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1 Introduction

Gravity in three dimensions has long been a testing ground for constructing a theory of

quantum gravity in higher dimensions. Although the actual solutions are quite different

from say gravity in four dimensions, the three dimensional models have been instructive

for the analysis of more conceptual problems like the role of topology and topology-change,

the connections between different quantisation procedures. As is well known, the main

difference of three dimensional gravity with higher dimensional gravity arises from the fact

that there are no local degrees of freedom for gravity in 3d. There are no gravitational

waves and curvature is concentrated at the locations of matter. For topologically trivial

spacetimes, there are no gravitational degrees of freedom at all.

To make the dynamics of three dimensional gravity more like gravity in higher dimen-

sions, one needs to restore local degrees of freedom. In 3d, there is the unique opportunity
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of adding a gravitational Chern-Simons term to the action which now becomes

S3 = SEH + SCS (1.1)

where SEH =

∫

d3x
√
−g (R− 2Λ) (1.2)

and SCS =
1

2µ

∫

d3xǫµνρ

(

Γσ
µλ∂νΓλ

ρσ +
2

3
Γσ

µλΓλ
νθΓ

θ
ρσ

)

(1.3)

The linearised equations of motion of this theory are those of a massive scalar field. The

existence of this massive excitation can also be traced to the effective interaction of static

external sources where one finds a Yukawa attraction with interaction energies as expected

for a massive scalar graviton. The theory is called topologically massive gravity [1, 2].

Topologically massive gravity theories in three dimensions with a negative cosmological

constant (Λ = −1/ℓ2) have been recently extensively studied in the context of AdS/CFT [3].

Without the Chern-Simons term, 3d gravity in AdS space has the additional feature of

having black hole solutions [4]. Now with the topological term, we have both black holes

and propagating gravitons. For a generic value of the coefficient of the gravitational Chern-

Simons term, the theory has been shown to be inconsistent: either the black hole or the

gravitational waves have negative energy. It was conjectured in [5] that the theory becomes

sensible at a special point where µℓ = 1. The authors claimed that the dual boundary

CFT became a chiral CFT with one of the central charges vanishing (cL = 0). This claim,

however, was soon hotly contested [6–11] and in following works [12], topologically massive

gravity at the chiral point was shown to be more generally dual to a logarithmic CFT. The

energies of these logarithmic solutions were calculated and it was shown that these carried

negative energy at the chiral point indicating an instability and the breakdown of the

Chiral gravity conjecture. A more complete analysis based on techniques of holographic

renormalisation showed that this claim was indeed justified [14, 15]. It was discussed

that the original chiral gravity conjecture might also hold in a limited sense when one can

truncate the LCFT to a chiral CFT provided certain three-point functions vanish.1 Similar

claims were also made in [17].

Higher-spin theories in AdS3 have been the subject of active interest recently. Unlike

their higher-dimensional cousins, they admit a truncation to an arbitrary maximal spin

N , rather than involving the customary infinite tower of higher-spin fields. Also, like

gravity, they possess no propagating degrees of freedom (see, for example, [19] or [22]). The

asymptotic symmetry structure for theories with higher spin in AdS have been examined

in [18, 19] (see also the recent work [20]). The authors find that a Brown-Henneaux [21] like

analysis for a theory with maximal spin-N in the bulk yields a WN asymptotic symmetry

algebra. For the spin-3 example, this is the non-linear classical W3 algebra. This has been

tested at the one-loop level in [22], using the techniques developed in [23]. Finally, this

lead to the proposal of a duality between a family of higher-spin theories in AdS3 and

WN minimal models in the large N limit in [24], which has subsequently been checked

in [25–29].

1The existence of such a truncation only shows that a set of operators of the LCFT form a closed

sub-sector, not that this sub-sector has a dual of its own [14, 15].
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Motivated by the features of topologically massive gravity recounted previously, a

natural question to ask is what happens when these higher-spin theories are similarly

deformed by the addition of a Chern-Simons term. In this paper, we initiate a study of

these issues by considering the effect of parity violating, three-derivative terms added to

the quadratic action of spin-3 Fronsdal fields in AdS3. These are the spin-3 analogues of

the linearisation of the gravitational Chern-Simons term described in (1.3), and we shall

continue to refer to them as “Chern-Simons” terms.

The outline of the paper is as follows: we start out in section 2 by constructing the

curved space analogue of the action for massive gravity coupled to higher spin modes

in [31]. The equations of motion are derived from there. After relating the coefficient

of the spin-three “Chern-Simons” term to the spin-two term in section 3 by looking at

the frame-like formulation, we enter a detailed analysis of the equations of motion in

section 4.

Here in section 4, following a strategy similar to the spin-two case, we first re-write

the equations in terms of three commuting differential operators. At the chiral point,

two of these operators become identical indicating an inadequacy of the basis of solutions

and thereby necessitating the existence of a logarithmic solution. We solve the equations of

motion explicitly. We find that unlike the spin-2 counterpart, the trace of the spin-3 cannot

be generically set to zero and will be responsible for giving rise to non-trivial solutions in

the bulk which carry a trace, in addition to the traceless mode. We also construct the

logarithmic solutions corresponding to both the trace and traceless mode. We compute

energies for all the solutions. Away from the chiral point, the massive traceless mode

carries negative energy, making this a generalisation of the spin-two example. The novelty

in our analysis is the existence of the trace mode. The massive trace mode carries positive

energy away from the chiral point and is not a gauge artefact. At the chiral point, both

the traceless and the trace mode have zero energy. The logarithmic partner of the trace

mode at the chiral point carries positive energy whereas the logarithmic partner of the

traceless mode has negative energy indicating an instability similar to the case of the spin-

two example. We also show that massless branch solutions, and hence massive branch

solutions at the chiral point, can be gauged away by appropriate choice of residual gauge

transformation. This along with the fact that left branch and massive branch solutions

carry zero energy at the chiral point suggests that these can be regarded as being gauge

equivalent to vacuum. But the logarithmic branch solutions are not pure gauge and the

negative energy for the logarithmic partner of the traceless mode is a genuine instability in

the bulk, similar to the spin-2 example. Apart from all this we find a peculiar “resonant”

behaviour for the trace modes at µℓ = 1
2 , which needs some understanding from the CFT

perspective.

In section 5, we make several comments on the nature of the asymptotic symmetry

with the gravitational Chern-Simons term. At the chiral limit, we argue that the natural

symmetry algebra to look at is a contraction of the W3 algebra which essentially reduces

to the Virasoro algebra. We comment on other possible realisations at this limit. We end

in section 6 with discussions and comments and directions of future work. A couple of

appendices list some detailed calculations omitted from the main text.
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Note added. While this work was being readied for submission, the paper [30] was posted

on the arXiv which has some overlap with the present paper. There are some important

differences, however. Unlike in [30] we find additional physical spin-one modes (the trace

of the spin-three field) that need to be accounted for.2 The analysis of the spin-3 traceless

mode is in agreement with [30]. In addition, we also construct all logarithmic solutions and

compute their energies and have a different proposal for the asymptotic symmetry algebra.

2 Spin-3 fields in AdS3 with a Chern Simons term

We begin by reviewing the linearised action for spin-3 Fronsdal fields3 with a Chern-Simons

term in flat space [31] (see also the related work [32]). The Fronsdal operator F for the

spin-3 field is given by

FMNP [φ] = ∂2φMNP − ∂(M∂AφNP )A + ∂(M∂NφP )A
A, (2.1)

where the brackets denote the sum of the minimal number of terms necessary to have

complete symmetrisation in the enclosed indices without any overall normalisation factor.

We then define the tensor GMNP by

GMNP = FMNP − 1

2
η(MNFP )A

A. (2.2)

It was shown in [31] that the most general action with up to three derivatives and parity

violating terms could be written as

S[φ] =
1

2

∫

d3xφMNPGMNP +
1

2µ′

∫

d3xφMNP ǫQR(M∂
QGR

NP ) (2.3)

The two terms appearing in this action are each invariant under the gauge transformation

φMNP 7→ φMNP + ∂(M ξNP ) , (2.4)

where ξ is a traceless symmetric rank two tensor. The first term is just the usual Frons-

dal action for massless spin-3 fields [33], while the second term is the linearised Chern-

Simons term.

