
J
H
E
P
1
0
(
2
0
1
2
)
0
2
5

Published for SISSA by Springer

Received: May 21, 2012

Accepted: August 27, 2012

Published: October 3, 2012

WIMP-nucleus scattering in chiral effective theory

Vincenzo Cirigliano, Michael L. Graesser and Grigory Ovanesyan

Theoretical Division, Los Alamos National Laboratory,

MS B283, Los Alamos, NM 87545, U.S.A.

E-mail: cirigliano@lanl.gov, mgraesser@lanl.gov, ovanesyan@lanl.gov

Abstract: We discuss long-distance QCD corrections to the WIMP-nucleon(s) interac-

tions in the framework of chiral effective theory. For scalar-mediated WIMP-quark inter-

actions, we calculate all the next-to-leading-order corrections to the WIMP-nucleus elastic

cross-section, including two-nucleon amplitudes and recoil-energy dependent shifts to the

single-nucleon scalar form factors. As a consequence, the scalar-mediated WIMP-nucleus

cross-section cannot be parameterized in terms of just two quantities, namely the neutron

and proton scalar form factors at zero momentum transfer, but additional parameters ap-

pear, depending on the short-distance WIMP-quark interaction. Moreover, multiplicative

factorization of the cross-section into particle, nuclear and astro-particle parts is violated.

In practice, while the new effects are of the natural size expected by chiral power counting,

they become very important in those regions of parameter space where the leading or-

der WIMP-nucleus amplitude is suppressed, including the so-called “isospin-violating dark

matter” regime. In these regions of parameter space we find order-of-magnitude corrections

to the total scattering rates and qualitative changes to the shape of recoil spectra.

Keywords: Beyond Standard Model, Chiral Lagrangians

ArXiv ePrint: 1205.2695

c© SISSA 2012 doi:10.1007/JHEP10(2012)025

mailto:cirigliano@lanl.gov
mailto:mgraesser@lanl.gov
mailto:ovanesyan@lanl.gov
http://arxiv.org/abs/1205.2695
http://dx.doi.org/10.1007/JHEP10(2012)025


J
H
E
P
1
0
(
2
0
1
2
)
0
2
5

Contents

1 Introduction 1

2 Scalar-mediated WIMP-quark interaction 2

3 WIMP-nucleon interactions in chiral effective theory 4

4 NLO corrections 6

4.1 One-nucleon amplitude 7

4.2 Two-nucleon amplitude 8

4.3 WIMP-nucleon potentials 9

5 Nuclear matrix elements 10

6 Phenomenology 12

7 Conclusions 17

1 Introduction

The evidence for Dark Matter (DM) is overwhelming. However currently all experimental

evidence for its existence comes from astrophysical observations. Great progress has been

made in last few years in laboratory underground experiments trying to measure elastic

recoil of WIMPs (weakly interacting massive particles) from a nucleus inside the detector.

The positive results reported by DAMA [1] and CoGeNT [2] are in contradiction with

null results from XENON [3, 4]and CDMS [5, 6], when analyzed in a standard WIMP

scenario [7, 8], and many ideas have been proposed to resolve this puzzle. These ideas

mostly involve modifications to the short-distance dynamics, such as the inelastic dark mat-

ter scenario [9–11], isospin violating dark matter couplings (IVDM) [12–15], momentum-

dependent couplings [16, 17], and resonant scattering [18]. The impact of astrophysical

uncertainties has also been explored in the recent literature [19–23].

Here we take a complementary point of view. We wish to study how known hadronic

and nuclear physics effects (such as nucleon form factors and meson exchange currents)

affect WIMP-nucleus elastic scattering, and explore whether the inclusion of these effects

helps mitigate the apparent contradictions between DAMA, CoGeNT and XENON and

CDMS. The need to revisit the hadronic and nuclear physics of WIMP-nucleus scattering

has been pointed out in the recent literature, and first systematic studies in this direction

have appeared in refs. [24, 25]. Ref. [24] developed a non-relativistic effective field the-

ory (EFT) in which the degrees of freedom are the WIMP and nucleus as a whole, and

studied the set of distinguishable recoil spectra that could arise from different underlying
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models. The authors of ref. [25], on the other hand, focused on a non-relativistic EFT

at the WIMP-nucleon level, wrote the most general set of single-nucleon operators up to

second order in momentum transfer, and worked out the corresponding nuclear responses

(for relevant targets) within the nuclear shell model.

Our current work adds yet a different spin, in that it discusses the WIMP-nucleon

interaction within the chiral EFT framework, which incorporates at the nucleon level the

consequences of the broken chiral symmetry of QCD. For simplicity we discuss here only the

case of scalar-mediated WIMP-quark interaction and derive the leading order (LO) and

next-to-leading order (NLO) WIMP-nucleon operators. To NLO, the resulting WIMP-

nucleon operators involve not only the single nucleon (scalar) form factor, but also a two-

nucleon operator, generated by a so-called meson-exchange diagram. The latter effect has

been previously considered in ref. [26], where it was claimed it could affect WIMP-nucleus

cross-sections at the ∼ 50% level. Compared to the analysis of ref. [26], we embed the

meson-exchange diagram in a consistent chiral SU(3) power counting to NLO, that in-

cludes η − η exchange in addition to π − π exchange and also loop corrections to the

one-nucleon amplitudes (not considered in [26]). Compared to ref. [25] our work considers

a more restricted underlying interaction by assuming that WIMP interacts with quarks

via the scalar density. Within this restricted setting, however, we go beyond ref. [25] in

several respects: (i) Working to NLO in the ratio of momentum transfer to nucleon mass,

we include all the interactions consistent with QCD. These include form-factor corrections

to the one-nucleon operators (which are left unspecified in ref. [25]) as well as two-nucleon

operators not considered in ref. [25]. To our knowledge this is the first time the chiral

power corrections are consistently included for WIMP-nucleus elastic cross-section. (ii)

Because we start from the underlying WIMP-quark interaction, we are able to relate the

coefficients of the WIMP-nucleon operators (left arbitrary in the bottom-up nucleon-level

EFT approach of [25]) to the short-distance parameters of the theory.

The paper is organized as follows. In section 2 we set up the framework for our dis-

cussion, specifying the short-distance scalar-mediated WIMP-quark interaction in a model-

independent way. In section 3 we discuss the chiral perturbation theory (ChPT) framework

and identify the LO and NLO graphs that contribute to scalar-mediated WIMP scatter-

ing off nucleons. In section 4 we compute the relevant NLO corrections, that include one

loop diagrams (4.1) two-body meson-exchange diagrams (4.2). In section 5 we discuss the

matrix elements of WIMP-nucleon operators in the nucleus, and briefly review the nuclear

shell model (NSM) that we use to evaluate the matrix elements of two-body operators.

