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1 Introduction

The AdS/CFT correspondence [1-3] has given us a tremendous amount of insight in quan-
tum gravity through its duality with large NV gauge theories. Progress does not come easily,
however. The regime in which the bulk theory reduces to semi-classical gravity is typically
dual to a gauge theory in the strong 't Hooft coupling regime, and is difficult to solve. In
the opposite limit, where the gauge theory is weakly coupled, the bulk theory is typically
in a very stringy regime, involving strings in AdS whose radius is very small in string units
(though large in Planck units, as long as N is large). With a few exceptions, such as the
purely NS-NS background of AdSs [4], in which case the dual CFT is singular [5, 6], gener-
ally the bulk string theory involves Ramond-Ramond fluxes; even the free string spectrum
is difficult to solve, and the full string field theory appears to be out of reach at the moment.
A particularly simple class of conjectured AdS/CFT dualities [7, 8, 16] avoids these
difficulties. These involve boundary CFTs whose numbers of degrees of freedom scales like
N rather than N2. In the AdSy/CFT3 conjecture of [7], the boundary theory is given by
the critical O(N) vector model. Such a duality can be extended to Chern-Simons-matter
theories with vector matter representations [9]. In the AdSs/CFT; conjecture of [16], the
boundary theory is the Wy minimal model, which can be realized as the coset model

SU(N), @ SU(N);
SUN)kt1

(1.1)

In these examples, the CFT is either exactly solvable or has a simple 1/N expansion that
can be computed straightforwardly order by order. The dual bulk theories, however, are
higher spin extensions of gravity, involving an infinite tower! of higher spin gauge fields.
In the case of [16], additional massive scalar matter fields are coupled to the higher spin
gauge fields. It is likely that these higher spin gauge theories are UV complete (at least
perturbatively) theories that contain gravity, due to the large number of gauge symmetries,
and are interesting toy models for quantum gravity. However, they do not reduce to semi-
classical gravity in any limit. Note that the higher spin symmetry can be broken by AdS
boundary conditions [7, 40|, but this breaking is controlled by the coupling constant of the
theory and is in some sense rather mild.

The goal of the current paper is to understand the conjectured duality of [16] at the
interacting level, in particular, to the second order in perturbation theory. In fact, a
careful examination of the spectrum of the linearized Vasiliev system leads us to propose
a modification of the conjecture of [16]. A key insight of [16] is that, in the large N limit
of the coset model (1.1), A = N/(N + k) plays the role of the 't Hooft coupling, and
the basic primaries labelled by representations ((J;0) and (0; ) (as well as the conjugate
representations) have finite scaling dimensions A, and A_ in the 't Hooft limit, and are

"While a pure higher spin gauge theory in AdS3 involving spins up to N can be formulated in terms
of SL(N,R) x SL(N,R) Chern-Simons theory, it is not known how to couple this theory to scalar matter
fields. The construction of [10-13] requires an infinite set of gauge fields of spins s = 2,3, -+ ,co. This is
the system conjectured to be dual to the Wy minimal model in [16]. While the dynamical mechanism that
renders the set of spins finite in the interacting theory has not yet been understood, this seeming mismatch
is not visible at any given order in perturbation theory.



conjectured to be dual to massive scalars in the bulk. We will consider a version of Vasiliev’s
system that involve a gauge field of spin s for s = 2,3, --- , 00, coupled to two real massive
scalar fields. We propose that it is dual to a subsector of the W minimal model, generated
by the Wiy currents together with two basic primary operators of dimension A, labelled
by (0J;0) and (0J; 0), or two basic primaries of dimension A_ labelled by (0; ) and (0;0),
depending on the boundary condition imposed on the bulk scalar. We will refer to these
two subsectors as the A, subsector and the A_ subsector, respectively. Each subsector
has closed OPEs, and hence consistent n-point functions on the sphere, in the sense that
they only factorize through operators within in the same subsector. This identification is
natural by comparing the bulk fields and boundary operators, and also avoids the puzzle
with “light states” in the 't Hooft limit of the coset model.? However, it suggests that the
bulk Vasiliev system is non-perturbatively incomplete, though makes sense to all order in
perturbation theory. It may be possible to enlarge Vasiliev’s system to obtain a higher
spin-matter theory that is dual to the full Wy minimal model, but such a bulk theory
would be subject to the strange feature of having a large number of light states. We will
not address this possibility in the current paper. There is, on the other hand, a minimal
truncation of Vasiliev system, where one keeps only the even spin fields and one out of the
two real massive scalars. We conjecture that this system is dual to the orthogonal group
version of the Wy minimal model.?

The main nontrivial check of our proposal is a comparison of the tree level three-point
functions involving two scalars and one higher spin field in the bulk, and the 't Hooft limit
of the corresponding three point function in the dual CFT. In order to carry out such a
computation, we first solve for the boundary to bulk propagators of Vasiliev’s master fields,
and then expand the nonlinear equations of motion to second order in perturbation theory
and compute the three point function. We encounter subtleties with gauge ambiguity and
boundary condition on the higher spin fields, and will find explicit formulae for the gauge
field propagators obeying the boundary condition of [19]. While one may expect that, in
principle, such three point functions are determined by symmetries and Ward identities, the
implementation of the latter is not so trivial on the CF'T side. For instance, we do not know
a simple way to carry out the 1/N expansion of the coset model, and must calculate cor-
relators exactly at finite IV first, and then take the 't Hooft limit. For various quantities of
interest in the CF'T, analytic formulae for general spins are often difficult to obtain, and in-
stead one computes case by case for the first few spins. The results have a nontrivial depen-
dence on the 't Hooft coupling A\, which is mapped to a deformation parameter v in the bulk
theory. The case in which the bulk theory is the simplest, namely the v = 0 “undeformed”
theory, is mapped to A = 1/2. In this paper, most of our computation is performed within
the v = 0 theory, and is compared to the A = 1/2 case of the W minimal model. In ap-
pendix C we give some formulae useful for the deformed bulk theory with nonzero v, though
the analogous computation of correlators in the deformed theory is left to future work.

2The “light states” are the primaries labelled by a pair of identical representations, (R; R), whose
dimension scales like 1/N in the large N limit. While the contribution of such states to the partition
function is argued in [16] to decouple in the strict infinite N limit, they show up in OPEs of basic primaries
when 1/N corrections are taken into account.

3The ’t Hooft limit of this class of CFTs are recently studied in [17].



More precisely, we compute correlators of the form (OO.J (5)> at tree level in the v =0
undeformed bulk theory. These three-point functions are fixed by conformal symmetry
up to the overall coefficient; the latter is computed unambiguously as a function of the
spin s. The result is then compared to the three point functions in the Wy minimal
model, in the large N limit, at 't Hooft coupling A = 1/2. We test the conjectured duality
using the explicit expression for the spin 3 current in the coset construction, and found
perfect agreement.

We begin with a brief review of the three-dimensional Vasiliev’s system in section 2. In
section 3 we describe the linearized spectrum of the bulk theory, as well as propagators and
boundary conditions, while leaving technical details to appendix A. Some useful formulae
for the deformed bulk theory (i.e. with nonzero v) are given in appendices C. In section 4,
we work to second order in perturbation theory and compute the three point functions
of interest. The details of these derivations are given in appendix B. Our proposal of the
dualities and a test on the three point functions are presented in section 5. We conclude
in section 6.

2 A brief review of Vasiliev’s system in AdSj;

Throughout this paper, we will consider the Vasiliev system in AdS3, which consists of
one higher spin gauge field for each spin s = 2,3,4,---, coupled to a pair of real massive
scalar fields. We will often work explicitly with the Poincaré coordinates of AdSj3, with
o* = (z,2'), i = 1,2, and the metric ds®> = Z%(dz2 + dz'dz?). Following Vasiliev, we
introduce the auxiliary bosonic twistor variables ¥, zo, where o = 1,2 is a spinorial index,
as well as the Grassmannian variables v;, i = 1,2, which obey {¢;,1;} = 25ij.4 The master
fields are: W a 1-form in the spacetime parameterized by x#, S a 1-form in the auxiliary
z%space, and B a scalar field. All of them are functions of z*, vy, 24, as well as ;.

W =W, (z|y, z, ¥;)dz,
S = Sa(z|y, z,1;)dz", (2.1)
B = B(z|y, z,v;).
These fields are subject to a large set of gauge symmetries. The infinitesimal gauge trans-
formation is parameterized by a function e(x|y, z, ),
SW = dye + [W, .,
0S = dye + [S, €], (2.2)
0B = [B, €.

One further imposes a truncation so that W, B are even functions of (y, z) whereas S, is
odd in (y, z) (so that the 1-form S is even under (y, z,dz) — (—y, —z, —dz)). The gauge

4Note that while the equations of motion treats 11 and 12 on equal footing, the choice of vacuum will
not. The 1;’s can be thought of as purely a bookkeeping device.

®In Vasiliev’s original papers, the master fields depend on the additional Grassmannian variables k, p.
This will be discussed in appendix C. We will refer it as the “extended Vasiliev system”, the Vasiliev system
we present here is obtained by making a projection (1 + k)/2 on all fields, and effectively eliminating k, p.



parameter € is then restricted to be an even function of (y, z) as well. One introduces a
star-product * on functions of (y, z), defined by

fy,2)*xg(y,2) = /d2ud2ve””f(y +u,z+u)g(y + v,z —v). (2.3)

Here and throughout this paper, the spinors are contracted as uv = u“v, = —v%uqy = —vu
and uov = uo‘aaﬁvﬂ for a matrix 0. The integration measure d’>ud?v above is normalized
such that f 1 = f. The Grassmannian variables v; commute with y,, 2, and do not
participate in the % product. Under the star-product, the auxiliary variables y, generate
the three dimensional higher spin algebra hs(1,1) [14],% which is an associative algebra,
whose general element can be represented by a even analytic function of in y,. In particular,
hs(1,1) has a subalgebra sl(2) whose generator can be written as Ty, = y(q *¥g). An inner
product on this algebra is defined as (A4, B) = A(y) = B(y)|

y=0"
We define an involution ¢ on the star algebra as follows: ¢(y®) = iy®, o(2%) = —iz®,
1(dz®) = —idz®, and the action of ¢ reverses the order of all products (including the

multiplication of v;’s); in particular, ¢(1112) = 1211 = —1p11P2. The master fields W, S, B
are then subject to the reality condition”

(W) ==W, (S)" =-S5, and «(B)" = B, (2.4)

where the superscript * stands for taking the complex conjugate on the component fields
while leaving the auxiliary variables y<, 2%, 1; untouched.
Vasiliev’s equations of motion are now written as

AW+ W« W =0,
d. S+ d. W +{W,S}, =0,
d.S+ S xS = BxKd?, (2.5)
d B + [W, Bl =0,
d,B +[S, B = 0.

Here d, and d, denote the exterior derivative in spacetime coordinates z* and the auxiliary
variables 2% respectively. K = e*Y is known as the Kleinian. It has the properties

KsK=1, Kxf(y,2)=Kf(zy), fly)K=Kf(-z—y).  (26)

A few comments on (2.5) are in order. The third equation in (2.5) can be thought of as
the definition of the scalar master field B. The fourth equation is equivalent to a Bianchi
identity for the field strength of the connection A = W + .S, which follows from the second
and third equation. The last equation, however, is an independent equation for B.8

SWe will also consider hs()) the one parameter deformation of hs(1,1) in appendix C.

"Such a reality condition is necessary because, as we will see later, the physical components of the B
master field are of the form 1¥2Ceven + 1211 Coaa where Ceven is a real scalar and Coaq is a purely imaginary
scalar field.

8This is different from the four-dimensional version of Vasiliev’s system, which involves a similar set of
equations.



Note that the equations of motion (2.5) are preserved under the involution ¢, if one
sends (W, S, B) to (=W, =S, B) at the same time. In particular, Vasiliev’s system can be
further truncated down to what we refer to as the “minimal Vasiliev’s system”. The latter
is defined by projecting the master fields onto the (-invariant components, namely

(W) =-=W, «(S)=-S, and «(B)= B. (2.7)

We will see later that the minimal Vasiliev’s system contains only the even spin gauge
fields and a single matter scalar. Though, in most of this paper, we will be considering
the untruncated Vasiliev’s system, where gauge spins of all spins greater than or equal to
2 are included.

The equations (2.5) are formulated in a background independent manner. To formu-
late the perturbation theory, one begins by choosing a vacuum solution, and identifies the
physical propagating degrees of freedom by linearizing the equations around the vacuum
solution. One may then proceed to higher orders in perturbation theory and study inter-
actions in this background. It turns out that the system (2.5) admits a 1-parameter family
of distinct AdS3 vacua, labeled by a real parameter v. In fact, the parameter v appears
in a non-dynamical, auxiliary component of B, and thus the 1-parameter family of AdSs
vacua are not connected by physical deformations, but should rather be thought of as dif-
ferent theories in AdSs. In this paper, we will focus on the simplest, “undeformed” theory,
corresponding to the ¥ = 0 vacuum. The deformed vacua/theories (v # 0) are discussed in
appendix C. The perturbation theory, and in particular the study of three point functions,
of the deformed theory is left to future work.

