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1 Introduction

By looking at the well understood family of two-dimensional conformal field theories

with an appropriate large N limit, Gaberdiel and Gopakumar [1, 2] have been using the

AdS/CFT correspondence to look for three-dimensional classical gravity theories. They

consider a particular AN−1 WZW coset minimal model [3–6] which has a higher spin

WAN−1(≡WN ) symmetry generated by currents of spins 2, 3, · · · , N [7]. See also [8] for a

detailed description of W -symmetry in conformal field theory. Their large N ’t Hooft limit

is defined as

N, k → ∞ , λ ≡ N

k +N
fixed, (1.1)

where ’t Hooft coupling λ is a function of N and k(= 1, 2, · · · ) and runs from zero to 1. The

k is the level of the WZW current algebra. The central charge is given by cN (λ) ≃ N(1−λ2)

under (1.1). The bulk theory they found is a Vasiliev type higher spin theory [9–11] in three-

dimensional AdS space coupled with two complex (equally massive) scalar fields where the

mass of the fields is given by M2 = −(1 − λ2) which lies between −1 and zero. The

above two complex scalars are quantized with opposite (conformally invariant) boundary

conditions. Therefore, their conformal dimensions are h+ = 1
2 (1 + λ) and h− = 1

2(1 − λ).

The check for this duality is based on two aspects. 1) The two partition functions are found

to match. The total partition function in the bulk consists of the sum of the contributions

from both higher spin fields and the two complex scalar fields. It is quite nontrivial to

find the conformal field theory partition function from the character formula within the

large (N, k) ’t Hooft limit. 2) The renormalization group (RG) flow patterns are coincident

with each other. The RG flow for large N > 2 in the boundary theory is assumed to be

obtainable by following the RG flow for N = 2 and the AdS/CFT correspondence is used

in the bulk theory by interpreting the RG flow as a change of boundary conditions on one

of the fields.

It is natural to ask whether there exist any higher spin AdS3 gravity duals to other

types of unitary coset minimal models. Some time ago, Lukyanov and Fateev [12] classified

other types of (extended) W -symmetry algebras: WDn symmetry algebras generated by

currents of spins

WDn : 2, 4, · · · , 2(n − 1), and n (1.2)
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and WBn symmetry algebra generated by currents of spins

WBn : 2, 4, · · · , 2n, and

(
n+

1

2

)
. (1.3)

The conformal dimension and the spin are linear combinations of the holomorphic confor-

mal dimension and its antiholomorphic counterpart. More precisely, the above currents

(left component) have spins which are holomorphic conformal dimensions. Of course,

their counterparts (right component) have spins which are opposite to its antiholomorphic

conformal dimensions. Sometimes the latter algebra is denoted as WB(0, n) with a Lie

superalgebra B(0, n) = OSp(1, 2n) (for example, in [8]) because the spin contents (1.3)

come from the results of the Drinfeld-Sokolov reduction to this superalgebra rather than

Bn itself. In this paper, by following the procedure of [1], we describe the coset WZW

theories based on the above minimal models described by (1.2) and (1.3). Mainly we focus

on their behaviors under the large (N, k) ’t Hooft limit (1.1) and once we have found the

two-dimensional results from the RG flows, then we reconsider them in the bulk using the

AdS/CFT correspondence.

In section 2, we consider the diagonal coset minimalWD
(p)
n model, where p is a minimal

model index. By reading off conformal dimensions for primary fields developed in [12–14],

we compute conformal dimensions for the relevant primary field and the other nontrivial

lowest primary field (which has a nontrivial operator product expansion with the relevant

field) in the large N ’t Hooft limit (1.1). For known fusion rules between these two primaries

with explicit structure constants (or three-point functions), we analyze the RG flow (due

to the presence of the above relevant field) between the two fixed points: one fixed point is

described by the WD
(p)
n minimal model and the other one by the WD

(p−1)
n model in which

the minimal model index is shifted by 1. The description of the bulk theory, a higher spin

theory coupled to two equally massive ‘real’ scalar fields, is obtained from the AdS/CFT

correspondence. We also describe the total partition function in the bulk/boundary.

In section 3, we describe the procedures of section 2 for the case of theWB
(p)
n model [12,

15]. We only present the main results without the details.

In section 4, we summarize what we have presented in this paper and comment on some

future research directions. In particular, we briefly sketch out the large (N, k) ’t Hooft limit

for the second parafermion theory found in [16]. Finally, we describe one of the possible

supersymmetric versions of the proposal [1].

Another proposal for large N limits of two dimensional solvable conformal field theories

with their AdS duals is found in [17].

2 The large (N, k) limit of coset minimal WD(p)
n

model

Let us consider the ‘diagonal’ coset WZW model characterized by [3, 12]

ŜO(N)k ⊕ ŜO(N)1

ŜO(N)k+1

. (2.1)

Denoting the spin 1 current fields of the affine Lie algebra ŜO(N) ⊕ ŜO(N) as Eab
(1)(z)

and Eab
(2)(z), of levels k and 1, respectively, and the spin 1 current field of the diagonal
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affine Lie subalgebra ŜO(N), which has level (k + 1), as E′ab(z), we have the relation

E′ab(z) = Eab
(1)(z) + Eab

(2)(z). The level of the diagonal subalgebra is the sum of the other

two levels because Eab
(1)(z) and Eab

(2)(z) commute with each other. The coordinate z is the

complex coordinate in two dimensional conformal field theory. The indices a, b take the

values a, b = 1, 2, · · · , N in the representation of finite-dimensional Lie algebra SO(N).

These current fields of the WZW model are antisymmetric in the indices a, b and satisfy

the standard operator product expansion [8, 18]. We introduce a rank n for Dn = SO(2n)

with a relation

N ≡ 2n . (2.2)

The coset Virasoro generator T̃ (z) in (2.1) can be constructed from the relation T̃ (z) =

T(1)(z) + T(2)(z) − T ′(z). The stress energy tensors can be obtained from the Sugawara

construction [8]; they are quadratic in the currents. Of course, T̃ (z) commutes with the

diagonal current E′ab(z), which can be shown by computing the operator product expansion

between them (and similarly with T ′(z)). The central charge of the coset Virasoro algebra

is c̃ = c(1) + c(2) − c′, which can be seen by computing the operator product expansion

between T(1)(z) + T(2)(z) − T ′(z) and T(1)(w) + T(2)(w) in which we use the fact that

T̃ (z) commutes with T ′(w). The operator product expansion between T ′(z) and T(1)(w) +

T(2)(w)(= T̃ (w) + T ′(w)) is equivalent to T ′(z)T ′(w) and then the above operator product

expansion is T(1)(z)T(1)(w) + T(2)(z)T(2)(w) − T ′(z)T ′(w). The coset central charge is a

sum of three parts. Then the coset central charge is a function of p (2.4) as follows [12]:

cN (p) =
1

2
N(N − 1)

[
k

k + (N − 2)
+

1

1 + (N − 2)
− k + 1

k + 1 + (N − 2)

]

=
N

2

[
1 − (N − 2)(N − 1)

p(p+ 1)

]
≤ N

2
, (2.3)

where the parameter p is introduced as a function of N and level k indicating the minimal

model index

p ≡ k +N − 2 ≥ N − 1 , k = 1, 2, · · · . (2.4)

We used in (2.3) the fact that the dual Coxeter number of SO(N) is given by hν = N−2 and

the dimension of SO(N) is dim SO(N) = 1
2N(N − 1). As in the A

(p)
n−1 minimal model, the

maximum value of the central charge is the rank of SO(N). According to the construction

of [12], the spin 2 stress energy tensor can be written in terms of n-component massless

scalar fields. The second order derivatives of these scalar fields have a background charge α.

