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1 Introduction

The AdS/CFT correspondence [1–3] has given us a tremendous amount of insight in quan-

tum gravity through its duality with large N gauge theories. Progress does not come easily,

however. The regime in which the bulk theory reduces to semi-classical gravity is typically

dual to a gauge theory in the strong ’t Hooft coupling regime, and is difficult to solve. In

the opposite limit, where the gauge theory is weakly coupled, the bulk theory is typically

in a very stringy regime, involving strings in AdS whose radius is very small in string units

(though large in Planck units, as long as N is large). With a few exceptions, such as the

purely NS-NS background of AdS3 [4], in which case the dual CFT is singular [5, 6], gener-

ally the bulk string theory involves Ramond-Ramond fluxes; even the free string spectrum

is difficult to solve, and the full string field theory appears to be out of reach at the moment.

A particularly simple class of conjectured AdS/CFT dualities [7, 8, 16] avoids these

difficulties. These involve boundary CFTs whose numbers of degrees of freedom scales like

N rather than N2. In the AdS4/CFT3 conjecture of [7], the boundary theory is given by

the critical O(N) vector model. Such a duality can be extended to Chern-Simons-matter

theories with vector matter representations [9]. In the AdS3/CFT2 conjecture of [16], the

boundary theory is the WN minimal model, which can be realized as the coset model

SU(N)k ⊕ SU(N)1
SU(N)k+1

. (1.1)

In these examples, the CFT is either exactly solvable or has a simple 1/N expansion that

can be computed straightforwardly order by order. The dual bulk theories, however, are

higher spin extensions of gravity, involving an infinite tower1 of higher spin gauge fields.

In the case of [16], additional massive scalar matter fields are coupled to the higher spin

gauge fields. It is likely that these higher spin gauge theories are UV complete (at least

perturbatively) theories that contain gravity, due to the large number of gauge symmetries,

and are interesting toy models for quantum gravity. However, they do not reduce to semi-

classical gravity in any limit. Note that the higher spin symmetry can be broken by AdS

boundary conditions [7, 40], but this breaking is controlled by the coupling constant of the

theory and is in some sense rather mild.

The goal of the current paper is to understand the conjectured duality of [16] at the

interacting level, in particular, to the second order in perturbation theory. In fact, a

careful examination of the spectrum of the linearized Vasiliev system leads us to propose

a modification of the conjecture of [16]. A key insight of [16] is that, in the large N limit

of the coset model (1.1), λ = N/(N + k) plays the role of the ’t Hooft coupling, and

the basic primaries labelled by representations (�; 0) and (0;�) (as well as the conjugate

representations) have finite scaling dimensions ∆+ and ∆− in the ’t Hooft limit, and are

1While a pure higher spin gauge theory in AdS3 involving spins up to N can be formulated in terms

of SL(N,R) × SL(N,R) Chern-Simons theory, it is not known how to couple this theory to scalar matter

fields. The construction of [10–13] requires an infinite set of gauge fields of spins s = 2, 3, · · · ,∞. This is

the system conjectured to be dual to the WN minimal model in [16]. While the dynamical mechanism that

renders the set of spins finite in the interacting theory has not yet been understood, this seeming mismatch

is not visible at any given order in perturbation theory.
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conjectured to be dual to massive scalars in the bulk. We will consider a version of Vasiliev’s

system that involve a gauge field of spin s for s = 2, 3, · · · ,∞, coupled to two real massive

scalar fields. We propose that it is dual to a subsector of theWN minimal model, generated

by the WN currents together with two basic primary operators of dimension ∆+, labelled

by (�; 0) and (�; 0), or two basic primaries of dimension ∆− labelled by (0;�) and (0;�),

depending on the boundary condition imposed on the bulk scalar. We will refer to these

two subsectors as the ∆+ subsector and the ∆− subsector, respectively. Each subsector

has closed OPEs, and hence consistent n-point functions on the sphere, in the sense that

they only factorize through operators within in the same subsector. This identification is

natural by comparing the bulk fields and boundary operators, and also avoids the puzzle

with “light states” in the ’t Hooft limit of the coset model.2 However, it suggests that the

bulk Vasiliev system is non-perturbatively incomplete, though makes sense to all order in

perturbation theory. It may be possible to enlarge Vasiliev’s system to obtain a higher

spin-matter theory that is dual to the full WN minimal model, but such a bulk theory

would be subject to the strange feature of having a large number of light states. We will

not address this possibility in the current paper. There is, on the other hand, a minimal

truncation of Vasiliev system, where one keeps only the even spin fields and one out of the

two real massive scalars. We conjecture that this system is dual to the orthogonal group

version of the WN minimal model.3

The main nontrivial check of our proposal is a comparison of the tree level three-point

functions involving two scalars and one higher spin field in the bulk, and the ’t Hooft limit

of the corresponding three point function in the dual CFT. In order to carry out such a

computation, we first solve for the boundary to bulk propagators of Vasiliev’s master fields,

and then expand the nonlinear equations of motion to second order in perturbation theory

and compute the three point function. We encounter subtleties with gauge ambiguity and

boundary condition on the higher spin fields, and will find explicit formulae for the gauge

field propagators obeying the boundary condition of [19]. While one may expect that, in

principle, such three point functions are determined by symmetries and Ward identities, the

implementation of the latter is not so trivial on the CFT side. For instance, we do not know

a simple way to carry out the 1/N expansion of the coset model, and must calculate cor-

relators exactly at finite N first, and then take the ’t Hooft limit. For various quantities of

interest in the CFT, analytic formulae for general spins are often difficult to obtain, and in-

stead one computes case by case for the first few spins. The results have a nontrivial depen-

dence on the ’t Hooft coupling λ, which is mapped to a deformation parameter ν in the bulk

theory. The case in which the bulk theory is the simplest, namely the ν = 0 “undeformed”

theory, is mapped to λ = 1/2. In this paper, most of our computation is performed within

the ν = 0 theory, and is compared to the λ = 1/2 case of the WN minimal model. In ap-

pendix C we give some formulae useful for the deformed bulk theory with nonzero ν, though

the analogous computation of correlators in the deformed theory is left to future work.

2The “light states” are the primaries labelled by a pair of identical representations, (R;R), whose

dimension scales like 1/N in the large N limit. While the contribution of such states to the partition

function is argued in [16] to decouple in the strict infinite N limit, they show up in OPEs of basic primaries

when 1/N corrections are taken into account.
3The ’t Hooft limit of this class of CFTs are recently studied in [17].
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More precisely, we compute correlators of the form 〈OOJ (s)〉 at tree level in the ν = 0

undeformed bulk theory. These three-point functions are fixed by conformal symmetry

up to the overall coefficient; the latter is computed unambiguously as a function of the

spin s. The result is then compared to the three point functions in the WN minimal

model, in the large N limit, at ’t Hooft coupling λ = 1/2. We test the conjectured duality

using the explicit expression for the spin 3 current in the coset construction, and found

perfect agreement.

We begin with a brief review of the three-dimensional Vasiliev’s system in section 2. In

section 3 we describe the linearized spectrum of the bulk theory, as well as propagators and

boundary conditions, while leaving technical details to appendix A. Some useful formulae

for the deformed bulk theory (i.e. with nonzero ν) are given in appendices C. In section 4,

we work to second order in perturbation theory and compute the three point functions

of interest. The details of these derivations are given in appendix B. Our proposal of the

dualities and a test on the three point functions are presented in section 5. We conclude

in section 6.

2 A brief review of Vasiliev’s system in AdS3

Throughout this paper, we will consider the Vasiliev system in AdS3, which consists of

one higher spin gauge field for each spin s = 2, 3, 4, · · · , coupled to a pair of real massive

scalar fields. We will often work explicitly with the Poincaré coordinates of AdS3, with

xµ = (z, xi), i = 1, 2, and the metric ds2 = 1
z2
(dz2 + dxidxi). Following Vasiliev, we

introduce the auxiliary bosonic twistor variables yα, zα, where α = 1, 2 is a spinorial index,

as well as the Grassmannian variables ψi, i = 1, 2, which obey {ψi, ψj} = 2δij .
4 The master

fields are: W a 1-form in the spacetime parameterized by xµ, S a 1-form in the auxiliary

zα-space, and B a scalar field. All of them are functions of xµ, yα, zα, as well as ψi,
5

W =Wµ(x|y, z, ψi)dxµ,
S = Sα(x|y, z, ψi)dzα,
B = B(x|y, z, ψi).

(2.1)

These fields are subject to a large set of gauge symmetries. The infinitesimal gauge trans-

formation is parameterized by a function ǫ(x|y, z, ψ),

δW = dxǫ+ [W, ǫ]∗,

δS = dzǫ+ [S, ǫ]∗,

δB = [B, ǫ]∗.

(2.2)

One further imposes a truncation so that W,B are even functions of (y, z) whereas Sα is

odd in (y, z) (so that the 1-form S is even under (y, z, dz) 7→ (−y,−z,−dz)). The gauge

4Note that while the equations of motion treats ψ1 and ψ2 on equal footing, the choice of vacuum will

not. The ψi’s can be thought of as purely a bookkeeping device.
5In Vasiliev’s original papers, the master fields depend on the additional Grassmannian variables k, ρ.

This will be discussed in appendix C. We will refer it as the “extended Vasiliev system”, the Vasiliev system

we present here is obtained by making a projection (1 + k)/2 on all fields, and effectively eliminating k, ρ.
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parameter ǫ is then restricted to be an even function of (y, z) as well. One introduces a

star-product ∗ on functions of (y, z), defined by

f(y, z) ∗ g(y, z) =
∫
d2ud2veuvf(y + u, z + u)g(y + v, z − v). (2.3)

Here and throughout this paper, the spinors are contracted as uv = uαvα = −vαuα = −vu
and uσv = uασα

βvβ for a matrix σ. The integration measure d2ud2v above is normalized

such that f ∗ 1 = f . The Grassmannian variables ψi commute with yα, zα and do not

participate in the ∗ product. Under the star-product, the auxiliary variables yα generate

the three dimensional higher spin algebra hs(1, 1) [14],6 which is an associative algebra,

whose general element can be represented by a even analytic function of in yα. In particular,

hs(1, 1) has a subalgebra sl(2) whose generator can be written as Tαβ = y(α ∗yβ). An inner

product on this algebra is defined as (A,B) = A(y) ∗B(y)
∣∣
y=0

.

We define an involution ι on the star algebra as follows: ι(yα) = iyα, ι(zα) = −izα,
ι(dzα) = −idzα, and the action of ι reverses the order of all products (including the

multiplication of ψi’s); in particular, ι(ψ1ψ2) = ψ2ψ1 = −ψ1ψ2. The master fields W,S,B

are then subject to the reality condition7

ι(W )∗ = −W, ι(S)∗ = −S, and ι(B)∗ = B, (2.4)

where the superscript ∗ stands for taking the complex conjugate on the component fields

while leaving the auxiliary variables yα, zα, ψi untouched.

Vasiliev’s equations of motion are now written as

dxW +W ∗W = 0,

dxS + dzW + {W,S}∗ = 0,

dzS + S ∗ S = B ∗Kdz2,
dxB + [W,B]∗ = 0,

dzB + [S,B]∗ = 0.

(2.5)

Here dx and dz denote the exterior derivative in spacetime coordinates xµ and the auxiliary

variables zα respectively. K ≡ ezy is known as the Kleinian. It has the properties

K ∗K = 1, K ∗ f(y, z) = Kf(z, y), f(y, z) ∗K = Kf(−z,−y). (2.6)

A few comments on (2.5) are in order. The third equation in (2.5) can be thought of as

the definition of the scalar master field B. The fourth equation is equivalent to a Bianchi

identity for the field strength of the connection A =W +S, which follows from the second

and third equation. The last equation, however, is an independent equation for B.8

6We will also consider hs(λ) the one parameter deformation of hs(1, 1) in appendix C.
7Such a reality condition is necessary because, as we will see later, the physical components of the B

master field are of the form ψ2Ceven+ψ2ψ1Codd where Ceven is a real scalar and Codd is a purely imaginary

scalar field.
8This is different from the four-dimensional version of Vasiliev’s system, which involves a similar set of

equations.
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Note that the equations of motion (2.5) are preserved under the involution ι, if one

sends (W,S,B) to (−W,−S,B) at the same time. In particular, Vasiliev’s system can be

further truncated down to what we refer to as the “minimal Vasiliev’s system”. The latter

is defined by projecting the master fields onto the ι-invariant components, namely

ι(W ) = −W, ι(S) = −S, and ι(B) = B. (2.7)

We will see later that the minimal Vasiliev’s system contains only the even spin gauge

fields and a single matter scalar. Though, in most of this paper, we will be considering

the untruncated Vasiliev’s system, where gauge spins of all spins greater than or equal to

2 are included.

The equations (2.5) are formulated in a background independent manner. To formu-

late the perturbation theory, one begins by choosing a vacuum solution, and identifies the

physical propagating degrees of freedom by linearizing the equations around the vacuum

solution. One may then proceed to higher orders in perturbation theory and study inter-

actions in this background. It turns out that the system (2.5) admits a 1-parameter family

of distinct AdS3 vacua, labeled by a real parameter ν. In fact, the parameter ν appears

in a non-dynamical, auxiliary component of B, and thus the 1-parameter family of AdS3
vacua are not connected by physical deformations, but should rather be thought of as dif-

ferent theories in AdS3. In this paper, we will focus on the simplest, “undeformed” theory,

corresponding to the ν = 0 vacuum. The deformed vacua/theories (ν 6= 0) are discussed in

appendix C. The perturbation theory, and in particular the study of three point functions,

of the deformed theory is left to future work.

The undeformed AdS3 vacuum solution is given by

B = 0, S = 0, W =W0 ≡ w0(x|y) + ψ1e0(x|y), (2.8)

whereW0 is a flat connection satisfying dxW0+W0∗W0 = 0. WithW0(x|y, ψ1) chosen to be

a quadratic function of y, the flatness condition is classically equivalent to the Chern-Simons

formulation of Einstein’s equation with negative cosmological constant in three dimensions.

In other words, the equations of motion is obeyed if the 1-forms e0, w0 are chosen as the

dreibein and spin connection forAdS3, contracted with yα in spinorial notation. In Poincaré

coordinates xµ = (z, xi), they can be written as

w0(x|y) ≡ wαβ0 (x)yαyβ = −yσ
µzy

8z
dxµ, e0(x|y) ≡ eαβ0 (x)yαyβ = −yσ

µy

8z
dxµ. (2.9)

Our convention for e0 is such that

(eµ0 )αβ(e0µ)
γδ = − 1

64
(δγαδ

δ
β + δδαδ

γ
β), (eµ0 )αβ(e0ν)

αβ = − 1

32
δµν . (2.10)

Expanding around this vacuum solution, we will write W =W0+ Ŵ , and the equations of

– 6 –
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motion in its perturbative form as

D0Ŵ = −Ŵ ∗ Ŵ ,

D0S + dzŴ = −{Ŵ , S}∗,
dzS −B ∗Kdz2 = −S ∗ S,

dzB = −[S,B]∗,

D0B = −[Ŵ ,B]∗,

(2.11)

where we have defined D0 ≡ dx+[W0, ·]∗. By choosing a zα-dependent gauge function, one

can always go to a gauge in which S|zα=0 = 0. The physical degrees of freedom are entirely

contained in the zα-independent part of the master fields, whereas the zα-dependence are

determined via the equations of motion. It is then useful to decompose W,B as

W (x|y, z, ψ) =W0 +Ω(x|y, ψ) +W ′(x|y, z, ψ)
B(x|y, z, ψ) = C(x|y, ψ) +B′(x|y, z, ψ)

(2.12)

where Ω and C are the restriction of Ŵ and B to zα = 0, respectively, while W ′ and B′

obey W ′
∣∣
zα=0

= B′
∣∣
zα=0

= 0. We will see that Ω and C contain the higher spin gauge

fields and two real scalar fields, whereas W ′ and B′ are auxiliary fields. At the linearized

level, the equations (2.11) reduce to

D0Ω
(1) = −{W0,W

′(1)}∗|z=0, (2.13)

dzW
′(1) = −D0S

(1), (2.14)

dzS
(1) = C(1) ∗Kdz2, (2.15)

B′(1) = 0, (2.16)

D0C
(1) = 0, (2.17)

where the superscript (n) labels the order of the component of the respective field in the

perturbative expansion. These equations will be analyzed in detail in the next section as

well as in appendix A. We will then proceed to the quadratic order and study the cubic

coupling and three point functions in section 4.

Let us note that the system of equations (2.5) and the AdS3 vacuum (2.8) are invariant

under a global U(1) symmetry,

W → eiθψ1We−iθψ1 , S → eiθψ1Se−iθψ1 , B → eiθψ1Be−iθψ1 . (2.18)

This U(1) rotates the phase of the complex scalar matter field, while leaving the higher spin

fields invariant. Note that (2.18) preserves the reality condition (2.4). While it is a symme-

try of the classical theory, and is expected to be a perturbative symmetry of the quantum

theory, it should be broken non-perturbatively (or alternatively, become gauged), as an-

ticipated in any quantum theory of gravity [41, 42]. In the proposed dual CFT, the U(1)

rotates the basic primaries (�; 0) and (�; 0) with opposite phases. As far as correlators of a

fixed number of basic primaries are concerned, in the large N limit, this U(1) is effectively

a symmetry of the theory, since any correlation function that violates the U(1) vanishes

by the fusion rule. This U(1) is obviously broken when N basic primaries are inserted, as

the tensor product of N fundamental representations of SU(N) contains a singlet.