The undeformed AdS3 vacuum solution is given by
B=0, S=0, W=W=up(ly)+vreolely), (2.8)

where W is a flat connection satisfying d, Wy+ Wy« Wy = 0. With Wy(z|y, 1)1) chosen to be
a quadratic function of y, the flatness condition is classically equivalent to the Chern-Simons
formulation of Einstein’s equation with negative cosmological constant in three dimensions.
In other words, the equations of motion is obeyed if the 1-forms ey, wg are chosen as the
dreibein and spin connection for AdSs, contracted with y® in spinorial notation. In Poincaré
coordinates o = (z,2'), they can be written as

oh* ot
wolely) = wi @)yays = — 5 Lda",  eolaly) = e (@)yays = —L5dat. (29)
Our convention for e is such that
M ¥é 1 v 50 6§ Iz af 1 n 1
(eg)apleon)” = _674(5“55 + 5a55)a (eg)ap(eo)™ = —3*251/‘ (2.10)

Expanding around this vacuum solution, we will write W = Wy + /W, and the equations of



motion in its perturbative form as
DQW = W « /W,
DoS + d.W = —{W, S},
d.S —Bx Kdz?> =—S%85, (2.11)
d.B = —[S, Bl.,
DyB = —[W, B.,
where we have defined Dy = d,, + [Wp, -]+. By choosing a z,-dependent gauge function, one
can always go to a gauge in which S|, —o = 0. The physical degrees of freedom are entirely

contained in the z,-independent part of the master fields, whereas the z,-dependence are
determined via the equations of motion. It is then useful to decompose W, B as

W (zly, z,¢) = Wo + Qz[y, ¥) + W' (z|y, z,)

B(zly,z,¢) = C(aly,¥) + B'(z]y, z,¥)
where Q and C are the restriction of W and B to z = 0, respectively, while W’ and B’
Obey W,’z =0 — B,’z =0

fields and two real scalar fields, whereas W’ and B’ are auxiliary fields. At the linearized

(2.12)

= 0. We will see that 2 and C' contain the higher spin gauge

level, the equations (2.11) reduce to

Do = — Wy, W'V}, .-, (2.13)
d. W'D = —DySsM, (2.14)
4,81 = W« Kd2?, (2.15)
B'Y =, (2.16)
DoCM = 0, (2.17)

where the superscript (n) labels the order of the component of the respective field in the
perturbative expansion. These equations will be analyzed in detail in the next section as
well as in appendix A. We will then proceed to the quadratic order and study the cubic
coupling and three point functions in section 4.

Let us note that the system of equations (2.5) and the AdS3 vacuum (2.8) are invariant
under a global U(1) symmetry,

W — ewlee_w%, S — i S’e—ied’l, B — 01 B~ (2.18)

This U(1) rotates the phase of the complex scalar matter field, while leaving the higher spin
fields invariant. Note that (2.18) preserves the reality condition (2.4). While it is a symme-
try of the classical theory, and is expected to be a perturbative symmetry of the quantum
theory, it should be broken non-perturbatively (or alternatively, become gauged), as an-
ticipated in any quantum theory of gravity [41, 42]. In the proposed dual CFT, the U(1)
rotates the basic primaries ((J; 0) and (CJ; 0) with opposite phases. As far as correlators of a
fixed number of basic primaries are concerned, in the large N limit, this U(1) is effectively
a symmetry of the theory, since any correlation function that violates the U(1) vanishes
by the fusion rule. This U(1) is obviously broken when N basic primaries are inserted, as
the tensor product of N fundamental representations of SU(N) contains a singlet.



3 Propagators and two point functions

3.1 The physical fields and propagators

In this subsection we will describe the physical degrees of freedom in the linearized master
fields, as well as their propagators. The details of the derivations starting from Vasiliev’s
equation are given in appendix A.

3.1.1 The scalar matter field

The linearized scalar master field C™M)(z]y, ) can be decomposed as

CO (aly, ) = CO(2ly, 1) + baC L (@ly, 1) (3.1)

C;SB( is purely auxiliary; the only solution to its equation of motion is a constant, which

parameterizes a family of AdSs vacua. We will set C&(ullz( = 0 for now. C (1) can be expanded

mat
in y as
(1
mat - Zcmzzt «’E|yﬂ/}1 Z mat [eS RN ijl)yal o 'yan' (32)
It follows from Do(wgcligt) = 0 that the bottom component C’I(mt (x|Y1) obeys the usual
Klein-Gordon equation for a massive scalar field in AdSs,
3
(V0 —m®) Cpai (xln) =0, m® = =7, (3.3)

Expanding further in 1)1, C’( ), 0( |1h1) = Ceven(x) + 11 Coqq(x) contain a pair of real scalars

mat
of mass squared m? = Z in AdS units. Due to the reality condition (2.4), Ceyen is real
whereas Coqq is a purely imaginary scalar field. They can be paired up to a complex
massive scalar as Ceven + Codd, With Coyen — Coaq its complex conjugate. Under the global
U(1) symmetry (2.18), Coven + Coqq transform as

Ceven + Codd — e:ti@ (Ceven + Codd) . (34)

In the dual boundary CFT, this complex scalar corresponds to a complex scalar oper-
ator of dimension A, or A_, depending on the choice of boundary condition. Here

1 3 1
= — = _or —. 3.5
Ay 1:|:2 5 O 5 (3.5)

The higher components Cr(n;t" are expressed in terms of derivatives of Cr(ngt through the

equation of motion.

(1)

In the v- deformed vacua, C,
V(l/iZ)

4 Still describes a pair of real massive scalar fields, with

mass squared m? i 34 , where the & sign depends on a choice of projection. This
is discussed in appendlx C.

The boundary-to-bulk propagator for the scalar is C™*0 = K (&, 2)> for A = 3/2
or A = 1/2, where K(Z,z2) = q2+22, # = (2',2?). Tt is convenient to introduce another
auxiliary variable wl, satisfying 1/)1 =1, to label the two different boundary conditions, so
that A =1+ 1/)1 /2. With the §-function source on Ceyen cOmponent:

CW (2,2 5 0y, vn1) = 2m4n 21~ 7 6%() (3.6)

mat



turned on on the boundary, the boundary-to-bulk propagator for the master field

Cfngt( ly,11) is then given by
Crnaelaly, 1) = (1 rt Z yZy) TV (3.7)

2z

where X = 0% — 2oz, We can also turn on the source on C,qq component:

ol (7,2 = Oly,1P1) = 27”/)115121_%52(@ (3.8)

mat

on the boundary. The boundary-to-bulk propagator will be just (3.7) times 1);.

Under the action of the involution i, Ceyen is invariant whereas Cyqq changes sign.
Hence only Ceyen survives the minimal truncation (2.7). Thus, the “minimal Vasiliev sys-
tem” contains only a single real scalar scalar, which is dual to a real scalar operator in the
boundary CFT. Note that in writing the boundary-to-bulk propagator (3.7), we have cho-
sen to turn on a source for Ceyen only, and the result is invariant under the projection by ¢.

3.1.2 The higher spin fields

The higher spin gauge fields, as well as some auxiliary fields, are contained in Q(z|y, ),
which may be decomposed in the form

D(aly, i) = Q" (aly, d1) + 2 (xly, v1). (3.9)

As the notations suggest, 2"* contain the higher spin gauge fields in AdSs, while Q¢ are in
fact auxiliary fields determined by the scalar matter fields. The linearized equations take
the form

DoQ" =0, Do = —tho{ Wo, o W™}, |. . (3.10)

where we have defined
Do = dy + [wo, ]+ — ¥1{e0, } . (3.11)

It is demonstrated in appendix A.2 that up to gauge transformations, 2°¢ have no propagat-
ing degrees of freedom and are determined entirely in terms of Cac. €7, on the other hand,
obeys the (linearized) Chern-Simons equation with higher spin algebra hs(1,1) @ hs(1,1).
They are related to the metric-like higher spin fields, which are usually written in terms of
traceless symmetric tensors, in the following way.

First, expand QZ‘E, = th(eo)ag in y as

b (aly, o) = Y Qs aly,gn) = Do QR (al)y eyt (3.12)

and then express the components in terms of symmetric traceless tensors (in spinorial
notation) as

hs,(n n,0 n,—
Qaﬂ'al ‘O ( ”l/]l) aﬁal Qi 6(a1(gX§)a2...an) + E(Q(a1€§)agxa3...an)a (3‘13)



or equivalently,

1

1
I + - 0 —
(HH)(”H)B&%X,L (z]y, 1) + ny(aﬁmxn(fv\y,wl)wayﬁxn (z]y, 1)

(3.14)
Here ;' (y, 1) is defined as X, q,., contracted with y®’s, and similarly for x9(z|y, ¥1)

Q5 (2ly, 1) =

and x,, (z|y,11). Next, we expand in 11, and write
, /0
XE® = X+ e (3.15)

It turns out that Xeven are determined in terms of (derivatives of) x,qq through the equation
of motion. Furthermore, XZ&% can be gauged away entirely. The residual gauge symmetry
on X:ﬁ(y) takes the form

5X£L(’1J£(3/) = -V Auy),
1 (3.16)

5X2c71(_i(y) - _n(n + 1) vi)‘gdd@/)?

where A7, (y) is related to the gauge parameter € by € = 1 A2y, V* are defined here as
VT = (yehy)Vy, V7 = (0yeh0y)V,, (3.17)

where V, acts on a tensor (- - - )a;a,.. s the spin-covariant derivative. Under the t-action,
only the even spin fields are invariant. Hence, the “minimal” Vasiliev’s system only contains
higher spin gauge fields with even spins, and its dual boundary CFT contains only even
spin currents.

In the metric-like formulation, the spin-s gauge field is described by a rank s double
traceless symmetric tensor ®,,...,,. It may be decomposed into irreducible representations
of the Lorentz group as

DPpyopps = Epaoops T G paXpsps) (318)

where £ and y are traceless symmetric tensors of rank s and s — 2, respectively. With
the identification
252+ _ ¢(s) 252, 25 -3 (g

Xodd ) Xodd = _32(8 — 1)X 3 (319)

where ¢ is defined as &up--us contracted with (eg)aﬁyo‘yﬁ, and similarly for x(*), the Chern-
Simons form of the equations of motion can be shown to be equivalent to the Fronsdal form
of the equation on P,

1
(O =)@y = 5V VF Py p) + 5505 = DV, Vi, @iy (3:20)
— 8(8 — 1)9(M(I)MMM) =0,

which is invariant under the gauge transformation:

L v R (3.21)

where 1),,...,, is a symmetric traceless gauge parameter. The gauge transformation (3.21)
is also equivalent to (3.16) under the identification (3.19).

,10,



In three dimensions, the higher spin gauge fields do not have bulk propagating degrees
of freedom. In AdSs, just as in the more familiar case of gravitons (s = 2), there are bound-
ary excitations of the higher spin fields, corresponding to field configurations that cannot be
gauged away by gauge transformations that vanish on the boundary of the AdS spacetime.
A careful analysis of the gauge conditions is necessary in order to talk about boundary-to-
bulk propagators and bulk-to-bulk propagators. We will first consider Metsaev’s modified
de Donder gauge [43], which is convenient for solving higher spin propagators in AdS in
general dimensions. We will see, however, that the propagators found in this gauge vio-
lates (the higher spin generalization of) Brown-Henneaux boundary condition, and are not
directly applicable to the computation of boundary correlators. Nonetheless, this gauge
should be useful in doing loop computations in the bulk. We will then proceed to find
the appropriate boundary-to-bulk propagators that obey Brown-Henneaux boundary con-
dition, which allows for computations of boundary correlators.

3.2 Propagators in modified de Donder gauge

The modified de Donder gauge was introduced by Metsaev in [43]. This gauge has the
advantage that the equations of motion for different components of free higher spin gauge
fields decouple, and hence the solutions can be obtained easily. The implementation of the
gauge condition, on the other hand, is a bit complicated. It can be described as follows.

Start with the double traceless symmetric @7, .., which obeys the Fronsdal equation in

s
AdSsz. Write P a, = @Zl,,_#se% e efff‘s where A; are local Lorentz frame indices. Define

a generating function/field
O (z]Y) = @5 ., YA YA (3.22)

where Y4 = (Y#, Y1, Y?) are auxiliary vector variables (analogous to the twistor variables

y® introduced previously). One then performs a linear transformation on ®*(z|Y),

o(z|Y) = 2 A NTI?® D% (2]Y), (3.23)

where z is the Poincaré radial coordinate, N is an operator that acts as a separate nor-
malization factor on each component of ®(z|Y) of given degree in Y* and ¥ = (Y1,Y?2),
and TI%® involves derivatives on Y? and Y. See appendix A.3 for the definition of these
operators. The resulting generating field ¢(z|Y") is double traceless with respect to the
directions parallel to the boundary, namely

The modified de Donder gauge is defined by a gauge condition of the form
Co(x|Y) =0, (3.25)

where C is an operator involving up to two derivatives on Y and one spacetime derivative.
The key point is that, in this case, the Fronsdal equation for ®* is re-expressed in terms of
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equations on ¢(z|Y) as

O+ 02 - (r= 512("”_ 2) b (2|V) =0, (3.26)

where ¢, (x]|Y) are the components of ¢(x|Y) expanded in Y?,

S

PlY) =D (V2 "ér(x|Y). (3.27)

r=0

The equation of motion is then straightforwardly solved in momentum space. Note that

the gauge condition (3.25) relates the different components ¢,.(z|Y). After solving ¢(x|Y),

one can translate it back into ®°(z|Y’), and further into the frame-like fields ng)(’ji. The

result for the boundary-to-bulk propagator of ng)c’li due to a chiral spin-s current JJ(FSJ)r n
source inserted at & = 0 is given in momentum space explicitly by (up to the overall

normalization factor)

ShT (> - S\, r— s—r s+r s—r —
Xodi (B2l =i ()p ) ) W) 2K (B, (3.28)
r=0
S$)— (= s - -7 5—2 r— s—r s+r— s—r— =
XS (p,ZIy)=2(25_1)ZZ( . >p L) () TR () T R e K (215
r=0

The details of the derivation is given in appendix A.3. These propagators, however, do
not obey the higher spin analog [19, 20] of Brown-Henneaux boundary condition [18],
which should be imposed in order for the dual CFT to have the appropriate higher spin
symmetry. In fact, we know that any solution to the linearized higher spin equations in
AdSs must be a pure gauge in the bulk. The key to finding the appropriate boundary-to-
bulk propagator is then to find the appropriate gauge transformation near the boundary.
In the next subsection, we will see that such a gauge transformation takes a rather simple
form. The bulk-to-bulk propagators in the modified de Donder gauge may still prove useful
for loop computations in the bulk, which we hope to revisit in the future.