When this background charge satisfies α2 = 1
p(p+1) , then the central charge c = n− 6α2~ρ 2

becomes (2.3) where the Weyl vector ~ρ will be given later in (2.5). Therefore, the quantum

Drinfeld-Sokolov description [8] for the central charge is equivalent to the coset description

above. For N = 6 (or n = 3), the conformal field theory of the WD
(p)
3 minimal model is

discussed in [19].

Are any critical behaviors of known statistical systems included in this unitary minimal

series (2.3) and (2.4)? When p = N − 1 (the lowest value of p), then (2.3) implies that

the central charge is c = 1, which describes the particular case of the critical behavior of

the Ashkin-Teller model [20]. For the next lowest value, p = N , the model can be reduced
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to the Z2N Ising model [16]. When p → ∞ (by taking k → ∞ with fixed N), the central

charge is given by c = N
2 . In this case, the symmetry algebra is the Casimir algebra of

ŜO(N) at level 1. This can be realized in terms of N real independent free fermions [18] (or

see the papers [21, 22] for similar considerations), each of which contributes 1
2 to the central

charge. The spin 1 current is quadratic in these fermions. Note that the contributions from

c(1) and −c′ in the first term and third term of (2.3), in this limit, exactly cancel each other.

Then only the second term from c(2) remains and leads to c = N
2 . The A

(p)
n−1 minimal model

is realized by (N − 1) free bosons.

The primary operators of the minimal model we are interested in are represented by the

vertex operators that can be associated with the weight lattice of Dn (or DN
2

via (2.2)) [12].

The weight vector that appears as the exponent of the vertex operator is labelled by two

weight lattices denoted by α+ and α− (which are two Coulomb gas parameters). The

allowed values of this weight vector should satisfy the condition for ‘strongly’ degenerate

modules with respect to the chiral algebra. Then the field theory can be constructed from

a finite number of primary fields. By introducing ~n = (n1, n2, · · · , nn) =
∑n

i=1 ni ~wi to

represent the α+ side and ~n′ = (n′1, n
′
2, · · · , n′n) =

∑n
i=1 n

′
i ~wi to represent the α− side,

where ~wi with i = 1, 2, · · · , n are the fundamental weights of the algebra Dn, and writing

the background charge in terms of the Weyl vector ~ρ = (1, 1, · · · , 1) =
∑n

i=1 ~wi, it is known

that the Coulomb gas formula for the conformal dimension ∆
(p)
(~n|~n′) of the primary operator

Φ
(p)
(~n|~n′) can be summarized by [12–14]

∆
(p)
(~n|~n′) =

1

4p(p + 1)

[(
(p+ 1)~n − p~n′

)2 − ~ρ 2
]
, ~ρ 2 =

1

3
n(n− 1)(2n − 1) . (2.5)

The positive integers ni and n′i are ‘Dynkin labels’. For the standard notation of [23],

one needs to subtract the components of Weyl vector from this Dynkin label. In order

to compute the conformal dimension (2.5) for various (~n|~n′) explicitly, the quadratic form

matrix (the metric tensor1 for the weight space) for Dn is used [14]. For example, the

square of the Weyl vector, ~ρ 2, appearing in (2.5) is the sum of the quadratic form matrix

elements. There is a difference in the overall factor compared to [12, 13, 18]. We also

follow the Dynkin label notation of [15] instead of using the notation of [14]. The α+ and

α− are written in terms of a parameter p: α+ =
√

p+1
p

and α− = −
√

p
p+1 . The positive

integers ni and n′i should satisfy some conditions, i.e., each linear combination of ni and n′i
is bounded by the minimal model index p. The primary fields Φ

(p)
(~n|~n′) with dimensions given

by (2.5) together with their descendants form a closed operator algebra. The character of

the module [12] can be written as 1
η(τ)n exp

[
2πiτ

(
∆

(p)
(~n|~n′)

− cN (p)−n
24

)]
where η(τ) is the

Dedekind function and τ is the modular parameter. It is easy to check that the last term

of (2.5) cancels the dimension-independent parts of the character and the remaining terms

of (2.5) contribute to the final character. Note that the combination 1
24 (cN (p)−n) appears

in the quantum Drinfeld-Sokolov construction [8] for the conformal dimension.

1For convenience, we present the products of the weights: ~wi · ~wj = 2i for i ≤ j < n − 1, ~wi · ~wn−1 =

~wi · ~wn = i for i < n − 1, ~wn · ~wn = ~wn−1 · ~wn−1 = n
2
, and ~wn−1 · ~wn = n−2

2
.
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Let us consider the neighborhood of the critical point of the D
(p)
n model (a minimal

model of the main series labelled by p (2.4) associated with a simple Lie algebra Dn of

rank n) with p very much larger than n. The perturbed action, with a slightly different

notation for the primary field, is given by Fateev and Lukyanov [12]

S(p)
g = S

(p)
0 + g

∫
d2xΦ

(p)
(1n|1,2,1n−2)

(x) , (2.6)

where S
(p)
0 is the action of the conformal field theory of the unperturbed D

(p)
n model. See

also the original papers by Zamolodchikov [24, 25] for the details. We use a simplified

notation for the vectors indicating the representations of Dn in weight space: (1n) ≡
(1, 1, · · · , 1) which is a trivial representation of Dn and (1, 2, 1n−2) ≡ (1, 2, 1, · · · , 1) which

is an adjoint representation of Dn.2 The number of elements should be equal to n. In

the notation of [23], the former is (0n) and the latter is given by (0, 1, 0n−2). Note that

in [14] more general perturbations are considered. There are multiple relevant operators

with slightly relevant terms quadratic in the energy operator. In order to obtain the

perturbation (2.6) from the description of [14], one should take the appropriate limit.

One can easily check that the dimension of the identity operator, ∆
(p)
(~n|~n), for the rep-

resentation with ~n = ~n′ = (1n) vanishes because the numerator of (2.5) is identically zero.

From (2.5), one can write the conformal dimension, by expanding, recollecting terms, and

taking the large p limit, as follows:

∆
(p)
(~n|~n′) =

1

4
(~n− ~n′)2 +

1

4
(~n2 − ~n′2)ǫ+ O(ǫ2) , ǫ ≡ 1

p+ 1
≃ 1

p
. (2.7)

The matrix of scalar products of the fundamental weights of the Lie algebra Dn is assumed

here (in footnote 1). There are infinitely many solutions for (2.7) to possess slightly relevant

fields (which have the conformal dimension 1 approximately) as p→ ∞. However, for the

choice of the trivial α+ side with (1n), there is a unique relevant field as in (2.6) above

because the (2, 2) component of the quadratic form matrix (in footnote 1) is equal to 4 and

this provides a constant term 1 in (2.7).3 More explicitly, one can compute the conformal

dimension for the relevant field (adjoint representation) from (2.5) as follows:

∆
(p)
(1n|1,2,1n−2)

=
(p−N + 3)

(p+ 1)
≃ 1 − λ , λ ≡ N

k +N
, (2.8)

2For the A
(p)
n−1 minimal model considered in [1], the perturbed action [12] is given by S

(p)
g = S

(p)
0 +

g
R

d2xΦ
(p)

(1n−1|2,1n−3,2)
(x). The ‘Dynkin label’ (2, 1n−3, 2), which is equivalent to (1, 0n−3, 1) of [23], repre-

sents the adjoint representation of An−1.
3More precisely, there exists a unique ‘slightly’ relevant field. A relevant field, in general, has conformal

dimension less than 1 (∆ < 1) because the scaling dimension should be less than 2 which is the dimension

of conformal field theory. In this case the scaling dimension with no spin is the sum of the holomorphic

conformal dimension (∆) and its antiholomorphic counterpart (∆). That is, ∆+∆ = 2∆ < 2. For example,

the primary field Φ
(p)

(1n|2,1n−1)
is also a relevant field because its conformal dimension is less than 1 due

to (2.9). However, this relevant field is a ‘strongly’ relevant field and so one cannot analyze perturbatively.

