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1 Introduction

The study of several AdS/cft systems has revealed new examples of integrable systems.

Initially fuelled by the understanding of the original gauge/gravity system, AdS5/cft4,

which relates string theory in AdS5 × S5 to N = 4 super Yang-Mills theory in four di-

mensions, integrability methods such as the Bethe ansatz, S-matrices, finite gap solutions,

etc. [1–7], have led to new insights into the nature of strongly coupled theories.

The same mathematical ideas can be applied to other AdS/cft pairs. There has

been recent progress in applications to AdS4/cft3 realised as type iia string theory in

AdS4 × CP3 [8–10] and in AdS3/cft2 systems, which typically arise from the D/D

system in type ii string theory [11–13]. In both examples it has been possible to show that

there exists a Lax representation of the equations of motion giving rise to an infinite set of

conserved charges (local or non-local).

AdS3/cft2 systems are a natural subject of study because they are severely con-

strained by symmetries and have target space metrics arising as near-horizon geometries

of various black hole configurations [14–17]. Solutions of the form AdS3 × M supported

by Neveu-Schwarz (ns) fluxes have been widely studied using the technology from wzw

models to describe the associated worldsheet cft. Ramond-Ramond (rr)–supported ge-

ometries are more complicated, but the construction of the Green-Schwarz (gs) action on
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AdS3×S3 provides evidence for their integrability. Moreover, a supercoset sigma model for

backgrounds of the form AdS3×S3×S3×S1 and AdS3×S3×T 4 was explicitly constructed

in [13], and several arguments were given asserting the integrability of the model.

Findings of novel three-dimensional target space metrics containing squashed geome-

tries (spheres and anti-de Sitter spaces), which first appeared in the context of deformed

cft and black holes [14, 18–20], have fuelled proposals of new holographic 3D/2D systems

based on these backgrounds [21]. Nevertheless, few studies have gone beyond obtaining

the value of the central charge of the dual cft,1 also because of the absence of specific

realisations in supergravity/string theory. Motivated by this, we showed in [23] how to

obtain these target space metrics from Hopf T-dualising a D/D system sourced by rr

three-form flux with monopoles or plane waves, which were shown to preserve eight super-

symmetries at the supergravity level. Metrics containing three-dimensional Schrodinger

spacetime Sch3, were later shown to be obtained in a similar fashion. The construction

is closely related to the realization of Melvin backgrounds [24] in string theory, pioneered

by [25] and recently discussed in the framework of the Omega-deformation in [26–28]. It

can also be understood in terms of a TsT transformation [29, 30] of the original background.

In [31], it was argued that T-duals of integrable systems are in turn integrable models.

Notable examples are the pcm and SU(2) sigma models [32–35] and AdS5 × S5 [31, 36],

where integrability was shown to hold first for the bosonic sector, and eventually for the

full superstring action. It was then natural to conjecture the existence of an integrable

structure for systems involving squashed geometries, given their link to integrable models

via T-duality. Reformulating the construction in [23] relating a group manifold G to its

squashed counterpart SqG,2 it was shown in [37] that classically, the integrable structure of

the initial model is inherited by the T-dual model and that the affine symmetry arising from

the promotion of the original isometry group via the Lax construction remains unchanged,

though the zero modes are not anymore isometries of the target space.3

The next step is of course to extend the previous result to the full supersymmetric

model, and the Green-Schwarz (gs) formalism is of course the natural framework to use.

The gs action can be in principle written for any supergravity background [41, 42]. Solving

the supergravity constraints order by order in the fermions, one obtains expressions for the

bosonic fields that lead to the precise form of all background superfields. In practice, the

procedure quickly becomes complicated, and one needs to rely on additional symmetries

leading to supercoset constructions which are equivalent to the gs action [1, 8, 9, 43].

In this paper we generalise the results from [23] to the full supersymmetric model. We

will work with the gs action up to quadratic order in the fermions, as the corresponding

supercoset construction has not yet been realized. However, given that there is also a

decoupling of flat directions (the components of the fluxes along a T 4 vanish), one can use

kappa symmetry to decouple the coset-like structure by choosing an appropriate gauge. We

1A recent paper by Azeyanagi et.al. [22] studies the worldsheet theory and gives a precise formula for

the spectrum of massive strings.
2The squashing can be performed along any compact direction of a Lie Group.
3Alternatively, it is also possible to construct directly an integrable structure for the principal chiral

models on squashed group manifolds as in [38–40].
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proceed as in [13] and discuss how to fix kappa symmetry in the T-dual model, bearing in

mind that there are scenarios in which this choice is inconsistent with the dynamics, as was

first discussed in [44]. We then argue that the AdS3 × SqS3 × T 4 superstring background

is classically integrable by showing how to build the infinite set of conserved currents from

the Killing vectors of the ten-dimensional original background and T-dualising at the level

of the currents.

The plan of the paper is as follows. Section 2 is devoted to the study of the kappa-fixed

Green-Schwarz action of squashed backgrounds. We start by reviewing the construction

of squashed backgrounds via T-duality that was proposed in [23]. We then look at the

Green-Schwarz superstring in a generic bosonic supergravity background up to quadratic

order in fermions and write the expression for the squashed backgrounds in type iia theory.

We end the section by discussing kappa-symmetry in the absence of a supercoset structure

by looking at the flat space limit and the transformation of the vielbein under T-duality.

We also give the resulting Lagrangian. In section 3 we discuss integrability of the squashed

model by looking at the currents corresponding to bosonic and fermionic symmetries. We

argue that superstrings in AdS3 × SqS3 × T 4 are integrable and moreover, we show that

these properties are inherited from the original (unsquashed) model. In section 4 we give

a summary of our results and suggest some future directions.