– 7 –
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3 Propagators and two point functions

3.1 The physical fields and propagators

In this subsection we will describe the physical degrees of freedom in the linearized master

fields, as well as their propagators. The details of the derivations starting from Vasiliev’s

equation are given in appendix A.

3.1.1 The scalar matter field

The linearized scalar master field C(1)(x|y, ψ) can be decomposed as

C(1)(x|y, ψi) = C(1)
aux(x|y, ψ1) + ψ2C

(1)
mat(x|y, ψ1). (3.1)

C
(1)
aux is purely auxiliary; the only solution to its equation of motion is a constant, which

parameterizes a family of AdS3 vacua. We will set C
(1)
aux = 0 for now. C

(1)
mat can be expanded

in y as

C
(1)
mat =

∑
C

(1),n
mat (x|y, ψ1) =

∑
C

(1),n
mat α1···αn(x|ψ1)y

α1 · · · yαn . (3.2)

It follows from D0(ψ2C
(1)
mat) = 0 that the bottom component C

(1),0
mat (x|ψ1) obeys the usual

Klein-Gordon equation for a massive scalar field in AdS3,

(
∇µ∂µ −m2

)
C

(1),0
mat (x|ψ1) = 0, m2 = −3

4
. (3.3)

Expanding further in ψ1, C
(1),0
mat (x|ψ1) = Ceven(x)+ψ1Codd(x) contain a pair of real scalars

of mass squared m2 = −3
4 in AdS units. Due to the reality condition (2.4), Ceven is real

whereas Codd is a purely imaginary scalar field. They can be paired up to a complex

massive scalar as Ceven +Codd, with Ceven −Codd its complex conjugate. Under the global

U(1) symmetry (2.18), Ceven ± Codd transform as

Ceven ± Codd → e±iθ (Ceven ± Codd) . (3.4)

In the dual boundary CFT, this complex scalar corresponds to a complex scalar oper-

ator of dimension ∆+ or ∆−, depending on the choice of boundary condition. Here

∆± = 1± 1

2
=

3

2
or

1

2
. (3.5)

The higher components C
(1),n
mat are expressed in terms of derivatives of C

(1),0
mat through the

equation of motion.

In the ν-deformed vacua, C
(1)
mat still describes a pair of real massive scalar fields, with

mass squared m2 = −3
4 +

ν(ν±2)
4 , where the ± sign depends on a choice of projection. This

is discussed in appendix C.

The boundary-to-bulk propagator for the scalar is Cmat,0 = K(~x, z)∆ for ∆ = 3/2

or ∆ = 1/2, where K(~x, z) ≡ z
~x2+z2

, ~x = (x1, x2). It is convenient to introduce another

auxiliary variable ψ̃1, satisfying ψ̃
2
1 = 1, to label the two different boundary conditions, so

that ∆ = 1 + ψ̃1/2. With the δ-function source on Ceven component:

C
(1)
mat(~x, z → 0|y, ψ1) = 2πψ̃1z

1−
ψ̃1
2 δ2(x) (3.6)

– 8 –
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turned on on the boundary, the boundary-to-bulk propagator for the master field

C
(1)
mat(x|y, ψ1) is then given by

C
(1)
mat(x|y, ψ1) =

(
1 + ψ1

1 + ψ̃1

2
yΣy

)
e
ψ1
2
yΣyK1+

ψ̃1
2 , (3.7)

where Σ ≡ σz − 2z
x2
σµxµ. We can also turn on the source on Codd component:

C
(1)
mat(~x, z → 0|y, ψ1) = 2πψ1ψ̃1z

1−
ψ̃1
2 δ2(x) (3.8)

on the boundary. The boundary-to-bulk propagator will be just (3.7) times ψ1.

Under the action of the involution ι, Ceven is invariant whereas Codd changes sign.

Hence only Ceven survives the minimal truncation (2.7). Thus, the “minimal Vasiliev sys-

tem” contains only a single real scalar scalar, which is dual to a real scalar operator in the

boundary CFT. Note that in writing the boundary-to-bulk propagator (3.7), we have cho-

sen to turn on a source for Ceven only, and the result is invariant under the projection by ι.

3.1.2 The higher spin fields

The higher spin gauge fields, as well as some auxiliary fields, are contained in Ω(x|y, ψ),
which may be decomposed in the form

Ω(1)(x|y, ψi) = Ωhs(x|y, ψ1) + ψ2Ω
sc(x|y, ψ1). (3.9)

As the notations suggest, Ωhs contain the higher spin gauge fields in AdS3, while Ω
sc are in

fact auxiliary fields determined by the scalar matter fields. The linearized equations take

the form

D0Ω
hs = 0, D̃0Ω

sc = −ψ2{W0, ψ2W
mat}∗|z=0. (3.10)

where we have defined

D̃0 ≡ dx + [w0, ·]∗ − ψ1{e0, ·}∗. (3.11)

It is demonstrated in appendix A.2 that up to gauge transformations, Ωsc have no propagat-

ing degrees of freedom and are determined entirely in terms of Cmat. Ω
hs, on the other hand,

obeys the (linearized) Chern-Simons equation with higher spin algebra hs(1, 1) ⊕ hs(1, 1).

They are related to the metric-like higher spin fields, which are usually written in terms of

traceless symmetric tensors, in the following way.

First, expand Ωhsαβ ≡ Ωhsµ (eµ0 )αβ in y as

Ωhsαβ(x|y, ψ1) =
∑

Ω
hs,(n)
αβ (x|y, ψ1) =

∑
Ωhs,nαβ|α1···αn

(x|ψ1)y
α1 · · · yαn , (3.12)

and then express the components in terms of symmetric traceless tensors (in spinorial

notation) as

Ω
hs,(n)
αβ|α1···αn

(x|ψ1) = χn,+αβα1···αn
+ ǫ(α1(αχ

n,0
β)α2···αn)

+ ǫ(α(α1
ǫβ)α2

χn,−α3···αn)
, (3.13)
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or equivalently,

Ω
hs,(n)
αβ (x|y, ψ1)=

1

(n+2)(n+1)
∂α∂βχ

+
n (x|y, ψ1) +

1

n
y(α∂β)χ

0
n(x|y, ψ1)+yαyβχ

−
n (x|y, ψ1).

(3.14)

Here χ+
n (x|y, ψ1) is defined as χn,+α1···αn+2

contracted with yα’s, and similarly for χ0
n(x|y, ψ1)

and χ−
n (x|y, ψ1). Next, we expand in ψ1, and write

χ±/0
n = χn,±/0even + ψ1χ

n,±/0
odd . (3.15)

It turns out that χeven are determined in terms of (derivatives of) χodd through the equation

of motion. Furthermore, χn,0odd can be gauged away entirely. The residual gauge symmetry

on χn,±odd(y) takes the form

δχn,+odd(y) = −∇+λnodd(y),

δχn,−odd(y) = − 1

n(n+ 1)
∇−λnodd(y),

(3.16)

where λnodd(y) is related to the gauge parameter ǫ by ǫ = ψ1λ
n
odd. ∇± are defined here as

∇+ ≡ (yeµ0y)∇µ, ∇− ≡ (∂ye
µ
0∂y)∇µ, (3.17)

where ∇µ acts on a tensor (· · · )α1α2··· as the spin-covariant derivative. Under the ι-action,

only the even spin fields are invariant. Hence, the “minimal” Vasiliev’s system only contains

higher spin gauge fields with even spins, and its dual boundary CFT contains only even

spin currents.

In the metric-like formulation, the spin-s gauge field is described by a rank s double

traceless symmetric tensor Φµ1···µs . It may be decomposed into irreducible representations

of the Lorentz group as

Φµ1···µs = ξµ1···µs + g(µ1µ2χµ3···µs), (3.18)

where ξ and χ are traceless symmetric tensors of rank s and s − 2, respectively. With

the identification

χ2s−2,+
odd = ξ(s), χ2s−2,−

odd = − 2s− 3

32(s− 1)
χ(s), (3.19)

where ξ(s) is defined as ξµ1···µs contracted with (eµ0 )αβy
αyβ , and similarly for χ(s), the Chern-

Simons form of the equations of motion can be shown to be equivalent to the Fronsdal form

of the equation on Φ,

(�−m2)Φµ1···µs − s∇(µ1∇µΦµµ2···µs) +
1

2
s(s− 1)∇(µ

1
∇µ

2
Φµµµ3···µs)

− s(s− 1)g(µ1µ2Φ
µ
µµ3···µs) = 0,

(3.20)

which is invariant under the gauge transformation:

δΦµ1···µs = ∇(µ1ηµ2···µs), (3.21)

where ηµ2···µs is a symmetric traceless gauge parameter. The gauge transformation (3.21)

is also equivalent to (3.16) under the identification (3.19).
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In three dimensions, the higher spin gauge fields do not have bulk propagating degrees

of freedom. In AdS3, just as in the more familiar case of gravitons (s = 2), there are bound-

ary excitations of the higher spin fields, corresponding to field configurations that cannot be

gauged away by gauge transformations that vanish on the boundary of the AdS spacetime.

A careful analysis of the gauge conditions is necessary in order to talk about boundary-to-

bulk propagators and bulk-to-bulk propagators. We will first consider Metsaev’s modified

de Donder gauge [43], which is convenient for solving higher spin propagators in AdS in

general dimensions. We will see, however, that the propagators found in this gauge vio-

lates (the higher spin generalization of) Brown-Henneaux boundary condition, and are not

directly applicable to the computation of boundary correlators. Nonetheless, this gauge

should be useful in doing loop computations in the bulk. We will then proceed to find

the appropriate boundary-to-bulk propagators that obey Brown-Henneaux boundary con-

dition, which allows for computations of boundary correlators.

3.2 Propagators in modified de Donder gauge

The modified de Donder gauge was introduced by Metsaev in [43]. This gauge has the

advantage that the equations of motion for different components of free higher spin gauge

fields decouple, and hence the solutions can be obtained easily. The implementation of the

gauge condition, on the other hand, is a bit complicated. It can be described as follows.

Start with the double traceless symmetric Φsµ1···µs which obeys the Fronsdal equation in

AdS3. Write ΦsA1···As
= Φsµ1···µse

µ1
A1

· · · eµsAs where Ai are local Lorentz frame indices. Define

a generating function/field

Φs(x|Y ) = ΦsA1···AsY
A1 · · ·Y As , (3.22)

where Y A = (Y z, Y 1, Y 2) are auxiliary vector variables (analogous to the twistor variables

yα introduced previously). One then performs a linear transformation on Φs(x|Y ),

φ(x|Y ) = z−
1

2NΠφΦΦs(x|Y ), (3.23)

where z is the Poincaré radial coordinate, N is an operator that acts as a separate nor-

malization factor on each component of Φ(x|Y ) of given degree in Y z and ~Y = (Y 1, Y 2),

and ΠφΦ involves derivatives on Y z and ~Y . See appendix A.3 for the definition of these

operators. The resulting generating field φ(x|Y ) is double traceless with respect to the

directions parallel to the boundary, namely

(
∂2

∂~Y 2

)2

φ(x|Y ) = 0. (3.24)

The modified de Donder gauge is defined by a gauge condition of the form

Cφ(x|Y ) = 0, (3.25)

where C is an operator involving up to two derivatives on ~Y and one spacetime derivative.

The key point is that, in this case, the Fronsdal equation for Φs is re-expressed in terms of
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equations on φ(x|Y ) as

[
�+ ∂2z −

(
r − 1

2

) (
r − 3

2

)

z2

]
φr(x|~Y ) = 0, (3.26)

where φr(x|~Y ) are the components of φ(x|Y ) expanded in Y z,

φ(x|Y ) =
s∑

r=0

(Y z)s−rφr(x|~Y ). (3.27)

The equation of motion is then straightforwardly solved in momentum space. Note that

the gauge condition (3.25) relates the different components φr(x|~Y ). After solving φ(x|Y ),

one can translate it back into Φs(x|Y ), and further into the frame-like fields χ
(s),±
odd . The

result for the boundary-to-bulk propagator of χ
(s),±
odd due to a chiral spin-s current J

(s)
++···+

source inserted at ~x = 0 is given in momentum space explicitly by (up to the overall

normalization factor)

χ
(s),+
odd (~p, z|y) =

s∑

r=0

ir
(
s

r

)
pr−1(p+)s−r(y1)s+r(y2)s−rzKr−1(z|~p |), (3.28)

χ
(s),−
odd (~p, z|y) = s

2(2s− 1)

s∑

r=0

ir
(
s− 2

r

)
pr−1(p+)s−r(y1)s+r−2(y2)s−r−2zKr−1(z|~p |).

The details of the derivation is given in appendix A.3. These propagators, however, do

not obey the higher spin analog [19, 20] of Brown-Henneaux boundary condition [18],

which should be imposed in order for the dual CFT to have the appropriate higher spin

symmetry. In fact, we know that any solution to the linearized higher spin equations in

AdS3 must be a pure gauge in the bulk. The key to finding the appropriate boundary-to-

bulk propagator is then to find the appropriate gauge transformation near the boundary.

In the next subsection, we will see that such a gauge transformation takes a rather simple

form. The bulk-to-bulk propagators in the modified de Donder gauge may still prove useful

for loop computations in the bulk, which we hope to revisit in the future.

3.3 The asymptotic boundary condition

Let us begin with the spin 2 case, and consider the Brown-Henneaux boundary condi-

tion [18] on metric fluctuations. In the Y -algebra language, a spin 2 tensor field sourced by

a positively polarized stress-energy tensor insertion on the boundary, at ~x = 0, that obeys

Brown-Henneaux boundary condition is given by

Φ2(x|Y ) ∼ δ2(~x)(Y +)2 + (subleading contact terms) +
z2

(x−)4
(Y −)2. (3.29)

On the r.h.s. we only indicated the leading order terms in the z → 0 limit; their coefficients

are not specified. The boundary-to-bulk propagators in the modified de Donder gauge,

derived in the previous subsection, does not obey this boundary condition. It suffices to
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examine the spin 2 case. In position space, the graviton boundary to bulk propagator in

the modified de Donder gauge (for a positively polarized source) is

Φ2(Y ) =
2i

π
Y zY + x+z

(x2 + z2)2
− i

π
(Y +)2

z2

(x2 + z2)2
+
i

π
Y +Y − (x+)2

(x2 + z2)2
. (3.30)

In the limit z → 0, it goes like

Φ2(Y ) ∼ δ2(x)(Y +)2 + (subleading contact terms) +
Y −Y +

(x−)2
, (3.31)

which clearly violates the boundary behavior of (3.29).

Similarly, the higher spin gauge fields are subject to the an analog of the Brown-

Henneaux boundary conditions [19, 20]. For general spin s, the boundary condition is such

that the boundary-to-bulk propagator for a positive polarized spin-s source is

Φs(x|Y ) ∼ z2−sδ2(~x)(Y +)s + (subleading contact terms) +
(Y −)szs

(x−)2s
, (3.32)

where the coefficient are again not specified. Let us examine this boundary condition (3.32)

in more detail. In three dimension, similarly to gravitons, the higher spin gauge fields do

not have any propagating degrees of freedom in the bulk. In other words, any solution to the

equation of motion can be (locally) written in a pure gauge form, Φs(x|Y ) = Y ADAηs(x|Y ).

However, the gauge parameter ηs(x|Y ) may have nonzero higher spin charge, the latter

is given by a boundary integral, and the higher spin gauge field Φs(x|Y ) would not be

gauge equivalence to zero. As proposed in [19], the boundary behavior of the gauge pa-

rameter ηs(x|Y ) can be fixed by demanding the gauge field Φs(x|Y ) obeys the boundary

conditions (3.32). With some effort, we find the appropriate gauge parameter ηs(x|Y )

near the boundary:

ηs(x|Y ) =

s−1∑

u=0

2s−2u−1∑

r=1

u∑

v=0

(−1)r+u

(2u)!

(
u

v

)


2u−1∏

j=0

(r + j)






u∏

j=1

2j − 1

2s− 2j − 1




× (Y 3)2v+r−1(Y −)u−v(Y +)s−r−v−u
z2u+r−s

(x−)2u+r
+O(zs+1),

(3.33)

and the corresponding gauge field

Φs(x|Y ) = Y ADAηs(x|Y )

= 2πz2−sδ2(x)(Y +)s + (subleading contact terms)

+ (−1)s(2s− 1)
(Y −)szs

(x−)2s
+O(zs+1).

