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1 Introduction

Quite a number of important new results have come out of the systematic investigation

of general BPS solutions with the same asymptotic structure at infinity as a given black

hole or black ring. While the primary goal of this program has, of course, been to evolve a

deeper understanding of the structure of black-hole microstates, this work has also resulted

in several discoveries that have proven to have an even broader significance. First, there

was the realization that the BPS equations for five-dimensional, N = 2 supergravity cou-

pled to vector multiplets are, in fact, linear [1]. This not only led to a dramatic extension

of the known families of solutions, primarily through the superposition of multiple com-

ponents, but also led to the discovery and systematic construction of bubbled microstate

geometries [2–4]. The last few months have also seen a further surprising development

in that it has now been shown that the corresponding BPS equations in six dimensions

can also be reduced essentially to a linear system [5]. This observation is only now just

beginning to be exploited and it is one of the purposes of this paper to use the results in [5]

to obtain some new six-dimensional BPS solutions.

A second spin-off of the investigation of microstate geometries has been the whole non-

BPS, or almost-BPS, program (see, for example, [6–16]). The idea here has been to show
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that there are also linear systems of equations that govern families of non-supersymmetric

solutions. These solutions tend to be characterized as the superposition of fluxes, ge-

ometry and D-branes for which subsystems are supersymmetric but the supersymmetries

of the subsystems are incompatible with one another, rendering the entire solution non-

supersymmetric. One of the beauties of this approach is that the supersymmetry breaking

is very controlled and is determined by the separation of the subsystems whose supersym-

metries are incompatible (see, for example, [15]). The linearity of the underlying equations

means that it is, at least in principle, straightforward (though often technically arduous)

to assemble large families of examples of such non-BPS geometries.

One class of such non-BPS solutions involves assembling families of mutually BPS

branes that would be supersymmetric in flat space but then putting them in a curved

background whose holonomy breaks the supersymmetry. To solve the equations of motion

the background must be chosen in a very specific manner and can be either based upon a

Ricci-flat or electrovac solution in four Euclidean dimensions. The five-dimensional back-

ground is then obtained by adding a time coordinate, angular momenta, warp factors and

more electromagnetic fields. Each of these additions is determined through a linear system

of equations.

New families of such five-dimensional supergravity solutions were investigated in [12,

13], where the starting point was a four-dimensional Euclidean electrovac background on

which the supergravity equations of motion were rendered solvable. A particularly inter-

esting class of such four-dimensional bases that are Kähler and have vanishing Ricci scalar

were utilized in this context in [14]. As with many other examples, it simplifies the problem

greatly if one assumes that the Kähler manifold has at least a U(1) isometry and the most

general local form of such metrics was determined in [17]. These “LeBrun metrics” are

defined by two functions, one of which must satisfy the Affine Toda equation and the other

of which must essentially be harmonic in a background defined by the Affine Toda solu-

tion. This generalizes the story of how the local form of a hyper-Kähler metric with a U(1)

isometry is determined by a single function that solves the Affine Toda equation [18, 19].

If one makes a simple choice for the solution to the Affine Toda equation then one is led

to the “LeBrun-Burns metrics,” which provide a simple, explicit class of Kähler metrics

on C
2 with n points blown up. These metrics are structurally similar to the Gibbons-

Hawking (GH) metrics [20] (which are hyper-Kähler) except that the R
3 sections and the

harmonic functions on these sections are now replaced by the hyperbolic space, H3, and its

harmonic functions. The LeBrun-Burns metrics are also asymptotic to R
4 but the special

U(1) isometry of the manifold does not act in a manner that matches the tri-holomorphic

U(1) action on a Gibbons-Hawking metric that is similarly asymptotic to R
4. Thus the

solutions obtained from the LeBrun-Burns metrics will be intrinsically different from those

with a GH base.

The electromagnetic field for the LeBrun metrics has components that involve the

Kähler form. This means that the electromagnetic field does not vanish at infinity and,

as was shown in [14], the corresponding supergravity solutions are not asymptotically flat.

Indeed, the natural, physical boundary conditions for such solutions correspond to the

AdS × S geometries of the near-horizon regions of a black hole or black ring. Several
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such solutions were found in [14] but regularity in five space-time dimensions imposed

requirements that significantly restricted the solutions. In retrospect, it is now evident

that the natural asymptotic structure that was emerging from the analysis of the solutions

based upon the LeBrun-Burns metrics was that they wanted to be asymptotic to AdS3×S3

in six dimensions. As we will discuss in this paper, the naturally emerging fall-off for the

warp factors directly leads to AdS3 × S3 when the five-dimensional solutions of M-theory

on T 6 are recast as six-dimensional solutions of IIB supergravity on T 4.

Another reason for revisiting the LeBrun metrics from the six-dimensional perspective

is the similarity of some of the system of non-BPS equations in five-dimensions [10, 12, 14]

and the BPS equations in six dimensions [5, 21, 22]. We will show here that even though

the solutions based upon the LeBrun metrics in five dimensions are not supersymmetric,

the solutions are supersymmetric in the six-dimensional, IIB duality frame. More generally,

the LeBrun solutions are non-supersymmetric in M-theory and are only supersymmetric in

the particular IIB frame in which the electromagnetic field of the LeBrun base is used to

give the momentum charge to the overall solution. The reason for this is that the surviving

supersymmetry, or the frames that define them, necessarily have a charge under the U(1)

of the momentum charge fibration in six dimensions. The supersymmetry is broken by

the trivial KK reduction of the six-dimensional solution and then any trivial uplift of this

solution, such as to M-theory, does not restore the supersymmetry. This is, perhaps, a

little reminiscent of Scherk-Schwarz reduction on a circle [23, 24] but the latter explicitly

introduces masses through dependence of the fields on the extra dimensions whereas here

the dependence on extra dimensions only arises in the supersymmetry and not in the

fields themselves.1

It is important to note that the BPS conditions of six-dimensional supergravity lead

to differential constraints on a four-dimensional Euclidean base which, so far, have only

been solved on a hyper-Kähler manifold [5, 21, 22]. In fact, most explicit BPS solutions

in six-dimensional supergravity constructed to date have a four-dimensional hyper-Kähler

base with a tri-holomorphic U(1). That is, these solutions have been based upon Gibbons-

Hawking metrics.2 As we discuss in detail below, the LeBrun metrics represent a general

class of Kähler but not hyper-Kähler bases on which the six-dimensional BPS constraints

can be solved and for the LeBrun-Burns metrics these solutions are completely explicit.