2 Green-Schwarz action of squashed backgrounds

2.1 Squashed backgrounds via T-duality

Let us now discuss the backgrounds of interest. We will focus on type iib backgrounds of

the form AdS3 × S3 × T 4 sourced by the rr 3-form and their Hopf T-dual backgrounds of

the form AdS3×SqS3×T 4.4 The type iib solution arises as the near-horizon geometry of a

system of intersecting D– and D-branes, preserving 16 supersymmetries. One can verify

that the addition of a monopole and/or a plane wave does not alter the geometry [45, 46].

The field configuration reads

ds2 = QmQ
1/2
1 Q

1/2
5

(
− dτ2 + dω2 +Qw dσ2 + 2 sinhω dσ dτ

)

+QmQ
1/2
1 Q

1/2
5

(
dθ2 + dφ2 + dψ2 + 2 cos θ dψ dφ

)
+
Q

1/2
1

Q
1/2
5

(
dy26 + · · ·+ dy29

)
,

e2Φ=
Q5

Q1
,

F[3] = QmQ
1/2
1 Q

1/2
5 (coshω dτ ∧ dω ∧ dσ + sin θ dφ ∧ dψ ∧ dθ) , (2.1)

where Qw is the charge associated to the plane wave and Qm is the charge of the monopole.

Some of the variables are periodic by construction, namely




ψ = ψ + 4π ,

σ = σ + 4π ,

yi = yi + 2π .

(2.2)

4Results involving warped AdS spaces (WAdS) and Schroedinger spaces follow analogously.
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To obtain squashed backgrounds via T-duality, let us first introduce a new pair of 4π-

periodic variables α,

ψ = α+ 2y9 , (2.3)

and rewrite the metric (2.1) as:

ds2 = ds2AdS3 +R2
[
dθ2 + sin2 θ dφ2 + sin2̟ (dα+ cos θ dφ)2

]

+ (dzm +R cos̟ (dα+ cos θ dφ))2 + 4R2 tan2̟
(
dy26 + dy27 + dy28

)
,

(2.4)

where the parameters R and ̟ are related to the charges by R2 = Qm
√
Q1Q5 and cot2̟ =

4QmQ5. Also, we have rescaled y9 as

zm = 2R cos̟y9 . (2.5)

We can immediately write the T-dual metric using Buscher’s rules, interchanging y9 for a

new coordinate ỹ9, which also has periodicity 2π. The metric and B-field become:

g̃MN = gMN +
BζMBζN − gζNgζM

gζζ
, g̃ζζ =

(α′)2

gζζ
, g̃ζM = α′Bζσ

gζζ
(2.6)

B̃MN = BMN +
BζMgζN −BNζgζM

gζζ
, B̃ζM = α′ gζM

gζζ
, Φ̃ = Φ− 1

2
ln
gζζ
α′

, (2.7)

where (M,N) run over all coordinates except ζ. However, when it comes to writing down

the T-dual metric, it is convenient to introduce a “natural” vielbein. Let us impose

ẽaM∂X̃
M = eaM∂X

M , (2.8)

where ∂X is the worldsheet derivative transforming under T-duality as

∂y9 →
1

g99
(α′ ∂ỹ9 − (gσ9 +Bσ9) ∂X̃

σ) ∂Xσ → ∂X̃σ (2.9)

where Xσ runs again over all the coordinates other than u. The invariance of eaM ∂XM

results in 



ẽaỹ =
α′

gyy
eay ,

ẽaσ = eaσ − gσy +Bσy

gyy
eay for Xσ 6= y9.

(2.10)

where y is a shorthand for y9, which will be used from now onwards. The corresponding

metric reads:

ds2 = ds2AdS3 +R2
[
dθ2 + sin θ2 dφ2 + sin2̟(dα+ cos θ dφ)2

]

+
dỹ29
4R2

cos2̟ + 4R2 tan2̟(dy26 + dy27 + dy28) .
(2.11)

The T-dual coordinate ỹ is 2π-periodic. It is convenient to introduce the coordinate ζ dual

to zm of the original metric in eq. (2.4) as:

ζ =
cos̟

2R
ỹ , (2.12)
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so the metric becomes that of AdS3×SqS3×T̃ 4. The rr fields in the type iia theory can be

obtained by reduction to nine dimensions and interpretation of the resulting expressions.

The original type iib rr 3-form is given by

F(3) = R2(coshω dτ ∧ dω ∧ dσ + sin θ dφ ∧ dψ ∧ dθ) , (2.13)

whereas the type iia fluxes of the T-dual background are

F(2) = R cos̟ sin θ dθ ∧ dφ , (2.14)

F(4) =
[
ωAdS +R2 sin2̟ sin θ dθ ∧ dφ ∧ dα

]
∧ dζ , (2.15)

H(3) = B2 ∧ dζ = R cos̟ sin θ dθ ∧ dφ ∧ dζ . (2.16)

2.2 Type II Green-Schwarz superstrings in curved backgrounds

The action for the gs superstring in a bosonic supergravity background with constant

dilaton Φ, up to quadratic order in fermions is given by:

S = −T
∫ (

1

2
∗ eAeA + i ∗ eAθ̄ΓADθ − ieAθ̄ΓAΓ̂Dθ

)
+ T

∫
B , (2.17)

where eA(X), A = 0, · · · , 9 is the worldsheet pullback of the vielbein, eA(X) =

eAM∂X
M and

Γ̂ =

{
Γ11 (type iia),

1+ σ3 (type iib).
(2.18)

The covariant derivative acting on the worldsheet fermions is given by

Dθ =
(
∇− 1

8
eA /FΓA

)
θ (2.19)

Here∇ = d+ω is the covariant derivative containing the spin connection of the background.

