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We introduce two scenarios leading to Majorana or Dirac neutrinos, based on the non-

abelian discrete group S4×Z3 which is responsible for nearly tri-bimaximal lepton mixing.

The smallness of neutrino masses is naturally explained and normal/inverted mass ordering

can be accommodated. We analyze two specific 5D gauge-Higgs unification models in

warped space as concrete examples of our framework. Both models pass the current bounds

on Lepton Flavour Violation (LFV) processes. We pay special attention to the effect of

so called boundary kinetic terms that are the dominant source of LFV. The model with

Majorana neutrinos is compatible with a Kaluza-Klein vector mass scale mKK & 3.5 TeV,

which is roughly the lowest scale allowed by electroweak considerations. The model with

Dirac neutrinos, although not strongly constrained by LFV processes and data on lepton

mixing, suffers from a too large deviation of the neutrino coupling to the Z boson from its

Standard Model value, pushing mKK & 10 TeV.
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1 Introduction

The idea that the Standard Model (SM) Higgs might be a composite particle arising from

a strongly coupled theory [1, 2] has received considerable attention lately. One of the

main reasons of this renewed interest comes from the observation that the composite Higgs

paradigm is closely related to theories in extra dimensions [3, 4]. This connection is par-

ticularly transparent in Randall-Sundrum (RS) models [5, 6], thanks to the AdS/CFT

duality [7–9]. More precisely, certain theories in extra dimensions, including RS models,

can be seen as a (relatively) weakly coupled description of a sub-set of 4D composite Higgs

models. They consist of two sectors: an “elementary” sector, which includes the gauge and

fermion fields of the SM, and a “composite” sector, which is strongly coupled and gives

rise to the SM Higgs. The form of the couplings between these two sectors is not the most

– 1 –



J
H
E
P
1
0
(
2
0
1
1
)
0
8
3

general one allowed by symmetry considerations only, but is more constrained. We denote

in the following this more constrained class of models as Holographic Composite Higgs

Models (HCHM).

The flavour structure of HCHM has been studied in detail in the past mostly in the 5D

context of RS models with fermion and gauge fields in the bulk and it has been shown to

be particularly successful [10–12]. It automatically implements the idea of [13] to explain

the hierarchy of the quark and charged lepton masses in terms of field localization in an

extra dimension. Moreover, HCHM are equipped with a built-in GIM mechanism that goes

under the name of RS-GIM [14, 15] and automatically protects the SM fields from possibly

large flavour violating interactions coming from the composite sector.1

Small neutrino masses and large lepton mixing are not easily accommodated in this

set-up, because the large mixing potentially leads to excessive LFV. Neutrino oscillation

experiments clearly show that the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing ma-

trix has a very peculiar structure well compatible with Tri-Bimaximal (TB) mixing [17–20].

There has been much progress in recent years in explaining TB lepton mixing and the ab-

sence of LFV interactions for charged leptons by means of discrete non-abelian symmetries.

It is thus natural to apply such symmetries also in the context of HCHM in order to resolve

the aforementioned problems.

Aim of this paper is to introduce a class of HCHM where, thanks to a non-abelian

discrete symmetry, lepton mixing is nearly TB, and at the same time bounds on LFV

processes in the charged lepton sector are satisfied (see [21, 22] for other proposals). The

mass spectrum in the neutrino sector can be normally or inversely ordered. The pattern of

flavour symmetry breaking is dictated by symmetry considerations only, without relying on

extra assumptions [23–25] or specific mechanisms for the breaking of the flavour symmetry,

such as the ones used in [26, 27] (see also [28]) in the case of A4 to reproduce TB mixing [29].

We discuss the case of flavour symmetry breaking in the elementary and composite sectors

to certain non-trivial subgroups of the original symmetry without advocating an explicit

realization of the breaking.2 In particular, no flavons or other specific sources of flavour

breaking are present in our set-up. We consider in this paper the discrete group S4 × Z3.

The group S4 has been shown [30–33] to be the minimal group giving rise to TB lepton

mixing using symmetry principles only. The presence of an irreducible two-dimensional

representation is another feature of S4. Such a representation allows to disentangle the

symmetry properties of the third generation from the first two and is expected to be

important when applying the flavour symmetry in the quark sector.

We focus on two possible scenarios which only differ in the way SM neutrinos get a

mass. In the first one, the SM neutrinos are Majorana fermions and the type I see-saw

mechanism explains the smallness of their masses, with no need to introduce additional (in-

termediate) mass scales in the theory. In the second one, SM neutrinos are Dirac fermions

and tiny Yukawa couplings are naturally explained by the ultra-composite nature of the

right-handed (RH) neutrinos [34, 35]. In both scenarios, the flavour symmetry is broken

1Despite this protection mechanism, a CP violation problem is still present in the quark sector [14–16].
2For 5D models, this is the flavour counterpart of breaking by boundary conditions, commonly used for

gauge symmetry breaking.
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to Z2 × Z2 × Z3 in the elementary and to Z
(D)
3 in the composite sector. Note that the

strength of this symmetry breaking is in general expected to be O(1). In the composite

sector for the charged leptons such a large breaking is actually favoured, because it al-

lows to decrease the degree of compositeness of SM leptons, suppressing large deviations

from the SM Zττ̄ coupling.3 The breaking felt by neutrinos in the composite sector is

instead required to be weak in the Majorana scenario, in order to not perturb too much

TB lepton mixing. An alternative is to resort to an extra symmetry protecting neutrinos

from being affected by the flavour symmetry breaking in the composite sector. On the

contrary, flavour symmetry breaking in the composite sector can be large in Dirac mod-

els, provided that the tiny component of RH neutrinos in the elementary sector is flavour

universal.

After a general presentation of the basic 4D flavourful HCHM, we pass to construct

two explicit realizations in terms of 5D warped models. For concreteness, we consider the

HCHM where the Higgs is a pseudo-Goldstone boson, i.e. gauge-Higgs unification mod-

els [36–42]. The 5D models are based on the minimal SO(5)×U(1)X gauge symmetry [43],

while the flavour symmetry group contains, in addition to the S4 × Z3 factor, model-

dependent discrete abelian factors necessary to minimize the number of allowed (and often

unwanted) terms.

In the Majorana model, the leading source of flavour violation arises from so called

fermion boundary kinetic terms (BKT), whose effect is analyzed in detail. The only sizable

constraints come from lepton mixing, being LFV processes for charged leptons below the

current bounds. We also argue that CP violating effects, such as the Electric Dipole

Moments (EDM) for charged leptons, are negligibly small. Keeping the prediction of

the solar mixing angle θ12 within the experimentally allowed 3σ range requires flavour

symmetry breaking in the composite sector to be at most of O(3% ÷ 4%) for neutrinos,

unless a Z2 exchange symmetry is present on the IR brane, in which case no constraint

occurs. This Z2-invariant 5D model is surprisingly successful, simple and constrained,

and essentially contains only one free real parameter and two Majorana phases! The

model is compatible with the mass of the first Kaluza-Klein (KK) gauge resonances being

mKK & 3.5 TeV, which is roughly the lowest scale allowed by electroweak considerations

(S parameter). The masses of all fermion KK resonances (charged and neutral) are always

above the TeV scale.

In the Dirac model the most significant constraint does not arise from LFV processes

or lepton mixing, but from a too large deviation of the gauge coupling of neutrinos to the

Z boson from its SM value, which is constrained by LEP I to be roughly at the per mille

level. This bound is satisfied by taking mKK & 10 TeV, well above the LHC reach, with

an O(1%) tuning in the electroweak sector. The masses of charged fermion KK resonances

are above the TeV scale, while in the neutral fermion sector potentially light (sub-TeV)

states can appear.

3This is an important point, also because uncalculable contributions to LFV processes (and flavour

preserving quantities as well) coming from higher dimensional operators are sub-leading with respect to the

calculable ones only if the SM fields are sufficiently elementary.
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The structure of the paper is as follows. In section 2 we describe our set-up from a

general effective 4D point of view both for the Majorana and Dirac models. In section 3 we

briefly review the relevant operators entering in the LFV processes we focus on, radiative

lepton decays l1 → l2γ, decays to three leptons l1 → l2l3 l̄4 and µ− e conversion in nuclei.

In section 4 we construct the 5D Majorana model, compute its mass spectrum in subsec-

tion 4.1, the deviations from gauge coupling universality in subsection 4.2, LFV processes

and lepton mixing in subsection 4.3 and estimate uncalculable effects in subsection 4.4. In

section 5 a similar, but more concise, analysis is repeated for the Dirac model. We conclude

in section 6. Three appendices are added. In appendix A basic definitions and properties

of S4 are reviewed, in appendix B we report our conventions for the SO(5) generators and

representations and in appendix C we write the detailed structure of the two form factors

governing the charged lepton radiative decays.

2 General set-up

We consider CHM with a non-abelian discrete flavour symmetry Gf = S4 × Z3. They

consist of an “elementary” and a “composite” sector:

Ltot = Lel + Lcomp + Lmix . (2.1)

The symmetry Gf is broken in the elementary sector to Z2 ×Z2 ×Z3, where Z2 ×Z2 ⊂ S4

is generated by S and U , and in the composite sector to Z
(D)
3 , the diagonal subgroup of the

external Z3 and Z3 ⊂ S4 generated by T (see appendix A for our notation and details on

S4 group theory). We do not need to specify how the flavour symmetry breaking pattern

is achieved. The term Lmix governs the mixing between the two sectors and is assumed

to be invariant under the whole flavour group Gf . This is our definition of HCHM in the

following. We have two different classes of models, depending on whether neutrino masses

are of Majorana or Dirac type. We will refer to the two cases as Majorana/Dirac models

(or scenarios).

2.1 Majorana models

The elementary sector is invariant under the SM gauge group and includes three generations

of SM left-handed (LH) and RH leptons lαL, lαR and three RH neutrinos να
R. Here and in

the following Greek letters from the beginning of the alphabet denote generation indices;

depending on the context, α = e, µ, τ or equivalently α = 1, 2, 3. The LH leptons lαL and

the RH neutrinos να
R transform as (3, 1) under S4 ×Z3, while the RH leptons lαR transform

as (1, ω2(α−1)), where ω ≡ e2πi/3 is the third root of unity. The elementary Lagrangian (up

to dimension four terms) is taken to be

Lel = l̄αLiD̂l
α
L + l̄αRiD̂l

α
R + ν̄α

Ri∂̂ν
α
R − 1

2

(

νc
R

α
Mαβν

β
R + h.c.

)

, (2.2)

where the superscript c denotes charge conjugation and M is the most general mass matrix

invariant under Z2 × Z2 × Z3. In flavour space, it is of the form

M = UTBMDU
t
TB , (2.3)
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with UTB the TB mixing matrix

UTB =











√

2
3

√

1
3 0

−
√

1
6

√

1
3

√

1
2

−
√

1
6

√

1
3 −

√

1
2











(2.4)

and MD a diagonal matrix. We use the notation Â ≡ γµAµ, for any vector Aµ.

The composite sector is an unspecified strongly coupled theory, that gives rise, among

other states, to a composite SM Higgs field. The latter may or may not be Goldstone

fields coming from a spontaneously broken global symmetry. In absence of any interaction

between the elementary and the composite sector, the SM fermions are massless. They gain

masses, after ElectroWeak Symmetry Breaking (EWSB), by mixing with fermion operators

Ψ belonging to the strongly coupled sector. The mixing Lagrangian Lmix is

Lmix =
λlL

ΛγlL
l̄αLΨα

lL,R +
λα

lR

Λγα
lR

l̄αRΨα
lR,L +

λνR

ΛγνR
ν̄α

RΨα
νR,L + h.c. (2.5)

where Λ is a high UV cut-off scale of the composite sector, Ψα
lL

, Ψα
lR

and Ψα
νR

are fermion

operators of (quantum) dimensions 5/2 + γlL, 5/2 + γα
lR, 5/2 + γνR, transforming as (3, 1),

(1, ω2(α−1)) and (3, 1) under S4 × Z3, respectively. The mixing parameters λlL and λνR

are flavour universal, while λα
lR

are flavour diagonal, but non-universal. For simplicity, we

assume that all of them are real. Although strictly not necessary, we take γlL, γ
α
lR > 0,

so that these mixing couplings are irrelevant. To a good approximation, lαL and lαR can

be identified with the SM fields, with a small mixing with the strongly coupled sector.