(3.34)

Notice that the leading analytic term on the r.h.s. of (3.34) is proportional to the two point

function of the boundary higher spin currents. Since the gauge parameter is a traceless

tensor, i.e. ∂2Y ηs(Y ) = 0, we can substitute Y A = eAαβy
αyβ in (3.33) and obtain, modulo an
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overall normalization coefficient, the gauge parameter in the (spinorial) y-algebra language

(see (3.16)):

λs(y) = −4
2s−1∑

r=1

(y1)2s−r−1(y2)r−1 z
r−s

(x−)r
+O(zs+1). (3.35)

For later use, we also compute the boundary-to-bulk propagators for the generating func-

tion of frame-like fields, χ
(s),±/0
odd and χ

(s),±/0
even using (A.48) and (A.43), and compute Ω

hs,(s)
11

and Ω
hs,(s)
22 using (A.39). They are

χ
(s),+
odd = 2π(y1)2sz2−sδ2(x) + (subleading contact terms) +

(2s− 1)(y2)2szs

(x−)2s
+O(zs+1),

χ
(s),0
odd = 0,

χ
(s),−
odd = (contact terms of the order z4−2s and higher) +O(zs+1), (3.36)

and

χ(s),+
even =−2π(y1)2sz2−sδ2(x) + (subleading contact terms)− (2s−1)(y2)2szs

(x−)2s
+O(zs+1),

χ(s),0
even = (contact terms of the order z3−2s and higher) +O(zs+1),

χ(s),−
even = (contact terms of the order z4−2s and higher) +O(zs+1), (3.37)

as well as

Ω
hs,(s)
11 (y) =− 2(1− ψ1)π(y

1)2s−2z2−sδ2(x) + (subleading contact terms) +O(zs+1),

Ω
hs,(s)
22 (y) = (contact terms of the order z4−s and higher)

− (1− ψ1)
(2s− 1)(y2)2s−2zs

(x−)2s
+O(zs+1). (3.38)

Notice that the leading contact term in Ω
hs,(s)
11 is proportional to (1− ψ1); in other words,

we have imposed the Dirichlet boundary condition on the component (1−ψ1)Ω
hs,(s)
11 . Sim-

ilarly, for the negative polarized higher spin gauge field, we impose the Dirichlet boundary

condition on the component (1 + ψ1)Ω
hs,(s)
22 .

3.4 Higher spin two point function

With these formulae at hand, we can now compute the two point function of the higher

spin currents on the boundary. The linearized higher spin equation D0Ω
hs = 0 can be

obtained from the quadratic part of a Chern-Simons type action:

Shs = −
∫
dψ1

∫ (
Ωhs, dΩhs + 2W0 ∗ Ωhs

)
. (3.39)

We decompose the higher spin gauge field as

Ωhs = Ωhsz dz +Ωhs+ dx
+ +Ωhs− dx

−. (3.40)
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Modulo the equation of motion, the variation of the action (3.39) is

δShs = −
∫
dψ1

∫
dx+dx−

1

z2

[(
Ωhs+ , δΩ

hs
−

)
−
(
Ωhs− , δΩ

hs
+

)]
, (3.41)

which, however, is non-vanishing under the boundary condition (3.38). To cancel it, we

add a boundary term to the action:

Shs,b = −
∫
dψ1

∫
dx+dx−

1

z2
ψ1

(
Ωhs+ ,Ω

hs
−

)
, (3.42)

whose variation is

δShs,b = −
∫
dψ1

∫
dx+dx−

1

z2
ψ1

[(
Ωhs+ , δΩ

hs
−

)
+
(
Ωhs− , δΩ

hs
+

)]
. (3.43)

Hence, the variation of the total action Shs + Shs,b is

δShs + δShs,b =−
∫
dψ1

∫
dx+dx−

1

z2

[
(1+ ψ1)

(
Ωhs+ , δΩ

hs
−

)
−(1− ψ1)

(
Ωhs− , δΩ

hs
+

)]
. (3.44)

which indeed vanishes under the boundary condition (3.38), or equivalently the Dirichlet

boundary condition on the components (1− ψ1)Ω
hs
+ and (1 + ψ1)Ω

hs
− .

Since the bulk action (3.39) vanishes on-shell, the only contribution to the two-point

function comes from the boundary term (3.42). Evaluating the boundary integral (3.42)

using the higher spin boundary-to-bulk propagators, we obtain the two point function of

higher spin currents:

〈Js(x1)Js(x2)〉 =
∫
d2x

1

z2
4π(∂y2)

2s−2z2−sδ2(x− x1)
(2s− 1)(y2)2s−2zs

(x− − x−2 )
2s

= 4π
(2s− 1)!

(x−12)
2s
.

(3.45)

This is indeed the structure expected from conformal invariance.

4 Three point functions

4.1 The second order equation for the scalars

To extract the cubic couplings in the bulk Lagrangian, or the three point correlation func-

tion of boundary operators, we need to express the master fields in terms of the physical

fields and expand the equations of motion to quadratic order. For the purpose of studying

three point functions involving the scalars, it suffices to work with the equations for the

master field B, to the second order. They are

dzB
(2) = −[S(1), B(1)]∗,

D0B
(2) = −[W (1), B(1)]∗.

(4.1)
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Decomposing W (1), B(1), B(2) as in (2.12), and restricting the second equation at z = 0,

we obtain
dzB

′(2) =− [S(1), ψ2C
(1)
mat]∗,

D0C
(2) =− [W0, B

′(2)]∗
∣∣
z=0

− [W ′(1), ψ2C
(1)
mat]∗

∣∣
z=0

− [Ωhs, ψ2C
(1)
mat]∗ − [ψ2Ω

sc, ψ2C
(1)
mat]∗.

(4.2)

We remind the reader that C(1) = C
(1)
aux + ψ2C

(1)
mat and Ω(1) = Ωhs + ψ2Ω

sc, and we have

set C
(1)
aux = 0. The S(1) and W ′(1) are linear in ψ2, and the first equation implies B′(2) is

independent of ψ2. Decomposing C(2) in a similar way as C(2)(x|y, ψ) = C
(2)
aux(x|y, ψ1) +

ψ2C
(2)
mat(x|y, ψ1), we obtain the second order equation for the scalars:

D0ψ2C
(2)
mat = −[Ωhs, ψ2C

(1)
mat]∗, (4.3)

or more explicitly

D0ψ2C
(2)
mat = −ψ2[Ω

even, C
(1)
mat]∗ + ψ2ψ1{Ωodd, C

(1)
mat}∗, (4.4)

where Ωeven and Ωodd are the components in the decomposition Ωhs = Ωeven + ψ1Ω
odd.

We further decompose C
(2)
mat as C

(2)
mat(y) =

∑∞
n=0C

(2),n
mat α1···αny

α1 · · · yαn , and special-

ize (4.4) to the case n = 0, 2.

∂µC
(2),0
mat − 4ψ1(e0µ)

αβC
(2),2
mat αβ = U0

µ,

∇µC
(2),2
mat αβ − 2ψ1(e0µ)αβC

(2),0
mat − 24ψ1(e0µ)

γδC
(2),4
mat γδαβ = U2

µ|αβ ,
(4.5)

where U0
µ and U2

µ|α1α2
are the first two coefficient of the y-expansion of the r.h.s. of (4.4).

After some simple manipulations, it follows that

(�−m2)C
(2),0
mat = ∇µU

0,µ + 4ψ1(e
µ
0 )
αβU2

µ|αβ . (4.6)

The r.h.s. is calculated in terms of the first order fields in appendix B.2. The resulting the

second order equation for the scalars can be written in the form

(�−m2)C
(2),0
mat =

∞∑

s=2

C
(1),2s−2
mat (∂y)Ξs(y), (4.7)

where Ξs(y) is expressed in terms of the higher spin fields as

Ξs(y) = 8
[
χ
(s),+
odd (y) + (2s− 2)(2s− 1)χ

(s),−
odd (y)

]

+ 32ψ1

[
1

(2s− 1)
∇−χ

(s),+
odd (y)− (2s− 2)∇+χ

(s),−
odd (y)

]
.

(4.8)

4.2 The three point function

The boundary-to-bulk propagator for the higher spin gauge field satisfying the generalized

Brown-Henneaux boundary condition (3.32) is determined by the boundary behavior of

the gauge transformation (3.35). The latter is enough for us to compute the three point
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function of one higher spin gauge field and two scalars. Suppose the cubic action of a

higher spin gauge field and two scalars is of the form as the higher spin gauge field couples

to the higher spin current, i.e.
∫
d2x

(
dz

z3

)
Φsµ1···µsT

µ1···µs
s (4.9)

where the higher spin current Tµ1···µss is a quadratic function of the scalar and its deriva-

tives. Since the boundary to bulk propagator for high spin gauge field can be written in

a “pure gauge” form: Φsµ1···µs = ∇(µ1η
s
µ2···µs)

, and the higher spin current is conserved:

∇µT
µµ1···µs−1
s = 0, we have

∫
d2x

(
dz

z3

)
∇µ1η

s
µ2···µsT

µ1···µs
s

=

∫
d2xdz∂µ1

(
1

z3
ηsµ2···µsT

µ1···µs
s

)

= − lim
z→0

1

z3

∫
d2x ηsµ2···µsT

zµ2···µs
s ,

(4.10)

which only depends on the boundary behavior of the gauge parameter at z → 0.

The r.h.s. of the second order equation (4.7) gives the variation of the cubic action

with respect to the scalar up to some possible boundary terms.

δS =

∫
dψ1

∫
d2xdz

z3
ψ1δC

(1),0
mat

∞∑

s=2

C
(1),2s−2
mat (∂y)Ξs(y). (4.11)

While it is possible to recover the cubic part of the action from (4.11), in the form (4.9), we

will not need it for the computation of the three point function. The tree level three point

function is computed by varying the bulk action with respect to three sources inserted

on the boundary, and so it suffices to work with (4.11) directly, by evaluating it on the

boundary-to-bulk propagators for the higher spin gauge field and scalars. This computation

is performed explicitly in appendix B.3. The resulting three point function of one higher

spin current and two scalars is:

〈
O(x1)O(x2)Js(x3)

〉
= −4π(s+ ψ̃1(s− 1))Γ(s)

1

|x12|2+ψ̃1

(
x−12

x−13x
−
23

)s
. (4.12)

Here O and O are dual to Ceven + Codd and Ceven − Codd respectively. They have scaling

dimension ∆+ = 3
2 or ∆− = 1

2 depending on the choice of boundary condition, correspond-

ing to ψ̃1 = 1 or ψ̃1 = −1. The position dependent factor on the r.h.s. of (4.12) is fixed by

conformal symmetry. The only nontrivial data here are contained in the overall coefficient,

which is unambiguous given the normalization of the currents. These will be compared to

representations of the WN algebra in the ’t Hooft limit in the next section.

5 The dual CFT

5.1 The proposal

It has been proposed in [16] that Vasiliev’s higher spin-matter system (more precisely, a

version of this theory with four real massive scalars) is dual to the WN minimal model,
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which can be realized by the coset model

SU(N)k ⊕ SU(N)1
SU(N)k+1

. (5.1)

This CFT has a ’t Hooft-like scaling limit, in which N is taken to be large while keeping

the ’t Hooft coupling

λ =
N

N + k
(5.2)

to be fixed. In the infinite N limit, λ becomes a continuous parameter, in the range

0 < λ < 1. It is proposed that λ is mapped to the parameter ν that label AdS3 vacua, with

the identification λ = 1
2(1± ν). The undeformed, ν = 0 vacuum we have been considering

so far would be mapped to the λ = 1/2 case. In the ’t Hooft limit, “basic primaries” of

(left plus right) scaling dimension ∆± = 1± λ are mapped to the massive scalars in the

bulk, whereas all other primaries are found in the OPEs of the basic primaries, their duals

interpreted as bound states in the bulk.

A puzzle with this proposal is the existence of low lying primary operators in the coset

CFT, whose dimension scale like 1/N and form a discretuum in the ’t Hooft limit. This

has been further addressed in [44]. It is unclear how to interpret the dual of such states

in the bulk.

Here we put forward a different proposal, namely that the Vasiliev higher spin-matter

system, involving only two real massive scalars in the bulk, is dual to a subsector of theWN

minimal model, generated by the two basic primaries of either dimension ∆+ or dimension

∆−, depending on the boundary condition for the bulk scalar field. This subsector has

closed OPE and is consistent as a CFT on the sphere, though not on Riemann surfaces of

nonzero genus, as it is not modular invariant. Hence, we believe that the bulk Vasiliev’s

system is nonperturbatively incomplete, though makes sense perturbatively to all orders

in its coupling constant (i.e. 1/N).

In a similar manner, we further propose that the “minimal” Valisiev’s system, obtained

via the truncation to fields invariant under the ι-involution (2.7), is dual to a subsector of

the orthogonal group version of the coset model,9

SO(N)k ⊕ SO(N)1
SO(N)k+1

. (5.3)

Because SO(N) has only even degree Casimir invariants, the coset model contains only the

even spin currents. The real scalar in the “minimal” Valisiev’s system is dual to one of the

real basic primary operators, either (�; 0) or (0;�), depending on the choice of boundary

condition for the bulk scalar.

9The bulk gauge group of the minimal Vasiliev theory, in the Chern-Simons language, when truncated

to a finite (even) spin N , is Sp(N,R) × Sp(N,R). In mapping representations of the higher spin algebra

in the bulk to primaries labeled by representations of the affine Lie algebra of the minimal model, a

transpose on the Young tableaux is involved [44]. This suggests that the dual minimal model is based on

SO rather than Sp coset. We thank T. Hartman for pointing this out. Note also that the analogous Sp

coset construction would not give a WN minimal model; its primaries are generally not labelled simply by

a pair of representations, but a triple of representations [45].
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5.2 WN currents and primaries

LetKa(z) be the currents of the SU(N)k current algebra, and J
a(z) the currents of SU(N)1.

Our convention for the group generators of SU(N) is such that

Tr(T aT b) = −δab (5.4)

where Tr is taken in the fundamental representation. The cubic symmetric tensor is defined

to be

dabc = −iTr({T a, T b}T c). (5.5)

The SU(N)k currents, for instance, are normalized with the OPE

Ka(z)Kb(0) ∼ − k

z2
δab + fabc

Kc(0)

z
, (5.6)

where fabc = −Tr([T a, T b]T c). The spin-2 current, i.e. the stress-energy tensor of the coset

model constructed out of the Sugawara tensors, is given by

T (z) =W 2(z) (5.7)

= − 1

2(N + k)
: KaKa : − 1

2(N + 1)
: JaJa : +

1

2(N + k + 1)
: (Ka + Ja)(Ka + Ja) :

The spin-3 current W 3, in the ’t Hooft limit, is written as

W 3(z) = dabc

[
3λ2

(1− λ)(2− λ)
: KaKbJc : − 3λ

1− λ
: KaJbJc : + : JaJbJc :

]
. (5.8)

The normalization is such that the two point function of W 3 is given by

〈W 3(z)W 3(0)〉 = −6
(1 + λ)(2 + λ)

(1− λ)(2− λ)
N5 + (1/N corrections). (5.9)

One may also construct higher spin-s currents out of the product of s Ka and Ja’s, subject

to the constraint that W s is primary with respect to the diagonal SU(N)k+1. This is

rather cumbersome, which we shall not attempt here. Nonetheless, we will perform one

unambiguous check with the spin-3 current.

Let us now turn to the primary operators with respect to the WN algebra. These

are labelled by three representations of SU(N), (ρ, µ; ν); here ρ, µ, ν are the height weight

vectors of the respective representations, subject to the condition that the sum of the

Dynkin labels is less than or equal to the level, and the constraint that ρ + µ − ν lies

in the root lattice of SU(N). Further, it follows from the second SU(N) being at level 1

that µ is uniquely determined given ρ and ν. Following the notation of [16], the primaries

are labeled by (ρ; ν). We consider the diagonal modular invariant, by pairing up identical

representations on the left and right moving sectors. The basic primaries are:

O+ = (�; 0)⊗ (�; 0), O+ = (�; 0)⊗ (�; 0),

O− = (0;�)⊗ (0;�), O− = (0;�)⊗ (0;�).
(5.10)

In the ’t Hooft limit, O± (and O±) have conformal weight h± = h̄± = 1±λ
2 .
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Our proposal is that with the ∆+ boundary condition, the two real massive scalars in

the bulk, combined into a complex scalar Ceven + Codd, is dual to O+, while its complex

conjugate Ceven − Codd is dual to O+. According to the fusion rule, the OPEs of O+ and

O+ involve only primaries labeled by the representations of the form (R; 0). In particular,

the operators O−,O− and the low lying primaries of the form (R;R) do not appear in the

OPEs of O+ and O+. Thus, this subsector of the CFT closes on the sphere.

Alternatively, with ∆− boundary condition imposed on the bulk scalar, we propose

the dual to the be subsector generated by O− and O−.

5.3 A test on the three point function

The spin-3 current acts on the basic primaries O± as

W 3
0 |O−〉 = C�|O−〉,

W 3
0 |O+〉 = −C�

(1 + λ)(2 + λ)

(1− λ)(2− λ)
|O+〉,

(5.11)

where C� is the cubic Casimir for the fundamental representation, given by

C�|�〉 = dabcJ
a
0 J

b
0J

c
0 |�〉, C� = iN2 (5.12)

in our convention. The three point function 〈O∆(z1)O∆(z2)W
s(z3)〉 is determined by

conformal symmetry to be of the form

A(s)

|z12|2∆
(

z12
z13z23

)s
. (5.13)

We will write 〈O∆O∆W
s〉 ≡ A(s) for the coefficient. It follows from the action of W 3

0 on

the primary states that

〈O+O+W
3〉 = −iN2 (1 + λ)(2 + λ)

(1− λ)(2− λ)
, 〈O−O−W

3〉 = iN2. (5.14)

If we define J (s) to be the spin-s current with normalized two-point function, namely

〈J (s)(z)J (s)(0)〉 = z−2s (this fixes J (s) up to a sign), then we have

〈O+O+J
(2)〉 = N− 1

2

√
1 + λ

2(1− λ)
, 〈O−O−J

(2)〉 = N− 1

2

√
1− λ

2(1 + λ)
, (5.15)

〈O+O+J
(3)〉 = N− 1

2

√
(1 + λ)(2 + λ)

6(1− λ)(2− λ)
, 〈O−O−J

(3)〉 = −N− 1

2

√
(1− λ)(2− λ)

6(1 + λ)(2 + λ)
.