The rr fields in this expression read

/F =





−1

2
ΓABΓ11FAB +

1

4!
ΓABCDFABCD (type iia)

iσ2ΓAFA − 1

3!
ΓABCFABC +

i

2 · 5!σ
2ΓABCDEFABCDE (type iib)

(2.20)

The worldsheet fermions can be described by two 32-component Majorana spinors in

type iib theory of the same chirality. In type iia one can consider a unique 32-component

Majorana spinor, which can take the form θ = θ1 + θ2 where

θ1 =

(
ϑ1

0

)
θ2 =

(
0

ϑ2

)
(2.21)

and ϑi are 16-component Majorana spinors of opposite chirality, Γ11θ
1 = θ1 and Γ11θ

2 =

−θ2. After T-duality they are related to the type iib worldsheet spinors by [42]

θ1IIB = θ1IIA θ2IIB = γyθ
2
IIA (2.22)
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where γy denotes the Dirac gamma matrix in the direction of the T-duality.

To write down the explicit form of the gs action for the backgrounds under consider-

ation, we need to evaluate /F . Using (2.13) and (2.16), we obtain





/F (3) =
6

R
(γ012 + γ345) (type iib),

/F (2) =
2

R
cos̟γ34 , /F (4) =

24

R
(γ012y + γ3459 sin̟) (type iia).

(2.23)

The Lagrangian in eq. (2.17) becomes in the type iib case:

LIIB = −i
(√

−hhijδIJ − ǫijσIJ3

)
θ̄I/ei

(
∇jδ

JK +
1

48
/F (3)/ejσ

JK
1

)
θK (2.24)

with I, J = 1, 2 whereas in the (T-dual) type iia case:

LIIA = − iθ̄(
√
−hhij − εijΓ11)/ei∇jθ +

i

8
θ̄(
√
−hhij − εijΓ11)Γ11/eiγ

cdej
bHbcdθ

− i

16
eΦθ̄(

√
−hhij − εijΓ11)(Γ11/ei /F (2)/ej +

1

12
/ei /F (4)/ej)θ

(2.25)

2.3 Kappa-symmetry gauge fixing

The gs action can be written for any given curved background, at least to quadratic order

in the fermions [41, 42]. If one has an underlying coset structure and an underlying Z4

automorphism, there exists a general construction for a sigma model action for a given

supergroup [13, 43]. In the case of the supergroup PSU(1, 1|2), the restriction to the

bosonic subgroup is a gs-type sigma model with target space AdS3 × S3.

At this stage it is not clear if the model can describe the motion of a superstring on a

full ten-dimensional background of the form AdS3 × S3 × T 4 because of the missing torus

directions that have to be added by hand. The main issue is that in the gs action one

can find terms of the form θ̄I∂iX
MΓM∂Jθ

j , so the torus directions necessarily couple to

all the worldsheet fermions. However, the gs superstring action is invariant under kappa-

symmetry, local fermionic transformations of the target space coordinates. Fixing this

symmetry, one can gauge away half of the fermionic degrees of freedom, so half of the gs

fermions become unphysical. Which fermions might be gauged away, of course depends on

the motion of the string.

For the AdS3 × S3 × T 4 case, it is possible to show that the AdS3 × S3 coset action

supplemented by four free bosons is equivalent to the type ii gs action in a very specific

kappa symmetry gauge which sets the non-coset fermions to zero. In principle, the resulting

number of fermionic degrees of freedom will be 8 (those arising from the six-dimensional

coset action) as opposed to the 16 that are required in ten dimensions. However, as it

was argued in [13], the four additional bosons interact with the coset fermions through the

metric, so the kappa symmetry of the action is violated and the coset plus the T 4 in fact

have more fermions than just the coset ones.

For backgrounds containing squashed manifolds such as AdS3×SqS3×T 4, the discus-

sion of kappa-symmetry is in initially puzzling, as there is no underlying coset construction

– 6 –
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for the sigma model that might suggest which fermions to set to zero and the gs action ob-

tained from the Lagrangian in eq. (2.25) contains the same redundancy in fermionic degrees

of freedom. The question then is how to fix kappa-symmetry in this case so the action cor-

rectly describes the propagation of strings. We will argue that given that AdS3×SqS3×T 4

can be obtained via T-duality of the AdS3 × S3 × T 4 model, it is possible to determine an

appropriate kappa-gauge fixing condition for the gs action.

2.3.1 Flat space limit

To determine the correct kappa-gauge fixing condition for the AdS3×S3×T 4 gs action, the

authors of [13] looked at the flat space limit of the psu(1, 1|2)× psu(1, 1|2) supersymmetry

algebra and identified a subalgebra of the same form within the type ii flat space super-

symmetry algebra. Let us review their argument. The type iib flat space supersymmetry

algebra reads: {
qIα, q

J
β

}
= δIJ

[
CγM (1+ Γ11)

]
αβ
PM (2.26)

with I, J = 1, 2 and α, β = 1, · · · 32 are spinor indices. Introduce the projection operators

K± ≡ 1

2

(
1± γ012345

)
(2.27)

satisfying the usual properties

K±K± = K± , K±K∓ = 0 , K±tC = CK∓ . (2.28)

The projected supercharges K+qIα satisfy the flat space limit of the psu(1, 1|2) superalge-
bra. Namely,

