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Abstract: We present a new duality between the F-terms of supersymmetric field the-

ories defined in two- and four-dimensions respectively. The duality relates N = 2 super-

symmetric gauge theories in four dimensions, deformed by an Ω-background in one plane,

to N = (2, 2) gauged linear σ-models in two dimensions. On the four dimensional side,

our main example is N = 2 SQCD with gauge group G = SU(L) and NF = 2L fun-

damental flavours. Using ideas of Nekrasov and Shatashvili, we argue that the Coulomb

branch of this theory provides a quantization of the classical Heisenberg SL(2) spin chain.

Agreement with the standard quantization via the Algebraic Bethe Ansatz implies the ex-

istence of an isomorphism between the chiral ring of the 4d theory and that of a certain

two-dimensional theory. The latter can be understood as the worldvolume theory on a

surface operator/vortex string probing the Higgs branch of the same 4d theory. We check

the proposed duality by explicit calculation at low orders in the instanton expansion. One

striking consequence is that the Seiberg-Witten solution of the 4d theory is captured by a

one-loop computation in two dimensions. The duality also has interesting connections with

the AGT conjecture, matrix models and topological string theory where it corresponds to

a refined version of the geometric transition.
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1 Introduction

Supersymmetric gauge theories in two dimensions exhibit intriguing similarities to their

four dimensional counterparts which have been noted many times in the past. Their com-

mon features include the existence of protected quantities with holomorphic dependence

on F-term couplings and a related spectrum of BPS states which undergo non-trivial mon-

odromies and wall-crossing transitions in the space of couplings/VEVs. In this paper we

will propose a precise duality between specific theories in four- and two-dimensions (hence-

forth denoted Theory I and Theory II respectively). The duality applies to the large class

of four dimensional theories with N = 2 supersymmetry which can be realised by the

standard quiver construction as in [1]. As our main example we have,

Theory I. Four-dimensional N = 2 SQCD with gauge group SU(L), L hypermultiplets

in the fundamental representation with masses ~mF = (m1, . . . ,mL) and L hypermultiplets

in the anti-fundamental with masses ~mAF = (m̃1, . . . , m̃L). The theory is conformally

invariant in the UV with marginal coupling τ = 4πi/g2 + ϑ/2π.
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For some purposes it will also be useful to consider the corresponding U(L) gauge

theory. We consider Theory I in the presence of a particular1 Nekrasov deformation

with parameter ǫ which preserves N = (2, 2) supersymmetry in an R
1,1 subspace of four-

dimensional spacetime. The resulting effective theory in two dimensions is characterised by

a (twisted) superpotential, W(I) with holomorphic dependence on (twisted) chiral super-

fields. The superpotential W(I) receives an infinite series of corrections from perturbation

theory and instantons which encode the four-dimensional origin of the theory. It has an

L-dimensional lattice of stationary points corresponding to supersymmetric vacua of the

deformed theory. These are determined by the F-term equation,

~a = ~mF − ~nǫ ~n = (n1, . . . , nL) ∈ Z
L

where ~a = (a1, . . . , aL) are the usual special Kähler coordinates on the Coulomb branch of

the four-dimensional theory. A generic point on the Coulomb branch of the undeformed

theory can be recovered in an appropriate ǫ → 0, |~n| → ∞ limit.

We will propose an exact duality of Theory I to a surprisingly simple model defined in

two-dimensions which holds for all positive values of the integers {nl} introduced above;

Theory II. Two-dimensional N = (2, 2) supersymmetric Yang-Mills theory with gauge

group U(N) with L chiral multiplets in the fundamental representation with twisted masses
~MF = (M1, . . . ,ML) and L chiral multiplets in the anti-fundamental with twisted masses
~MAF = (M̃1, . . . , M̃L). In addition the theory has a single chiral multiplet in the adjoint

representation with mass ǫ. The FI parameter r and 2d vacuum angle θ combine to form

a complex marginal coupling τ̂ = ir + θ/2π.

Theory II has a twisted effective superpotential W(II) which is one-loop exact [2]. In

both Theory I and Theory II, the superpotential determines the chiral ring of supersym-

metric vacuum states.

Claim. The chiral rings of Theory I and Theory II are isomorphic. In particular, there is

a 1-1 correspondence between the supersymmetric vacua of the two theories and, with an

appropriate identification of complex parameters, the values of the twisted superpotentials

coincide in corresponding vacua (up to a vacuum-independent additive constant),

W(I)
on−shell

≡ W(II)

The rank N of the 2d gauge group is identified in terms of the 4d parameters according to

N + L =
∑L

l=1 nl. Thus, when |ǫ| is small, low values of N correspond to points near the

Higgs branch root of the 4d theory. The deformation parameter ǫ of Theory I is identified

with adjoint mass of Theory II. The explicit map between the remaining parameters takes

the form,

τ̂ = τ +
1

2
(N + 1) , ~MF = ~mF − 3

2
~ǫ , ~MAF = ~mAF +

1

2
~ǫ . (1.1)

1As we explain in section 2.2 below there are a family of inequivalent deformations related to each other

by the low-energy electromagnetic duality group of the four-dimensional theory.
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where ~ǫ = (ǫ, ǫ, . . . , ǫ). Further details of the map between the chiral rings of the two

theories is given in Subection 2.5 below.

The initial motivation for this duality comes from the mysterious connection between

supersymmetric gauge theories and quantum integrable systems developed in a remarkable

series of papers by Nekrasov and Shatashvili (NS) [3–5]. These authors propose a general

correspondence in which the space of supersymmetric vacua of a theory with N = (2, 2)

supersymmetry is identified with the Hilbert space of a quantum integrable system. The

generators of the chiral ring are mapped to the commuting conserved charges of the inte-

grable system. The twisted superpotential itself corresponds to the so-called Yang-Yang

potential which is naturally thought of as a generating function for the conserved charges.

The ideas of [5] also extend the well known connection between N = 2 supersymmetric

gauge theory in four-dimensions and classical integrable systems [7–10] which is reviewed

in section 2 below. In particular they propose that the introduction of a Nekrasov deforma-

tion in one plane, breaking four-dimensional supersymmetry to an N = (2, 2) subalgebra,

corresponds to a quantization of the corresponding classical integrable system with the

deformation parameter ǫ playing the role of Planck’s constant ~.

Our main observation is that the same quantum integrable system arises in two dif-

ferent contexts. In the case ǫ = 0, it has been known for some time [11–13] that Theory I

corresponds to a classical Heisenberg spin chain with spins whose Poisson brackets provide

a representation of sl(2) at each site. After imposing appropriate reality conditions, we

will adapt the ideas of [5] and argue that introducing non-zero ǫ corresponds to a spe-

cific quantization of this system2 in which the classical spins at each site are replaced by

quantum operators acting in a highest-weight representation of SL(2, R). The resulting

quantum chain is integrable and can be diagonalised exactly using the Quantum Inverse

Scattering method which leads to a simple set of rational Bethe Ansatz equations. How-

ever, precisely these equations also arise as the F-term equations of Theory II and the

corresponding twisted superpotential, W(II), coincides with the Yang-Yang potential of

the spin chain [3, 4]. This is not a coincidence: with the identification of parameters pro-

posed above, Theory II can be identified as the worldvolume theory of a vortex string or

surface operator probing the Higgs branch of Theory I.3 As we discuss below, this connec-

tion suggests a physical explanation of the correspondence along the lines of [17, 18] as

well as relations to several other recent developments.

Equivalence between the NS quantization and the standard quantization of the spin

chain implies the duality between Theories I and II proposed above. In section 3 below

we test the duality by an explicit calculation of W(I) in each vacuum including classical,

perturbative contributions as well as non-perturbative contributions up to second order

in the four-dimensional instanton expansion. The corresponding computation of W(II)

involves an iterative solution of the one-loop exact F-term equations in powers of the

parameter q = exp(2πiτ). The calculation yields precise agreement in all vacua when the

parameters are identified according to (1.1).

2For other recent work relating N = 2 SQCD and the quantum Heisenberg spin chain see [46–48, 51].
3There are some subtleties to this relation which we discuss in subsection 2.4 below.
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One interesting consequence of the proposed duality is that the full Seiberg-Witten

solution of Theory I can be recovered by taking an N → ∞, ǫ → 0 limit of the one-loop

exact F-term equations of Theory II. In fact this is just the standard semiclassical limit

of the non-compact spin chain (see e.g. [43, 45]) where the Bethe roots condense to form

branch cuts in the spectral plane. In our context the resulting double cover of the complex

plane is the Seiberg-Witten curve. This is very reminiscent of the Dijkgraaf-Vafa matrix

model [14–16] approach where the eigenvalues of an N × N matrix condense to form the

branch cuts of the Seiberg-Witten curve. An important difference is that, in the NS limit,

the Bethe Ansatz equations provide an exact solution of the system even at finite N (see

point 4 below).

In a forthcoming paper [61] we will also sketch a similar correspondence for a larger

class of N = 2 quiver theories in four (as well as five and six) dimensions. A common

feature is that quantization leads to spin chains based on highest weight representations of

Lie algebras where the ferromagnetic ground-state of the spin chain corresponds to the root

of the gauge theory Higgs branch. In all cases, the Algebraic Bethe Ansatz leads to simple

rational, (trigonometric, elliptic) equations which coincide with the F-term equations of a

dual two-dimensional theory. In forthcoming work [61] we will show how the correspondence

can be proved by directly relating the Bethe Ansatz equation to the saddle-point equation

describing the instanton density in the Nekrasov-Shatashvili limit [5] (see also the recent

papers [59, 60]).

There are also several interesting connections to other developments in supersymmetric

gauge theory both new and old:

1. As already mentioned, there is a simple physical relation between the two theories

which holds with identifications between the parameters described above: Theory II can be

understood as the theory on the world-volume of a vortex string or surface operator [34, 35]

probing the Higgs branch of the same four-dimensional theory. More precisely, Theory II

is a gauged linear σ-model for the moduli space4 of N non-abelian vortices of Theory I [19]

(See also [36, 37]). The proposed duality relates the world-volume theory of N vortices

to the bulk theory (i.e. Theory I) on its Coulomb branch. As usual, Higgs phase vortices

carry quantized magnetic flux. Interestingly, the dual Coulomb branch vacua of Theory I

also exhibit quantized magnetic fluxes in the presence of the Ω-deformation.

2. The duality provides an analog of the geometric transition of Gopakumar and Vafa [38]

for the “refined” topological string [54] with refinement parameters ǫ1 6= ǫ2 in the Nekrasov-

Shatashvili (NS) limit ǫ2 → 0. Theories I and II correspond to the closed and open string

sides of the transition respectively.

3. The duality can also be understood in terms of the conjecture [33] relating four dimen-

sional supersymmetric gauge theory with Liouville theory. We will argue that in certain

cases the proposed duality is equivalent to the conjecture of Alday et al [34] that a sur-

face operator in gauge theory corresponds to a particular degenerate operator in Liouville

theory.

4There are some subtleties to this relation which are discussed in section 2.4 below.
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4. Recent work [39] has advocated a further duality between N = 2 supersymmetric

gauge theories in a four dimensional Ω-background and matrix models. In particular,

the Nekrasov partition function of Theory I should have a matrix integral representation.

Here we identify the dimension of matrix as the rank N of the gauge group of Theory

II. We conjecture that the resulting integral over the matrix eigenvalues can be evaluated

explicitly by a saddle point in the NS limit even at finite N . The saddle-point equations

are precisely the Bethe Ansatz equations of the spin chain and the free energy is equal to

the prepotential of the gauge theory. This should also have interesting consequences for

refined open topological string amplitudes in the limit ǫ2 → 0.