On the other hand, perturbative analysis is possible for the ‘slightly’ relevant field which has conformal

dimension close to 1.
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where we take the large (N, k) ’t Hooft limit with fixed ’t Hooft coupling λ defined as (1.1)

of [1] in the last line of (2.8) here. In the context of [26] where perturbation by an appro-

priate operator leads to an IR fixed point described by the coset
cSO(N)k−1⊕cSO(N)1

cSO(N)k

(this can

be obtained from (2.1) by replacing k with k − 1), one can understand that the conformal

dimension for an appropriate field is given by the dual Coxeter number and the levels to

be ∆
(p)
(1n|1,2,1n−2)

= 1 − hν

k+1+hν = 1 − N−2
p+1 which is exactly the same as (2.8). Of course,

this description for the A
(p)
n−1 minimal model can be analyzed and it can be seen that the

behavior of (2.8) has features in common with the conformal dimension of the adjoint rep-

resentation of An−1. It is not obvious how one can obtain the conformal dimensions from

the coset model itself [27]. See the papers [28] or [1] for the explicit formula. From the

quadratic Casimir (N−2) for the adjoint representation of SO(N), one can write down the

conformal dimension as 1− (N−2)
(N−2)+k+1 = 1− N−2

p+1 which is exactly the same as (2.8). That

is, the first and second representations in the coset model (2.1) are trivial representations

of SO(N) while the diagonal representation is the adjoint representation of SO(N). Here

the quadratic Casimir is defined as 1
4(~n2 − ~ρ 2) for the representation ~n of SO(N) and we

will use this formula in the remaining parts of this paper.

We noticed that the identity operator has a conformal dimension of zero. What is

the lowest dimension operator, after the identity operator, in the singlet sector? What

happens if we take (2, 1n−1), which is a defining representation of Dn, as the α− side as

well as the trivial α+ side (1n)? One computes the conformal dimension for the primary

field Φ
(p)
(1n|2,1n−1)

exactly and takes the large (N, k) ’t Hooft limit as before to obtain

∆
(p)
(1n|2,1n−1)

=
(p −N + 2)

2(p+ 1)
≃ 1

2
(1 − λ) . (2.9)

This primary field is identified with the energy operator in [14]. Note that the factor
1
2 comes from the (1, 1) component of the quadratic form matrix which is equal to 2

(see footnote 1), together with the overall factor 1
4 in the formula (2.5). Obviously at

finite (N, k), this expression is different from that of the fundamental representation of

the A
(p)
(n−1) minimal model. However, they have common behavior in the large (N, k)

’t Hooft limit. Furthermore, one can compute the conformal dimension ∆
(p)
(1n|1n−1,2)

when

the integer 2 arises as the last Dynkin label rather than the first label as in (2.9). From

the relation (2.7), the constant piece looks like the (n, n)-component of the quadratic form

matrix, which is equal to N
4 . This is rather different to the A

(p)
n−1 minimal model where

the corresponding dimension behaves as N−1
N

. From the quadratic Casimir 1
2(N − 1) for

the defining representation in SO(N), one can write down the conformal dimension as
1
2 (N − 1)

[
1

(N−2)+1 − 1
(N−2)+k+1

]
= 1

2 − N−1
2(p+1) which is exactly the same as (2.9) where we

used the quadratic Casimir (N −2) for the adjoint representation in the denominator. The

first representation of (2.1) is a trivial representation of SO(N).

The operator product expansions of the fields Φ
(p)
(~n|~n′) and Φ

(p)
(~m|~m′) are, in general, linear

combinations of Φ
(p)
(~s|~s′) with the appropriate structure constants of the operator algebra.

The selection rules of the operator algebra may be described by the Clebsch-Gordan series

for the product of the finite-dimensional representations of the Lie algebra Dn with highest

– 6 –
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weights specified by the sets of the numbers (ni, n
′
i) and (mi,m

′
i) corresponding to the

weight vectors. Although the structure constants are determined by three-point correlation

functions through the Coulomb gas formalism, it is a rather nontrivial task to find them

explicitly. Luckily, the four necessary integrals from the Coulomb gas formalism have been

computed and the structure constants are written in terms of these integrals. Eventually,

the fusion rules between the two primaries (adjoint and defining representations) described

by (2.8) and (2.9) can be summarized by [14]

Φ
(p)
(1n|2,1n−1)

⊗ Φ
(p)
(1n|2,1n−1)

= Φ
(p)
(1n|1,2,1n−2)

+ · · · ,

Φ
(p)
(1n|1,2,1n−2)

⊗ Φ
(p)
(1n|1,2,1n−2)

= Φ
(p)
(1n|1,2,1n−2)

+ · · · ,

Φ
(p)
(1n|1,2,1n−2)

⊗ Φ
(p)
(1n|2,1n−1)

= Φ
(p)
(1n|2,1n−1)

+ · · · , (2.10)

where we have ignored the identity operator and the terms on the right hand side that are

irrelevant (in the context of RG analysis). The structure constants appearing in the right

hand side are obtained from the three-point correlation functions of the unperturbed D
(p)
n

model [14]. When we look at the operator product expansion between Φ
(p)
(1n|2,1n−1)

(z) and

Φ
(p)
(1n|2,1n−1)

(w), there exists a factor (z − w)
−4∆

(p)

(1n|2,1n−1)
+2∆

(p)

(1n|1,2,1n−2) in the right hand

side of the first equation of (2.10). Substituting the conformal dimensions (2.8) and (2.9)

into this exponent, gives the factor (z − w)
6

p+1 which goes to 1 in the large p limit. Then,

the normal ordered field product [8] (the constant term in the operator product expansion)

of Φ
(p)
(1n|2,1n−1)

(z) and Φ
(p)
(1n|2,1n−1)

(z), denoted by (Φ
(p)
(1n|2,1n−1)

Φ
(p)
(1n|2,1n−1)

)(z), is given by

Φ
(p)
(1n|1,2,1n−2)

(z) up to the structure constant which is equal to
√

2 for large N , as follows

(
Φ

(p)
(1n|2,1n−1)

Φ
(p)
(1n|2,1n−1)

)
(z) ≃ Φ

(p)
(1n|1,2,1n−2)

(z) . (2.11)

In other words, in the large (N, k) ’t Hooft limit, the conformal dimension (2.8) of the

perturbing primary field (adjoint representation) is equal to twice the conformal dimen-

sion (2.9) of the primary field (defining representation). This is a new feature under the

large (N, k) ’t Hooft limit. For the A
(p)
n−1 minimal model, the normal ordered field product

between the fundamental representation and the anti-fundamental representation of An−1

is the (perturbing) adjoint representation of An−1 in the large (N, k) ’t Hooft limit [1].

There exists a new critical point corresponding to the zero of the β-function at nonzero

g [12, 14]. Due to the decrease of the c-function along the RG flow, this new critical

point should correspond to the critical behavior of the D
(p′)
n model with p′ < p [24].