From the bulk, we have computed the three point function 〈OOJ (s)〉 in the undeformed

theory, with the result (after normalizing the spin-s current)

〈O+O+J
(s)〉 = gΓ(s)

√
2s− 1

Γ(2s− 1)
, 〈O−O−J

(s)〉 = (−)sg
Γ(s)√
Γ(2s)

. (5.16)
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Here g is the overall coupling constant of the bulk theory. This should be compared with

the CFT at λ = 1/2. With the identification

g =
1√
N
, (5.17)

we see that (5.16) precisely agrees with (5.15) at λ = 1/2. Eq. (5.16) then further makes

predictions for the three point functions 〈OOJ (s)〉 of spin s ≥ 4 in the WN coset CFT,

in the ’t Hooft limit at λ = 1/2, which remains to be computed directly on the CFT side.

Further, it would be very interesting to compute these three point functions in the deformed

bulk theory, i.e. the AdS3 vacua with nonzero ν, which should be mapped to the CFT

with ’t Hooft parameter away from λ = 1/2. We hope to report on this in future works.

6 Concluding remarks

In this paper, we have developed the perturbation theory of Vasiliev’s higher spin-matter

system in AdS3, to the second order. This allowed us to compute the bulk tree level three

point functions, in the undeformed ν = 0 vacuum. The result passed a nontrivial test

that involves the explicit expression for the spin-3 current in the WN minimal model (at

the special value of ’t Hooft coupling λ = 1/2). Our result from the bulk also makes

predictions on three point functions involving currents of spin s ≥ 4 which in principle can

be straightforwardly computed (though tedious) in the coset CFT, by constructing theWN

currents out of the spin 1 affine currents, and then taking the ’t Hooft limit.

A natural next step is to move away from the undeformed, ν = 0 vacuum, and consider

the deformed bulk theory, which should be dual to the CFT away from λ = 1/2. In

appendix C, we have derived the boundary to bulk propagator for the scalar master field

in the deformed theory. The computation of correlators using these expressions could be

complicated, though at least one can work order by order expanding in ν, which amounts

to expanding in λ− 1
2 in the dual CFT.

Next, one would like to go beyond leading order in 1/N . The basic primaries in the

WN minimal model have exact scaling dimensions

∆+ = 2h(�; 0) =
N − 1

N

(
1 +

N + 1

N
λ

)
,

∆− = 2h(0;�) =
N − 1

N

(
1− N + 1

N + λ
λ

)
.

(6.1)

Identifying ∆± = 1±
√
1 +m2

±, we see that the renormalized mass of the bulk scalar with

the two different boundary conditions are

m2
+ = −

[(
1 +

λ

N

)2

− λ2

](
1− 1

N2

)
,

m2
− = −(1− λ2)

(
1 +

λ

N

)−2(
1− 1

N2

)
.

(6.2)
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The bulk scalar propagator depend on the boundary condition (∆+ or ∆−), which presum-

ably leads to the different renormalized masses m+ and m− through loop corrections. The

difference between m+ and m−, say at order 1/N , or one-loop in the bulk, can in principle

be understood [40, 47] in terms of the tree level four-point functions, by factorizing the

difference in the bulk propagators for the two boundary conditions into the product of

boundary-to-bulk propagators. To compute either m2
− or m2

+ form the bulk, however, re-

quires performing a genuine one-loop computation in Vasiliev’s theory. The precise relation

between the bulk deformation parameter ν and the ’t Hooft coupling λ of the boundary

CFT, beyond the leading order in 1/N , is presumably also regularization dependent.

We proposed that Vasiliev’s system is dual to not the entire WN minimal model CFT,

but only a subsector of it, generated by the basic primaries O+,O+ and the WN currents,

or the subsector generated by O−,O− and the WN currents, depending on whether ∆+ or

∆− boundary condition is imposed on the two bulk scalars. These two subsectors close on

their OPEs, and lead to consistent n-point functions on the sphere. However, they are not

modular invariant. From the perspective of the bulk higher spin gravity theory, modular

invariance is expected to be restored by gravitational instantons (analytic continuation of

BTZ black holes), which are non-perturbative. At the level of perturbation theory, it is

consistent that the bulk theory is dual to a subsector of a modular invariant CFT. The

duality we are proposing is analogous to the statement that pure gravity in AdS3, at the

level of perturbation theory, is dual to the subsector of a CFT involving only Virasoro

descendants of the vacuum, i.e. operators made out of products of stress-energy tensors.

The latter lead to a consistent set of n-point functions on the sphere, though do not give

modular invariant genus one partition functions by themselves.

If our proposal is correct, then it suggests that Vasiliev’s system is non-perturbatively

incomplete, though makes sense to all orders in perturbation theory. One may suspect

that solitons, in particular black hole solutions, should be included and could make the

theory modular invariant. However, we are not aware of a modular invariant completion of

the ∆+ or ∆− subsector of WN minimal model that requires adding only states/operators

whose dimensions scale with N (and are large in the large N limit). The WN minimal

model itself would amount to adding not only states of dimension of order 1, but also a

large number of light states whose dimensions go like 1/N , which seems pathological from

the perspective of the bulk theory.

It is clearly of great interest, still, to understand the bulk theory dual to the full

WN minimal model, since the latter is non-perturbative defined and exactly solvable. It

is shown in [44] that the descendants of the light states give rise to bound states of the

basic primaries, while the light states themselves become null in the infinite N limit. It

is unclear how to understand this from the bulk. A possibility is that additional massless

scalars should be added in the bulk theory, with the non-standard boundary condition (so

that they are dual to operators of dimension 0 rather than 2, classically). It would be an

interesting challenge to construct such a theory in AdS3.
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A Linearizing Vasiliev’s equations

A.1 Derivation of the scalar boundary to bulk propagator

In this subsection, we study the linearized equations (2.17), and solve for the boundary-

to-bulk propagator for the master field C(1).

Decomposing the C(1) as in (3.1) the equation D0C
(1) = 0 is written as

dxC
(1)
aux + 4(wαβ0 yα

∂

∂yβ
+ ψ1e

αβ
0 yα

∂

∂yβ
)C(1)

aux = 0

dxC
(1)
mat + 4wαβ0 yα

∂

∂yβ
C

(1)
mat − 2ψ1e

αβ
0 (yαyβ +

∂2

∂yα∂yβ
)C

(1)
mat = 0

(A.1)

Expand C
(1)
mat/aux(x|y, ψi) as in (3.2), we write the first equation of (A.1) as

∂µC
(1),n
aux α1···αn − 4n(w0µ)(α1

βC(1),n
aux βα2···αn) − 4nψ1(e0µ)(α1

βC(1),n
aux βα2···αn) = 0. (A.2)

Contracting this equation with (eµ0 )γδ, and symmetrizing the indices (γδα1 · · ·αn), we get

∇(γδC
(1),n
aux α1···αn) = 0 with ∇αβ = eµαβ∇µ, (A.3)

which means that C
(1)
aux carries no propagating degree of freedom. We can simply set

C
(1)
aux = 0.

The second equation of (A.1) can be written as

∂µC
(1),n
mat α1···αn − 4n(w0µ)(α1

βC
(1),n
mat βα2···αn)

− 2ψ1(e0µ)(α1α2
C

(1),n−2
mat α3···αn) − 2(n+ 2)(n+ 1)ψ1(e0µ)

αβC
(1),n+2
mat αβα1···αn = 0.

(A.4)

Or contracting this equation with (eµ0 )αβ gives

∇αβC
(1),n
mat α1···αn +

1

16
ψ1ǫ(α(α1

ǫβ)α2
C

(1),n−2
mat α3···αn)

+
1

16
(n+ 2)(n+ 1)ψ1C

(1),n+2
mat αβα1···αn = 0.

(A.5)
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This equation is in a reducible representation of the permutation group of permuting the

indices. To simplify the equation, we decompose it into irreducible representations by

contracting with the tensor ǫαβ or symmetrizing all the indices. First, contracting (A.5)

with ǫαα1 gives

∇α
βC

(1),n
mat αα2···αn −

n+ 1

16n
ψ1ǫβ(α2

C
(1),n−2
mat α3···αn) = 0. (A.6)

Contracting (A.6) with ǫβα2 gives

∇αβC
(1),n
mat αβα3···αn +

n+ 1

16(n− 1)
ψ1C

(1),n−2
mat α3···αn = 0. (A.7)

Next, we want to symmetrize the indices of equations (A.5), (A.6), and (A.7). It is con-

venient to reintroduce the auxiliary yα-variable. By contracting the indices of the equa-

tions (A.5), (A.6), and (A.7) with the yα’s which automatically symmetrizes all the indices,

we obtain

∇+C
(1),n
mat (y)− 1

16
(n+ 2)(n+ 1)ψ1C

(1),n+2
mat (y) = 0,

∇0C
(1),n
mat (y) = 0,

∇−C
(1),n
mat (y)− 1

16
(n+ 1)nψ1C

(1),n−2
mat (y) = 0,

(A.8)

where

C
(1),n
mat (y) = C

(1),n
mat α1···αny

α1 · · · yαn (A.9)

which is the degree n homogeneous polynomial in the Taylar expansion of the matter field

Cmat(y), and we define the operators

∇+ = (y/∇y), ∇0 = (y/∇∂y), ∇− = (∂y/∇∂y). (A.10)

They obey commutation relations

[∇0,∇±] = 0,

[∇+,∇−] =
N + 1

16
�AdS −

N (N + 2)(N + 1)

64
,

(∇0)2 = ∇+∇− +
N 2

64
�AdS +

N 2(N + 2)

128
.

(A.11)

with N = y∂y and �AdS ≡ −32∇αβ∇αβ where ∇αβ is defined to act covariantly both on

explicit spinor indices as well as on indices contracted with yα. Iterating the first equation

of (A.8), we get

C
(1),2s
mat (y) =

1

(2s)!
(16ψ1∇+)sC

(1),0
mat . (A.12)

Since C
(1)
mat(y) is an even function in yα, it is totally determined by its lowest component

C
(1),0
mat via the above relation. After some simple manipulations of (A.8) using (A.11),

we derive

�AdSC
(1),n
mat = −1

4
(3 + n(n+ 2))C

(1),n
mat . (A.13)
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For n = 0, the equation gives the usual Klein-Gordon equation on AdS3, (3.3). The higher

components C
(1),n
mat are determined by C

(1),0
mat through the linearized equations of motion.

The equation (3.3) is solved by scalar boundary to bulk propagator Cmat,0 = K(x, z)∆

for ∆ = 3/2 or ∆ = 1/2, where K(x, z) ≡ z
x2+z2

. It is convenient to introduce another

auxiliary variable ψ̃1, satisfying ψ̃
2
1 = 1, to label the different boundary conditions, so that

∆ = 1 + ψ̃1/2. The (∇+)s acting on K∆ is

(∇+)sK∆ =
1

8s




s∏

j=1

(∆ + j − 1)


 (yΣy)sK∆, (A.14)

and using (A.12), we obtain

C
(1)
mat(y) =

(
1 + ψ1

1 + ψ̃1

2
yΣy

)
e
ψ1
2
yΣyK1+

ψ̃1
2 , (A.15)

where Σ = σz − 2z
x2
σµxµ.

A.2 The linearized higher spin equations

In this subsection, we study the linearized equations (2.13), (2.14), (2.15), and rewrite

them as the (linearized) Chern-Simons equation and Fronsdal equation by eliminating all

the auxiliary degrees of freedom.

The (2.14) and (2.15) imply that W ′ is solved in terms of S and further in terms of

C
(1)
mat; hence, in particular, it is linear in ψ2. Decomposing Ω(1) as in (3.9), the linearized

equations are written in (3.10).

The linearized gauge transformations act by

δW (1) = dxǫ+ [W0, ǫ]∗,

δS(1) = dzǫ.
(A.16)

Let us restrict to gauge transformations that leave S(1) invariant, namely ǫ = λ(x|y, ψ1) +

ψ2ρ(x|y, ψ1), where λ(x|y, ψ1) and ρ(x|y, ψ1) transform Ωhs and Ωsc independently at the

linearized level. Their actions are

δΩsc = dxρ+ ψ2[W0, ψ2ρ]∗ = ∇xρ− ψ1{e0, ρ}∗,
δΩhs = dxλ+ [W0, λ]∗ = ∇xλ+ ψ1[e0, λ]∗.

(A.17)

We show that Ωsc contains no dynamical degrees of freedom. First consider the homo-

geneous part of the equation,

D̃0Ω
sc = 0, (A.18)

or more explicitly,

∇xΩ
sc(x|y, ψ1)− ψ1e0(x|y) ∧∗ Ω

sc(x|y, ψ1) + ψ1Ω
sc(x|y, ψ1) ∧∗ e0(x|y) = 0. (A.19)
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We have emphasized the wedge product between 1-forms, so the last terms involve the

∗-anti-commutator of the components of e0 and Ωsc. Expand Ωsc as

Ωsc(x|y, ψ1) = dxµ
∞∑

n=0

Ωsc,nµ|α1···αn
(x|ψ1)y

α1 · · · yαn . (A.20)

In components, the homogeneous equation for Ωsc is written as

∇[µΩ
sc,n
ν]|α1···αn

− 2ψ1(e0[µ)(α1α2
Ωsc,n−2
ν]|α3···αn)

− 2(n+2)(n+1)ψ1(e0[µ)
αβΩsc,n+2

ν]|αβα1···αn
=0. (A.21)

Converting µ, ν into spinor indices, we obtain

∇(α
γΩsc,nβ)γ|α1···αn

− 2ψ1eα
γ
|(α1α2

Ωsc,n−2
β)γ|α3···αn)

− 2(n+ 2)(n+ 1)ψ1e(α
γ|δτΩsc,n+2

β)γ|δτα1···αn
= 0.

(A.22)

where

eαβ|γδ ≡ (eµ0 )αβ(e0µ)γδ = − 1

64
(ǫαγǫβδ + ǫαδǫβγ). (A.23)

We can write (A.22) as

∇(α
γΩsc,nβ)γ|α1···αn

− 1

16
ψ1ǫ(α(α1

Ωsc,n−2
β)α2|α3···αn)

+
1

16
(n+ 2)(n+ 1)ψ1ǫ

γδΩsc,n+2
γ(α|β)δα1···αn

= 0.

(A.24)

In components, the gauge transformation (A.17) for Ωsc can be written as

δΩsc,nµ|α1···αn
=∇µρ

n
α1···αn − 2ψ1(eµ)(α1α2

ρn−2
α3···αn)

− 2(n+2)(n+1)ψ1(eµ)
αβρn+2

αβα1···αn
, (A.25)

or

δΩsc,nαβ|α1···αn
=∇αβρ

n
α1···αn+

1

16
ψ1ǫ(α(α1

ǫβ)α2
ρn−2
α3···αn)

+
1

16
(n+2)(n+1)ψ1ρ

n+2
αβα1···αn

. (A.26)

Decomposing Ω
sc,(n)
αβ|α1···αn

as

Ω
sc,(n)
αβ|α1···αn

= ζn,+αβα1···αn
+ ǫ(α1(αζ

n,0
β)α2···αn)

+ ǫ(α(α1
ǫβ)α2

ζn,−α3···αn)
, (A.27)

we find that ζn,+ and ζn,− can be gauged away by ρn+2 and ρn−2. Furthermore, by

symmetrizing (αβα1 · · ·αm) of (A.24), ζn,0 can be fully determined by ζn,+ and ζn,−.

Now let us turn to the higher spin fields, Ωhs. Their linearized equations are written

more explicitly as

∇xΩ
hs + e0 ∧∗ Ω

hs +Ωhs ∧∗ e0 = 0, (A.28)

or in components,

∇[µΩ
hs,n
ν]|α1···αn

− 4nψ1(e0[µ)(α1

βΩhs,nν]|βα2···αn)
= 0. (A.29)

Replacing [µν] with spinor indices, we can write it as

∇(α
γΩhs,nβ)γ|α1···αn

− 4nψ1e(α
γ
|(α1

δΩhs,nβ)γ|δα2···αn)
= 0, (A.30)
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or

∇(α
γΩhs,nβ)γ|α1···αn

+
1

16
nψ1ǫ(α1(αΩ

hs,n
β)
γ
|γα2···αn) −

1

16
nψ1Ω

hs,n
(α(α1|β)α2···αn)

= 0. (A.31)

Let us decompose Ω
hs,(n)
αβ|α1···αn

into the irreducible representation of the permutation group

of permuting the indices as

Ω
hs,(n)
αβ|α1···αn

= χn,+αβα1···αn
+ ǫ(α1(αχ

n,0
β)α2···αn)

+ ǫ(α(α1
ǫβ)α2

χn,−α3···αn)
. (A.32)

Conversely,

Ωhs,n(αβ|α1···αn)
= χn,+αβα1···αn

,

Ωhs,n(α1

γ
|γα2···αn) =

n+ 2

2n
χn,0α1···αn ,

Ωhs,nγδ |γδα1···αn−2
=
n+ 1

n− 1
χn,−α1···αn−2

.