In this paper, we will study the covariantisation of this action to AdS3. To do so,

we minimally couple the background gravity to the spin-3 fluctuation by promoting all

partial derivatives to covariant derivatives, and demanding invariance under the gauge

transformations4

φMNP 7→ φMNP + ∇(MξNP ) , (2.5)

2We note that similar trace modes were found in the flat-space analysis of Deser and Damour [31] that

we shall shortly come to. These (with an appropriate sign convention for the action) were interpreted as

ghost-like excitations. But as we will see later, as per our sign convention of the action (which is required

for the positivity of energy of BTZ black holes [5]), these modes carry positive energy and hence cannot be

ghost like. On the contrary the traceless modes will carry negative energy and will be ghost-like.
3We remind the reader that these fields are completely symmetric rank-3 tensors. The usual double-

tracelessness constraint would not play a role before the introduction of spin-4 fields.
4In going from flat space to AdS3, in addition to changing partial derivatives to covariant derivatives

in (2.1), we have to multiply the last term by a factor of 1
2

so that we are consistent with our earlier

convention of symmetrisation. With partial derivatives, the last term will have a minimum of three terms

whereas with covariant derivatives, it will have six terms, because covariant derivatives do not commute.
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where ∇ is the covariant derivative defined using the background AdS3 connection. To

construct the AdS generalisation of (2.3), it is helpful to recollect what happens in the

case where there is no topological term, i.e. the covariantisation of the Fronsdal action.

As reviewed for example in [19], the Fronsdal operator (2.1) (defined now with covariant

derivatives instead of partial derivates) is no longer invariant under the gauge transforma-

tion (2.5), what is invariant (for the spin-3 field in AdS3) is the combination [34]

F̃MNP = FMNP − 2

ℓ2
g(MNφP )A

A, (2.6)

and if we now define

GMNP = F̃MNP − 1

2
g(MN F̃P )A

A, (2.7)

the gauge invariant Fronsdal action is given by [34]

S[φ] =
1

2

∫

d3x
√
−g φMNPGMNP . (2.8)

It turns out that the case with the Chern-Simons terms is essentially similar. The gauge

invariant action is given by

S[φ] =
1

2

∫

d3x
√
−g φMNPGMNP +

1

2µ′

∫

d3x
√
−g φMNP εQR(M∇QGR

NP ) , (2.9)

where GMNP is now defined through (2.7), and

εMNP ≡ 1√−g ǫ
MNP . (2.10)

We remind the reader that εMNP is a tensor and all indices are raised and lowered by the

background metric. We can write the above action more compactly by defining

F̂MNP = F̃MNP +
1

µ′
εQR(M∇QF̃R

NP ) , (2.11)

in terms of which the action becomes

S[φ] =
1

2

∫

d3x
√
−g φMNP

(

F̂MNP − 1

2
g(MN F̂P )

)

. (2.12)

One may further show that this action gives rise to the equations of motion

D(M)F̃MNP ≡ F̂MNP = F̃MNP +
1

µ′
εQR(M∇QF̃R

NP ) = 0 . (2.13)

Alternatively, one could have started with constructing the most general parity violating,

three derivative equations of motion for φMNP in flat space in three dimensions consistent

with the gauge invariance (2.4), and attempted a covariantisation to AdS. We had initially

followed this procedure and obtained identical results. In the above equations, however,

the coefficient µ′ is arbitrary and is not fixed by the gauge invariant structure. In the next

section, we will look at the relation of our action with the SL(3, R)×SL(3, R) Chern-Simons

formulation of spin-3 gravity [19] with unequal levels and obtain the relation of µ′ with the

coefficient of gravitational Chern-Simons term µ, given in terms of the left and right levels

aL and aR as,
aL − aR

2
=

1

µ
. (2.14)
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3 Relation with Chern-Simons formulation of high spin gravity and fix-

ing the normalisation

It has been observed in [18, 19] that higher spin gravity in three dimensions can have a

Chern-Simons formulation. The levels of the Chern-Simons action in [18, 19], were taken

to be equal and hence it produced only the higher-spin extension of Einstein gravity. Since

it is known that if we take unequal levels of the Chern-Simons action in pure gravity and

impose the torsion constraints, we get parity violating Chern-Simons term and the action

becomes that of a topologically massive gravity. We should also be able to do the same for

spin-3 massive gravity by taking unequal levels of the Chern-Simons terms. After taking

unequal levels for the SL(3, R) × SL(3, R) Chern-Simons action in [19], and imposing the

torsion constraints, we arrive at the following action

S =
1

8πG

∫

ea ∧
(

dωa +
1

2
ǫabcω

b ∧ ωc − 2σǫabcω
bd ∧ ω c

d

)

− 2σeab ∧
(

dωab + 2ǫcdaω
c ∧ ω d

b

)

+
1

6ℓ2
ǫabc

(

ea ∧ eb ∧ ec − 12σea ∧ ebd ∧ e c
d

)

+
1

µ

∫

ωa ∧ dωa +
1

3
ǫabcω

a ∧ ωb ∧ ωc − 2σωab ∧ dωab − 4σǫabcω
a ∧ ωb

d ∧ ωdc. (3.1)

Subject to the torsion constraint

dea + ǫabcωb ∧ ec − 4σǫabcebd ∧ ωd
c = 0 ,

deab + ǫcd(aωc ∧ e b)
d + ǫcd(aec ∧ ω b)

d = 0 . (3.2)

This is the full non-linear action for spin-3 massive gravity. But since we are interested in

linearised equations of motion, we can expand this action around AdS3 background

ēa = eaAdS , ēab = 0 . (3.3)

And then take linearised fluctuations h a
M and h ab

M around this background. And finally

we should be able to write everything in terms of the physical Fronsdal fields h̃MN and

φMNP , defined as

h̃MN =
1

2
ē a
(MhN)a ,

φMNP =
1

3
ēa(M ē b

NhP )ab . (3.4)

The above action (3.1) is, however, given in terms of the frame fields

hMN = ē a
MhNa ,

hMNP = ēaM ē b
NhPab . (3.5)

The frame fields has an additional Λ gauge symmetry [19] which can be gauge fixed to

write down the entire action in terms of the physical Fronsdal fields (3.4).

If one is able to successfully implement the programme, one should arrive at the ac-

tion (2.12), since the structure is completely determined by gauge invariance. Since we

– 6 –



J
H
E
P
1
0
(
2
0
1
1
)
1
5
0

already have the action, we will bypass the complete programme and just use the Chern-

Simons formulation to fix the normalisation of the coefficient µ′. For that it is sufficient

to find the coefficient of some simple terms. Hence, we use the action (3.1), to find the

coefficients of φMNP∇2φMNP and φMNP ǫQRM∇Q∇2φ R
NP . These coefficients can be found

after a simple exercise and the quadratic action is

S =
1

2

∫ √
−g

(

φMNP∇2φMNP +
1

2µ
φMNP ǫQRM∇Q∇2φ R

NP + · · ·
)

. (3.6)

Here we have used 1
16πG

= 1 and 2σ = −1. Comparing the coefficients of the above terms

to the coefficient of similar terms in (2.12), we see that, µ and µ′ are related by

µ′ = 6µ . (3.7)

4 Analysis of the linearised equations of motion

4.1 Solving the linearised equations of motion

In this section, we will analyse the linearised equations of motion (2.13). We wish to cast

this equation in a form D(M)D(L)D(R)φMNP = 0 for three commuting differential operators

D(M), D(L) and D(R). D(M) is defined in (2.13). So we have to put F̃MNP (2.6) into the

form D(L)D(R)φMNP . Note that generically this cannot be done. One has to do a suitable

field redefinition and use a suitable gauge condition to be able to do it. After a careful

analysis, one finds that there is a unique field redefinition and gauge condition which solves

the above purpose. They are

φMNP = φ̃MNP − 1

9
g(MN φ̃P ) ,

∇Qφ̃QMN =
1

2
∇(M φ̃N) . (4.1)

Using this field redefinition and gauge condition, we get

F̃MNP =∇2φ̃MNP − 1

6
∇(M∇N φ̃P ) −

8

9l2
g(MN φ̃P ) −

1

9
∇2φ̃(MgNP ) +

1

9
g(MN∇P )∇Qφ̃Q .