3.3 The asymptotic boundary condition

Let us begin with the spin 2 case, and consider the Brown-Henneaux boundary condi-
tion [18] on metric fluctuations. In the Y-algebra language, a spin 2 tensor field sourced by
a positively polarized stress-energy tensor insertion on the boundary, at © = 0, that obeys
Brown-Henneaux boundary condition is given by

®2(z|Y) ~ 6%(Z)(Y")? + (subleading contact terms) + (Y7)2. (3.29)

On the r.h.s. we only indicated the leading order terms in the z — 0 limit; their coefficients
are not specified. The boundary-to-bulk propagators in the modified de Donder gauge,
derived in the previous subsection, does not obey this boundary condition. It suffices to

— 12 —



examine the spin 2 case. In position space, the graviton boundary to bulk propagator in
the modified de Donder gauge (for a positively polarized source) is

2i xtz i 22 i (zF)?
P(Y)==—YVV " (v 4+ VY —— L 3.30
(Y) = (22 + 22)2 77( ) (22 + 22)2 + = (22 + 22)2 (3.30)
In the limit z — 0, it goes like
2 2 12 . Y-vt
O“(Y) ~ 6%(x)(Y ") + (subleading contact terms) + @) (3.31)
x

which clearly violates the boundary behavior of (3.29).

Similarly, the higher spin gauge fields are subject to the an analog of the Brown-
Henneaux boundary conditions [19, 20]. For general spin s, the boundary condition is such
that the boundary-to-bulk propagator for a positive polarized spin-s source is

(vye

D5 (x|Y) ~ 22726%(Z)(YT)* + (subleading contact terms) + T
x

(3.32)
where the coefficient are again not specified. Let us examine this boundary condition (3.32)
in more detail. In three dimension, similarly to gravitons, the higher spin gauge fields do
not have any propagating degrees of freedom in the bulk. In other words, any solution to the
equation of motion can be (locally) written in a pure gauge form, ®*(z|Y) = YAD49* (z|Y).
However, the gauge parameter n°(z|Y) may have nonzero higher spin charge, the latter
is given by a boundary integral, and the higher spin gauge field ®*(x|Y) would not be
gauge equivalence to zero. As proposed in [19], the boundary behavior of the gauge pa-
rameter 7°(z|Y) can be fixed by demanding the gauge field ®*(z|Y") obeys the boundary
conditions (3.32). With some effort, we find the appropriate gauge parameter n°(x|Y)
near the boundary:

s—12s—2u—1 wu 1 r4u u 2u—1 ' u 97 _1
e =3 Y S () (e ) (255
u=0 r

=1 v=0 j=0 j=1 (3.33)
3\2v+r—1 —\u—v +\s—r—v—u Z2u+r—s s+1
x (Y7?) (Y)Y W‘FO(Z ),
and the corresponding gauge field
% (z|Y) = YADAp* (2]Y)
= 27227%6%(2) (Y 7)* + (subleading contact terms) (3.34)
Y— S .8
+ (—1)°(2s — 1)((55)); + O(z5Th).

Notice that the leading analytic term on the r.h.s. of (3.34) is proportional to the two point
function of the boundary higher spin currents. Since the gauge parameter is a traceless
tensor, i.e. 9215(Y) = 0, we can substitute Y4 = eﬁﬁyo‘yﬁ in (3.33) and obtain, modulo an
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overall normalization coefficient, the gauge parameter in the (spinorial) y-algebra language

(see (3.16)):
25—1 —3

:_42 23 r— 1 )r 1('; ) —I—O( s+1) (3.35)

For later use, we also compute the boundary-to-bulk propagators for the generating func-
tion of frame-like fields, X(S) +/0 and X((;)e’ni/o using (A.48) and (A.43), and compute th (=)
and (222 (%) using (A.39). They are

(25 — 1)(y?)*z°

X(()d)d = 271(y')*2%7%6%(x) + (subleading contact terms) + )= + O(z*Y),
s),0
X<(>d)d =0,
X(()d)é = (contact terms of the order z272% and higher) + O(2°*1), (3.36)
and

(8),+ _ 1125 2—s 52 : . (2s—1)(y )28 ° s+1
Xeven =—2m(y " )**2°%6°(z) + (subleading contact terms) @) +O(z°),
x~

(5)0 — (contact terms of the order 2>72° and higher) + O(z°11),

Xeven

(s), (contact terms of the order 2472 and higher) + O(z°), (3.37)

XGVBH

as well as

Q") () = — 2(1 — gy )m(y") > 2227962(2) + (subleading contact terms) + O(2°+),

Q;;’(s) () = (contact terms of the order 27 and higher)

(25 _ 1)(y2)23—2zs

+1
— (1 —1) )% +O(z°h). (3.38)
Notice that the leading contact term in Q?f () g proportional to (1 — %1); in other words,
we have imposed the Dirichlet boundary condition on the component (1 — 1) hs ) Sim-

ilarly, for the negative polarized higher spin gauge field, we impose the Dlrlchlet boundary
hs,(s)

condition on the component (1 + 1),

3.4 Higher spin two point function

With these formulae at hand, we can now compute the two point function of the higher
spin currents on the boundary. The linearized higher spin equation DyQ2** = 0 can be
obtained from the quadratic part of a Chern-Simons type action:

Spe = — / diby / (th, A" + oW * th) . (3.39)
We decompose the higher spin gauge field as

Q" = Qhdz + QM dat + QM da. (3.40)
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Modulo the equation of motion, the variation of the action (3.39) is

§Shs = — / dijy / dﬁdx—ziQ (@l a0m) — (an,600)] | (3.41)

which, however, is non-vanishing under the boundary condition (3.38). To cancel it, we
add a boundary term to the action:

1
Shss = [ dur [datds Zun (9,00) (3.42)
whose variation is
1
SSap = — [[dvn [ artar o [(o00) + (e 00)]. (349)

Hence, the variation of the total action Sys + Shsp is

3Sns + Shss = — / dip / dxwx*% [+ ) (2,000 ) = (1= ) (2, 000)] . (3.44)

which indeed vanishes under the boundary condition (3.38), or equivalently the Dirichlet
boundary condition on the components (1 — 11)Q" and (1 + ;).

Since the bulk action (3.39) vanishes on-shell, the only contribution to the two-point
function comes from the boundary term (3.42). Evaluating the boundary integral (3.42)
using the higher spin boundary-to-bulk propagators, we obtain the two point function of
higher spin currents:

(28 _ 1)(2/2)237225
(@~

() () = / d2x%47r(8y2)25_222_552(x _ )

(2s —1)!

(z75)%

(3.45)
=4

This is indeed the structure expected from conformal invariance.

4 Three point functions

4.1 The second order equation for the scalars

To extract the cubic couplings in the bulk Lagrangian, or the three point correlation func-
tion of boundary operators, we need to express the master fields in terms of the physical
fields and expand the equations of motion to quadratic order. For the purpose of studying
three point functions involving the scalars, it suffices to work with the equations for the
master field B, to the second order. They are

d,B® = —[sM) BW)],,

DoB® = —jw® W), (4.1)
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Decomposing W, BW) B®) as in (2.12), and restricting the second equation at z = 0,
we obtain

dZB/(Z) — [S(l)waC(l)

mat]

DoC® = — Wy, B, | _,— W'D, ]| (4.2)
— [, g Ch . - [waﬂsc,wc}&a&

We remind the reader that C(1) = Cé}ll( + wngl;t and Q) = Qhs 4+ P2 2%¢, and we have
set C’élll)x = 0. The S® and W'D are linear in 19, and the first equation 1mphes B2
1ndependent of 9. Decomposing C?) in a similar way as C?)(z|y, ) = aux( |y, wl)
o C, mat (33|y 1), we obtain the second order equation for the scalars:

DOIpQCmat - [th w C ] (43)
or more explicitly
DothaCi, = =20, Ol s + ot {27, Ol (4.4)

Qeven Qodd

are the components in the decomposition Q¢ = Qever 4 ¢ Qodd,

We further decompose c? )t as C’I(na)Lt( ) =>00C 2); aran Yt - y®m, and special-

ize (4.4) to the case n =0, 2.

where and

8 Cmat sz) ( ) (2) B = UO

mat [e

4

(4.5)
Vv Cr(n;t ap = 2¢1 (eou)aﬁcr(r?;to — 2441 (eon)” 6Cr(ri3t Yoas = Uulaﬁ’

where U0 and UQ‘a .

After some simple manipulations, it follows that

are the first two coefficient of the y-expansion of the r.h.s. of (4.4).

(O =m0 = v, U% + dapy (el )P U2

mat plas:

(4.6)

The r.h.s. is calculated in terms of the first order fields in appendix B.2. The resulting the
second order equation for the scalars can be written in the form

@ - m)Cp Z Chnat”™ ™ (0)Z:(v), (4.7)
where Z4(y) is expressed in terms of the higher spin fields as
=) = 8 xS () + (25 = 2)(2s = DX )]
#3201 | G T ) - s - 2V ).

4.2 The three point function

(4.8)

The boundary-to-bulk propagator for the higher spin gauge field satisfying the generalized
Brown-Henneaux boundary condition (3.32) is determined by the boundary behavior of
the gauge transformation (3.35). The latter is enough for us to compute the three point
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function of one higher spin gauge field and two scalars. Suppose the cubic action of a
higher spin gauge field and two scalars is of the form as the higher spin gauge field couples

/ &z <‘jz) o3, T (4.9)

where the higher spin current 74" ¢ is a quadratic function of the scalar and its deriva-

to the higher spin current, i.e.

tives. Since the boundary to bulk propagator for high spin gauge field can be written in

a “pure gauge” form: @, and the higher spin current is conserved:

S
1 phs 1 )

VHTé“““'“S’1 = 0, we have

dz
/d% (Zg) Vi Mg T

1
:/d2a:dz@u1< Mg Lo “S> (4.10)
1 2
=t [ T

which only depends on the boundary behavior of the gauge parameter at z — 0.
The r.h.s. of the second order equation (4.7) gives the variation of the cubic action
with respect to the scalar up to some possible boundary terms.

o5 = [aun [ Lotz ot Z 20,2, ). (4.11)

While it is possible to recover the cubic part of the action from (4.11), in the form (4.9), we

will not need it for the computation of the three point function. The tree level three point
function is computed by varying the bulk action with respect to three sources inserted
on the boundary, and so it suffices to work with (4.11) directly, by evaluating it on the
boundary-to-bulk propagators for the higher spin gauge field and scalars. This computation
is performed explicitly in appendix B.3. The resulting three point function of one higher
spin current and two scalars is:

(O(x1)O(w2) Jg(w3)) = —4m(s + U1 (s — 1))T(s) ! = ( f1_2_ > . (4.12)

|z12|2H¥1 \ 23293

Here O and O are dual to Ceyen + Coaq and Ceven — Coaq respectively. They have scaling
dimension A, = % or A_ = % depending on the choice of boundary condition, correspond-
ing to ibvl =1or 1’/;1 = —1. The position dependent factor on the r.h.s. of (4.12) is fixed by
conformal symmetry. The only nontrivial data here are contained in the overall coefficient,
which is unambiguous given the normalization of the currents. These will be compared to
representations of the Wy algebra in the 't Hooft limit in the next section.

5 The dual CFT

5.1 The proposal

It has been proposed in [16] that Vasiliev’s higher spin-matter system (more precisely, a
version of this theory with four real massive scalars) is dual to the Wy minimal model,
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which can be realized by the coset model

SU(N), @ SU(N);
SU(N)k+1

(5.1)

This CFT has a ’t Hooft-like scaling limit, in which N is taken to be large while keeping

the 't Hooft coupling
N

T N+k

to be fixed. In the infinite N limit, A becomes a continuous parameter, in the range

A (5.2)

0 < A < 1. It is proposed that A is mapped to the parameter v that label AdS3 vacua, with
the identification \ = %(1 + v). The undeformed, v = 0 vacuum we have been considering
so far would be mapped to the A = 1/2 case. In the 't Hooft limit, “basic primaries” of
(left plus right) scaling dimension Ay = 14+ X\ are mapped to the massive scalars in the
bulk, whereas all other primaries are found in the OPEs of the basic primaries, their duals
interpreted as bound states in the bulk.

A puzzle with this proposal is the existence of low lying primary operators in the coset
CFT, whose dimension scale like 1/N and form a discretuum in the 't Hooft limit. This
has been further addressed in [44]. Tt is unclear how to interpret the dual of such states
in the bulk.

Here we put forward a different proposal, namely that the Vasiliev higher spin-matter
system, involving only two real massive scalars in the bulk, is dual to a subsector of the Wiy
minimal model, generated by the two basic primaries of either dimension A, or dimension
A_, depending on the boundary condition for the bulk scalar field. This subsector has
closed OPE and is consistent as a CFT on the sphere, though not on Riemann surfaces of
nonzero genus, as it is not modular invariant. Hence, we believe that the bulk Vasiliev’s
system is nonperturbatively incomplete, though makes sense perturbatively to all orders
in its coupling constant (i.e. 1/N).

In a similar manner, we further propose that the “minimal” Valisiev’s system, obtained
via the truncation to fields invariant under the t-involution (2.7), is dual to a subsector of
the orthogonal group version of the coset model,”

SO(N)r & SO(N )y
SO(N)g+1

(5.3)

Because SO(NV) has only even degree Casimir invariants, the coset model contains only the
even spin currents. The real scalar in the “minimal” Valisiev’s system is dual to one of the
real basic primary operators, either ((J;0) or (0;0), depending on the choice of boundary
condition for the bulk scalar.

