∗

∣∣∣∣∣
∣∣∣∣∣(ΓΛ′ � ΓΛ)∗

(Λ−1ΓΛ′)∗

∣∣∣∣∣ =

∣∣∣∣ Γ

ΓΛ′Λ

∣∣∣∣ =

∣∣∣∣∣(ΓΛ′Λ)∗

Γ

∣∣∣∣∣ . (B.11)

This proves (B.1).
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