{
QI

aαα̇, Q
J
bββ̇

}
= δIJ

[
i(εγµ)abεαβεα̇β̇Pµ − εab(εγ

m)αβεα̇β̇Pm

]
(2.29)

where γµ = (iσ2, σ1, σ3) and γm = (σ1, σ2, σ3). Pµ = SL
µ = SR

µ , Pm = LL
n − LR

n , and Sµ,

Lm are the sl(2,R) and su(2) generators, respectively. That is, there is a sub-algebra of

the flat space supersymmetry algebra which has the same form as the flat space limit of

psu(2, 2|1)×psu(2, 2|1). As a result, the flat space limit of the gs action for AdS3×S3×T 4

will match the flat space gs action in the fully fixed kappa gauge

K−θIIIB = θIIIB (2.30)

2.3.2 Kappa-gauge fixing for squashed backgrounds

Starting from (2.30), we can attempt to write down the T-dual kappa projection for the

type iia worldsheet spinors, to determine the kappa-gauge to fix the gs action for the

AdS3×SqS3×T 4 background. In order for our construction to work, it is crucial to choose

the vielbein described above that preserves the worldsheet derivative ∂aX after T-duality.

The gamma matrix in the direction in which the T-duality is being performed, γy, is

given by

γy = cos̟γ5 + sin̟γ9 , (2.31)

– 7 –
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since

gyy = 4R2 sec2̟ . (2.32)

Notice that (2.31) depends on the deformation parameter and that

γy · γy = 1 (2.33)

Using the transformation in eq. (2.22), the condition in (2.30) turns into

θ1IIA = θ1IIB = K−θ1IIB = K−θ1IIA , (2.34)

θ2IIA = γyθ
2
IIB = γyK

−θ2IIB =
(
γyK

−γy
)
θ2IIA . (2.35)

Since γy is an involution, K̃+(̟) = γyK
−γy is the T-dual projector satisfying the usual

projector properties. In detail, this projector reads

K̃+(̟) =
1

2

(
1+ γ01234

(
cos 2̟γ5 + sin 2̟γ9

))
≡ 1

2

(
1+ γ01234z

)
, (2.36)

where we introduced

γz = cos 2̟γ5 + sin 2̟γ9 . (2.37)

The limit ̟ → π/2, corresponds to the case in which the deformation is zero and the

geometry is S3, so K̃+(π/2) = K−. For ̟ → 0, we recover the S2 × S1 geometry, so

K̃+(0) = K+.

Equations (2.34) and (2.35) determine the kappa projections on the type iia worldsheet

fermions such that the gs action of AdS3 × SqS3 × T 4 in the flat space limit matches the

flat space type iia gs action in the given kappa-gauge. We now verify this explicitly. The

type iia flat space supersymmetry algebra reads
{
Qa, Qb

}
= (CγM )abPM . (2.38)

Here, ΓM are 32× 32 Dirac matrices of SO(1, 9), M = 0 · · · 9 is the 10-dimensional vector

index and C is the charge conjugation matrix. We can rewrite the algebra in terms of

16-component real Majorana spinors, Qα ∈ 16 and Qα̇ ∈ 16′. The algebra (2.38) becomes:

{
Qα, Qβ

}
= 2i(ΣMC−+)αβPM

{
Qα̇, Qβ̇

}
= 2i(Σ̄MC+−)α̇β̇PM

(2.39)

where

ΓM =

(
0 ΣM

Σ̄M 0

)
, C =

(
0 C+−

C−+ 0

)
. (2.40)

The psu(1, 1|2) supersymmetry algebra reads:

{Qa, Qb} = i(εγµ)⊗ ε⊗ εSµ − ε⊗ εγm ⊗ εLm , (2.41)

where the Sµ are the generators associated to sl(2,R) and the Lm are the generators

associated to su(2). The matrices γµ and γm are defined in appendix A.1. After T-duality,

– 8 –



J
H
E
P
1
0
(
2
0
1
2
)
0
0
7

only the psu(1, 1|2)L algebra is preserved. The su(2)R symmetry within the psu(1, 1|2)R
breaks to U(1)R. Therefore, taking the flat space limit will yield an expression similar

to (2.29), but for the fact that now the generator associated to the preserved u(1) (e.g. the

T-duality circle) will appear explicitly on the right hand side.

For the T-dual model, introduce the projector

Π = K+(1− Γ11) +K−(̟)(1 + Γ11) , (2.42)

where K+ and K−(̟) were defined in (2.27) and (2.36), respectively. To find the subal-

gebra of the type iia supersymmetry algebra that reduces, in the flat space limit, to that

of broken psu(1, 1|2), we evaluate:

{
K+Qα,K

+Qβ

}
= 2i(ΣMC−+)α̇β̇PM ,

{
K−(̟)Qα̇,K

−(̟)Qβ̇

}
= 2i(ΣMC+−)α̇β̇PM .

(2.43)

Using the basis in appendix A, we find that the first anticommurator in (2.43) is

{
K+Q,K+Q

}
= (1 + σ3)⊗

(
iεγµ ⊗ ε⊗ εPµ + ε⊗ εγm ⊗ εPm

)
(2.44)

where µ = 0, 1, 2 and m = 3, 4, 5. The subset of projected supercharges K+Q has the same

anticommutation relation as the flat space limit of psu(1, 1|2), so for the part of the action

involving the θ1 spinors, will match the flat space gs action in the kappa gauge

K−θ1 = θ1 (2.45)

found in eq.(2.34). The generators associated to the T 4 do not appear in the right hand

side of the anticommutator, and the torus decouples.