9The bulk gauge group of the minimal Vasiliev theory, in the Chern-Simons language, when truncated
to a finite (even) spin N, is Sp(IV,R) x Sp(/N,R). In mapping representations of the higher spin algebra
in the bulk to primaries labeled by representations of the affine Lie algebra of the minimal model, a
transpose on the Young tableaux is involved [44]. This suggests that the dual minimal model is based on
SO rather than Sp coset. We thank T. Hartman for pointing this out. Note also that the analogous Sp
coset construction would not give a W minimal model; its primaries are generally not labelled simply by
a pair of representations, but a triple of representations [45].
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5.2 Wy currents and primaries

Let K“(z) be the currents of the SU(/V), current algebra, and J%(z) the currents of SU(NV);.
Our convention for the group generators of SU(N) is such that

Te(TT) = -5 (5.4)

where Tr is taken in the fundamental representation. The cubic symmetric tensor is defined
to be

d = —iTr({T*, T°}T°). (5.5)
The SU(N)j currents, for instance, are normalized with the OPE
k K0
Ka(Z)Kb(O) ~ 7725ab + fabc ( )7 (56)
z z
where f%¢ = —Tr([T?, T*]T°). The spin-2 current, i.e. the stress-energy tensor of the coset

model constructed out of the Sugawara tensors, is given by

T(2) = W2(2) 57
1 area . 1 . Jaga. 1 (K@ M (K® ).

The spin-3 current W3, in the 't Hooft limit, is written as

A2 A
5 CKeRbe . — SN gagbye. . qagbye.| (5.8)

W2(z) = dae TESNICESY DY

The normalization is such that the two point function of W3 is given by

1+ N2+ )\

(W2 (2)W?(0)) = SaTyhe—y

N® 4+ (1/N corrections). (5.9)
One may also construct higher spin-s currents out of the product of s K and J%’s, subject
to the constraint that W* is primary with respect to the diagonal SU(N)gy1. This is
rather cumbersome, which we shall not attempt here. Nonetheless, we will perform one
unambiguous check with the spin-3 current.

Let us now turn to the primary operators with respect to the Wy algebra. These
are labelled by three representations of SU(N), (p, u;v); here p, u, v are the height weight
vectors of the respective representations, subject to the condition that the sum of the
Dynkin labels is less than or equal to the level, and the constraint that p + pu — v lies
in the root lattice of SU(NV). Further, it follows from the second SU(N) being at level 1
that p is uniquely determined given p and v. Following the notation of [16], the primaries
are labeled by (p;v). We consider the diagonal modular invariant, by pairing up identical
representations on the left and right moving sectors. The basic primaries are:

O, = (0:0) @ (0;0), O = (S; 0) ® (5; 0), (5.10)

O-=(0;0)®(0;0), O-=(0;0) @ (0;0).
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Our proposal is that with the A, boundary condition, the two real massive scalars in
the bulk, combined into a complex scalar Ceyven + Coad, is dual to O, while its complex
conjugate Ceyen — Coaq is dual to O,. According to the fusion rule, the OPEs of O, and
O, involve only primaries labeled by the representations of the form (R;0). In particular,
the operators O_, O_ and the low lying primaries of the form (R; R) do not appear in the
OPEs of Oy and O,. Thus, this subsector of the CFT closes on the sphere.

Alternatively, with A_ boundary condition imposed on the bulk scalar, we propose
the dual to the be subsector generated by O_ and O_.

5.3 A test on the three point function
The spin-3 current acts on the basic primaries O as
W3lo-) = Cglo-),

1+M)(2+2) (5.11)
Wel0s) = it NEEN, 4
where Cp is the cubic Casimir for the fundamental representation, given by

Co|d) = dapeJ§JLISIO),  Cp = iN? (5.12)

in our convention. The three point function (Oa(z1)Oa(z2)W?*(z3)) is determined by
conformal symmetry to be of the form

()

213223

We will write (OaOAW?®) = A(s) for the coefficient. It follows from the action of W on
the primary states that

(1+A)(2+N\)

(OL0,W3) = —iN2m,

(O_O_W3) =iN?% (5.14)

If we define J®) to be the spin-s current with normalized two-point function, namely
(J©)(2)J6)(0)) = 2725 (this fixes J) up to a sign), then we have

1+ A — 1—A

(0,0,J@)=N"2 ) (O_0_J@)=N—2 S (5.15)
o) v [ A NE2+N - e [ a=ne-N
(0:0,7%) =N \/6(1 —NE2=-N) (©-0-1%) =-N \/6(1 FAE N

From the bulk, we have computed the three point function (OO.J(*)) in the undeformed
theory, with the result (after normalizing the spin-s current)

R (0-0_19) = (-

(0007 = o) re—y 1)

(5.16)
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Here ¢ is the overall coupling constant of the bulk theory. This should be compared with
the CFT at A = 1/2. With the identification

g= JN (5.17)
we see that (5.16) precisely agrees with (5.15) at A = 1/2. Eq. (5.16) then further makes
predictions for the three point functions (OO.J (S)) of spin s > 4 in the Wy coset CFT,
in the 't Hooft limit at A = 1/2, which remains to be computed directly on the CFT side.
Further, it would be very interesting to compute these three point functions in the deformed
bulk theory, i.e. the AdS3 vacua with nonzero v, which should be mapped to the CFT
with 't Hooft parameter away from A = 1/2. We hope to report on this in future works.

6 Concluding remarks

In this paper, we have developed the perturbation theory of Vasiliev’s higher spin-matter
system in AdSs3, to the second order. This allowed us to compute the bulk tree level three
point functions, in the undeformed v = 0 vacuum. The result passed a nontrivial test
that involves the explicit expression for the spin-3 current in the Wy minimal model (at
the special value of 't Hooft coupling A = 1/2). Our result from the bulk also makes
predictions on three point functions involving currents of spin s > 4 which in principle can
be straightforwardly computed (though tedious) in the coset CFT, by constructing the Wy
currents out of the spin 1 affine currents, and then taking the 't Hooft limit.

A natural next step is to move away from the undeformed, v = 0 vacuum, and consider
the deformed bulk theory, which should be dual to the CFT away from A = 1/2. In
appendix C, we have derived the boundary to bulk propagator for the scalar master field
in the deformed theory. The computation of correlators using these expressions could be
complicated, though at least one can work order by order expanding in v, which amounts
to expanding in \ — % in the dual CFT.

Next, one would like to go beyond leading order in 1/N. The basic primaries in the
W minimal model have exact scaling dimensions

N-1 N+1
Ay =2n(0;0) = —— (1++)\>,

N]\—rl N]\Jfrl (6.1)
Ao =2h(0;0) = —— <1— N+/\>\>.

Identifying AL = 1+,/1 +m3, we see that the renormalized mass of the bulk scalar with
the two different boundary conditions are

(oR) 0w

m? = —(1—\?) <1+§)_2 (1—;2).

2 _
m+—_

(6.2)
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The bulk scalar propagator depend on the boundary condition (A or A_), which presum-
ably leads to the different renormalized masses m and m_ through loop corrections. The
difference between m, and m_, say at order 1/N, or one-loop in the bulk, can in principle
be understood [40, 47] in terms of the tree level four-point functions, by factorizing the

difference in the bulk propagators for the two boundary conditions into the product of
2

boundary-to-bulk propagators. To compute either m~ or m%r form the bulk, however, re-
quires performing a genuine one-loop computation in Vasiliev’s theory. The precise relation
between the bulk deformation parameter v and the 't Hooft coupling A of the boundary
CFT, beyond the leading order in 1/N, is presumably also regularization dependent.

We proposed that Vasiliev’s system is dual to not the entire Wy minimal model CF'T,
but only a subsector of it, generated by the basic primaries O, O, and the Wy currents,
or the subsector generated by O_, O_ and the Wy currents, depending on whether A or
A_ boundary condition is imposed on the two bulk scalars. These two subsectors close on
their OPEs, and lead to consistent n-point functions on the sphere. However, they are not
modular invariant. From the perspective of the bulk higher spin gravity theory, modular
invariance is expected to be restored by gravitational instantons (analytic continuation of
BTZ black holes), which are non-perturbative. At the level of perturbation theory, it is
consistent that the bulk theory is dual to a subsector of a modular invariant CFT. The
duality we are proposing is analogous to the statement that pure gravity in AdSs, at the
level of perturbation theory, is dual to the subsector of a CF'T involving only Virasoro
descendants of the vacuum, i.e. operators made out of products of stress-energy tensors.
The latter lead to a consistent set of n-point functions on the sphere, though do not give
modular invariant genus one partition functions by themselves.

If our proposal is correct, then it suggests that Vasiliev’s system is non-perturbatively
incomplete, though makes sense to all orders in perturbation theory. One may suspect
that solitons, in particular black hole solutions, should be included and could make the
theory modular invariant. However, we are not aware of a modular invariant completion of
the A4 or A_ subsector of Wy minimal model that requires adding only states/operators
whose dimensions scale with N (and are large in the large N limit). The Wy minimal
model itself would amount to adding not only states of dimension of order 1, but also a
large number of light states whose dimensions go like 1/N, which seems pathological from
the perspective of the bulk theory.

It is clearly of great interest, still, to understand the bulk theory dual to the full
Wy minimal model, since the latter is non-perturbative defined and exactly solvable. It
is shown in [44] that the descendants of the light states give rise to bound states of the
basic primaries, while the light states themselves become null in the infinite N limit. It
is unclear how to understand this from the bulk. A possibility is that additional massless
scalars should be added in the bulk theory, with the non-standard boundary condition (so
that they are dual to operators of dimension 0 rather than 2, classically). It would be an
interesting challenge to construct such a theory in AdSs.
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A Linearizing Vasiliev’s equations

A.1 Derivation of the scalar boundary to bulk propagator

In this subsection, we study the linearized equations (2.17), and solve for the boundary-
to-bulk propagator for the master field C(}).
Decomposing the C(M) as in (3.1) the equation DyC'") = 0 is written as

0 0
dzcig,%g( + 4(w3ﬁyaa g + wleo yaa 3 )03(‘1112( =0
82

Oy>oyP

0
d Cr(r}a),t —|—4w0 yaa 5Cr(nat leeo (Yays + )Crgil&zt =0

Expand c (z|y, i) as in (3.2), we write the first equation of (A.1) as

mat/aux
0 nglllzc ai-an _4n(w0#)(g1/80§u2£ Bag--an) _4n¢1(€0u)( 5Ca(mu2< Bag:om) — 0. (A.2)
Contracting this equation with (efj)s, and symmetrizing the indices (ydaq - - - @), we get

v( o)

aux «aq-Qn

) =0 with Vag=el;V,, (A.3)

which means that C’g)x carries no propagating degree of freedom. We can simply set
Clik = 0.
The second equation of (A.1) can be written as

1),n n
8/‘01(11;t QiQn 471(’[1)0#)( C( i Bog--am)

mat

. . (A.4)
~ 201 (€0p)(ar00Crmai agan) — 201+ D)0+ Da(e0) P CL" P agariva, = 0.
Or contracting this equation with (ef))as gives
Va C( )t aran T 16¢1€(a (1 €B)a 2Cr(izién_2a3~~'an) (A 5)

1
+ 16 (0 + 2+ DOl P agaya, = 0.
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This equation is in a reducible representation of the permutation group of permuting the
indices. To simplify the equation, we decompose it into irreducible representations by
contracting with the tensor € or symmetrizing all the indices. First, contracting (A.5)

with ¢**1 gives

« n n + 1 n—
Y% 501(12‘; Qog-an T 1/1 1€8(an m;t 2a3---an) = 0. (A.6)
Contracting (A.6) with 72 gives
\Y Bcr(n;t afas--an + 16( )djlcr(r}zit 2043~~an =0. (A?)

Next, we want to symmetrize the indices of equations (A.5), (A.6), and (A.7). It is con-
venient to reintroduce the auxiliary y®-variable. By contracting the indices of the equa-
tions (A.5), (A.6), and (A.7) with the y®’s which automatically symmetrizes all the indices,

we obtain

VIO () — 15 (n+ 20+ DO y) =0,
VOO (1) =0, (A.8)
VO () — 1o (n+ D ) =0,
where
Conai" (1) = O o™ 4™ (4.9)

which is the degree n homogeneous polynomial in the Taylar expansion of the matter field
C™2%(y), and we define the operators

VT =Wy, V'=(@No,), V =(9,¥0,). (A.10)

They obey commutation relations

[Voavi] =0,
. N+1 NN +2)(VN +1
vVt v = TDAdS - ( 64)1( )7 (A.11)
Y NN +2)
0\2 _ v+ 7
(V) =V"V +64DAds+ 123 .

with N = y0, and Opgg = —32VQ5V°‘B where V3 is defined to act covariantly both on
explicit spinor indices as well as on indices contracted with y®. Iterating the first equation
of (A.8), we get

mat

(164, V) CL (A.12)

mat

(29)!

Since O (y) is an even function in y?, it is totally determined by its lowest component

mat
C’I(r}a)téo via the above relation. After some simple manipulations of (A.8) using (A.11),
we derive
DaasClny’ = (3 +n(n +2))C0%". (A.13)
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For n = 0, the equation gives the usual Klein-Gordon equation on AdSs, (3.3). The higher

components C’r(riz;n are determined by Cfr}ggo through the linearized equations of motion.

The equation (3.3) is solved by scalar boundary to bulk propagator C™a40 = K (z, )2

for A = 3/2 or A = 1/2, where K(z,2) = z75.
auxiliary variable 1;1, satisfying 1/;% =1, to label the different boundary conditions, so that
A =1+1;/2. The (V*)* acting on K2 is

It is convenient to introduce another

1 ) s
(VKD = | [+ -1) ) (529 K2, (A.14)
j=1
and using (A.12), we obtain
1 7 ~
Chun() = (1 + 41 +2¢1y2y> RIS, (A.15)

where ¥ = 0% — i—ga“w“.