(4.2)

One can further see that this F̃MNP can be cast into the desired form as

F̃MNP = − 4

ℓ2
D(R)D(L)φ̃MNP , (4.3)

where D(R) and D(L) are defined as

D(L)φ̃MNP = φ̃MNP +
ℓ

6
εQR

(M |∇Qφ̃R|NP ) ,

D(R)φ̃MNP = φ̃MNP − ℓ

6
εQR

(M |∇Qφ̃R|NP ) . (4.4)

Now, putting this together with (2.13), our equations of motion become

D(M)D(L)D(R)φ̃MNP = 0 . (4.5)

– 7 –
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One can also check that D(M), D(L) and D(R) are three sets of mutually commuting oper-

ators. The superscripts (M), (L) and (R) stand for massive, left moving and right moving

branches, respectively. Taking trace of the equation (4.5) and contracting it with ∇M , one

finds that

∇M φ̃M = 0 (4.6)

However, we see that we do not get any tracelessness constraint from the equation of motion

and we will soon see that the trace will be responsible for giving rise to some non-trivial

solutions to the equation of motion.

Let us now try to solve for the massive branch. We can obtain the left moving and

right moving solution from this by putting µℓ = 1 and µℓ = −1 respectively. The massive

branch equation is

D(M)φ̃MNP = 0 , (4.7)

where D(M) is defined in (2.13). Let D̃(M) be the same as D(M) with µ → −µ. By acting

on (4.7) with D̃(M), we get

∇2φ̃MNP −
(

4µ2 − 4

ℓ2

)

φ̃MNP =
1

6
∇(M∇N φ̃P ) +

8

9ℓ2
g(MN φ̃P ) +

1

9
∇2φ̃(MgNP ) . (4.8)

The equations for the massless branch is the same as above with µ→ 1
ℓ
. Taking the trace

of the above equation, we get

(

∇2 − 36µ2 +
2

ℓ2

)

φ̃M = 0 . (4.9)

We will solve the equations in AdS3 background with the metric

ds2 = ℓ2(− cosh2 ρdτ2 + sinh2 ρdφ2 + dρ2) . (4.10)

The metric has the isometry group SL(2, R)L × SL(2, R)R. The SL(2, R)L isometry gener-

ators are [5]

L0 = i∂u ,

L−1 = ie−iu

[

cosh 2ρ

sinh 2ρ
∂u − 1

sinh 2ρ
∂v +

i

2
∂ρ

]

,

L1 = ieiu
[

cosh 2ρ

sinh 2ρ
∂u − 1

sinh 2ρ
∂v −

i

2
∂ρ

]

, (4.11)

where u ≡ τ +φ and v ≡ τ −φ. The SL(2, R)R generators (L̄0, L̄±1) are given by the above

expressions with u→ v. The quadratic Casimirs are

L2 =
1

2
(L1L−1 + L−1L1) − L2

0 ,

L̄2 =
1

2

(

L̄1L̄−1 + L̄−1L̄1

)

− L̄2
0 . (4.12)
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The Laplacian acting on tensors of various ranks can be written in terms of SL(2, R)

Casmirs as

∇2h = − 2

ℓ2
(

L2 + L̄2
)

h ,

∇2hM = − 2

ℓ2
(

L2 + L̄2
)

hM − 2

ℓ2
hM ,

∇2hMN = − 2

ℓ2
(

L2 + L̄2
)

hMN − 6

ℓ2
hMN +

2

ℓ2
hgMN ,

∇2hMNP = − 2

ℓ2
(

L2 + L̄2
)

hMNP − 12

ℓ2
hMNP +

2

ℓ2
h(MgNP ) . (4.13)

Now we are in a position to solve the equations of motion. We will first solve for the

trace (4.9), put it back into the full equation (4.8) and obtain the solution to the full

equation which carries this trace. Using (4.13), we can solve for the trace and classify it in

terms of SL(2, R) primaries and descendants. Using (4.13), we can write (4.9) as

[

− 2
(

L2 + L̄2
)

− 36µ2ℓ2
]

φ̃M = 0 . (4.14)

Let us specialise to “primary” states with weights (h, h̄), i.e.

L0φ̃M = hφ̃M , L̄0φ̃M = h̄φ̃M ,

L1φ̃M = 0 , L̄1φ̃M = 0 . (4.15)

From the explicit form of the generators (4.11), one can see that (u, v) dependence of φ̃M is

φ̃M = e−ihu−ih̄vψM (ρ) , (4.16)

The primary conditions (second line of (4.15)) are satisfied for h− h̄ = 0,±1, but the only

solutions compatible with the condition ∇M φ̃M = 0 are

h− h̄ = 1 , ψv = 0 , ψρ =
2i

sinh(2ρ)
f(ρ) , ψu = f(ρ) ,

or h− h̄ = −1 , ψu = 0 , ψρ =
2i

sinh(2ρ)
f(ρ) , ψv = f(ρ) , (4.17)

where f(ρ) satisfies5

∂ρf(ρ) +

[

(h+ h̄) sinh2(ρ) − cosh2(ρ)

sinh ρ cosh ρ

]

f(ρ) = 0

=⇒ f(ρ) =
1

ℓ2
(cosh ρ)−(h+h̄) sinh(ρ) . (4.18)

The first line of (4.17) is the solution to our original equation of motion (4.7), whereas the

second line is the solution to the original equation of motion with µ → −µ. The second

5We have put an overall factor of 1
ℓ2

in the solution to f(ρ). This is because (for dimensional consistency)

we want to obtain the solution to φ̃MNP which are dimensionless so that at the end of the day we can

multiply appropriate powers of ℓ to the solution to match it with its canonical dimension. And since we

want the full solution to be dimensionless, the trace has to be multiplied by the factor of 1
ℓ2

.
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line will therefore not belong to the massive branch, but by putting µℓ = 1 in the second

line we will get the right branch solution and by putting µℓ = 1 in the first line, we will

get the left branch solution. Putting (4.17) in (4.9), we get

h = 1 ± 3µℓ , h̄ = ±3µℓ ,

or h = ±3µℓ h̄ = 1 ± 3µℓ . (4.19)

It is easy to see that f(ρ) in (4.18) will blow up at ρ→ ∞ if h+ h̄ < 1. Since µℓ ≥ 1, this

rules out the lower sign in (4.19). To summarise, the different branch solution will carry

the following weights.

Massive: h = 1 + 3µℓ h̄ = 3µℓ ,

Left: h = 4 h̄ = 3 ,

Right: h = 3 h̄ = 4 . (4.20)

We can successively apply L−1 and L̄−1 on the primary solutions obtained above and obtain

the descendant solutions. After obtaining the solution for the trace, let us try to obtain

the solution to the full equation (4.8). Using (4.13), we can write (4.8) as

1

ℓ2
[

− 2
(

L2 + L̄2
)

− 8− 4µ2ℓ2
]

φ̃MNP =
1

6
∇(M∇N φ̃P ) −

4

3ℓ2
(1− 3µ2ℓ2)φ̃(MgNP ) . (4.21)

We have to put the solution obtained for the trace in the r.h.s. of the above equation

and obtain the solution to the full equation. If we take the primary (or descendant) trace

solutions (4.16), (4.17), (4.18) in the r.h.s. of (4.21), then one can show that φ̃MNP , should

also be a primary (or descendant) solution. This is because of the following identity (which

we prove in appendix A)

Lξ∇(M∇N φ̃P ) = ∇(M∇NLξφ̃P ) , (4.22)

where Lξ is an isometry generator.