(A.33)

Next, we want to also decompose the equation (A.31) into the irreducible representation

of the permutation group. Symmetrizing all indices (αβα1 · · ·αn) in (A.31) gives

∇(α1

γχn,+α2···αn+2)γ
− 1

2
∇(α1α2

χn,0α3···αn+2)
− 1

16
nψ1χ

n,+
α1···αn+2

= 0. (A.34)

On the other hand, contracting (A.31) with ǫαα1 gives

∇α
γΩβγ|

α
α2···αn +∇β

γΩαγ|
α
α2···αn (A.35)

− ψ1

16

[
(n+ 3)Ωβ

γ
|γα2···αn + (n− 1)ǫ(α2βΩ

γδ
|γδα3···αn) + (n− 1)Ωα(α2|β

α
α3···αn)

]
= 0.

Now symmetrizing (βα2 · · ·αn) gives

−∇γδχn,+γδα1···αn
− 2

n
∇(α1

γχn,0α2···αn)γ
+
n+ 2

n
∇(α1α2

χn,−α3···αn)
− n+ 2

8n
ψ1χ

n,0
α1···αn = 0. (A.36)

Alternatively, contract (A.35) with ǫβα2 gives

n+2

n
∇γδχn,0γδα1···αn−2

− 2(n+1)(n−2)

n(n− 1)
∇γ

(α1
χn,−α2···αn−2)γ

+
(n+2)(n+1)

8(n−1)
ψ1χ

n,−
α1···αn−2

=0.

(A.37)

As in the previous subsection, we reintroduce the auxiliary variable yα, and define

χ+
n (y) = χn,+α1···αn+2

yα1 · · · yαn+2 ,

χ0
n(y) = χn,0α1···αny

α1 · · · yαn ,
χ−
n (y) = χn,−α1···αn−2

yα1 · · · yαn−2 ,

(A.38)

and so

Ω
hs,(n)
αβ (y) =

1

(n+ 2)(n+ 1)
∂α∂βχ

+
n (y) +

1

n
y(α∂β)χ

0
n(y) + yαyβχ

−
n (y). (A.39)
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The three equations derived previously for χ, (A.34), (A.36), and (A.37), can now be

written as

1

n+ 2
∇0χ+

n (y) +
1

2
∇+χ0

n(y)−
n

16
ψ1χ

+
n (y) = 0,

1

(n+ 2)(n+ 1)
∇−χ+

n (y)−
2

n2
∇0χ0

n(y)−
n+ 2

n
∇+χ−

n (y)−
n+ 2

8n
ψ1χ

0
n(y) = 0,

− n+ 2

n2(n− 1)
∇−χ0

n(y)−
2(n+ 1)

n(n− 1)
∇0χ−

n (y) +
(n+ 2)(n+ 1)

8(n− 1)
ψ1χ

−
n (y) = 0.

(A.40)

Now expand χ
±/0
n in ψ1,

χ±/0
n = χn,±/0even + ψ1χ

n,±/0
odd . (A.41)

We can now solve χeven in terms of χodd:

χn,+even(y) =
16

n

[
1

n+ 2
∇0χn,+odd(y) +

1

2
∇+χn,0odd(y)

]
,

χn,0even(y) =
8

n+ 2

[
n

(n+ 2)(n+ 1)
∇−χn,+odd(y)−

2

n
∇0χn,0odd(y)− (n+ 2)∇+χn,−odd(y)

]
,

χn,−even(y) =
8

n

[
1

n(n+ 1)
∇−χn,0odd(y) +

2

n+ 2
∇0χn,−odd(y)

]
. (A.42)

At this point, it is convenient to use part of the gauge symmetry to gauge away χ0
odd

completely (we will show this in the later part of this subsection), and then write

χn,+even(y) =
16

n(n+ 2)
∇0χn,+odd(y),

χn,0even(y) =
8

n+ 2

[
n

(n+ 2)(n+ 1)
∇−χn,+odd(y)− (n+ 2)∇+χn,−odd(y)

]
,

χn,−even(y) =
16

n(n+ 2)
∇0χn,−odd(y).

(A.43)

Plugging back in (A.40) (with χ0
odd = 0), we obtain (the second equation is automatically

satisfied because of the second equation of (A.11))

16

n(n+2)2
(∇0)2χn,+odd(y) +

4n

(n+2)2(n+1)
∇+∇−χn,+odd(y)− 4(∇+)2χn,−odd(y)−

n

16
χn,+odd(y) = 0,

− 8

(n+ 2)(n+ 1)n
(∇−)2χn,+odd(y) +

8(n+ 2)

n2
∇−∇+χn,−odd(y)−

32(n+ 1)

n2(n+ 2)
(∇0)2χn,−odd(y)

+
(n+ 2)(n+ 1)

8
χn,−odd(y) = 0.

(A.44)

By using (A.11), we rewrite (A.44) as

�AdSχ
n,+
odd(y) +

2n+ 8− n2

4
χn,+odd(y) +

16

(n+ 1)
∇+∇−χn,+odd(y)− 16n(∇+)2χn,−odd(y) = 0,

�AdSχ
n,−
odd(y)−

(n2 + 2n+ 4)

4
χn,−odd(y)−

8

n
∇+∇−χn,−odd(y) +

8

(n+ 1)n2
(∇−)2χn,+odd(y) = 0.

(A.45)
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Now let us examine the gauge transformations on χ±. The gauge transformation on

the components of Ωhs,n is

δΩhs,nαβ|α1···αn
= ∇αβλ

n
α1···αn −

n

16
ψ1ǫ(α1(αλ

n
β)α2···αn)

. (A.46)

In terms of χ±,0, we have

δχn,+α1···αn+2
= ∇(α1α2

λnα3···αn+2)
,

δχn,0α1···αn =
2n

n+ 2
∇(α1

γλnα2···αn)γ
+

n

16
ψ1λ

n
α1···αn ,

δχn,−α1···αn−2
=
n− 1

n+ 1
∇γδλnγδα1···αn−2

.

(A.47)

Expanding λn as λn = λneven + ψ1λ
n
odd, we can use λneven to set χn,0odd = 0, and χn,+odd, χ

n,−
odd

transform under gauge transformation generated by the residual gauge parameter λnodd as

δχn,+odd(y) = −∇+λodd(y),

δχn,−odd(y) = − 1

n(n+ 1)
∇−λodd(y).

(A.48)

It is very useful to rewrite the equations of motion in the metric-like formulation. In

the metric like formulation, we have the metric like field Φµ1···µs which is totally symmetric

and satisfies the double traceless condition:

Φµνµνµ5···µs = 0. (A.49)

Φµ1···µs satisfies the Fronsdal equation (3.20), and transforms under the gauge transforma-

tion as (3.21).

We show that the Fronsdal equation (3.20) and the frame-like equation (A.44) are

equivalent. Let us decompose Φµ1···µs into the irreducible representation of the Lorentz

group as in (3.18). Plugging this in to (3.20), we obtain

(�−m2)ξµ1···µs + (�−m2)g(µ1µ2χµ3···µs) − s∇(µ1∇µξµµ2···µs)

+(2s− 3)∇(µ1∇µ2χµ3···µs) − (s− 2)g(µ1µ2∇µ3∇µχµµ4···µs)

−2(2s− 1)g(µ1µ2χµ3···µs) = 0.

(A.50)

Contracting this with gµ1µ2 , we get

(2s− 1)(�−m2)χµ3···µs − s(s− 1)∇µ∇νξµνµ3···µs + (2s− 3)�χµ3···µs

+(2s− 3)(s− 2)∇µ∇(µ3χµµ4···µs) − 2(s− 2)∇(µ3∇µχµµ4···µs)

−(s− 2)(s− 3)g(µ3µ4∇µ∇νχµνµ5···µs) − 2(2s− 1)2χµ3···µs = 0.

(A.51)

By using the formula

∇µ∇(µ3χµµ4···µs) = ∇(µ3∇µχµµ4···µs) − (s− 1)χµ3···µs , (A.52)
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we can simplify (A.51) as

(2s− 1)(�−m2)χµ3···µs − s(s− 1)∇µ∇νξµνµ3···µs + (d+ 2s− 5)�χµ3···µs

+(2s− 5)(s− 2)∇(µ3∇µχµµ4···µs) − (2s− 3)(s− 2)(s− 1)χµ3···µs

−2(2s− 1)2χµ3···µs − (s− 2)(s− 3)g(µ3µ4∇µ∇νχµνµ5···µs) = 0.

(A.53)

Defining
ξs(y) = yα1 · · · yα2s(eµ10 )α1α2

· · · (eµs0 )α2s−1α2sξµ1···µs ,

χs(y) = yα1 · · · yα2s(eµ10 )α1α2
· · · (eµs−2

0 )α2s−5α2s−4
χµ1···µs−2

,
(A.54)

we can write (A.50) and (A.53) as

�AdSξ
s − s(s− 3)ξs +

16

2s− 1
∇+∇−ξs + (2s− 3)(∇+)2χs = 0,

�AdSχ
s − (s2 − s+ 1)χs − 4

s− 1
∇+∇−χs − 64

(2s− 1)(s− 1)(2s− 3)
(∇−)2ξs = 0.

(A.55)

We can then identify (A.45) and (A.55) by

χ2s−2,+
odd = ξs, χ2s−2,−

odd = − 2s− 3

32(s− 1)
χs. (A.56)

Later, we will also write χ2s−2,±
odd as χ

(s),±
odd for convenience.

Let us also analyze the gauge transformation. Plugging (3.18) into (3.21), we have

δξµ1···µs + g(µ1µ2δχµ3···µs) = ∇(µ1ηµ2···µs). (A.57)

Contracting this with gµ1µ2 , we obtain

δχµ3···µs =
s− 1

2s− 1
∇µηµµ3···µs . (A.58)

It follows that
δξs(y) = ∇+ηs(y),

δχs(y) = − 16

(2s− 1)(2s− 3)
∇−ηs(y).

(A.59)

The gauge transformations (A.48) and (A.59) are also equivalent by the identifica-

tion (A.56).

A.3 Derivation of higher spin boundary-to-bulk propagator in modified de

Donder gauge

The Fronsdal equation (3.20) can be easily solved in the modified de Donder gauge proposed

by Metsaev in [43]. As in (3.9), we define the generating function Φs(x|Y ) of the metric-like

higher spin gauge field Φsµ1···µs . The field Φs(x|Y ) is related to χ2s−2,+ and χ2s−2,+ by

χ2s−2,+
odd (y) = ξs(y) = Φs(Y )

∣∣
Y A→eAαβyαyβ

,

χ2s−2,−
odd (y) = − 2s− 3

32(s− 1)
χs(y) = − 2s− 3

64(2s− 1)(s− 1)

∂2Φs(Y )

∂Y 2

∣∣
Y A→eAαβyαyβ

.
(A.60)
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Using the variable Y A, we can rewrite the Fronsdal equation (3.20), the gauge transforma-

tion (3.21), and the double traceless condition (A.49) as

(
�AdS − s(s− 3)− Y ADA ∂

∂Y B
DB

+
1

2
Y ADAY BDB ∂

∂Y C

∂

∂Y C
− Y AY A ∂

∂Y B

∂

∂Y B

)
Φs(x|Y ) = 0,

δΦs(x|Y ) = Y ADAηs(x|Y ),
(
∂2

∂Y 2

)2

Φs(x|Y ) = 0,

(A.61)

where DA is the covariant derivative acting both on explicit frame indices as well as on

indices contracted with Y A; in particular �AdS = DADA. As proposed by Metsaev [43],

one then perform a linear transformation:

φ(x|Y ) = z−
1

2NΠφΦΦs(x|Y ), (A.62)

and the inverse of it is

Φs(x|Y ) = z
1

2ΠΦφNφ(x|Y ), (A.63)

where the various operators are defined as

N ≡
(
2NzΓ(N~Y +Nz − 1

2)Γ(2N~Y − 1)

Γ(N~Y − 1
2)Γ(2N~Y +Nz − 1)

)1/2

,

ΠφΦ ≡ Π~Y + ~Y 2 1

4(N~Y + 1)
Π~Y

(
∂2

∂~Y 2
+
N~Y + 1

N~Y

∂2

∂Y z2

)
,

ΠΦφ ≡ ΠY + Y 2 1

2(2NY + 3)
ΠY

(
∂2

∂~Y 2
− 2

2NY + 1

∂2

∂Y z2

)
,

Π~Y ≡ Π

(
~Y , 0, N~Y ,

∂

∂~Y
, 0, 2

)
, ΠY ≡ Π(~Y , Y z, NY ,

∂

∂~Y
,
∂

∂Y z
, 3),

Π

(
~Y , Y z, A,

∂

∂~Y
,
∂

∂Y z
, B

)
≡

∞∑

n=0

(Y 2)n
(−)nΓ(A+ B−2

2 + n)

4nn!Γ(A+ B−2
2 + 2n)

(
∂2

∂Y 2

)n
,

N~Y = ~Y · ∂

∂~Y
, Nz = Y z ∂

∂Y z
, NY ≡ N~Y +Nz.

(A.64)

The modified de Donder gauge condition written in terms of the field φ(x|Y ) is:

C̄φ(x|Y ) = 0, (A.65)
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where

C̄ ≡ ∂

∂~Y
· ~∂ − 1

2
~Y · ~∂ ∂2

∂~Y 2
+

1

2
e1

∂2

∂~Y 2
− ē1Π

′,

Π′ ≡ 1− ~Y 2 1

4(N~Y + 1)

∂2

∂~Y 2
,

e1 = e1,1

(
∂z +

2s− 3− 2Nz

2z

)
,

ē1 =

(
∂z −

2s− 3− 2Nz

2z

)
ē1,1,

e1,1 = Y zf, ē1,1 = f
∂

∂Y z
,

f ≡ ε

(
2s− 2−Nz

2s− 2− 2Nz

)1/2

, ε = ±1.

(A.66)

In this gauge, the equations of motion is simplified as

(
�+ ∂2z −

1

z2

(
r − 1

2

)(
r − 3

2

))
φr = 0, (A.67)

where φr(x|~Y ) are the components of φ(x|Y ) expanded in Y z as in (3.27), and the general

solution of this equation is

φr(~p, z|~Y ) = Cr1(~p, ~Y )
√
zJr−1(z|~p |) + Cr2(~p, ~Y )

√
zYr−1(z|~p |), (A.68)

where we Fourier transformed φr(x|~Y ) as

φr(x|~Y ) =

∫
d2x φr(~p, z|~Y ) e~p·~x. (A.69)

Notice that ~p is imaginary momentum. We can Wick rotate back to the real momentum

by ~p→ i~p. For the purpose of computing the boundary-to-bulk propagator, we can simply

replace Jr−1(z|~p |) and Yr−1(z|~p |) by i−r+1Kr−1(x).

Next, let us solve for the functions Cr1(~p,
~Y ) and Cr2(~p,

~Y ) using the double trace-

less condition and the gauge condition. Let us first look at the reduced double traceless

condition. It is convenient to define

Y + = Y 1 + iY 2 and Y − = Y 1 − iY 2. (A.70)

The double traceless condition (3.24) can be written as

(
∂

∂Y +

∂

∂Y −

)2

Cr(~p, ~Y ) = 0. (A.71)

The general solution of it is

Cr(~p, ~Y )=cr++(~p )(Y
+)r+ cr−+(~p )Y

−(Y +)r−1+ cr+−(~p )Y
+(Y −)r−1+ cr−−(~p )(Y

−)r.

(A.72)
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for r > 2. For the r = 1, 2, we have

C1(~p, ~Y ) = c1+Y
+ + c1−Y

− and C2(~Y ) = c2++(Y
+)2 + c2+−Y

+Y − + c2−−(Y
−)2. (A.73)

Next, let us consider the gauge condition (A.65).

C̄φ(x|Y ) =

(
∂

∂~Y
· ~p− 1

2
~Y · ~p ∂2

∂~Y 2
+

1

2
e1

∂2

∂~Y 2
− ē1Π

′

) s∑

r=0

(Y z)s−r φr(~p, z|~Y )

=

[
∂

∂~Y
· ~p− 1

2
~Y · ~p ∂2

∂~Y 2
+

1

2
Y zε

(
2s+ d− 4−Nz

2s+ d− 4− 2Nz

)1/2(
∂z +

2s+ d− 5− 2Nz

2z

)
∂2

∂~Y 2

−
(
∂z −

2s+ d− 5− 2Nz

2z

)
ε

(
2s+ d− 4−Nz

2s+ d− 4− 2Nz

)1/2 ∂

∂Y z
Π′

]
s∑

r=0

(Y z)s−r φr(~p, z|~Y )

=
s∑

r=0

(Y z)s−r
[
∂

∂~Y
· ~p− 1

2
~Y · ~p ∂2

∂~Y 2
+

1

2
Y zε

(
s+ r + d− 4

2r + d− 4

)1/2(
∂z +

2r + d− 5

2z

)
∂2

∂~Y 2

−ε
(
∂z −

2r + d− 3

2z

)(
s+ r + d− 3

2r + d− 2

)1/2 s− r

Y z
Π′

]
φr(~p, z|~Y )

=
s∑

r=0

(Y z)s−r
[
∂

∂~Y
· ~p− 1

2
~Y · ~p ∂2

∂~Y 2
+

1

2
Y z

(
s+ r − 2

2r − 2

)1/2(
∂z +

2r − 3

2z

)
∂2

∂~Y 2

−ε
(
∂z −

2r − 1

2z

)(
s+ r − 1

2r

)1/2 s− r

Y z
Π′

]
φr(~p, z|~Y ). (A.74)

The gauge condition can be written as

(
~p

p
· ∂

∂~Y
− 1

2

~p

p
· ~Y ∂2

∂~Y 2

)
φr+1 +

1

2

(
s+ r

2r + 2

)1/2(
∂z +

2r + 1

2z

)
∂2

∂~Y 2
φr+2

−ε
(
∂z −

2r − 1

2z

)(
s+ r − 1

2r

)1/2

(s− r)Π′φr = 0.