We consider the phenomenological implications of our NLO corrections in section 6, and

conclude in section 7.

2 Scalar-mediated WIMP-quark interaction

We consider the following model-independent interaction between WIMP and quarks:

Lχq =
∑

q=u,d,s,c,b,t

kqmq q̄q + kG
αs
π
GµνG

µν , (2.1)
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where kq,G are functions of the DM field(s). For example, in the case of Dirac or Majorana

fermion DM one has kq,G ∝ χ̄χ.Integrating out the heavy quarks c, b, t [27] we get the

following effective interaction:

Leff =
∑

q=u,d,s

sq q̄q + sΘ Θµ
µ, (2.2)

where we have used the trace anomaly equation and Θµ
µ is the trace of the stress energy

tensor. The fields sq and sΘ are related to kq,G as follows:

sq = mq

kq − 2

27

∑
Q=c,b,t

kQ +
8

9
kG

 , sΘ =
2

27

∑
Q=c,b,t

kQ −
8

9
kG . (2.3)

Specializing to the case of fermionic DM particle (denoted by χ), we can write the

fields kq,G in terms of χ and dimensionless short-distance parameters λ̃q,G

kq =
λ̃q
vΛ2

np

χ̄χ , kG =
λ̃G
vΛ2

np

χ̄χ , (2.4)

where v = (
√

2GF )−1/2 is the Higgs VEV and Λnp denotes a generic new-physics scale.

After integrating out the heavy quarks, the low-energy effective Lagrangian (2.2) contains

only four dimensionless parameters λu,d,s,Θ:

sq =
mq

v

λq
Λ2

np

χ̄χ sΘ =
λΘ

vΛ2
np

χ̄χ . (2.5)

In our phenomenological analysis we will use λu,d,s,Θ, but the reader should keep in mind

that these are related to the short distance parameters by λq = λ̃q−(2/27)
∑

Q λ̃Q+(8/9)λ̃G

and λΘ = (2/27)
∑

Q λ̃Q − (8/9)λ̃G.

In order to compute the WIMP-nucleus cross-sections from the short-distance La-

grangian of eq. (2.1) that couples WIMPs to quarks, two steps are needed: (i) At an energy

scale of the order of ∼GeV one matches the WIMP-quark Lagrangian non-perturbatively to

a WIMP-nucleon effective Lagrangian. For this purpose we use ChPT [28–30] (for reviews,

see [31] and [32]), which parameterizes the non-perturbative physics in a number of low-

energy constants that can either be determined phenomenologically or computed in lattice

QCD [33]. This step provides an effective potential describing the interaction of the WIMP

with nucleons. (ii) With the WIMP-nucleon interaction Hamiltonian at hand, one then cal-

culates the amplitude for WIMP-nucleus elastic scattering. This step requires information

on the wave-function of the target nucleus in the ground state. The WIMP-nucleus inter-

action can also be parameterized in terms of a non-relativistic effective Lagrangian [24].

Note that while for definiteness we are focusing here only on the case of scalar-mediated

WIMP-quark interactions, a similar analysis can be performed for all types of quark-WIMP

interactions (vector, axialvector, pseudoscalar, tensor) and will be presented elsewhere [34].

– 3 –
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Figure 1. Representation of ladder diagrams contributing to TA,W , the scattering amplitude for A

nucleons and a WIMP. The ladder rungs are given by A-nucleon irreducible amplitudes; only one

of the rungs (denoted by MA,W in the text) involves a WIMP scalar density insertion.

3 WIMP-nucleon interactions in chiral effective theory

Given the kinematics of WIMP-nucleus elastic scattering, the three-momentum transfer

to the hadronic system does not exceed qmax = 2µWAvrel < 2mAv0 ∼ 200 MeV, where

µWA is the WIMP-nucleus reduced mass and we have used a typical target nucleus mass

mA ∼ 100 GeV as well as v0 ∼ 10−3 for the value at which the velocity distribution of

the dark matter halo starts to fall off exponentially. Since qmax is small compared to the

nucleon mass mN , it is appropriate to use ChPT to describe the WIMP-nucleon dynamics,

expanding the amplitudes in p ∼ q/mN ∼ mπ,K,η/mN .

As suggested by the form of eq. (2.2), the weak interaction of WIMPs and light quarks

can be incorporated in the framework of ChPT through the external source method [29],

i.e. adding to the QCD Lagrangian external scalar sources s(x) = diag(su(x), sd(x), ss(x))

coupled to the scalar quark density and the external source sΘ(x) coupled to the energy-

momentum tensor. Note that from the point of view of chiral symmetry, the external

scalar source transforms in the same way as the quark mass matrix mq. The octet of light

pseudoscalar meson fields (φa) is described by the matrix U = Exp(i
∑

a Taφa/F ), where

F can be identified to leading order with the pion decay constant and Ta are the SU(3)

generators. In the chiral power counting one assigns the following scaling: ∂U ∼ O(p),

while mq ∼ s ∼ O(p2) and sΘ ∼ O(p0). In terms of these fields, the lowest order mesonic

chiral Lagrangian reads

LM = L(2)
M + L(4)

M + . . . L(2n)
M ∼ O(p2n) , (3.1)

L(2)
M =

F 2

4
Tr
[
∂µU

†∂µU
]

+
B0 F

2

2
Tr
[

(mq − s) (U + U †)
]
. (3.2)

The low-energy constant (LEC) B0 is related to the light quark condensate: 〈q̄q〉 =

−F 2B0(1 + O(mq)). For the meson-baryon Lagrangian we use the Heavy Baryon Chi-

ral Perturbation Theory formulation [35], in which one writes the baryon momentum as

pB = mv+k, in terms of a velocity vµ and a residual momentum k ∼ O(p) and one re-defines
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Effective Lagrangian di ni εi ≡ di + ni
2 − 2

L(2n)
M 2n 0 2(n− 1)

L(n)
MB n 2 n− 1

Table 1. Chiral dimensions for vertices arising from the purely mesonic and baryon-meson effective

Lagrangians. n = 1, 2, . . . represents any positive integer.

the heavy baryon octet field B such that ∂B ∼ O(p). Introducing the covariant derivative

∇µB = ∂µB + [Γµ, B] with Γµ = 1/2(u†∂µu+ u∂µu
†), the spin vector Sµ = (i/2)γ5σµνv

ν ,

the field uµ = i(u†∂µu − u∂µu
†) with u =

√
U , and finally χ+ = u†χu† + uχ†u with

χ = 2B0(mq − s), the first few terms in the chiral expansion read [31, 35]

LMB = L(1)
MB + L(2)

MB + . . . L(n)
M ∼ O(pn) , (3.3)

L(1)
MB = Tr

(
B̄ iv · ∇B

)
+DTr

(
B̄Sµ{uµ, B}

)
+ F Tr

(
B̄Sµ[uµ, B]]

)
(3.4)

L(2)
MB = bD Tr

(
B̄{χ+, B}

)
+ bF Tr

(
B̄[χ+, B]

)
+ b0 Tr

(
B̄B

)
Tr
(
χ+

)
(3.5)

In the above expression F,D, bF , bD, b0 are low-energy constants, related to the baryon axial

current matrix elements (F,D), and the baryon mass splitting and sigma-terms (bF , bD, b0).