Integrating out the composite fermion operators and taking into account that Lcomp is

invariant under Z
(D)
3 only, gives the following charged lepton mass matrix (in left-right

convention, ψ̄LMψR)

Ml,αβ ≃ λlL

ΛγlL

λβ
lR

Λγβ
lR

〈Ψ̄β
lR

Ψα
lL
〉 ∼ bαvHλlLλ

α
lR
δαβ

(

µ

Λ

)γα
lR

+γlL

, (2.6)

where vH is the electroweak scale, µ is the O(TeV) scale at which the composite theory

becomes strongly coupled and bα are O(1) coefficients.4 The hierarchy of the charged

lepton masses naturally arises from the (µ/Λ) suppression factor in (2.6) with a proper

choice of anomalous dimensions γlL and γα
lR. The coupling λνR

is in general relevant and

να
R strongly mix with the composite sector. The latter gives the following contribution to

the kinetic terms of να
R:

λ2
νR

Λ2γνR

∫

d4pd4q ν̄α
R(−p)〈Ψα

νR,L(p)Ψ̄β
νR,L(−q)〉νβ

R(q) ∼ δα,β b̃
2
αλ

2
νR

(

µ

Λ

)2γνR
∫

d4x ν̄α
R(x)i ∂̂ να

R(x) ,

(2.7)

4The estimate (2.6) and the following are only valid for spontaneously broken CFT, which is the case

mostly relevant for us. At a more qualitative level, however, our arguments apply to more generic holo-

graphic composite sectors, such as the ones in [44].
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with b̃α O(1) coefficients. When γνR
< 0, the kinetic term in (2.7) dominates over the O(1)

term (2.2) present in the elementary Lagrangian, and it is more appropriate to say that

να
R are states in the composite sector with a small component in the elementary sector.

When να
R are canonically normalized, the relevant coupling λνR

in (2.5) becomes effectively

a constant.5 The canonically normalized neutrino Dirac mass terms are of the form

MD
ν,αβ ≃ λlL

ΛγlL

λνR

ΛγνR

(

µ

Λ

)−γνR 1

b̃βλνR

〈Ψ̄β
νR

Ψα
lL
〉 ∼ b̂αvHλlL

b̃α
δαβ

(

µ

Λ

)γlL

, (2.8)

with b̂α O(1) coefficients. Notice the crucial difference between the charged lepton (2.6)

and neutrino (2.8) masses. The former explicitly break the flavour symmetry, since l̄dLlR is

not S4×Z3 invariant, while the latter do not, being l̄uLνR an invariant. This implies that the

coefficients bα vanish in the limit of exact S4 ×Z3 symmetry, while b̂α = b̂, b̃α = b̃ become

flavour independent. Assuming a small breaking of the flavour symmetry in the neutrino

sector, one can take b̃α ≈ b̃, b̂α ≈ b̂ and, independently of bα, the Dirac neutrino mass

terms (2.8) become universal. We stress the importance of having a small breaking of the

flavour symmetry in the neutrino sector but not necessarily for charged leptons, because

the masses of the latter are already suppressed by their small degree of compositeness.

Demanding a higher degree of compositeness, in particular for the τ lepton, might result

in too large deviations of its coupling to the Z from its SM value. Integrating out να
R in

this limit gives the following see-saw like neutrino mass matrix:

Mν,αβ ≃ b̂2v2
Hλ

2
lL
λ2

νR

(

µ

Λ

)2(γνR+γlL)
(

UTBM
−1
D U t

TB

)

αβ
, (2.9)

where we have again taken into account the scaling required to canonically normalize να
R.

Thanks to the latter, the factors b̃ cancel from the final formula (2.9) but, more importantly,

we gain a crucial enhancement factor (µ/Λ)2γνR , without which the light neutrino masses

would be far too small for MD ∼ O(MPl), MPl being the reduced Planck mass, considering

that the Dirac mass terms are at most of O(vH). No intermediate mass scale has then to

be advocated for MD.

The mass matrix (2.6) is diagonal in flavour space and no rotation of charged leptons

is needed to go to the mass basis. On the other hand, the neutrino mass matrix (2.9) is

diagonalized by the matrix UTB (up to phases), which leads to the identification

UPMNS = UTB . (2.10)

2.2 Dirac models

The elementary sector includes, like in the Majorana scenario, three generations of LH and

RH leptons lαL, lαR in (3, 1) and (1, ω2(α−1)) of S4×Z3, respectively, and in addition we now

have LH exotic neutrino singlets ν̂α
L in (3, 1). The composite sector is assumed to contain

two massless RH fermion bound states, singlets under GSM, both in (3, 1) of S4 × Z3.

5This can also be seen by solving an equation for the renormalization group flow of the couplings

λ [43, 45].
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One of them mixes with ν̂α
L giving rise to vector-like massive neutrinos ν̂α. The remaining

fermions, denoted by να
R, mix with some heavy vector-like states in the elementary sector.

When the latter are integrated out, one is left with a tiny mixing mass term ǫ between να
R

and ν̂α
L in the elementary sector, which is flavour universal.6 The elementary Lagrangian

(up to dimension four terms) is taken to be

Lel = l̄αLiD̂l
α
L + l̄αRiD̂l

α
R + ¯̂να

Li∂̂ν̂
α
L − ǫ

(

¯̂να
LMαβν

β
R + h.c.

)

, (2.11)

with M as in (2.3). The mixing Lagrangian Lmix is

Lmix =
λlL

ΛγlL
l̄αLΨα

lL,R +
λα

lR

Λγα
lR

l̄αRΨα
lR,L +

λν̂L

Λγν̂L

¯̂να
LΨα

ν̂L,R + h.c. (2.12)

The operators Ψα
lL

, Ψα
lR

and Ψα
ν̂L

are of dimensions 5/2+γlL, 5/2+γα
lR, 5/2+γν̂L, transform-

ing as (3, 1), (1, ω2(α−1)) and (3, 1) under S4 × Z3, respectively. The mixing parameters

λlL and λν̂L
are flavour universal, while λα

lR
are flavour diagonal, but non-universal. The

charged lepton mass matrix is the same as (2.6). The operators Ψα
ν̂L,R excite, among other

states, the RH massless neutrino bound states that pair up with ν̂α
L. The vector-like mass

of ν̂α depends on the nature of the coupling λν̂L
:

mα
ν̂ ∼ dαλν̂L

µ

(

µ

Λ

)γν̂L

, for γν̂L > 0 ,

mα
ν̂ ∼ dαλν̂L

µ , for γν̂L < 0 , (2.13)

where dα are O(1) coefficients. When EWSB occurs, Yukawa couplings between Ψα
lL

and

Ψα
ν̂L

induce mixing among να
L and ν̂α. When ν̂α are integrated out, one gets

ν̂α
L ∼ d̂αλlLvH

mα
ν̂

(

µ

Λ

)γlL

να
L , (2.14)

where d̂α are O(1) coefficients. Plugging (2.14) into the mass term in (2.11) gives the SM

neutrino mass matrix

Mν,αβ ∼ ǫ
d̂αλlLvH

mα
ν̂

(

µ

Λ

)γlL

Mαβ . (2.15)

In the limit in which the massesmα
ν̂ and the mixing are universal, mα

ν̂ = mν̂ , dα = d, d̂α = d̂,

the mass matrix (2.15) leads to TB mixing. The composite nature of the RH neutrino

naturally explains the smallness of ǫ and hence the actual SM neutrino masses [34, 35].

In both scenarios, the flavour symmetry Z
(D)
3 , present in the composite sector, remains

unbroken in the limit in which the neutrino mass term M in the elementary sector is

proportional to the identity. Correspondingly, all tree-level flavour changing charged gauge

boson interactions are vanishing in this limit. When M is not proportional to the identity,

the latter are still negligible in the Majorana scenario, being suppressed by the masses of

the heavy RH neutrinos, but can be sizable in the Dirac one, leading to processes such

6We do not specify here how this mixing is achieved and how its flavour universality is guaranteed. We

will see that the latter requirement can naturally be fulfilled in our 5D example, see subsection 5.1.
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as µ → eγ. Tree-level flavour violating Higgs and neutral gauge boson interactions vanish

in both scenarios. This summarizes the basic set-up of our Majorana and Dirac HCHM.

There are of course several sub-leading effects that should consistently be analyzed. We

have not performed such analysis, but have preferred to postpone their discussion to the

explicit 5D models that will follow. We only comment here that a relevant source of flavour

violation arises from the elementary sector, since the kinetic terms of the SM fermions (in

the basis where Lmix is Gf invariant) are constrained in general to be only Z2 × Z2 × Z3

invariant, rather than S4 × Z3 invariant:

l̄LiD̂lL → l̄L(1 + Zl)iD̂lL (2.16)

with Zl = UTBZ
D
l U

t
TB, and ZD

l a diagonal matrix. Similar considerations apply of course

to να
R and ν̂α

L, while the additional unbroken Z3 symmetry forbids flavour violating kinetic

terms for lαR. As we will see, in 5D models the Zl factors are mapped to BKT at the UV

brane.

3 Effective field theory for LFV processes

In this section we review, closely following [46] and their notation, the most relevant ef-

fective operators entering in LFV processes. The most experimentally constrained LFV

observables are the radiative lepton decays l1 → l2γ, the decays to three leptons l1 → l2l3 l̄4
and the µ− e conversion in nuclei. Particularly relevant are the muon decays µ→ eγ and

µ → eeē (µ → 3e for short). These LFV processes are described by the following effective

dimension 5 and 6 operators

−
√

2

4GF
Leff ⊃ mµARµ̄Rσ

µνeLFµν +mµALµ̄Lσ
µνeRFµν +g1(µ̄ReL)(ēReL)+g2(µ̄LeR)(ēLeR)

+g3(µ̄Rγ
µeR)(ēRγµeR) + g4(µ̄Lγ

µeL)(ēLγµeL)

+g5(µ̄Rγ
µeR)(ēLγµeL) + g6(µ̄Lγ

µeL)(ēRγµeR) + h.c. . (3.1)

Terms of the form (µ̄ReL)(ēLeR) and (µ̄LeR)(ēReL), by a Fierz identity, are shown to

contribute to g5 and g6, respectively. The first two terms contribute to µ → eγ while all

terms contribute to µ→ 3e. One finds the following branching ratio for these processes:

BR(µ→ eγ) = 384π2(|AL|2 + |AR|2) ,

BR(µ → 3e) =
|g1|2 + |g2|2

8
+ 2(|g3|2 + |g4|2) + |g5|2 + |g6|2 (3.2)

+8eRe
[

AR(2g∗4 +g∗6) +AL(2g∗3 +g∗5)
]

+ 64e2
(

log
mµ

me
− 11

8

)

(|AL|2+|AR|2) .

The µ − e conversion in nuclei is more involved and described by an additional set of

effective operators, that contain quark fields. The most relevant ones are the vector 4

fermion operators:

−
√

2

GF
Leff ⊃

∑

q=u,d

[

(gLV (q)ēLγ
µµL + gRV (q)ēRγ

µµR)q̄γµq + h.c.
]

. (3.3)
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The branching ratio is given by (see [46] for more details)

Bconv(µN → eN) ≃
m5

µG
2
FF

2
p α

3Z4
eff

8π2ZΓcapt

(

|(2Z +N)gLV (u) + (Z + 2N)gLV (d)|2

+|(2Z +N)gRV (u) + (Z + 2N)gRV (d)|2
)

, (3.4)

where Z and N are the proton and neutron numbers of the nucleus, Fp is the nuclear

form factor, Zeff is the effective atomic charge and Γcapt is the total muon capture rate. A

similar analysis applies to LFV processes involving the τ lepton, see e.g. [47] for details.

4 Explicit 5D Majorana model

It is useful to construct a specific 5D weakly coupled description of our Majorana scenario,

in order to concretely address its phenomenological viability beyond possible estimates

based on näıve dimensional analysis only. We consider in the following a gauge-Higgs uni-

fication model in warped space [43, 48–50]. As known, these models describe the sub-class

of CHM where in the composite sector (a spontaneously broken CFT) a global symme-

try G is spontaneously broken to a sub-group H, giving rise to a set of Goldstone fields

including the SM Higgs field [51]. We consider the minimal symmetry breaking pattern

SO(5) → SO(4), leading only to the SM Higgs doublet. We use the conformally flat

coordinates in which the 5D metric reads

ds2 = a2(z)(ηµνdxµdxν − dz2) =

(

R

z

)2

(ηµνdxµdxν − dz2) . (4.1)

The UV and IR branes are located at z = R ∼ 1/MPl, where MPl is the reduced Planck

mass, and at z = R′ ∼ 1/TeV, respectively. The gauge symmetry in the bulk is

Ggauge = SO(5) × U(1)X (4.2)

and the flavour symmetry is

Gflavour = S4 × Z3 × Z′
3 × Z′′

3 . (4.3)

The gauge symmetry breaking is standard, withGgauge broken at the UV and IR boundaries

to Ggauge,UV = SU(2)L×U(1)Y and Ggauge,IR = SO(4)×U(1)X×PLR, where PLR is a LR Z2

symmetry, useful to suppress deviations of the couplings of fermions to the Z boson from

their SM values [52]. The flavour symmetry is broken to Gflavour,UV = Z2 × Z2 × Z3 × Z′′
3

and Gflavour,IR = Z
(D)
3 ×Z′

3, respectively. In order to constrain the number of terms allowed

at the UV and IR boundaries, two additional symmetries Z′
3 and Z′′

3 have been included.