(A.75)

with p ≡ |~p |. Plugging (A.68) into (A.75), we obtain

(
~p

p
· ∂

∂~Y
− 1

2

~p

p
· ~Y ∂2

∂~Y 2

)
Cr+1 +

1

2

(
s+ r

2r + 2

)1/2 ∂2

∂~Y 2
Cr+2

+ε

(
s+ r − 1

2r

)1/2

(s− r)

(
1− ~Y 2 1

4(r − 1)

∂2

∂~Y 2

)
Cr = 0,

(A.76)

or more explicitly,

[
p+

p
∂+ +

p−

p
∂− −

(p+
p
Y − +

p−

p
Y +
)
∂+∂−

]
Cr+1 + 2

(
s+ r

2r + 2

)1/2

∂+∂−C
r+2

+ε

(
s+ r − 1

2r

)1/2

(s− r)

(
1− ~Y 2 1

r − 1
∂+∂−

)
Cr = 0,

(A.77)
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with ∂± = ∂Y ± . Plugging (A.72) and (A.73) into the above equation, we obtain

r
p+

p
cr++(~p ) + ε

(
s+ r − 2

2(r − 1)

)1/2

(s− r + 1)cr−1
++ (~p )

+(2− r)
p−

p
cr−+(~p ) + 2

(
s+ r − 1

2r

)1/2

rcr+1
−+ (~p ) = 0, (A.78)

and

r
p−

p
cr−−(~p ) + ε

(
s+ r − 2

2(r − 1)

)1/2

(s− r + 1)cr−1
−− (~p )

+(2− r)
p+

p
cr+−(~p ) + 2

(
s+ r − 1

2r

)1/2

(r)cr+1
+− (~p ) = 0, (A.79)

for r > 2, and in the cases r = 1, 2,

2
p+

p
c2++(~p ) + ε

(s
2

)1/2
(s− 1)c1+(~p ) + 2

(
s+ 1

4

)1/2

2c3−+(~p ) = 0,

2
p−

p
c2−−(~p ) + ε

(s
2

)1/2
(s− 1)c1−(~p ) + 2

(
s+ 1

4

)1/2

2c3+−(~p ) = 0,

p+

p
c1+(~p ) +

p−

p
c1−(~p ) + 2

(s
2

)1/2
c2+−(~p ) = 0.

(A.80)

We can consistently set cr+− = 0 = cr−+ for r > 2, and obtain

r
p+

p
cr++(~p ) + ε

(
s+ r − 2

2(r − 1)

)1/2

(s− r + 1)cr−1
++ (~p ) + (2− r)

p−

p
cr−+(~p ) = 0, (A.81)

and

r
p−

p
cr−−(~p ) + ε

(
s+ r − 2

2(r − 1)

)1/2

(s− r + 1)cr−1
−− (~p ) + (2− r)

p+

p
cr+−(~p ) = 0, (A.82)

for r > 2, and

2
p+

p
c2++(~p ) + ε

(s
2

)1/2
(s− 1)c1+(~p ) = 0,

2
p−

p
c2−−(~p ) + ε

(s
2

)1/2
(s− 1)c1−(~p ) = 0,

p+

p
c1+(~p ) +

p−

p
c1−(~p ) + 2

(s
2

)1/2
c2+−(~p ) = 0,

(A.83)

for r = 1, 2. The solution to the above recursive equations is given by

cr++ =
s!

(s− r)!r!

√
2s−r(s− 1)!(s+ r − 2)!

(r − 1)!(2s− 2)!

(
−εp

+

p

)s−r
cs++,

cr−− =
s!

(s− r)!r!

√
2s−r(s− 1)!(s+ r − 2)!

(r − 1)!(2s− 2)!

(
−εp

−

p

)s−r
cs−−,

(A.84)
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and

c2+−(~p ) =

√
2s−2s!(s− 1)!

(2s− 2)!

(
−εp

+

p

)s
cs++ +

√
2s−2s!(s− 1)!

(2s− 2)!

(
−εp

−

p

)s
cs−−. (A.85)

Starting from here and in what follows, we set ε = −1 and only consider the positively

polarized fields by setting cs−− = 0. Plugging (A.84) and (A.85) back to (A.72) and (A.73),

then back to (A.68), and Wick rotating to the real momenta, we obtain

φ(~p, z|~Y , Y z)

=
s∑

r=1

i1−r
s!

(s− r)!r!

√
2s−r(s− 1)!(s+ r − 2)!

(r − 1)!(2s− 2)!

(
p+

p

)s−r
(Y z)s−r(Y +)rcs++

√
zKr−1(pz)

+ i−1

√
2s−2s!(s− 1)!

(2s− 2)!

(
p+

p

)s
cs++Y

+Y −(Y z)s−2√zK1(pz). (A.86)

Using the transformation (A.63), we arrive at the expression for the boundary to bulk

propagator in momentum space, in the modified de Donder gauge,

Φs(~p, z|Y ) (A.87)

= z
1

2ΠΦφNφ(~p, z|~Y , Y z)

=
s∑

r=1

∞∑

n=0

(−1)ni1−rΓ
(
s−n− 1

2

)

4nn!Γ
(
s− 1

2

) s!

(s−r−2n)!r!

(
p+

p

)s−r
Y 2n(Y z)s−r−2n(Y +)rcs++zKr−1(pz)

+
∞∑

n=0

(−1)ni−1Γ
(
s− n− 1

2

)

4nn!Γ
(
s− 1

2

) (s− 2)!

(s− 2− 2n)!

(
p+

p

)s
cs++Y

2n(Y z)s−2−2nY +Y −zK1(pz).

In terms of the frame-like fields, using (A.60), we have

χ
(s),+
odd (~p, z|y) = cs++

s∑

r=0

ir
s!

(s− r)!r!
pr−1(p+)s−r(y1)s+r(y2)s−rzKr−1(z|~p |), (A.88)

χ
(s),−
odd (~p, z|y) = cs++

s

2(2s− 1)

s∑

r=0

ir
(s−2)!

(s−r−2)!r!
pr−1(p+)s−r(y1)s+r−2(y2)s−r−2zKr−1(z|~p |).

B Second order in perturbation theory

B.1 A star-product relation

Let us write the following useful formula for the star-product:

A(y)∗B(y)=
∞∑

n=0




n∑

m=0

∞∑

p=0

(m+p)!(n−m+p)!

p!m!(n−m)!
Aα1···αp(β1···βmB

α1···αp
βm+1···βn)


yβ1 · · · yβn

(B.1)
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where A(y) and B(y) have the expansions:

A(y) =
∞∑

n=0

Aα1···αny
α1 · · · yαn , and B(y) =

∞∑

n=0

Bα1···αny
α1 · · · yαn . (B.2)

Eq. (B.1) follows from writing the (m-th) ∗ (n-th) term as

(Aα1···αmy
α1 · · · yαm) ∗

(
Bβ1···βny

β1 · · · yβn
)

(B.3)

= (−1)mAα1···αm

(
yα1

+
∂

∂yα1

)
· · ·
(
yαm +

∂

∂yαm

)
Bβ1···βny

β1 · · · yβn

=
∑

p≤m,n

n!m!

(m− p)!(n− p)!p!
Aα1···αp(αp+1···αmB

α1···αp
βp+1···βn)y

αp+1 · · · yαmyβp+1 · · · yβn .

B.2 Derivation of U0,µ and U2
µ|αβ

The purpose of this subsection is to compute the r.h.s. of (4.6).

By using the star-product relation (B.1), we obtain

[Ωeven, C
(1)
mat]∗ (B.4)

=

∞∑

n=0




n∑

m=0

∞∑

p=0

(m+p)!(x−m+p)!

p!m!(n−m)!
(1−(−)p)Ωeven

α1···αp(β1···βm
C

(1)
mat

α1···αp
βm+1···βn)


yβ1 · · · yβn ,

{Ωodd, C
(1)
mat}∗

=
∞∑

n=0




n∑

m=0

∞∑

p=0

(m+p)!(n−m+p)!

p!m!(n−m)!
(1+(−)p)Ωodd

α1···αp(β1···βm
C

(1)
mat

α1···αp
βm+1···βn)


yβ1 · · · yβn .

The U0
µ and U2

µ|α1α2
are coefficients of the components in −[Ωeven, C

(1)
mat]∗+ψ1{Ωodd, C

(1)
mat}∗,

which are independent and quadratic in y. They can be written as

U (0)
µ =ψ1

∞∑

p=0

p!(1 + (−)p)Ωodd
µ|α1···αp

C
(1)
mat

α1···αp , (B.5)

and

U
(2)
µ|αβ =−

∞∑

p=0

(p+ 1)(p+ 1)!(1− (−)p)Ωeven
µ|α1···αp(α

C
(1)
mat

α1···αp
β)

+ ψ1

∞∑

p=0

(p+ 2)!

2
(1 + (−)p)Ωodd

µ|α1···αp
C

(1)
mat

α1···αp
αβ

+ ψ1

∞∑

p=0

(p+ 2)!

2
(1 + (−)p)Ωodd

µ|α1···αpαβ
C

(1)
mat

α1···αp .

(B.6)
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We first compute ∇µU
(0)
µ :

∇µU (0)
µ =− 32ψ1

∞∑

p=0

p!(1+(−)p)
(
∇αβΩodd

αβ|α1···αp
C

(1)
mat

α1···αp +Ωodd
αβ|α1···αp

∇αβC
(1)
mat

α1···αp
)

=− 32ψ1

∞∑

p=0

p!(1 + (−)p)
(
∇αβχp,+,oddαβα1···αp

C
(1)
mat

α1···αp +∇α1α2
χp,−,oddα3···αp C

(1)
mat

α1···αp

+χp,+,oddαβα1···αp
∇αβC

(1)
mat

α1···αp + χp,−,oddα3···αp ∇α1α2
C

(1)
mat

α1···αp
)

=32ψ1

∞∑

p=0

(1 + (−)p)

[
C

(1),p
mat (∂y)

(
∇−χp,+odd(y)

(p+ 2)(p+ 1)
+∇+χp,−odd(y)

)

+
(∇+C

(1),p
mat )(∂y)χ

p,+
odd(y)

(p+ 2)(p+ 1)
+ (∇−C

(1),p
mat )(∂y)χ

p,−
odd(y)

]
, (B.7)

where we have assumed the gauge condition χp,0odd = 0. Using (A.8) to express ∇±C
(1),p
mat in

terms of C
(1),p±2
mat , we have

∇µU (0)
µ =32ψ1

∞∑

p=0

(1 + (−)p)

[
C

(1),p
mat (∂y)

(
∇−χp,+odd(y)

(p+ 2)(p+ 1)
+∇+χp,−odd(y)

)

+ψ1
C

(1),p+2
mat (∂y)χ

p,+
odd(y)

16
+ ψ1

p(p+ 1)

16
C

(1),p−2
mat (∂y)χ

p,−
odd(y)

]
.

(B.8)

Next, we compute (eµ0 )
αβU

(2)
µ|αβ :

(eµ0 )
αβU

(2)
µ|αβ =

∞∑

p=0

(p+ 3)(p+ 1)!

2
(1− (−)p)χp+1,0,even

α1···αpβ
C

(1)
mat

α1···αpβ

+ ψ1

∞∑

p=0

(p+ 2)!

2
(1 + (−)p)χp+1,+,odd

α1···αpαβ
C

(1)
mat

α1···αpαβ

+ ψ1

∞∑

p=0

(p+ 3)(p+ 2)p!

2
(1 + (−)p)χp,−,oddα1···αp C

(1)
mat

α1···αp

=
∞∑

p=0

(p+ 3)(1− (−)p)

2
C

(1),p+1
mat (∂y)χ

p+1,0
even (y)

+ ψ1

∞∑

p=0

(1 + (−)p)

2
C

(1),p+2
mat (∂y)χ

p,+
odd(y)

+ ψ1

∞∑

p=0

(p+ 3)(p+ 2)(1 + (−)p)

2
C

(1),p
mat (∂y)χ

p+2,−
odd (y),

(B.9)

where we have assumed the gauge χp,0odd = 0. Using (A.43) to express χp+1,0
even in terms of
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χp+1,+
odd and χp+1,−

odd , we have

(eµ0 )
αβU

(2)
µ|αβ =

∞∑

p=0

(1− (−)p)C
(1),p+1
mat (∂y)

×
[

4(p+ 1)

(p+ 3)(p+ 2)
∇−χp+1,+

odd (y)− 4(p+ 3)∇+χp+1,−
odd (y)

]

+ ψ1

∞∑

p=0

(1 + (−)p)

2
C

(1),p+2
mat (∂y)χ

p,+
odd(y)

+ ψ1

∞∑

p=0

(p+ 3)(p+ 2)(1 + (−)p)

2
C

(1),p
mat (∂y)χ

p+2,−
odd (y),

(B.10)

Adding the two terms (B.8) and (B.10), we obtain

∇µU (0)
µ + 4ψ1(e

µ
0 )
αβU

(2)
µ|αβ

= 4
∞∑

p=0

(1 + (−)p)
[
C

(1),p+2
mat (∂y)χ

p,+
odd(y) + (p+ 1)pC

(1),p−2
mat (∂y)χ

p,−
odd(y)

]

+ 16ψ1

∞∑

p=2

(1 + (−)p)C
(1),p
mat (∂y)

[
1

(p+ 1)
∇−χp,+odd(y)− p∇+χp,−odd(y)

]
.

(B.11)

B.3 Computation of the three point function

In this subsection, we compute the three point function of a higher spin current with two

scalars by explicitly evaluating the integral (4.11).

To begin with, let us turn on boundary sources only for the Ceven component of the

scalars in (4.11). It is convenient to decompose Ξs as Ξs = Ξ+
s + Ξ0

s + Ξ−
s , with Ξ

±/0
s

being the homogeneous polynomials in y of degree 2s, 2s − 2, and 2s − 4, respectively.

The action (4.11) splits into three terms. The terms with Ξ±
s have already been of the

form (4.9). For the term with Ξ0
s, we need to perform an integration by part:

∫
dx2

(
dz

z3

)
Ξ0
s(∂y)δC

(1),0
mat C

(1),2s−2
mat

=

∫
dx2

(
dz

z3

)
32ψ1

(
1

(2s− 1)
∇−χ

(s),+
odd (∂y)− (2s− 2)∇+χ

(s),−
odd (∂y)

)
δC

(1),0
mat C

(1),2s−2
mat

=

∫
dx2

(
dz

z3

)[
− 4

1

(2s− 1)
χ
(s),+
odd (∂y)δC

(1),2
mat C

(1),2s−2
mat − 4sχ

(s),+
odd (∂y)δC

(1),0
mat C

(1),2s
mat

+ 4(2smat− 2)χ
(s),−
odd (∂y)δC

(1),2
mat (∂y)C

(1),2s−2
mat

+ 2(2s− 2)2(2s− 1)χ
(s),−
odd (∂y)δC

(1),0
mat C

(1),2s−4
mat

]
, (B.12)

where we have used (A.8) to express ∇±C
(1),p
mat in terms of C

(1),p±2
mat . The variation of the

– 38 –



J
H
E
P
1
0
(
2
0
1
2
)
0
2
4

action δS is then given by

δS =

∫
d2x

(
dz

z3

)[
χ
(s),+
odd (∂y)

(
(8− 4s)δC

(1),0
mat C

(1),2s
mat − 4

1

(2s− 1)
δC

(1),2
mat C

(1),2s−2
mat

)

+4χ
(s),−
odd (∂y)

(
(2s− 2)δC

(1),2
mat (∂y)C

(1),2s−2
mat + 2(s−1)(s+1)(2s−1)δC

()1,0
mat C

(1),2s−4
mat

)]

=−
∫
d2x

(
dz

z3

)[
∇+λ(∂y)

(
(8− 4s)δC

(1),0
mat C

(1),2s
mat − 4

1

(2s− 1)
δC

(1),2
mat C

(1),2s−2
mat

)

− 4∇−λ(∂y)

(
1

(2s− 1)
δC

(1),2
mat (∂y)C

(1),2s−2
mat + (s+ 1)δC

(1),0
mat C

(1),2s−4
mat

)]

=−
∫
d2xdz∂z

[
1

z2
λ(∂y)∂y1∂y2

(
(2− s)δC

(1),0
mat C

(1),2s
mat − 1

(2s− 1)
δC

(1),2
mat C

(1),2s−2
mat

)

− 1

z2
(
∂y1∂y2λ

)
(∂y)

(
1

2s− 1
δC

(1),2
mat (∂y)C

(1),2s−2
mat + (s+ 1)δC

(1),0
mat C

(1),2s−4
mat

)]

= lim
z→0

∫
d2x

1

z2

[
λ(∂y)∂y1∂y2

(
(2− s)δC

(1),0
mat C

(1),2s
mat − 1

(2s− 1)
δC

(1),2
mat C

(1),2s−2
mat

)

+
(
∂y1∂y2λ

)
(∂y)

(
1

2s− 1
δC

(1),2
mat (∂y)C

(1),2s−2
mat + (s+ 1)δC

(1),0
mat C

(1),2s−4
mat

)]

=4 lim
z→0

∫
d2x

2s−1∑

r=1

zr−s−2

(x− − x−3 )
r

[
(∂y2)

2s−r(−∂y1)r

×
(
(2− s)δC

(1),0
mat C

(1),2s
mat − 1

(2s− 1)
δC

(1),2
mat C

(1),2s−2
mat

)

− (2s− r − 1)(r − 1)(∂y2)
2s−r−2(−∂y1)r−2

×
(

1

2s− 1
δC

(1),2
mat (∂y)C

(1),2s−2
mat + (s+ 1)δC

(1),0
mat C

(1),2s−4
mat

)]

≡δS1 + δS2 + δS3 + δS4, (B.13)

where we substituted the boundary to bulk propagator for χ
(s),+
odd and χ

(s),−
odd in the “pure

gauge” form, and we also performed the similar step as illustrated in (4.10), and we

used (A.8) again to express ∇±C
(1),p
mat in terms of C

(1),p±2
mat . For the convenience of the

later computation, we have split δS into four terms δS = δS1 + δS2 + δS3 + δS4. We will

compute these four terms one by one in the following. The next step is to substitute the

boundary-to-bulk propagator for the master field C
(1)
mat. We first expand C

(1)
mat as

C
(1)
mat(y) =

(
1 + ψ1

1 + ψ̃1

2
yΣy

)
e
ψ1
2
yΣyK1+

ψ̃1
2

=

∞∑

s=0

1

s!