The EFT power counting allows one to identify the leading contributions to the scat-

tering amplitude TA,W for the process N1+· · ·+NA+W −→ N1+· · ·+NA+W involving A

nucleons and a WIMP. As is well known [36–38], when A > 1 the naive chiral power count-

ing breaks down due to pinch singularities that arise when nucleons in the intermediate

state simultaneously go on shell. As illustrated in figure 1, the full non-perturbative ampli-

tude TA,W is obtained by summing a Lippmann-Schwinger series of ladder diagrams with

A-nucleons intermediate states and rungs given by A-nucleon irreducible amplitudes (not

necessarily connected), only one of which involves the insertion of the external probe (the

WIMP scalar density in the case at hand). These A-nucleon irreducible amplitudes admit

a consistent power counting, and the scaling of the full amplitude TA,W is controlled by the

scaling of MA,W , the A-nucleon irreducible amplitude with insertion of the external probe.

A diagram with C connected parts, L loops, Vi strong-interactions vertices of type i

and one “weak” vertex scales as MA,W ∼ pν with [32, 37]

ν = 4−A− 2C + 2L+
∑
i

Vi εi + εW . (3.6)

The effective chiral dimension of vertex i is given by εi = di +ni/2− 2 ≥ 0, where di is the

chiral dimension of the vertex (e.g. a vertex from L(1)
MB has di = 1), and ni is the number of

baryonic legs attached to the vertex. Note that in eq. (3.6) we have explicitly isolated the

contribution εW due to the weak vertex involving the external source coupled to the WIMP.

In table 1 we give a summary of chiral dimensions for the relevant effective Lagrangians.

For fixed A, the leading contributions to the amplitude are obtained by minimizing ν

in eq. (3.6), which is obtained by: (i) maximizing the number of connected contributions

C = A,A − 1, . . . ; (ii) minimizing the number of loops L = 0, 1, . . . ; (iii) using strong

– 5 –
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vertices from the lowest order Lagrangians L(2)
M and L(1)

MB (εi = 0), so as to minimize the εi;

(iv) attaching the external scalar source to a baryon line using a vertex from L(2)
MB (εW = 1)

or to a meson line using a vertex from L(2)
M (εW = 0), consistently with the requirement

that there are no external meson lines and the choice of C and L. In the case of external

scalar source we find:

• The leading order diagrams have C = A, L = 0, and εW = 1,1 i.e. they have

A disconnected parts, no loops, (i.e. no mesons in the diagram), and the source

attached to one of the nucleon lines through the vertex in L(2)
MB. This corresponds to

νLO = 5− 3A.

• Three classes of diagrams can contribute to NLO (ν = νLO + 1) as can be seen by

inspecting eq. (3.6): (i) C = A, L = 1, εW = 0, i.e. diagrams with A disconnected

parts, one of which involves a one-loop diagram with vertices from L(1)
MB and the

source attached to a meson line through L(2)
M (see figure 2); (ii) C = A − 1, L = 0,

εW = 0, i.e. diagrams with A−1 disconnected parts, one of which involves two nucleon

lines connected by meson exchange with vertices from L(1)
MB and source attached

to the meson line through L(2)
M (see figure 3); (iii) C = A, L = 0, εW = 2, i.e.

same topology as the leading diagram but with the source attached to a nucleon

line through a vertex from the O(p3) Lagrangian L(3)
MB. By inspecting of the only

relevant vertex [31] L(3)
MB ⊃ Tr(χ+) Tr(B̄v · ∂B), one sees that for on-shell nucleons

this contribution actually scales as of pνLO+2 and therefore enters at NNLO.

The number of diagrams grows quickly as one goes beyond NLO, and higher order terms

will involve in general vertices from effective Lagrangians containing more than two baryon

fields, not considered in table 1. In this work we consider only NLO contributions and note

that a consistent chiral counting to NLO requires to include not only loop corrections to

the nucleon scalar form factors (figure 2), but also meson-exchange diagrams that result in

two-nucleon operators (figure 3)

Finally, a similar analysis can be done for the insertion of the energy-momentum tensor

vertices, coupled to the external source sΘ(x) (see eq. (2.2)). Using the observation that

insertions of the energy-momentum tensor on a baryon line scale as Θµ
µ ∼ O(p0, p, . . . ) [34]

(corresponding to εW = −1, 0, . . . ) and on a meson line as Θµ
µ ∼ O(p2, p4, . . . ) [39] (cor-

responding to εW = 0, 2, . . . ), we find that the first chiral corrections to the relation

〈N |Θµ
µ|N〉 = mN ψ̄NψN arise in principle at NNLO. Moreover, an explicit calculation [34]

shows that the relevant diagrams cancel to this order, thus pushing the corrections to N3LO.

4 NLO corrections

We now discuss the NLO contributions to MA,W , the A-nucleon irreducible amplitude in

presence of one insertion of the external source. As discussed earlier, the NLO corrections

1Note that εW = 0 is not consistent with the choice C = A and L = 0, because the source would have to

couple to a meson line and the meson line has to attach to nucleons. This produces either L = 1 or C = A−1.

– 6 –
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Figure 2. LO and NLO diagrams contributing M1,W . Black solid (dashed) lines denote nucleons

(mesons).

fall into two classes: loop diagrams contributing to single-nucleon amplitudes and tree-level

diagrams contributing to two-nucleon interactions.