The lepton particle content of the model consists of 5D bulk fermions only: one fun-

damental ξl,α, one adjoint ξe,α and one singlet representation ξν,α of SO(5), for each gen-

eration, all neutral under U(1)X (see [53, 54] for a similar construction),

ξl,α =

(
[

L̃1,αL (−+) , LαL (++)
]

ν̂αL (−+)

)

, ξe,α =













xαL (+−)

ν̃αL (+−)

eαL (−−)

ZαL (+−)

[

L̃2,αL (+−) , L̂αL (+−)
]













,

ξν,α = ναL (−−)

(4.4)
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Bulk UV IR

Gflavour = S4 × Z3 × Z′

3 × Z′′

3 Gflavour,UV = Z2 × Z2 × Z3 × Z′′

3 Gflavour,IR = Z
(D)
3 × Z′

3

(1,−1, 1, ω)

ξl,α (3, 1, ω, ω) (−1, 1, 1, ω) (ω2(α−1), ω)

(−1,−1, 1, ω)

ξe,α (1, ω2(α−1), ω, ω) (1, 1, ω2(α−1), ω) (ω2(α−1), ω)

(1,−1, 1, 1)

ξν,α (3, 1, ω, 1) (−1, 1, 1, 1) (ω2(α−1), ω)

(−1,−1, 1, 1)

Table 1. Transformation properties of the 5D multiplets ξl, ξe and ξν under Gflavour and their

decomposition properties under the subgroups Gflavour,UV and Gflavour,IR in the Majorana model.

where the first and second entries in round brackets refer to the + (−) Neumann (Dirichlet)

boundary conditions (b.c.) at the UV and IR branes, respectively. We have written the

SO(5) multiplets in (4.4) in terms of their SU(2)L × SU(2)R decomposition, where [ψ1, ψ2]

denotes the two components of the bi-doublet (2,2) with T3R = +1/2 (ψ1) and T3R = −1/2

(ψ2). The SM LH lepton doublets arise from the zero modes of the 5D field LαL in the

5, the RH charged lepton singlets arise from the zero modes of eαR, T3R = −1 component

of the SU(2)R triplet in the 10, and the RH neutrinos arise from the zero modes of the

singlet ναR.7 Notice that with the embedding (4.4), the LH SM charged leptons, originating

from 5D fields with T3R = T3L = −1/2, are expected to have suppressed SM Z coupling

deviations. In addition to the SM fields and their KK towers, the 5D fields (4.4) give also

rise to a set of exotic particles. In terms of SU(2)L × U(1)Y , these are two doublets L̃1,αL

and L̃2,αL with Y = 1/2, one doublet L̂αL with Y = −1/2, two singlets ν̂αL and ν̃αL with

Y = 0, one singlet xαL with Y = 1 and one triplet ZαL with Y = 0. The flavour properties

of the fields (4.4) are summarized in table 1. Notice that the decomposition of the 3 of S4

into representations of the remnant group Z2×Z2 at the UV boundary implies a non-trivial

basis transformation, see appendix A.

The most general Ggauge,IR ×Gflavour,IR invariant mass terms at the IR brane are8

− LIR =

(

R

R′

)4
∑

α=e,µ,τ

(

ml
IR,α

(

L̃1,αLL̃2,αR + LαLL̂αR

)

+mν
IR,α ν̂αLναR + h.c.

)

, (4.5)

all flavour diagonal. The only Ggauge,UV×Gflavour,UV invariant mass terms at the UV brane

7The hypercharge Y and electric charge Q are given by Y = X + T3R and Q = T3L + Y .
8Following a common use in the literature, we have omitted to write certain fermion terms, including

terms in which the would-be fermion components with Dirichlet b.c. appear, because at the level of mass

mixing the IR Lagrangian is only relevant in determining the modified b.c. (such as (4.8) below) of the

fields at the IR brane. One can detect the absence of such terms by noticing that the variation of the sum

of the bulk and brane action at the IR brane does not vanish when the b.c. (4.8) are imposed.
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are Majorana mass terms for RH neutrinos:

− LUV =
1

12
mUV,e

(

2νc
eR − νc

µR − νc
τR

)

(2νeR − νµR − ντR)

+
1

6
mUV,µ

(

νc
eR + νc

µR + νc
τR

)

(νeR + νµR + ντR)

+
1

4
mUV,τ

(

νc
µR − νc

τR

)

(νµR − ντR) + h.c.

=
1

2
νc

αRMUV,αβνβR + h.c. (4.6)

with

MUV = UTBmUVU
t
TB , (4.7)

mUV = diag(mUV,e , mUV,µ , mUV,τ ) and UTB as in (2.4). Notice that the UV and IR

localized mass terms are dimensionless. The phases of the IR mass terms ml
IR,α and

mν
IR,α can be removed by properly re-defining the 5D SO(5) fields ξl,α and ξe,α. We can

also remove one of the three phases of the UV mass terms mUV,α, so that, in total, the

Majorana model contains just two phases.

4.1 Mass spectrum

The mass spectrum of the theory (including all KK states) is efficiently computed using the

so-called holographic approach [55–58], which is also very useful to match the 5D theory to

the 4D description given in section 2. As far as the lightest modes are concerned, however,

simple and reliable formulas are more easily obtained using the more standard KK approach

and the so called Zero Mode Approximation (ZMA), which we use in the following. The

ZMA is defined as the approximation in which EWSB effects (i.e. Higgs insertions) are

taken as perturbations and mixing with the KK states coming from Higgs insertions is

neglected. The spectrum of the zero modes is then entirely fixed by the unperturbed zero

mode wave functions and their overlap with the Higgs field. These unperturbed wave

functions satisfy the new b.c. as given by the localized IR terms. As explained in [59], the

localized UV Majorana mass terms, instead, must be considered as a perturbative mass

insertion (like the Higgs) if one wants to recover a meaningful mass spectrum for the light

SM neutrinos without taking into account mixing with the KK states. Due to the wave

function localization of zero and KK modes, as a rule of thumb, the lighter the zero mode

masses are, the more accurate the ZMA is.

Taking into account the localized IR mass terms (4.5), the IR b.c. for the non-vanishing

5D field components in ZMA are

ν̂αR = −mν
IR,α ναR , ναL = mν

IR,α ν̂αL , z = R′

LαR = −ml
IR,αL̂αR , L̂αL = ml

IR,αLαL , z = R′ . (4.8)
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We get the following zero mode expansion:

LαL(x, z) =
1√
R′

(

z

R

)2( z

R′

)−cl

fcl

1√
ρα
l
(0)
αL(x) , (4.9)

L̂αL(x, z) = ml
IR,α

1√
R′

(

z

R

)2( z

R′

)−cα

fcl

1√
ρα
l
(0)
αL(x) , (4.10)

ναR(x, z) =
1√
R′

(

z

R

)2( z

R′

)cν

f−cν

1√
σα
N

(0)
αR(x) , (4.11)

ν̂αR(x, z) = −mν
IR,α

1√
R′

(

z

R

)2( z

R′

)cl

f−cν

1√
σα
N

(0)
αR(x) , (4.12)

eαR(x, z) =
1√
R′

(

z

R

)2( z

R′

)cα

f−cαe
(0)
αR(x) , (4.13)

where l
(0)
αL(x), e

(0)
αR(x) and N

(0)
αR(x) are the canonically normalized LH lepton doublets, RH

charged leptons and RH neutrino zero modes, respectively. We use the standard notation

fc =

[

1 − 2c

1 −
(

R
R′

)1−2c

]1/2

(4.14)

where c = MR are the dimensionless bulk mass terms of the 5D fermions. We denote by

cl and cν the bulk mass terms of ξl,α and ξν,α, constrained by the flavour symmetry to

be flavour-independent. We denote by cα the remaining 3 bulk mass terms for ξe,α. The

parameters ρα and σα are defined as

ρα = 1 + |ml
IR,α|2

(

fcl

fcα

)2

, σα = 1 + |mν
IR,α|2

(

f−cν

f−cl

)2

. (4.15)

We take the unitary gauge for the SO(5) → SO(4) symmetry breaking pattern in which

the Higgs field wave function is (see appendix B for our SO(5) conventions)

Aâ
5(x, z) =

√

2

R

z

R′
〈hâ(x)〉 = vH

√

2

R

z

R′
δâ,4 ≡ vHfH(z)δâ,4, (4.16)

with vH ≃ 250 GeV. We find useful to introduce

h ≡ vH

fH
, (4.17)

where fH is the Higgs decay constant. It is defined as

fH =
2
√
R

g5R′
=

2

gR′
√

log(R′/R)
. (4.18)

In the second equality we have used the approximate tree-level matching between the SO(5)

5D coupling g5 and the SU(2)L 4D coupling g

g5 = g
√

R log(R′/R) . (4.19)
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Flavour-independent bounds, essentially the S parameter in models with a custodial sym-

metry, constrain 1/R′ & 1.5 TeV, corresponding to h . 1/3.

By computing the wave-function overlap with the Higgs field, we get the following

charged lepton mass matrix

Ml,αβ =
h√
2R′

fcl
f−cα

ml
IR,α√
ρα

δα,β . (4.20)

As usual, the SM fermion masses are naturally obtained by taking cα < −1/2, in which

case f−cα are exponentially small and hierarchical.

For the Dirac neutrino mass matrix we get

MD
ν,αβ =

ih√
2R′

fcl
f−cν

mν
IR,α√
ρα σα

δα,β . (4.21)

The Majorana mass matrix in 4D is the one on the UV boundary. Taking into account the

wave functions of the RH neutrinos, we get

MM,αβ =

(

R

R′

)2cν+1

f2
−cν

1√
σα

MUV,αβ

R

1
√
σβ

. (4.22)

Integrating out the heavy Majorana fields N
(0)
αR(x), the factors σα cancel out and the actual

form of the light neutrino mass matrix is, using (4.7),

Mν,αβ =
h2

2R′2
f2

cl

(

R′

R

)2cν+1mν
IR,α√
ρα

(

UTB
R

mUV
U t

TB

)

αβ

mν
IR,β√
ρβ

. (4.23)

For mν
IR,α ≈ mUV,α ≈ O(1), the size of the neutrino masses is mainly governed by the bulk

mass term cν . The latter is essentially fixed to be

cν ≈ −0.36 . (4.24)

We have explicitly checked that the masses of the zero modes obtained in the ZMA (and

treating the UV Majorana mass term as a perturbative mass insertion) are in excellent

agreement with the exact tree-level spectrum.

Let us consider the relation between the 5D model and the general 4D analysis per-

formed in subsection 2.1. The strongly coupled sector is a CFT spontaneously broken at

the scale µ ≃ 1/R′ with a cut-off Λ ≃ 1/R. The anomalous dimensions appearing in (2.5)

are uniquely fixed by the bulk masses of the 5D multiplets ξl, ξe and ξν [45]:9

γlL = |cl + 1/2| − 1 , γα
lR = |cα − 1/2| − 1 , γνR = |cν − 1/2| − 1 . (4.25)

It is straightforward to show that, for cl > 1/2 and cα < −1/2, the (µ/Λ) suppression

factors appearing in (2.6) arise from the factors fcl
and f−cα defined in (4.14) and that

9The IR localized mass terms (4.5) correspond to irrelevant deformations of the CFT and do not affect

the anomalous dimensions computed in the limit of exact conformal symmetry. They however deform the

mass spectrum of the CFT when finite cut-off effects are taken into account.
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bα ∼ ml
IR,α. With the value of cν taken as in (4.24), the coupling λνR

is relevant and f−cν ≃
fcν ∼ O(1). The mass formula (4.21) is of the general form (2.8), where b̂α ∼ mν

IR,α and

b̃2α ∼ σα − 1. The latter factors, as expected, do not appear in the final mass formula (2.9).

The ρα are wave function normalization factors that take into account the contribution of

the composite sector to the kinetic terms of the LH doublets, given by ρα − 1.