In section 2 we will review the non-BPS equations of motion resulting from the floating

brane Ansatz of [12] and the non-BPS solutions with a LeBrun base studied in [14]. In

section 3 we show how to recast these solutions as supersymmetric backgrounds in six di-

mensions and show that the six-dimensional BPS equations exactly reduce to the non-BPS

equations of motion in five dimensions. Section 4 contains a discussion of the explicit new

six-dimensional solutions on a LeBrun-Burns base and a short summary of their asymp-

totics and the conditions for regularity. In section 5 we conclude with a summary and some

questions for future study.

1See also [25] for a somewhat similar supersymmetry breaking mechanism.
2A notable exception is [26] where more general hyper-Kähler manifolds were considered.
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2 The non-BPS solutions based upon the LeBrun metrics

2.1 The non-BPS equations

We will work with N = 2, five-dimensional ungauged supergravity coupled to two vec-

tor multiplets. This theory can also be viewed as a consistent truncation of eleven-

dimensional supergravity on T 6. Our conventions will be those of [14]. The metric of

the five-dimensional supergravity solution has the form:

ds25 = − Z−2 (dt+ k)2 + Z ds24 , (2.1)

where the base metric, ds24, will ultimately be taken to be the LeBrun Kähler electrovac

background. The three background Maxwell fields are given by the vector potentials:

A(I) = − Z−1
I (dt+ k) +B(I) , (2.2)

where B(I) is a one-form on the base ds24 and I = 1, 2, 3. One can introduce the magnetic

two-form field strengths:

Θ(I) ≡ dB(I) . (2.3)

The “floating brane” Ansatz [12] fixes the two scalars in the vector multiplets in terms

of the ratios ZI/ZJ and requires that we take the warp factor, Z, to be given by:

Z ≡
(
Z1 Z2 Z3

)1/3
. (2.4)

The four-dimensional base, ds24, has to be an Euclidean electrovac solution

Rµν =
1

2

(
FµρFν

ρ − 1

4
gµνFρσFρσ

)
, (2.5)

where all quantities are computed in the four-dimensional base metric. The Maxwell field,

F , can be decomposed as:

F = Θ(3) − ω
(3)
− , (2.6)

where Θ(3) is self-dual and ω
(3)
− is anti-self-dual. The Maxwell equations dF = d ∗ F = 0

imply that Θ(3) and ω
(3)
− are harmonic. As the notation implies, the decomposition (2.6)

defines the magnetic two-form field strength Θ(3) in (2.3).

The supergravity equations of motion can be written as a linear system [12]:

∇̂2Z1 = ∗4
[
Θ(2) ∧Θ(3)

]
,

(
Θ(2) − ∗4Θ(2)

)
= 2Z1 ω

(3)
− , (2.7)

∇̂2Z2 = ∗4
[
Θ(1) ∧Θ(3)

]
,

(
Θ(1) − ∗4Θ(1)

)
= 2Z2 ω

(3)
− , (2.8)

and

∇̂2Z3 = ∗4
[
Θ(1) ∧Θ(2) − ω

(3)
− ∧ (dk − ∗4dk)

]
, (2.9)

dk + ∗4 dk =
1

2

∑

I

ZI

(
Θ(I) + ∗4Θ(I)

)
, (2.10)
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where ∗4 and ∇̂2 are the Hodge operator and the Laplacian on ds24. The choice of the

electrovac solution defines the base metric, ds24, and one uses (2.6) to read off Θ(3) and

ω
(3)
− . Equations (2.7) and (2.8) are thus two linear coupled equations for Z1 and Θ(2)

and Z2 and Θ(1) respectively. Once these equations are solved, the angular momentum

one-form k and the metric function Z3 are obtained as solutions to the system of linear

equations (2.9) and (2.10).

2.2 The solutions based upon the LeBrun metrics

The LeBrun metric, [17], is the most general Kähler metric with a U(1) isometry and a

vanishing Ricci scalar. It takes the form

ds24 = w−1 (dτ +A)2 + w (eu(dx2 + dy2) + dz2) , (2.11)

where u and w are two functions of (x, y, z) which obey the su(∞) Toda equation and its

linearized form:

∂2x u + ∂2y u + ∂2z (e
u) = 0 , (2.12)

∂2x w + ∂2y w + ∂2z (e
uw) = 0 . (2.13)

The one-form, A, satisfies:

dA = ∂xw dy ∧ dz − ∂yw dx ∧ dz + ∂z(e
uw) dx ∧ dy , (2.14)

and the integrability of this differential, d2A = 0, is equivalent to the equation (2.13). The

Kähler form is:

J = (dτ +A) ∧ dz − w eu dx ∧ dy . (2.15)

It is convenient to introduce frames:

ê0 ≡ w− 1

2 (dτ +A) , ê1 ≡ w
1

2 e
u

2 dx , ê2 ≡ w
1

2 e
u

2 dy , ê3 ≡ w
1

2 dz , (2.16)

and the self-dual forms

Ω
(1)
+ ≡ e−

u

2 (ê0 ∧ ê1 + ê2 ∧ ê3) = (dτ +A) ∧ dx + w dy ∧ dz ,
Ω
(2)
+ ≡ e−

u

2 (ê0 ∧ ê2 − ê1 ∧ ê3) = (dτ +A) ∧ dy − w dx ∧ dz , (2.17)

Ω
(3)
+ ≡ (ê0 ∧ ê3 + ê1 ∧ ê2) = (dτ +A) ∧ dz + w eu dx ∧ dy .

We will also frequently denote the coordinates by ~y ≡ (y1, y2, y3) = (x, y, z). With our

choice of duality convention, the Kähler form, J , in (2.15) is anti-self-dual.