4.1 One-nucleon amplitude

The one-nucleon amplitude starts at leading order (tree-level diagram with vertex from

L(2)
MB in eq. (3.5) above) and receives NLO corrections through one-loop diagrams, as shown

in figure 2. Including NLO corrections, and denoting the HBChPT spinors for proton and

neutron with NT = (H
(p)
v , H

(n)
v ), the one-nucleon amplitude reads

M1,W = χ̄χ

[
1

2

(
fp(q

2) + fn(q2)
)
N̄N +

1

2

(
fp(q

2)− fn(q2)
)
N̄τ3N

]
, (4.1)

with proton and neutron form factors given by

fp/n(q2) =
1

vΛ2
np

 ∑
q=u,d,s

λq σ
(p/n)
q + λΘmp/n −

g2
A

64π F 2
π

(
A(q2)±B(q2)

)  , (4.2)

where A(0) = B(0) = 0. fp/n(0) receive contributions to LO (in terms of the couplings

b0, bD, bF appearing in eq. (3.5)) and NLO (loops) in the chiral expansion. Here we have

chosen to lump these contributions in the sigma-terms defined by 〈i|mqqq̄|i〉 = σ
(i)
q ψ̄iψi.

The σ
(i)
q (i = p, n) can be expressed in terms of the matrix elements σπN = ((mu +

md)/2)〈p|ūu + d̄d|p〉, ξ = 〈p|ūu − d̄d|p〉/〈p|ūu + d̄d|p〉, y = 2〈p|s̄s|p〉/〈p|ūu + d̄d|p〉, and

ratios of the light quark masses (see for example [40]). σπN and y can be extracted phe-

nomenologically from baryon masses and meson-baryon scattering data [41, 42] or can be

computed within lattice QCD [43–48] (see ref. [33] for a recent review), while ξ can be

related to y through an analysis of baryon masses in the SU(3) limit [49]. In our analysis

we use the same relations of ref. [40], but with updated numerical input on σπN , σ
(p)
s (for

which we use the ranges σπN = (45 ± 15) MeV and σ
(p)
s = (45 ± 25) MeV [33]) and the

ratios of quark masses (for which we use the PDG values [50]).

The momentum-dependent part of the form factors arise to this order entirely from

the one-loop diagrams, and depend on the lowest order couplings F,D of L(1)
MB in eq. (3.4)

through the combinations gA = D + F = 1.27 [50] and α = F/(D + F ) ≈ 0.4 [41] (for

which we will use the range α ∈ [0.3, 0.5]). Using the on-shell condition for external heavy

– 7 –
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Figure 3. Tree-level diagram contributing to M2,W . Black solid (dashed) lines denote nucleons

(mesons).

baryons, the diagrams in figure 2 are finite. Defining λ± ≡ (muλu±mdλd)/(mu+md) and

xM = −q2/m2
M , the form factors are given by:2

A(q2) = 3m3
π λ+ f̄(xπ) +

(
m2
π

3
λ+ +

4
(
m2
K −

1
2m

2
π

)
3

λs

)(
1− 4α√

3

)2

mη f̄(xη)

+

(
m2
π

2
λ++

(
m2
K −

1

2
m2
π

)
λs

)(
3(1−2α)2+

(
1+2α√

3

)2
)
mK f̄(xK) (4.3)

B(q2) = m2
π λ−

[
1

2

((
2α+ 1√

3

)2

− (1− 2α)2

)
mK f̄(xK)

−1− 4α

3
(mη +mπ) f̄1(xη, xπ)

]
. (4.4)

The loop functions describing the running of mesons with equal or different masses inside

the loops are given by f̄(x) = f(x)−f(0) and f̄1(x1, x2) = f1(x1, x2)−4(1+z+z2)/(1+z)2

(z = mπ/mη), respectively, with

f (x) = 2 +
(2 + x)√

x
ArcCot

(
2√
x

)
, (4.5)

f1 (x1, x2) = 2+

(x1+x2+x1x2)

(
ArcCot

[
2
√
x1x2

x1+x1x2−x2

]
+ ArcCot

[
2
√
x2x1

x2+x1x2−x1

])
x1
√
x2 +

√
x1x2

, (4.6)

and have the following useful properties: f(x→ 0) = 3 + 5x
12 +O(x2), f1(x, x) ≡ f(x).

4.2 Two-nucleon amplitude

As was derived in section 3, at NLO there appears also a contribution with A−1 tree-level

disconnected nucleon sectors, one of which involves two nucleons and the external source.

2We use the leading-order mass relations with mu = md to express the products B0mq in terms of meson

masses mπ,K,η. On the other hand, we keep mu 6= md in the overall factors λ±. This prescription allows us

to keep terms of order (mu −md)/(mu +md) ∼ O(1), while neglecting terms of order (mu −md)/ms � 1.

– 8 –



J
H
E
P
1
0
(
2
0
1
2
)
0
2
5

The relevant diagram is shown in figure 3, and the possible mesons that are exchanged are

limited to π and η. The corresponding “direct” connected amplitude reads (qi = pi − p′i
denotes the four-momentum transfer for each nucleon):

M2,W = Mππ +Mηη, (4.7)

Mππ = − 1

vΛ2
np

g2
A

F 2
π

m2
π λ+

(q2
1 −m2

π)(q2
2 −m2

π)
N̄q1 · S τ k1N N̄q2 · S τ k2N χ̄χ , (4.8)

Mηη = − 1

vΛ2
np

g2
A

3F 2
π

(
4α−1√

3

)2 m2
π λ++4

(
M2
K−

1
2m

2
π

)
λs

(q2
1 −m2

η)(q
2
2 −m2

η)
N̄q1 · SN N̄q2 · SN χ̄χ . (4.9)

There is also an “exchange” amplitude, which is obtained from the direct one by chang-

ing the overall sign and interchanging all variables of the final-state nucleons (p′1 ↔ p′2,

N ′1 ↔ N ′2).

Compared to ref. [26], where the ππ two-body interaction has been calculated, we also

include the ηη which is Yukawa enhanced as can be seen from eq. (4.9). Later on we will

study the competition between this enhancement and the suppression expected from the

fact that the η-induced potential has shorter range compared to the π-mediated one.

4.3 WIMP-nucleon potentials

From the WIMP-nucleon amplitudes discussed above to NLO in the chiral power counting,

one can derive non-relativistic WIMP-nucleon interaction potentials. This procedure is

standard and requires (i) taking the non-relativistic limit of M1,W and M2,W and rescaling

the amplitude to take into account the difference between relativistic and non-relativistic

normalization of states: MA,W → MA,W ≡ 1/((2mN )A (2mW ))MA,W |non−rel ; (ii) deter-

mining the potential by requiring that the amplitude of non-relativistic quantum mechanics

matches MA,W , using the same (unbound) WIMP and nucleon external states used in the

ChPT calculation. This step involves taking the Fourier transform of MA,W (~qi, ~qW ). Note

that for the two body term one can work exclusively with the “direct” amplitude and

match it on the QM matrix element of the potential between nucleon wave-functions that

are not anti-symmetrized. The same result would be obtained by including the “exchange”

diagram and using an anti-symmetric two-body wave-function.