In the limit of an S4 invariant IR Lagrangian, ml
IR,α → 0 (so that ρα → 1) and

mν
IR,α = mν

IR, the neutrino mass matrix (4.23) leads to TB mixing. As we will see, bounds

on gauge coupling deviations favour the region in parameter space where cl is close to 1/2,

in which case ρα is equal to one (since fcα & 1) to a reasonable approximation even for

ml
IR,α ∼ O(1). This accidental property allows us to also explore the region in parameter

space where the flavour symmetry breaking in the charged lepton sector on the IR brane

is large, while in the neutrino sector it remains small, namely mν
IR,α = mν

IR(1 + δmν
IR,α),

with δmν
IR,α ≪ 1.

Instead of assuming a small breaking in the neutrino sector and for the sake of reducing

the number of parameters in the model, one might also advocate an accidental Z2 exchange

symmetry present only in the IR localized Lagrangian, under which

ν̂α(x,R′) ↔ να(x,R′) . (4.26)

If the symmetry (4.26) is imposed, the IR mass parameters mν
IR,α are constrained to be

equal to ±1. Among the four inequivalent choices of ±1, we can take the universal choice

mν
IR,α = 1. Although not necessary, an analogous Z2 symmetry exchanging the two bi-

doublets in the 5 and the 10 of SO(5) (a single Z2 exchanging the bi-doublets and the

singlets is also a viable possibility) might be advocated to also set ml
IR,α = 1. The resulting

model can be seen as an ultra-minimal 5D model, with in total only 8 real parameters (5

bulk mass terms and 3 localized UV mass parameters) and two phases (contained in the

UV mass parameters), 4 of which are essentially fixed by the SM charged leptons (cα, cl), 1

by the overall neutrino mass scale (cν) and 2 by the neutrino mass square differences (two

combinations of mUV,α), leaving in this way just one free real parameter and two Majorana

phases! We denote this constrained model by the “Z2-invariant” model.

The mass spectrum of all the KK resonances is above the TeV scale. For instance,

let us consider the Z2-invariant model and let us take h = 1/3, cl = 0.52, cν = −0.365

as benchmark values. In this case, the lightest gauge boson KK resonances have mKK ≈
3.5 TeV, the lightest (negatively and positively) charged and neutral fermions have masses

around 2TeV, while the heavy Majorana neutrinos have masses around 1013 GeV.

4.2 Deviations from gauge coupling universality

In this subsection we compute the deviations from the SM values of the couplings of leptons

to the Z and W bosons. In RS-like models such deviations can play an important role,

since their expected order of magnitude for natural models with 1/R′ & 1.5 TeV can be of

the same order of magnitude or larger than the experimental bounds, which are at the per

mille level. The size of the deviation is mainly fixed by the wave function profile in the fifth

dimension of the 4D lepton. The more the field is UV peaked, the smaller the deviation is.
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On general grounds, one might expect sizable deviations for all the ZlLl̄L couplings and

for the ZτRτ̄R one. Deviations of the LH neutrino couplings ZνLν̄L should also be studied.

The latter have indirectly been measured by LEP I and are constrained at the per mille

level with an accuracy comparable to that for charged leptons, using the invisible decay

width of the Z boson, under the assumption that this is entirely given by neutrinos [60].

An efficient way to compute these deviations, automatically summing over all the KK

contributions, is provided by the holographic approach. In the latter, the effective 4D

gauge couplings between fermions and gauge bosons are obtained by integrating over the

internal dimension the 5D gauge vertex, with the 5D fields replaced by bulk-to-boundary

propagators and 4D fields. The main source of deviation arises from higher-order operators

with Higgs insertions, which give a contribution of O(h2). Higher-order derivative opera-

tors are negligible, being suppressed by the fermion masses or the Z boson mass and are

O(MlR
′)2 or O(mZR

′)2, respectively. The momentum of all external fields (and hence of

all bulk-to-boundary propagators) can be then reliably set to zero. In this limit, the com-

putation greatly simplifies and compact analytic formulae can be derived. In the following

we do not report all the details of our computation but only the final results. We define

the 4D SM couplings gl,SM as

gl,SM = T 3
L −Q sin2 θW , (4.27)

without additional factors of the coupling g or of the weak mixing angle θW .

Let us first consider the LH charged leptons lαL. Given our embedding of lαL into 5D

multiplets with T3L = T3R, we simply have

δgα
lL

= gα
lL

− gα
lL,SM = 0 (4.28)

and no deviations occur at all.10 They occur for the RH charged leptons lαR. We get

δgα
lR

≃ −(Ml,αR
′)2 f−2

cl

(

2 + 4cl + (3 + 2cα)|ml
IR,α|2

)

2|ml
IR,α|2(3 + 2cα)(1 + 2cl)

, (4.29)

where Ml,α are the charged lepton masses (4.20) and it is understood that cα entering

in (4.29) are determined as a function of cl, m
l
IR,α and Ml,α. Equation (4.29) clearly

shows that a small flavour symmetry breaking in the composite sector for charged leptons,

i.e. ml
IR,α ≪ 1, is disfavoured. Keeping cl and Ml,α fixed, for small IR mass terms δgα

lR
∝

1/|ml
IR,α|2. It is intuitively clear that δgα

lR
grow when the localized IR mass terms decrease,

since one needs to delocalize more the RH leptons to get their correct masses, resulting in

larger mixing with the KK spectrum and hence larger deviations. Alternatively, one has

to decrease the value of cl, increasing the degree of compositeness of the LH leptons.

Let us now turn to the neutrino Z couplings. Since να
L are embedded into SO(5)

multiplets with T3L 6= T3R, non-trivial deviations are expected. In the limit R′ ≫ R and

10The coupling deviations above are defined in the field basis in which a completely localized UV fermion

has SM gauge couplings, with no deviations. In this basis the fermion independent universal coupling

deviation arising from gauge field mixing is encoded in the S parameter.
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in the relevant range cl > 0, cα < 0, cν < 0, we have

δgα
νL

≃
h2(1 − 2cl)

(

4cα − 2 + |ml
IR,α|2(2cl − 3) + |mν

IR,α|2
(2cα−1)(2cl−3)

(2cν−1)

)

R′R2cl

4(2cl − 3)
((

2cα − 1 + |ml
IR,α|2(2cl − 1)

)

R′R2cl +R(R′)2cl(1 − 2cα)
) . (4.30)

The couplings of the W boson to the LH doublets and their deviations from the SM values,

denoted by δgα
νLlL

, are computed in the same way. In the same limit as (4.30), we find

∣

∣

∣

∣

δgα
νLlL

gα
νLlL

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

δgα
νL

gα
νL

∣

∣

∣

∣

. (4.31)

We demand that
∣

∣

∣

∣

δgα
l

gα
l

∣

∣

∣

∣

< 20/00 ,

∣

∣

∣

∣

δgα
ν

gα
ν

∣

∣

∣

∣

< 40/00 (4.32)

for LH and RH charged leptons and LH neutrinos.

The LH neutrino deviations (4.30) are mostly sensitive to cl, requiring cl & 0.49, with a

mild dependence on the other parameters, while the RH charged lepton deviations are also

very sensitive to the bi-doublet IR mass parameters, disfavouring small values of ml
IR,α.

Independently of ml
IR,α, we get an upper bound on cl from the τ lepton, cl . 0.56. As in

many warped models with bulk fermions, the region cl ≃ 1/2 is preferred by electroweak

bounds.

4.3 LFV processes and BKT

Due to our choice of discrete symmetries, no 5D operators that reduce to the operators

appearing in (3.1) and in (3.3) are allowed in the bulk or on the IR brane. The flavour

preserving dipole operators responsible for lepton EDM are also forbidden by gauge invari-

ance. Operators associated with the couplings g4 and g6 in (3.1) and gLV (q) in (3.3) are

allowed on the UV brane, but their natural scale is O(M−2
Pl ) and thus totally negligible.

The operators in (3.1) and in (3.3) can only arise in the effective field theory below the

KK scale, after the KK resonances have been integrated out. Their coefficients are then

calculable. In absence of further corrections, tree-level flavour changing interactions among

charged leptons mediated by neutral KK gauge bosons and Higgs vanish, since all interac-

tions and Yukawa couplings involving charged leptons are manifestly flavour diagonal (in

contrast to what happens in generic RS models [61]):

g1−6 = gLV (q) = gRV (q) = 0 . (4.33)

Flavour violation occurs in the neutrino sector and hence radiative decays mediated by

neutrinos and charged gauge bosons do not vanish, AL, AR 6= 0. However, these are

negligible, because effectively mediated only by heavy Majorana neutrinos. This is best

seen by considering again the UV Majorana mass term as a mass insertion, but beyond

ZMA, including all KK wave functions. The mass terms (4.6) can be written as follows:

LMaj
4D =

1

2

( ∞
∑

m=0

N
(m)c
αR (x)f

(m)
ν,αR(R)

)

MUV,αβ

( ∞
∑

n=0

f
(n)
ν,βR(R)N

(n)
βR (x)

)

+ h.c. (4.34)
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where f
(n)
ν,αR are the KK wave functions for the fields N

(n)
αR , and explicitly show that the

Majorana mass matrix has rank 1 in the KK indices, for each flavour α. The heavy

Majorana state Nh
αR is defined by the eigenvector in round brackets in (4.34), with non-

vanishing Majorana mass. Suitable orthonormal combinations of N
(n)
αR define the “light”

KK modes N
l(n)
αR . The fields Nh

αR are not yet in their mass basis and (4.34) is not diagonal

in flavour space. However, since these fields are very heavy, we can integrate them out.

In the limit of infinite mass, this implies setting Nh
αR = 0. Eventually, we see that the

remaining terms in the Lagrangian involving the fields N
l(n)
αR are flavour-diagonal with

real coefficients. For finite mass, flavour and CP violating interactions are generated, but

suppressed by the heavy Majorana mass and are completely negligible.

It is important to study at this stage the impact of higher dimensional flavour violating

operators in the model. These can only occur at the UV brane. The lowest dimensional

operators of this form are fermion BKT. In principle all possible BKT allowed by the

symmetries must be considered. In practice this is rather difficult to do, so we focus only

on those BKT, whose presence with all others set to zero, causes flavour violation. From

the table 1, we see that Z3 forbids the appearance of flavour violating BKT for ξe,α, while

these are allowed for ξl,α and ξν,α. There are in principle four possible flavour violating

BKT at the UV brane, for L̃1,αR, ν̂αR, ναR and LαL. The KK expansion of fields with b.c.

modified by both boundary mass and kinetic terms is quite involved. In order to simplify

the analysis, we consider the BKT as a perturbation and treat them as insertions, like the

Majorana mass terms. Namely, we take as b.c. for all fields the ones with vanishing BKT

and then plug the resulting KK expansion into the BKT. This approximation is clearly

valid for parametrically small BKT, but it is actually very good at the UV brane even for

BKT of O(1), as we will see (see [62] for an analysis of fermion BKT in warped models).

Among the 4 BKT above, the UV BKT for L̃1,αR, ν̂αR and ναR are strongly suppressed

(at least for the most relevant low KK modes), due to the form of the wave functions of

these fields, and can be neglected. We are only left with

LBKT = L̄L(x,R)(RẐl)iD̂LL(x,R) , (4.35)

where Z2 × Z2 constrains Ẑl to be of the form Ẑl = UTBdiag (zel, zµl, zτl)U
t
TB. The coef-

ficients zαl are dimensionless and their natural values are O(1), although smaller values

∼ 1/(16π2) can also be radiatively stable. If one assumes a small breaking of S4 → Z2×Z2

at the UV brane, the relative differences in the zαl can be taken parametrically smaller

than ∼ 1/(16π2). In presence of the flavour violating operators (4.35), the couplings (3.1)

and (3.3) become non-vanishing.

Let us first write down, in the mass basis, the relevant interaction terms of our 5D

Lagrangian that give rise to the effective couplings present in (3.1) and (3.3). We have

Lint ⊃ g√
2

[

∑

i,a,V −

(

Ca
iLl̄aLV̂

−νiL + Ca
iR l̄aRV̂

−νiR + h.c.
)

+
∑

q,V 0

gq q̄V̂
0q (4.36)

+
∑

a,b,V 0

(

Dab
L l̄aLV̂

0lbL +Dab
R l̄aRV̂

0lbR
)

+
∑

a,b

(

Yab l̄aLHlbR + Y ∗
ba l̄aRHlbL

)

]

,
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where a and b run over all charged leptons, q runs over the light SM quarks u and d, i runs

over all the neutrinos, V − and V 0 run over all charged and neutral gauge fields, respectively.