As discussed in [14] the LeBrun metrics are four-dimensional electrovac solutions with

a Maxwell field, F , given by (2.6):

Θ(3) =
1

2

3∑

a=1

(
∂a

(
∂zu

w

))
Ω
(a)
+ , ω

(3)
− = J . (2.18)
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The two-form, Θ(3), has a vector potential given by:

B(3) =
1

2

[
−
(
∂zu

w

)
(dτ +A) + (∂yu) dx − (∂xu) dy

]
. (2.19)

The differential equations for the five-dimensional, non-BPS solutions based upon the

LeBrun metrics were extensively reduced in [14]. It was first shown that the three five-

dimensional gauge fields are determined by:

Θ(1) = Z2 J +
3∑

a=1

p(1)a Ω
(a)
+ , Θ(2) =Z1 J +

3∑

a=1

p(2)a Ω
(a)
+ , (2.20)

Z1 =
1

2

(
K(2) ∂zu

w

)
+ L1 , Z2 =

1

2

(
K(1) ∂zu

w

)
+ L2 , (2.21)

where

p
(1)
1 = ∂x

(
K(1)

w

)
, p

(1)
2 = ∂y

(
K(1)

w

)
, p

(1)
3 = − Z2 + ∂z

(
K(1)

w

)
, (2.22)

p
(2)
1 = ∂x

(
K(2)

w

)
, p

(2)
2 = ∂y

(
K(2)

w

)
, p

(2)
3 = − Z1 + ∂z

(
K(2)

w

)
. (2.23)

The functions L1 and L2 are only required to be solutions of (2.13), that is:

∂2x LI + ∂2y LI + ∂2z (e
u LI) = 0 , I = 1, 2 , (2.24)

and, given these solutions, the functions K(1) and K(2) are determined by the

linear equations:

∂2xK
(1) + ∂2y K

(1) + ∂z (e
u ∂zK

(1)) = 2 ∂z (e
uwL2) , (2.25)

∂2xK
(2) + ∂2y K

(2) + ∂z (e
u ∂zK

(2)) = 2 ∂z (e
uwL1) . (2.26)

The last part of the solution then has the form:

k ≡ µ (dτ +A) + ω , Z3 =
K(1)K(2)

w
+ L3 , (2.27)

where ω = ~ω · d~y and

µ = −1

2

(
K(1)K(2) ∂zu

w2

)
− 1

2

(
K(1) L1 +K(2) L2

w

)
− 1

4

(
∂zuL3

w

)
+ M . (2.28)

The functions L3 and M must satisfy the following linear equations:

∂2xM+∂2y M+∂z (e
u ∂zM) = ∂z (e

u L1 L2) , (2.29)

∂2x L3 + ∂2y L3 + eu ∂2z L3 = −2 eu
[
2w (−L1L2+∂zM)+L1 ∂zK

(1)+L2 ∂zK
(2)

]
, (2.30)
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and the components of ~ω are determined from:

(∂y ωz − ∂z ωy) + (M∂xw − w∂xM) +
1

2

2∑

I=1

(K(I)∂xLI − LI∂xK
(I)) (2.31)

+
1

4

(
(∂zu) ∂xL3 − L3∂x(∂zu)

)
= 0 ,

−(∂x ωz − ∂z ωx) + (M∂yw − w∂yM) +
1

2

2∑

I=1

(K(I)∂yLI − LI∂yK
(I)) (2.32)

+
1

4

(
(∂zu) ∂yL3 − L3∂y(∂zu)

)
= 0 ,

(∂x ωy−∂y ωx)+(M∂z(e
uw)−euw ∂zM) +

1

2

2∑

I=1

(K(I)∂z(e
u LI)− eu LI∂zK

(I)) (2.33)

+
1

4

(
(∂ze

u) ∂zL3 − L3∂
2
z (e

u)
)

+ 2 euwL1 L2 = 0 .

The integrability of the equations for ~ω is implied by the differential equations satisfied by

all the other background functions.

3 The six-dimensional solutions

3.1 The BPS equations in six dimensions

The six-dimensional system we study is N =1 minimal supergravity coupled to one anti-

self-dual tensor multiplet and this may be viewed as arising from a consistent truncation

of IIB supergravity on T 4. Upon trivial dimensional reduction, the six-dimensional theory

gives rise to precisely the theory used in section 2: N = 2, five-dimensional supergravity

coupled to two vector multiplets. In the six-dimensional theory, the graviton multiplet

contains a self-dual tensor field and so the entire bosonic sector consists of the graviton,

the dilaton and an unconstrained 2-form gauge field with a 3-form field strength.3

Supersymmetric solutions of this supergravity theory necessarily have a very con-

strained form of the metric [21]:

ds2 = −2H−1(dv + β)

(
du+ ω̂ +

1

2
F̂ (dv + β)

)
+ H ds24(B) . (3.1)

where the metric on the four-dimensional base, B, is written in terms of components as:

ds24 = hmndx
mdxn . (3.2)

As was shown in [21] the functions which determine the six-dimensional background are

independent of u, that is, ∂u is an isometry. One should note that we are using slightly

3Our analysis could be extended to include solutions of IIB supergravity on K3 and thus to theories

with more tensor multiplets. In five dimensions this would correspond to N =2 theories with more vector

multiplets. It should be straightforward to generalize our results to such systems and we leave a detailed

discussion on this for future work.
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different conventions from [21] in the metric signature of (3.1) and in the definition of the

Hodge dual. We adopt the more standard convention:

∗n (ei1 ∧ . . . ∧ eip) = 1

(n− p)!
ǫi1...ip j1...jn−p

ej1 ∧ . . . ∧ ejn−p . (3.3)

As in five dimensions, the six-dimensional BPS solution can be encoded in a reduced

set of fields: three functions, denoted by Ẑ1, Ẑ2 and F̂ ; three two forms, Θ̂(I), and an

angular momentum one-form, ω̂, all defined on the base, B. Details of how these fields

encode the six-dimensional fields can be found in [5]. Here we will work purely with these

reduced fields except that the functions and fields in [5] will now been given hats, ̂, so as

to avoid confusion with the non-BPS objects in the foregoing section.