(
1 + s(1 + ψ̃1)

)(ψ1

2

)s
(yΣy)sK1+

ψ̃1
2

=
∞∑

s=0

ψs1
s!

(
1 + s(1 + ψ̃1)

)[(
z − x+x−

z

)
y1y2 − (y1)2x− + (y2)2x+

]s
K1+

ψ̃1
2
+s
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=
∞∑

s=0

ψs1
s!

(
1 + s(1 + ψ̃1)

) s∑

u=0

u∑

w=0

u−w∑

v=0

s!

(s− u)!(u− w − v)!w!v!

× zu−w−2v(−x−)w+v(x+)s−u+v(y1)u+w(y2)2s−u−wK1+
ψ̃1
2
+s. (B.14)

In particular, the piece of homogeneous degree 2s is given by

C
(1),2s
mat (y) =

ψs1
s!

(
1 + s(1 + ψ̃1)

) s∑

u=0

u∑

w=0

u−w∑

v=0

s!

(s− u)!(u− w − v)!w!v!

× zu−w−2v(−x−)w+v(x+)s−u+v(y1)u+w(y2)2s−u−wK1+
ψ̃1
2
+s.

(B.15)

where K = z
z2+x2

is the scalar boundary-to-bulk propagator. Near the boundary, K1+
ψ̃1
2
+s

has the following expansion

K1+
ψ̃1
2
+s → π

s∑

q=0

Γ
(
s− q + ψ̃1

2

)

q!Γ
(
1+s+ ψ̃1

2

)z2q+1−
ψ̃1
2
−s(∂x+∂x−)

qδ2(x) + z1+
ψ̃1
2
+s 1

x2+ψ̃1+2s
+ · · · ,

(B.16)

where we keep only the leading analytic term and the first s contact terms. The subleading

terms will not contribute to the three point function.

Let us first compute δS1.

δS1 = 4 lim
z→0

∫
d2x0

2s−1∑

r=1

(2− s)
1

(x−03)
r
zr−s−2(∂y2)

2s−r(−∂y1)rδC(1),0
mat (x01)C

(1),2s
mat (x02|y)

= 4 lim
z→0

∫
d2x0

2s−1∑

r=1

ψs1

(
1 + s(1 + ψ̃1)

) s∑

u=0

2u−r∑

v=0

(2− s)r!(2s− r)!(−1)−u+v

(s− u)!(r − u)!(2u− r − v)!v!

× z2u−2v−s−2(x−02)
r−u+v(x+02)

s−u+v 1

(x−03)
r
K

1+
ψ̃1
2

01 K
1+

ψ̃1
2
+s

02

= 4

∫
d2x0

2s−1∑

r=1

ψs1

(
1 + s(1 + ψ̃1)

) s∑

u=0

2u−r∑

v=0

(2− s)r!(2s− r)!(−1)−u+v

(s− u)!(r − u)!(2u− r − v)!v!

×
[
π

3

2

Γ
(
1
2 ψ̃1

)

Γ
(
1
2

)
Γ
(
1 + ψ̃1

2

)δ2(x01)
1

x2+ψ̃1+2s
02

(x−02)
r(x+02)

sδu,v
1

(x−03)
r

+ δv,u+q−sπ

s∑

q=0

Γ
(
s− q + ψ̃1

2

)

Γ
(
1 + s+ ψ̃1

2

)δ2(x02)

×
q∑

n=0

q!(q + r − s)!

(q − n)!n!(r − s+ n)!
(x−02)

r−s+n∂n
x−
0

(
1

(x−03)
r

1

x2+ψ̃1

01

)]
, (B.17)

where we have substituted the boundary-to-bulk propagator for δC
(1),0
mat (x01) and

C
(1),2s
mat (x02|y), and the Kij stands for K

∣∣
x→xij

, and we have substituted the expan-
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sion (B.16) for Kij . Integrating out the delta functions gives

δS1 =4
2s−1∑

r=1

(2− s)ψs1

(
1 + s(1 + ψ̃1)

)[
2πψ̃1

(2s− r)!

(s− r)!

1

x2+ψ̃1

12 (x−12)
s−r(x−13)

r

+
s∑

u=0

s∑

q=0

r!(2s− r)!Γ
(
s− q + ψ̃1

2

)
q!(−1)q−s

(s− u)!(r − u)!(u− r − q + s)!(u+ q − s)!Γ
(
1 + s+ ψ̃1

2

)
(s− r)!

π∂s−r
x−
2

×
(

1

(x−23)
rx2+ψ̃1

21

)]
. (B.18)

Similarly, let us compute δS2 and δS3 as follows. Substituting the boundary-to-bulk

propagator for the master field C
(1)
mat, we have

δS2 = −4 lim
z→0

∫
d2x0

2s−1∑

r=1

zr−s−2

(2s− 1)

1

(x−03)
r
(∂y2)

2s−r(−∂y1)rδC(1),2
mat (x01)C

(1),2s−2
mat (x02|y)

= −4 lim
z→0

∫
d2x0

2s−1∑

r=1

1

(2s− 1)

1

(x−03)
r
ψs1

(
1 + (s− 1)(1 + ψ̃1)

)
(2 + ψ̃1)K

2+
ψ̃1
2

01 K
ψ̃1
2
+s

02

×
[
s−1∑

u=0

2u−r+1∑

v=0

r!(2s− r)!(−1)r

(s− u− 1)!(2u− r + 1− v)!(r − u− 1)!v!
(B.19)

×
(
z − x+01x

−
01

z

)
z2u−2v−s−1(−x−02)r−u+v−1(x+02)

s−u+v−1

+
s−1∑

u=0

2u−r+2∑

v=0

r!(2s− r)!(−1)r

(s− u− 1)!(2u− r + 2− v)!(r − u− 2)!v!

× (−x−01)z2u−2v−s(−x−02)r−u+v−2(x+02)
s−u+v−1

+
s−1∑

u=0

2u−r∑

v=0

r!(2s− r)!(−1)r

(s−u−1)!(2u−r−v)!(r−u)!v! (x
+
01)z

2u−2v−s−2(−x−02)r−u+v(x+02)s−u+v−1

]
,

and

δS3 = −4 lim
z→0

∫
d2x0

2s−1∑

r=1

zr−s−2

(2s− 1)

1

(x−03)
r
(2s− r − 1)(r − 1) (B.20)

× (∂y2)
2s−r−2(−∂y1)r−2δC

(1),2
mat (x01|∂y)C

(1),2s−2
mat (x02|y)

= −4 lim
z→0

∫
d2x0

2s−1∑

r=1

1

(2s−1)

1

(x−03)
r
(2s−r−1)(r−1)ψs1

(
1+(s−1)(1+ψ̃1)

)
(2 + ψ̃1)

×K
2+

ψ̃1
2

01 K
ψ̃1
2
+s

02

[
s−1∑

u=0

2u−r+1∑

v=0

(r − 1)!(2s− r − 1)!(−1)r−1

(s− u− 1)!(2u− r + 1− v)!(r − u− 1)!v!

×
(
z − x+01x

−
01

z

)
z2u−2v−s−1(−x−02)r−u+v−1(x+02)

s−u+v−1
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+
s−1∑

u=0

2u−r+2∑

v=0

(r − 2)!(2s− r)!(−1)r−1

(s− u− 1)!(2u− r + 2− v)!(r − u− 2)!v!

× (x−01)z
2u−2v−s(−x−02)r−u+v−2(x+02)

s−u+v−1

+
s−1∑

u=0

2u−r∑

v=0

r!(2s− r − 2)!

(s− u− 1)!(2u− r − v)!(r − u)!v!

× (−1)r(x+01)z
2u−2v−s−2(−x−02)r−u+v(x+02)s−u−1+v

]
.

These two terms can be combined as

δS2 + δS3

= −4 lim
z→0

∫
d2x0

2s−1∑

r=1

ψs1

(
1 + (s− 1)(1 + ψ̃1)

)
(2 + ψ̃1)K

2+
ψ̃1
2

01 K
ψ̃1
2
+s

02

1

(x−03)
r

×
[ s−1∑

u=0

2u−r+1∑

v=0

(r − 1)!(2s− r − 1)!(−1)r

(s− u− 1)!(2u− r + 1− v)!(r − u− 1)!v!

×
(
z − x+1 x

−
1

z

)
z2u−2v−s−1(−x−02)r−u+v−1(x+02)

s−u+v−1

+
s−1∑

u=0

2u−r+2∑

v=0

(r − 1)!(2s− r)!(−1)r

(s− u− 1)!(2u− r + 2− v)!(r − u− 2)!v!
(−x−01)z2u−2v−s

× (−x−02)r−u+v−2(x+02)
s−u+v−1

+
s−1∑

u=0

2u−r∑

v=0

r!(2s−r−1)!(−1)r

(s−u−1)!(2u− r − v)!(r − u)!v!
(x+01)z

2u−2v−s−2(−x−02)r−u+v(x+02)s−u+v−1

]

≡ U1 + U2 + U3, (B.21)

where we have split δS2 + δS3 into three terms U1, U2, U3. These are computed as follows.

U1 = −4

∫
d2x0

2s−1∑

r=1

ψs1

(
1 + (s− 1)(1 + ψ̃1)

)
(2 + ψ̃1)

×
s−1∑

u=0

[
− 2π

2 + ψ̃1

δ2(x01)
1

xψ̃1+2
02

1

(x−02)
s−r

1

(x−03)
r

(r − 1)!(2s− r − 1)!

(s− u− 1)!(u− r + 1)!(r − u− 1)!u!

+
4π

2ψ̃1 + 1
δ2(x01)

1

xψ̃1+2
02

1

(x−02)
s−r

1

(x−03)
r

(r − 1)!(2s− r − 1)!

(s− u− 1)!(u− r + 1)!(r − u− 1)!u!

+
s−1∑

q=0

(r − 1)!(2s− r − 1)!Γ
(
s− 1− q + ψ̃1

2

)
q!(−1)s+q+1

(s− u− 1)!(u− r − q + s)!(r − u− 1)!(q + u− s+ 1)!Γ
(
s+ ψ̃1

2

)
(s− r)!

× πδ2(x02)∂
s−r

x−
0

(
1

x2+ψ̃1

01

1

(x−03)
r

)]
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= −4
2s−1∑

r=1

ψs1

(
1+(s−1)(1 + ψ̃1)

)
(2+ ψ̃1)

[
10ψ̃1 − 8

3
π
(2s− r − 1)!

(s− r)!

1

xψ̃1+2
12 (x−12)

s−r(x−13)
r

+
s−1∑

u=0

s−1∑

q=0

(r − 1)!(2s− r − 1)!Γ
(
s− 1− q + ψ̃1

2

)
q!(−1)s+q+1

(s− u− 1)!(u− r − q + s)!(r − u− 1)!(q + u− s+ 1)!Γ
(
s+ ψ̃1

2

)
(s− r)!

× π∂s−r
x−
2

(
1

x2+ψ̃1

21 (x−23)
r

)]
, (B.22)

U2 = −4 lim
z→0

∫
d2x0

2s−1∑

r=1

ψs1

(
1 + (s− 1)(1 + ψ̃1)

)
(2+ψ̃1)

1

(x−03)
r

×
s−1∑

u=0

2u−r+2∑

v=0

(r − 1)!(2s− r)!

(s− u− 1)!(2u− r + 2− v)!(r − u− 2)!v!

× (−1)r(−x−01)(−x−02)r−u+v−2(x+02)
s−u+v−1

×
[
π

1∑

q=0

Γ
(
1− q + ψ̃1

2

)

q!Γ
(
2 + ψ̃1

2

) (∂x+
0
∂x−

0
)qδ2(x01)

1

xψ̃1+2s
02

z2u−2v+2q

1

x2+ψ̃1+4
01

π
s−1∑

q=0

Γ
(
s− 1− q + ψ̃1

2

)

q!Γ
(
s+ ψ̃1

2

) z2u−2v+2q+4−2s(∂x+
0
∂x−

0
)qδ2(x02)

]
,

= 0,

(B.23)

and

U3 =− 4
2s−1∑

r=1

ψs1

(
1 + (s− 1)(1 + ψ̃1)

)
(2 + ψ̃1)

×
[

4π

1 + 2ψ̃1

(2s− r − 1)!

(s− r − 1)!
∂x−

1

(
1

x2+ψ̃1

12 (x−12)
s−r−1(x−13)

r

)

+
s−1∑

q=0

s−1∑

u=0

Γ
(
s− 1− q + ψ̃1

2

)
r!(2s− r − 1)!q!π(−1)1+s+q

Γ
(
s+ ψ̃1

2

)
(s−u−1)!(u− r − q + s− 1)!(r − u)!(q+1+u−s)!(s−r−1)!

×∂s−r−1

x−
2

(
1

x2+ψ̃1

21 (x−21)(x
−
23)

r

)]
. (B.24)

where we have substituted the expansion (B.16) and taken the z → 0 limit. Finally, let us

compute δS4:

δS4 = −4 lim
z→0

∫
d2x0

2s−1∑

r=1

(2s− r − 1)(r − 1)
1

(x−03)
r
zr−s−2(s+ 1)

× (∂y2)
2s−r−2(−∂y1)r−2δC

(1),0
mat (x01)C

(1),2s−4
mat (x02|y)
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= −4 lim
z→0

∫
d2x0

2s−1∑

r=1

(−1)r−2 1

(x−03)
r
K

1+
ψ̃1
2

01 K
ψ̃1
2
+s−1

02

ψs1
(s− 2)!

(
1 + (s− 2)(1 + ψ̃1)

)

×
s−2∑

u=0

2u−r+2∑

v=0

(s− 2)!(r − 1)!(2s− r − 1)!

(s− u− 2)!(2u− r + 2− v)!(r − u− 2)!v!

× z2u−2v−s(−x−02)r−u+v−2(x+02)
s−u+v−2. (B.25)

After substituting the boundary to bulk propagators and taking the z → 0 limit, we obtain

δS4= −4
2s−1∑

r=1

(s+ 1)ψs1

(
1 + (s− 2)(1 + ψ̃1)

)

×
[
π

Γ
(
ψ̃1

2

)

Γ
(
1 + ψ̃1

2

) 1

xψ̃1+2s−2
12

(r − 1)(2s− r − 1)!

(s− r)!

(x−12)
r−2(x+12)

s−2

(x−13)
r

+ π
s−2∑

q=0

s−2∑

u=0

Γ
(
s− 2− q + ψ̃1

2

)
(r − 1)!(2s− r − 1)!q!

Γ
(
s−1+ ψ̃1

2

)
(s− u− 2)!(u− r − q + s)!(r−u−2)!(q+u−s+2)!(s−r)!

× (−1)q−s∂s−r
x−
2

(
1

x2+ψ̃1

21

1

(x−23)
r

)]
. (B.26)

The three point function is proportional to δS = δS1+U1+U3+δS4. One can simplify

the above expressions and compute the full three point function directly, but since we are

only interested in the overall coefficient whereas the position dependence is completely

fixed by the conformal symmetry, we can take the limit in which one of the two scalar

operators collides with the higher spin current, and extract the overall coefficient.

Let us define the variables y±1 = x±1 − x±3 and y±2 = x±2 − x±3 , and consider the limit

y1 ≪ y2. The various pieces of contributions are given in this limit by

δS1 → 4(2− s)ψs1

(
1 + s(1 + ψ̃1)

)
2πψ̃1s!

1

y2+ψ̃1

2

1

(y−1 )
s
,

U1 →− 4ψs1

(
1 + (s− 1)(1 + ψ̃1)

)
(2 + ψ̃1)

10ψ̃1 − 8

3
π(s− 1)!