By “all” we here mean all species of particles, including their KK resonances. For simplicity

of notation, we have omitted the implicit dependence of the couplings in (4.36) on the gauge

fields V − and V 0. The couplings in (3.3) depend on how the quark sector is realized in the

theory. We assume here that up and down quarks are genuine 4D fields localized at the

UV brane and singlets under the flavour symmetry.

The coefficients AL and AR are radiatively generated and receive contributions from

3 different classes of one-loop diagrams,

AR = A
(W )
R +A

(Z)
R +A

(H)
R , AL = A

(W )
L +A

(Z)
L +A

(H)
L , (4.37)

where A
(W )
R/L are the contributions due to the diagrams where a charged gauge boson and a

neutrino are exchanged, A
(Z)
R/L are the contributions due to the diagrams where a neutral

gauge boson and a charged lepton are exchanged and A
(H)
R/L are the contributions due to

the diagrams where the Higgs and a charged lepton are exchanged. The explicit form of

these coefficients is reported in appendix C.

The operators associated with the couplings g1−6 are generated at tree-level by Higgs

and neutral gauge boson exchange. By matching, we have

g1 = −2
m2

W

m2
H

YeeY
∗
eµ , g2 = −2

m2
W

m2
H

YeeYµe , g3 =
∑

V 0

m2
W

m2
V 0

Dee
RD

eµ
R , g4 =

∑

V 0

m2
W

m2
V 0

Dee
L D

eµ
L ,

g5 =
∑

V 0

m2
W

m2
V 0

Dee
L D

eµ
R +

m2
W

m2
H

YeeY
∗
eµ , g6 =

∑

V 0

m2
W

m2
V 0

Dee
RD

eµ
L +

m2
W

m2
H

YeeYµe , (4.38)

where mW and mH are the masses of the SM W and Higgs bosons, respectively. The

couplings in (3.3) are given by

gLV (q) = 4
∑

V 0

m2
W

m2
V 0

gqD
eµ
L , gRV (q) = 4

∑

V 0

m2
W

m2
V 0

gqD
eµ
R . (4.39)

Strictly speaking, the effective couplings appearing in (3.1) and (3.3) should be evaluated

at the scale of the decaying charged lepton mass, while (4.37), (4.38) and (4.39) give the

couplings at the energy scale corresponding to the mass of the state that has been integrated

out. Contrary to, say, non-leptonic quark decays, renormalization group effects in leptonic

decays are sub-leading and can be neglected in first approximation. We can then directly

identify the coefficients (4.37), (4.38) and (4.39) as the low-energy couplings relevant for

the LFV processes.

We have numerically computed the LFV processes by keeping, for each independent

KK tower of states, the first heavy KK mode. For tree-level processes this approximation

is quite accurate and should differ from the full result by O(10%), as we have numerically

checked by keeping more KK states. For radiative decays, the approximation is less ac-

curate and might differ from the full result by O(50%). This accuracy is enough for our

purposes. If one demands a higher precision, a full 5D computation, as e.g. in [63], should
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be performed, although one should keep in mind that the limited range of validity of the

effective field theory of 5D warped models puts a stringent bound on the accuracy one can

in principle achieve.

As we already said, all LFV processes are induced by the BKT (4.35). More precisely,

LFV processes are induced by the relative differences in the zel, zµl, zτl factors, since

universal BKT simply amount to a trivial rescaling of the fields. Let us first give an

estimate of the relative relevance of the couplings g1–g6 and gL/RV (q). They are induced

by the tree-level exchange of Higgs and neutral gauge bosons, namely the SM boson Z and

its first KK mode Z(1), the first KK mode of the photon γ(1), the first KK mode of the

neutral SO(5)/SO(4) fields A3̂(1) and A4̂(1), the first KK mode of the 5D gauge field Z ′(1).

The 5D fields Z, γ and Z ′ are related as follows to the SO(5) × U(1)X fields W3L, W3R

and X:

B =
g5XW3R + g5X
√

g2
5 + g2

5X

, Z ′ =
g5W3R − g5XX
√

g2
5 + g2

5X

,

Z = cos θWW3L − sin θWB , γ = cos θWB + sin θWW3L , (4.40)

with g5X the 5D coupling of the U(1)X field, determined in terms of θW :

tan2 θW =
g2
5X

g2
5 + g2

5X

. (4.41)

Due to the IR-peaked profile of the KK wave functions, the leading effect of (4.35) is to

mix the LH zero mode fields l
(0)
αL among themselves. The main source of flavour violation

clearly arises from LH fields. Since fermion Yukawa couplings are negligible, we have

g1 ≃ g2 ≃ g3 ≃ g5 ≃ gRV (q) ≃ 0 . (4.42)

The LFV couplings Deµ
L in (4.36) govern the size of the relevant effective couplings g4, g6

and gLV (q). The dominant LFV effects arise from the rotation and rescaling of l
(0)
αL necessary

to get canonically normalized kinetic terms. Before EWSB effects are considered, no flavour

violation is expected from the SM Z boson by gauge invariance. The leading deviations

arise from the gauge fields Z(1), γ(1) and Z ′(1). It is straightforward to derive a reasonable

accurate estimate for the couplings Deµ
L :

Deµ
L (Z(1)) ≃

(

gZ(1)

loc − gZ(1)

bulk

)

(Zl)eµ ,

Deµ
L (γ(1)) ≃

(

gγ(1)

loc − gγ(1)

bulk

)

(Zl)eµ ,

Deµ
L (Z ′(1)) ≃ −gZ′(1)

bulk (Zl)eµ , (4.43)

where gloc and gbulk are the BKT and bulk contributions to the gauge couplings, respec-

tively. When EWSB effects are considered, LFV effects are transmitted to the SM Z boson

as well. The resulting Deµ
L (Z) is suppressed by the mixing, but the latter is approximately

compensated by the absence of the mass suppression factors appearing in the couplings

gi (4.38). Eventually, the SM Z boson contribution to LFV is of the same order of mag-

nitude of that of the fields Z(1), γ(1) and Z ′(1). In (4.43), Zl is the effective BKT felt by
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the zero mode, which is obtained by multiplying Ẑl by the square of the zero-mode wave

function (4.9) evaluated at the UV brane:

(Zl)αβ =

(

R

R′

)1−2cl

f2
cl

1√
ρα

(Ẑl)αβ
1

√
ρβ

. (4.44)

For cl > 1/2, the factor entering in (4.44) becomes of O(1), while it is exponentially small

for cl < 1/2. For the relevant region where cl ≃ 1/2 and ρα ≃ 1, the effective BKT Zl is

considerably smaller than Ẑl. For cl = 1/2 + δ, at linear order in δ, we have

Zl ≃
(

log−1 R
′

R
+ δ

)

Ẑl ≃
(

1

35
+ δ

)

Ẑl . (4.45)

The effect of the BKT on the LFV is naturally suppressed. This is the main reason why

most of the parameter space of our model successfully passes the bounds imposed by LFV

processes. The suppression factor (4.45) also explains why the approximation of treating

the BKT as insertions is valid even for O(1) BKT at the UV brane.

Let us now consider the couplings AL and AR. It is immediately clear from the

more composite nature of the muon with respect to the electron that AL ≪ AR, so in first

approximation AL can be neglected. Higgs and neutral gauge boson mediated contributions

A
(H)
R and A

(Z)
R are also negligible, and the dominant contribution A

(W )
R arises from the

charged gauge bosons with Neumann b.c. at the UV brane, namely the SM W boson

and its first KK excitation W
(1)
L . It turns out to be rather difficult to derive an accurate

analytic formula for A
(W )
R since neutrino, charged lepton and gauge boson Yukawa couplings

significantly contribute to the branching ratio. An order of magnitude estimate can be

obtained by focusing on a definite contribution that is always one of the dominant ones,

although not the only one. It arises from the Yukawa couplings between the SM neutrinos

l
u(0)
L and the RH singlet fields N l

αR, the combination of N
(0)
αR and N

(1)
αR orthonormal to the

heavy Majorana fermions Nh
αR. It is relevant because these Yukawas are sizable and N l

α is

typically the lightest fermion resonance in the model. We get

A
(W )
R ∼ ic

16π2

(

Y

mNl

)2

(Zl)eµ , (4.46)

where c is an order 1 coefficient and Y is the approximate flavour universal value of the

Yuakwa coupling in the original basis of fields, before the redefinitions needed to get canon-

ically normalized kinetic terms. We plot in figure 1 the bounds arising from µ → eγ and

µ−e conversion in Ti (the most constraining case) as a function of δz ≡ zµl−zel = 3(Ẑl)eµ.

Both processes depend quadratically on δz, as expected from (4.43) and (4.46). As can be

seen from figure 1, the IR masses ml
IR,α do not play an important role, provided that ml

IR,τ

is large enough, as required by δgτ
lR

. Thanks again to the suppression factor appearing

in (4.45), the branching ratio is almost always below the current limit of 2.4 × 10−12 for

|δz| < 1. Using however the future bound expected from the MEG experiment of 10−13, we

find that |δz| is constrained to be less than 0.25. The decay to three leptons µ → 3e and

radiative τ decays are always well below the experimental bounds and are not reported.11

11Notice that, due to the smallness of the couplings of the SM leptons to the neutral KK gauge bosons

for cl & 1/2, the contribution of A
(W )
R to (3.2) is comparable to that given by the couplings g4 and g6.
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Figure 1. Branching ratio of µ → eγ and µ − e conversion in Ti as a function of the UV BKT

δz ≡ zµl − zel. The continuous (red) and dashed (black) lines in the left panel are the actual [64]

and the expected future bound [65] given by the MEG experiment. The (red) line in the right panel

is the current bound as given by the SINDRUM II experiment [66]. The plots refer to the Majorana

model with mν
IR,α = 1, cl = 0.52, cν = −0.365, h = 1/3 and normal neutrino mass hierarchy. The

IR masses ml
IR,α are random numbers chosen between 0.05 and 1.5 for ml

IR,e,µ and 0.5 and 1.5 for

ml
IR,τ (blue points) or all set to one (green diamonds). The masses mUV,α are chosen such that

the lightest neutrino mass is m0 = 0.01 eV and the best fit values [67] of the solar and atmospheric

mass square differences ∆m2
sol = 7.59 × 10−5 eV2 and ∆m2

atm = 2.40 × 10−3 eV2 are reproduced

using (4.23), corrected for the effect of the BKT.

We also performed an analysis for larger m0 and for both, normal and inverted, neutrino

mass orderings, with results identical to those shown in figure 1.

Let us finally consider the bounds arising from lepton mixing, assuming vanishing

phases. As we have already mentioned, in order to avoid too large deviations from TB

lepton mixing, the IR localized neutrino mass terms mν
IR,α should be taken close to uni-

versal. Parametrizing mν
IR,α in the following way: mν

IR,e = mν
IR, mν

IR,µ = mν
IR(1 + δmν

IR),

mν
IR,τ = mν

IR,12 we can analyze neutrino masses and mixing arising from the light neutrino

mass matrix in (4.23) in an expansion in δmν
IR. We neglect the effects of BKT in the

following and take cl = 0.52 and h = 1/3 so that the parameters ρα are universal to a good

approximation. For normally ordered light neutrinos with m0 = 0.01 eV and mass square

differences given by the experimental best fit values [67], the mixing angles turn out to be

sin θ13 ≈ 0.05 |δmν
IR| ,

sin2 θ23 ≈ 1

2
+ 0.82 δmν

IR ,

sin2 θ12 ≈ 1

3
− 1.58 δmν

IR , (4.47)

showing that the requirement of having sin2 θ12 in the experimentally allowed 3σ range [67],

0.27 . sin2 θ12 . 0.38, leads to the constraint

− 0.03 . δmν
IR . 0.04 . (4.48)

12We have chosen this particular parametrization of mν
IR,α, since in this way all mixing angles are sub-

ject to a deviation linear in δmν
IR and neither accidental cancellation nor accidental enhancement of the

coefficient of the linear perturbation is encountered.
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At the same time sin2 θ23 remains within its 1σ range, 0.475 . sin2 θ23 . 0.533. The

reactor mixing angle sin2 θ13 takes as maximal value 4 × 10−6, well below the current and

prospective future bounds. These statements are in agreement with our numerical results.

The validity of the expansion in δmν
IR strongly depends on m0. For instance, by taking

δmν
IR = 0.1, the perturbative expansion in δmν

IR breaks down for m0 & 0.03 eV.