The essential difference between the five-dimensional supergravity and the six-

dimensional one is that one of the Maxwell fields of the five-dimensional theory has been

promoted to a Kaluza-Klein field while the other two Maxwell fields encode the self-dual

and anti-self-dual parts of the 3-form field strength. Indeed, as we will show, the third

Maxwell field in five dimensions, encoded by Z3 and B(3), is elevated to the metric func-

tion, F , and the one-form, β, in the six-dimensional metric (3.1). The warp factor, H, and

the dilaton, φ̂, are related to the ẐI :

H ≡
√
Ẑ1Ẑ2 , e2

√
2 φ̂ ≡ Ẑ1

Ẑ2

. (3.4)

The six-dimensional BPS conditions can be reduced to differential equations on the

base, B, and, to this end, we introduce the restricted exterior derivative, d̃, acting on a

p-form, Φ ∈ Λp(B), by:

Φ =
1

p!
Φm1...mp

(x, v) dxm1 ∧ . . . ∧ dxmp , (3.5)

d̃Φ ≡ 1

(p+ 1)!
(p+ 1)

∂

∂x[q
Φm1...mp] dx

q ∧ dxm1 ∧ . . . ∧ dxmp . (3.6)

and we define a Kaluza-Klein covariant differential operator, D, by:

DΦ ≡ d̃Φ − β ∧ Φ̇, (3.7)

where we denote a derivative with respect to v by a dot. The field strength, Θ̂(3) ≡ Dβ, is

then required to satisfy the self-duality condition:

Θ̂(3) ≡ ∗4 Θ̂(3) . (3.8)

The supersymmetry conditions imply that the base has a natural almost hypercomplex

structure in that there are three anti-self-dual 2-forms,

J (A) ≡ 1

2
J (A)

mn dx
m ∧ dxn , (3.9)

that satisfy the quaternionic algebra:

J (A)m
pJ

(B)p
n = ǫABC J (C)m

n − δAB δmn . (3.10)
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The non-trivial condition is that these forms are also required to satisfy the

differential identity:

d̃J (A) = ∂v
(
β ∧ J (A)) , (3.11)

where ∂vΦ denotes the Lie derivative of a quantity Φ with respect to the tangent vector
∂
∂v . In [21] the two-forms JA satisfying (3.10) and (3.11) were referred to as defining an

almost hyper-Kähler structure.

Given this v-dependent structure, one can define the anti-self-dual 2-forms, ψ

and ψ̂, by:

ψ ≡ H ψ̂ ≡ 1

16
H ǫABC J (A)mnJ̇ (B)

mn J
(C) , (3.12)

This form measures the failure of self-duality of the the Θ̂(a), a = 1, 2:

∗4 Θ̂(1) = Θ̂(1) − 2 Ẑ2 ψ̂ , ∗4Θ̂(2) = Θ̂(2) − 2 Ẑ1 ψ̂ . (3.13)

In particular, the anti-self-dual parts of the Θ̂(a) are proportional to ψ̂.

Note that if one makes the identifications Θ̂(1) = Θ̂(2) and Ẑ1 = Ẑ2 then the three-

form flux is self-dual in six dimensions and the dilation vanishes. This reduces the theory

reduces to minimal six-dimensional supergravity.

With these definitions, the following equations determine Ẑa and Θ̂(a):

d̃Θ̂(2) = ∂v

[
−1

2
∗4 (DẐ1 + β̇Ẑ1) + β ∧ Θ̂(2)

]
, D ∗4 (DẐ1 + β̇Ẑ1) = 2 Θ̂(2) ∧Dβ , (3.14)

d̃Θ̂(1) = ∂v

[
−1

2
∗4 (DẐ2 + β̇Ẑ2) + β ∧ Θ̂(1)

]
, D ∗4 (DẐ2 + β̇Ẑ2) = 2 Θ̂(1) ∧Dβ . (3.15)

It is convenient to write the final system of equations in terms of a new one-form, L,

defined by:

L ≡ ˙̂ω +
1

2
β̇F̂ − 1

2
DF̂ . (3.16)

The function F̂ and the angular momentum vector, ω̂, are then determined by:

− ∗4 D ∗4 L =
1

2
Hhmn∂2v(Hhmn) +

1

4
∂v(Hh

mn) ∂v(Hhmn)− 2 β̇m L
m + 2H2 ˙̂

φ2

−2 ∗4
[
Θ̂1 ∧ Θ̂2 − H−1ψ ∧Dω̂

]
, (3.17)

Dω̂ + ∗4Dω̂ = 2Z1 Θ̂1 + 2Z2 Θ̂2 − F̂ Dβ − 4H ψ

= 2Z1

(
Θ̂1 − Z2 ψ̂

)
+ 2Z2

(
Θ̂2 − Z1 ψ̂

)
− F̂ Dβ , (3.18)

where the dilaton, φ̂, is defined in (3.4).

The analysis of the supersymmetries requires a choice of frames and it is simplest if

one uses the null system:

e+ ≡ H−1
(
dv + β

)
, e− ≡ du+ ω̂ +

1

2
F̂H e+ , ea = H

1

2 ẽamdx
m , (3.19)
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in which the metric may be written

ds2 = −2e+e− + δab e
a eb . (3.20)

To further pin down the choice of frames on the base one chooses frames in which the forms

defining the almost hyper-Kähler structure have constant coefficients. To be specific, if one

lowers the indices using the metric, hmn, on the base then, one choses frames on the base,

ẽa, in (3.19) so that

J (1) ≡ ẽ0∧ẽ1 − ẽ2∧ẽ3 , J (2) ≡ ẽ0∧ẽ2 + ẽ1∧ẽ3 , J (3) ≡ ẽ0∧ẽ3 − ẽ1∧ẽ2 . (3.21)

If the fields satisfy the BPS equations then, with the foregoing choice of frames, the super-

symmetries are, in fact, constants [21, 22]:

∂µǫ = 0 . (3.22)

To summarize, the BPS configuration has the metric (3.1) and the component fields must

satisfy (3.8), (3.13)–(3.15) and (3.17)–(3.18).

3.2 The Lebrun metrics as a base for BPS solutions

Here we show that the LeBrun metrics can be used as a four-dimensional base for con-

structing six-dimensional BPS solutions of the form described above.

The first step is to find a self-dual Maxwell field on the base and for this we choose

Θ̂(3) = Dβ =
1

2
Θ(3) , β =

1

2
B(3) =

1

4

[
−
(
∂zu

w

)
(dτ +A) + (∂yu) dx − (∂xu) dy

]
.