Note the p-dependence of the central charge (2.3). How does one determine p′ in the RG

analysis? The central charge at this new critical point can be determined by substituting

g∗ = 4(n − 1) ǫ
C

+ O(ǫ2) (which is the solution of the β-function, where the ǫ here is the

same as the one in (2.7)) into the expression for the central charge cN (p) expanded in

g [12], together with (2.3) and (2.7). It is found to be

cN (p)∗ = cN (p) − 64(n − 1)3ǫ3

C2
= cN (p) − 4n(n− 1)(2n − 1)

p3
≃ cN (p− 1) , (2.12)
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where C is the structure constant appearing in front of Φ
(p)
(1n|1,2,1n−2)

(w) on the right hand

side of the operator product expansion (2.10) between Φ
(p)
(1n|1,2,1n−2)

(z) and Φ
(p)
(1n|1,2,1n−2)

(w)

and it is given by [12, 14]

C
(1n|1,2,1n−2)
(1n|1,2,1n−2)(1n|1,2,1n−2)

=
4(n − 1)√
n(2n− 1)

+ O(ǫ) . (2.13)

The correction term in (2.12) comes from −12(n − 1)ǫg2 + 2Cg3 + · · · at g = g∗. The

field theory, given by (2.6) which has the UV behavior described by the D
(p)
n model, at

g > 0, has also IR asymptotic behavior that is described by the D
(p−1)
n model.4 The

equation (2.12) implies that the central charge at a nonzero fixed point agrees with that

of the D
(p−1)
n model. The perturbation of the coset theory by an appropriate operator

Φ
(p)
(1n|1,2,1n−2)

changes p into (p − 1) = p′ where the difference 1 is nothing but the shift

parameter (the level of the second spin 1 current Eab
(2)(z) of Dn) of the coset (2.1). In the

large (N, k) ’t Hooft limit, the RG flow changes the ’t Hooft coupling, from p to p − 1

(or k to k − 1), as δλ = λ2

N
and this implies that δc = −Nλδλ = −λ3 which can be seen

from (2.12). We used the fact that cN (λ) ≃ N
2 (1 − λ2).

In order to understand the IR behaviors of the primary fields, one should consider the

case where the α− side is given by the trivial representation (1n). That is, when the α+ side

and α− side for the weight vector are interchanged in (2.8) and (2.9), one can compute the

following dimensions for the defining representation and an adjoint representation of Dn

exactly, as well as its large (N, k) ’t Hooft limit, using the conformal dimension formula (2.5)

in order to see how the primaries corresponding to (2.8) and (2.9) flow along the RG,

∆
(p)
(2,1n−1|1n)

=
(p+N − 1)

2p
≃ 1

2
(1 + λ) ,

∆
(p)
(1,2,1n−2|1n)

=
(p+N − 2)

p
≃ 1 + λ . (2.14)

Note that the sum of (2.9) and the first equation of (2.14), for the defining representation,

is equal to 1 under the large (N, k) ’t Hooft limit. That is ∆
(p)
(1n|2,1n−1)

+ ∆
(p)
(2,1n−1|1n)

≃ 1.

Similarly, ∆
(p)
(1n|1,2,1n−2)

+ ∆
(p)
(1,2,1n−2|1n)

≃ 2. The behavior of (2.14) in the large (N, k)

’t Hooft limit is the same as those in the A
(p)
n−1 minimal model. From the quadratic

Casimir 1
2(N − 1) for the defining representation and quadratic Casimir (N − 2) for the

adjoint representation in SO(N), one can write down the conformal dimensions, in the coset

model directly, as 1
2(N − 1)

[
1

(N−2)+k
+ 1

(N−2)+1

]
= 1

2 + N−1
2p

and 1 + (N−2)
(N−2)+k

= 1 + N−2
p

.

These coincide with (2.14) as we expected. In the former, the diagonal representation is

a trivial representation and in the latter, both the second and diagonal representations

are trivial ones. In all cases we use the formula for the quadratic Casimir that was given

earlier.

4For A
(p)
n−1 minimal model, one can analyze similarly and the central charge is cN (p)∗ = cN (p)− 8n3ǫ3

C2 =

cN (p) − 2n(n2−1)

p3 ≃ cN (p − 1) where C is given by the result of the three-point correlation function at

leading order to be C
(1n−1|2,1n−3,2)

(1n−1|2,1n−3,2)(1n−1|2,1n−3,2)
= 2n√

n2−1
+ O(ǫ) [12].
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The slope of the β-function at the fixed point [29] provides the conformal dimension at

the IR fixed point via dβ
dg
|g∗ = −2(n− 1)ǫ+O(ǫ2). Then the anomalous dimension for the

relevant field (adjoint representation) at the IR fixed point is given by ∆ ≃ 1 + 2(n−1)
p+1 ≃

1 + N
p−1 . This is exactly the conformal dimension (2.14) of Φ

(p−1)
(1,2,1n−2|1n)

in D
(p−1)
n minimal

model and therefore this leads to the flow

UV : Φ
(p)
(1n|1,2,1n−2)

(z) −→ IR : Φ
(p−1)
(1,2,1n−2|1n)

(z) . (2.15)

We also get a similar relation to (2.11) in the IR region for the D
(p−1)
n model from the same

analysis that was done in (2.11)

(
Φ

(p−1)
(2,1n−1|1n)

Φ
(p−1)
(2,1n−1|1n)

)
(z) ≃ Φ

(p−1)
(1,2,1n−2|1n)

(z) . (2.16)

It is easy to see from (2.15) how the flow of the primary field of the defining representation

of Dn arises along the RG flow by realizing that the left hand side of (2.15) is given by the

product of two defining representations via (2.11) and the right hand side of (2.15) is given

by the product of other defining representations via (2.16).

Alternatively, one can directly obtain the flow of the primary field of the defining

representation. From (2.14) and (2.9), one also obtains

∆
(p−1)
(2,1n−1|1n)

− ∆
(p)
(1n|2,1n−1)

=

[
1

2
+

N − 1

2(p − 1)

]
−

[
1

2
− N − 1

2(p + 1)

]
≃ λ . (2.17)

On the other hand, the observation of Cardy and Ludwig [30] implies that the correction

to the conformal dimension for small deviations from the new fixed point is given by

three quantities: two structure constants and the small parameter (which is related to our

minimal series index p) of the theory. It is easy to check that

√
2n− 1

n

(
4(n − 1)√
n(2n − 1)

)−1

4(n − 1)ǫ = (2n− 1)ǫ ≃ λ , (2.18)

where we used the result of [14] for the structure constant appearing in the operator product

expansion between Φ
(p)
(1n|2,1n−1)

(z) and Φ
(p)
(1n|2,1n−1)

(w) in the first equation of (2.10) which

is equal to C
(1n|1,2,1n−2)
(1n|2,1n−1)(1n|2,1n−1)

=
√

2n−1
n

+ O(ǫ) and another structure constant given

in (2.13). The last factor 4(n− 1)ǫ in (2.18) comes from the correction term of the central

charge (2.12). By comparing (2.17) with (2.18), in the IR, the field Φ
(p)
(1n|2,1n−1)

of the D
(p)
n

minimal model is identified with the field Φ
(p−1)
(2,1n−1|1n)

of the D
(p−1)
n minimal model and

therefore one sees the flow

UV : Φ
(p)
(1n|2,1n−1)

−→ IR : Φ
(p−1)
(2,1n−1|1n)

(2.19)

which is consistent with (2.11) and (2.16) in the fact that under the flow (2.19), the

flow (2.15) is satisfied as we mentioned before. For the A
(p)
n−1 minimal model, one can

perform a similar analysis and the computation of (2.17) gives N2−1
2N

(
1

p−1 + 1
p+1

)
≃ λ. Al-

though we do not know the structure constant between the two primary fields of the fun-

damental representations leading to the primary field of the adjoint representation (more
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precisely the coefficient of three-point function for these three fields), from the considera-

tions of (2.17) and (2.19), one concludes with the help of footnote 4 that the large (N, k)

’t Hooft limit for this unknown coefficient of the three-point function should be equal to 1.