A.2 The linearized higher spin equations

In this subsection, we study the linearized equations (2.13), (2.14), (2.15), and rewrite
them as the (linearized) Chern-Simons equation and Fronsdal equation by eliminating all
the auxiliary degrees of freedom.

The (2.14) and (2.15) imply that W’ is solved in terms of S and further in terms of
C’I(r}at; hence, in particular, it is linear in 1. Decomposing Q) as in (3.9), the linearized

equations are written in (3.10).
The linearized gauge transformations act by

SWW = dpe + [Wo, s,

A.16
§SW = d.e. (A.16)

Let us restrict to gauge transformations that leave S() invariant, namely e = A(z|y, 11) +
Vop(xly, 1), where A(x|y, 1) and p(z|y, 1) transform Q" and Q¢ independently at the
linearized level. Their actions are

6% = dyp + Pa[Wo, Y2pls = Vap — ¥1{eo, p}s,

. (A.17)
S = dy X + [Wo, Al = Vo + 1 [e0, Als

We show that €2°¢ contains no dynamical degrees of freedom. First consider the homo-
geneous part of the equation,
Do =0, (A.18)

or more explicitly,

Vo Q% (xly, 1) — reo(xly) Aw QC(z|y, 1) + o1 Q% (z]y, 1) As eo(zly) = 0. (A.19)
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We have emphasized the wedge product between 1-forms, so the last terms involve the
x-anti-commutator of the components of ey and 2°¢. Expand 2°¢ as

plar--an

O (aly, ) = da Y QT (w|r)y ey (A.20)
n=0

In components, the homogeneous equation for 2°¢ is written as

Vi = 201 (Cop)aaas 2 = 2(nH2) (n+ 1) (eop,) P2 =0, (A.21)

K™ ]|ag--am Vl|ag-am) VllaBar-om

Converting pu, v into spinor indices, we obtain

se,m sc,n—2 ) sc,n+2 o
V(QWQB)’\Aalman — 2¢16a7|(a1a2Qﬁ)’y\agman) — 2(7’L + 2)(n + 1)11}16(0[7‘ TQ,B)’\/|5T041'~~01” =
(A.22)
where .
€aBlys = (eg)aﬁ(eﬂu)vé = _@( av€8s Tt €as€py)- (A.23)
We can write (A.22) as
sc,n 1 sc,n—2 1 5 OHsc,n+2
Vi Qg oram — E¢1€(a(ﬂ96)%la3man) + E(n +2)(n+ D)o’ QTS =0
(A.24)
In components, the gauge transformation (A.17) for Q°¢ can be written as
5QZC|£% :Vupgl---an — 2 (eu)(alang;?an) —2(n+2)(n+1)y1 (eu)aﬁpgﬁl...an, (A.25)
or
sc,n n 1 n—2 1 nt+2 A.26
5904/3‘041...0[" :vaﬁpal--~an+ qu)le(a(ﬂeﬁ)%pa?’...an)—i_ T6(n+2)(n+1)wlpa/jalan ( . )
Decomposing chﬂ(lzz ey, 88
7( ) — 7+ 70
chﬁ|zlan - Czﬂal-uan + E(al(gCE)QQ...an) + e(g(al 6@)042(23...0{”)7 (A27)

we find that ¢"™T and (™~ can be gauged away by p"*2 and p" 2. Furthermore, by

symmetrizing (aBaq - - - ay,) of (A.24), (™0 can be fully determined by ¢™*+ and ¢™~.
Now let us turn to the higher spin fields, Q5. Their linearized equations are written
more explicitly as

Vo +eg Ay Q" + QM A, eg = 0, (A.28)
or in components,
hs,n hs,n
v[ugu]lal“'an o 4”7!]1(60[#)(&59””6&2&") =0. (A29)

Replacing [pv] with spinor indices, we can write it as

hs,n Shs,n -
Vo U aran ~ 41607 (00" V5 50 am) = O (A.30)
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or

1 hs,n 1 hs,n
+ nwle (o ( Q )’y"YOQ an) T A 1/] Q(a(aﬂﬁ)ag ‘an) =0. (A31)

hs,n
V(a Q 16

B)vlea---an

hs,(n)
af|ar--on
of permuting the indices as

Let us decompose €2 into the irreducible representation of the permutation group

hs,(n) _
Qaﬁlar--an Xa5a1 an T e(al(axﬁ)az -ap) t €a(ar € )azxa3 am)” (A.32)
Conversely,
hs,n n,+
aBloran) = Xafar-an’
n+2

Q" 0, azan) = g Xaan: (A.33)

hsnv ntl -

Qe [ydar-an—2 — n—1 Zrnan_g'

Next, we want to also decompose the equation (A.31) into the irreducible representation
of the permutation group. Symmetrizing all indices (afa; -« - ay,) in (A.31) gives

1 0
v(a17Xn7+ - 2v(a1a2XZB an+2 - Ia leQl Q42 - 0 (A34)

Q2 t+2)Y

On the other hand, contracting (A.31) with e** gives

VQVQM%Z...% + VﬁyQaﬂaaQ...an (A.35)
¢1 o
16 [(” +3)287 hag-an + (1= D@52 hoas-an) T (7 = 1Da(ay)8" a5an) | = 0-

Now symmetrizing (Bag - - - ay,) gives

,0 n+2 — n + 2
22.“0[”)7 + V(alagxzs...an ¢ onl -Qn =0. (A36)

2
6
-V X'yécq o EV(OHWX
Alternatively, contract (A.35) with €52 gives

n+2v75 B 2(n—|—1)(n—2)v " (n+2)(n+1)

’7(5011 Q2 n(n_ 1) a1Xa2 Oty 2)7 S(n_l) wlng QU —2 O

(A.37)
As in the previous subsection, we reintroduce the auxiliary variable y*, and define

X;— (y) — Xg,l-f— an+2ya1 . _yozn+27
Xn(Y) = Xolany™t Yo" (A.38)

Xn (Y) = Xaian V™ oy 2,

and so

205" (y) =

1 1 _
e )&ﬁgxi (¥) + 908 Xn(¥) + Yatsxn (). (A.39)

(n+2)(n+1
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The three equations derived previously for x, (A.34), (A.36), and (A.37), can now be
written as

1
VOxt (y) + iwxﬁ(y)—%wlxi(y) =0,
2 2
Vo () = 5 Voxay) - iV*x;(y) -2 —Uixn(y) =0, (A.40)

2(n + 1) (n+2)(n+ )
n(n —1) 8(n —1)

1
(n+2)(n+1)
n+2
T n2(n—1)

Vo) - VoG () + 1z (y) = 0.

Now expand Xn % in 1,

,+/0
X?’:lL:/O = ng:etn/0 + wlxgdd/ - (A'41)

We can now solve Yeven in terms of xodq:

16

n 1 n
Xevjn(y) = ; |:n_’_ 2VOX0(71—5( )+ V+ odd(y):|

nggn(y) - n j_ 2 |:(n + 2)n(n + 1) V_ngz( ) v()Xodd( ) (n + 2)v+xodd(y)

8

Xeven(Y) = o [@V‘xﬁgﬂ(y) + Voxodd(y)] (A.42)

At this point, it is convenient to use part of the gauge symmetry to gauge away ngd
completely (we will show this in the later part of this subsection), and then write

16
n,+ o 0

Xeven(y) - n(n + 2)v Xodd(y)

Xeden(y) = : : Vo xoaa () — (n+2)VIxi(y) (A.43)
even n+2 (n+ 2)(n+ 1) odd odd ’ :
S [ B

Xeven(y) - TL(TL + Q)V Xodd(y)'

Plugging back in (A.40) (with x%,, = 0), we obtain (the second equation is automatically
satisfied because of the second equation of (A.11))

16 0\2., n,+ an +vo—. n,+ _ +\2. n,— _E n,+ o
n(n—|—2)2(v ) Xoaa¥) + (n+2)2(n+1)v V™ Xoaa®) = 4V 7) Xoaa(¥) 16Xodd(y) =0,
8 o 8(n +2 . 32(n + 1 L
e mTe Y P + G - R )
n+2)(n+1) ,_
MADUED)! )8( )xoéd(y) =0.
(A.44)
By using (A.11), we rewrite (A.44) as
2n+8—n? , 16 . .
Oaasxoaa(®) + = —Xoaa(®) + mwv Xoaa (y) = 16n(V)* X044 (y) = 0,
e n?4+2n+4) ,_ 8 o 8 n
OadasXoaa () — wxoéd(y) - EVJFV Xoad (W) + m(v )*Xoaa(y) = 0.

(A.45)
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Now let us examine the gauge transformations on x*. The gauge transformation on
the components of Q"7 is

hs,n n n n
59 = vaﬁ)\ — E¢16(a1(gA§)a2--~an)‘ (A.46)

afl|ar-an QO

In terms of 0, we have

5XZ’1—t‘an+2 - V(OQOQAZ?,---OAYH_Q)’
2n n
’0 E—
5X21...an — n+ 2v(a1’y)\22...an)ry + Ed}l)\zl---an? (A47)
_ n—1 5
6XZ71“'OCn—2 = n —+ 1v’y /\’TYL(;al---anfz'

Expanding A" as A" = Mo + 1Ay, we can use Mo, to set ™y = 0, and x5, X"
transform under gauge transformation generated by the residual gauge parameter \J;, as

XM W) = =V Aoaa (v),
1 (A.48)

dxora(y) = — mv_)\odd(y)-

It is very useful to rewrite the equations of motion in the metric-like formulation. In
the metric like formulation, we have the metric like field ®,,...,,, which is totally symmetric
and satisfies the double traceless condition:

O s = 0. (A.49)

®,,, ..., satisfies the Fronsdal equation (3.20), and transforms under the gauge transforma-
tion as (3.21).

We show that the Fronsdal equation (3.20) and the frame-like equation (A.44) are
equivalent. Let us decompose ®,,...,, into the irreducible representation of the Lorentz
group as in (3.18). Plugging this in to (3.20), we obtain

(O = m®)uyeps + (O = M) G0 X oas) SV (i V' €pupiz- )
+(2s — 3)V(&V,£XH3...“S) — (s — 2)9(MVIL3VMX#N4'"M3) (A.50)
—2(2s — 1)g =0.

i Xpis-+pus)

Contracting this with g#1#2  we get

(2s —1)(0— m2)Xu3~~us —5(s = 1)VIVYEpgeops (25 — 3)0X g
+(2s — 3)(s — Q)V“V(&pr-us) —2(s— 2)V(&V“XW4...MS) (A.51)
—(5 = 2)(5 = 3) 933 V"' V" Xpuprgoopie) — 2(28 = 1)*X gy = 0

By using the formula

V”V(@XMM...HS) = V(EV‘LX“M...”S) - (S — 1))(#3...#5, (A.52)
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we can simplify (A.51) as
(2s —=1)(H - m2)Xu3---us —5(s = D)VIV Eupzep, + (d 4 25 — 5)0Xpu5.p,
+(2s = 5)(s — 2)V(@V“XW4---#S) — (25 =3)(s —2)(s = 1)Xpus-pss (A.53)
—2(2s — 1)2)(“3...#8 —(s—=2)(s — 3)9(MV“VVXW#5...HS) =0.

Defining
= azg eh? o - (ef? ass e lls s
&y) =y p ( 21) ras ZS)ZQS rozs€punpus (A.54)
X°(y) = y™ % (60 Jaras ** (60 )0425—5042s—4xm-"/ts—27
we can write (A.50) and (A.53) as
Oaas€” —s(s = 3)&° + VJrV £+ (25 =3)(VH)’x* =0,
2 ‘L 6 ) (A.55)
OaasX® — (82 — s+ 1)x° — ——VHv—y® — “)2e5 = 0.
AdsX” = (87 = s H " = g VIV X (23—1)(3—1)(25—3)(V )¢
We can then identify (A.45) and (A.55) by
s s—2,— 25 —3
ded2 " = £, T = i s (A.56)

Xodd = "o )"
2s—2,+ (s),£ .
Later, we will also write x_ ;.77 as x,q4 for convenience.
Let us also analyze the gauge transformation. Plugging (3.18) into (3.21), we have

0&p--pts + 912X pas--ps) = V (M- (A.57)

Contracting this with gH'#2 we obtain

s—1
6XH3"'M3 = ﬁvunm@...#s. (A58)
It follows that
5&°(y) = VI (y),
16 (A.59)

ox’(y) = — 5 — 1) (25— 3)V‘n5(y)-

The gauge transformations (A.48) and (A.59) are also equivalent by the identifica-
tion (A.56).