(3.23)

There is an obvious anti-self-dual almost-hyper-Kähler structure on the LeBrun base:

Ĵ (1) ≡ ê0 ∧ ê1 − ê2 ∧ ê3 = e
u

2 ((dτ +A) ∧ dx − w dy ∧ dz) ,
Ĵ (2) ≡ ê0 ∧ ê2 + ê1 ∧ ê3 = e

u

2 ((dτ +A) ∧ dy + w dx ∧ dz) , (3.24)

J (3) ≡ J = ê0 ∧ ê3 − ê1 ∧ ê2 = (dτ +A) ∧ dz − w eu dx ∧ dy ,

where the frames are defined in (2.16) and J is the original Kähler form. However Ĵ (1), Ĵ (2)

and J (3) are v-independent and only J (3) is closed and so they do not satisfy the differential

constraint (3.11). On the other hand, if one defines a rotating form of these structures:

J (1) ≡ cos(2 v) Ĵ (1) − sin(2 v) Ĵ (2) , J (2) ≡ sin(2 v) Ĵ (1) + cos(2 v) Ĵ (2) , (3.25)

one finds that the J (A) are a set of almost hyper-Kähler structures that do indeed

obey (3.11). The fact that this elementary modification works is a very special prop-

erty of the LeBrun family of metrics and does not work in other familiar examples of four-

dimensional metrics, like the Israel-Wilson metrics used as a base for five or six-dimensional

supergravity solutions [12].

With this choice for the J (A), it is easy to verify that

ψ̂ ≡ 1

16
ǫABC J (A)mnJ̇ (B)

mn J
(C) = J (3) = J . (3.26)
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From this and (2.18) one immediately sees that the duality conditions, (3.13), of the BPS

system are precisely the same as (2.7) and (2.8), which are the non-BPS duality conditions.

This suggest the obvious identifications:

Ẑa = Za , Θ̂(a) = Θ(a) , a = 1, 2 , (3.27)

where all of these functions and forms will be taken to be v-independent. Equations (3.14)

and (3.15) then imply that Θ̂(a) is closed, which is consistent with the non-BPS condi-

tions (2.3). With the identifications (3.23) and (3.27), the equations in (3.14) and (3.15)

reduce to the other non-BPS equations in (2.7) and (2.8).

Finally, (3.17) and (3.18) reduce to (2.9) and (2.10) if one makes the identifications

F̂ = −4Z3 , ω̂ = 2 k . (3.28)

One can then rewrite the metric (3.1) as a standard fibration of the v-circle over a five

dimensional space-time and upon reduction on this v-circle one obtains precisely the met-

ric (2.1) provided one sets u = 2t.

Thus the non-BPS “floating brane” solutions in five dimensions based upon the LeBrun

metrics found in [14] can be recast as supersymmetric solutions in the six-dimensional

framework. This appears to contradict the belief that the non-BPS systems do not have

supersymmetry. However it is relatively easy to resolve this apparent inconsistency.

One should note that the constancy of the Killing spinors (3.22) was contingent upon

being in a system of frames in which the almost hyper-Kähler forms have constant coeffi-

cients (3.21). However, the differential constraints on the J (A) required that we pass to the

system of rotating structures, (3.25) and so the frames, ẽa, for the six-dimensional constant

spinors must be related to the standard, v-independent frames, êa, of the LeBrun base via:

ẽ1 = cos(2 v) ê1 − sin(2 v) ê2 , ẽ2 = cos(2 v) ê2 + sin(2 v) ê1 , (3.29)

One could, of course, work in six dimensions with the frames, êa, and transform every-

thing using the foregoing frame rotation. One would then find that the supersymmetries

necessarily depend upon v. It is for this reason that trivial dimensional reduction to five

dimensions breaks the supersymmetry.

More generally, if one works purely in five dimensions, or in any setting, like M-theory,

where there is no non-trivial Kaluza-Klein fibration, then there is no way to preserve the

supersymmetry because the fiber dependence that is essential to the supersymmetry cannot

be realized. Thus it is only in the six-dimensional theory and its IIB uplift that the solutions

with a LeBrun base can be rendered supersymmetric.

4 Explicit solutions

The system of differential equations in section 2.2 can be explicitly solved for a large class

of LeBrun-Burns spaces and such solutions were analyzed in great detail in [14]. However,

the focus there was primarily upon finding solutions that were regular in five-dimensions

and this imposed very stringent boundary conditions that greatly reduced the possibilities.
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As we showed in the previous section, solving the differential equations in section 2.2 leads

to explicit BPS solutions in six dimensions. In view of this we will revisit the results of [14]

and show that there is a rich new class of BPS solutions of the six-dimensional theory.

4.1 The LeBrun-Burns metrics

The general solution of the su(∞)-Toda equation that determines the function, u, is ex-

tremely difficult to find due to the non-linear nature of the equation. However, there is a

very interesting class of backgrounds, the LeBrun-Burns metrics, that arise from a simple

solution to (2.12):

u = log(2 z) . (4.1)

To study this class of spaces it is convenient to define

z ≡ 1

2
ζ2 , V ≡ euw = 2 z w = ζ2w . (4.2)

The LeBrun-Burns metric can then be written as

ds24 = ζ2
[
V −1 (dτ +A)2 + V

(
dx2 + dy2 + dζ2

ζ2

)]
. (4.3)

The three-dimensional metric is the standard constant-curvature metric on the hyperbolic

plane, H3:

ds2
H3 =

dx2 + dy2 + dζ2

ζ2
. (4.4)

The equations (2.13) and (2.14) that define the four-dimensional base imply that V is a

harmonic function on the hyperbolic plane and that A is an appropriate one-form on H
3:

∇2
H3V = 0 , dA = ∗H3dV . (4.5)

The most explicitly-known solutions are axi-symmetric and it is therefore convenient

to introduce polar coordinates:

x = ρ sin θ cosφ , y = ρ sin θ sinφ , ζ = ρ cos θ . (4.6)

and define the functions

Hi ≡ 1√
(ρ2 + c2i )

2 − 4ζ2c2i

, Gi ≡ (ρ2 + c2i )Hi − 1 , Di ≡ (ρ2 − c2i )Hi , (4.7)

for some parameters, ci 6= 0. One can then solve (2.13) and (2.24) by taking

V = ε0 +
N∑

j=1

qj Gj , La =
1

ζ2

(
ℓ0a +

N∑

i=1

ℓiaGi

)
, a = 1, 2 , (4.8)

for some free parameters ε0, qj , ℓ
0
a and ℓia.
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As shown in [14], the rest of the solution is then given by:

K(1) = k01 +
β1
ρ2

+
N∑

i=1

ki1Hi − V L2 + 4ρ2
N∑

i,j=1

qiℓ
j
2HiHj , (4.9)