The analysis of the three-point function between the two primaries of the antifundamental

representations and the primary of the adjoint representation can be done similarly. The

basic generating fields, from which we produce all the states in the conformal field theory

by taking the fusion products of them, are given by the following defining representations

Φ
(p)
(1n|2,1n−1)

and Φ
(p)
(2,1n−1|1n)

. (2.20)

From the operator product expansion in the first equation of (2.10), one can think of

the irrelevant fields having the next lowest conformal dimension. From the Clebsh-Gordan

coefficient between the two defining representations of SO(N), one obtains the conformal

dimensions of the primary field Φ
(p)
(1n|3,1n−1)

, where the n′1 component in ~n′ is greater than 1.

Then one obtains the conformal dimension by using the formula (2.5) and moreover one

can compute the conformal dimension for the other primary field Φ
(p)
(3,1n−1|1n)

as follows:

∆
(p)
(1n|3,1n−1)

=
(2p −N + 2)

(p+ 1)
≃ 2 − λ ,

∆
(p)
(3,1n−1|1n)

=
(2p +N)

p
≃ 2 + λ . (2.21)

In this case, the quadratic Casimir for the (3, 1n−1) representation of SO(N) is equal

to N . So the coefficient of the N -term in the first equation of (2.21) originates from

N
[
− 1

(N−2)+k+1

]
= − N

p+1 while the coefficient of the N -term in the second equation comes

from N
[

1
(N−2)+k

]
= N

p
.

How does one understand the primary field Φ
(p)
(1n|3,1n−1)

which has the conformal di-

mension given in the first relation of (2.21)? The one-loop contribution from the real scalar

field in the bulk is given by Zscal(h−) =
∏∞

l,l′=0
1

(1−qh−+lq̄h−+l′)
where h− = 1

2(1 − λ) and

q ≡ e2πiτ . Here τ is the modular parameter which is the ratio of two complex periods

of the lattice on a torus [18]. Expanding out the first few terms in Zscal(h−), one has a

qh− q̄h− term, a q2h− q̄2h− term and a q2h−+1q̄2h−+1 term and so on. Since the conformal

dimension for the adjoint representation is given by ∆
(p)
(1n|1,2,1n−2)

= 2∆
(p)
(1n|2,1n−1)

= 2h− in

the large (N, k) ’t Hooft limit, eventually the terms with an overall factor q2h− q̄2h− should

correspond to the character for the adjoint representation (1n|1, 2, 1n−2) in the total par-

tition function. Here we should add the contribution Zhs (the explicit form will be given

later) from the gravitons of the higher spin fields. Similarly, the conformal dimension for

the above irrelevant field is given by ∆
(p)
(1n|3,1n−1)

= 2∆
(p)
(1n|2,1n−1)

+ 1 = 2h− + 1 in the large

(N, k) ’t Hooft limit and the terms with an overall factor q2h−+1q̄2h−+1 should correspond

to the character for the representation (1n|3, 1n−1) in the total partition function which

contains Zhs.

Note that for the A
(p)
n−1 minimal model, the adjoint representation appears in the fusion

product of fundamental and antifundamental representations and the fusion product of
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two fundamental representations give other representations. However, in the D
(p)
n minimal

model of this paper, the adjoint representation arises from the fusion product of two defining

representations. The one-loop contribution from the other real scalar field in the bulk is

given by Zscal(h+) =
∏∞

l,l′=0
1

(1−qh++lq̄h++l′)
where h+ = 1

2 (1 + λ). Expanding out the

first few terms, one obtains a qh+ q̄h+ term, a q2h+ q̄2h+ term and a q2h++1q̄2h++1 term.

Since the conformal dimension for the adjoint representation is given by ∆
(p)
(1,2,1n−2|1n)

=

2∆
(p)
(2,1n−1|1n)

= 2h+ in the large (N, k) ’t Hooft limit, the terms with an overall factor

q2h+ q̄2h+ should correspond to the character for the adjoint representation (1, 2, 1n−2|1n)

in the total partition function. Similarly, the conformal dimension for the above irrelevant

field is ∆
(p)
(3,1n−1|1n)

= 2∆
(p)
(2,1n−1|1n)

+ 1 = 2h+ + 1 in the large (N, k) ’t Hooft limit and

the terms with an overall factor q2h++1q̄2h++1 should correspond to the character for the

representation (3, 1n−1|1n) in the total partition function where the contribution from Zhs

should be added.

For the fusion product Φ
(p)
(1n|2,1n−1)

⊗ Φ
(p)
(2,1n−1|1n)

= Φ
(p)
(2,1n−1|2,1n−1)

from different types

of combinations in (2.20), one can compute the conformal dimension for the primary field

appearing in the right hand side and see that it is given by ∆
(p)
(2,1n−1|2,1n−1)

= (N−1)
2p(p+1) ≃ λ2

2N
.

This is consistent with the computation from the coset model 1
2 (N − 1)

[
1

(N−2)+k
−

1
(N−2)+k+1

]
with the quadratic Casimir 1

2(N −1) for the (2, 1n−1) representation of SO(N)

as before. The second representation of the coset is a trivial one. This is equal to

the nonconstant piece on the left hand side of fusion rule. In other words, we have

∆
(p)
(1n|2,1n−1)

+ ∆
(p)
(2,1n−1|1n)

= 1 + (N−1)
2p(p+1) .

What is the AdS3 dual gravity theory of the two-dimensional coset mini-

mal model? The primary field Φ
(p)
(1n|1,2,1n−2)

(z) is the normal ordered product of

(Φ
(p)
(1n|2,1n−1)

Φ
(p)
(1n|2,1n−1)

)(z) in (2.11) and the perturbation can be rewritten

g

∫
d2x

(
Φ

(p)
(1n|2,1n−1)

Φ
(p)
(1n|2,1n−1)

)
(x) = g

∫
d2x (OO)(x) , (2.22)

where the primary field O(z) ≡ Φ
(p)
(1n|2,1n−1)

(z) has holomorphic conformal dimension
1
2 (1 − λ) (2.9) in the large (N, k) ’t Hooft limit. Its antiholomorphic conformal dimension

is also 1
2(1 − λ). In the AdS3 gravity theory side from the AdS/CFT correspondence [31],

the scalar field, corresponding to O(z), with dimension ∆− (which is the sum of holo-

morphic and antiholomorphic conformal dimensions) is quantized in the (−) quantization

in the UV (see also the relevant paper [32]). In other words, the scalar field behaves as

φ ∼ r1−λ with an appropriate boundary condition where r is a radial coordinate in AdS3

space. There exists an alternative choice for the quantization with an irrelevant pertur-

bation by an operator of dimension 2 − (1 − λ) = (1 + λ), where φ′ behaves as r1+λ, but

this is not the case in (2.22). Along the RG flow, this scalar field φ flows to the theory

with (+) quantization in the IR where it corresponds to an operator O′(z) ≡ Φ
(p−1)
(2,1n−1|1n)

(z)

with dimension 1
2(1 + λ) in the large (N, k) ’t Hooft limit. The (OO)(z) in (2.22) flows to

an irrelevant operator of the form (O′O′)(z). The two solutions for the mass formula of

matter multiplet M2 = ∆(∆ − 2) in higher spin theory are written as, by summing over
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holomorphic and antiholomorphic parts,

∆− =
1

2
(1 − λ) +

1

2
(1 − λ) = 1 − λ , ∆+ =

1

2
(1 + λ) +

1

2
(1 + λ) = 1 + λ . (2.23)

Therefore, the two real scalar fields (φ, φ′) in the AdS3 gravity theory with M2 = −(1−λ2)

where φ is in the (−) quantization and φ′ in the (+) quantization match with the results

for the RG flow in the two-dimensional dual conformal field theories we have described so

far. Note that from (2.23) we have a relation ∆− + ∆+ = 2 or ∆O + ∆O′=1 from (2.9)

and (2.14). See also the relevant work [33] for the changing of conformal dimension (1−λ)

into (1 + λ) in the different context of gravitational dressing (see also [34]).