The matching procedure leads to a QM interaction Hamiltonian of the form:

HI =
∑
i=1,A

V1(~xi − ~xW ) +
∑
i<j

V2(~xi − ~xW , ~xj − ~xW ) + . . . , (4.10)

where the 1-body (V1) and 2-body (V2) terms are related to M1,A and M2,A, respectively.

The LO matching induces a contact one-body potential V1(~xi− ~xW ) ∝ δ(3)(~xi− ~xW ). The

NLO matching induces a long-range term in the WIMP-nucleon potential V1(~xi − ~xW ),

as well as a contribution to the WIMP-nucleon-nucleon potential. As discussed below,

we shall not need the detailed expression of the coordinate-space potentials, but rather a

hybrid form that depends on the nucleon coordinates ~xi (and spin-isospin variables) and

the WIMP momentum-transfer variable ~qW .
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5 Nuclear matrix elements

The next step towards a description of WIMP-nucleus elastic scattering requires using

the WIMP-nucleon(s) interaction Hamiltonian (4.10) to compute the transition amplitude

between appropriate initial and final WIMP-nucleus states. The initial state |i〉 is char-

acterized by a WIMP with momentum ~PW (and possibly internal quantum numbers) and

nucleus in its ground state with center-of-mass momentum ~PA. The final state |f〉 is char-

acterized by momenta ~P ′W = ~PW − ~qW and ~P ′A = ~PA − ~qA, with the nucleus remaining in

the ground state. Using translational invariance, the nucleus wave-function in the initial

state can be written as ψi(~x1, . . . , ~xA) = ei
~PA· ~XCMφ0(~y1, . . . , ~yA−1), where for simplicity

we have suppressed spin and isospin indices, ~XCM , ~y1, . . . , ~yA−1 represent center-of-mass

and internal (Jacobi) coordinates for the system of A nucleons, and φ0(~y1, . . . , ~yA−1) is the

ground-state wave-function in internal coordinates.

Within this setup, one can show [34] that the non-relativistic T -matrix element reads

〈f |T̂ |i〉 = (2π)3δ(3) (~qW + ~qA) T (~qW ) T (~qW ) = T1 + T2 (5.1)

T1 =
∑
i=1,A

∫
d~x1 . . . d~xA ψ∗0(~x1, . . . , ~xA) ⊗ Ṽ1(~qW ; ~xi) ⊗ ψ0(~x1, . . . , ~xA) (5.2)

T2 =
∑
i<j

∫
d~x1 . . . d~xA ψ∗0(~x1, . . . , ~xA) ⊗ Ṽ2(~qW ; ~xi, ~xj) ⊗ ψ0(~x1, . . . , ~xA) , (5.3)

where we indicate with the symbol “⊗” the non-trivial contractions in spin and

isospin space. In the above expressions ψ0(~x1, . . . , ~xA) denotes the ground-state nu-

clear wave-function with center-of-mass localized at the origin, i.e. ψ0(~x1, . . . , ~xA) =

ψCM ( ~XCM )φ0(~y1, . . . , ~yA−1), with |ψCM ( ~XCM )|2 ∝ δ(3)( ~XCM ). The hybrid potentials Ṽ1,2

are related to the one- and two-body amplitudes (obtained by taking the non-relativistic

limit of (4.1) and (4.7)) as follows:

Ṽ1(~qW ; ~xi) =−ei~qW ·~xi M1,W (~qW ) (5.4)

Ṽ2(~qW ; ~xi, ~xj) =−
∫
d~qi

(2π)3

d~qj
(2π)3

e−i~qi·~xie−i~qj ·~xj (2π)3δ(3)(~qi+~qj+~qW )M2,W (~qi, ~qj , ~qW ) . (5.5)

The explicit form of the two-body potentials at ~qW = 0 is given by:

Ṽ
(ππ)

2 (0; ~xi, ~xj) =− λ+

vΛ2
np

g2
Am

3
π

96π F 2
π

Oππ(i, j) (5.6)

Ṽ
(ηη)

2 (0; ~xi, ~xj) =− 1

vΛ2
np

g2
Amη

288π F 2
π

(
4α−1√

3

)2 [
m2
π λ++4

(
M2
K−

1

2
m2
π

)
λs

]
Oηη(i, j) (5.7)

with

Oππ(i, j) = − 1

xπ
(F1(xπ)δab + F2(xπ)Tab)

(
σaiσ

b
j

)
⊗ (τ i ·τ j) , (5.8)

Oηη(i, j) = − 1

xη
(F1(xη)δab + F2(xη)Tab)

(
σaiσ

b
j

)
⊗ (I) , (5.9)
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and the definitions ρ = xi − xj , Tij = 3ρ̂iρ̂j − δij , xπ = mπ|ρ|, xη = mη|ρ|,
F1(x) = e−x(x− 2), F2(x) = e−x(x+ 1) [26, 51].

Evaluating the above matrix elements requires knowledge of the nuclear many

body wave function |ψ0〉. In particular, evaluating the one-body (5.2) and two-body

contributions (5.3) requires knowledge of the one- and two-body nucleon densities in the

ground state. For typical nuclei involved in DM direct detection experiments such as Ge

or Xe the relevant wave function cannot be obtained from first principles and different

models have to be used.

The one-body contributions to the WIMP-nucleus amplitude can be evaluated

in a straightforward way noting that, given the one-body potential from (5.4), the

matrix element (5.2) factorizes in the product of nucleon scalar form factors and nu-

clear form factor (the Fourier transform of the one-body nucleon densities). Denoting

the latter by Fn,p(|~qW |2) and assuming that neutron and proton densities are equal,

Fn,p(|~qW |2) ≡ F (|~qW |2), one finds:

T1 = −F (|~qW |2)
(
Z fp(|~qW |2) + (A− Z) fn(|~qW |2)

)
, (5.10)

with fp,n given in eq. (4.2). The one-body density can be taken from phenomenology or

from microscopic models, such as the nuclear shell model. We will use the exponential

form [52] F (ER) = Exp(−ER/(2E0)) with ER = |~qW |2/(2mA), E0 = 1.5/(mAR
2
0) and

R0 = [0.3 + 0.91(mA/GeV)1/3] × 10−13 cm. We have checked that the results are stable

if we use other parameterizations available in the literature [52, 53].