K(2) = k02 +
β2
ρ2

+
N∑

i=1

ki2Hi − V L1 + 4ρ2
N∑

i,j=1

qiℓ
j
1HiHj , (4.10)

M = m0 +
γ

ρ2
+

N∑

i=1

miHi −
ζ2

2
L1L2 + 2ρ2

N∑

i,j=1

ℓi1ℓ
j
2HiHj , (4.11)

L3 = ℓ03 +
N∑

i=1

ℓi3Gi − ζ2V L1L2 +
N∑

i=1

(2(ε0 −Q)mi + (ℓ01 − Λ1)k
i
1 + (ℓ02 − Λ2)k

i
2)Hi

+β3
ζ2

ρ4
+ (2(ε0 −Q)γ + (ℓ01 − Λ1)β1 + (ℓ02 − Λ2)β2)

1

ρ2
+ 2γ

N∑

i=1

qi
c2i

ρ−2 −Hi

Hi
,

+
N∑

i=1

(2qimi + ℓi1k
i
1 + ℓi2k

i
2)(η

2 − ζ2 + c2i )H
2
i

+

N∑

i 6=j=1

(2qimj + ℓi1k
j
1 + ℓi2k

j
2)

c2i − c2j

Hj −Hi

Hi

+4
N∑

i,j=1

((ε0 −Q)ℓi1ℓ
j
2 + (ℓ01 − Λ1)qiℓ

j
2 + (ℓ02 − Λ2)qiℓ

j
1)ρ

2HiHj (4.12)

+4
N∑

i,j,k=1

qiℓ
j
1ℓ

k
2ρ

2(3ρ2 − 4ζ2 + c2i + c2j + c2k)HiHjHk ,

ω =

[
ω0 +

β3
2

sin2 θ

ρ2
− γ

N∑

i=1

qi
c2i
Di −

N∑

j=1

(
m0qj + k01ℓ

j
1 + k02ℓ

j
2 +

ℓj3
2

)
Dj

−
N∑

j=1

(2mjqj + kj1ℓ
j
1 + kj2ℓ

j
2)η

2H2
j

−
N∑

i 6=j=1

(2qimj + ki1ℓ
j
1 + ki2ℓ

j
2)

2(c2i − c2j )
(DiDj + 4η2c2iHiHj)

−8
N∑

i,j,k=1

qiℓ
j
1ℓ

k
2η

2ρ2HiHjHk

]
dφ , (4.13)

where βJ , γ, k
0
a, k

i
a, m0, mi, ℓ

0
3, ℓ

i
3 and ω0 are also free parameters and

Q ≡
N∑

i=1

qi , Λ1 ≡
N∑

i=1

ℓi1 , Λ2 ≡
N∑

i=1

ℓi2 . (4.14)

Finally, the functions that appear in the metric and background fields can be expressed in
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terms of the functions above as:

Z1 =
K(2)

V
+ L1 , Z2 =

K(1)

V
+ L2 , Z3 =

ζ2K(1)K(2)

V
+ L3 , (4.15)

µ = M − 1

2

L3

V
− 1

2

ζ2(K(1)L1 +K(2)L2)

V
− ζ2K(1)K(2)

V 2
. (4.16)

4.2 Asymptotics and regularity

4.2.1 Asymptotics at infinity

To understand the asymptotic behavior of the general multi-center solution presented above

we will study in some detail the spherically symmetric solution on a flat R
4 base which

corresponds to choosing V = 1 for the function determining the Burns base. The sources

for this solution lie at (x, y, ζ) = (0, 0, 0). We will also set some of the electric potentials

to zero:

L1 ≡ L2 ≡ 0 . (4.17)

The functions K(I) and M are then homogeneous solutions to L1H = 0, where

L1H ≡ ∂2xH + ∂2y H + ζ−1 ∂ζ (ζ∂ζH) , (4.18)

and we take

Z1 = K(2) =
β2
ρ2
, Z2 = K(1) =

β1
ρ2
, M =

γ

ρ2
, (4.19)

where β1, β2 and γ are constant parameters.

It is easy to see that the rest of the functions in the solution are

Z3 = ℓ03 +
2 γ

ρ2
+ (β1 β2 + β3)

cos2 θ

ρ2
, (4.20)

µ = −1

2
(2β1 β2 + β3)

cos2 θ

ρ2
, ω =

β3
2

sin2 θ

ρ2
dφ . (4.21)

The six-dimensional metric is then

ds2 = − ρ2√
β1β2

dv

(
2du− 2(2β1 β2 + β3)

cos2 θ

ρ2
dτ + 2β3

sin2 θ

ρ2
dφ− 4Z3dv

)

+
√
β1β2

dρ2

ρ2
+

√
β1β2 (dθ

2 + sin2 θdφ2 + cos2 θdτ2) . (4.22)

For generic values of the parameters above (in particular for ℓ03 6= 0) this solution is asymp-

totic to a pp-wave type background at ρ → ∞. However for ℓ03 = 0 and β3 = −β1β2
the metric becomes precisely the near horizon metric of a BPS D1-D5-P black string (see,

for example, [27]). To have a precise identification of the parameters of our solution with

the charges of the D1-D5-P string we performed a careful comparison with the 3-charge

solutions in D1-D5-P frame discussed in [28]. We find the following identification

Q1 = β2 , Q5 = β1 , QP = 8γ , J = β1β2 , (4.23)
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where Q1, Q5 and QP are D1, D5 and momentum charges of the black string and J is its

angular momentum. Note that the entropy of the black string is S ∼
√
Q1Q5QP − J2 and

we have the bound Q1Q5QP ≥ J2. It is also interesting to note that (4.23) implies J =

Q1Q5 which, for QP = 0, is the condition for a maximally spinning D1-D5 supertube [29].

In general however we have QP 6= 0 and the condition J = Q1Q5 seems less natural. It

will be very interesting to understand this relation between J , Q1 and Q5 from the point

of view of the dual D1-D5-P CFT.