The second anticommutator in (2.43) gives:

{
K̃−(̟)Q, K̃−(̟)Q

}

= (1− cos 2̟σ3)⊗
[
iεγµ ⊗ ε⊗ εPµ

]
− sin 2̟

[
ε⊗ εγµ ⊗ σ1 ⊗ εPµ

]

+ (σ3 − cos 2̟1)⊗
[
ε⊗ εγm ⊗ εPm

]
+ sin 2̟

[
iσ1 ⊗ ε⊗ σ1γm ⊗ εPm

]

+ (1− cos 2̟σ3)⊗
[
ε⊗ σ1 ⊗ εPz

]
+ sin 2̟

[
− iε⊗ ε⊗ ε⊗ εPz

]
(2.46)

Here m = 3, 4. The presence of Pz in the right hand side signals the breaking of the

psu(1, 1|2)R symmetry. Following the same logic as before, the subset of projected su-

percharges K̃−(̟)Q are related to the θ2 worldsheet spinors, so the part of the action

involving the θ2 spinors will match the flat space gs action in the kappa gauge

K̃+(̟)θ2 = θ2 , (2.47)

which is just the condition derived using T-duality in (2.35). Notice that also in this case,

the directions 6, 7, 8 and z̄ (orthogonal to the z direction) specify a T̃ 4 which decouples

from the AdS3 × SqS3.
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2.4 The AdS3 × SqS3
× T

4 case

Having determined the kappa-gauge fixing condition required to obtain a gs action which

i). reduces to the familiar type iia gs action in the flat space limit; ii). projects out the

orthogonal T 4 to the AdS3 × SqS3 space; and iii). has the correct number of fermionic

degrees of freedom, we are in the position to write down the explicit expression for the gs

action. Let us start from (2.25), and focus on the ns sector.

2.4.1 The Neveu-Schwarz sector

Consider the squashed sphere subsector with the additional S1. We can read off the relevant

vielbein components from (A.9):

e3 = R dθ , e4 = R sin(θ) dϕ ,

e5 =
cos2̟ dy

2R
+R sin2̟(dα+ cos θ dϕ) ,

e9 =
cos̟ sin̟ dy

2R
−R sin̟ cos̟(dα+ cos θ dϕ) ,

(2.48)

It is convenient to use the rotated vielbein {e3, e4, e5, e9} → {e3, e4, ẽ5, ẽ9} where

ẽ5 = −R sin̟(dα+ cos θ dϕ) ẽ9 =
cos̟

2R
dy . (2.49)

The three-form flux reads

H3 =
cos̟

R
ẽ9 ∧ e3 ∧ e4 , (2.50)

and the relevant spin connection components are:

ω45̃ =
1

2
sin̟dθ , ω35̃ = −1

2
sin̟ sin θdϕ ,

ω34 =
1

2
sin2̟dα− 1

2
cos θ(1 + cos2̟)dϕ .

(2.51)

In what follows, we will be using the following expressions:

γ5̃ ≡ γȳ = − sin̟γ5 + cos̟γ9 ,

γ9̃ ≡ γy = cos̟γ5 + sin̟γ9 ,

γz = cos 2̟γ5 + sin 2̟γ9 = cos̟γy + sin̟γȳ ,

γ z̄ = − sin 2̟γ5 + cos 2̟γ9 = − sin̟γy + cos̟γȳ .

(2.52)

Introducing the kappa-projectors, we can write down the gs Lagrangian for the ns sector

LNS =
{
−iθ̄1(

√
hhij − εijΓ11)K

+ + iθ̄2(
√
hhij − εijΓ11)K

−(̟)
}
×

[
/eiDj −

1

8
Γ11/eiγ

cdebjHbcd

] {
K−θ1 +K+(̟)θ2

}
. (2.53)

Using (2.50) and (2.51), the term in square brackets in (2.53) becomes:

/ei

[
∂j +

1

4R
γ4zej

3 − 1

4R
γ3zej

4 +
1

4R
γ34ej

5 − 1

2R
cot θγ34ej

4

]
K−θ1

/ei

[
∂j −

1

4R
γ45ej

3 +
1

4R
γ35ej

4 − 1

4R
γ34ej

z − 1

2R
cot θγ34ej

4

]
K+(̟)θ2 ,

(2.54)
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and (2.53) can be rewritten as

4RLNS = (2.55)

− iθ̄1(
√
hhij − εijΓ11)K

+/ei

[
4R∂j + γ4zej

3 − γ3zej
4 + γ34

(
ej

5 − 2 cot θej
4
)]
K−θ1

+ iθ̄2(
√
hhij−εijΓ11)K

−(̟)/ei

[
4R∂j−γ45ej3+γ35ej4−γ34

(
ej

z−2 cot θej
4
)]
K+(̟)θ2

− iθ̄1(
√
hhij−εijΓ11)K

+/ei

[
4R∂j−γ45ej3+γ35ej4−γ34

(
ej

z − 2 cot θej
4
)]
K+(̟)θ2

+ iθ̄2(
√
hhij−εijΓ11)K

−(̟)/ei

[
4R∂j+γ

4zej
3−γ3zej4+γ34

(
ej

5−2 cot θej
4
)]
K−θ1 .

We need to move around the K-projectors and simplify the resulting expression. After

some rather tedious algebra we obtain the final expression for the gs Lagrangian on the

squashed three-sphere:

LSqS3

NS =

− iθ̄1(
√
hhij − εijΓ11)

{
5∑

a=0

ei
aγa

[
∂j −

1

2R
γ5[4ej

3] cos 2̟ +
1

4R
γ34
(
ej

5 − 2 cot θej
4
)]

9∑

m=6

ei
mγm

[
∂j −

1

2R
γ9[4ej

3] sin 2̟

]}
θ1

+ iθ̄2(
√
hhij − εijΓ11)

{
z∑

a=0

ei
aγa

[
∂j +

1

2R
γz[4ej

3] cos 2̟ − 1

4R
γ34
(
ej

z − 2 cot θej
4
)]