1

yψ̃1+2
2

1

(y−1 )
s
,

U3 →− 4ψs1

(
1 + (s− 1)(1 + ψ̃1)

)
(2 + ψ̃1)

4π

1 + 2ψ̃1

s!
1

y2+ψ̃1

2

−s+ 1

(y−1 )
s
,

δS4 →− 4(s+ 1)ψs1

(
1 + (s− 2)(1 + ψ̃1)

)
π

Γ
(
ψ̃1

2

)

Γ
(
1 + ψ̃1

2

)(s− 1)(s− 1)!
1

(y−1 )
s

1

yψ̃1+2
2

.

(B.27)

Summing these four terms, and recovering the full position dependence using the conformal

symmetry, we obtain the three point function of one higher spin current and two scalar
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operators:

〈(
O +O

)
(x1)

(
O +O

)
(x2)J

s(x3)
〉

= 8π(s+ ψ̃1(s− 1))(1 + (−)s)Γ(s)
1

|x12|2+ψ̃1

(
x−12

x−13x
−
23

)s
. (B.28)

Note that since we have turned on the sources for Ceven so far, the dual scalar operator is

O + O. The three point function involving an insertion of O − O, dual to the bulk field

Codd, can be computed analogously by turning on a source for Codd. Note that Codd is a

purely imaginary field; in other words, if we write Codd = iϕ, then ϕ is a real field with

the “right sign” kinetic term. A computation similar to the above gives

〈(
O −O

)
(x1)

(
O +O

)
(x2)J

s(x3)
〉

= 8π(s+ ψ̃1(s− 1))(1− (−)s)Γ(s)
1

|x12|2+ψ̃1

(
x−12

x−13x
−
23

)s
. (B.29)

Adding (B.28) and (B.29), we obtain

〈
O(x1)O(x2)J

s(x3)
〉
= −4π(s+ ψ̃1(s− 1))Γ(s)

1

|x12|2+ψ̃1

(
x−12

x−13x
−
23

)s
. (B.30)

C The deformed vacuum solution

In this section, we discuss the formulation of the three dimensional Vasiliev system as

originally written in [10–13], which amounts to an extension of the equations (2.5) by

introducing two additional auxiliary variables k and ρ, as described below, and the 1-

parameter family of “deformed” vacuum solutions. The deformed vacuum solution of the

system (2.5) can be obtain by a simple projection on the extended system. We will also

present the boundary to bulk propagator for the B master field, which contains the bulk

“matter” scalar field, in the deformed vacua, by solving the linearized equations.

To describe the deformed vacuum, it is useful to introduce two additional auxiliary

variables k and ρ. They obey the following (anti-)commutation relations with one another

and with the twistor variables (y, z):

k2 = ρ2 = 1, {k, ρ} = {k, yα} = {k, zα} = 0, [ρ, yα] = [ρ, zα] = 0. (C.1)

It will be also convenient to define the variable

wα = (zα + yα)

∫ 1

0
dt tetzy. (C.2)

It is straightforward to show that wα satisfy the following star commutation relations:

[wα, wβ ]∗ = 0,

[wα, yβ ]∗ + [yα, wβ ]∗ = 2ǫαβK,

[wα, zβ]∗ + [zα, wβ ]∗ = −2ǫαβK,

{wα, zβ}∗ ∗K − {yα, wβ}∗ = 0.

(C.3)
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Next, let us define

z̃α(ν) = zα + νwαk,

ỹα(ν) = yα + νwα ∗Kk.
(C.4)

Using the relations (C.3), it is easy to show that

[ỹα, ỹβ ]∗ = 2ǫαβ(1 + νk),

[ρz̃α, ρz̃β]∗ = −2ǫαβ (1 + νKk) ,

[ρz̃α, ỹβ ]∗ = 0.

(C.5)

Under the star algebra, ỹα generate the (deformed) three dimensional higher spin algebra

hs(λ) with λ = 1
2(1 + νk). Later we will make the projection onto the eigenspace of k = 1

or k = −1, in which case λ = 1
2(1 + ν) or λ = 1

2(1 − ν). The higher spin algebra hs(λ) is

an associative algebra, whose general element can be represented by an even analytic star-

function in ỹα. In particular, it has an sl(2)-subalgebra whose generator can be written as

Tαβ = ỹ(α ∗ ỹβ).
The deformed vacuum solution is given by

B =
1

4
ν, Sα =

1

2
ρ(z̃α − zα),

W =W0 = w0 + ψ1e0 =
(
wαβ0 (x) + ψ1e

αβ
0 (x)

)
Tαβ .

(C.6)

They satisfy the (k, ρ)-extended Vasiliev equations:10

dxW +W ∗W = 0,

dxS + dzW + {W,S}∗ = 0,

dzS + S ∗ S = B ∗Kkdz2,
dzB + [S,B]∗ = 0,

dxB + [W,B]∗ = 0,

(C.7)

We can go back to the system (2.5) by simply multiplying a projector 1
2(1 + k) on the left

of every equation. Given any solution of the extended Vasiliev equations, by acting on it

with the projector we obtain a solution of the equations (2.5). It follows that the deformed

vacuum solution of (2.5) is

B =
1

4
ν, Sα =

1

2
(z̃α(−ν)− zα) ,

W =
(
wαβ0 (x) + ψ1e

αβ
0 (x)

)
ỹα(ν) ∗ ỹβ(−ν).

(C.8)

Next, we will solve the linearize equation on the deformed vacua, and derive the bound-

ary to bulk propagator for B (the scalar and corresponding auxiliary fields). For simplicity

of the notation, we will work in the extended Vasiliev system. The boundary to bulk

10Note that the form of these equations differs from the system (2.5) only in the r.h.s. of the third

equation.
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propagator for fields in the system (2.5) can be obtained simply by applying the projector
1
2(1 + k). The linearized equations for B are

[
ρz̃α, B

(1)
]
∗
= 0,

D0B
(1) = 0.

(C.9)

where D0 is defined by D0 ≡ d + [W0, ·]. The first equation of (C.9) immediately implies

B(1)(x|y, z, ψ) = B
(1)
∗ (x|ỹ, ψ), where the subscript ∗ of a function means that it is a

star-function.

Decomposing B
(1)
∗ (x|ỹ, ψ) as B(1)

∗ (x|ỹ, ψ) = C
(1)
aux∗(x|ỹ, ψ1)+ψ2C

(1)
mat∗(x|ỹ, ψ1), the sec-

ond equation of (C.9) gives

dC
(1)
aux∗ + [w0, C

(1)
aux∗]∗ + ψ1[e0, C

(1)
aux∗]∗ = 0,

dC
(1)
mat∗ + [w0, C

(1)
mat∗]∗ − ψ1{e0, C(1)

mat∗}∗ = 0.
(C.10)

As in the case of equations in the undeformed vacuum analyzed in section 3.1 and ap-

pendix A.1, the equation for C
(1)
aux∗ is over-constraining, and eliminates all dynamical de-

grees of freedom of C
(1)
aux∗. We will simply set C

(1)
aux∗ = 0, and only study the equation of

the “matter” component C
(1)
mat∗ in the following. Let us expand C

(1)
mat∗ in the form

C
(1)
mat∗(ỹ) =

∞∑

n=0

C
(1)
mat∗,α1···αn ỹ

(α1 ∗ · · · ∗ ỹαn). (C.11)

To compute the (anti-)commutators in (C.10), let us first consider the star product of ỹα

with ỹ(α1 ∗ · · · ∗ ỹαn):

ỹα ∗ ỹ(α1 ∗ · · · ∗ ỹαn) (C.12)

= ỹ(α ∗ ỹα1 ∗ · · · ∗ ỹαn) + 1

n+ 1

n∑

i=1

(n− i+ 1)ỹ(α1 ∗ · · · ∗ [ỹα, ỹαi ]∗ ∗ · · · ∗ ỹαn)

= ỹ(α ∗ ỹα1 ∗ · · · ∗ ỹαn) + 1

n+1

n∑

i=1

(n−i+1)(1+(−)i−1νk)2ǫα(αi ỹα1 ∗ · · · ∗ /̃y/αi ∗ · · · ∗ ỹαn).

Contracting the above with eαCα1···αn (here and in what follows, e and C are used to

denote arbitrary totally symmetric tensors), we obtain

eαỹ
α ∗ Cα1···αn ỹ

α1 ∗ · · · ∗ ỹαn

= e(αCα1···αn)ỹ
α ∗ ỹα1 ∗ · · · ∗ ỹαn − a(n, νk)eαCαα1···αn−1

ỹα1 ∗ · · · ∗ ỹαn−1 ,
(C.13)

where

a(n, νk) = 2
n∑

i=1

1

(n+ 1)
(n− i+ 1)(1 + (−)i−1νk). (C.14)
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Applying a similar operation, staring ỹ(α ∗ ỹβ) with ỹ(α1 ∗ · · · ∗ ỹαn) and contracting with

eβαCα1···αn , we get

eβαỹ
β ∗ ỹα ∗ Cα1···αn ỹ

α1 ∗ · · · ∗ ỹαn = e(βαCα1···αn)ỹ
β ∗ ỹα ∗ ỹα1 ∗ · · · ∗ ỹαn

− n

n+ 1
a(n+ 1, νk)eβ(αCβα1···αn−1)ỹ

α ∗ ỹα1 ∗ · · · ∗ ỹαn−1

− a(n,−νk)e(βαCαα1···αn−1)ỹ
β ∗ ỹα1 ∗ · · · ∗ ỹαn−1

+ a(n,−νk)a(n− 1, νk)eαβCαβα1···αn−2
ỹα1 ∗ · · · ∗ ỹαn−2 .

(C.15)

Now, starring ỹα with ỹ(α1 ∗ · · · ∗ ỹαn) from the right side,

ỹ(α1 ∗ · · · ∗ ỹαn) ∗ ỹα (C.16)

= ỹ(α ∗ ỹα1 ∗ · · · ∗ ỹαn) + 1

n+ 1

n∑

i=1

(−i)ỹ(α1 ∗ · · · ∗ [ỹα, ỹαi ]∗ ∗ · · · ∗ ỹαn)

= ỹ(α ∗ ỹα1 ∗ · · · ∗ ỹαn) + 1

n+ 1

n∑

i=1

(−i)(1 + (−)i−1νk)2ǫα(αi ỹα1 ∗ · · · ∗ ỹ 6αi ∗ · · · ∗ ỹαn).

Contracting this formula with eαCα1···αn , we have

Cα1···αn ỹ
α1 ∗ · · · ∗ ỹαn ∗ eαỹα

= e(αCα1···αn)ỹ
α ∗ ỹα1 ∗ · · · ∗ ỹαn − b(n, νk)eαCαα1···αn−1

ỹα1 ∗ · · · ∗ ỹαn−1 ,
(C.17)

where

b(n, νk) = 2
n∑

i=1

1

(n+ 1)
(−i)(1 + (−)i−1νk). (C.18)

Performing a similar operation with ỹ(α ∗ ỹβ), we obtain

Cα1···αn ỹ
α1 ∗ · · · ∗ ỹαn ∗ eβαỹβ ∗ ỹα = e(βαCα1···αn)ỹ

β ∗ ỹα ∗ ỹα1 ∗ · · · ∗ ỹαn

− n

n+ 1
b(n+ 1, νk)eβ(αCβα1···αn−1)ỹ

α ∗ ỹα1 ∗ · · · ∗ ỹαn−1

− b(n, νk)e(β
αCαα1···αn−1)ỹ

β ∗ ỹα1 ∗ · · · ∗ ỹαn−1

+ b(n, νk)b(n− 1, νk)eαβCαβα1···αn−2
ỹα1 ∗ · · · ∗ ỹαn−2 .

(C.19)

Adding (C.15) and (C.19), we obtain the anticommutator:

{eβαỹβ ∗ ỹα, Cα1···αn ỹ
α1 ∗ · · · ∗ ỹαn}∗ = 2e(βαCα1···αn)ỹ

β ∗ ỹα ∗ ỹα1 ∗ · · · ∗ ỹαn (C.20)

+ f(n, νk)eβ(αCβα1···αn−1)ỹ
α ∗ ỹα1 ∗ · · · ∗ ỹαn−1+ g(n, νk)eαβCαβα1···αn−2

ỹα1 ∗ · · · ∗ ỹαn−2 ,

where

f(n, νk) = − n

n+ 1
a(n+ 1, νk)− a(n,−νk)− n

n+ 1
b(n+ 1, νk)− b(n, νk),

g(n, νk) = a(n,−νk)a(n− 1, νk) + b(n, νk)b(n− 1, νk).
(C.21)
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If n is even, f(n, νk) and g(n, νk) can be further simplified to

f(2j, νk) = 0,

g(2j, νk) = 4j
(1 + 2j − νk)(−1 + 2j + νk)

1 + 2j
.

(C.22)

Subtracting (C.15) from (C.19), we obtain the commutator:

[
wβαỹ

β ∗ ỹα, Cα1···αn ỹ
α1 ∗ · · · ∗ ỹαn

]
∗
= −4nwβ(αCβα1···αn−1)ỹ

α ∗ ỹα1 ∗ · · · ∗ ỹαn−1 . (C.23)

The linearized equation (C.10) for the matter field, therefore, can be written as

∂µC
(1),n
mat α1···αn − 4n(w0µ)(α1

βC
(1),n
mat βα2···αn) − 2ψ1(e0µ)(α1α2

C
(1),n−2
mat α3···αn)

− g(n+ 2, νk)ψ1(e0µ)
αβC

(1),n+2
mat αβα1···αn = 0.

(C.24)

After contracting with (eµ0 )αβ , this equation is written as

∇αβC
(1),n
mat α1···αn+

1

16
ψ1ǫ(α(α1

ǫβ)α2
C

(1),n−2
mat α3···αn)+

1

32
g(n+ 2, νk)ψ1C

(1),n+2
mat αβα1···αn=0.

(C.25)

We follow the same procedure used in analyzing the undeformed vacuum, decomposing the

above equation according to the action of permutation group on the indices. Contract-

ing (C.25) with ǫαα1 gives

∇α
βC

(1),n
mat αα2···αn −

n+ 1

16n
ψ1ǫβ(α2

C
(1),n−2
mat α3···αn) = 0. (C.26)

Further contracting (C.26) with ǫβα2 gives

∇αβC
(1),n
mat αβα3···αn +

n+ 1

16(n− 1)
ψ1C

(1),n−2
mat α3···αn = 0. (C.27)

As in the analysis of undeformed vacuum, now contracting the indices of the equa-

tions (C.25), (C.26), and (C.27) with the yα’s, we obtain

∇+C
(1),n
mat (y)− 1

32
g(n+ 2, νk)ψ1C

(1),n+2
mat (y) = 0,

∇0C
(1),n
mat (y) = 0,

∇−C
(1),n
mat (y)− 1

16
(n+ 1)nψ1C

(1),n−2
mat (y) = 0,

(C.28)

where

C
(1),n
mat (y) ≡ C

(1),n
mat α1···αny

α1 · · · yαn . (C.29)

Iterating the first equation of (C.28), we obtain

C
(1),2s
mat (y) =




s∏

j=1

1

g(2j, νk)


 (32ψ1∇+)sC

(1),0
mat . (C.30)
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Since C
(1)
mat(y) is restricted to be even in yα, it is entirely determined by the bottom compo-

nent C
(1),0
mat via the above relation. After some simple manipulations of (C.28) using (A.11),

we derive the second order form linearized equation

�AdSC
(1),n
mat = −1

8

(
4n+ 8 +

n+ 1

n
g(n, νk)

)
C

(1),n
mat . (C.31)

For n = 0, the equation is just the usual Klein-Gordon equation on AdS3, and can be

rewritten in a more familiar form:

(
∇µ∂µ −m2

)
C

(1),0
mat = 0, m2 = −1

4
(3− νk)(1 + νk). (C.32)

Depending on the choice of AdS boundary condition, this scalar field is dual to an operator

of dimension

∆± = 1± 1− νk

2
=

1 + νk

2
or

3− νk

2
. (C.33)

It is convenient to package the choice of boundary condition into a variable ψ̃1, obeying

ψ̃2
1 = 1, so that the scaling dimension of the dual operator can be written as

∆ = 1 + ψ̃1

(
1− νk

2

)
. (C.34)

The boundary to bulk propagator for the scalar field is a solution of (C.32), which up to

normalization is given by

C
(1),0
mat = K∆, where K =

z

~x2 + z2
. (C.35)

Here (~x, z) are Poincaré coordinates of the AdS3 (not to be confused with the twistor

variable zα). Using (A.14) and (C.30), we obtain

C
(1)
mat(y) =

∞∑

s=0

C
(1),2s
mat (y)

=
∞∑

s=0




s∏

j=1

∆+ j − 1

g(2j, νk)


 (4ψ1)

s(yΣy)sK∆

=
∞∑

s=0




s∏

j=1

(∆ + j − 1)(1 + 2j)

j(1 + 2j − νk)(−1 + 2j + νk)


ψs1(yΣy)

sK∆

= 1F1

(
3

2
, 1− ψ̃1

(
1− νk

2

)
,
1

2
ψ1yΣy

)
K1+ψ̃1( 1−νk

2 ).

(C.36)

In the actual master field, the above expression should be understood as a star-function,

with y replaced by ỹ. More concretely, we can transform the ordinary function C
(1)
mat(y) to

the star-function C
(1)
mat∗(ỹ) via the formula

C
(1)
mat∗(ỹ) =

1

(2π)2

∫
d2yd2uC

(1)
mat(y)e

iuy exp∗(−iuỹ). (C.37)
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