In order to calculate the two-body contribution T2 (5.3) to the WIMP-nucleus ampli-

tude, one needs the matrix elements

NMM = 〈ψ0|
∑
i<j

OMM (i, j) |ψ0〉 M = π, η (5.11)

of the operators Oππ and Oηη defined in eq. (5.8) and eq. (5.9), in terms of which one has

T
(ππ)
2 = − λ+

vΛ2
np

g2
Am

3
π

96π F 2
π

Nππ (5.12)

T
(ηη)
2 = − 1

vΛ2
np

g2
Amη

288π F 2
π

(
4α− 1√

3

)2 [
m2
π λ+ + 4

(
M2
K −

1

2
m2
π

)
λs

]
Nηη . (5.13)

To evaluate the matrix elements Nππ,ηη we use the NSM. In this framework, one assumes

that the nucleons feel a mean external potential and occupy levels according to Pauli’s

exclusion principle. For the self-consistent potential, we use the harmonic oscillator with

nucleus-dependent frequency ω(A) empirically fit to data.3 Given an arbitrary two-body

potential Vij between nucleons i and j, NSM allows to calculate the expectation value

of the following Hamiltonian: G =
∑

i<j Vij . For the simplest case of all closed shells

(core-core matrix element), using the raising and lowering operator formalism the result

3We use the following form for the harmonic oscillator frequency: ω(A) = (45/A1/3−25/A2/3)MeV [54].

For the lower cutoff in the radial integrals we use 0.5 fm.
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for such expectation value in NSM equals:

〈c|G|c〉 =
∑

j1≤j2,J,T
(2J + 1)(2T + 1)VJT (j1, j2, j1, j2), (5.14)

where ji represent the orbits of NSM, encoding quantum numbers n, l, j of the orbit, j1 ≤ j2
is understood in the sense Ej1 ≤ Ej2 , and finally J runs |j1 − j2| . . . j1 +j2, T = 0, 1. VJT is

a two-body matrix element between the anti-symmetrized two-body wavefunction. Explicit

expression for such two-body matrix element can be found in ref. [55]. By computing the

matrix elements for a number of closed-shell nuclei, we find the following scaling with A

Nππ ≈ −0.91A, Nηη ≈ 0.0061A . (5.15)

For Nππ the scaling is consistent with Nππ ∼ A found in [26]. The sign difference between

Nππ and Nηη appears because for the pion exchange diagram the second term in the

scalar form-factor F1(x) = (x − 2) exp(−x) dominates, while for ηη on the contrary, the

first term dictates the sign. In order to understand the size difference one has to compare

mπNππ to mηNηη since the meson mass mM has been factored out in the definitions of

nuclear operators OMM . The ratio of these numbers approximately equals 37. This arises

from a factor of 3 suppression for ηη operator due to different isospin structure and a

factor of ≈ 12 due to shorter distance potential for ηη compared to ππ exchange. Thus

the expected value for the ratio T
(ηη)
2 /T

(ππ)
2 is 1/37× 20× (4α − 1)2/3 ≈ 0.07, where the

factor of ≈ 20 arises due to the strange Yukawa enhancement factor for the ηη operator.

6 Phenomenology

The differential WIMP-nucleus scattering rate per unit time and unit detector mass reads

dR

dER
=
κWρW
πmW

∣∣∣∣[Zfp(ER)+(A−Z)fn(ER)
]
F (ER)−T2(ER, A, Z)

∣∣∣∣2 η (ER,mW ,mA) , (6.1)

where ER denotes the nuclear recoil energy, related to the momentum transfer squared via

−q2
W ' |~qW |2 = 2mAER (mA is the nucleus mass). The overall factor κW in (6.1) depends

on the nature of the DM particle. For example, for Dirac fermions κW = 1/2, while for

Majorana fermions κW = 2. We denote by mW the WIMP mass and ρW the local dark

matter density (for which we use ρW = 0.3 GeV/cm3). Next, the WIMP-nucleus scattering

amplitude is given by the sum of a one-body term involving the nucleon form factors

fp,n(ER) (see eq. (4.2)) and nuclear form factor F (ER) (see discussion following (5.10)),

and a two-body term T2(ER, A, Z) (see eq. (5.12) and eq. (5.13)). Finally, the last factor

in (6.1) involves an integral over the local DM velocity distribution f(u):

η (ER,mW ,mA) =

∫ uesc

umin

f(u)

u
d3u , umin =

√
mAER
2µ2

WA

µWA =
mWmA

mW +mA
. (6.2)

In our study we use for illustrative purposes a Maxwellian distribution with finite escape

velocity (for which analytic expressions can be found in ref. [19]), with input parameters

v0 = 220 km/sec, vobs = 233 km/sec, vesc = 550 km/sec [19].
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Fixing the hadronic parameters to the central values of the ranges discussed in

section 4.1, we can express the nucleon form factors and the two-body amplitude as linear

combinations of the short-distance parameters λu.d.s,Θ defined above in eq. (2.5). At zero

momentum transfer the form factors read4

fp(0) ≡ fp =
1

vΛ2
np

×
(

17.7λu + 24.5λd + 45.0λs + 938.3λΘ

)
×MeV, (6.3)

fn(0) ≡ fn =
1

vΛ2
np

×
(

12.2λu + 35.5λd + 45.0λs + 939.5λΘ

)
×MeV. (6.4)

The energy-dependence of the form factors arising from loop corrections is very well

approximated by a linear form for ER < 50 keV:5

fp(ER)−fp(0)' 1

vΛ2
np

×
[

(−0.58λu−0.96λd−2.38λs) MeV
]
×
(
A

100

)(
ER

50 KeV

)
(6.5)

fn(ER)−fn(0)' 1

vΛ2
np

×
[

(−0.48λu−1.16λd−2.38λs) MeV
]
×
(
A

100

)(
ER

50 KeV

)
. (6.6)

Using the exact one-loop function or the above linear parameterization leads to differ-

ences in the rates at most of 0.1% (the largest deviations occurs for Xenon target and

mW > 100 GeV). Finally, the two-body amplitude is given by

− T2(0, A,A/2)NSM
closed shells =

1

vΛ2
np

×A×
(
− 0.48λu − 0.97λd + 0.089λs

)
×MeV, (6.7)

where we limited ourselves to closed shells, Z = A−Z = A/2. While strictly speaking this

formula is inapplicable for most target nuclei used in experiments, we will use it as a rough

estimate of the two-body effect. An improved analysis should go beyond closed shells and

include the dependence of the two-body amplitude on ER. We leave this to future work.