Since the trace carries weights (h, h̄) given by (4.19), we can break the full φ̃MNP as

φ̃MNP = χMNP + ΣMNP , (4.23)

where all the parts of φ̃MNP which carry the weights (h, h̄) are put into χMNP and the

rest in ΣMNP . They satisfy the equations

1

ℓ2
[

− 2
(

L2 + L̄2
)

− 8 − 4µ2ℓ2
]

χMNP =
1

6
∇(M∇N φ̃P ) −

4

3ℓ2
(1 − 3µ2ℓ2)φ̃(MgNP ) ,

1

ℓ2
[

− 2
(

L2 + L̄2
)

− 8 − 4µ2ℓ2
]

ΣMNP = 0 . (4.24)

Since the r.h.s. of (4.21) carries the weights (4.19), hence it should be equated with a part

of l.h.s. which carries the same weights and hence the equation is decomposed in the above

way. The first of the equation in (4.24) becomes (by using the weights (4.19))

8

ℓ2
(4µ2ℓ2 − 1)χMNP =

1

6
∇(M∇N φ̃P ) −

4

3ℓ2
(1 − 3µ2ℓ2)φ̃(MgNP ) . (4.25)
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The solution to χMNP is therefore

χMNP =
ℓ2

8(4µ2ℓ2 − 1)

[

1

6
∇(M∇N φ̃P ) −

4

3ℓ2
(1 − 3µ2ℓ2)φ̃(MgNP )

]

. (4.26)

We see that the solution has a divergence at µℓ = 1
2 . This is not something unusual since

we are solving the equation with a source (r.h.s. of (4.21)) of specific weights (h, h̄). This

divergent behaviour is analogous to the resonance in forced oscillations. From (4.26), we

notice that

gNPχMNP = φ̃M ∇MχMNP =
1

2
∇(N φ̃P ) . (4.27)

Using (4.27) in the decomposition (4.23) and in the gauge condition (4.1), we get

gNP ΣMNP = 0 , ∇MΣMNP = 0 . (4.28)

Let us now solve the equation of motion for ΣMNP (the second line of (4.24)) subject to the

tracelessness and gauge condition (4.28).6 We specialise to “primary” states with weights

(h, h̄), i.e.

L0ΣMNP = hΣMNP , L̄0ΣMNP = h̄ΣMNP

L1ΣMNP = 0 , L̄1ΣMNP = 0 . (4.29)

From the explicit form of the generators, one can see that the (u, v) dependence of ΣMNP is

ΣMNP = e−ihu−ih̄vσMNP (ρ) , (4.30)

The primary conditions are solved for h − h̄ = 0,±1,±2,±3. But the only solutions

compatible with the gauge conditions and tracelessness condition (4.28) are

h− h̄ = 3 ,

σMNv = 0

σρuu =
if(ρ)

cosh ρ sinh ρ
σuuu =f(ρ) σρρρ =

−if(ρ)

cosh3(ρ) sinh3(ρ)
σuρρ =

−f(ρ)

cosh2(ρ) sinh2(ρ)
,

(4.31)

and

h− h̄ = −3 ,

σMNu = 0

σρvv =
if(ρ)

cosh ρ sinh ρ
σvvv =f(ρ) σρρρ =

−if(ρ)

cosh3(ρ) sinh3(ρ)
σvρρ =

−f(ρ)

cosh2(ρ) sinh2(ρ)
,

(4.32)

where f(ρ) satisfies

∂ρf(ρ) +

[

(h+ h̄) sinh2(ρ) − 3 cosh2(ρ)

sinh ρ cosh ρ

]

f(ρ) = 0

=⇒ f(ρ) = (cosh ρ)−(h+h̄) sinh3(ρ) . (4.33)

6This solution is similar to the one obtained in [30].
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Now putting the above into the second line of (4.24), we get

h = 2 ± µℓ h̄ = −1 ± µℓ

or h = −1 ± µℓ h̄ = 2 ± µℓ (4.34)

The solution with h − h̄ = 3 belongs to the original massive branch whereas h − h̄ = −3

belongs to the massive branch with µ→ −µ. The left branch is obtained by putting µℓ = 1

in the h− h̄ = 3 solution and right branch is obtained by putting µℓ = 1 in the h− h̄ = −3

solution. It is also easy to check that f(ρ) in (4.33) diverges at ρ → ∞ unless h + h̄ ≥ 3.

This rules out the lower sign in (4.34). To summarise we obtain the following solution

Massive: h = 2 + µℓ h̄ = −1 + µℓ

Left: h = 3 h̄ = 0

Right: h = 0 h̄ = 3 (4.35)

We can successively apply L−1 and L̄−1 on the primary solutions obtained above to obtain

the descendant solutions. At the chiral point µℓ = 1, the massive and left branch solutions

coincide and and hence the basis of solutions become insufficient to describe the dynamics.

However following the construction of [12], one sees that a new logarithmic mode emerges

(which is annihilated by D(L)2 and not by D(L)). We now turn to this point.

4.2 Logarithmic modes at the chiral point

Let us denote the massive branch, left branch and right branch solutions with superscripts

M, L and R respectively. At the chiral point µℓ = 1, the massive branch and left branch

coincides and hence the basis of solutions become insufficient to describe the dynamics.

However following the construction of [12], one sees that a new logarithmic mode emerges

(which is annihilated by D(L)2 and not by D(L)). The logarithmic mode is obtained as

Φ(new) = lim
µℓ→1

Φ(M)(µℓ) − Φ(L)

µℓ− 1
=
dΦ(M)(ǫ)

dǫ

∣

∣

∣

∣

ǫ=0

, (4.36)

where ǫ ≡ µℓ− 1. We have schematically used Φ to denote any mode which has a decom-

position into massless and massive branches and have suppressed any possible spacetime

indices. It can be easily seen that since Φ(M) and Φ(L) are annihilated by D(M) and D(L)

respectively, the term inside the limit is annihilated by D(M)D(L) but not by D(M) or D(L)

separately. After taking the limit, therefore the mode is annihilated by D(L)2 but not by

D(L). Now let us find out the logarithmic partner of the mode χMNP in (4.26). Expressing

µℓ in terms of ǫ and then taking the derivative w.r.t. ǫ, we get

χ̂MNP ≡ dχMNP (ǫ)

dǫ

∣

∣

∣

∣

ǫ=0

= −ℓ
2

9

[

1

6
∇(M∇N φ̃

(L)
P )

− 1

3ℓ2
φ̃

(L)
(M
gNP )

]

+
ℓ2

24

[

1

6
∇(M∇N φ̂P )+

8

3ℓ2
φ̂(MgNP )

]

, (4.37)

where φ̃
(L)
M is the trace of the left branch solution and φ̂M ≡ dφ̃

(M)
M

(ǫ)
dǫ

∣

∣

ǫ=0
. It can be easily

seen from the definition of φ̂M that

φ̂M = [−3i(u + v) − 6 log cosh ρ]φ̃
(L)
M , (4.38)

– 12 –



J
H
E
P
1
0
(
2
0
1
1
)
1
5
0

and hence

L0φ̂M = 3φ̃
(L)
M + 4φ̂M L̄0φ̂M = 3φ̃

(L)
M + 3φ̂M L1φ̂M = L̄1φ̂M = 0

=⇒ L2φ̂M = −21φ̃
(L)
M −12φ̂M L̄2φ̂M = −15φ̃

(L)
M − 6φ̂M

=⇒
(

∇2− 34

ℓ2

)

φ̂M =

[

− 2

ℓ2
(

L2+L̄2
)

− 36

ℓ2

]

φ̂M =
72

ℓ2
φ̃

(L)
M . (4.39)

Using the above set of equations and taking the trace of (4.37), we get, as expected, that

φ̂M is the trace of χ̂MNP . We also see that χ̂MNP satisfies

L0χ̂MNP =3χ
(L)
MNP + 4χ̂MNP , L̄0χ̂MNP =3χ

(L)
MNP + 3χ̂MNP , L1χ̂MNP = L̄1χ̂MNP =0 .

(4.40)

We have thus obtained the logarithmic partner of the mode χ
(L)
MNP at the chiral point.