A.3 Derivation of higher spin boundary-to-bulk propagator in modified de
Donder gauge

The Fronsdal equation (3.20) can be easily solved in the modified de Donder gauge proposed
by Metsaev in [43]. Asin (3.9), we define the generating function ®*(z|Y") of the metric-like

higher spin gauge field ®% . The field ®(z]Y’) is related to x**~2% and x*~2* by

s

X?)fldg +( ) =¢&(y) = (I)S(Y”YA—wAaﬁyayﬁ’
25_27_( )= — 25 — 3 () = — 26— 3 o5 (Y )‘ (A.60)
Xoad - W= 75—y X W T Thaas — (s — 1) ay2  YAoetasyeyt
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Using the variable Y4, we can rewrite the Fronsdal equation (3.20), the gauge transforma-
tion (3.21), and the double traceless condition (A.49) as

G,
Oags — s(s —3) —Y4DA_—~_pB
( Ads — S(s —3) 5y B

lvapaysps 0 0 apa 0 0 ) 4 _
+Y ADYPDP o e YWY o g | 0 alY) =0, o)

60%(x|Y) = YADAn  (2]Y),
92 \*
(ayg> °(2|Y) =0,

where D# is the covariant derivative acting both on explicit frame indices as well as on
indices contracted with Y4; in particular (pagqs = D4D4. As proposed by Metsaev [43],
one then perform a linear transformation:

$(z]Y) = 2 2 NTI?® D5 (2]Y), (A.62)

and the inverse of it is

%(2|Y) = 2211’ N (2]Y), (A.63)

where the various operators are defined as

N <2NZF(N? + N, — LHr@N; - 1)) 12
) )

—\ T(Vy - Dreng + N, — 1

2 . 2
me® =11, + Y? L g <8 +N‘/+1 0 )

4(Ng +1) ¥ \ gy2 Ny 9Y=2
1 H? 2 02
%% =1y + Y? I ( _ >
Y 22Ny +3) " \gv2 2Ny +10Y?2 (A.64)
. ) . o 0
- =1I(Y,0,N=, —,0,2 ), Iy =I(Y,Y? Ny, —, —,3),
p=11(7.0.87, 2.0.2) v v, 20y
. o 0 > (—)"T(A+ 232 4 n) (82 >
II Y7YZ7A77—»777B = Y2n : ’
( oy oY+ > n;]( ) AmnlD(A + P32 4 2n) \OY?
N, =72 N=v-L  Ny=N.+N
Yy — 0?7 z — 8YZ7 Y = Y z

The modified de Donder gauge condition written in terms of the field ¢(z|Y) is:

Co(z|Y) =0, (A.65)
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where

0 = 1o 202 1 02
=—=-0-zY - 0—-+ 2 = —71_[/,
C o7 0 5 88Y2+261 5 €1
n=1-Y? ! —62
4Ny + 1) gy’
2s — 3 — 2N,
61261,1<6z+ ° 5 Z>7
N (A.66)
_ 2s — 3 — 2N,
er= (0. — 1,1,
2z
0
e1,1 fa e1,1 faYZv
25 —2— N, \ /2
= _— = +1.
/ 5(25—2—21\[2) o

In this gauge, the equations of motion is simplified as

<D+6§—212<r—;> <r—§>>¢7,:0, (A.67)

where ¢, (z|Y) are the components of ¢(z|Y) expanded in Y* as in (3.27), and the general
solution of this equation is

60 (5, 2|Y) = CL(5, Y )Wadr—1(2[B]) + C3 (5, Y )V 2Yr—1(2]F]), (A.68)

where we Fourier transformed ¢, (z|Y) as

0nalV) = [ P 005217 57, (A.69)

Notice that p’is imaginary momentum. We can Wick rotate back to the real momentum
by p — ip. For the purpose of computing the boundary-to-bulk propagator, we can simply
replace J,_1(z|p|) and Y,_1(z|p]) by i " K, _1(x).

Next, let us solve for the functions C7(5,Y) and C4(p,Y) using the double trace-
less condition and the gauge condition. Let us first look at the reduced double traceless
condition. It is convenient to define

YT=Y'44iv? and Y =Y!—iy2 (A.70)

The double traceless condition (3.24) can be written as

90 N ¥y =0 (A.T1)
oY+t oy — ’
The general solution of it is

CT(pY) = ()Y )+ ()Y~ (V) ()Y (YT T () (Y )"
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for r > 2. For the r = 1,2, we have
CHpY)=c YT +ctY™ and C*Y)=E (YT 4+ A YTy +A2_(Y7)5 (A73)
Next, let us consider the gauge condition (A.65).

_ o . 1o L9 1 02 et 4 s 1
Co(x]Y) = <_,'p— Y- p 1—61H’> (V=)™ ¢ () 2]Y)
r=0

- + =
)% 2 Y2 282

s lp 20 1. (25+d—4-N, 12 by 2 Td—5-2N.\ &
R 2%s+d—4— 2N, : 2 oy

_ |2 .
oY 20 Pay2 T2
< 25 +d— 5—2N)6<23+d—4—Nz>1/2 )
P)

S

Hl Yz S—r . - }7
9s+d—4— 2N, e ;( )7 (B 2lY)
s 1/2 2
| 0 1o 0% 1 s+r+d—4 2r+d—5\ 0
= Y% | —=-p— =Y Y| ——— 0, =
r:o( ) oy 2 6Y2+2 6( 27“+d—4> ( T >8Y2
2r+d—3 s+r+d—3\"?s—r , ~
- z IT T _;7 Y
E<8 22 )( 2 +d— 2 ) ye 11| o 2Y)
: Lo 1o 02 1, (s+r—2\"? 2 — 3\ 8?2
= YZST _,'_’—*Y’_'i_, *YZ —— 2 ey
2( S P Pm e (27"—2) <a+ 2z >8Y2
2r—1 s+r—1 1/23—r
- z T r\ Y Y A.74
o) () e, (A7)
The gauge condition can be written as
o 17 o 9’ 1/ s+r\"? 2 + 1\ 2
p 7—»_78 Y —- ¢7‘+1+* G az+ L 7—»¢7‘+2
p 9y 2p = 9y? 2\ 2r+2 2z oY?2
2 — 1\ (s+r—1\"? (4.75)
- _2r— s4+1r— B i
5<5)Z 7 >< o ) (s —r)Il'¢p, = 0.
with p = [p/|. Plugging (A.68) into (A.75), we obtain
(ﬁ i_,: }7 82 )Cr+1+1<8+r)1/2 82 C?”+2
p oy 2p  9y? 2\2r+2/) 9y?2
+r—1\2 1o (8.76)
S+ — >
_ 1-Y? - T —
() e (1P g ) O =
or more explicitly,
+ - + - 1/2
[pm + 20 v+ py+)a+a_] g2 ( ST ) 0,0_C"*?
P D P P 2r + 2 (A77)

s+r—1\"2 -5 1 -
+€(2’r‘> (S_T)(l_yr—18+a_>c —0,
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with 04 = Oy+. Plugging (A.72) and (A.73) into the above equation, we obtain

i 1/2
Pt s s+r—2 _ 1/
rpc++(p)—|—5<2(r_1)) (s =7+ 1) (D)
- _\ /2
+(2—r)%ci+(ﬁ)+2 <8+2TT> re™ (@) =0, (A.78)

and

p 2(r—1)
+ . s+r—1 1/2 .
-0 @2 () meie) -0, (A79)
for r > 2, and in the cases r =1, 2,
+ 1/2 +1 1/2
p - S - S _,
)+ () - nd e +2 (ST 22w =0
_ 1/2
P2 Y e (5 st+1 3 () = (A.80)
2 ; c,,(p)—i—E(Q) (s 1)c(p)+2< 1 2c,_(p) =0,
+ 1/2
P 1, P 1> S 2 _
@)+ @) 2(5) ) =0
We can consistently set ¢/, = 0=c", for r > 2, and obtain
4 1/2 _
P r = S+T—2> r—1/> p =
r—c,  (p —|—5< s—r+1)c  (p)+2—-r)—c_,(p) =0, (A.81)
e e () ) )+ 2= (7)
and
P - S+T—2>1/2 r—1/ = AN
r—c__(p —i—&?( s—r+ L)+ 2—-r)—c _(p) =0, (A.82)

for r > 2, and
s\ 1/2 .
) = ek =0,

[\]
=
(@)
J’_NJ
+
Ty
S~—
+
(©)
/N

2?2 (5)+e (g)l/ * (s = 1) (5) = 0, (A.83)
+ - s\ 1/
P+ L@ 2(3) " d ) -

for r = 1,2. The solution to the above recursive equations is given by

oo ¢%ﬂwnm+wm%%WY”g
(s =)l (r—1)!(2s — 2)! p ++

P s 2= Disr—2) pn )T
c__ = (s — 7")!7"!\/ (r—1)!(2s — 2)! ( » > -

(A.84)
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and

L (25728l (s = 1)! P\ 25725l(s — 1)! P\,
C%rf(P) = W <—Ep> i+ W (—Ep) . (A.8H)

Starting from here and in what follows, we set ¢ = —1 and only consider the positively
polarized fields by setting ¢® _ = 0. Plugging (A.84) and (A.85) back to (A.72) and (A.73),
then back to (A.68), and Wick rotating to the real momenta, we obtain

¢<ﬁ,zr?,m

— —r)lr! (r—1)1(2s —2)! D
g [2572sl(s = 1)! (pT\® s
il (25(_2)') <1;> LYY (V) /ZK, (p2). (A.86)

Using the transformation (A.63), we arrive at the expression for the boundary to bulk
propagator in momentum space, in the modified de Donder gauge,

= Z%H¢¢N¢(ﬁ,z\? Y?)

n 1— N _ 1 | T\
B bond) s (L) v meryre sk o)

— = 4”n'F 3)  (s=r=2n)lr!t \ p
1F(8—n—l) (s=2)! (p"Y°
2 : S 2n s—2—-2nv+v —
- Z 4”n‘F (s — 7) (s —2—2n)! (p) YY) YY" 2K (p2).

In terms of the frame-like fields, using (A.60), we have

S! 7 — S—T ST S—Tr ond
) = ey S S T ) K (1)) (A.88)
=0 r!
(5)7*(—»2‘ )_ CS S Zs:ir (5*2)! 1( +)sfr( 1)s+r72( 2)377"722[{ (Z|—»D
Xodd D, zYy) = ++2(28_1) ‘ (S r— 2)‘T'p p Yy Yy r—1 pi)-

B Second order in perturbation theory

B.1 A star-product relation

Let us write the following useful formula for the star-product:

(m+p)(n—m-+p)! n
A(y)+B Z Z Z plm!(n —m)! Aoy ap(Br-Bm /BmB . /8m+1 -Bn) yﬁl o yﬁ
n=0 \ m=0 p=0 '

(B.1)
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where A(y) and B(y) have the expansions:

[ee]
= ZAal“anyal-~-y°‘", and B(y Z:Boé1 any™? : (B.2)

Eq. (B.1) follows from writing the (m-th) % (n-th) term as

(Aasamy™t - y™m) = <Bﬁl--~5nyﬁl "'yﬂ") (B.3)
0 0
— (_1)77’1AO£1 Qm <yal + 8yal> e (yam + ayam> Bﬂlﬁnyﬂl .. yﬂn
nlm!
-3 gy "
- (= p)(n = pyipt Ao en(openon B gy oyt eyt -y

p§m7n

. . 0, )
B.2 Derivation of UY* and Umaﬂ

The purpose of this subsection is to compute the r.h.s. of (4.6).
By using the star-product relation (B.1), we obtain

v, e . (B.4)

(m4+p)l(x—m+p)! N 1) are .
_Z Z Z lml n_ )' (1 (_) )Qz\ie Oép(MCmatal QPM) yﬁl yﬂ ,

n=0 \ m=0 p=0
{QOdd Cr(nat}*

Z ZZ (m-+p)!(n—m+p)! ad (1) g 5 .
a plm!(n —m)! (1+(=) )931 ozp(/J’1ﬂcmata1 apﬂm+1 Bmi1Bn) | Y Loyt
n=0 \m=0 p=0

lara are coefficients of the components in —[Q°", Cr(nlat] +p1 {04, Cmat}*,

which are independent and quadratic in . They can be written as

The U0 and U2

0o D a o
¢1ZP 1+ (= M(‘i(;il OLPCI(Il;t e, (B.5)
and
2 .- even 1) oy«
Ul(l|0)46 Z(p+ 1)(p+ 1)'(1 - (_)P) wla - ap(aCr(na)‘t v Pﬁ)
p=0

S p+2! o oo

vy B oz ol e, ©.6)
p=0
— (p+2)! 1)

+¢1Z 2 (1 + (_)p)QZ(ﬁo(zilwapa,BCmatal “r,
p=0
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We first compute V*U, ﬁo):

VU O :—32¢1zp (1+(— )(Vaﬁﬂodcl‘ oW

af|o--ap ' mat

1o + Qodd vaBCI(rgtoalmap)

aflay-ap

= — 32¢y Zp!(l +(—)P) (va,ﬁ p,+,0dd C( ) a1y 4 va1a2X£’;’OddC§1§talm%

aﬁog ‘ap

+Xp+ ;odd Vaﬁc( ) arap 4 Xp’ ’Oddvalachnlgtal ap)

afay--oap Qz--Qp
: V™ Xoaa®)
—32¢1Z CLl(@y) (M% +V Xy )>

<v+cfn;t )@)xoia(v) |
(p+2)(p+1)

+ (VN O W) | - (B.7)

where we have assumed the gauge condition x” dd = 0. Using (A.8) to express ViCr(ngt in

terms of Cfnggp *2 we have
- vV xXbaa(v) -
VAU© =329 Y (1 + cir( odd W)\ ey
© ¢1 p:0( ( ) ) t ( y) (p+2)(p+ 1) Xodd(y) (B )
8
oy Tmat O eaal®) |, POED 025, 0|

Next, we compute (e )O‘BU(‘;B

ulap aap mat

> !
(e )aﬁU(Q) 72 (]?—1-3)2(])4-1)(1 — (=) p+1,0,evenc(1) a1apf

p=0

- 2)!
+ 11 Z M(l + (_)p)xp+1,+7oddc(1)ta1---apag

ay-opaf T ma
p=0 2 '
— (p+3)(p+2)p! D) o1y
b3 PSR e
< (o4 31— () (B9
+3)(1— (=
=y A= et o, ek w
p=0
+1) (2())0553&”“(%)%&2(@)
p:O

T+ (p + 3)(p +22)( ( )p) ngép(a )ngdz_(y)?

p=0

where we have assumed the gauge Xo 4q = 0. Using (A.43) to express Xé’\zn’ in terms of
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p+1,+

+1,—
Xodd and Xp

, we have

@)U, =3 (1 - (CP)ert@,

p—0
[m TXoaa (W) — 4+ 3V I (y)]
+ 41 Z H U+ OP pe 9, )30 ) o
Z O o )
=0
Adding the two terms (B.8) and (B.10), we obtain
veUL© +4¢1(eo)a5Uﬁ‘gﬁ
=430+ ) [ O + o O O]
p=0 ’
10013 (14 (IR0 [y )~ 77 )]
z

B.3 Computation of the three point function

In this subsection, we compute the three point function of a higher spin current with two
scalars by explicitly evaluating the integral (4.11).