The main novelty of our analysis stems from including in eq. (6.1) the ER-dependence

of fp,n(ER) and the two-body amplitude T2, both of which arise to NLO in the chiral

power counting. These long-distance QCD effects should be included in any consistent fit

to direct DM detection searches because, as we show below, they can affect both the shape

of the recoil spectrum and the total rates in a non-trivial way. We wish to emphasize here

a few points:

• While the new effects are of the natural size expected by power counting (com-

pare (6.3)–(6.4) to (6.5), (6.6), and (6.7)), they become very important in those

regions of parameter space where the leading order contribution to the WIMP-nucleus

amplitude are suppressed (such as those realizing the so-called “isospin-violating

dark matter” scenarios).

4The coefficients of λu,d are proportional to σπN , while the coefficient of λs is σs, so one can immediately

assess the impact of hadronic uncertainties.
5The uncertainty in α = F/(F + D) ∈ [0.3, 0.5] affects the coefficients of λu,d at the 5% level, and the

coefficient of λs at the 20% level.
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• Note that the NLO corrections depend on the recoil energy and have a different

dependence on the short-distance parameters λi than the LO contributions. As

a result, the differential cross-section (6.1) does not factorize into a product of a

cross-section σp× [Z + (A−Z)fn/fp]
2, depending only on short-distance parameters

λi, and a term depending only on long-distance QCD and nuclear effects. Still,

for the differential cross-section the astrophysical dependence in η factorizes. The

scattering rate, however, obtained from integrating (6.1) over an energy window, no

longer exhibits a factorization into a product of σp× [Z+(A−Z)fn/fp]
2 with a term

that is schematically astrophysical ⊗ nuclear and independent of the short-distance

parameters. Using factorization to compare positive and null results of different

direct-detection experiments, independent of assumptions about the DM velocity

distribution, may have to be re-examined.

• Perhaps most importantly, our results show that the scalar-mediated WIMP-nucleus

cross-section cannot be parameterized in terms of just two quantities, namely fp and

fn or equivalently the WIMP-proton cross-section σp ∝ m2
pf

2
p and the ratio r = fn/fp.

Starting from the short-distance interaction of eq. (2.1), the cross-section depends on

four parameters (in one-to-one correspondence with λu,d,s,Θ). This calls for a more

general analysis of data, that takes into account these additional degrees of freedom.

A convenient choice of independent parameters, that matches onto the standard

choice when neglecting NLO chiral corrections, is achieved as follows. First, we observe

that fn,p(ER) and T2(ER, A, Z) are linear functions of λu,d,s,Θ/Λ
2
np so that the rate is a

homogeneous quadratic form in the λ’s. Next, we can trade λu,d for fp and r = fn/fp,

and finally we can extract λΘ as an overall factor. In conclusion, the four parameters

controlling the rate are: (1) λΘ/(vΛ2
np), which sets the overall normalization; (2) fp,

or equivalently6 f̄p = vΛ2
np fp/λΘ; (3) r = fn/fp,; and (4) λs/λΘ. The rate has the

form R ∼ (λΘ/(vΛ2
np))2 × Q(fp, rfp, λs/λΘ), where Q(x, y, z) is a quadratic form in

x, y, z. Neglecting NLO corrections, only two independent parameters survive, namely

fp (or equivalently σp ∝ m2
pf

2
p ) and r = fn/fp, and the rate takes the simplified form

R ∼ f2
p [Z + (A − Z)r]2. Note that any ratios of integrated rates only depend on three

parameters: f̄p, r, and λs/λθ, as the overall normalization cancels.

We illustrate the phenomenological implications of our new WIMP-nucleus amplitude

parameterization in figures 4, 5, and 6:

• In figure 4 we present contour plots of the ratio of NLO to LO integrated rates

RNLO/RLO on the plane (r, f̄p), fixing λs/λΘ = 1. We have chosen one representative

target, Xenon, for which we considered a weighted average of all naturally occurring

isotopes and the integration region ER ∈ [8.4, 44.6] keV [3]. We plot results for

two representative values of the WIMP mass mW = 10 GeV (left panel) and

mW = 100 GeV (right panel). Qualitatively similar features arise for different

choices of λs/λΘ ∈ [−50, 50] and other target materials, such as Germanium. The

6The convenience of this choice is apparent from equations eq. (6.3) and eq. (6.4). It is also clear that

f̄p has dimensions of energy.
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Figure 4. Contour plots of the NLO to LO integrated rates RXe
NLO/R

Xe
LO on the (r, f̄p) plane, at

fixed λs/λΘ = 1, with mW = 10 GeV (left panel) and mW = 100 GeV (right panel). The solid red

line corresponds to RXe
NLO/R

Xe
LO = 2 and for all points inside the solid red line the NLO correction

is more than 100%.

plots clearly display the importance of NLO corrections whenever the LO rate

vanishes or is highly suppressed, which happens for fp = 0 (for any finite r) and

Z + (A−Z)r = 0 (r ≈ −0.7 for Xenon isotopes). Along these singular directions the

ratio RNLO/RLO diverges or is highly enhanced. Moving away from these singular

regions, the ratio RNLO/RLO decreases, but corrections remain substantial over large

regions of parameter space. We quantify this statement by highlighting in red the

contours where RNLO/RLO = 2: within the region enclosed by these contours the

fractional corrections to the rate exceed 100%.

• In figure 5 we illustrate the impact of chiral corrections on the recoil spectra, for

two benchmark points in the (r, f̄p) plane, model A where RNLO/RLO− 1 ∼ O(10%)

(top panels), and model B where RNLO/RLO is dramatically enhanced (bottom

panels). In these plots we use Λnp = 100 GeV, v = 246 GeV and λΘ = 1 (the

scaling of the rate with these parameters is trivial). The main message is that

while for low-mass WIMP (mW = 10 GeV, left panels) the recoil spectrum gets

mostly a normalization correction with no dramatic change in the shape regardless

of the value of r, for larger WIMP masses (mW = 100 GeV, right panels) the recoil

spectrum is considerably distorted when Z + (A − Z)r ≈ 0. This result arises from

the competition between the linearly rising fn,p(ER) and the exponentially falling

velocity integral η(ER,mW ,mA), which cuts off at lower ER for lower mW .