5. Some time ago a duality was proposed [40, 41] relating the BPS spectrum of a two-

dimensional theory and that of a corresponding four-dimensional gauge theory at the root

of its Higgs branch. The correspondence is further studied in [42] with care given to

precise supermultiplet counting together with their wall-crossing behaviour. We show that

the present proposal reduces to the earlier one in the limit ǫ → 0.

The rest of the paper is organised as follows. In section 2, we review the basic features

of Theory I, its relation to the classical Heisenberg spin chain in the case ǫ = 0 and its

quantization for ǫ 6= 0. We also introduce Theory II and review its realisation on the

worldvolume of a vortex string/surface operator and provide the precise statement of our

duality conjecture. Section 3 is devoted to a detailed check of this proposal. Discussion

of our results, generalisations and connections to topological strings, matrix models and

Liouville theory are presented in section 4.

2 Supersymmetric gauge theory and integrable systems

In this section we will begin reviewing the relevant feature of the four-dimensional theory

introduced in section 1. As above, we focus on four-dimensional N = 2 Super QCD with

gauge group G = SU(L) and NF = 2L hypermultiplets. For an SU(L) gauge theory,

hypermultiplets in the fundamental and anti-fundamental representations of the gauge

group are essentially equivalent. It is nevertheless convenient to focus on the case where

half of the 2L hypermultiplets are in the fundamental representation and the rest in the

anti-fundamental representation. The duality discussed below will apply equally to the

corresponding U(L) gauge theory which differs from the SU(L) theory by an additional U(1)

factor which is IR free. The fundamental and anti-fundamental hypermultiplet masses are

denoted by ml and m̃l with l = 1, 2, . . . , L respectively. The SU(L) theory is conformally

invariant in the UV with marginal coupling τ = 4πi/g2 + ϑ/2π.

The exact low-energy solution of the undeformed theory is governed by the correspond-

ing Seiberg-Witten curve,

L
∏

l=1

(v − m̃l)t
2 − 2

L
∏

l=1

(v − φl)t − h(h + 2)

L
∏

l=1

(v − ml) = 0 . h(τ) = − 2q

q + 1
, (2.1)

where q = exp(2πiτ) is the factor associated with a four-dimensional Yang-Mills instanton.

Here φl denote the L classical eigenvalues of the adjoint scalar field ϕ in the N = 2 vector

multiplet. As the gauge group is SU(L) we impose a traceless condition
∑L

l=1 φl = 0.
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Figure 1. IIA brane construction for a generic point on the Coulomb branch of Theory I.

The masses of BPS states in the four-dimensional theory are determined by a mero-

morphic differential, λSW = vdt/t on the curve. A standard basis of A- and B-cycles on

the Seiberg-Witten curve, with Al ∩ Bm = δlm can be defined in the weak-coupling limit

τ → i∞. Electric and magnetic central charges are determined by the periods of λSW in

this basis,

~a =
1

2πi

∮

~A

λSW , ~aD =
1

2πi

∂F
∂~a

=
1

2πi

∮

~B

λSW , (2.2)

where ~a = (a1, . . . , aL) with similar notation for other L-component vectors. For theories

with matter the Seiberg-Witten differential also has simple poles at the points x = ml,

m̃l with residues ml and m̃l respectively. It is convenient to introduce additional cycles
~CF = (C1, . . . , CL) and ~CAF = (C̃1, . . . , C̃L) encircling these poles so that the corresponding

periods of λSW are,

~mF =
1

2πi

∮

~CF

λSW , ~mAF =
1

2πi

∮

~CAF

λSW .

The standard IIA brane construction of Theory I at a generic point on its Coulomb

branch is shown in figure 1. Here we follow the conventions of [1]. Each horizontal line

corresponds to a D4 brane. In the figure each D4 is labelled by the corresponding value of

the complex coordinate v = x4 + ix5. In the following, the point on the Coulomb branch

where it touches the Higgs branch will have a particular significance. The configuration

corresponding to this Higgs branch root is shown in figure 2. At the root of baryonic Higgs

branch, the ~A− ~C cycles degenerate leading to L− 1 additional massless hypermultiplets.

This corresponds to a factorization of the Seiberg-Witten curve. More precisely, when φl’s

– 6 –
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Figure 2. The Higgs branch root ~a = ~mF .

are tuned to satisfy a relation

−h

L
∏

l=1

(

v − m̃l

)

+ (h + 2)

L
∏

l=1

(

v − ml

)

= 2

L
∏

l=1

(

v − φl

)

, (2.3)

the Seiberg-Witten curve becomes degenerate

[

L
∏

l=1

(

v − m̃l

)

t − (h + 2)
L
∏

l=1

(

v − ml

)

]

× [t + h] = 0 , (2.4)

and ~A = ~CF . We will soon explain a correspondence between the root of baryonic Higgs

branch and ferromagnetic vacuum of the SL(2, R) integrable model.

2.1 The classical integrable system

We now review the connection between N = 2 supersymmetric gauge theories in four di-

mensions and complex classical integrable systems. We begin by introducing the Heisenberg

spin chain.

We will consider a chain of L complex “spins” [43–45] corresponding to classical vari-

ables, L±
l , L0

l , for l = 1, 2, . . . , L with Poisson brackets:

{L+
l ,L−

m} = 2iδlmL0
m {L0

l ,L±
m} = ±iδlmL±

m . (2.5)

Here +, − and 0 are indices in the Lie algebra sl(2). The spins at each site have a fixed

value of the quadratic Casimir,

L+
l L−

l +
(

L0
l

)2
= J2

l . (2.6)
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Integrability of the classical spin chain starts from an auxiliary linear problem based

on the Lax matrix,

Ll(x) =

(

x + iL0
l iL+

l

iL−
l x − iL0

l

)

, (2.7)

where x ∈ C is a spectral parameter. A tower of commuting conserved quantities are

obtained by constructing the corresponding monodromy matrix,

T(x) = V

L
∏

l=1

Ll(x − θl) ,

where we have included inhomogeneities θl, l = 1, 2, . . . , L, at each site and a diagonal

“twist” matrix,

V =

(

−h 0

0 h + 2

)

.

As usual, the trace of the monodromy matrix is the generating function for a tower of

conserved charges,

2P (x) = tr2 [T(x)]

= 2xL + q1x
L−1 + . . . + qL−1x + qL . (2.8)

One may check starting from the Poisson brackets (2.5) that the conserved charges, ql, l =

1, 2, . . . L are in involution: {ql, qm} = 0, ∀ l, m, which establishes the Liouville integrability

of the chain. The lowest charge q1 can be set to zero by a linear shift of the spectral

parameter and we will do so in the following.

As for any integrable Hamiltonian system, the exact classical trajectories of the spins

can be found by a canonical transformation to action-angle variables. Using standard

methods, the action variables are identified as the moduli of a spectral curve ΓL ⊂ C
2

defined by the equation,

F (x, y) = det (y12 − T(x)) = 0 ,

while the angle variables naturally parameterise the Jacobian variety J (ΓL) More explicitly

the curve takes the form,

ΓL : y2 − 2P (x) y − h(h + 2)K(x) K̃(x) = 0 , (2.9)

where,

K(x) =

L
∏

l=1

(x − θl − iJl) K̃(x) =

L
∏

l=1

(x − θl + iJl) .

This curve is an equivalent form of the Seiberg-Witten curve (2.1) for Theory I provided

we make the identifications,

~mF = ~θ + i ~J ~mAF = ~θ − i ~J ,

– 8 –
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and

2P (x) = 2xL + q2x
L−2 + . . . + qL−1x + qL

= 2

L
∏

l=1

(x − φl).

Also h(τ) is identified with the twist parameter of the spin chain denoted by the same

letter. The relation between (2.1) and (2.9) corresponds to the holomorphic change of

variables, t = y/K̃(x), v = x.

With this identification different values of the moduli of Theory I are associated with

different values of the integrals of motion of the complex spin chain. One point of partic-

ular interest is the ferromagnetic vacuum of the chain where each spin is in its classical

groundstate: ~L0
l = ~J , ~L± = 0. It is easy to check that this corresponds to the root of the

Higgs branch in the gauge theory where the VEVs take the values ~a = ~mF .

2.2 Nekrasov-Shatashvili quantization

We now turn our attention to the gauge theory in the presence of the so-called Ω-

background. This deformation, which breaks four-dimensional Lorentz invariance, is spec-

ified by parameters ǫ1 and ǫ2. The N = 2 F-terms of the deformed theory are determined

by the Nekrasov partition function [28, 29],

Z(~a, ǫ1, ǫ2) .

In this paper we will be mainly concerned with the Nekrasov-Shatashvili limit ǫ2 → 0

with ǫ1 held fixed, where the deformation is restricted to one plane in R
4. We define a

quantum prepotential in this limit as,

F (~a, ǫ) = lim
ǫ2→0

[

ǫ1ǫ2 log Z(~a, ǫ1, ǫ2)|ǫ1=ǫ

]

.

In the further limit ǫ → 0, the quantum prepotential reduces to the familiar prepotential of

the undeformed theory: F(~a, ǫ) → F(~a). Following [46–48, 50], the quantum prepotential

can be obtained by a suitable deformation of the Seiberg-Witten differential appearing

in (2.2),

λ(ǫ) = λSW + O(ǫ) ,

with periods,

~a(ǫ) =
1

2πi

∮

~A

λ(ǫ) , ~aD(ǫ) =
1

2πi

∮

~B

λ(ǫ) , (2.10)

such that,

~aD(ǫ) =
1

2πi

∂

∂~a(ǫ)
F(~a, ǫ) . (2.11)

For convenience we will suppress the ǫ dependence of the deformed central charges from

now on and denote them simply as ~a and ~aD.

– 9 –
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For ǫ 6= 0, the four-dimensional N = 2 supersymmetry is broken down to N = (2, 2)

supersymmetry two dimensions. The zero modes of the U(1)L−1 vector multiplet in the

four-dimensional low energy theory give rise to a field strength multiplet in two dimensions.

This multiplet includes the gauge field strength ~F01 in the undeformed directions and the

scalar fields ~a which parametrize the 4d Coulomb branch. Thus ~a is the lowest component

of a twisted chiral superfield in N = (2, 2) superspace. This superfield inherits a twisted

superpotential from the partition function of the four-dimensional theory. The resulting

twisted superpotential is a multi-valued function on the Coulomb branch,

W(I) (~a, ǫ) =
1

ǫ
F (~a, ǫ) − 2πi~k · ~a (2.12)

where the integer-valued vector5 ~k ∈ Z
L corresponds to the choice of branch. This choice

corresponds to the freedom to shift the 2d vacuum angle associated with each U(1) factor in

the low energy gauge group by an integer multiple of 2π. This is equivalent to introducing

a constant electric field ~F01 in spacetime which is then screened by pair creation [2, 26].

The vector ~k thus specifies the choice of a quantized two-dimensional electric flux in the

Cartan subalgebra of SU(L).

The main claim of [5] is that W(I)(~a, ǫ) is the Yang-Yang potential for a quantization

of the classical integrable system described above, in which the effective Planck constant

~ is proportional to the deformation parameter ǫ. This requires further explanation: cor-

responding to a complex classical integrable system there can be several choices of reality

condition which yield inequivalent real integrable systems. Each of these real systems gives

rise upon quantization to different quantum integrable systems. As discussed in [5], the

twisted superpotential given above gives rise to a particular quantization which they refer

to as Type A which we now review.