Using the same trick we can also obtain the logarithmic partner of the mode Σ
(L)
MNP and

we get7

Σ̂MNP ≡
dΣ

(M)
MNP (ǫ)

dǫ

∣

∣

∣

∣

ǫ=0

=
[

− i(u+ v) − 2 log cosh ρ
]

Σ
(L)
MNP , (4.41)

and hence Σ̂MNP satisfies

L0Σ̂MNP = Σ
(L)
MNP + 3Σ̂MNP L̄0Σ̂MNP = Σ

(L)
MNP L1Σ̂MNP = L̄1Σ̂MNP = 0 . (4.42)

We have so far obtained traceless as well as traceful solutions to the equation of mo-

tion (2.13). We also obtained their logarithmic partners at the chiral point. We label the

massive, left and right branch χ modes (4.26) as (Mχ), (Lχ) and (Rχ) respectively. We

also label the logarithmic solution to the χ mode (4.37) as (logχ). Similarly we label the

massive, left, right and logarithmic Σ modes (4.31), (4.32), (4.33), (4.35), (4.41) as (MΣ),

(LΣ), (RΣ) and (logΣ) respectively. We will now obtain the energies of all the above modes.

4.3 Energy of the fluctuations

After imposing the field redefinition and gauge condition (4.1), we obtain the action (2.12)

(up to total derivatives) as,

S =
1

2

∫ √
−g

[

−∇Qφ̃
MNP∇Qφ̃MNP − 1

2µ
εQRM∇Qφ̃MNP∇2φ̃R

NP

+
19

9ℓ2

(

φ̃M φ̃M +
1

6µ
εQRM φ̃M∇Qφ̃R

)

+
17

18

(

∇Qφ̃M∇Qφ̃M +
1

6µ
εQRM∇Qφ̃M∇2φ̃R

)]

(4.43)

7This is the same as the logarithmic mode obtained in [30].
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The momentum conjugate to φ̃MNP is

Π(1)MNP ≡ δS

δ
˙̃
φMNP

=

√−g
2

[

−∇0

(

2φ̃MNP +
1

6µ
εQR(M∇Qφ̃

NP )
R

)

+
17

18 × 3
∇0

(

2φ̃(MgNP ) +
1

6µ
εQR(M∇Qφ̃Rg

NP )

)

− 1

6µ
ε0R(M∇2φ̃

NP )
R − 19

9 × 18

1

µℓ2
ε0R(M φ̃Rg

NP )+
17

18 × 18µ
ε0R(M∇2φ̃Rg

NP )

]

.

(4.44)

Since we have three time derivatives, we should also implement the Ostrogradsky method

(following [5]), and introduce KMNP ≡ ∇0φ̃MNP as a canonical variable and find the

momentum conjugate to that which is,

Π(2)MNP ≡ δS

δK̇MNP

=

√−g
2

[

1

6µ
g00εQR(M∇Qφ̃

NP )
R − 17

18 × 18µ
g00εQR(M∇Qφ̃Rg

NP )

]

(4.45)

The above expressions are the most generic expressions for the conjugate momenta and

can be applied on any modes. The conjugate momenta for the different modes are listed in

appendix B. In order to obtain the energy we must put the expressions for the conjugate

momenta in the Hamiltonian

H =

∫

d2x
(

˙̃φMNP Π(1)MNP + K̇MNP Π(2)MNP − L
)

=

∫

d2x
(

˙̃φMNP Π(1)MNP −KMNP Π̇(2)MNP − L
)

+
d

dτ

∫

d2xKMNP Π(2)MNP

≡ E0 + E1, (4.46)

where the integral is over φ and ρ and L is the Lagrangian density. We have defined the first

integral in the second line of (4.46) as E0 and second integral as E1. Also note that L = 0

on the solutions. Now we can put the conjugate momenta obtained in appendix B and the

real part of the solutions obtained in the previous sections to get the energy expressions

for different modes. One can see by explicitly putting the solutions in the above integrals

that E1 for all the non-logarithmic modes vanishes but logarithmic modes get non-trivial

contribution from E1. Putting the real part of the logarithmic solutions and expressions
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for the conjugate momenta for the logarithmic modes in Mathematica, we get8

E1
(logχ) =

d

dτ

∫

d2x

√−g
2

[

−∇0χ̂MNP

(

χ̂MNP + χ(L)MNP
)

+
17

18
∇0χ̂M

(

χM + χM
)

]

,

=
79π

280ℓ5

E1
(logΣ) =

d

dτ

∫

d2x
−√−g

2

[

∇0Σ̂MNP

(

Σ̂MNP + Σ(L)MNP
)]

= − 4π

15ℓ5
. (4.47)

We can now put the expressions for the real part of the solutions obtained in the previous

sections and conjugate momenta in appendix B, to get the expressions for E0 for different

modes. For the non logarithmic χ modes we get,

E0
(Mχ) = − 3

µ

(

3µ2 − 1

ℓ2

)
∫

d2x
√
−g ε0RM χ̇

(M)
MNPχ

(M) NP
R

+
1

6µ

(

17µ2 − 5

ℓ2

)
∫

d2x
√
−g ε0RM χ̇

(M)
M χ

(M)
R

E0
(Lχ) =

(

− 1 +
1

µℓ

)
∫

d2x
√
−g

[

χ̇
(L)
MNP∇

0χ(L)MNP − 17

18
χ̇

(L)
M ∇0χ(L)M

]

− 6

µℓ2

∫

d2x
√
−g ε0RM χ̇

(L)
MNPχ

(L) NP
R +

2

µℓ2

∫

d2x
√
−g ε0RM χ̇

(L)
M χ

(L)
R

E0
(Rχ) =

(

− 1 − 1

µℓ

)
∫

d2x
√
−g

[

χ̇
(R)
MNP∇

0χ(R)MNP − 17

18
χ̇

(R)
M ∇0χ(R)M

]

− 6

µℓ2

∫

d2x
√
−g ε0RM χ̇

(R)
MNPχ

(R) NP
R +

2

µℓ2

∫ √
−g ε0RM χ̇

(R)
M χ

(R)
R (4.48)

For the non logarithmic Σ modes, we get

E0
(MΣ) =

1

µ

(

µ2 − 1

ℓ2

)
∫

d2x
√
−g εR0M Σ̇

(M)
MNP Σ

(M)NP
R

E0
(LΣ) =

(

− 1 +
1

µℓ

)
∫

d2x
√
−g Σ̇

(L)
MNP∇

0Σ(L)MNP

E0
(RΣ) =

(

− 1 − 1

µℓ

)
∫

d2x
√
−g Σ̇

(R)
MNP∇

0Σ(R)MNP (4.49)

8All the expressions of energy that we will obtain will have the dimension of 1
ℓ5

. This is due to our

choice of units 1
16πG

= 1 and using dimensionless solutions of φ̃MNP . If we re-instate the factor of 1
16πG

= 1

and multiply the solutions of φ̃MNP with appropriate powers of ℓ matching their canonical dimensions, we

will get the correct dimensions of energy. However this will not change any of the qualitative features of

the discussion.
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For the logarithmic modes (trace as well as traceless), we get

E0
(logχ) =

∫

d2x

√−g
2

[

˙̂χMNP∇0χ(L)MNP+χ̇
(L)
MNP∇

0χ̂MNP− 17

18

(

˙̂χM∇0χ(L)M +χ̂
(L)
M ∇0χ̂M

)

]

−6

ℓ

∫

d2x
√
−g ε0RM ˙̂χMNP χ̂

NP
R +

2

ℓ

∫

d2x
√
−g ε0RM ˙̂χM χ̂R

−18

ℓ

∫

d2x
√
−g ε0RM ˙̂χMNPχ

(L) NP
R +

17

3l

∫

d2x
√
−g ε0RM ˙̂χMχ

(L)
R

E0
(logΣ) =

∫

d2x

√−g
2

(

˙̂
ΣMNP∇0Σ(L)MNP + Σ̇

(L)
MNP∇

0Σ̂MNP
)

−2

ℓ

∫

d2x
√
−g ε0RM ˙̂

ΣMNP Σ
(L)NP
R (4.50)

All the integrands above are t and φ independent. From the above expressions, one

can easily see that for MΣ, LΣ and RΣ, the expression is quite simple, being given by single

integrals, and by putting the solutions in the integrals, one find that they are negative.