By following the procedure [35] for the one-loop determinant in the heat kernel tech-

niques, one expects that the total one-loop determinant is given by the multiple product

of each contribution for spin s. Then this can be interpreted using the boundary theory.

The vacuum character for the simply laced algebra with level 1 is given by [8, 36]

χ =
1∏n

i=1 Fei+1(q)
, Fs(q) ≡

∞∏

k=s

(1 − qk) , q ≡ e2πiτ . (2.24)

This is the vacuum character of type W(e1 + 1, e2 + 1, · · · , en + 1) algebra in the notation

of [8]. For the A
(p)
n−1 minimal model, the algebra consists of a spin 2 Virasoro generator and

additional primary currents of spins 3, 4, · · · , n(= N). Now let us apply the SO(N) group

to (2.24) and realize that there exist n exponents of SO(N): e1 = 1, e2 = 3, · · · , en−1 =

2n− 3 and en = n− 1. By taking into account the antiholomorphic part, the large N limit

of (2.24) can be written as

Zhs = lim
N→∞

( ∞∏

m=2

1

|1−qm|2
∞∏

m=4

1

|1−qm|2 · · ·
∞∏

m=N−2

1

|1−qm|2
∞∏

m= N
2

1

|1−qm|2
)
. (2.25)

This partition function from the D
(p)
n minimal model conformal field theory should agree

with that from the one-loop result in the higher spin bulk theory. Moreover, the higher

spin theory we are interested in has two real scalar fields. The one-loop contributions from

each scalar field can be obtained from [37]. We also present the successive fusion products

in the context of the conformal field theory partition function. The identifications,

Zscal(h−) =

∞∏

l,l′=0

1

(1 − qh−+lq̄h−+l′)
↔ Φ

(p)
(1n|2,1n−1)

⊗ · · · ⊗ Φ
(p)
(1n|2,1n−1)

,

Zscal(h+) =

∞∏

l,l′=0

1

(1 − qh++lq̄h++l′)
↔ Φ

(p)
(2,1n−1|1n)

⊗ · · · ⊗ Φ
(p)
(2,1n−1|1n)

, (2.26)

where h− ≡ 1
2∆− and h+ ≡ 1

2∆+ imply that the left hand side of the first equation

in (2.26) provides the contributions to the fusion product that contain the multiple copies

of Φ
(p)
(1n|2,1n−1)

by extending the simplest product to the more general case. On the other

hand, the left hand side of the second equation of (2.26) corresponds to the multiple copies
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of Φ
(p)
(2,1n−1|1n)

. Then the total partition function can be written in terms of the partition

functions in (2.25) and (2.26) as

Ztot = (qq̄)−
c
24Zhs Zscal(h−)Zscal(h+) . (2.27)

In order to see the one-to-one correspondence precisely, the computation for Zhs (2.25)

should also be done in the bulk to see whether it really coincides with (2.25), which was

obtained from the computation in the boundary. Moreover, we described some identifica-

tions in (2.26) but we did not show explicitly how the characters in the boundary exactly

match with Zscal(h∓) (2.26) obtained from the bulk. According to [2], they have a con-

formal character [8, 12] and take the large (N, k) ’t Hooft limit. The branching function

contains the character of U(∞) and furthermore the scalar partition functions in (2.26)

can be written in terms of the characters of the representations of U(∞). From this ob-

servation for the A
(p)
n−1 minimal model it may be that one can also write down the scalar

partition functions in terms of a sum over the characters of representations of SO(∞) (or

its more general group O(∞)). In order to understand this clearly, it is useful to look at

the expansion of characters developed in [40, 41]. The sum over the Weyl group elements

and the sum over the lattice (generated by the simple roots of the Lie algebra Dn) in the

character formula [12] should be related to the sum over the characters of representations

of SO(N) in the large N limit.

3 The large (N, k) limit of coset minimal WB(p)
n

model

Let us consider the same ‘diagonal’ coset model (2.1) where a rank n for the non-simply

laced algebra Bn = SO(2n+ 1) has a relation

N ≡ 2n+ 1 . (3.1)

The central charge is given by (2.3) with the minimal model index (2.4). For N = 5,

some coset theories with different choices of levels are described in [21, 22, 42]. The

primary operators of the minimal model are represented by the vertex operators that can

be associated with the weight lattice of Bn (or BN−1
2

via (3.1)) [12]. The Coulomb gas

formula for the conformal dimension of the primary operator Φ
(p)
(~n|~n′) in the Neveu-Schwarz

sector where (nn − n′n) is even can be summarized by [12, 15, 43]

∆
(p)
(~n|~n′)

=
1

2p(p+ 1)

[(
(p+ 1)~n− p~n′

)2 − ~ρ 2
]
, ~ρ 2 =

1

12
n(2n− 1)(2n + 1) . (3.2)

For the Ramond-Ramond sector where (nn − n′n) is odd, there is an extra 1
16 factor in the

above dimension formula. More explicitly, one can compute the conformal dimensions for

the lowest dimensional field and the relevant field from (3.2) respectively as follows:

∆
(p)
(1n|2,1n−1)

=
(p−N + 2)

2(p + 1)
≃ 1

2
(1 − λ) ,

∆
(p)
(1n|1,2,1n−2)

=
(p−N + 3)

(p + 1)
≃ 1 − λ . (3.3)
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Although the quadratic form matrix for the Bn group5 is different from that of the Dn

group (in footnote 1) and the expression for the conformal dimension (3.2) looks different

from that (2.5) of Dn, the expressions (2.8) and (2.9) at finite N and k are coincident

with (3.3).

In the original paper [12], the RG analysis was described for A
(p)
n−1 and D

(p)
n models

only but the B
(p)
n model can also be analyzed in a similar way. For example, the perturbed

action is the same as in (2.6). The normal ordered product (2.11) holds by taking the large

(N, k) ’t Hooft limit. Then the central charge at the new critical point can be determined

by substituting g∗ = 2(2n − 1) ǫ
C

+ O(ǫ2) into the expression of the central charge cN (p)

expanded in g

cN (p)∗ = cN (p) − 8(2n − 1)3ǫ3

C2
= cN (p) − 2n(2n− 1)(2n + 1)

p3
≃ cN (p− 1) , (3.4)

where C is the structure constant corresponding to (2.13) for the B
(p)
n minimal model and

is given by [15], via the three-point function in the Coulomb gas representation (that is,

the fusion constant and the normalization of the vertex operator), to be

C
(1n|1,2,1n−2)
(1n|1,2,1n−2)(1n|1,2,1n−2)

=
2(2n − 1)√
n(2n+ 1)

+ O(ǫ) . (3.5)

Of course, the motivation of [15] is to describe the RG flows for the second parafermion the-

ory which will be described in next section but, as a by-product, they also found this struc-

ture constant through the Coulomb gas representation with a three-point function. Similar

analysis gives the flow (2.15) for the B
(p)
n minimal model under the RG flow with (2.16).

One obtains the following conformal dimensions, corresponding to (3.3) but with the α+

side and the α− side interchanged, which allow us to understand how the primary fields

transform under the RG flow,

∆
(p)
(2,1n−1|1n)

=
(p+N − 1)

2p
≃ 1

2
(1 + λ) ,

∆
(p)
(1,2,1n−2|1n)

=
(p+N − 2)

p
≃ 1 + λ . (3.6)

These match the conformal dimensions (2.14) for the D
(p)
n model meaning that the two

models show the same behavior.