+
z̄∑

m=6

ei
mγm

[
∂j −

1

2R
γ z̄[4ej

3] sin 2̟

]}
θ2

− iθ̄1(
√
hhij − εijΓ11)

{
5∑

a=0

ei
aγa

[
∂j +

1

4R
(γ5[4ej

3] − γz[4ej
3])

− 1

4R
γ34
(
1− γ5z

2

)(
ej

z − 2 cot θej
4
)]

+
9∑

m=6

ei
mγa

[
∂j +

1

4R
(γ5[4ej

3] + γz[4ej
3])

− 1

4R
γ34
(
1 + γ9z̄

2

)(
ej

z − 2 cot θej
4
)]}

θ2

+ iθ̄2(
√
hhij − εijΓ11)

{
z∑

a=0

ei
aγa

[
∂j +

1

4R
(γ5[4ej

3] − γz[4ej
3])

+
1

4R
γ34
(
1 + γ9z̄

2

)(
ej

5 − 2 cot θej
4
)]

+
z̄∑

m=6

ei
aγa

[
∂j −

1

4R
(γ5[4ej

3] + γz[4ej
3])

+
1

4R
γ34
(1− γ5z

2

)(
ej

5 − 2 cot θej
4
)]}

θ1

(2.56)
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The AdS sector is simpler. Using (A.12) it is easy to evaluate the contribution coming

from the spin connection:

/eµ =
1

4
ωAB
j γAB

=
1

2

(
−ej

2

2R
γ01 +

ej
0

R
(tanhωγ01 − 1

2
γ12)− ej

1

2R
γ02
)
, (2.57)

and expanding the kappa-projectors, we write down the Lagragian as:

LAdS3
NS =

− iθ̄1(
√
hhij − εijΓ11)

×
{ 5∑

a=0

ei
aγa

[
∂j −

1

4
(ej

2 − 2 tanhωej
0)γ01 − ej

0

4R
γ12 − ej

1

4R
γ02
]}

θ1

+ θ̄2(
√
hhij − εijΓ11)

×
{ z̄∑

m=6

ei
mγm

[
∂j −

1

4
(ej

2 − 2 tanhωej
0)γ01 − ej

0

4R
γ12 − ej

1

4R
γ02
]}

θ2

+ θ̄2(
√
hhij − εijΓ11)

×
{ z∑

a=0

ei
aγa

[
∂j −

1

4
(ej

2 − 2 tanhωej
0)γ01 − ej

0

4R
γ12 − ej

1

4R
γ02
](

1 + γ9z̄

2

)

+
z̄∑

m=6

ei
mγm

[
∂j −

1

4
(ej

2 − 2 tanhωej
0)γ01 − ej

0

4R
γ12 − ej

1

4R
γ02
](

1 + γ5z

2

)}
θ1

− iθ̄1(
√
hhij − εijΓ11)

×
{ 5∑

a=0

ei
aγa

[
∂j −

1

4
(ej

2 − 2 tanhωej
0)γ01 − ej

0

4R
γ12 − ej

1

4R
γ02
](

1− γ5z

2

)

+
9∑

m=6

ei
mγm

[
∂j −

1

4
(ej

2 − 2 tanhωej
0)γ01 − ej

0

4R
γ12 − ej

1

4R
γ02
](

1 + γ9z̄

2

)}
θ2

(2.58)

2.4.2 The Ramond-Ramond sector

We now turn to the rr sector. We are interested in expressing the combination

Γ11/ei /F 2/ej +
1

12
/ei /F 4/ej (2.59)

in terms of the kappa-symmetry projectors K± and K±(̟). The relevant part of the

Lagrangian is:

Lrr =
{
− iθ̄1(

√
hhij − εijΓ11)K

+ + iθ̄2(
√
hhij − εijΓ11)K

−(̟)
}
×

1

16

(
Γ11/ei /F 2/ej +

1

12
/ei /F 4/ej

){
K−θ1 +K+(̟)θ2

}
. (2.60)
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Consider the θ̄1θ1-term. Since θ̄1Γ11 = −θ̄1, we can rewrite (2.60) as

− iθ̄1(
√
hhij − εijΓ11)K

+

[
1

4R
/eiγ

012yK+/ej

]
K−θ1 . (2.61)

Expanding the projectors, the previous expression becomes:

− i

4R
θ̄1(

√
hhij − εijΓ11)

[
5∑

a=0

eai γa sin̟γ
0129 +

9∑

m=6

emi γm cos̟γ0125

]
5∑

b=0

ebjγbθ
1 . (2.62)

We proceed analogously with the θ̄2θ2-term. Rewriting the fluxes

iθ̄2(
√
hhij − εijΓ11)K

−(̟)

[
1

4R
/eiγ

012yK−(̟)/ej

]
K+(̟)θ2 , (2.63)

and acting with the projectors leaves

i

4R
θ̄2(

√
hhij − εijΓ11)

[
−

z∑

a=0

eai γa sin̟γ
012z̄ +

z̄∑

m=6

emi γm cos̟γ012z

]
5∑

b=z

ebjγbθ
2 . (2.64)

Finally, the crossed terms use the same expressions we obtained for the fluxes in terms of
the kappa-projectors. The final results read:

− i

4R
θ̄1(

√
hhij − εijΓ11)

{
5∑

a=0

eai γa

[
1

2
sin̟γ0129

z̄∑

b=0

ebjγb +
1

2
sin̟γ012z̄

( z̄∑

a=6

eajγa −
z∑

a=0

eajγa

)]

+

9∑

m=6

emi γm

[
1

2
cos̟γ0129

z̄∑

b=0

ebjγb +
1

2
cos̟γ012z

( z∑

a=0

eajγa −
z̄∑

a=6

eajγa

)]}
θ2 , (2.65)

and

i

4R
θ̄2(

√
hhij − εijΓ11)