4.2.2 Asymptotics near the charge centers

Having understood the asymptotic structure at infinity in a very simple example, we now

return the the generic multi-centered solution and examine the physics of solutions near

these centers. As one would expect, one can easily recover the solutions for multiple

concentric black rings [1, 30, 31] from our general multi-center solutions. The details

depend upon the behavior of the solution as ρi → 0, where

ρi ≡
√
x2 + y2 + (ζ − ci)2 . (4.24)

As ρi → 0, one can easily arrange that Z1, Z2 ∼ ρ−1
i , Z3 ∼ ρ−2

i , and V ∼ ρ−1
i , and each

such center thus corresponds to a rotating black ring/string. The reason for the differing

power of ρi in Z3 is the presence of local dipole charges; recall that a 3-charge black ring

solution looks schematically like [1, 30, 31]

Z3 ∼
Q3

ρi
− d1d2

ρ2i
and cyclic. (4.25)

Due to the nearly trivial form of Θ̂(3) in the LeBrun-Burns metrics, the localized “3” dipole

charge is zero, thus removing the more-strongly-divergent term from Z1, Z2. We expect

that a more general metric in the LeBrun class will have “3” dipole charges and thus allow

centers which open up into rotating AdS3 × S3 throats.

Another possibility is that the geometry remain smooth as ρi → 0. In five dimensions,

this has been thoroughly analyzed in [14]. The local conditions are

mi = ℓi1 = ℓi2 = 0 , ℓi3 = − ki1k
i
2

4c2i qi
, m0 +

γ

c2i
− ki1k

i
2

8c2i q
2
i

= 0. (4.26)

These conditions will also lead to regular geometries in six dimensions; however, one may

ask whether the extra U(1) fiber (along the v coordinate) in six dimensions might allow

for more general regular solutions. We find that the answer is “no”, as explained below,

and thus the conditions for regularity remain as in (4.26).

Even when some of the metric functions are singular, smooth geometries can poten-

tially emerge in six dimensions in much the same manner that they do for two-charge

supertubes [28, 29]. This requires three basic ingredients: a) Z1, Z2 ∼ ρ−1
i , b) Z3 remains

finite and c) the v-fiber combines with the S2 in H
3 around ρi = 0 so as to pinch off as an

(orbifold of) S3 as ρi → 0.
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One can easily verify that the necessary conditions on the Z’s can be met. For example,

we can take

qi = ki1 = ki2 = 0 (4.27)

at some point (0, 0, ci), but place no other restriction on the parameters of the solu-

tion. Then

Z1 ∼
ℓi1
ciρi

, Z2 ∼
ℓi2
ciρi

, (4.28)

and after some straightforward, yet tedious, algebra, we obtain

Z3 ∼
1

ρi

(
ciℓ

i
3 + (ǫ0 −Q)

mi

ci
− mi

ci

∑

j 6=i

qj sgn(c
2
i − c2j )

+
ℓi1
ci

∑

j 6=i

[
(ǫ0 −Q)ℓi2 + (ℓ02 − Λ2)qj

]
sgn(c2i − c2j )

+
ℓi2
ci

∑

j 6=i

[
(ǫ0 −Q)ℓi1 + (ℓ01 − Λ1)qj

]
sgn(c2i − c2j )

− ℓi1
ci

∑

j,k 6=i

qjℓ
k
2 sgn

[
(c2i − c2j )(c

2
i − c2k)

]

− ℓi2
ci

∑

j,k 6=i

qjℓ
k
1 sgn

[
(c2i − c2j )(c

2
i − c2k)

])
,

(4.29)

where the indices are summed over all other points (0, 0, cj), and Q,Λ1,Λ2 are as in (4.14).

So we see that Z3 can be made regular if the parameters are chosen to make this expression

vanish. To avoid problems with the metric signature, it is important that ℓi1 and ℓi2 have

the same sign, which puts a further restriction on possible solutions; but solutions do exist.

However, the last condition, c) above, on the v-fibration cannot be satisfied. Thus,

while the metric can be made finite as ρi → 0, the metric is not regular because the surfaces

with ρi → ǫ, for ǫ→ 0, have topology S2 × S1 and not that of S3/Zp. To get a non-trivial

fibration of the v-fiber requires the vector field, β, and its associated field strength Θ̂(3)

to have non-trivial flux through 2-cycles in the base. The fact that these fluxes are trivial

arises from (2.18) and the extremely simple, and non-singular choice we made for u in (4.1).

More general LeBrun metrics can certainly have such non-trivial fluxes, just as Θ(3) can

have non-trivial fluxes on GH bases, but the structure of LeBrun-Burns metrics precludes

such supertubes.

Thus we can easily find new solutions with black rings but new smooth supertube

solutions are incompatible with the simple LeBrun-Burns Ansatz (4.1) and the rather trivial

form of Θ3 in (3.23). We now give an example of concentric black rings as described earlier.

4.2.3 An example: concentric black rings

As a simple example, let us construct a multi-centered solution, asymptotic to rotating

AdS3 × S3, where Z1, Z2, V ∼ ρ−1
i and Z3 ∼ ρ−2

i at each center. Begin by setting

β1 = β2 = β3 = γ = 0, (4.30)

– 16 –



J
H
E
P
1
0
(
2
0
1
2
)
0
1
3

(which is suitably generic, as the terms with these coefficients can be obtained from the

other terms by taking the limit as ci → 0). Then near the centers, one has

Z1 ∼
ℓi1
ciρi

, Z2 ∼
ℓi2
ciρi

, V ∼ ciqi
ρi
. (4.31)

Then after some careful tedium one obtains

Z3 ∼ − 1

ρ2i

(
Qℓi1ℓ

i
2 + Λ1qiℓ

i
2 + Λ2qiℓ

i
1

)
+O

(
1

ρi

)
, (4.32)

where Q,Λ1,Λ2 are as in (4.14). Hence each center is a black ring with three electric

charges and two dipole charges.

At infinity, one has

Z1 ∼
k02
ε0

+
1

ε0ρ2
(
K2 +QΛ1

)
, Z2 ∼

k01
ε0

+
1

ε0ρ2
(
K1 +QΛ2

)
, (4.33)

where we have defined

K1 ≡
N∑

i=1

ki1, K2 ≡
N∑

i=1

ki2. (4.34)

Hence for asymptotically rotating AdS3 × S3, we should choose k01 = k02 = 0. Making this

choice, we then find that

Z3 ∼ ℓ03 +
1

ρ2

(
2ε0M+ 4ε0Λ1Λ2

)

+
cos2 θ

ρ2

[
2

N∑

i=1

c2i ℓ
i
3 − 4QM− 2K1Λ1 − 2K2Λ2 − 16QΛ1Λ2

+
1

ǫ0

(
K1 + 4QΛ2

)(
K2 + 4QΛ1

)]
,

(4.35)

where M ≡ ∑N
i=1mi. As discussed earlier, such solutions are generically asymptotic to

pp-waves on AdS3 × S3. For the particular choices of

ℓ03 = 0, (4.36)

2
N∑

i=1

c2i ℓ
i
3 − 4QM− 2K1Λ1 − 2K2Λ2 − 16QΛ1Λ2

+
1

ǫ0

(
K1 + 4QΛ2

)(
K2 + 4QΛ1

)
= 0, (4.37)

one has a solution asymptotic to the near-horizon limit of the D1-D5-P black string.