The F-term equations coming from (2.12) can written in terms of the deformed mag-

netic central charge using (2.11) as follows,

∂W(I)

∂~a
= 0 ⇒ ~aD ∈ ǫ Z

L (2.13)

This corresponds to a quantization condition for the conserved charges of the integrable

system, each point of the lattice Z
L corresponds to a different quantum state. The values

of the commuting conserved charges in each state are encoded in the on-shell value of the

superpotential W(I). Each branch of this multi-valued function corresponds to a super-

symmetric vacuum and to a state of the quantum integrable system Differentiating with

respect to the parameters yields the vacuum expectation values of chiral operators in the

corresponding vacuum. For example,

〈Tr ϕ2〉 = − ǫ

πi

∂

∂τ
W(I)

∣

∣

∣

~aD∈ ǫZL
.

To extract the VEVs of higher dimension chiral operators Ôk = Tr ϕk for k > 2 we should

deform the prepotential of the UV theory with appropriate source terms [25].

5For an SU(L) theory we should also impose
P

l
kl = 0.
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Theories with N = 2 supersymmetry in four dimensions exhibit two distinct manifes-

tations of electromagnetic duality. First there is the low-energy electromagnetic duality

which provides an alternative description of the low-energy effective theory at any point on

the Coulomb branch in terms of a dual field ~aD with dual prepotential FD(~aD, ǫ), which

is related to the original prepotential by Legendre transform.6

FD

(

~aD
)

= F (~a) − 2πi~a · ~aD . (2.14)

In an SU(L) gauge theory, the full group of low-energy duality transformation includes a

copy of Sp(2L, Z) which acts linearly on the central charges (~a,~aD). For Theory I, there are

also additional additive transformations involving shifts of the central charges by integer

multiples of the mass parameters ~mA, ~mAF [27].

In [5], the authors proposed that these different formulations of the low-energy theory

give rise upon deformation to non-zero ǫ, to different quantizations of the same complex

classical integrable system. In particular, performing the basic Z2 electric-magnetic duality

transformation we obtain a dual superpotential,

W(I)
D (~aD) = W(I) (~a) − 2πi

ǫ
~a · ~aD (2.15)

whose F-term equations give rise to dual quantization conditions, denoted Type B in [5],

∂W(I)
D

∂~aD
= 0 ⇒ ~a ∈ ǫ Z

L. (2.16)

The discrete choice of vacuum now corresponds to a choice of magnetic flux ~F23 in the

Cartan subalgebra of the gauge group. As a consequence of (2.15), we note that the two

superpotentials W(I) and W(I)
D are actually equal as multi-valued functions when evaluated

on-shell. This is true for both quantization conditions (2.13) and (2.16).

Summarising the above, the Type A and B quantization conditions can be written as,

1

2πi

∮

~A

λ(ǫ) ∈ ǫ Z
L and

1

2πi

∮

~B

λ(ǫ) ∈ ǫ Z
L ,

respectively. Other quantizations corresponding to other transformations in the duality

group naturally correspond to period conditions for different choices of basis cycles.

The N = 2 theory with gauge group SU(L) and 2L hypermultiplets exhibits another

form of electric-magnetic duality. The exact S-duality of the theory relates electric and

magnetic observables of the theory at different values of the marginal coupling τ . In the

present context it implies a non-trivial duality between Type A and Type B quantization

at different values of τ .

6Although the electro-magnetic duality transformation is modified and becomes a kind of Fourier trans-

form [29] for general deformation parameters ǫ1, ǫ2, the standard transformation properties are regained in

the NS limit.

– 11 –



J
H
E
P
1
0
(
2
0
1
1
)
0
7
7

2.3 Quantization via the Bethe Ansatz

In this section we will review the standard approach to quantizing the Heisenberg spin

chain (see e.g. [30, 31, 43, 45]). Starting from the Poisson brackets (2.5) we make the usual

replacement of the classical variables L±
l , L0

l at each site by operators L̂±
l , L̂0

l obeying

commutation relations,

[L̂+
l , L̂−

m] = −2 ~ δlmL̂0
m [L̂0

l , L̂
±
m] = ∓ ~ δlmL̂±

m , (2.17)

for l,m = 1, 2, . . . , L. The spins at each site each commute with the Casimir operator,

L̂2
l =

1

2

(

L̂+
l L̂−

l + L̂−
l L̂+

l

)

+
(

L̂0
l

)2
= sl(sl − 1) ~

2.

Depending on the value of sl, these operators can act on representations of either SU(2)

or SL(2, R). We will focus on the latter case. If we choose s ∈ R
+ the spins can be chosen

to act in the principal discrete series representation7 of SL(2, R),

D+
s = {|s, µ〉, µ = s, s + 1, s + 2, . . .}

These are highest weight representations of SL(2, R) and the resulting spin chain admits

a tower of commuting charges which can be simultaneously diagonalised. By restricting

to a representation D+
s with s = sl > 0 at the l’th site we are defining a real quantum

integrable system. An important feature of this non-compact spin chain is that it has a

semiclassical limit where each spin is highly excited. As we discuss below, the relation to

the complex integrable system we discussed in subsection 2.1 becomes clear in this limit.

As we are dealing with a spin chain based on highest weight representations the Al-

gebraic Bethe Ansatz [30] is applicable and can be used to find the exact spectrum of the

model [31]. We now review the solution of the spin chain using an alternative approach

based on the Baxter equation. We start by defining a quantum version of the classical Lax

matrix (2.7) which takes the form,

L̂l(x) =

(

x + iL̂0
l iL̂+

l

iL̂−
l x − iL̂0

l

)

(2.18)

and we define the quantum transfer matrix for an inhomogeneous chain with twisted bound-

ary conditions by,

T̂ (x) = tr2

[

V

→
∏

l=1

L̂l(x − θl)

]

= 2xL + q̂2x
L−2 + . . . + q̂L−1x + q̂L ,

where {q̂l}, l = 1, 2, . . . , L, are a set of mutually commuting conserved charges which are

the quantized versions of the corresponding classical charges {ql}.
7More precisely, when s is not equal to a half-integer, these are representations of the universal cover of

SL(2, R).
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The standard problem for a quantum integrable system is to find the eigenstates of

the transfer matrix,

T̂ (x) |Ψ〉 = t(x) |Ψ〉 ,

where the eigenvalue, t(x), is a polynomial of degree L in the spectral parameter x by con-

struction. This is accomplished by allowing the transfer matrix to act on a “wavefunction”

Q(x) which leads to the Baxter equation,

− ha(x)Q(x + i~) + (h + 2)d(x)Q(x − i~) = t(x)Q(x) , (2.19)

where,

a(x) =

L
∏

l=1

(x − θl + isl~) d(x) =

L
∏

l=1

(x − θl − isl~)

Looking for solutions where Q(x) is a polynomial of degree N ,

Q(x) =

N
∏

j=1

(x − xj)

we impose the polynomiality of t(x) to obtain N equations for the N zeros xj of Q(x),

L
∏

l=1

(

xj − θl − isl~

xj − θl + isl~

)

= q

N
∏

k 6=j

(

xj − xk + i~

xj − xk − i~

)

, (2.20)

for j = 1, 2, . . . , N where q = −h/(h + 2). These are the Bethe Ansatz Equations (BAE).

These equations are very well studied in the case of an untwisted homogeneous SL(2, R)

chain with θl = 0, q = 1 and sl = s > 0. In particular, for this case, it is known that all

the Bethe roots {xj} lie on the real axis [43]. The number N of Bethe roots corresponds

to the number of magnons in the corresponding state. The ferromagnetic vacuum of the

spin chain is defined as an empty state N = 0, i.e., Q(x) = constant. It implies from the

Baxter equation (2.19) that

−ha(x) + (h + 2)d(x) = t(x) , (2.21)

which is nothing but the condition at the root of baryonic Higgs branch (2.3). The ferro-

magnetic vacuum of the spin chain can therefore be identified as the Higgs branch root.

The eigenvalues of the transfer matrix can easily be written in terms of the solutions of

the BAE using the Baxter equation (2.19).

In the following it will also be important that the BAE corresponds to stationary points

of an action function,

Y(x) = 2πiτ

N
∑

j=1

xj +

N
∑

j=1

L
∑

l=1

[

f (xj − θl + isl~) − f (xj − θl − isl~)
]

+
N
∑

j,k=1

f (xj − xk + i~) + iπ(N + 1)
N
∑

j=1

xj ,

where f(x) = x(log x − 1) and q = exp(2πiτ).
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α1α2αL

x̂2L x̂2L−1 x̂4 x̂3 x̂2 x̂1

X-plane

Figure 3. The cut x-plane corresponding to the curve ΓL.

To understand the relation to the classical system of subsection 2.1, it will be useful

to consider the semiclassical limit ~ → 0 of the quantum chain in which the excitation

numbers at each site become large. The quantum numbers sl which determine the spin

representation at each site scale like ~
−1. They are related to the classical Casimirs as

Jl ≃ sl~ + O(~). Alternatively, if sl are held fixed as ~ → 0 one ends up with the classical

Heisenberg magnet of spin ~J = 0. In either limit the quantum charges q̂l go over to Poisson

commuting classical quantities ql.

The key feature of the semiclassical limit is that the Bethe roots {xj} condense to form

cuts in the complex plane. In this limit the resolvent L(x) = d log Q(x)/dx is naturally

defined on a double cover of the x-plane with two sheets joined along these cuts. The

resulting Riemann surface is exactly the the spectral curve ΓL and the meromorphic differ-

ential L(x)dx can be identified with the Seiberg-Witten differential λSW. For the case of

the homogeneous untwisted chain of spin zero, the semiclassical limit is described in detail

in section 2.2 of [43]. In this case the Bethe roots condense to form branch cuts on the real

axis. Working in the vicinity of the ferromagnetic vacuum, the curve can be represented

as a double cover of the x plane with 2L real branch points8 at x = x̂1 ≥ x̂2 ≥ . . . ≥ x̂2L

as shown in figure 3. We also define one-cycles αl, l = 1, . . . , L surrounding each branch

cut. In the semiclassical limit, the quantum SL(2, R) spin chain gives rise to a particular

real slice of the complex classical spin chain considered above. The reality conditions se-

lect a middle-dimensional subspace of the original complex phase space. Allowing generic

complex values of the moduli corresponds to working with a complexification of the spin

chain in which SL(2, R) is replaced by SL(2, C).

At the classical level, the moduli of the curve vary continuously. The leading semi-

classical approximation the quantum spectrum arises from imposing appropriate Bohr-

Sommerfeld quantisation conditions which are formulated in terms of the periods of the

meromorphic differential L(x)dx on ΓL which coincides with the Seiberg-Witten differential

λSW,

1

2π

∮

αl

λSW = ~ n̂l , (2.22)

8Strictly speaking this picture is correct with a real twist parameter slightly different from unity. In the

special case q = 1, one cut degenerates and the genus of the curve drops to L − 2.
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for l = 1, . . . , L where n̂l are non-negative integers. In terms of the Bethe Ansatz, this is

just the condition that each cut contains an integral number of Bethe roots. From this

point of view it is obvious that the quantization conditions are unchanged by continuous

variations of the parameters including the introduction of inhomogeneities and a non-

trivial twist. In particular, they also apply in the weak coupling regime q → 0 where the

standard basis cycles of the Seiberg-Witten curve are defined. It will be useful to express

the cycles ~α appearing in the semiclassical quantization condition in this basis. The key

point, mentioned above, is that the ferromagnetic vacuum of the spin chain corresponds to

the Higgs branch root ~a = ~mF . In terms of the basis cycles defined above this corresponds

to the point in moduli space where the cycles ~A − ~CF vanish. Thus we have ~α = ~A − ~CF .