Hence one finds that E0
RΣ

is always positive, E0
LΣ

is positive for µℓ > 1 and E0
MΣ

is positive

for µℓ < 1. And since E1 vanishes for non-logarithmic modes, we find, in agreement

with [30], that the qualitative feature for the non-logarithmic Σ modes is the same as that

of the spin-2 case [5]. The energy expressions for the left and right χ modes are obtained

after putting the solutions in Mathematica as

E(Lχ) = E0
(Lχ) =

π

3µℓ6
(1 − µℓ) ,

E(Rχ) = E0
(Rχ) =

π

3µℓ6
(1 + µℓ) . (4.51)

Thus we see that even for the χ modes the energy of the right branch is always positive

and the energy of the left branch is positive for µℓ < 1 and is zero for µℓ = 1. Although a

direct analytic expression for EMχ is not possible, but using Mathematica it can be seen

that it is zero for µℓ = 1, positive for µℓ > 1 and negative for µℓ < 1. We mention some of

the numerical results for EMχ obtained using Mathematica.

µℓ =
1

3
: E(Mχ) = E0

(Mχ) = − 16π

45ℓ5
.

µℓ = 1 : E(Mχ) = E0
(Mχ) = 0 ,

µℓ = 2 : E(Mχ) = E0
(Mχ) =

π

40ℓ5
,

µℓ = 3 : E(Mχ) = E0
(Mχ) =

16π

315ℓ5
. (4.52)

The energies E0 for the logarithmic branch solutions are obtained (after putting the solu-

tions in Mathematica) as:

E0
(logχ) =

859π

504ℓ5
,

E0
(logΣ) = −132π

25ℓ5
. (4.53)

This, along with (4.47), shows that the logχ modes has positive energy and the logΣ modes

has negative energy.
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4.4 Residual gauge transformation

In this section, we will show that the massless branch solutions and massive branch so-

lution at the chiral point (both the trace as well as traceless modes) can be removed by

an appropriate choice of residual gauge transformation. But since the residual gauge pa-

rameters does not vanish at the boundary, the modes can be regarded as gauge equivalent

to the vacuum only if they have vanishing energy. Hence, as per the calculations of the

energies above, we will see that massive and left moving solution at the chiral point (both

the trace as well as traceless mode) can be regarded as gauge equivalent to vacuum. The

gauge transformation in terms of the variable φ̃MNP (4.1) is

δφ̃MNP = ∇(M ξNP ) +
1

2
∇Qξ

Q
(MgNP ) ,

δφ̃M =
9

2
∇Nξ

N
M . (4.54)

We need to find the residual gauge transformation obeying the gauge condition (4.1) and

the auxiliary condition (4.6) implied by the equation of motion. We find that the residual

gauge transformation satisfying these properties is

∇2ξMN − 6

ℓ2
ξMN =

3

4
∇(M∇Qξ

Q
N) ,

∇M∇Nξ
MN = 0 . (4.55)

One can use the above equation to deduce the following equation for ∇Mξ
M
N

∇2
(

∇Mξ
M
N

)

− 34

ℓ2
∇Mξ

M
N = 0 . (4.56)

We thus see that ∇Mξ
M
N satisfies the same equation as φ̃M (4.9) at the chiral point µℓ = 1,

obeying the same condition (4.6). Thus one can choose the residual gauge transformation

to remove the trace of the massless branch solution and of the massive branch solution at

the chiral point which subsequently gauge away the appropriate χ modes.

For the traceless Σ modes, the residual gauge transformation should obey the equations

∇2ξMN − 6

ℓ2
ξMN = 0 ,

∇Mξ
M
N = 0 . (4.57)

We can once again see from (4.57) that for the residual gauge transformation parameter

for the Σ mode satisfying the above equation (4.57), ∇(M ξNP ) satisfies

∇2∇(MξNP ) = 0 ,

∇M∇(MξNP ) = 0 . (4.58)

These equations are the same as the massless Σ equations of motion and massive equations

of motion at the chiral point (4.24) and Σ gauge condition (4.28) and hence one can

appropriately choose the parameters to gauge away the massless branch solution for ΣMNP

and massive branch solution for ΣMNP at the chiral point.
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To summarise, we find that both the massless χ and Σ modes and their respective

massive modes at the chiral point can be gauged away by an appropriate choice of residual

gauge transformation parameters. Since the gauge transformation parameters do not vanish

at the boundary, the modes can however be treated as gauge equivalent to vacuum only if

they have vanishing energy. Hence, as per the energy calculations in the previous section,

the left branch solution and massive branch solution at the chiral point can be regarded

as gauge equivalent to vacuum. Since the logarithmic modes do not satisfy the same

equations as their left moving partners, they cannot be regarded as pure gauge and are

therefore physical propagating modes in the bulk. Thus the logarithmic traceless modes

indicate a genuine instability in the bulk since they carry negative energy.

5 Asymptotic symmetries and the chiral point

In our analysis of three dimensional gravity with spin three fields, we have seen that while

solving the equations of motion for the linearised spin three, we find that there is a point

where the basis for the solution becomes insufficient to describe it. This is the indication

of the development of a logarithmic branch to the solution. This happens at a point where

µℓ = 1. This is the same point where the spin-two excitations develop a logarithmic branch

and the central charge of the left moving Virasoro algebra vanishes.

Topological Massive Gravity at the chiral point was conjectured to be dual to a loga-

rithmic conformal field theory with c = 0. In our bulk analysis above, we have provided

indications that a similar picture emerges when one includes the spin-three fields. To

further our understanding of the symmetries of the boundary theory, let us look at the

asymptotic symmetry structures.

5.1 The c = 0 confusion

The asymptotic symmetry analysis for the theory with spin three fields in AdS (without the

parity violating gravitational C-S term) was performed recently in [18, 19]. The asymptotic

symmetry algebra that was obtained was the classical W3 algebra.

[

Lm, Ln

]

= (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 (5.1)

[

Lm,Wn

]

= (2m− n)Wm+n

[

Wm,Wn

]

=
c

360
m(m2 − 1)(m2 − 4)δm+n,0 +

16

5c
(m− n)Λm+n

+(m− n)

(

1

15
(m+ n+ 2)(m+ n+ 3) − 1

6
(m+ 2)(n + 2)

)

Lm+n ,

where

Λm =
+∞
∑

n=−∞

Lm−n Ln . (5.2)

sums quadratic nonlinear terms. Here the central charge for both the Virasoro and the

pure W3 is given by the Brown-Henneaux central term c = 3ℓ
2G

for AdS.

When one adds the parity violating gravitational C-S term, in the case of the usual

AdS3 without any higher spin terms, one ends up with corrected central terms where the
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left-right symmetry is broken, viz. c± = 3ℓ
2G

(1 ∓ 1
µℓ

). The “chiral-point” corresponds to

µℓ = 1 where c+ = 0.

The shift of the central terms, which is the effect of gravitational anomalies on the

boundary stress tensor [35, 36], does not change with the addition of the spin three fields.

Thus the asymptotic symmetry algebra for the bulk theory with the Chern-Simons terms

added is two copies of W3 algebra, now with differing central charges.

Now, when we look at the chiral point of the W3 algebra, we see a potential problem.

The non-linear term (5.2) in (5.1) has a coefficient which is inversely proportional to the

central term and hence in the chiral limit would blow up.

5.2 The solution

We propose a simple solution to the above problem. The blowing up of an algebra in a

particular limit is indicative of the fact that one should look at an Inönü-Wigner contraction

of the algebra at that point. To achieve this, let us rescale the generators as follows:

Ln = Ln , Yn =
√
cWn . (5.3)

The rescaled W3 algebra now looks like

[

Lm, Ln

]

= (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 , (5.4)

[

Lm, Yn

]

= (2m− n)Ym+n ,

[

Ym, Yn

]

=
c2

360
m(m2 − 1)(m2 − 4)δm+n,0 +

16

5
(m− n)Λm+n

+c(m− n)

(

1

15
(m+ n+ 2)(m + n+ 3) − 1

6
(m+ 2)(n + 2)

)

Lm+n .

Now, at the chiral point, the algebra would be the contracted version of theW3 algebra.