4.2.4 Ambipolar solutions

We would like to point out that just as for BPS solutions of five-dimensional supergravity

with a Gibbons-Hawking base [2, 32] we can use an ambipolar Burns base space and obtain

viable Lorentzian six-dimensional backgrounds. An ambipolar base is a four-dimensional
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base on which the signature changes signature from (+,+,+,+) to (−,−,−,−). On the

Burns base this is achieved by having both positive and negative residues at the poles of

the function V (4.8). Recall that the metric function H is defined as

H =
√
Z1 Z2 . (4.38)

The six-dimensional metric can be written

ds26 = − 1

4Z3

√
Z1Z2

(du+ ω)2 +
4Z3√
Z1Z2

(
dv + β − 1

4Z3
(du+ ω)

)2

+
√
Z1Z2 ζ

2

[
V −1 (dτ +A)2 + V

(
dx2 + dy2 + dζ2

ζ2

)]
. (4.39)

Then we see that if a base is ambipolar the signature of the six-dimensional metric is left

unchanged as long as V, Z1, Z2, Z3 all change sign at the same locus. This precisely parallels

the structure of the five-dimensional supergravity solutions with an ambipolar base [2].

5 Conclusions

We have studied a new class of BPS solutions of six-dimensional supergravity coupled to

a tensor multiplet and these solutions can be trivially uplifted to supersymmeric solution

of IIB supergravity on T 4. A key ingredient in our construction is a four-dimensional

Kähler base with a U(1) symmetry and vanishing Ricci scalar studied by LeBrun. For a

particular class of such four-dimensional metrics the BPS equations can be solved explicitly

and one can find closed form expressions for the metric and the background fields. It is

important to stress that these solutions provide the first examples of BPS backgrounds

of six-dimensional supergravity that do not have a hyper-Kähler base. In fact, almost all

explicit BPS solutions discussed previously have the very special Gibbons-Hawking base.4

The supersymmetry conditions of six-dimensional supergravity impose, amongst other

things, a constraint, (3.11), on the four-dimensional base of the solution. In contrast to

the situation in five-dimensional supergravity, where this base has to be hyper-Kähler,

it is not clear to us whether there is a simple geometric meaning of the more general

constraint in six dimensions. It is quite conceivable that this constraint could be given

a very interesting meaning for some suitably arranged five-dimensional spatial geometry.

Our analysis clearly demonstrates that some Kähler manifolds can satisfy this constraint

but we believe there will be a much more general class of geometries that can be used to

construct six-dimensional BPS solutions.

For judicious choice of parameters our solutions are asymptotic, at infinity, to the

near horizon geometry of the BPS D1-D5-P black string. It is certainly important to

understand the microscopic brane configurations that source the solutions in more detail.

Since the D1-D5-P black string geometry is asymptotically locally AdS3×S3 one can apply

holographic methods to uncover which states in the D1-D5-P CFT are dual to our regular

solutions. The technology developed in [33] for the more restricted two-charge D1-D5

4To the best of our knowledge the only solutions with a more-general hyper-Kähler base are the ones

in [26].
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geometries will be certainly useful in this regard. It will also be interesting to see if there

is an efficient way to count our regular geometries by some generalization of the techniques

used in [34, 35] to count two-charge sueprtubes or the 1
2 -BPS asymptotically AdS5 × S5

solutions of Lin-Lunin-Maldacena (LLM) [36].

As we emphasized, the Killing spinors of our backgrounds will not survive a trivial

dimensional reduction along the v-fiber and so supersymmetry will be broken in such a

reduction. Moreover, a subsequent trivial uplift, like embedding the solution in M-theory

will not restore the supersymmetry. Since the six-dimensional solution is BPS, this means

that five-dimensional non-BPS solutions are necessarily extremal because their mass is

locked to their electric charges. Extremal non-BPS solutions in four and five dimensions

have drawn a lot of attention recently and there is a large number of known multi-centered

non-BPS solutions (see for example [37]). It would be interesting to reduce our solutions

to four dimensions and understand whether the four-dimensional, axi-symmetric solutions

fit in one of the known classes of such solutions discussed in [37] or whether the solutions

discussed here provide a completely new system. Furthermore it will be interesting to

explore the action of spectral flow [38] and more general U-duality symmetries of string

theory on our solutions [39].

Our solutions are not asymptotically flat and it would be nice to understand how to

modify them such that we have a supergravity solution asymptotic to R
1,5. Although

this is certainly an interesting question we expect that it will not be easy to answer it.

For example, one does not know how to make the general 1
2 -BPS LLM solutions in IIB

asymptotically flat [36]. On the other hand, there are certainly more general solutions

within reach that go beyond the ones constructed here. As we remarked earlier, in (4.1)

we made an extremely simple, non-singular choice for the solution, u, of the Affine Toda

equation and there are much richer possibilities. Indeed, axi-symmetric solutions of the

su(∞) Toda equation can be obtained by transforming solutions of the Laplace equation

on R
3 [40]. It would be interesting to start from such solutions and see to what extent one

can generate explicit BPS solutions.

More generally, it would also be very interesting to address the question of classification

of the asymptotically AdS3 × S3 solutions of six-dimensional supergravity which preserve

four supercharges. This analysis was initiated in [41–43] following the work of [36]. Such

a classification may also lead to potential new insights as to how to count the regular
1
4 -BPS solutions.

The results we have presented here not only yield insight into the relationship be-

tween some families of BPS and almost-BPS, extremal solutions but also represent one of

many possible new directions that can be explored from the perspective of six-dimensional

supergravity. It is evident that the linearity of the BPS equations in six dimensions [5]

has opened up a rich new vein for research and will enable new, explicit constructions of

families of BPS solutions.
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