2.4 Two-dimensional gauge theory and vortex strings

The next observation, following [3, 4], is that the BAE for the Heisenberg spin chain

themselves arise as the F-term equations of a certain two-dimensional gauge theory with

N = (2, 2) supersymmetry which we will call Theory II. As above Theory II is a U(N)

gauge theory with L fundamental chiral multiplets Ql with twisted masses Ml and L

anti-fundamental chiral multiplets Q̃l with twisted masses M̃l. The theory also contains

an adjoint chiral multiplet Z with twisted mass ǫ and has a marginal complex coupling

τ̂ = ir + θ/2π which corresponds to a background twisted chiral superfield.

We begin by focussing on the case ǫ = 0. In this case the model can be realised on the

worldvolume of N D2 branes probing a configuration of intersecting NS5 and D4 branes

in Type IIA string theory [19, 57] as shown9 in figure 4. Since the brane-configuration is

invariant under the rotations in {2,3}-, {4,5}- and {8,9}-planes, the Theory II has, at least

classically, global symmetry groups U(1)23 × U(1)45 × U(1)89 as well as flavor symmetry

groups SU(L) × SU(L). Here the FI parameter r is proportional to ∆x6. Classical vacua

are determined by solving the D-term equations,

L
∑

l=1

(

QlQ
l† − Q̃†

l Q̃
l
)

−
[

Z,Z†
]

= r , (2.23)

and

L
∑

l=1

∣

∣

∣
λQl − QlMl

∣

∣

∣

2
+

L
∑

l=1

∣

∣

∣
− Q̃lλ + Q̃lM̃l

∣

∣

∣

2
= 0 , (2.24)

where λ denotes the adjoint scalar field in the vector multiplet.

For r = 0, Ql = Q̃l = 0 and Theory II has a classical Coulomb branch parametrized

by the eigenvalues {λ1, λ2, . . . , λN} of the adjoint scalar field in the U(N) vector multiplet.

In the figure this corresponds to the special case where each D2 is suspended between NS5

and NS5′ and can move independently in the x4 and x5 directions. On the other hand, the

eigenvalues of Z parameterise the position of D2-branes in the {2,3}-plane.

9More precisely Theory II arises in a particular decoupling limit of the brane configuration. All conven-

tions relating to the intersecting brane configuration shown in figure 4 are the same as in [41].
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∆

Figure 4. A IIA brane construction for Theory II with ǫ = 0.

For r > 0, the theory is on a Higgs branch with Q 6= 0, Q̃ = 0. The vector multiplet

VEVs are fixed by the second D-term condition (2.24). Solutions are labelled by the

number of ways of distributing the N scalars {λj} between the L values {Ml}. Thus we

specify a vacuum by choosing L non-negative integers {n̂l} with
∑L

l=1 n̂l = N . In the

brane construction these correspond to the number of D2 branes ending on each D4 brane

as shown in the figure.

The brane construction also reveals an interesting physical relation between Theory

I and Theory II [18]. In the absence of the D2 branes, the worldvolume theory on the

intersection of the remaining branes is precisely N = 2 SQCD with gauge group SU(L)

and NF = 2L hypermultiplets with masses ml = Ml and m̃l = M̃l and complex gauge

coupling τ . In other words, it is Theory I in the undeformed case ǫ = 0. To understand

the relation, compare the brane configuration shown in figure 1 with the configuration in

figure 4 (in the absence of D2 branes). The former configuration represents a generic point

on the Coulomb branch of Theory I. To pass to the configuration shown in figure 4, we

reconnect the D4 branes on NS5′ and then move NS5′ away from the D4 branes in the x7

direction. The first step corresponds to moving on the Coulomb branch to the Higgs branch

root root (see figure 2), the second to moving out along the Higgs branch. The theory on

the Higgs branch admits vortex strings which corresponds to the D2 branes in the figure 4.

Thus we identify Theory II as the worldvolume theory on N vortex strings probing the

Higgs branch of Theory I. For a review of such non-abelian vortex string see [20, 21].

At this point there are several subtleties. First, to have BPS vortices with a supersym-

metric worldvolume theory we must consider a four-dimensional theory with gauge group

U(L) rather than SU(L). Thus, although the F-term duality described in this paper works
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the same for both theories, the interpretation in terms of vortex strings is only available in

the U(L) case. Next, the gauge theory designated as Theory II above cannot be directly

identified as the worldvolume theory of the vortex. Rather, Theory II is an N = (2, 2)

gauged linear σ-model which flows in the IR to a non-linear σ-model (with twisted mass

terms) whose target space is a certain Kähler manifold which is closely related to the moduli

space of N vortices in Theory I [19]. In the present case, where the four-dimensional theory

is conformal, the target space has zero first Chern class and can therefore be expected to

admit a unique Ricci-flat metric which provides a natural IR fixed-point for the world-

sheet theory. In fact, the actual Kähler metric on the classical vortex moduli space differs

from this target space metric. Even worse, as we are discussing semi-local vortices, some

elements of the true classical moduli space metric diverge due to the non-normalisability

of some of the vortex zero modes (see eg [22, 23]). Although this has not been analysed

in detail, we expect that this problem is cured once the Ω-background is reintroduced.10

Indeed, as above, a Nekrasov deformation in one plane renders even the vacuum moduli

of the four-dimensional gauge theory normalisable as fields in a two-dimensional effective

action. Correspondingly we expect that, in the present context, the true world-volume

theory of N vortices flows to the same IR fixed point as Theory II. However, what we

actually need here is much weaker: that the two theories agree at the level of N = (2, 2)

F-terms and we will assume this is the case.

With the identification described above, the numbers {n̂l} labelling the classical vacua

of the worldvolume theory determine the number of units of magnetic flux in each U(1)

of the Cartan subalgebra of U(L). The tension of the vortex strings is controlled by the

Higgs branch VEV v of the four-dimensional theory, proportional to ∆x7. In the limit,

v → ∞, the tension diverges and the vortex strings become static surface operators of the

type considered in [34].

Next we restore the Nekrasov deformation to Theory I. From a two-dimensional per-

spective this corresponds to a twisted mass term for fields charged under rotations in the

x2-x3 plane. The U(N) adjoint chiral multiplet has charge +1 under this symmetry and

this field acquires mass ǫ. Thus the adjoint chiral mass in Theory II is identified with the

Nekrasov deformation parameter ǫ in Theory I. More generally, we can consider a twisted

mass corresponding to 2-3 rotations mixed with the other U(1) global symmetries which

act on the chiral multiplets Q and Q̃. In fact the relevant symmetry for the duality we

consider turns out to be one under which Q has charge −3/2 and Q̃ has charge +1/2. The

corresponding dictionary between the 2d and 4d masses then becomes,

~MF = ~mF − 3

2
~ǫ , ~MAF = ~mAF +

1

2
~ǫ . (2.25)

where ~ǫ = (ǫ, ǫ, . . . , ǫ).

Having discussed the classical behaviour of Theory I, we now turn our attention to the

quantum theory. Quantum effects lift the classical Coulomb and Higgs branches described

above leaving only isolated supersymmetric vacua corresponding to stationary points of the

twisted superpotential. Upon integrating out the matter multiplets we obtain an effective

10An alternative way of regulating this divergence is proposed in [23].
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twisted superpotential on the Coulomb branch of the form,

W(II)(λ) = 2πiτ̂

N
∑

j=1

λj − ǫ

N
∑

j=1

L
∑

l=1

f

(

λj − Ml

ǫ

)

+ǫ

N
∑

j=1

L
∑

l=1

f

(

λj − M̃l

ǫ

)

+ ǫ

N
∑

j,k=1

f

(

λj − λk − ǫ

ǫ

)

, (2.26)

where f(x) = x(log x − 1) and τ̂ = ir + θ
2π

denotes the two-dimensional holomorphic

coupling constant. It is known that this twisted superpotential is one-loop exact. Defining

q = exp(2πiτ) ≡ (−1)N+1 exp(2πiτ̂ ) ,

the resulting F-term equations can be expressed as below

L
∏

l=1

(

λj − Ml

λj − M̃l

)

= q
∏

k 6=j

(

λj − λk − ǫ

λj − λk + ǫ

)

(2.27)

with j = 1, 2, . . . , N , coincide with the BAE (2.20) with the identification of the variables

{λj} with {xj} and setting,

~MF = ~θ + i~s~ ~MAF = ~θ − i~s~

and ǫ = −i~. The marginal coupling τ is identified with the corresponding parameter in

the Yang-Yang functional.

The space of supersymmetric ground states of Theory II is now identified with the

Hilbert space of the quantum SL(2, R) spin chain. Strictly speaking this correspondence

holds when the complex parameters of Theory II satisfy the reality conditions implied by

the above identifications. More generally one must consider an analytic continuation of the

quantum spin chain to complex values of its parameters. The rank N of the 2d gauge group

corresponds to the number of magnons in the spin chain state. Pleasingly the total number

of states of the spin chain containing N magnons is the number of partitions of N into

L non-negative integers which is the same as the number of classical SUSY vacua of the

theory. It is important to note that these vacua, like the states of the spin chain, correspond

to non-degenerate solutions of (2.27) where λi 6= λj for all i 6= j. Degenerate solutions are

points where the Coulomb branch effective description breaks down and any corresponding

vacuum states would have unbroken non-abelian gauge symmetry. The absence of such

vacua is consistent with the results of [24].

To summarise the above discussion, Theory II corresponds to the worldvolume theory

of N vortex strings probing the Higgs branch of Theory I. The tension of these strings is

controlled by the Higgs branch VEV of the four-dimensional theory which corresponds to a

D-term in N = (2, 2) superspace [18]. The F-term equations of motion of Theory II coincide

with the BAE for the SL(2, R) Heisenberg spin chain. This conclusion is independent of

D-term couplings and therefore hold equally well in the limit of infinite tension where the

vortex string becomes a surface operator.
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2.5 The duality proposal

As mentioned above starting from a complex classical integrable system there can be many

inequivalent reality conditions and many different quantizations. In subsections 2.1 and 2.3

we have discussed the particular reality conditions which lead to the SL(2, R) Heisenberg

spin chain and the standard quantization which leads to an integrable quantum spin chain.

On the other hand we have reviewed the Nekrasov-Shatashvili quantization which produces

a family of reality conditions and quantizations related by electric-magnetic duality trans-

formations. It is natural to ask whether one of this family corresponds to the standard

quantization of the SL(2, R) spin chain. To start with we can address this question in the

semiclassical regime of small ǫ. In this case the quantization conditions of the NS proposal

take the generic form,

∮

~A
λSW ∈ ǫZ ,

for some choice of L one-cycles ~A = (A1, . . . ,AL) on ΓL which are the image under the low-

energy duality group of the basis cycles ~B appearing in the Type A quantization condition.

We obtain agreement with the semiclassical limit of the SL(2, R) chain if ǫ = −i~ and the

basis cycles are chosen as ~A = ~α = ~A − ~CF .

With the choices outlined above, the NS quantization condition coincides with the stan-

dard one at leading semiclassical order. In a generic quantum system it is easy to imagine

different quantizations which agree at leading order in ~. However, for a real classical inte-

grable system with a given symplectic form, quantizations which preserve integrability are

very special and we do not know of an example where two distinct quantizations coincide

at leading semiclassical order. For this reason, we conjecture that the agreement between

the NS quantization and the standard one persists to all orders.

The Hilbert space resulting from the NS quantization corresponds to the space of SUSY

vacua determined by the superpotential,

Ŵ(I)
D (~aD) = W(I) (~a) − 2πi

ǫ
(~a − ~mF ) · ~aD , (2.28)

which is obtained by applying a duality transformation to the superptotential W(I) given

in (2.12). In addition to the standard electric-magnetic duality, the transformation includes

the shift ~a → ~a − ~mF , ~aD → ~aD which is also part of the low-energy duality group [27].