To begin with, let us turn on boundary sources only for the Cgyen component of the
scalars in (4.11). It is convenient to decompose Z, as Zy = = + Z + =7, with = =£/0
being the homogeneous polynomials in y of degree 2s, 2s — 2, and 2s — 4, respectively.
The action (4.11) splits into three terms. The terms with ZF have already been of the
form (4.9). For the term with =%, we need to perform an mtegratlon by part:

d s—
[ (%) @nsciiten
dz 1 —_(s), s),— s—
= [as* (5 ) 320 (g Vit @) - (25~ DV (0) ) sCC
dz 1 s— s), s
= [ (5] [ g @sC T — it seic?

+ A(25man— 2)X 0 (0,)5C 12 (0,)C )22

mat mat

+2(25 — 2)%(25 — DX (9,)0C )2 (B.12)

mat mat

where we have used (A.8) to express ViC’I(n;;p in terms of C’I(ng{;p *2 The variation of the
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action 05 is then given by

o5 = [ (%) [xﬁ‘ifa*(ay) (<s )SCRLCNE — 4t aomtom )
4 (0,) (25 = 20000070 OO + 2(s=1)(s+1) (25 = 1)ICH Ol 4)}

-J e (5)

]. S— S—
—4V)\(6y)((28_1 SO (D) O™ + (s + 1)CHL OO )

+ 4 1).0~(1),25 _ 4 (1),2 ~(1),25—2
\ )‘ < 8 3)5Cmat Cmat (28 o 1)5Cmat Cmat

mat mat

1 5—
_ / d2dz0. LQA(ay)aylayQ (( 5)5C 10125 so2o().2 2>

- (2 — 1) mat —mat

1 1),2 25—2 1),2s—
5 0320,3) 0)) (577808 @ICHE + (s + nac el ) |
) 1 1),2 1),25—2
:ll_r}r(l) deZ—Q [A(ay)6y18y2 <( )501(1121; Cr(na)t - (25 — 1)501(1121; Cx(n;t )

mat mat

+ (ay18y2)\) (Gy) (25(50511; (a )01(135872 Jr( )50( )s C(l),254):|

2s—1 TSQ

—4hm/d2 Z

2s 1),25—-2
< (12 sciiom - G paciiel )

—(2s—r—1)(r— 1)(8y2)25*7’*2(—8y1)”*2

[ o 2)2577(—8?})7“

__373

mat mat

8 (2 1501(125(8 )015112385_2 + ( )50( ), 0(1)725—4> ]
8 J—
e (B.13)

where we substituted the boundary to bulk propagator for X( s)+ and Xé‘z)c’f in the “pure

gauge” form, and we also performed the similar step as 111ustrated in (4.10), and we
used (A.8) again to express ViCr(n;t in terms of Cl(n;tp *2 For the convenience of the
later computation, we have split 4.5 into four terms 6.5 = §.51 + 652 + 053 + 0.54. We will
compute these four terms one by one in the following. The next step is to substitute the

boundary-to-bulk propagator for the master field W We first expand ! gt as

mat-

Conny) = <1+w Sy >2K+

i 1 (1 +s(1+ %51)) (?)s (yZy)sKH%

s=0 "

o ¥ AL 12, — PICTIH R
=> (1+81+¢1))[(2— )yt = (W) e+ ()T KT
s=0 !
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s U u—w

B qﬁ'l (1+51+¢1)ZZZ (s —u)(u—w fv)'w'v'

s= u=0w=0 v=0

x zu—w—%<—x—>w+“<x+>$—“+”(y1>“+w<y2>28 B (B.14)

In particular, the piece of homogeneous degree 2s is given by

s U u—w

Ot = 5 (st i) 005 e

u=0 w=0 v=0

(B.15)

Xz —X

u—w—2v( T

—)w+v( +)s—u+v( 1)u+w(y2)23 u— wK1+ +s

Y

%
where K = ﬁ is the scalar boundary-to-bulk propagator. Near the boundary, K 145 +s
has the following expansion

2. (3 —a+ %) g J 1
—~z2q+1’7175(8$+8$7)q52(x) fpltets o 4L ,
=0 q[l“(1+5+%) r2+P1+2s
(B.16)
where we keep only the leading analytic term and the first s contact terms. The subleading

by
Ktz +ts 51

terms will not contribute to the three point function.
Let us first compute §.57.

25—1
051 = 4lim / dmoZ 2= 8) 0 ) FTT(0,2)2 7 (—0,1) SO (101 )OO (wozly)
03
25—1 s 2u—r
(2 —s)r!(2s — r)!(=1)"ut?
_ 2
4l1m/d xozwl 1+8 1+ )ZOZO (s —u) r—u) (2u —r —ov)l!
u—20—5— — \r—u+v s—u+v 1 1+w1 1+wl+s
x 2272 2(9502) T (gy) T ()" Ko * Koy *
Zo3
a2 2] S (1451 g (2 —s)r!(2s —r)!(=1)"ut?
N xoz%( + s +¢1)§%§% w)!(r —u)!l(2u —r — v)lv!
u v

1

2
- 201) — =~ (242)" (2d) "du0——
CEHT(ey) ()"

X
1
|
N
=
S
14
—
N—
=%
[N}
—~
e}
=
~
—_
—_

+ 0putq—sT - (w02)
qzzo r(1+s+%)
q
g(qg+r—-s)! _ \r—stnan 1 1
X T o™ — | |, B.17
7;) (g —n)nl(r —s+ n)'( 02) To \ (zg3)" x%;ﬂm ( )
where we have substituted the boundary-to-bulk propagator for 50&; (zo1) and

cW: 28(3302|y), and the Kj; stands for Klm—mj’ and we have substituted the expan-

mat
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sion (B.16) for K;;. Integrating out the delta functions gives

2s—1

(531 =4 Z (2 — S)wf <1 + 5(1 + 12)1)) [27_”;1 (25 — 7“)' ] 1
r=1

_ | 2 —_ N _
(5 =)t 931;%(5”12)5 "(w13)"

rl(2s —r)IT" (s — V1) gl(=1)7
£33 il ek ) Ul
u=0 g=0 s—u)!(r—u)!(u—r—q—i—s)!(u—i—q—s)!F(l—i—s—i—%)(s—r)! 2

1
X (W) ] . (B.18)

Similarly, let us compute §.52 and 453 as follows. Substituting the boundary-to-bulk
propagator for the master field Cl(nit, we have

2s—1 S8

082 = —4lim / dwoZ @ D) )<62>2H< Dy1) SO (201) Coi® 2 (x02ly)

25—1 ~ K
= —4lim d%oz @ 1) )qpl (1+(s—1)(1+¢1)) 2+ P1) Ko, * K3 '

[s 1 2u—r+1

25 —r)!I(=1)"
ZZ ri( N(=1)

—qy — — — —u— D!
— = (s—u—1!2u—r+1—-v)l(r—u—1)!

(B.19)

xglxal 2u—2v—s—1 —\r—utv—1/,_ .+ \s—ut+v—1
x A (—Zp2) (202)

s—12u—r+2

r!(2s — r)!I(—1)"
+ZZ ( )N(=1)

—u — — — o\ (r —u—2)v!
== (s—u—DI2u—r+2-0)(r —u—2)W!

% (_:COl)Z2u—2v—3(_xa2)r—u+v—2 (x(TQ)s—u—l—’u—l

s—12u—r

QS_T)'( 1)r +\ 2u—2v—s—2 r—u+tv/, .+ \s—ut+v—1
+uz;)vzo (s—u—1)! 2u—r—v)!(r—u)!v!(x01)z (=02) (253) ’

and

2s—1
A 1
_ : 2
083 = —4lim [ d’xo Z:: 75T %3) ——(2s—r—1)(r—1) (B.20)
X (9y2) (= 0y)26CH 0 (w01 |9y ) O™ (wo2ly)

2s—1 1 1

= —4lim dxoZ PTG (1+(s=)(A+d) ) @+ 1)

$1 P s—12u—r+1 (25 — 1 — 1)1 17,_1
szrQKO;“[zz e

— = (s—u—D!2u—r+1—-v)l(r—u—1)!

x(J]rl:EOI 2u—2v—s—1 r—ut+v—1/, .+ \s—ut+v—1
X e R (—2g9) (255)
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s—12u—r+2 T’ . 2) (28 . 74)'(_1)7.71

+Z Z (s—u—D!2u—r+2—0v)l(r—u—2)!

% (:1;,01) 2u 20— s(_xO—Q)rfu+vf2(‘,L,E‘,)-2)sfu+v71
+SZ§2“Z:T r!( 25—7“—2)
— = (s—u—1!12u—1—0v)(r—u)!

% (_1)r(x(—)l—l)ZQu—2v—s—2(_x52)r—u+v (x(—)l—Q)s—u—l—i-v] )

These two terms can be combined as

052 + 053
25—1
, - ~ 2+’*”1 Uys 1
=t [ o 30w (1 (s = D0+ 00)) @ D)oy * Ko e
. 8252"23“ (r—11(2s —r— DI(=1)"
— (s—u—D!2u—r+1-v)l(r—u-—1
% <Z B l‘;rz$1> Z2u—2y—s—1(7x62)r—u+v—1(x6r2)s—u+v—1
—1 2u—r+2
+ SZ UZT (T — 1)'(28 — r)!(_l)r (—:C_ )Z2u—2v—s
= = (s—u—DQ2u—r+2—-v)l(r—u-—2)! 01
% (_xa2)r—u+v—2(x&)s—u—&-v—l
s—12u—r
P25 —r—1)l(—1)" eanr i
+Z Z S — 1 2u_r_v)|(,r_u)|v'(x6rl)z2u 2v—s 2(_$02) u-‘rv(xarz)s utv—1
u=0 v=0 ' o
=U; + Uz + Us, (B.21)

where we have split 0S5 + 53 into three terms Uy, Us, Us. These are computed as follows.

2s—1

= —4/d2:n0 Z (U (1 +(s—=1)1 +@ZJ1)) (2+ 1)
s—1
2r 5 1 1 1 (r—1!(2s—r—1)!
2| T ren ) S e ey — - D+ DI — - Dl
4 2(201) 1 1 1 (r—1!2s—r—1)!
2y + 1 01 ng21+2 (202)° " (xg3)" (s —u— D (u—7r+1)I(r —u—1)u!
51 (r=1)!2s—r = DT (s =1 - g+ 5 ) gl(=1)>+e+!

+

=0 (s—u—DNu—r—qg+s)! (r—u—l)!(q+u—s+l)!f‘<s+%) (s —r)!

1 1
x 762 (202)0°" ———
o asgfwl (z03)"
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2s—1

=42 Ui (1+(S—1)(1 +¢1))(2+ 1) 10¢1 —8 (25 —r —1)! .
r=1

™ =
—7r)! +2
o

T1o)5 " (213)"

s—1s-1 (r—1)!(2s —r —1)IT (s —1-q+ %) gl(=1)sratt

2.2

u=0g=0 (s —u—DNu—r—qg+s)l(r—u—1)! (q—i—u—s—kl)!F(s—k%) (s —1)!

2 \7y 1(952_3)T
2s—1 5
Uy = —4lim d%xzq Z Vs (1 +(s—1)(1+ wl))(2+w1) @
03

Xs 12uz7“:+2 (T—l).(QS—T)!

= = (s—u—1!2u—7r+2—-0v)(r—u-—2)W!

X (—1)" () (—g)” 2 ()
% Wzlj F(l_(m(a +0 )1 52 (z01) 1 L2u—2v+2q 29

= oar(z+g) T g

) s—lr(s—1—q+%)
™ =
gfd’l“ —o q'T (s + %)

=0,

»2u—20+2¢+4—2s (31«3 (9%— )q52 (1‘02)] ’

and
25—1

Us=—4) o} <1+(s—1)(1+1/31)) (2+ 1)
r=1

4 (2s —r —1)! 1
I 1)! 896? 249
L+ 2y (s=r=1)! Tyy (T1p)s T (@yg)"
s—1 -1 F(s—l—q-i—%) rl(2s —r — 1)lg!m(—1)+sta

IDP

=0 u=01 (s—i— %) (s—u—1)u—r—qg+s—1(r—u)!(¢g+1+u—s)!(s—r—1)!

x 9=l ( ! )] : (B.24)
- 5531%) (291)(w03)"

where we have substituted the expansion (B.16) and taken the z — 0 limit. Finally, let us

compute §.54:

2s—1
68, = —4lim [ d*xg (25 —r—1)(r—1)——2"""2(s+1)
z—0 ; (mOS)T
X (D)2 "2 (=0 ) 200 (won) Clpai™ ™ (02ly)
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2s—1

B . S R DU R /2 7
——4&1_%/(1 1‘02 )TKOI 2 Ky} G-0) <1+(s—2)(1+¢1))
xsz%mi:ﬂ (s =2)!(r—1!(2s —r—1)!
it (s—u—2)2u—7r+2—-0v)(r—u-—2)W!
 y2u—2v— s<_w0—2)r7u+v72(x3-2)sfu+vf2_ (B.25)

After substituting the boundary to bulk propagators and taking the z — 0 limit, we obtain

2s—1

08,=—4 Z s+ 1)y] (1+(3—2)(1+&1)>

[ L) 1 r—nes—r— 1) ) 2ah)?
O e e el
=2 52 r(s—z—q+%>(r—1)!(2s—r—1)!q!