[

Lm, Ln

]

= (m− n)Lm+n ,
[

Lm, Yn

]

= (2m− n)Ym+n , (5.5)
[

Ym, Yn

]

=
16

5
(m− n)Λm+n .

The Y and Λ actually generate an ideal and so one must set them to zero in any irre-

ducible representation of the W3 algebra. So the classical W3 in the chiral limit essentially

reduces to the Virasoro algebra.

What we are advocating here is the classical analogue of what happens for the quantum

W3 for c = −22/5 [38]. Let us remind the reader of the quantum version of the W3 algebra

is. The quantum effects enter into the regularisation of the quadratic non-linear term (5.2).

This shifts the overall quadratic coefficient of the quadratic term from 16
5c

→ 16
5c+22 in (5.1).

As is obvious, c = −22/5 represents a blowing up of the quantum W3 algebra and [38]

prescribes a similar procedure to what we have outlined above.

The logarithmic degeneracy at the chiral point that we would go on to construct, in

this light would be related to a left moving LCFT with c = 0, very similar to the original

construction of the spin-two example.
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5.3 Comments on other possible solutions

The above procedure is certainly a correct one, but one might think that this is not the

most general procedure that can be followed at the chiral point. Let us comment on a

couple of other possible solutions.

One way to argue that c = 0 is not a problem in this context is to say that in this

limit one should actually be looking at the quantum version of the W3, instead of the

classical algebra. Then the shifting of the non-linear term described above would mean

that the algebra is perfectly fine in the chiral limit. When c is small, and the curvature

of space-time is large, it may be more sensible to look at the quantum algebra. The

question obviously would be how an asymptotic symmetry analysis would see the change

from classical to quantum and this is far from obvious. That this feature does not have any

analogue in the well-studied spin-two example makes this an attractive avenue of further

exploration.

Another possible solution is to say that nothing is wrong at c = 0. Λ is actually a

null field and the c=0 singularity is cancelled by Λ become null. Let us take the quantum

counterpart c = −22/5. Let us suppose that Λ is a null field. We can work the commutation

relations and see for example,

[

Lm,Λn

]

= (3m− n)Λm+n +
22 + 5c

16

[

m(m2 − 1)Lm+n

]

. (5.6)

So we see that indeed at c = −22/5, this commutator closes to Λ. This is consistent

with the fact that Λ is a null field. We can similarly work out the consequences for Wn.

The obstacle in this path is trying to figure out how to carry out an essentially quantum

mechanical analysis in a classical algebra. We leave these issues for future work.

6 Conclusions and future directions

In this paper, we reviewed the the linearised action for spin-3 Fronsdal fields with a Chern-

Simons term in flat space [31] and generalised it to AdS space. The structure of the action

is uniquely fixed by gauge invariance. We looked at its relation to the SL(3, R) × SL(3, R)

Chern-Simons action [18, 19] with unequal levels and fixed the normalisation of the gauge

invariant action found earlier. We then looked at the equations of motion and decomposed

it into left, right and massive branch.

We figured out that the trace cannot be set to zero unlike the spin-2 case [5]. The

trace gives rise to non-trivial solutions to the equations of motion which has no counter-

part in the spin-2 case. The trace solution has a “resonant” behaviour at µℓ = 1
2 . The

massive branch trace mode carries positive energy for µℓ > 1 and negative energy for

µℓ < 1 and zero energy for µℓ = 1. The left branch solution carries positive energy for

µℓ < 1 and negative energy for µℓ > 1 and zero energy for µℓ = 1. Apart from the

“trace” solutions we also have the usual traceless mode. However the traceless mode has

energy behaviour which is opposite to that of the trace mode (and similar to the spin-2

counterpart [5]) i.e. massive traceless mode carries positive energy for µℓ < 1 and nega-

tive energy for µℓ > 1 and zero energy for µℓ = 1 and the left branch traceless solution
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carries positive energy for µℓ > 1 and negative energy for µℓ < 1 and zero energy for

µℓ = 1. The right branch solution carries positive energy for both the trace and trace-

less mode.

At the chiral point the massive and left branch solution coincide and develop a new

logarithmic branch both for the trace and traceless modes. The logarithmic solution for

the trace mode carries positive energy whereas the logarithmic solution for the traceless

mode carries negative energy. We also found that left branch and massive branch solution

at the chiral point are pure gauge and have vanishing energy and hence can be treated as

gauge equivalent to the vacuum. But the logarithmic modes are not pure gauge and are

therefore physical propagating modes in the bulk. And since the logarithmic solution for

the traceless mode carries negative energy, it indicates an instability in the bulk at the

chiral point. It is therefore tempting to conjecture that higher spin massive gravity con-

structed in this paper at the chiral point is dual to a higher spin extension of LCFT2. But

there are some conceptual issues which should be dealt with before making this conjecture

which are:

1. Variational principle is well defined for the new logarithmic solutions.

The logarithmic solutions are the non trivial solutions to spin-3 massive gravity at the

chiral point that grows linearly in time and linearly in ρ asymptotically. It is found to

have finite time-independent negative energy. But before it can be accepted as a valid

classical solution one must check that the variational principle is well defined, i.e. the

boundary terms vanish on-shell for the logarithmic solutions. Similar questions for

the spin-2 counterpart was asked with an affirmative answer in [12]. We would also

like to do similar check for both of our logarithmic solutions and as a by product

obtain the boundary currents dual to the logarithmic modes.

2. Consistent boundary conditions for the logarithmic modes.

We should be able to find consistent set of boundary conditions which encompasses

the new logarithmic solutions i.e. there are consistent set of boundary conditions for

which the generator of the asymptotic symmetry group is finite. Similar questions

for the spin-2 case was asked with an affirmative answer in [13]. We would also like

to perform similar analysis for our logarithmic branch solutions.

3. Correlation function calculation.

We should be able to compute correlation function in the gravity side. This should

put us in a position to compare them with boundary correlators expected from a

higher spin extension of LCFT. Similar questions were addressed in [14–16] for the

spin-2 case. The comparison in that case was however with correlators in LCFT

which is well known in the literature. To our knowledge there is no higher spin

extension of LCFT in the literature so far.9 The correlation function calculations

should open up interesting questions to be answered about the higher spin extension

of LCFT.

9See however some very recent work [39].

– 21 –



J
H
E
P
1
0
(
2
0
1
1
)
1
5
0

4. One loop partition function calculation.

To make the higher spin extension of LCFT dual to the theory constructed in this

paper more concrete, one should also compute the one loop determinant of the Eu-

clidean theory constructed in this paper using the heat kernel techniques of [23]

(which was also applied to the massless higher spin theory in [22]). If the LCFT

proposal is right, one should be able to show that there would be no holomorphic

factorisation of the one loop partition function at the chiral point. The expecta-

tion is that we would learn something more about the higher spin extension of

LCFT from the structure of the one loop partition function. Similar calculations

were done for TMG without higher spin in [40] and for General Massive Gravity

in [41] and the authors found concrete evidence for an AdS/LCFT picture. In a

subsequent work, we have looked at doing a similar computation for the spin-3 ver-

sion of TMG constructed in this paper and subsequently generalized it to arbitrary

spins [42].

Apart from all the above issues, the boundary CFT needs to be understood better.

For example, there is the peculiar “resonant” behaviour found for the trace modes at

µℓ = 1
2 which should show up even in the CFT. Apart from that we find a positive

energy propagating mode in the bulk at the chiral point, which is the logarithmic solution

corresponding to the trace mode. This has no counterpart in the spin-2 example and we

would like to understand what this means from the CFT perspective. We leave these issues

for future work.