The dual superpotential leads to the F-term equations,

~a − ~mF ∈ ǫ Z
L ,

while the Hilbert space of the standard quantization coincides with the space of SUSY vacua

with superpotential (2.26) whose F-term equations coincide with the BAE. Equivalence

between the two quantization schemes leads to the following duality conjecture,

Proposal. The twisted chiral rings of Theory I and Theory II are isomorphic. This means

in particular that the stationary points of the twisted superpotentials (2.28) and (2.26) are
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in one-to-one correspondence and, with appropriate identifications between the complex

parameters, these superpotentials take the same value in corresponding vacua;

W(I)
on−shell

≡ W(II)

where equality holds up to an additive vacuum-independent constant. Here, we the fact

that W(I) and Ŵ(I)
D are equal on-shell as multi-valued functions. In the next section we

will test this proposal by explicit calculation on both sides.

To complete the map between the chiral rings of the two theories we should also

give formulae for the VEVs of the tower of chiral operators11 Ôk = Tr ϕk =
∑L

l=1 φk
l

in each vacuum state in terms of the corresponding set of Bethe roots {λj}. Given the

correspondence between these operators and the conserved charges of the classical spin

chain which holds for ǫ = 0, it is natural to conjecture that, in the deformed theory, they

are related to the corresponding conserved charges of the quantum spin chain;

〈

{λj}
∣

∣

∣

∣

∣

L
∏

l=1

(λ − φl)

∣

∣

∣

∣

∣

{λj}
〉

=
1

2
t(λ − λ0) (2.29)

with,

t(λ) =
−h
∏L

l=1

(

λ − M̃l

)

∏N
j=1 (λ − λj − ǫ) + (h + 2)

∏L
l=1 (λ − Ml)

∏N
j=1 (λ − λj + ǫ)

∏N
j=1 (λ − λj)

Here the shift parameter λ0 is chosen to impose the SU(L) condition
∑L

l=1 φl = 0. In the

weak-coupling limit τ → ∞, one may check the formula holds with λ0 = ǫ/2 using the

results of the next section. These additional predictions will be discussed further in [61].

Finally we note that other aspects of the relation between N = 2 SQCD and the

quantum spin chain have been checked very recently in [51]. Specifically, in this paper, it is

verified that the A- and B-type quantization conditions match the quantisation conditions

for periodicity of a wave-function obeying the Baxter equation of the spin chain for general

complex values of the parameters. A similar agreement to the quantization condition of

the Gaudin model was obtained earlier in [52].

3 A weak-coupling test

We present in this section a detailed comparison at the weak coupling limit between the

twisted superpotentials of both theories in the proposed duality. As discussed below, a

careful analysis shows perfect agreement.

In the following we will find a correspondence where the numbers n̂l of D2 branes

in Theory II are identified with the integers appearing in the quantization condition al =

11In general, the definition of these quantities is afflicted by the usual ambiguities in parametrising the

Coulomb branch [49]. For fixed L, the ambiguity corresponds to a finite number of vacuum independent

coefficients.
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ml−nlǫ for Theory I according to n̂l = nl−1. Suggestively both sets of integers correspond

to quantized magnetic fluxes in the Cartan subalgebra of the gauge group. As n̂l are by

definition non-negative nl must be strictly positive. The trace condition for the SU(L)

gauge group also implies the additional constraint on the sum of the hypermultiplet masses;
∑L

L=1 ml = (N + L)ǫ.

3.1 Theory I

The Nekrasov partition function is composed of three factors corresponding to the classical,

the one-loop perturbative, and the instanton contributions:

ZNek(~a, τ, ǫ1, ǫ2) = Zcl ×Z1-loop ×Zinst ,

which leads to a corresponding decomposition of the twisted superpotential of Theory I

W(I)(~a, τ, ǫ) = Wcl + W1-loop + Winst . (3.1)

We will evaluate the on-shell value of these terms in order. More precisely, we will compute

a difference of the twisted superpotential value at a vacuum ~a = ~m − ~nǫ and at the root

of the baryonic Higgs branch12 ~a = ~m − ǫ which corresponds to the ferromagnetic ground

state of the spin chain. This subtraction corresponds to a vacuum independent (i.e. ~n-

independent) constant shift of the superpotential.

G = W(I)
∣

∣

∣

~a=~m−~nǫ
− W(I)

∣

∣

∣

~a=~m−ǫ
. (3.2)

Strictly speaking, the standard results of [28, 29] apply to the partition function of the

U(L) theory which differs from the Nekrasov partition function of the SU(L) theory by a

multiplicative factor which does not depend on the Coulomb branch moduli ~a [33]. The

resulting difference between the superpotentials of the SU(L) and U(L) theories is therefore

vacuum-independent additive constant which is not visible in our analysis.

In order to avoid degenerate cases, we suppose that nl, l = 1, 2, . . . , L, satisfy the

following relations

n1 ≥ n2 ≥ . . . ≥ nL , ml − nlǫ ≥ mn − nnǫ if l < n . (3.3)

Classical part. The classical part Zcl of the partition function is given by

Zcl = exp

[

− 2πi

ǫ1ǫ2

L
∑

l=1

τ0

2
a2

l

]

,

where as above τ0 denotes the bare marginal coupling constant of the SU(L) gauge group.

This coupling is slightly different to the the coupling τ in the Seiberg-Witten curve (2.1),

12Note the shift of −ǫ in the location of the Higgs branch root which follows from the conventions for

the Ω background used in [29, 33]. The location of the Higgs branch root is determined as the point on the

Coulomb branch where additional hypermultiplets become massless.
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due to some ambiguities in the perturbative computation. We will discuss it further below.

The classical part of the function G is therefore given by

Gcl = − 2πiτ0

ǫ

L
∑

l=1

1

2

(

(ml − nlǫ)
2 − (ml − ǫ)2

)

=2πiτ0

L
∑

l=1

(

(nl − 1)(ml − ǫ) − 1

2
(nl − 1)2ǫ

)

. (3.4)

1-loop part. The one-loop contribution Z1-loop consists of three factors coming from

the vector multiplet and L fundamental/anti-fundamental hypermultiplets. As mentioned

in [28] and above, the one-loop contribution has an ambiguity in fixing the quadratic terms.

It describes the finite renormalization of the classical part of Z. Following the convention

of [29],

Z1-loop = zvec × zfund × zanti-fund ,

with

zvec =
L
∏

l,m=1

1

Exp
[

γǫ1,ǫ2(alm)
] ,

zfund =

L
∏

l,m=1

Exp
[

γǫ1,ǫ2(al − mm)
]

,

zanti-fund =
L
∏

l,m=1

Exp
[

γǫ1,ǫ2(al − m̃m − ǫ1 − ǫ2)
]

. (3.5)

where alm = al−am. Here, the function γǫ1,ǫ2(x) is the logarithm of Barnes’ double gamma

function whose properties are summarized in [29]. In particular, the function γǫ1,ǫ2(x) obeys

a difference equation below

γǫ1,ǫ2(x) + γǫ1,ǫ2(x − ǫ1 − ǫ2) − γǫ1,ǫ2(x − ǫ1) − γǫ1,ǫ2(x − ǫ2) = log
Λ

x
. (3.6)

Here, we are primarily interested in its limiting form as ǫ2 → 0. Defining a new function

ωǫ(x) with Λ = ǫ by

ωǫ(x) = lim
ǫ2→0

[ǫ2γǫ1=ǫ,ǫ2(x)] , (3.7)

one can then verify from (3.6) the following relation

ω′
ǫ(x) − ω′

ǫ(x − ǫ) = log
x

ǫ
, ω′

ǫ(x) =
d

dx
ωǫ(x) .

As in [5], it immediately implies that

ω′
ǫ(x) = − log Γ(1 + x/ǫ) . (3.8)

– 22 –



J
H
E
P
1
0
(
2
0
1
1
)
0
7
7

For later convenience, we present a relation for ωǫ(x) with positive n

ωǫ(x + nǫ) − ωǫ(x) = −ǫ
n
∑

j=1

f
(x

ǫ
+ j
)

− nǫ

2
log 2π , f(x) = x

(

log x − 1
)

, (3.9)

which will be frequently used in what follows. The branch of the multi-valued function

f(x) is chosen here that, for non-negative x,

f(x) = −f(−x) + iπx .

The one-loop contribution to the twisted superpotential of Nekrasov and Shatashivili

can therefore be expressed as

W(I)
1-loop = ̟vec + ̟fund + ̟anti-fund

with

̟vec = −
∑

l,m

ωǫ(alm) ,

̟fund =
∑

l,m

ωǫ(al − mm) ,

̟anti-fund =
∑

l,m

ωǫ(al − m̃m − ǫ) . (3.10)

Using the relation (3.9), one can show that

Gfund
1-loop =ǫ

∑

l,m





−1
∑

k=1−nl

f
(mlm

ǫ
+ k
)

+
nl − 1

2
log 2π





Ganti-fund
1-loop =ǫ

∑

l,m

[

nl−2
∑

k=0

f

(

ml − m̃m − 2ǫ

ǫ
− k

)

+
nl − 1

2
log 2π

]

, (3.11)

Gvec
1-loop = −ǫ

∑

l

∑

m>l





0
∑

k=1+nm−nl

+

−1
∑

k=nm−nl



f
(mlm

ǫ
+ k
)

+ iπǫ
∑

l,m>l

−1
∑

k=nm−nl

(mlm

ǫ
+ k
)

.

After some algebra whose details are discussed in appendix A, one can finally obtain

G1-loop = − ǫ

L
∑

l,m=1

nm−1
∑

k=1+nm−nl

f
(mlm

ǫ
+ k
)

+ iπL
∑

l

[

(nl − 1)ml −
(nl − 1)2

2
ǫ

]

, (3.12)

up to some constants which do not depend on the choice of vacuum.

Collecting the results so far, the perturbative contribution Gpert = Gcl + G1-loop takes

the following form

Gpert = 2πiτ
L
∑

l=1

(

(nl − 1)(ml − ǫ) − 1

2
(nl − 1)2ǫ

)

− ǫ
L
∑

l,m=1

nm−1
∑

k=1+nm−nl

f
(mlm

ǫ
+ k
)

, (3.13)

where τ = τ0 + L
2 denotes the marginal coupling constant in the curve.
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Instanton contribution. The instanton contribution to the partition function is written

as a sum over coloured partitions

Zinst = 1 +
∞
∑

k=1

Z(k)
inst

(

(−1)Lq
)k

=
∑

~Y

Z~Y
(−1)L|~Y |q|

~Y | ,

where the factors of (−1)L are included so that definition of q = e2πiτ agrees with the cou-

pling that appears in the Seiberg-Witten curve. For U(L) gauge group, the coloured parti-

tion ~Y = (Y1, Y2, . . . , YL) are labelled by N Young diagrams Yi. The total number of boxes

|~Y | =
∑N

i=1 |Yi| is the instanton number k. The explicit form of Z~Y
can be found in [33].