O

=0u=0 L' (s—1+ %) (s—u—2)(u—r—q+s)l(r—u—2)(¢g+u—s+2)!(s—r)!
1 1
X (— q—sas:?‘ _ . .
(=19, (x;“/’l (:c23)7“>] (B.26)

The three point function is proportional to 6S = §.51 4+ U; +Us+3§S4. One can simplify
the above expressions and compute the full three point function directly, but since we are

only interested in the overall coefficient whereas the position dependence is completely
fixed by the conformal symmetry, we can take the limit in which one of the two scalar

operators collides with the higher spin current, and extract the overall coefficient.

Let us define the variables yf = xf — xét and g/2jE = xéﬁ — xff, and consider the limit

y1 < y2. The various pieces of contributions are given in this limit by

~ ~ 1
oS 4(2 — 111 1 2 ! —
1 ( S)djl( +5( +17Z}1)) 7T17Z}18 y2+¢1 (yl—)s
s > 40 (1 (s~ DL +00) 2+ 50 22 =S5 1) Retp
Ya 1
- ~ — B.27
Us = — 55 (14 (s = (14 0)) (24 ) st (20

L4201 o200 (yp)°
1

(1 )® g +2

. : N I(3)
Lo = A(s+ 198 (14 (5= 2)(1+ ) WM(S —1)(s - 1)!
2

Summing these four terms, and recovering the full position dependence using the conformal
symmetry, we obtain the three point function of one higher spin current and two scalar
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operators:
((0+0) (21) (O +0) (22)J°(w3))

= 8m(s+U1(s — 1)) (1 + (=)*)I(s) ! < 12 > : (B.28)

|z12|2HY1 \ 213293

Note that since we have turned on the sources for Ceyen so far, the dual scalar operator is
O + O. The three point function involving an insertion of @ — O, dual to the bulk field
Codd, can be computed analogously by turning on a source for Cyqq. Note that Cyqq is a
purely imaginary field; in other words, if we write Coqq = i, then ¢ is a real field with
the “right sign” kinetic term. A computation similar to the above gives

<(O — @) ($1) (O +@) (LUQ)JS(:Ug)>

= 85+ (s — 1)1 — (—))T(s)— ( uit ) | (B.29)

|$12|2+1Z’1 T13%93
Adding (B.28) and (B.29), we obtain
— ~ 1 Ty *
(O(21)O(22)J*(z3)) = —4m(s + Y1 (s — 1))['(s) . —12 ) (B.30)
|212]2F¥1 \T13793

C The deformed vacuum solution

In this section, we discuss the formulation of the three dimensional Vasiliev system as
originally written in [10-13], which amounts to an extension of the equations (2.5) by
introducing two additional auxiliary variables k and p, as described below, and the 1-
parameter family of “deformed” vacuum solutions. The deformed vacuum solution of the
system (2.5) can be obtain by a simple projection on the extended system. We will also
present the boundary to bulk propagator for the B master field, which contains the bulk
“matter” scalar field, in the deformed vacua, by solving the linearized equations.

To describe the deformed vacuum, it is useful to introduce two additional auxiliary
variables k and p. They obey the following (anti-)commutation relations with one another
and with the twistor variables (y, z):

k= 02 =1, {k‘,p} = {k>ya} = {kvza} =0, [/07 ya] = [p> Za] =0. (Cl)

It will be also convenient to define the variable
1
Weo = (Za + ya)/ dtte'V. (02)
0

It is straightforward to show that w, satisfy the following star commutation relations:

[Wa, wgls =0,
[wa, ysl, + [Ya, wal, = 2€apK,
[Wa, zg]* + [za,wﬁ]* = —2e48K,
{wa, 25} ¥ K = {ya, wt = 0.

(C.3)
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Next, let us define
Za(V) = 2o + vwyk,

- (C.4)
Ja(V) = Yo + vw, x Kk.
Using the relations (C.3), it is easy to show that
[as Jpl, = 2€ap(1 + V),
[pZa: pZg], = —2€ap (1 +vKE), (C.5)

[pga, gﬂ]* = 0.

Under the star algebra, g, generate the (deformed) three dimensional higher spin algebra
hs(A) with A = (1 + vk). Later we will make the projection onto the eigenspace of k = 1
or k= —1, in which case A = $(1 +v) or A = $(1 — v). The higher spin algebra hs(}) is
an associative algebra, whose general element can be represented by an even analytic star-
function in g,. In particular, it has an sl(2)-subalgebra whose generator can be written as
Taﬂ = g(a * g,@)

The deformed vacuum solution is given by

1 1
B = —U, Sa - 7p(204 - ZO!)J

4 2 (C.6)
W =Wy = wo + Y1eg = (wgﬁ(ﬂﬁ) + wleﬁﬁ(w) Tog-

They satisfy the (k, p)-extended Vasiliev equations:'®

dW +W W =0,

dyS +d. W +{W, S}, =0,
d.S+ S %S = Bx Kkdz*, (C.7)

d.B + S, B, = 0,

dyB + [W, Bl =0,

We can go back to the system (2.5) by simply multiplying a projector %(1 + k) on the left
of every equation. Given any solution of the extended Vasiliev equations, by acting on it
with the projector we obtain a solution of the equations (2.5). It follows that the deformed
vacuum solution of (2.5) is

1 1

B=-v, So==02Za(-V)—2z.),
1 5 (Za(=7) = 2a) ©8)

W = (0§’ @) +vr6g”(2)) Fulv) * Ga(—).

Next, we will solve the linearize equation on the deformed vacua, and derive the bound-
ary to bulk propagator for B (the scalar and corresponding auxiliary fields). For simplicity
of the notation, we will work in the extended Vasiliev system. The boundary to bulk

“Note that the form of these equations differs from the system (2.5) only in the r.h.s. of the third
equation.
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propagator for fields in the system (2.5) can be obtained simply by applying the projector
$(14 k). The linearized equations for B are

(v, B =0,
. C.9
DyBWY = 0. 9

where Dy is defined by Dy = d + [Wp,]. The first equation of (C.9) immediately implies
BW(zly, z,4p) = Bgl)(:chj,w), where the subscript * of a function means that it is a
star-function.

Decomposing B ( |y,v) as B (az\y, Y) = C’aux*(az\y,wl)—kwg mat*(az\y,wl) the sec-
ond equation of (C.9) gives

dC&S}lzc* [U)Oa Ca(mux*] + 7/] [607 :;(Lu;*]* =0,

(C.10)
dCr(nit* [w07 Cr(xiat*] 1/)1{60, mat*} = 0.

As in the case of equations in the undeformed vacuum analyzed in section 3.1 and ap-
pendix A.1, the equation for C’é}g{* is over-constraining, and eliminates all dynamical de-
grees of freedom of C;Sll* We will simply set Célll)x* = 0, and only study the equation of

in the following. Let us expand cW in the form

) (1)
the “matter” component C it

matx*

Cr(rgt*(g) = Z Cr(rgt*,al---ang(al Koeeex gan)‘ (Cll)
n=0

To compute the (anti-)commutators in (C.10), let us first consider the star product of g
with 3](0‘1 SRR gan);

G Gl o) (C.12)

1

= GO g ) b Y (i 1) (1 (=) k) 267 s P o),

Contracting the above with e,Cq,...q,, (here and in what follows, e and C are used to
denote arbitrary totally symmetric tensors), we obtain

(e}

o o -
eal” * Coyva, G % -k g

0 o . i (C.13)
= €(aCayan)J" ¥ J* * - x g —a(n,vk)e*Coayap  J* % - x GO,
where
- 1 . i—1
a(n, vk) :2;(n+1)(nz+1)(1+() vk). (C.14)
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Applying a similar operation, staring §(® * %) with §(®1 % ... % ) and contracting with

€8aCay-an, We get
(e79)

eﬁagﬂ * JO ok Copoay, YL 5 -2 gon = e(@Cal..-an)gﬁ xPC Rk Gk x g

— 1a(n +1, Vk)eﬁ(gcﬁal.“%fl)ga TR R T

—a(n, —Vk‘)e(ﬁacml.-.an_l)ﬂﬁ * GO Kk gt
+ a(n,—vk)a(n — 1, uk)eaﬁCa[gal.“an_anl ¥ ook G2,

Now, starring § with §(® - % §) from the right side,

g(al*...*gan)*ga

1 n
— ~(a 71 ~an) _q ”(ﬂ 7% O ~QJ)
PGt g +"+1i§:1( DY Lk [P G k% G
1 & .
= 5w ) s ST (L () T A2

i=1
Contracting this formula with e,Cy, ...q,,, We have

~orp ~o ~o
Ca1~--any ke x YT K eqly

= €aCaywan)" ¥ Y™ - x GO = b(n,vE)e* Cony oy JH * ok GO,

where

b(n,vk) =2 Z; (n}rl)(—z‘)(l + (=) k).

Performing a similar operation with (® % ), we obtain

(e79)

Conoan T % % G % egafl” * §* = €(gaClayruan)§” * G %G %%
n ~ ~ ~
= g b L R)E (0Chay )T G g
— b(n, uk)e(ﬁ‘“cwl...an_l)gﬁ TR T

+ b(n, vk)b(n — 1,vk)e™®Copay oy oG % - - - % G2,
Adding (C.15) and (C.19), we obtain the anticommutator:

(e79)

{e8ad” * T, Coyay G % - - % §O }oo = 2e@0a1...an)gﬁ * GOk G ke kG

+ F(0,k)e? (0Cayan )3 * G %% G2+ g1, vk) e Cogay ay T -
where
f(n, vk) D aln+1,vk) — a(n, —vk) — ——b(n + 1, vk) — b(n, vk)
n,v "t 1@ n 5 a(n, Y , , 7

g(n,vk) = a(n,—vk)a(n — 1,vk) + b(n,vk)b(n — 1, vk).
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(C.16)

"Oén)

* o),

(C.17)

(C.18)

(C.19)

(C.20)

% gan727

(C.21)



If n is even, f(n,vk) and g(n,vk) can be further simplified to

f(2j,vk) =0,

, (1425 —vk)(—1+2j+ vk (C.22)
9(2J,vk)=4y( J = vh)( j+vk)

1+2j

Subtracting (C.15) from (C.19), we obtain the commutator:

[wﬁagﬁ * g%, Coa“-om?)al *oeexk gt o= _4nw6(gcﬁa1---an71)ga R R R T (0‘23)

*

The linearized equation (C.10) for the matter field, therefore, can be written as

1),n 1), n—2
BuC o — 4n(wou) (a, SO by an) ~ 2¢1(60u)(a1a20r(n§t az-an)

B (1) 2 (C.24)
- g(n +2, Vk)wl(eoﬂ) Chaat aBay-an = 0.
After contracting with (ef))ap, this equation is written as
1 1 1).n—2 1 1),n+2
Va Cr(na)ut ay- a”+T6¢16 a oqeﬂ)azcr(nzztn a3~~-an)+3729(n +2,vk)n Cr(n;thr aBay -y =0.
(C.25)

We follow the same procedure used in analyzing the undeformed vacuum, decomposing the
above equation according to the action of permutation group on the indices. Contract-
ing (C.25) with e**1 gives

[} n n+1 n—
VOO e — T6n iep( QQCSQt zag...an) =0. (C.26)
Further contracting (C.26) with 72 gives
a 1), n+1 1),n—2
\% /BC( a)m afos- an w Célit gy 0. (C27)

16(n —1)

As in the analysis of undeformed vacuum, now contracting the indices of the equa-
tions (C.25), (C.26), and (C.27) with the y®’s, we obtain

1 n
VIO (y) — —=g(n +2,vk) CL 2 ()

32 =0
VOO (y) =0, (C.28)
_ n 1
VO™ () = 1 (0 + Db O ) = 0,
where
Cpad" (4) = Ol o™+ (C.29)
Iterating the first equation of (C.28), we obtain
m2s ey _ (171 50
C1mat (y) - H 9(2]” l/k) (32¢ \% ) mat * (CBO)
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Since C’( )

at (Y) 1s restricted to be even in y?, it is entirely determined by the bottom compo-

nent C( ;0 via the above relation. After some simple manipulations of (C.28) using (A.11),
we derive the second order form linearized equation

1 1 n
OaasC" = — 5 <4 +8+ ig(n uk:)) cln. (C.31)

For n = 0, the equation is just the usual Klein-Gordon equation on AdSj3, and can be
rewritten in a more familiar form:

(V49, — m?) C0 =0, m? = &(3 — k) (1 + vk). (C.32)

Depending on the choice of AdS boundary condition, this scalar field is dual to an operator

of dimension ) . . . 5 .
Ay =1+ _QV = +2V or _21/ : (C.33)

It is convenient to package the choice of boundary condition into a variable V1, obeying
¥} =1, so that the scaling dimension of the dual operator can be written as

A:1+z/71<1_2”k>. (C.34)

The boundary to bulk propagator for the scalar field is a solution of (C.32), which up to
normalization is given by

D= KA where K=—— . (C.35)

(1),0
Crnat T2 4 22

a

Here (¥, z) are Poincaré coordinates of the AdSs (not to be confused with the twistor
variable z,). Using (A.14) and (C.30), we obtain

1) 1),2s
Cr(nat Z CI(n;t

— 11 m (4ap1)* (ySy) K~

=0 =1 (C.36)
S (s el | vtz s
j=1

J(1+25 —vk)(—1+ 25+ vk)
~ k 1 7 —v
=17 <3 m( R >,2¢1y2y> g

In the actual master field, the above expression should be understood as a star-function,

with y replaced by 3. More concretely, we can transform the ordinary function Cr(liit( ) to

the star-function C( )

motx (9) via the formula

P -1 2. 2 ~(1) iuy Py
Cleai) = g [ PuPuCLL )™ exp, (i), (C37)
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