The correction of the conformal dimension for a small deviation from the new fixed

point can be written as

2n√
n(2n+ 1)

(
2(2n − 1)√
n(2n+ 1)

)−1

2(2n − 1)ǫ = 2nǫ ≃ λ , (3.7)

where the structure constant C
(1n|1,2,1n−2)
(1n|2,1n−1)(1n|2,1n−1)

= 2n√
n(2n+1)

+O(ǫ) was found in [15] and

the structure constant (3.5) is used. The fusion rules (2.10) are also valid for this case. In

5For convenience, we present the elements here: ~wi · ~wj = i for i ≤ j < n, ~wi · ~wn = i
2

for i < n and

~wn · ~wn = n
4
.
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addition, the factor 2(2n− 1)ǫ is consistent with the correction term for the central charge

in (3.4). On the other hand, there is a difference between the conformal dimensions, which

can be computed from (3.3) and (3.6) to be

∆
(p−1)
(2,1n−1|1n)

− ∆
(p)
(1n|2,1n−1)

=

[
1

2
+

N − 1

2(p − 1)

]
−

[
1

2
− N − 1

2(p + 1)

]
≃ λ . (3.8)

By comparing (3.7) with (3.8), in the IR, the field Φ
(p)
(1n|2,1n−1)

of the B
(p)
n minimal model is

identified with the field Φ
(p−1)
(2,1n−1|1n)

of the B
(p−1)
n minimal model. The relation (2.19) also

holds for the B
(p)
n minimal model.

According to [8], the vacuum character for Bn with level 1 has an extra contribution

from the fermionic
(
n + 1

2

)
dimensional field projected onto the Z2 even sector. Odd Z2

parity is assigned to the currents of half odd integer spin and even Z2 parity is assigned

to the integer spin currents [8]. The singlet algebra is the bosonic projection of the type

W(2, 4, · · · , 2n = N − 1, n + 1
2 = N

2 ). Then the large N limit of the partition function for

the higher spin with field contents (1.3) is written as

lim
N→∞

( ∞∏

m=2

1

|1−qm|2 · · ·
∞∏

m=N−1

1

|1−qm|2 ×
∣∣∣∣
1

2

[ ∞∏

m= N
2

(
1+ qm+ 1

2

)
+

∞∏

m= N
2

(
1− qm+ 1

2

)]∣∣∣∣
2)

,

(3.9)

where the last term in (3.9) is the vacuum character of the above fermion field projected

onto the Z2 even sector. This is very similar to the bosonic projection of the N = 1

superconformal algebra, which can be realized as the WB1 minimal model because the

field contents from (1.3) are given by a spin 2 Virasoro generator and spin 3
2 superpartner,

of type W(2, 4, 6) [36]. See also [44] for the coset currents of spin
(
n+ 1

2

)
and representation

theory. Finally, one obtains the total partition function (2.27) where the higher spin part

Zhs is given by (3.9) for the B
(p)
n minimal model.

4 Conclusions and outlook

We described the dualities between the large (N, k) ’t Hooft limits of the WD
(p)
n and WB

(p)
n

coset minimal models and the higher spin theory on AdS3 where two massive real scalars

are added to the massless higher spin fields. We explained this duality by showing that the

RG flows of the two-dimensional conformal field theories agree with the gravity analysis

from the AdS/CFT correspondence.

So far, the level of the second group in the coset model is 1. What happens if the

‘shift parameter’ is greater than 1? We present two examples. The first example, from a

series of unitary conformal field theories, is the second parafermion theory by Fateev and

Zamolodchikov [16]. Note that the first parafermion theory is a single conformal field theory

for given N . The diagonal coset model, denoted by Z
(2)
N (p), for N ≥ 5 is characterized

by [27, 45]

ŜO(N)k ⊕ ŜO(N)2

ŜO(N)k+2

. (4.1)
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The central charge for (4.1) is given by [16] as

cN (p) = (N − 1)

[
1 − N(N − 2)

p(p+ 2)

]
≤ (N − 1) , p ≡ k +N − 2 ≥ N − 1 , (4.2)

which can be seen by realizing that the correct level for the second group in this case is 2

rather than 1. In the large (N, k) ’t Hooft limit, this reduces to cN (p) ≃ N(1 − λ2) which

is twice that of previous examples. For N = 2, the theory is given by c = 1 free boson

theory. For N = 3 parafermion theory, developed in [46], it is known that the coset is

given by
cSU(2)2k⊕cSU(2)4

cSU(2)2k+4
where ŜO(3)k is identified with ŜU(2)2k. The two slightly relevant

perturbations on this coset model are described in [47, 48] and there exists only a single IR

fixed point denoted by Z
(2)
3 (p− 4). For N = 4, the parafermionic algebra factorizes into a

direct product of two N = 1 superconformal algebras. The slightly relevant perturbation

on a single N = 1 superconformal algebra has been discussed in [49].

According to the observation of Dotsenko and Estienne [15], the two slightly relevant

fields (for odd N ≥ 7 and for N = 5, they also presented the corresponding quantities),

can be obtained from the product of WBn primaries Φ
(p)
(~n|~n′) by decomposing the coset (4.1)

into several simpler cosets as follows

S
(p)
(1n|3,1n−1)

= Φ
(p)
(1n|2,1n−1)

⊗ Φ
(p+1)
(2,1n−1|3,1n−1)

,

A
(p)
(1n|1,2,1n−2)

=
1√
2

[
Φ

(p)
(1n|1n)

⊗ Φ
(p+1)
(1n|1,2,1n−2)

+ Φ
(p)
(1n|1,2,1n−2)

⊗ Φ
(p+1)
(1,2,1n−2|1,2,1n−2)

]
. (4.3)

These two fields appear in the following perturbed action

S(p) = S
(p)
0 + g

∫
d2xS

(p)
(1n|3,1n−1)

(x) + h

∫
d2xA

(p)
(1n|1,2,1n−2)

(x) . (4.4)

It is straightforward to compute the conformal dimensions for the fields (Neveu-Schwarz

sector) in (4.3) via (3.2)

∆
(p)
(1n|2,1n−1)

=
(p−N + 2)

2(p + 1)
≃ 1

2
(1 − λ) ,

∆
(p+1)
(2,1n−1|3,1n−1)

=
p(p−N + 2)

2(p + 1)(p + 2)
≃ 1

2
(1 − λ) ,

∆
(p)
(1n|1n) = 0 ,

∆
(p+1)
(1n|1,2,1n−2)

=
(p−N + 4)

(p+ 2)
≃ 1 − λ ,

∆
(p)
(1n|1,2,1n−2)

=
(p−N + 3)

(p+ 1)
≃ 1 − λ ,

∆
(p+1)
(1,2,1n−2|1,2,1n−2)

=
(N − 2)

(p+ 1)(p + 2)
≃ λ2

N
≃ 0 . (4.5)

As expected, the conformal dimensions for S
(p)
(1n|3,1n−1)

and A
(p)
(1n|1,2,1n−2)

in (4.4), in the

large (N, k) ’t Hooft limit, can be read off from (4.5) and they become 1 − λ. The exact

expression for the conformal dimension of A
(p)
(1n|1,2,1n−2)

is 1 − hν

k+2+hν = 1 − N−2
p+2 which
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can be seen from the result of [26] where there exists only a single relevant field. The first

and second representations of (4.1) are trivial representations of SO(N). Moreover, the

conformal dimension of S
(p)
(1n|3,1n−1)

is given by 1 − N
p+2 . For large p, they have the same

conformal dimension. There exist two kinds of fixed points for nonzero h, which can be

seen by analyzing the RG flow from (4.4). Dotsenko and Estienne [15] claim that for the

first kind of fixed point, the IR theory is described by Z
(2)
N (p−2) parafermion theory while

for the second kind of fixed point, the IR theory is given by Z
(2)
N (p−1) parafermion theory.