• Finally, in figure 6, we explore to what extent in our general framework for

scalar-mediated WIMP-nucleus interactions we can reconcile the tension between

CoGeNT [2], which favors a low-mass WIMP and XENON100 [3], which puts an

upper limit on the rate in this mass region. The tension can be quantified as follows:
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Figure 5. Recoil spectra for model A (f̄p = 0.5 GeV, r = 1, λs,Θ = 1, top panels) and model B

(f̄p = 0.5 GeV, r = −0.7, λs,Θ = 1 bottom panels), for both Xenon (blue lines) and Germanium

(red lines) to LO (dashed lines) and NLO (solid lines).

for mW = 10 GeV the standard LO fit with r = fn/fp = 1 implies [8] σXENON100
p <

4 × 10−43cm2 and σCoGeNT
p > 4 × 10−42cm2 (assuming large contaminations in

CoGeNT [8]), and hence σXENON100
p /σCoGeNT

p < 0.1. In turn, this can be converted

into an upper bound on the ratio of integrated rates RXe/RGe at mW = 10 GeV,

for any energy window. Using ER ∈ [8.4, 44.6] keV [3] for Xe (XENON100) and

ER ∈ [2.3, 11.2] keV [7] for Ge (CoGeNT) we find RXe/RGe < 2× 10−5.

In figure 6 we show contour plots of RXe/RGe in the (r, f̄p) plane to LO (top left

panel) and NLO with λs/λΘ = 1 (top right panel). In these plots we also highlight

in red the curves along which RXe/RGe = 2× 10−5. As seen from the top left panel,

assuming LO cross-sections there is a narrow region around r = −0.7 consistent with

experimental constraints. This is the well known regime of isospin violating dark

matter (IVDM) [12–15]. However, as expected from figure 4 and explicitly shown

in the top right panel of Fig 6, along the r = −0.7 line the LO analysis cannot be

trusted. Interestingly, our results show that to NLO there are still regions of param-

eter space consistent with RXe/RGe < 2 × 10−5, which are non-trivial deformations
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of the narrow band around r ≈ −0.7. In these regions, the NLO corrections provide

a 90% suppression of the Xenon rates, i.e. RXe
NLO/R

Xe
LO < 0.1, again pointing to the

importance of the new effects. We have checked that even changing the energy-

integration regions the same features emerge. For completeness, in the bottom panels

of figure 6 we show the recoil spectra corresponding to two points in parameter space

(marked as C and D in the top panels) consistent with RXe/RGe < 2× 10−5 to NLO.

The main features of the results presented in figures 4, 5, and 6 are robust against

changes in the hadronic matrix elements σ
(p,n)
q and the low-energy constant α = F/(F+D).

We have varied these inputs in the ranges presented in section 4 and verified that the

changes in figures 4, 5, and 6 are at the 5% level at most. This uncertainty grows to about

20% level when λs/λΘ � 1. A related important question for the phenomenology is: how

robust is the one-loop ChPT calculation of the slope of the scalar form factors? The disper-

sive analysis of ref. [56] reveals that one-loop results severely under-estimate (by more than

a factor of 2) the slope of the iso-scalar (ūu+ d̄d) form factor. We expect that larger slopes

will increase the impact of recoil-energy dependent form factors (fn,p(ER)), reinforcing the

conclusions of our work. Therefore, this issues deserves to be revisited in the future.

7 Conclusions

We have applied systematic chiral effective theory methods to WIMP-nucleus interactions.

Focusing on the case of scalar-mediated WIMP-quark interactions, but otherwise in a com-

pletely model-independent framework, we have worked out the NLO corrections to WIMP-

nucleon interactions. A similar analysis can be done for pseudo-scalar, vector, pseudo-

vector and tensor WIMP-quark interactions. We find that at NLO two types of effects enter.

First, one loop diagrams generate recoil-energy dependent corrections to the single-nucleon

scalar form factors. The second effect involves two-nucleon interactions with the WIMP

at tree level. This generates a new two-body term in the WIMP-nucleus scattering ampli-

tude. Our results for the modified rate formula (6.1) show that the scalar-mediated WIMP-

nucleus cross-section cannot be parameterized in terms of just two quantities, namely fp and

fn or equivalently the WIMP-proton cross-section σp ∝ m2
pf

2
p and r = fn/fp. Two more

parameters are needed for a complete description consistent with long-distance QCD effects.

In our model-independent scan of parameter space, we have found that the new effects

become extremely important when the leading order contribution to the WIMP-nucleus

amplitude is moderately to highly suppressed. We have identified the region of parameter

space in which the fractional corrections are greater than 100%, showing that it includes

the so-called “isospin-violating dark matter” regime. We have also explored to what

extent the tension between CoGeNT [2] and XENON100 [3], quantified by the ratio of

integrated rates RXe/RGe < 2 × 10−5, can be reconciled in our framework. Intriguingly,

we find that there are regions of parameter space consistent with this constraint and we

show that in these regions, the NLO corrections provide a 90% suppression of the Xenon

rates, i.e. RXe
NLO/R

Xe
LO < 0.1. Finally, we have also explored how the new corrections affect

the recoil spectra, finding large distortions for regions in which the LO contribution is

suppressed and for WIMP masses mW ≥ 30 GeV.
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Figure 6. Top panels: contour plots of the ratio of Xenon and Germanium integrated rates

RXe/RGe on the (r, f̄p) plane, at fixed λs/λΘ = 1 and mW = 10 GeV to LO (left panel)

and NLO (right panel). Solid red lines on top panels represent the contour lines, where

RXe
NLO/R

Ge
NLO = 2 × 10−5. Everywhere inside the solid red lines the signal in CoGent is consistent

with null signal in Xenon100. Bottom panels: recoil spectra for model C (f̄p = 0.425 GeV,

r = −0.885, λs,Θ = 1) and model D (f̄p = −0.33 GeV, r = −0.4, λs,Θ = 1), for both Xenon (blue

lines) and Germanium (red lines) to LO (dashed lines) and NLO (solid lines).

Both the theoretical and phenomenological analysis presented here should be regarded

as only the first step of a broader program. On the theory side, we can identify several

areas where future work is highly desirable: (i) the extension of the ChPT analysis beyond

scalar-mediated WIMP-quark interactions; (ii) an improved treatment of the slope of the

single-nucleon scalar form factors; (iii) an improved analysis of the two-nucleon matrix

element, that goes beyond closed shells and includes the dependence on the recoil energy

ER. On the phenomenology side, we have presented a few illustrations of how our new

results affect direct DM detection, without any attempt to a complete analysis. We argue,

however, that our results call for a new model-independent analysis of direct DM search

data that properly includes long-distance QCD effects, because they can affect both the

shape and normalization of the recoil spectrum.
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