We also performed a study for inverted mass hierarchy. In this case the above pertur-

bative expansion is not valid for any value of m0. From the numerical results we see that

large corrections to the solar mixing angle always arise, whereas the atmospheric mixing

angle gets small corrections and the reactor mixing angle remains always very small. The

large deviations of θ12 can be easily understood by noticing that for inverted neutrino mass

ordering the relative splitting between the two heavier light neutrinos is in general small

compared to the scale
√

m2
0 + ∆m2

atm & 0.049 eV. Thus, the angle θ12 associated with the

mixing in this almost degenerate sub-sector is subject to large deviations from its initial

TB value even for very small deviations δmν
IR from universality. As a consequence, the

latter have to be as small as possible in the case of inverted neutrino mass ordering, which

is most naturally achieved in the Z2-invariant model.

In summary, in the case of normally ordered light neutrinos and a rather small mass

scale m0, deviations from universality of mν
IR,α are admissible up to the level |δmν

IR| . 0.04.

Generically, the solar mixing angle, which is the most precisely measured one up to date

in neutrino oscillation experiments, turns out to be the most sensitive one to corrections.

For a neutrino mass spectrum with inverted hierarchy, the most natural situation is the

one in which an additional accidental Z2 exchange symmetry on the IR brane renders the

mass terms mν
IR,α universal. The deviations of θ12 and θ23 are well under control in the

Z2-invariant model for all values of m0 and both types of neutrino mass hierarchy (with

sin2 θ23 in the experimentally allowed 1σ range and sin2 θ12 in the 2σ range). The angle θ13
is in this case always constrained to be very small, sin2 θ13 . 10−6, and cannot be detected.

4.4 Uncalculable corrections and τ decays

Contrary to the operators in (3.1), where only two flavours appear, LFV operators involv-

ing simultaneously three different flavours are not constrained effectively by our choice of

discrete symmetries. Dimension 8, 4 fermion S4 × Z3 (Z
(D)
3 ) invariant bulk (IR localized)

operators reducing to flavour violating dimension 6 LL, RR and LR/RL operators can be

constructed. Among these, the ones of the form (τ̄Γµ)(ēΓµ), (ēΓµ)(ēΓτ), with Γ = γµ, γ5,

and their hermitian conjugates, can directly mediate the τ decays τ → e2µ and τ → µ2e.

The branching ratio for these decays is of order 10−8 [68]. The size of the couplings of these

operators, uncalculable within the 5D theory, can be estimated by using näıve dimensional

analysis. For IR brane operators (bulk operators give roughly the same result) we get

κUVg
2
5R

3

(

R

R′

)4

ξ̄ξξ̄ξ(z = R′) ≃ κUVg
2(R′)2 log

(

R′

R

)

l̄(0)l(0) l̄(0)l(0)
4
∏

n=1

fcn , (4.49)

where cn = −cα for RH leptons, cn = cl for LH leptons, κUV is an O(1) dimensionless

coupling and in the second equality we have plugged in the zero mode wave function of the
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SM leptons l(0) for the 5D fermion fields ξ. The most stringent bounds arise from the LL

operators, since f−ce , f−cµ ≪ fcl
. By matching with (3.1), we get

geff
UV ≃ 2κUV(mWR′)2 log

(

R′

R

) 4
∏

n=1

fcn . (4.50)

We demand that geff
UV . 2 × 10−4.13 For κUV ∼ O(1), 1/R′ & 1.5 TeV and 1/R ≃ MPl, we

get the following lower bound for cl:

cl & 0.5 . (4.51)

Notice that flavour preserving dimension 8 operators are also potentially dangerous, con-

tributing, e.g., to the deviation from the SM values of the couplings of leptons to the vector

bosons. From a quick estimate, we find that the bound (4.51) is more constraining. Sum-

marizing, demanding that the uncalculable contributions coming from higher dimensional

operators are sufficiently suppressed results in a bound on the degree of compositeness of

the SM leptons.

5 Explicit 5D Dirac model

In this section we provide an explicit 5D gauge-Higgs unification warped model realizing

the Dirac scenario outlined in subsection 2.2. The model is very closely related to the

Majorana model of section 4, so we focus on the key differences between the two. The

gauge symmetry and its breaking pattern is the same as before, while the flavour symmetry

is slightly different:

Gflavour = S4 × Z3 × Z5 × Z′
3 , (5.1)

broken to Gflavour,UV = Z2 × Z2 × Z3 × Z′
3 and Gflavour,IR = Z

(D)
3 × Z5 at the UV and IR

branes, respectively. Like in the Majorana model, Z5 and Z′
3 are included to constrain the

number of terms allowed at the UV and IR boundaries.

The particle content and b.c. for the fields are identical to those in the Majorana model,

with the only exception of a crucial flip in the b.c. for the singlet neutrino ν̂ in the 5:

ν̂αL (−+) → ν̂αL (+−) . (5.2)

The flavour properties of the fields are summarized in table 2. Notice that the discrete

symmetries forbid the appearance of any bulk or boundary Majorana mass term.

The invariant mass terms at the IR and UV branes are

− LIR =

(

R

R′

)4 3
∑

α=e,µ,τ

ml
IR,α

(

L̃1,αLL̃2,αR + LαLL̂αR

)

+ h.c.

−LUV = ν̂αLMUV,αβνβR + h.c. (5.3)

13Notice that in τ decays, the formula (3.2) gets a suppression factor ≃ 0.18 that takes into account of

the hadronic contribution to the total decay width. This explains the factor 2 in 2 × 10−4.
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Bulk UV IR

Gflavour = S4 × Z3 × Z5 × Z′

3 Gflavour,UV = Z2 × Z2 × Z3 × Z′

3 Gflavour,IR = Z
(D)
3 × Z5

(1,−1, 1, ω)

ξl,α (3, 1, ω5, ω) (−1, 1, 1, ω) (ω2(α−1), ω5)

(−1,−1, 1, ω)

ξe,α (1, ω2(α−1), ω5, ω) (1, 1, ω2(α−1), ω) (ω2(α−1), ω5)

(1,−1, 1, ω)

ξν,α (3, 1, ω2
5, ω) (−1, 1, 1, ω) (ω2(α−1), ω2

5)

(−1,−1, 1, ω)

Table 2. Transformation properties of the 5D multiplets ξl, ξe and ξν under Gflavour and their

decomposition properties under the subgroups Gflavour,UV and Gflavour,IR in the Dirac model. ω5 is

the fifth root of unity ω5 ≡ e2πi/5.

with MUV as in (4.7). The phases of the IR masses ml
IR,α can still be absorbed by re-

defining the 5D SO(5) fields ξe,α and one of the three phases contained in MUV through

re-phasing the fields ξν,α. Again, we are left with two non-trivial phases coming from the

UV mass terms.

5.1 Mass spectrum

The KK expansion in the ZMA of the doublets LαL, L̂αL and eαR is identical to (4.9), (4.10)

and (4.13) and gives rise to the same charged lepton mass matrix (4.20).

The KK expansion of neutrinos is of course different. The IR b.c. are not affected by

mass terms, while the UV b.c. read

ν̂αR = MUV,αβνβR , ναL = −M∗
UV,βαν̂βL (5.4)

and lead to the following canonically normalized zero mode expansion

ναR(x, z) =
1√
R′

(

z

R

)2( z

R′

)cν

f−cν (UTB)αβ
1

√
κβ
N

(0)
βR(x) ,

ν̂αR(x, z) =
1√
R′

(

z

R

)2( z

R′

)cl
(

R

R′

)cν−cl

f−cν (UTB)αβ
mUV,β√
κβ

N
(0)
βR(x) , (5.5)

where

κα = 1 + |mUV,α|2
(

f−cν

f−cl

)2( R

R′

)2(cν−cl)

. (5.6)

By computing the wave function overlap with the Higgs field, we get the neutrino mass

matrix:

Mν,αβ =
h√
2
fcl
f−cν

(

R

R′

)cν+ 1
2
−(cl−

1
2
) 1√
ρα

(UTB)αβ
mUV,β

R

1
√
κβ

, (5.7)

where ρα is defined as in (4.15). Thanks to the factor (R/R′) in (5.7), the correct order of

magnitude for neutrino masses is naturally obtained by choosing

cν − cl ≈ 0.8 . (5.8)

– 24 –



J
H
E
P
1
0
(
2
0
1
1
)
0
8
3

The only source of deviation from TB mixing in (5.7) is given by the factor ρα, which

should be contrasted with the situation in the Majorana model, where the deviations are

given by ρα and the neutrino mass terms mν
IR,α.

Let us consider the relation between the 5D model and the general 4D analysis per-

formed in subsection 2.2. The anomalous dimensions of Ψα
lL,R, Ψα

lR,L are the same as in

the Majorana model. Since ν̂L and νL belong to the same 5D bulk multiplet, we have

γν̂L = γlL. The states denoted by ν̂α in (2.13) are the lightest KK vector-like states of

the tower of modes coming from ν̂α and να in the 5D model. Their masses are determined

as the zeros of a certain combination of Bessel functions and are approximately flavour

independent. For cl & 0.44, we have

(mα
ν̂R

′)2 ≃ 1 − 4c2l
(

cl + 1
2

)

−
(

R′

R

)2cl−1
(

1 +
|mUV,α|2(1−2cl)

Γ(cν−1/2)(1−2cν )

) . (5.9)

The coefficients dα appearing in (2.13) are correspondingly flavour independent in first

approximation. Along the lines of [45], the parameter ǫ defined in subsection 2.2 can

be seen to arise from the mixing between two heavy elementary fermions ΨL and ΨR of

opposite chiralities with a RH massless bound state νR of the CFT, all in 3 of S4. Omitting

flavour indices, the relevant Lagrangian is

L = Ψ̄(i∂̂ − Λ)Ψ +
c

ΛγνR

(

Ψ̄LνR + ν̄RΨL

)

+
(

¯̂νLMΨR + h.c.
)

(5.10)

with γνR = |cν +1/2|−1 the anomalous dimension of νR and c a universal O(1) coefficient.

If we assume that Λ is flavour independent, all the non-trivial flavour dependence is in the

mass term M , which is of the form (2.3). Integrating out the fields Ψ gives at leading order

ΨR ≃ c

ΛγνR+1
νR . (5.11)

Rescaling νR → µγνR+1νR to effectively get canonical kinetic terms for a free fermion

field, gives

ǫ ∼ c

(

R

R′

)|cν+1/2|

. (5.12)

The form of the coefficients d̂α introduced in (2.14) will be determined in subsection 5.2.

We anticipate here that they are flavour independent, coming from S4 invariant bulk inter-

actions. It is important to notice that for γν̂L = γlL = cl −1/2 (taking cl +1/2 > 0), (2.14)

shows a non-decoupling effect. For γν̂L > 0 the explicit (µ/Λ) suppression factor in (2.14)

cancels the one coming from mν̂ . For γν̂L < 0, the mass of ν̂ is unsuppressed, but the LH

leptons are mostly composite and one has to perform a field rescaling to get the canonically

normalized LH field νL, as in (2.7). Its effect is again to compensate for the explicit factor

(µ/Λ) in (2.14). For any γν̂L, then, we get ν̂L ∼ O(h)νL, a result that leads to unsup-

pressed deviations of neutrino couplings to the W and Z from their SM values, as shown

below. The non-trivial factor κα in (5.7) comes in the 4D picture from corrections to the

kinetic term of νR we have neglected, appearing when the heavy fields Ψ are integrated

out. They are completely negligible, given the suppression factor appearing in (5.6). The
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factors ρα, as in the Majorana model, encode corrections to the kinetic term of l
(0)
L coming

from the composite sector. Summarizing, the mass formula (5.7) is a particular realization

of the more general expression (2.15) where all deviations from TB mixing are naturally

suppressed.

In the limit of an S4 invariant IR Lagrangian, ml
IR,α → 0, the neutrino mass ma-

trix (5.7) leads to exact TB mixing. However, the factors ρα disfavour composite LH

leptons, because the more these states are composite, the smaller ml
IR,α should be to keep

ρα ≃ 1. Bounds on gauge coupling deviations favour the region in parameter space where

cl . 1/2. Given that TB lepton mixing and (4.51) favour cl & 1/2, the region cl ≃ 1/2 is

again the one of interest.

The mass spectrum of the neutral KK resonances in the Dirac model differs from that

in the Majorana model mostly for the presence of the light states ν̂. For the benchmark

values h = 1/3, cl = 0.52, (5.9) gives mα
ν̂ & 200 GeV. The masses of the next-to-lightest

charged and neutral KK fermion resonances (takingml
IR,α between 1/2 and 3/2) are slightly

below 2TeV, so approximately comparable to the spectrum found in the Majorana model.

The KK gauge boson masses are obviously identical in the two cases.