The presence of S
(p)
(1n|3,1n−1)

in the perturbed action (4.4) provides the latter critical fixed

point. With A
(p)
(1n|1,2,1n−2)

only, the former fixed point occurs.

The deviation of the central charge from the two fixed points can be computed

from (4.2) to be

δc = cN (p− l) − cN (p) ≃ −2lλ3, l = 1, 2 . (4.6)

This can be seen by taking the variation δc = −2Nλδλ with δk = −l (from k − l to k) in

the relation cN (λ) ≃ N(1 − λ2). For l = 1 in (4.6), the IR theory is given by Z
(2)
N (p − 1)

parafermion theory and for l = 2, the IR theory is Z
(2)
N (p − 2) parafermion theory. One

should also see this behavior (4.6) in the bulk. How do the adjoint primary fields (or their

WBn products) flow under the RG flows? Although the particular primary field Φ
(p)
(~n|~n)

flows to Φ
(p−l)
(~n|~n) where l = 1, 2 under the RG flow [15], it is not known in general how

the other primaries flow. It is an open problem to find the gravity duals of the above

generalized conformal field theories. For even N(≥ 6), a similar construction is given

in [50]. See also [51] for the details. In this case, the constructions (4.3) and (4.5) are

based on the WD
(p)
n primaries with the conformal dimension formula (2.5). It turns out

that the conformal dimensions for WD
(p)
n primaries are the same as the ones in (4.5).

Let us discuss the second example where the shift parameter is greater than 1. Al-

though the original motivation of [1] is to search for the nontrivial example of nonsuper-

symmetric AdS/CFT correspondence, it is an interesting problem to find a supersymmetric

version of the proposal of [1]. For example, let us consider the diagonal coset model

ŜU(N)3 ⊕ ŜU(N)k

ŜU(N)k+3

. (4.7)

The level 3 is crucial for the construction of fermionic currents in order to supersymmetrize

the theory. The central charge of (4.7) can be computed from the dual Coxeter number

and the dimension of the SU(N) group and is written as

cN (p) = (N2− 1)

[
3

3 +N
+

k

k +N
− k + 3

k + 3 +N

]

=
3(N2− 1)

N + 3

[
1 − N(N+ 3)

p(p+ 3)

]
≤ 3(N2− 1)

N + 3
, p ≡ k +N , k = 1, 2, · · · , (4.8)

by considering the right levels. In the large (N, k) ’t Hooft limit, this reduces to cN (p) ≃
3N(1−λ2). Again the factor 3 comes from the level of the first group. For N = 3, the coset

constructions and minimal series are found in [52]. The spin 3
2 fermionic superpartner of
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T̃ (z), denoted by G̃(z), can be constructed as in [4] and the spin 3 coset field W̃ (z) can

be determined by the requirements [5] that it should be a primary field of dimension 3

with respect to T̃ (z) and the coefficient of the identity in the operator product expansion

W̃ (z)W̃ (w) should be c
3 with (4.8). Now one can compute the operator product expansion

between G̃(z) and W̃ (w) and it turns out that the spin 5
2 coset field Ũ(z) is [52, 53]

Ũ(z) = dabc

[
10λ2

(1−λ)(2−λ)
ψa

(1)V
b
(2)V

c
(2)(z)−

5λ

(1−λ)
ψa

(1)V
b
(1)V

c
(2)(z)+ψa

(1)V
b
(1)V

c
(1)(z)

]
, (4.9)

where ψa(z) is a free fermion field of dimension 1
2 with a = 1, 2, · · · , N2 − 1 and V a

(1)(z) is

a spin 1 current that can be written in terms of free fermions as V a
(1)(z) = fabc(ψb

(1)ψ
c
(1))(z)

up to an overall N -dependent constant with level 3. Similarly, V(2)(z) is a spin 1 current

with level k. Here the dabc symbol in (4.9) is the symmetric traceless invariant tensor of

rank 3 for SU(N).

Contrary to the description for the spin 3 primary field W̃ (z) [54], for the above spin
5
2 primary field, there is no vanishing term when we take the large (N, k) ’t Hooft limit.

This is due to the fact that, by construction, there are no such terms coming from only the

second group with subscript (2) and moreover there exists an overall factor ψa
(1)(z) in (4.9).

Since the eigenvalues of the spin 3 mode of the coset algebra corresponding to W̃ (z) in

the large (N, k) ’t Hooft limit coincide with the eigenvalues of the zero mode of higher

spin 3 in the wedge algebra, one should expect that the above extended currents should

preserve the higher spin wedge algebra. The supersymmetric extension of [55] appears in

the work of [56, 57]. In the Neveu-Schwarz sector, there is a finite OSp(1, 2) subalgebra

generated by the sl(2) generators L0, L± for the Virasoro generator and the mode G± 1
2

of its superpartner. It would be interesting to see how the supersymmetric higher spin

algebra [56, 57] is realized in the coset model (4.7) or other unitary coset minimal models.

Other possible supersymmetric versions of [1] can be studied by using the quantum

Drinfeld-Sokolov construction of the affine Lie superalgebra ŜU(n+ 1, n) that provides the

N = 2 super Wn algebras [8].
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Note added. Just after this paper was released in the arXiv, the two relevant papers [38]

and [39] appeared in the arXiv. The former is the published version of [2] in which the

partition function of the WAN−1 minimal model was obtained. The latter deals with the

partition function of theWDN
2

minimal model. One of the main results of [38] is as follows.

Due to the fact that certain states become null and decouple from correlation functions (and

therefore have to be removed from the spectrum), the careful limiting procedure shows that

the resulting states that survive exactly match the gravity prediction. The simplest example

is given by the fusion product Φ
(p)
(2,1n−1|1n)

⊗Φ
(p)
(1n|2,1n−1)

where both α+ and α− are nontrivial.

The conformal dimensions are not additive. That is, 1 = ∆
(p)
(2,1n−1|1n)

+ ∆
(p)
(1n|2,1n−1)

6=
∆

(p)
(2,1n−1|2,1n−1)

. However, their analysis shows that there exists a descendant state with

the conformal dimension ∆
(p)
(2,1n−1|2,1n−1)

= ∆
(p)
(2,1n−1|1n)

+ ∆
(p)
(1n|2,1n−1)

= 1 in the conformal

field theory representation labeled by (2, 1n−1|2, 1n−1). This becomes the generating state

of the representation and the state ψ and its descendants ρ and ξ in (2.20) of [38] match

with the gravity results. The ω becomes null and the ω and its descendants then decouple

from the correlation functions. In this computation, they considered the ‘strict’ infinite

N limit where the sum of the number of boxes and antiboxes in the Young tableau has

maximum value in the conformal field theory partition function.

What about the WDN
2

minimal model case? The above feature is related to the cross

terms in the product of Zscal(h+) and Zscal(h−) in (2.26). According to the result of [39], the

character in the conformal field theory partition function consists of a linear combination

of the Schur functions on the trivial representation (1n), on the adjoint representation

(1, 2, 1n−2) and on the representation (3, 1n−1). It turns out that the states corresponding

to the Schur function on the trivial representation, which are the states generated from

ω, become null and decouple from the correlation function. Of course, the states from

ψ and its descendants corresponding to the Schur functions on the adjoint representation

(1, 2, 1n−2) and on the representation (3, 1n−1) match the gravity prediction. The total

conformal field theory partition function agrees with the bulk partition function.
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