Denoting the unique partition of unity as {1} and the two inequivalent partitions of

two as {2} and {1,1}, the following coloured partitions can contribute:

• In the one-instanton sector k = 1, we have partitions ~Y
(l)
{1} with components (Y

(l)
{1})m =

δlm{1} for l,m = 1, 2, . . . , L. The one-instanton contribution to the partition function

therefore becomes

Z(1)
inst = Z{1} = − (−1)L

ǫ1ǫ2

L
∑

l=1

Rl (al, ǫ1 + ǫ2) , (3.14)

where

Rl

(

x, ǫ) =

∏L
m=1(x − mm + ǫ)(x − m̃m)
∏

m6=l(x − am + ǫ)(x − am)
. (3.15)

• In the two-instanton sector k = 2, we have coloured partitions ~Y
(l)
{2},

~Y
(l)
{1,1} (l =

1, 2 . . . , L), and ~Y
(l,m)
{1},{1} ( l,m = 1, 2, . . . , L and l 6= m) with components

δln{2} , δln{1,1} , and δln{1} + δmn{1} ,

respectively. The corresponding contributions to the partition function are given by

Z{2} =
1

2ǫ1ǫ2
2(ǫ1 − ǫ2)

L
∑

l=1

Rl (al, ǫ1 + ǫ2) Rl (al + ǫ2, ǫ1 + ǫ2) ,

Z{1,1} =
1

2ǫ2ǫ2
1(ǫ2 − ǫ1)

L
∑

l=1

Rl (al, ǫ1 + ǫ2) Rl (al + ǫ1, ǫ1 + ǫ2) ,

Z{1},{1} =
1

ǫ2
1ǫ

2
2

∑

l 6=m

Rl (al, ǫ1 + ǫ2) Rm (am, ǫ1 + ǫ2)
a2

lm

(

a2
lm − (ǫ1 + ǫ2)

2
)

(

a2
lm − ǫ2

1

) (

a2
lm − ǫ2

2

) . (3.16)

The two-instanton contribution to the partition function takes the following form

Z(2)
inst = Z{2} + Z{1,1} + Z{1},{1} . (3.17)
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Since the logarithm of the instanton partition function can be expanded as below

logZinst =(−1)LqZ(1)
inst + q2

[

Z(2)
inst −

1

2

(

Z(1)
inst

)2
]

+ O(q3)

=(−1)LqZ{1} + q2

[

Z{2} + Z{1,1} + Z{1},{1} −
1

2

(

Z{1}

)2
]

+ O(q3) ,

the instanton contribution to the twisted superpotential becomes

W(I)
inst = lim

ǫ2→0

[

ǫ2 logZinst(ǫ1 = ǫ, ǫ2)
]

=
∞
∑

k=1

W(k)
instq

k , (3.18)

where

W(1)
inst = − 1

ǫ

L
∑

l=1

Rl(al, ǫ)

W(2)
inst = +

1

2ǫ3

L
∑

l=1

[

Rl(al, ǫ)
2 − Rl(al, ǫ)Rl(al + ǫ, ǫ) + ǫRl(al, ǫ)R

′
l(al, ǫ)

]

− 1

ǫ

∑

l 6=m

1

a2
lm − ǫ2

Rl(al, ǫ)Rm(am, ǫ) . (3.19)

Due to the fact that there arise additional zero modes at the root of baryonic branch

, the instanton contribution to the partition function should vanish at ~a = ~m − ǫ. Indeed

one can show that

Rl(ml − ǫ) = 0 .

The above relation simplifies the evaluation of the instanton contribution to the function

Ginst of our interest, and finally we evaluate the superpotential on-shell to obtain,

Ginst =

∞
∑

k=1

G(k)
instq

k

with

G(1)
inst = W(1)

inst

∣

∣

∣

al=ml−nlǫ
= −1

ǫ

L
∑

l=1

Rl(ml − nlǫ) ,

G(2)
inst = W(2)

inst

∣

∣

∣

al=ml−nlǫ
(3.20)

= +
1

2ǫ3

L
∑

l=1

[

Rl(ml − nlǫ, ǫ)
2 − Rl(ml − nlǫ, ǫ)Rl(ml − (nl − 1)ǫ, ǫ)

+ Rl(ml − nlǫ, ǫ)R
′
l(ml − nlǫ, ǫ)

]

− 1

ǫ

∑

l 6=m

1
(

mlm − (nl − nm)ǫ
)2 − ǫ2

Rl(ml − nlǫ, ǫ)Rm(mm − nmǫ, ǫ) .
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3.2 Theory II

Let us now consider the Theory II as introduced in subsection 2.4. The one-loop exact

twisted superpotential W(II) on the Coulomb branch takes the following form

W(II) = Wtree + Wfund + Wanti-fund + Wadj , (3.21)

where

Wtree =2πiτ
N
∑

i=1

λi − iπ(N + 1)
N
∑

i=1

λi

Wfund = − ǫ

N
∑

i=1

L
∑

l=1

f

(

λi − Ml

ǫ

)

Wanti-fund =ǫ

N
∑

i=1

L
∑

l=1

f

(

λi − M̃l

ǫ

)

Wadj =ǫ
N
∑

i,j=1

f

(

λi − λj

ǫ
− 1

)

(3.22)

with f(x) = x(log x − 1). Here τ is related to the two-dimensional holomorphic coupling

constants τ̂ = ir + θ/2π as τ̂ = τ − N+1
2 .

Vacuum solution. As discussed before, it turns out that the F-term vacuum equation

exp(∂W(II)/∂λi) = 1 indeed leads us to an algebraic BAEs

L
∏

l=1

(

λi − Ml

)

∏

j 6=i

(

λi − λj + ǫ
)

= q

L
∏

l=1

(

λi − M̃l

)

∏

j 6=i

(

λi − λj − ǫ
)

, (3.23)

where q = e2πiτ . One can solve the above BAE in an iterative way by expanding the lowest

component of twisted chiral superfield λi in the instanton factor q

λi =
∞
∑

k=1

λ
(k)
i qk . (3.24)

At leading order, we have

L
∏

l=1

(

λ
(0)
i − Ml

)

∏

j 6=i

(

λ
(0)
i − λ

(0)
j + ǫ

)

= 0 . (3.25)

Obeying the non-degeneracy condition λ
(0)
i 6= λ

(0)
j , one can show that the solution at

leading order can be characterized by partition of N with L parts, i.e.,

{

n̂1, n̂2, . . . n̂L

}

,

L
∑

l=1

n̂l = N , (3.26)
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and takes the following form

λ
(0)
i = λ

(0)
(l,sl)

= Ml − (sl − 1)ǫ , (3.27)

where sl runs over 1, 2, . . . , n̂l. In the language of the spin chain these solutions take the

form of Bethe strings. Here the strings arise in an unfamiliar limit where the twist parame-

ter h ≃ −2q goes to zero. Such strings are more usually associated with the thermodynamic

limit of the spin chain where they represent magnon bound states.

Let us now in turn discuss the solution at the next order λ
(1)
i . Expanding the equa-

tion (3.23) to the next order, one can show that λ
(1)
(l,sl)

always vanish except sl = n̂l. One

can thus set

λ
(1)
(l,sl)

= δsl,n̂l
λ

(1)
l , (3.28)

where λ
(1)
l satisfies the relation below

[ L
∏

m=1

(

Ml − Mm − (n̂l − 1)ǫ
)

∏

(m,sm)6=(l,n̂l),(l,n̂l−1)

(

Ml − Mm − (n̂l − sm − 1)ǫ
)

]

· λ(1)
l

=
L
∏

m=1

(

Ml − M̃m − (n̂l − 1)ǫ
)

∏

(m,sm)6=(l,n̂l)

(

Ml − Mm − (n̂l − sm + 1)ǫ
)

. (3.29)

After some algebra, it leads to

λ
(1)
l = − 1

ǫ
·

∏

m

(

Mlm − n̂lǫ
)

·
(

Ml − M̃m − (n̂l − 1)ǫ
)

∏

m6=l

(

Mlm − (n̂l − n̂m)ǫ
)

·
(

Mlm − (n̂l − n̂m − 1)ǫ
) . (3.30)

Expanding (3.23) to the next order we discover that λ
(2)
l,sl

again vanishes unless sl = n̂l

or n̂l − 1. The expansion (3.24) therefore takes the following form,

λl,sl
= λ

(0)
l,sl

+ δsl,n̂l
λ

(1)
l q +

(

δsl,n̂l
λ

(2)
l + δsl,n̂l−1λ̃

(2)
l

)

q2 + · · · .

As explained later, we will only need an explicit expression for λ̃
(2)
l and not λ

(2)
l . Setting

sl = n̂l − 1 in (3.23) and keeping all terms of order q2, one can read the resulting equation

that λ̃
(2)
l should satisfy

[ L
∏

m=1

(

Mlm − (n̂l − 2)ǫ
)

∏

(m,sm)6=(l,n̂l−1),(l,n̂l−2)

(

Mlm − (n̂l − sm − 2)ǫ
)

]

· q2λ̃
(2)
l

= q

[ L
∏

m=1

(Ml − M̃m − (n̂l−2)ǫ)
∏

(m,sm)6=(l,n̂l−1),(l,n̂l)

(Mlm−(n̂l−sm)ǫ)

]

· (−qλ
(1)
l ) , (3.31)

which yields

λ̃
(2)
l =

λ
(1)
l

2ǫ2
·

∏L
m=1

(

Mlm − (n̂l − 1)ǫ
)(

Ml − M̃m − (n̂l − 2)ǫ
)

∏

m6=l

(

Mlm − (n̂l − n̂m − 1)ǫ
)(

Mlm − (n̂l − n̂m − 2)ǫ
) . (3.32)

We are now ready to evaluate the on-shell value of the twisted superpotential W(II) up to

the lowest three orders in the instanton factor q

W(II) = W(0) + W(1)q + W(2)q2 + O(q3) . (3.33)
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Leading order, W(0). Substituting the solution at leading order λ
(0)
m (3.27) to (3.22),

one can have

W(0) = W(0)
tree + W(0)

fund + W(0)
anti-fund + W(0)

adj ,

with

W(0)
tree = (2πiτ − iπ(N + 1))

L
∑

l=1

n̂l
∑

sl=1

(Ml − (sl − 1)ǫ)

= (2πiτ − iπ(N + 1))

L
∑

l=1

(

n̂l

(

Ml +
ǫ

2

)

− n̂2
l

2
ǫ

)

, (3.34)

and

W(0)
fund = − ǫ

L
∑

l,m=1

n̂l−1
∑

k=0

f

(

Mlm

ǫ
− k

)

,

W(0)
anti-fund = + ǫ

L
∑

l,m=1

n̂l−1
∑

k=0

f

(

Ml − M̃m

ǫ
− k

)

,

W(0)
adj = + ǫ

L
∑

l,m=1

n̂l
∑

sl=1

n̂m
∑

sm=1

f

(

Mlm

ǫ
− sl + sm − 1

)

. (3.35)

One can show that, after some algebra presented in appendix A, the twisted superpotential

at leading order W(0) can be simplified into the following form

W(0) =2πiτ
L
∑

l=1

(

n̂l

(

Ml +
ǫ

2

)

− n̂2
l

2
ǫ

)

− ǫ
L
∑

l,m=1

n̂m
∑

k=n̂m−n̂l+1

f

(

Mlm

ǫ
+ k

)

, (3.36)

again up to some constant independent of the vacuum choice. We also used properties of

the multi-valued function f(x) extensively.

Next two leading orders, W(1) and W(2). Using the vacuum equation, it is straight-

forward to obtain the next two leading contribution to the twisted superpotential as below

W(1) =

L
∑

l=1

λ
(1)
l (3.37)

and

W(2) =

L
∑

l=1

λ̃
(2)
l +

1

2ǫ

(

λ
(1)
l

)2
+

L
∑

l=1

(

λ
(1)
l

)2

[

L
∑

m=1

(

1

Mlm − n̂mǫ
+

1

Ml − M̃m − n̂lǫ + ǫ

)

−
∑

m6=l

(

1

Mlm − (n̂l − n̂m)ǫ
+

1

Mlm − (n̂l − n̂m − 1)ǫ

)

]

(3.38)

− ǫ
∑

m6=l

λ
(1)
l λ

(1)
m

(

Mlm − (n̂l − n̂m)ǫ
)2 − ǫ2

.