5.2 Deviations from gauge coupling universality

The realization of the SM charged leptons in the 5D Dirac and Majorana models is identical,

so (4.28) and (4.29) continue to apply. In the Dirac model, ναL are still embedded into

SO(5) multiplets with T3L 6= T3R, so non-trivial deviations are expected. The holographic

analysis is complicated by the presence of the 4D singlet fields ν̂αL(x, z = R) that should

be kept and eventually integrated out.14 Omitting intermediate steps, one simply gets

ν̂αL(x, z = R) = −
(

1√
2

tanh

)

ναL(x, z = R) , (5.13)

independently of any parameter. As anticipated below (5.12), a non-decoupling occurs

in (2.14).15 At leading order in h, (5.13) leads to the following universal deviation

δgα
νL

gα
νL

= −h
2

2
,

∣

∣

∣

∣

δgα
νLlL

gα
νLlL

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

δgα
νL

gα
νL

∣

∣

∣

∣

. (5.14)

By demanding (4.32), we get the universal bound

h .
1

10
(5.15)

independently of cl. In light of the bound (5.15), the Dirac model appears to be fine-tuned

at O(1%) level, unless one advocates exotic hidden physics that is responsible for a fraction

of the invisible partial width of the Z boson.

14Recall that in the holographic approach the 5D fields evaluated at the UV brane can directly be

identified with the fields in the elementary sector defined in section 2.
15A similar non-decoupling effect has recently been noted in 5D models in flat space, see (3.15) of [44].

– 26 –



J
H
E
P
1
0
(
2
0
1
1
)
0
8
3

5.3 LFV processes and BKT

Several considerations made in the Majorana model continue to apply in the Dirac case.

The form of the interaction Lagrangian is the same as in (4.36), and the matching given

by (4.38) and (4.39) still holds. The analysis in (4.39)–(4.45) is valid also here.16 The

bound on cl (4.51) coming from UV uncalculable corrections also applies here.

In contrast to the Majorana model, radiative decays mediated by neutrinos and charged

gauge bosons are no longer negligible, even in the absence of BKT.17 Interestingly enough,

in this case we have been able to find a reasonable analytic formula for A
(W )
R , see (5.18),

working in the flavour basis where Yukawa couplings are treated as perturbative mass

insertions. Given the difficulty of finding such formulae, we report in the following some

details on how (5.18) has been derived. We still adopt a KK approach and keep, for each

5D fermion field, only the first KK resonance. Even in this approximation, an analytic

computation is complicated by the large number of fields that are present. The most

important point to note is that the flavour violation comes from the singlet fields N
(1)
α and

N
(0)
αR, arising from the expansion of the 5D fields (5.5). The zero modes N

(0)
αR, due to their

ultra-localization towards the IR brane, are effectively decoupled and can be neglected.

Among the massive KK gauge bosons, the leading contribution comes from the charged

gauge field A(1) in the SO(5)/SO(4) coset, since it directly couples N
(1)
α to the SM leptons.

We can then safely neglect the SU(2)L × SU(2)R massive gauge fields W
(1)
L and W

(1)
R . We

neglect the tiny neutrino Yukawa couplings, their only effect being the rotation of the SM

neutrinos with UTB. Charged lepton and gauge Yukawa mixing are in first approximation

negligible. The relevant Lagrangian terms are the following:

L ⊃ N̄
(1)
R YNνUTBl

u(0)
L +

g√
2
l̄
d(0)
L ŴUTBl

u(0)
L + N̄

(1)
L gL

N Â
(1)l

d(0)
L + h.c. (5.16)

where the flavour index has been omitted. The Yukawa couplings YNν are flavour non-

diagonal with roughly the following structure: YNν ≃ U t
TBY0,Nν + δYNν , where Y0,Nν is a

number and δYNν a matrix in flavour space with |δYNν | ≪ |Y0,Nν |. The gauge couplings

gL
N are also flavour violating and have the approximate form gL

N ≃ U t
TBg

L
0 + δgL, where

gL
0 is a number and δgL a matrix in flavour space with |δgL| ≪ |gL

0 |. It turns out that the

leading contribution to AR comes from the first term in square brackets in A
(W )
R , see (C.1).

Indeed, the potential enhancement of the second term coming from the muon mass in the

denominator is compensated by the smallness of the Yukawa coupling responsible for a

non-vanishing RH coupling Cµ
iR. The leading contributions coming from the W and A(1)

exchange are depicted in figure 2. Notice that no Yukawa insertion in the loop is needed

in the diagram (b), because the relevant gauge interactions are already flavour violating.

The computation of the two diagrams gives:

AW
R ≃ −ie

96π2

Y 2
0,NνδmN(1)

m3
N(1)

, AA(1)

R ≃ −5iegL
0 δg

L

32
√

3π2g2

m2
W

m2
A(1)

, (5.17)

16Notice that in the Dirac model, in principle, we might have LFV BKT on the IR brane. They arise

from the RH KK neutrinos that, in analogy to the zero mode fields (5.5), contain UTB in their expansion.

However, this effect is indirect, and driven by the UV mass terms mUV,α. Their impact on the model is

sub-leading. We have numerically checked it in the BKT insertion approximation.
17The same is valid for CP violating effects, that we have not studied in the Dirac model.
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(a)

µR µL ναL N
(1)
βR

νγL

W W

γ

eL

(b)

µR
µL

N
(1)
αL

A(1) A(1)

γ

eL

Figure 2. Leading one-loop graphs contributing to µ→ eγ in the flavour basis for (a) W and (b)

A(1) exchange. The crosses represent Yukawa coupling insertions.

where δmN(1) = m
N

(1)
µ

−m
N

(1)
e

is the mass splitting before EWSB and for simplicity we have

taken δgL all equal in flavour space. Terms proportional to mN(1)δYNν are sub-leading and

have been neglected in AW
R . In AA(1)

R we keep the leading terms in the expansion mN(1) ≪
mA(1) . Indeed, in most of the parameter space, due to the chosen b.c. for the singlet in the

5, the neutrinos N
(1)
α (which should be identified with the fields ν̂α defined in subsection

2.2) are sensibly lighter than the SO(5)/SO(4) gauge field A(1). In particular, for cl > 1/2,

mN(1) become very light. Roughly speaking, it turns out that |δgL| . |δmN(1)/mN(1) | and

|Y0,Nν | . mW , so that AA(1)

R /AW
R ∼ (mN(1)/mA(1))2 ≪ 1 and the dominant contribution

comes from the exchange of the SM W boson. Expanding (5.9) up to O(|mUV,α|2) and

using the ZMA formula (5.7), we get the following estimate for the branching ratio:

BR(µ → eγ) ≃ 3α

8π

∣

∣

∣

∣

∆m2
sol

m2
W

log−2
(

R′

R

)

6(1 + 2cl)Γ(cν + 3/2)f2
cl

(

Y0,Nν

R′

)2(R′

R

)2cν−1∣
∣

∣

∣

2

. (5.18)

The Yukawa coupling Y0,Nν depends of course on the input parameters as well, but there

seems to be no simple expression for it. We have checked, by comparison with the full

numerical computation, that (5.18) is accurate at the O(10%) level. The branching ratio

crucially depends on the values of cν and cl.

When the UV BKT in (4.35) are considered, the branching ratio of µ → eγ receives

extra contributions of the form (4.46) that for |δz| & 0.02 dominate. Unfortunately, it is

not simple to derive a reasonably accurate analytic expression for BR(µ→ eγ) in this case.

We plot in figure 3 the branching ratio of µ→ eγ and µ− e conversion in Ti for the Dirac

model for cl = 0.52 and cν = 1.33, setting all phases to zero. As shown in subsection 5.2,

the deviation of gα
νL

from its SM value puts a strong bound on h, h . 1/10, see (5.15).

We take here a value of h = 1/3 in order to compare the results for the LFV processes in

the Majorana model with those in the Dirac model.18 The bounds are mainly governed

by the UV BKT, with a very mild dependence on ml
IR,α. As can be seen from figure 3,

both processes depend quadratically on δz, as expected from (4.43) and (4.46), and the

relative difference |δz| of the UV localized BKT is constrained to be smaller than 0.15 in

order to pass the actual MEG bound of 2.4 × 10−12. This becomes smaller than . 0.05 to

18As we mentioned, one might take the optimistic point of view that the bound (5.15) might be a signal

of new exotic hidden physics rather than a true bound for the model. Anyhow, for h ≤ 1/10, no bound

would arise from BR(µ → eγ) or Bconv(µTi → eTi), since both scale as h4, and the points in figure 3 should

be scaled down by two orders of magnitude.

– 28 –



J
H
E
P
1
0
(
2
0
1
1
)
0
8
3

ì
ì

ì
ì

ì
ì

ìì

ì

ì
ì

ì

ì

ì

ì

ì
ìì

ì

ì

ì

ì

ì

ì

ì
ì

ì

ì

ì

ì
ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì
ì

ì

ì
ì

ì ìì

ì

ì

ì

ì

ì
ìììì

ì
ì ì

ì
ììì

ì

ì
ì

ìì

ì

ì

ìì

ì
ìì
ì

ì
ì

ìì

ì

ì
ì

ìì ì

ì

ì

ì

ì

ì

ì

ì
ì

ì

ì

ì

ìì

ì

ì

ì

ì

ì

ì

ì

ì ìì

ì
ì

ì

ì
ì

ì

ì

ì

0.0 0.2 0.4 0.6 0.8 1.0
∆z10-16

10-14

10-12

10-10

BRHΜ ® eΓL

ì
ì

ì
ì

ì
ì

ìì

ì

ì

ì

ì

ì

ì

ì

ì
ìì

ì

ì

ì

ì

ì

ìì
ì

ì

ì
ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì
ì

ì

ì
ì

ì ìì

ì

ì

ì

ì
ìììì

ì
ì ì

ì
ìììì

ì

ìì

ì

ì

ìì

ì
ìì
ìì
ì

ìì

ì

ì
ì

ìì ì

ì

ì

ì

ì

ì

ì

ì
ì

ì

ì

ì

ì

ìì

ì

ì

ì

ì

ì

ì

ì

ì ìì
ì

ì
ì

ì
ì

ì

ì

ì

0.0 0.2 0.4 0.6 0.8 1.0
∆z10-18

10-16

10-14

10-12

BconvHΜTi ® eTiL

Figure 3. Branching ratio of µ → eγ and µ − e conversion in Ti as a function of the UV BKT

δz ≡ zµl − zel in the Dirac model. The continuous (red) and dashed (black) lines in the left panel

represent the current [64] and the expected future bound [65] given by the MEG experiment. The

(red) line in the right panel is the experimental bound as given by SINDRUM II [66]. The plots

refer to the Dirac model with cl = 0.52, cν = 1.33, h = 1/3 and normal neutrino mass hierarchy.

The IR masses ml
IR,α are random numbers chosen between 0.05 and 1.5 for ml

IR,e,µ and 0.5 and 1.5

for ml
IR,τ (blue points) or all set to one (green diamonds). The masses mUV,α are chosen such that

the lightest neutrino mass is m0 = 0.01 eV and the best fit values [67] of the solar and atmospheric

mass square differences ∆m2
sol = 7.59 × 10−5 eV2 and ∆m2

atm = 2.40 × 10−3 eV2 are reproduced

using (5.7), corrected for the effect of the BKT.

pass the expected future MEG bound BR(µ → eγ) < 10−13. For such small values of δz,

cancellations between the contribution (5.18) and the one associated with the UV localized

BKT can occur and further suppress BR(µ→ eγ), see figure 3. The results for BR(µ → 3e)

and Bconv(µTi → eTi) are automatically below the current experimental bounds, as soon

as BR(µ → eγ) is below the new limit set by the MEG Collaboration. Radiative τ decays,

τ → µγ and τ → eγ, have branching ratios . 10−9. The branching ratio of µ → eγ in

the Majorana model is about two orders of magnitude smaller than the one in the Dirac

model, for equal values of cl. In contrast, Bconv(µTi → eTi) is similar, being governed in

both cases by the same tree-level FCNC.

Concerning the lepton mixing angles, we find sin2 θ23 well within the experimentally

allowed 1σ range and sin2 θ12 still within the 2σ range [67]. The value of sin2 θ13 is smaller

than 10−8. As already discussed in detail in the case of the Majorana model with non-

universal masses mν
IR,α, an inverted neutrino mass hierarchy is disfavoured, because the

solar mixing angle receives in general too large corrections, while the atmospheric mixing

angle still remains within the experimentally allowed 1σ range and sin2 θ13 . 10−8. A

noteworthy effect in the Dirac scenario is the rather large deviation of the lepton mixing

matrix UPMNS from unitarity. For example, in the case of the set of parameters used to

generate the plots shown in figure 3, we checked that the diagonal elements of U †
PMNSUPMNS

and UPMNSU
†
PMNS can deviate up to 0.05 from one. Their off-diagonal elements are in

general much smaller. The non-unitarity of UPMNS is associated with the non-decoupling

of the light states N
(1)
α . This is in sharp contrast with the results found in the Majorana

model in which the deviation from unitarity of UPMNS is in general less than 10−3 for the

diagonal elements of U †
PMNSUPMNS and UPMNSU

†
PMNS.
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6 Conclusions

We have introduced a class of 4D HCHM based on the non-abelian flavour group S4 ×Z3,

where lepton masses can be naturally reproduced and nearly TB lepton mixing is predicted.