{
z∑

a=0

eai γa

[
− 1

2
sin̟γ012z̄

z̄∑

b=0

ebjγb +
1

2
sin̟γ0129

( 5∑

a=0

eajγa −
9∑

a=6

eajγa

)]

+

z̄∑

m=6

emi γm

[
1

2
cos̟γ012z

z̄∑

b=0

ebjγb +
1

2
cos̟γ0125

(
−

5∑

a=0

eajγa +

9∑

a=6

eajγa

)]}
θ1 . (2.66)

We do not have anymore a supercoset structure for the squashed background. However,

as T-duality makes apparent, there is a natural separation in the fermionic coordinates in

those coming from torus coordinates (6, 7, 8, z̄) and the remaining ones. Following the

notation in [44], we write:

ζ1 = K−θ1 , v1 = K+θ1 ,

ζ2 = K̃+(̟)θ2 , v2 = K̃−(̟)θ2 .
(2.67)

The vielbein splits as

/ei = ẽai γa + ∂iy
mγm , (2.68)

where m runs over the torus coordinates. The torus fields y never appear linearly in the

Lagrangian, and can be set to zero by admitting the trivial solution to the equations of
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motion, yi,m = vi = 0. Hence, we can reduce the theory to the AdS3×SqS3 sector coupled

to sixteen fermions, eight from ζ1 and eight from ζ2. Using kappa-symmetry, the resulting

number of physical degrees of freedom is eight, and the resulting gs Lagrangian is given by

LGS = − ζ̄1(
√
−hhij − εijΓ11)/̃ei

[
Dj +

1

8
γcdebjHbcd +

1

4R
γ012yK+/̃ej

]
ζ1

− ζ̄2(
√
−hhij − εijΓ11)/̃ei

[
Dj +

1

8
γcdebjHbcd +

1

4R
γ012yK̃−(̟)/̃ej

]
ζ2

(2.69)

and by construction, this theory will be T-dual to the psu(1, 1|2) × psu(1, 1|2)/su(1, 1) ×
su(2) sigma model. As before, kappa-symmetry gauges away half of the components of the

worldsheet fermions.

Our specific gauge choice can only describe some string configurations. For example,

the corresponding gauge in the undeformed case cannot describe a motion restricted to the

AdS3 × S3 subspace [44]. We expect a similar type of limitation for our model.

As we have seen, despite the lack of supercoset structure in the squashed case, it is

possible to construct the kappa-fixed GS-action. Interestingly enough, the T-dual result

inherits most of the characteristics of the original model, with the orthogonal torus being

projected out. In the next section, we will argue that in fact, integrability is also inherited

from the original model and that T-duality preserves the structure.

3 Currents and integrability

Having constructed the gs Lagrangian for our model, we can derive the Noether currents

corresponding to the bosonic and fermionic symmetries using a standard procedure. This

would be straightforward but incomplete. As already emphasized in [37], the sigma model

with squashed sphere target space inherits all the symmetries of the T-dual model on the

round sphere S3 even though the background metric only has part of the isometries of the

round sphere. The extra symmetries correspond to non-local currents that together with

the Noether ones realise the full psu(1, 1|2) superalgebra, even if they do not stem from

local symmetries. We will employ the following strategy. First we calculate the currents

for the T-dual system with S3 target space and then we transform them using T-duality.

Consider the gs action for AdS3 × S3 × T 4, as written in [13]. Following [47] it is

possible to write the explicit expression for the Noether currents as

J = JAKA + JAB∇AKB , (3.1)

where KA are the Killing vectors of the ten-dimensional background

JA = eA + iθΓADθ − i

8
ΓA /FΓBθ + iθΓAΓ̂ ∗ Dθ − i

8
∗ eBθΓAΓ̂/FΓBθ , (3.2)

JAB = − i

4
eCθΓAB

Cθ +
i

4
∗ eCθΓAB

C Γ̂θ , (3.3)

These currents are conserved on-shell and generate the psu(1, 1|2) algebra. Using a stan-

dard procedure this is the starting point for the construction of an infinite tower of con-

served charges which assure the classical integrability of the model based on the preserved

Z
4 grading [2].
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Let us now go back to our squashed-sphere model. As already discussed, T-duality

breaks half of the local symmetries. On the bosonic side this is reflected in the fact that

currents that do not commute with the generator J3 of the su(2) ⊕ su(2) symmetry are

not anymore local currents, but turn into non-local currents as explained in [37]. We

distinguish two cases:

1. For the currents that commute with J3, bosonic T-duality is implemented via the

substitution

dz 7→ ∗ dζ −R cos̟ (dα+ cos θ dφ) . (3.4)

In other words, the expression for the currents remain formally the same as in the

equation above, but the vielbein eA are transformed as follows:
{
em

A dxµ 7→ eµ
A dxµ for µ 6= z,

ez
A dz 7→ ez

A (∗ dζ −R cos̟ (dα+ cos θ dφ)) .
(3.5)

2. The currents that do not commute with J3 have an explicit dependence on the coor-

dinate z (as opposed to just depending on the differential dz) and require an extra

step. Concretely we need to change the gauge as follows

J ′ = h−1Jh+ h−1 dh , (3.6)

where

h = exp[−i (α+ cos̟ z)T3] , (3.7)

and then apply the transformation on the vielbein. The resulting currents are non-

local but are conserved and satisfy the usual commutation relations.

In the previous section we have shown that it is possible to fix kappa-symmetry such

that the T 4 is decoupled from the AdS3 × SqS3 part. This means that in this gauge we

are back to the supercoset description of [2], which admits a Z
4 structure preserved by T-

duality. The currents obtained above are conserved by construction and even if non-local,

they can be used to obtain infinite towers of conserved charges. It follows that our model

is still classically integrable.