Here λ
(1)
l and λ

(2)
l are explicitly given by (3.30) and (3.32), respectively.
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3.3 Comparison

In order to compare the two theories, we first identify parameters in both theories as follows

n̂l = nl − 1 , Ml = ml −
3

2
ǫ , M̃l = m̃l +

1

2
ǫ , (3.39)

Upon the above identification, one can compare the on-shell twisted superpotentials of

both theories order by order in instanton factor q. One can find the agreement at leading

order between (3.13) and (3.36), i.e.,

Gpert = W(0) . (3.40)

Noting that

λ
(1)
l = − 1

ǫ
Rl

(

ml − nlǫ
)

,

λ̃
(2)
l = − 1

2ǫ3
Ri

(

ml − nlǫ)Rl

(

ml − (nl − 1)ǫ
)

, (3.41)

one can show the agreement further up to the two-instanton sector

G(1)
inst = W(1) , G(2)

inst = W(2) . (3.42)

4 Discussion and relation to other developments

The duality proposed above also has several points of contact with other recent develop-

ments in the study of supersymmetric gauge theory. In particular we can interpret our

results in the context of the AGT conjecture which relates the Nekrasov instanton parti-

tion function of N = 2 supersymmetric G = SU(2) gauge theory in four dimensions to the

conformal blocks of Liouville theory. For L = 2, Theory I defined above is an SU(2) gauge

theory with NF = 4 fundamental hypermultiplets. The electric Coulomb branch parame-

ters take the form ~a = (a,−a). According to the AGT conjecture the Nekrasov instanton

partition function Z(~a, ǫ1, ǫ2) is related to the conformal block for the correlation function

of four primary operators Vαi
(z) = exp[2αiφ(z)], inserted at points z = zi (i = 1, 2, 3, 4) on

the sphere. The marginal coupling constant of the four dimensional gauge theory q = e2πiτ

can be identified with conformally invariant cross-ratio of these four points, the single mod-

ulus of a sphere with four punctures. Fixing three positions of vertex operators by 0, 1 and

∞ as usual, the left-over one therefore parametrizes the coupling q. The Liouville coupling

and effective Planck constant13 are given as,

b =

√

ǫ1

ǫ2
, ~ =

√
ǫ1ǫ2

and the Liouville background charge Q can be expressed as Q = b + 1/b. The confor-

mal block in question corresponds to the factorisation of the four-point function in which

the operator Vα(z) = exp[2αφ(z)] appears as the intermediate state in the S-channel as

shown in figure 5. The external Liouville momenta are related to the gauge theory mass

13This should not be confused with the Planck constant of the integrable system discussed in section 2.
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〈Vα1
(∞)Vα2

(1)Vα3
(q)Vα4

(0)〉{α} =

αα1

α2 α3

α4

Figure 5. Four-point Liouville conformal block on the sphere.

parameters as,

α1 =
Q

2
+

(m̃1 − m̃2)

2~
α2 =

(m̃1 + m̃2)

2~

α4 =
Q

2
+

(m1 − m2)

2~
α3 =

(m1 + m2)

2~

and the internal momentum is given in terms of the Coulomb branch modulus as α =

Q/2 + a/~. The conformal dimensions of external and intermediate states are given by

∆i = αi(Q − αi) ∆ = α(Q − α) . (4.1)

Note that the conformal block is invariant under individual flips of Liouville momenta α

by Q − α, which can be understood as the Weyl group of SU(2) gauge symmetry as well

as flavour symmetries.

The Nekrasov-Shatashvili limit is one in which ǫ2 → 0 with ǫ1 = ǫ held fixed. Thus

~ → 0 and b → ∞, while keeping b~ = ǫ fixed. The Liouville background charge Q ≃ b =

ǫ/~. The Higgs branch root of Theory I is specified by the following condition ~a = ~m − ǫ

or,

a = m1 − ǫ −a = m2 − ǫ

which yield α3 = ǫ/~ and ∆3 = 0. Thus, in this limit, the Higgs branch root corresponds

to a special case in which Vα3
(q) has zero dimension and therefore corresponds to the

identity operator. Now suppose we introduce a single D2 brane setting n̂1 = 1 and n̂2 = 0.

According to our dictionary, n̂l = nl − 1 this is dual to a point on the Coulomb branch

specified as,

a = m1 − 2ǫ −a = m2 − ǫ

which yield α3 = 3ǫ/2~ and ∆3 = −3ǫ2/4~
2. This is precisely the same dimension as the

degenerate operator,

Φ2,1(z) = exp [−bφ(z)]
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Interestingly, it is conjectured in [34] that an insertion Φ2,1(z) is dual to the insertion of

a surface operator in the gauge theory. This is precisely consistent with our identification

of Theory II, with n̂1 = 1, n̂2 = 0 as the worldvolume theory on a single D2 brane. More

general values of n̂l can therefore correspond to the insertion of multiple surface operators.

The duality proposed in this paper relates the world-volume theory on a surface op-

erator probing the Higgs branch of a four dimensional gauge theory with a corresponding

bulk theory (ie the same four dimensional gauge theory without surface operator on its

Coulomb branch). As such it is reminiscent of the AdS/CFT correspondence and other

large-N dualities. This observation can be made precise in the context of geometric en-

gineering where the Nekrasov partition function of four-dimensional theory is computed

by the closed topological string on a suitable local geometry. More precisely we should

consider the closed string partition function computed using the refined topological vertex

of [54]. On the other hand, the partition function for gauge theory in the presence of a

surface operator corresponds to an open topological string partition function [55, 56]. The

proposed duality therefore asserts the equality of certain open and closed topological string

partition functions and it is natural to ask if it is related to the geometric transition of

Gopakumar and Vafa [38]. Strictly speaking the latter is defined only in the unrefined case

corresponding to ǫ1 = −ǫ2 = gs while our duality proposal applies only to the NS limit

ǫ2 → 0. Nevertheless there are strong similarities which suggest that a “refined” geometric

transition should exist and should be equivalent in the NS limit to the duality proposed in

this paper (see also [35]).

To understand the connection to the Geometric transition it is useful to compare the

IIA brane constructions of Theory II and Theory I shown in figures 4 and 1 respectively.

Specifically we will focus on the region of these figures corresponding to a single U(1)

vector multiplet in the low-energy theory coming from a single D4 brane and a single

charged hypermultiplet which arises when the D4 brane breaks on a single NS 5-brane.

The corresponding region of figures 4 and 1 are shown in figures 6(a) and 6(b) respectively.

This configuration is related to the confold singularity by the standard sequence of dualities

which relate the intersecting brane and geometrical engineering approaches to SUSY gauge

theory. In this context, the Coulomb branch of the gauge theory corresponds to the small

resolution of the conifold where an S2 is blown up. The area of the sphere is related

to the Coulomb branch modulus a. The Higgs branch of the gauge theory corresponds

to the deformation of the conifold where an S3 of non-zero size appears. Gauge theory

vortex strings are realised as D4 branes wrapped on S3 and extended in two dimensions

of four dimensional spacetime. Thus the duality discussed in this paper corresponds to a

transition between the deformed conifold with n̂ wrapped branes and the resolved conifold

without branes. The resulting two sphere has size which is linearly related to the number

n̂ of branes. Thus the duality is of the same form as the geometric transition. This also

seems to be consistent with the relation between the conjecture of [34] and the geometric

transition suggested in [35, 56].

Another interesting connection is the one between supersymmetric gauge theory and

“holomorphic” matrix models proposed in [39]. In general terms, we expect the Nekrasov

partition function of Theory I to be captured by an appropriate matrix model. Here we will
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NS5

D4

x

x

x

7

6

4,5

..

D2

.

NS5

D4

n̂ǫ
n̂

(a) (b)

Figure 6. (a) Theory II: n̂ D2 branes suspended between a D4 and an NS5. (b) Theory I: D4

brane breaks on NS5.

make a concrete proposal for the form of the matrix model in the NS limit. In particular

we will consider an integral over an N × N complex matrix Φ, but interpreted in the

holomorphic sense of [39],

ZΦ =

∫

Dǫ1,ǫ2Φ exp (−TrN S(Φ, ǫ1, ǫ2)) ,

where the measure is SL(N, C) invariant and can be written in terms of the eigenvalues

{x1, x2, . . . , xN} of Φ. We propose that the leading behaviour of the resulting integral as

ǫ2 → 0 has the form,

ZΦ =

∫ N
∏

j=1

dxj

∏

j<k

M (xj − xk) exp



− 1

ǫ2

N
∑

j=1

V(xj)



 ,

where the measure is a deformation of the Vandermonde determinant specified as,

M(x) = exp

(

− 1

ǫ2
[f(x + ǫ) − f(x − ǫ)]

)

,

with f(x) = x(log x − 1) as above and potential,

V(x) = −2πi τ̂ x +

L
∑

l=1

[

f(x − Ml) − f(x − M̃l)
]

,

where each of the above relations is corrected at higher orders in ǫ2. On one hand we can

reorganise the exponent to write the resulting matrix integral as,

ZΦ =

∫ N
∏

j=1

dxj exp

(

1

ǫ2
W(II)(x)

)

,
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where WII is the superpotential of Theory II as given in (2.26) which is equivalent to the

Yang potential of the Bethe Ansatz. As ǫ2 → 0 the matrix integral is dominated by its

saddle-points, even for finite N . The saddle-point condition coincides with the F-term

equations of Theory II which are precisely the BAE of the spin chain. According to the

duality proposed above the resulting saddle point value of logZΦ is a multivalued function

whose branches coincide (up to a vacuum-independent shift) with the quantum prepotential

F(~a, ǫ) of Theory I evaluated at the lattice of points ~a− ~m ∈ ǫZL. The value of the classical

prepotential F(~a) at any point on the Coulomb branch can be obtained by an appropriate

N → ∞ limit with ǫ → 0 and the product Nǫ fixed. In this limit, the above matrix model

is related to the proposal of [39] since the deformed Vandermonde determinant simplifies

and the matrix integral becomes

ZΦ =

∫ N
∏

j=1

dxj

∏

j<k

(xj − xk)
2β exp



− 1

ǫ2

N
∑

j=1

V(xj)





with β = −ǫ1/ǫ2. This is a β-ensemble with a Penner-like logarithmic potential, although

involving x log x rather than log x, whose resolvent is precisely the Seiberg-Witten 1-form,

L(x)dx =
∑

j

dx

x − xj
≡ ǫ−1

1 λ(ǫ) . (4.2)

It follows that in the limit ǫ1 → 0, with ǫ1n̂ℓ fixed, we have

al − ml = lim
ǫ1→0

∮

αl

dx

2πi
ǫ1 L(x) . (4.3)

The free energy in this limit is the prepotential:

F(~a) ∼ lim
ǫ1,ǫ2→0

ǫ1 ǫ2 logZΦ . (4.4)

The resulting matrix model is precisely of the sort discussed in [39]. This proposal also

looks superficially similar to the matrix model reformulation of the Nekrasov partition

function derived in [53], except that in that formulation the dependence on the {al} is

through the potential whereas in our matrix model it is through the filling fractions.