Both Majorana and Dirac neutrinos can be accommodated. A small breaking of the flavour

symmetry for charged leptons is disfavoured in the composite sector, typically leading to

a too large deviation of the coupling of the τ to the Z from its SM value. The latter

observation is linked to the choice of representations of the discrete flavour group used for

the LH and RH charged leptons and needed to forbid large flavour violating effects. It

applies to more general constructions based on different flavour groups. The breaking of

the flavour symmetry for neutrinos in the composite sector can be large in the Dirac model,

whereas it must be small in the Majorana model to suppress too large deviations from TB

mixing.

We have also constructed two explicit realizations of our framework in terms of 5D

gauge-Higgs unification theories. We have computed in detail the relevant bounds coming

from LFV processes in the charged lepton sector and shown that no significant constraints

arise in both models. In the Majorana model, all the spectrum of fermion resonances is

above the TeV scale,19 while in the Dirac case light (sub-TeV) neutral fermions appear

and are responsible for a too large deviation of the coupling of neutrinos to the Z from its

SM value. A particularly economic and successful Majorana model can be constructed by

postulating a Z2 exchange symmetry on the IR boundary which protects neutrinos from

being affected by the flavour symmetry breaking. In both models, Majorana and Dirac,

two CP phases are present. We have not studied in detail their effects on the lepton EDM,

but have argued that in the Majorana model these are expected to be negligibly small.

Overall, the 5D Dirac model performs worse than the 5D Majorana model but, of

course, this does not necessarily imply that more natural HCHM based on the Dirac sce-

nario cannot be constructed, rather we might have missed to find a better representative.

Note added. During the final stages of the preparation of this paper new experimental

results have been released by the T2K [69] and MINOS [70, 71] Collaborations indicating

that θ13 = 0 is disfavoured at the level of 2.5σ and 89% confidence level, respectively.

Subsequently, three groups [72–74] have performed a global fit of the available neutrino

data finding at different levels of significance θ13 6= 0. The strongest indication of θ13 6= 0

is found by [72] at a level of (more than) 3σ, while the analysis in [74] shows that the

mixing angle θ13 is still compatible with zero at the latter level. The best fit value of

sin2 θ13 is 0.01 ÷ 0.02 in all three analyses [72–74]. If such sizable value of sin2 θ13 will

be confirmed in the future, our models (with Dirac and Majorana neutrinos, respectively)

become disfavoured, because they generically foresee small values of sin2 θ13 below 10−4

without additional (new) sources giving rise to θ13 6= 0. However, this does not rule out

HCHM with flavour symmetries (broken in the manner as proposed by us) in general, since

other mixing patterns, see e.g. [75], apart from TB mixing, can be implemented as well [76].

19This should be contrasted with [27], where light fermion resonances appear.
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A Group theory of S4

In this appendix we briefly recapitulate the group structure of S4 and discuss the decompo-

sition of the S4×Z3 representations under the subgroups Z
(D)
3 (preserved in the composite

sector/on the IR brane) and Z2 ×Z2 ×Z3 (preserved in the elementary sector/on the UV

brane), respectively. S4 is the permutation group of four distinct objects and is isomorphic

to the symmetry group O of a regular octahedron. It has 24 distinct elements and five

real irreducible representations: 1, 1′, 2, 3 and 3′, out of which only the two triplets are

faithful. We define S4 with the help of three generators S, T and U20 which are of the

following form for the five different representations:

1 : S = 1 , T = 1 , U = 1 ,

1′ : S = 1 , T = 1 , U = −1 ,

2 : S =

(

1 0

0 1

)

, T =

(

ω 0

0 ω2

)

, U =

(

0 1

1 0

)

,

3 : S =
1

3







−1 2 2

2 −1 2

2 2 −1






, T =







1 0 0

0 ω2 0

0 0 ω






, U = −







1 0 0

0 0 1

0 1 0






,

3′ : S =
1

3







−1 2 2

2 −1 2

2 2 −1






, T =







1 0 0

0 ω2 0

0 0 ω






, U =







1 0 0

0 0 1

0 1 0






,

and fulfill the relations

S2 = 1 , T 3 = 1 , U2 = 1 ,

(ST )3 = 1 , (SU)2 = 1 , (TU)2 = 1 , (STU)4 = 1 . (A.1)

Note that S and T alone generate the group A4, and similarly, that the two generators T

and U alone generate the group S3. The character table of S4 can be found in, e.g., [77].

The Kronecker products are of the form

1× µ = µ ∀ µ , 1′ × 1′ = 1 , 1′ × 2 = 2 ,

1′ × 3 = 3′, 1′ × 3′ = 3 ,

2× 2 = 1 + 1′ + 2 , 2× 3 = 2× 3′ = 3 + 3′,

3× 3 = 3′ × 3′ = 1 + 2 + 3 + 3′, 3× 3′ = 1′ + 2 + 3 + 3′. (A.2)

20S4 can also be defined in terms of only two generators.
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The Clebsch Gordan coefficients can be found in, e.g., [78]. For (c1, c2, c3)
t, (c̃1, c̃2, c̃3)

t ∼ 3,

the invariant under S4 is of the form c1c̃1 + c2c̃3 + c3c̃2. Note that the choice of T being

complex for the real representations 2, 3 and 3′ leads, for (φ1, φ2)
t ∼ 2, (ψ1, ψ2, ψ3)

t ∼ 3

and (ψ′
1, ψ

′
2, ψ

′
3)

t ∼ 3′, to conjugate fields transforming as (φ∗2, φ
∗
1)

t ∼ 2, (ψ∗
1 , ψ

∗
3 , ψ

∗
2)

t ∼ 3

and (ψ′∗
1 , ψ

′∗
3 , ψ

′∗
2 )t ∼ 3′.

The decomposition of the S4 × Z3 representations under Z
(D)
3 is given by

(1, ωj) → ωj

(1′, ωj) → ωj

(2, ωj) → ωj+1 + ωj+2

(3, ωj) → ωj + ωj+2 + ωj+1

(3′, ωj) → ωj + ωj+2 + ωj+1 (A.3)

for j = 0, 1, 2. Since the generator T is diagonal in the group basis chosen by us, we can

easily see that, e.g. for ψi ∼ (3, 1), ψ1 transforms as 1 under Z
(D)
3 , ψ2 as ω2 and ψ3 as ω .

The decomposition of the S4 representations under the subgroup Z2 × Z2 generated by S

and U , with SU = US, is21

1 → (1, 1)

1′ → (1,−1)

2 → (1, 1) + (1,−1)

3 → (1,−1) + (−1, 1) + (−1,−1)

3′ → (1, 1) + (−1, 1) + (−1,−1) (A.4)

where (±1,±1) indicate the transformation properties under the two Z2 factors of Z2×Z2.

Since S and U are not diagonal, the decomposition of the S4 representations under Z2×Z2

is non-trivial. For φi ∼ 2 we get

1√
2
(φ1 ± φ2) ∼ (1,±1) , (A.5)

for a triplet ψi ∼ 3

1√
3
(ψ1+ψ2+ψ3) ∼ (1,−1) ,

1√
2
(ψ2−ψ3) ∼ (−1, 1) ,

1√
6
(2ψ1−ψ2−ψ3) ∼ (−1,−1)

(A.6)

and similarly for ψ′
i ∼ 3′ under S4

1√
3
(ψ′

1+ψ
′
2+ψ

′
3) ∼ (1, 1) ,

1√
6
(2ψ′

1−ψ′
2−ψ′

3) ∼ (−1, 1) ,
1√
2
(ψ′

2−ψ′
3) ∼ (−1,−1) .

(A.7)

21The external Z3 factor remains unbroken in this case and is omitted in the following.
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B SO(5) generators and representations

We list here the explicit choice of SO(5) generators and SU(2)L × SU(2)R embedding used

in the paper. Denoting by

tab
ij = −tbaij = δa

i δ
b
j − δb

i δ
a
j (B.1)

the 10 anti-symmetric generators of SO(5), where a, b = 1, . . . , 5 label the generators and

i, j their matrix components, we take

t1L = − i

2
(t23 + t14) , t2L = − i

2
(t31 + t24) , t3L = − i

2
(t12 + t34) ,

t1R = − i

2
(t23 − t14) , t2R = − i

2
(t31 − t24) , t3R = − i

2
(t12 − t34) ,

tâ = − i√
2
ta5, â = 1, 2, 3, 4 . (B.2)

In this basis, t1,2,3
L generate SU(2)L, t1,2,3

R generate SU(2)R and t1̂,2̂,3̂,4̂ ∈ SO(5)/SO(4). A

fermion multiplet Ψ5 in the 5 of SO(5) decomposes as 5 = (2,2) ⊕ (1,1) under SU(2)L ×
SU(2)R and can be written as follows:

Ψ5 =
1√
2















i(u+ − d−)

−(u+ + d−)

−i(u− + d+)

u− − d+√
2n















, (B.3)

where

q± =

(

u±
d±

)

(B.4)

are the two doublets with T3R = ±1/2, respectively, forming the bi-doublet, and n is the

singlet. A fermion multiplet Ψ10 in the 10 of SO(5) decomposes as 10 = (2,2) ⊕ (1,3) ⊕
(3,1) under SU(2)L × SU(2)R and can be written as follows:

Ψ10 =
t1L + it2L√

2
φ+ +

t1L − it2L√
2

φ− + t3Lφ
0 +

t1R + it2R√
2

χ+ +
t1R − it2R√

2
χ− + t3Rχ

0

− t
1̂ + it2̂√

2
u+ +

t1̂ − it2̂√
2

d− +
t3̂ + it4̂√

2
u− +

t3̂ − it4̂√
2

d+ , (B.5)

where φ±, φ0 form the SU(2)L triplet , χ±, χ0 the SU(2)R triplet, and u±, d± are the

components of the bi-doublet, as defined in (B.4).
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C Expressions for AL and AR

We report here the explicit expressions for A
(W )
R/L, A

(Z)
R/L and A

(H)
R/L, in terms of the couplings

defined in (4.36) in the main text:

A
(W )
R =

−ie
64π2

∑

i,V −

m2
W

m2
V −

(

Ce∗
iLC

µ
iLfW

(

zV −

i

)

+
Mi

mµ
Ce∗

iLC
µ
iRgW

(

zV −

i

)

)

, A
(W )
L =A

(W )
R (Ca

iR↔Ca
iL) ,

A
(Z)
R =

−ie
64π2

∑

a,V 0

m2
W

m2
V 0

(

Dea
L D

aµ
L fZ

(

zV 0

a

)

+
Ma

mµ
Dea

L D
aµ
R gZ

(

zV 0

a

)

)

, A
(Z)
L =A

(Z)
R (Dab

R ↔Dab
L ) ,

A
(H)
R =

−ie
64π2

∑

a

m2
W

m2
H

(

Y ∗
eaYµafH(zH

a )+
Ma

mµ
Y ∗

eaY
∗
aµgH(zH

a )

)

, A
(H)
L =A

(H)
R (Y ↔Y †) ,

(C.1)

with zV −

i = M2
i /m

2
V −

, zV 0

a =M2
a/m

2
V 0, z

H
a = M2

a/m
2
H , mW and mH the SM W and Higgs

masses, and

fW (z) =
1

6(z − 1)4
(

10 − 43z + 78z2 − 49z3 + 18z3 log z + 4z4
)

,

gW (z) =
1

(z − 1)3
(

4 − 15z + 12z2 − 6z2 log z − z3
)

, (C.2)

fZ(z) =
1

6(z − 1)4
(

8 − 38z + 39z2 − 18z2 log z − 14z3 + 5z4
)

,

gZ(z) =
1

(z − 1)3
(

4 − 3z + 6z log z − z3
)

, (C.3)

fH(z) =
−1

6(z − 1)4
(

2 + 3z + 6z log z − 6z2 + z3
)

,

gH(z) =
−1

(z − 1)3
(

3 + 2 log z − 4z + z2
)

. (C.4)

All the expressions above are in agreement with the results of [79].
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