4 Summary and future directions

In this paper we have considered type iia gs superstrings in AdS3×SqS3×T 4 backgrounds

which are obtained via Hopf T-duality of a D/D/monopole background along a hybrid

direction mixing a torus coordinate with an S3 coordinate. We have explicitly constructed

the Lagrangian up to quadratic order in fermions and have discussed the fixing of kappa-

symmetry and shown that it is possible to determine an appropriate kappa-gauge fixing

condition that decouples the T 4 components from the AdS3 × SqS3 sector.

Despite the fact that our squashed background does not possess a supercoset structure

after T-duality, a careful choice of the dual vielbein allows the inheritance of the origi-

nal model’s properties, with kappa-gauge fixing removing half of the components of the

worldsheet fermions.
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The background is also classically integrable, with the properties being inherited from

the original model. For this, we have shown how to build an infinite set of conserved

currents, which realise the full psu(1|1, 2) superalgebra, where the non-local currents are

associated to extra symmetries which are not isometries of the squashed manifold.

Given that the kappa-symmetry gauge choice allows only for certain string configura-

tions, it would be interesting to study integrability in a more general setting. It would also

be enlightening to look at the worldsheet theory using the near bmn expansion as it was

done for the AdS3 × S3 × S3 × S1 background in [44].
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A Conventions

A.1 Gamma matrices

The bosonic subalgebra of psu(1, 1|2) consists of two commuting sl(2), with one of the sl(2)

non-compact and the other compact, so that the bosonic subalgebra is sl(2,R)⊕ su(2).

To describe the action of the sl(2) generators on the supercharges we introduce the

following sets of gamma matrices:

γµ = (iσ2, σ1, σ3) , γn = (σ1, σ2, σ3) , γṅ = (σ1, σ2, σ3). (A.1)

We can choose the following representation for the 10d Dirac matrices:

Γµ = σ1 ⊗ σ2 ⊗ γµ ⊗ 1⊗ 1 , µ = 0, 1, 2 (A.2)

Γn = σ1 ⊗ σ1 ⊗ 1⊗ γn ⊗ 1 , n = 3, 4, 5 (A.3)

Γṅ = σ1 ⊗ σ3 ⊗ 1⊗ 1⊗ γṅ , ṅ = 6, 7, 8 (A.4)

Γ9 = −σ2 ⊗ 1⊗ 1⊗ 1⊗ 1, (A.5)

where the 3d gamma-matrices γi are taken from (A.1). The charge conjugation matrix is

given by

C = iσ2 ⊗ σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2. (A.6)

A.2 Vielbein

From (2.4), we can extract the vielbein. Before changing coordinates, we have

e0 = R coshω dτ e1 = R dω e2 = R sinhω dτ +R dσ

e3 = R dθ e4 = R sin(θ) dφ e5 = R cos θ dφ+Rdψ

ei = 2R cot̟ dyi (i = 6, · · · , 9) .
(A.7)

– 16 –



J
H
E
P
1
0
(
2
0
1
2
)
0
0
7

After we change coordinates to ψ = α+ 2y9 the vielbein becomes:

e3 = R dθ e4 = R sin θ dφ e5 = R cos θ dφ+R dα+ 2R dy9 , (A.8)

and the T-dual vielbein ẽaM reads

ẽ0 = R cosh(ω) dτ ẽ1 = R dω ẽ2 = R sinhω dτ +R dσ

ẽ3 = R dθ ẽ4 = R sin(θ) dφ ẽi = 2R tan̟ dyi (i = 6, · · · , 8)

ẽ5 =
cos2̟

2R
dỹ9 +R sin2̟(dα+ cos θ dφ)

ẽ9 = cos̟ sin̟

(
dỹ9
2R

−R (dα+ cos θ dφ)

)
. (A.9)

We can write down the gamma matrices in the coordinate frame ΓM in terms of the gamma

matrices γa in the orthogonal frame (tangent space).

Γτ = R coshωγ0 +R sinhωγ2 Γω = Rγ1

Γσ = Rγ2 Γθ = Rγ3

Γφ = R sin θγ4 +R cos θ sin2̟γ5 −R cos θ cos̟ sin̟γ9 Γζ = cos̟γ5 + sin̟γ9

Γα = R sin2̟γ5 −R sin̟ cos̟γ9 Γi = 2R tan̟γi (A.10)

The gamma matrices ΓM read:

Γτ =
sechω

R
γ0 Γω =

1

R
γ1 Γσ =

1

R
(− tanhωγ0 + γ2)

Γθ =
1

R
γ3 Γφ =

1

R
csc θγ4 Γi =

cot̟

2R
γi

Γα =
1

R
(γ5 − cot θγ4 − cot̟γ9) Γζ = cos̟γ5 + sin̟γ9 , (A.11)

and the spin connection is

/ωτ = − sinhωγ01 + coshωγ12

/ωσ = −γ01

/ωω = −γ02

/ωθ = − sin2̟γ45 + sin̟ cos̟γ49

/ωφ = − cos θ
(
1 + cos2̟

)
γ34 + sin2̟ sin θγ35 − sin̟ cos̟ sin θγ39

/ωα = sin2̟γ34

/ωi = 0 (i = 6, · · · , 9)
(A.12)

Using ζ, the vielbein components ẽ(5) and ẽ(9) in (A.9) can be rewritten as:

ẽ5 = cos̟ dζ +R sin2̟(dα+ cos θ dφ) ,

ẽ9 = sin̟ dζ −R cos̟ sin̟(dα+ cos θ dφ) .
(A.13)
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