It is also interesting to relate the duality proposed here to an earlier proposal for a

2d/4d duality made by two of the present authors in [41] (see also [40]). There the massive

BPS spectrum of the four-dimensional Theory I at the root of its Higgs branch was related

to the BPS spectrum of a U(1) gauge theory in two dimensions closely related to Theory II

considered above. In contrast, in the present case, the relation between the superpotentials

of Theories I and II takes the form,

W(II) = W(I)
∣

∣

∣

~a=~m−~nǫ
− W(I)

∣

∣

∣

~a=~m−ǫ

where as above have fixed the additive constant in the superpotential to by subtracting

the value at the root of the Higgs branch. Taking the limit ǫ → 0 using (2.12) and (2.11)

we get,

lim
ǫ→0

W(II) = −
N
∑

l=1

n̂l~a
D
l

∣

∣

∣

∣

∣

~a=~m
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Thus, in this limit, the on-shell value of the superpotential for the two-dimensional Theory

II is related to the magnetic central charge of the four-dimensional theory evaluated at the

root of the Higgs branch. In the abelian case where N =
∑

l n̂l = 1, the resulting relation

has exactly the same form as that proposed in [40, 41].

Ideally one would also like to provide a physical explanation of the duality along the

lines of [17, 18]. Why should the worldvolume theory of a vortex string have any relation

to the bulk theory in the presence of the Nekrasov deformation? Here we note that,

in the presence of the specific deformation we consider, magnetic flux is quantized in the

resulting supersymmetric vacuum states even on the Coulomb branch. Indeed, the quantum

numbers {nl} which describe the number of quanta of magnetic flux in each low energy

U(1) are directly related by our conjecture to the magnetic fluxes {n̂l} of the vortices

on the Higgs branch. This suggests the possibility of a smooth interpolation between

corresponding vacua of Theory I and Theory II corresponding to a variation of N = (2, 2)

D-term couplings, thereby explaining the equality of F-terms between the two theories.

Finally, we have represented the relation between the theories as a conjecture. However,

the result can be proved by formulating the BAE as an integral equation, along the lines

of the Destri-de Vega equation [58]. The resulting non-linear equation is then essentially

identical to the saddle-point equation that describes the instanton partition function in

the Nekrasov-Shatashvili limit [5]. The recent paper [60] provides a nice description of

the instanton saddle-point equation and there is a direct link between the solution of the

BAE and the instanton density function: the pairs (λj , λ
(0)
j ) are precisely the end-points

of the intervals — continued into the complex plane — along which the instanton density

is non-vanishing. These issues will be described in detail in a companion paper [61].

The formalism that we have developed can also be extended in various ways: to quiver

gauge theories, including the elliptic models, and to compactified five and six dimensional

N = 2 theories. These generalizations will also be reported elsewhere.
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A Computational details

A.1 Theory I

We present in this section the details in computation of the on-shell twisted superpotential

of Theory I, four-dimensional N = 2 gauge theories in Ω-background with ǫ2 = 0. Before

presenting the computation, let us first set

N =
L
∑

l=1

(nl − 1) , (A.1)

where N represents the number of D2-branes in Theory II.
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One can rewrite one-loop contributions from fundamental hyper- and vector-multiplets

to the function G1-loop into the following forms

Gfund
1-loop =ǫ

∑

l,m>l

[

−1
∑

k=1−nl

−
nm−1
∑

k−1

]

f
(mlm

ǫ
+ k
)

+ ǫ
∑

l

nl−1
∑

k=1

f(−k)

+ iπǫ
∑

l,m>l

nm−1
∑

k=1

(mlm

ǫ
+ k
)

+
LNǫ

2
log 2π , (A.2)

and

Gvec
1-loop =−ǫ

∑

l,m>l

[

0
∑

k=1+nm−nl

+

−1
∑

k=nm−nl

]

f
(mlm

ǫ
+ k
)

+ iπǫ
∑

l,m>l

−1
∑

k=nm−nl

(mlm

ǫ
+ k
)

. (A.3)

Summing up the above results, one can obtain

Gvec
1-loop + Gfund

1-loop =ǫ
∑

l,m>l

[ nm−nl−1
∑

k=1−nl

−
nm−1
∑

k=1+nm−nl

]

f
(mlm

ǫ
+ k
)

− ǫ
∑

l

nl−1
∑

k=1

f(k) + iπǫ
∑

l

nl(nl − 1)

2

+ iπǫ
∑

l,m>l

[ nm−1
∑

k=1

+
−1
∑

k=nm−nl

]

(mlm

ǫ
+ k
)

+
LNǫ

2
log 2π ,

≃− ǫ
∑

l,m

nm−1
∑

k=1+nm−nl

f
(mlm

ǫ
+ k
)

+ iπǫ
∑

l,m>l

[ nm−nl−1
∑

k=1−nl

−
nm−1
∑

k=1

+

−1
∑

k=nm−nl

]

(mlm

ǫ
+ k
)

+ iπǫ
∑

l

nl(nl − 1)

2
+

LNǫ

2
log 2π , (A.4)

where we used for the last equality a property of the multi-valued function f(x). One can

further simplify the above expression into

Gvec
1-loop + Gfund

1-loop = − ǫ
∑

l,m

nm−1
∑

k=1+nm−nl

f
(mlm

ǫ
+ k
)

+ iπ
∑

l,m>l

mlm(nl − nm) − iπǫ
∑

l,m

nm−1
∑

k=1

k

+ iπǫ
∑

l

nl(nl − 1) +
LNǫ

2
log 2π

≃− ǫ
∑

l,m

nm−1
∑

k=1+nm−nl

f
(mlm

ǫ
+ k
)

+ iπL
∑

l

[

(nl − 1)ml −
nl(nl − 1)

2
ǫ

]

− iπN
∑

l

ml +
LNǫ

2
log 2π . (A.5)

– 35 –



J
H
E
P
1
0
(
2
0
1
1
)
0
7
7

Demanding the traceless condition of SU(L),

L
∑

l=1

(ml − nlǫ) = 0 ,

one can replace the first term in the last line of (A.5) as
∑

l ml = (N + L)ǫ. In the U(L)

theory, the additional non-vanishing term corresponds to a constant vacuum-independent

shift of the superpotential.

A.2 Theory II

We now in turn discuss some computational details in simplifying the twisted superpotential

at leading order for Theory II. The contributions from the fundamental and adjoint chiral

multiplets will be focused in what follows.

One can massage the twisted superpotential at leading order as follows:

W(0)
fund = − ǫ

∑

l,m

n̂l−1
∑

k=0

f

(

Mlm

ǫ
− k

)

(A.6)

= − ǫ
∑

l,m>l

[ 0
∑

k=1−n̂l

f

(

Mlm

ǫ
+ k

)

+
n̂m−1
∑

k=0

f

(

−Mlm

ǫ
− k

)]

− ǫ
∑

l

0
∑

k=1−n̂l

f (k)

= −ǫ
∑

l,m>l

[ 0
∑

k=1−n̂l

−
n̂m−1
∑

k=0

]

f

(

Mlm

ǫ
+ k

)

−iπǫ
∑

l,m>l

n̂m−1
∑

k=0

(

Mlm

ǫ
+ k

)

− ǫ
∑

l

0
∑

k=1−n̂l

f(k) .

One can also show

W(0)
adj = ǫ

∑

l,m

n̂l
∑

sl=1

n̂m
∑

sm=1

f

(

Mlm

ǫ
− sl + sm − 1

)

= ǫ
∑

l,m>l

∑

sl,sm

[

f

(

Mlm

ǫ
− sl + sm − 1

)

− f

(

Mlm

ǫ
− sl + sm + 1

)

+ iπ

(

Mlm

ǫ
− sl + sm + 1

)]

+ ǫ
∑

l

∑

sl,tl

f (−sl + tl − 1)

=ǫ
∑

l,m>l

[ −1
∑

k=−n̂l

+

0
∑

k=1−n̂l

−
n̂m−1
∑

k=n̂m−n̂l

−
n̂m
∑

k=n̂m−n̂l+1

]

f

(

Mlm

ǫ
+ k

)

+ iπǫ
∑

l,m>l

∑

sl,sm

(

Mlm

ǫ
− sl + sm + 1

)

+ ǫ
∑

l

∑

sl,tl

f (−sl + tl − 1) . (A.7)

Here the second and the last terms in the last equality can be simplified into

iπǫ
∑

l,m>l

∑

sl

[

n̂m

(

Mlm

ǫ
− sl + 1

)

+
n̂m(n̂m + 1)

2

]

= iπ
∑

l,m>l

n̂ln̂mMlm + iπǫ
∑

l,m>l

n̂ln̂m
2 − n̂l + n̂m

2
, (A.8)
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and

ǫ
∑

l

∑

tl>sl

f(tl − sl − 1) − f(tl − sl + 1) + iπǫ
∑

l

∑

tl>sl

(tl − sl + 1) + ǫNf(−1)

=ǫ
∑

l

∑

sl

[

f(0) + f(1) − f(nl − sl) − f(nl − sl + 1)
]

+
iπǫ

6

∑

l

n̂l(n̂l − 1)(n̂l + 4)

=ǫN (f(1) + f(−1)) − ǫ
∑

l

[ n̂l−1
∑

k=0

+

n̂l
∑

k=1

]

f(k) +
iπǫ

6

∑

l

n̂l(n̂l − 1)(n̂l + 4) . (A.9)

It therefore implies that

W(0)
adj =ǫ

∑

l,m>l

[ −1
∑

k=−n̂l

+
0
∑

k=1−n̂l

−
n̂m−1
∑

k=n̂m−n̂l

−
n̂m
∑

k=n̂m−n̂l+1

]

f

(

Mlm

ǫ
+ k

)

+ iπ
∑

l,m>l

n̂ln̂mMlm + iπǫ
∑

l,m>l

n̂ln̂m
2 − n̂l + n̂m

2

+ iπǫN − ǫ
∑

l

[ n̂l−1
∑

k=0

+

n̂l
∑

k=1

]

f(k) +
iπǫ

6

∑

l

n̂l(n̂l − 1)(n̂l + 4) . (A.10)

Collecting all the results, one can obtain

W(0)
fund + W(0)

adj =ǫ
∑

l,m>l

[ n̂m−n̂l−1
∑

k=−n̂l

−
n̂m
∑

k=n̂m−n̂l+1

]

f

(

Mlm

ǫ
+ k

)

− iπǫ
∑

l,m>l

n̂m−1
∑

k=0

(

Mlm

ǫ
+ k

)

+ iπ
∑

l,m>l

n̂ln̂mMlm + iπǫ
∑

l,m>l

n̂ln̂m
2 − n̂l + n̂m

2

+ iπǫN − iπǫ
∑

l

n̂l(n̂l − 1)

2
+

iπǫ

6

∑

l

n̂l(n̂l − 1)(n̂l + 4) − ǫ
∑

l

n̂l
∑

k=1

f(k)

= −ǫ
∑

l,m

n̂m
∑

k=n̂m−n̂l+1

f

(

Mlm

ǫ
+k

)

+ iπ
∑

l,m>l

n̂ln̂mMlm + iπǫ
∑

l,m>l

n̂ln̂m
n̂m − n̂l

2

+
iπǫ

6

∑

l

n̂l(n̂l − 1)(n̂l + 1) + iπǫN . (A.11)

It can be further simplified into

W(0)
fund + W(0)

adj = − ǫ
∑

l,m

n̂m
∑

k=n̂m−n̂l+1

f

(

Mlm

ǫ
+ k

)

+ iπ (N + 1)
∑

l

∑

sl

(Ml − (sl − 1)ǫ)

− iπ
∑

l

(n̂l + 1) n̂lMl +
2iπǫ

3

∑

l

n̂l(n̂l − 1)(n̂l + 1)

− 2πi
∑

l

∑

sl

(Ml − (sl − 1)ǫ)
∑

m<l

n̂m + iπǫN (A.12)

≃− ǫ
∑

l,m

n̂m
∑

k=n̂m−n̂l+1

f

(

Mlm

ǫ
+k

)

+ iπ (N+1)
∑

l

∑

sl

(Ml − (sl − 1)ǫ)+iπǫN

Again, we used for the last equality a property of multi-valued function f(x).
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