Before we conclude, let us pause to remind the reader of the essential differences

between our work and the work mentioned in the introduction which we said had some

overlap with ours [30]. The part of our work which overlaps with [30] is the analysis of the

traceless mode. The novel feature of our work is the trace modes and their logarithmic

partner. We find several non-trivial features of this trace mode which we have addressed

in this paper. We find instability in the bulk by explicitly computing the energy of the

logarithmic partner of the traceless modes and end by speculating a higher spin extension

of LCFT dual to the theory constructed in this paper at the chiral point. We also have a

different proposal for the asymptotic symmetry structure and its peculiarities at the chiral

point.
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A Taking the isometry generator across symmetrised covariant deriva-

tives

In this appendix we give the proof of the statement that the isometry generator can be

taken across symmetrised covariant derivatives. Let the isometry generator be

Lξ = ξM∂M , (A.1)

where ξM satisfies

∇(M ξN) = 0 . (A.2)

This generator acts on tensors of rank (r, s) as

LξT
M1M2......Mr

N1N2...Ns
= ξM∂MTM1M2......Mr

N1N2...Ns
−∂Qξ

M1TQM2......Mr

N1N2...Ns
−∂Qξ

M2TM1Q......Mr

N1N2...Ns
· · ·

− ∂Qξ
MrTM1M2......Q

N1N2...Ns
+∂N1ξ

QTM1M2......Mr

QN2...Ns
· · · +∂Nsξ

QTM1M2......Mr

N1N2...Q

= ξM∇MT
M1M2......Mr

N1N2...Ns
−∇Qξ

M1TQM2......Mr

N1N2...Ns
−∇Qξ

M2TM1Q......Mr

N1N2...Ns
· · ·

−∇Qξ
MrTM1M2......Q

N1N2...Ns
+∇N1ξ

QTM1M2......Mr

QN2...Ns
· · · +∇Nsξ

QTM1M2......Mr

N1N2...Q . (A.3)

In the last equality we have added and subtracted Christoffel connections to write the

partial derivatives as covariant derivatives. Now let us apply (A.3) to a tensor of rank 1

and its covariant derivative

LξφN = ξM∇MφN +
(

∇Nξ
M

)

φM

Lξ(∇PφN ) = ξM∇M∇PφN +
(

∇Nξ
M

)

∇PφM +
(

∇P ξ
M

)

∇MφN . (A.4)

Taking a covariant derivative of the first expression in (A.4) and subtracting it from the

second, we obtain after some algebra

∇PLξφN − Lξ(∇PφN ) =
1

ℓ2
ξ[NφP ] − φM∇M∇P ξN . (A.5)

Therefore symmetrising the indices we get

∇(PLξφN) − Lξ(∇(PφN)) = 0 . (A.6)

Now let us define TPN ≡ ∇(PφN). Performing the same analysis as before we obtain

∇M (LξTPN )−Lξ(∇MTPN) =
1

ℓ2
[

ξ[PTM ]N +ξ[NTM ]P

]

−TPQ∇Q∇MξN−TNQ∇Q∇MξP .

(A.7)

And hence once again symmetrising the indices we get

∇(M

(

LξTPN)

)

− Lξ

(

∇(MTPN)

)

= 0 . (A.8)

Combining this with (A.6), we get

∇(M∇NLξφP ) − Lξ

(

∇(M∇NφP )

)

= 0 . (A.9)

This is what we wanted to prove.
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B Conjugate momenta of different modes

In this appendix, we list all the conjugate momenta of the different modes that we obtained

from the equation of motion. The conjugate momenta of the first kind are

Π
(1)MNP

(Mχ) =

√−g
2

[

−∇0χ(M)MNP +
17

18 × 3
∇0χ(M)(MgNP )

− 2

µ

(

3µ2− 1

ℓ2

)

ε0R(Mχ
(M) NP )
R +

1

9µ

(

17µ2− 5

ℓ2

)

ε0R(Mχ
(M)
R gNP )

]

,

Π
(1)MNP

(Lχ) =

√−g
2

[

−
(

2− 1

µℓ

)

∇0χ(L)MNP +
17

18 × 3

(

2− 1

µℓ

)

∇0χ(L)(MgNP )

− 4

µℓ2
ε0R(Mχ

(L) NP )
R +

4

3µℓ2
ε0R(Mχ

(L)
R gNP )

]

,

Π
(1)MNP

(Rχ)
=

√−g
2

[

−
(

2+
1

µℓ

)

∇0χ(R)MNP +
17

18 × 3

(

2+
1

µℓ

)

∇0χ(R)(MgNP )

− 4

µℓ2
ε0R(Mχ

(R) NP )
R +

4

3µℓ2
ε0R(Mχ

(R)
R gNP )

]

,

Π
(1)MNP

(logχ) =

√−g
2

[

−∇0
[

χ̂MNP −χ(L)MNP
]

+
17

18 × 3
∇0

[

χ̂(MgNP )−χ(L)(MgNP )
]

(B.1)

−4

ℓ
ε0R(M χ̂

NP )
R +

4

3l
ε0R(M χ̂Rg

NP )− 12

ℓ
ε0R(Mχ

(L) NP )
R +

34

9l
ε0R(Mχ

(L)
R gNP )

]

.

And

Π
(1)MNP

(MΣ) =

√−g
2

[

−∇0Σ(M)MNP − 2

3µ

(

µ2 − 1

ℓ2

)

ε0R(M Σ
(M)NP )
R

]

,

Π
(1)MNP

(LΣ) = −
√−g

2

(

2 − 1

µℓ

)

∇0Σ(L)MNP ,

Π
(1)MNP

(RΣ) = −
√−g

2

(

2 +
1

µℓ

)

∇0Σ(R)MNP ,

Π
(1)MNP

(logΣ) =

√−g
2

[

−∇0
(

Σ̂MNP − Σ(L)MNP
)

− 4

3l
ε0R(M Σ

(L)NP )
R

]

. (B.2)

And the conjugate momenta of the second kind are

Π
(2)MNP

(Mχ) =

√−g
2

[

− g00χ(M)MNP +
17

18 × 3
g00χ(M)(MgNP )

]

,

Π
(2)MNP

(Lχ) =

√−g
2

[

− 1

µℓ
g00χ(L)MNP +

17

18 × 3µℓ
g00χ(L)(M gNP )

]

,

Π
(2)MNP

(Rχ) =

√−g
2

[

1

µℓ
g00χ(R)MNP − 17

18 × 3µℓ
g00χ(R)(M gNP )

]

,

Π
(2)MNP

(logχ) =

√−g
2

[

− g00
[

χ̂MNP + χ(L)MNP
]

+
17

18 × 3
g00

[

χ̂(MgNP ) + χ(L)(MgNP )
]

]

.

(B.3)
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And

Π
(2)MNP

(MΣ) = −
√−g

2
g00Σ(M)MNP ,

Π
(2)MNP

(LΣ) = −
√−g
2µℓ

g00Σ(L)MNP ,

Π
(2)MNP

(RΣ) =

√−g
2µℓ

g00Σ(R)MNP ,

Π
(2)MNP

(logΣ)
= −

√−g
2

g00
[

Σ̂MNP + Σ(L)MNP
]

. (B.4)

The labels L, M , R and log labels labelling the left, massive, right and logarithmic

modes respectively are kept inside “( )” braces and hence should not be confused with the

spacetime indices MNP . The following relations have been used

D(L)(χ̂, Σ̂)MNP ≡ (χ̂, Σ̂)MNP +
ℓ

6
εQR(M∇Q(χ̂, Σ̂)RNP ) = −(χ,Σ)

(L)
MNP ,

D(M)(χ,Σ)
(M)
MNP = D(L)(χ,Σ)

(L)
MNP = D(R)(χ,Σ)

(R)
MNP = 0 ,

∇2χ̂MNP =
72

ℓ2
χ

(L)
MNP +

24

ℓ2
χ̂MNP +

2

ℓ2
χ̂(MgNP ) ,

∇2χ
(L,R)
MNP =

24

ℓ2
χ

(L,R)
MNP +

2

ℓ2
χ

(L,R)
(M gNP ) ,

∇2χ
(M)
MNP = 12

(

3µ2 − 1

ℓ2

)

χ
(M)
MNP +

2

ℓ2
χ

(M)
(M gNP ) ,

∇2Σ
(L,R)
MNP = 0 , ∇2Σ

(M)
MNP =

(

4µ2 − 4

ℓ2

)

Σ
(M)
MNP ,

∇2Σ̂MNP =
8

ℓ2
Σ

(L)
MNP . (B.5)
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