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mal gauged/massive supergravity in d = 9 dimensions and to determine its extended field

content. Only the 8 independent deformation parameters (embedding tensor components,

mass parameters etc.) identified by Bergshoeff et al. (an SL(2,R) triplet, two doublets

and a singlet) can be consistently introduced in the theory, but their simultaneous use

is subject to a number of quadratic constraints. These constraints have to be kept and

enforced because they cannot be used to solve some deformation parameters in terms of

the rest. The deformation parameters are associated to the possible 8-forms of the theory,

and the constraints are associated to the 9-forms, all of them transforming in the conju-

gate representations. We also give the field strengths and the gauge and supersymmetry

transformations for the electric fields in the most general case. We compare these results

with the predictions of the E11 approach, finding that the latter predicts one additional

doublet of 9-forms, analogously to what happens in N = 2 d = 4, 5, 6 theories.

Keywords: Extended Supersymmetry, Supergravity Models, p-branes

ArXiv ePrint: 1106.1760

c© SISSA 2011 doi:10.1007/JHEP10(2011)068

mailto:jj.fernandezmelgarejo@um.es
mailto:Tomas.Ortin@csic.es
mailto:torrente@cern.ch
http://arxiv.org/abs/1106.1760
http://dx.doi.org/10.1007/JHEP10(2011)068


J
H
E
P
1
0
(
2
0
1
1
)
0
6
8

Contents

1 Introduction 1

2 Maximal d = 9 supergravity: the undeformed theory 4

2.1 Global symmetries 5

2.2 Magnetic fields 8

3 Deforming the maximal d = 9 supergravity 11

3.1 The 0-forms ϕ, τ 12

3.1.1 Covariant derivatives 13

3.1.2 Supersymmetry transformations of the fermion fields 13

3.1.3 Closure of the supersymmetry algebra on the 0-forms ϕ, τ 15

3.2 The 1-forms AI 15

3.2.1 The 2-form field strengths F I 15

3.2.2 Closure of the supersymmetry algebra on the 1-forms AI 16

3.3 The 2-forms Bi 18

3.3.1 The 3-form field strengths H i 18

3.3.2 Closure of the supersymmetry algebra on the 2-forms Bi 19

3.4 The 3-form C 21

3.4.1 The 4-form field strength G 21

3.4.2 Closure of the supersymmetry algebra on the 3-form C 22

4 Summary of results and discussion 23

5 Conclusions 26

A Conventions 28

A.1 Spinor bilinears 28

A.2 Relation with other conventions 28

B Noether currents 29

C Final results 30

1 Introduction

The discovery of the relation between RR (p+1)-form potentials in 10-dimensional type II

supergravity theories and D-branes [1] made it possible to associate most of the fields of

the string low-energy effective field theories (supergravity theories in general) to extended

objects (branes) of diverse kinds: fundamental, Dirichlet, solitonic, Kaluza-Klein etc. This
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association has been fruitfully used in two directions: to infer the existence of new super-

gravity fields from the known existence in the String Theory of a given brane or string

state and vice versa. Thus, the knowledge of the existence of Dp-branes with large val-

ues of p made it necessary to learn how to deal consistently with the magnetic duals of

the RR fields that were present in the standard formulations of the supergravity theories

constructed decades before, because in general it is impossible to dualize and rewrite the

theory in terms of the dual magnetic fields. The existence of NS-NS (p + 1)-forms in the

supergravity theories that could also be dualized made it necessary to include solitonic

branes dual to the fundamental ones (strings, basically). It was necessary to include all

the objects and fields that could be reached from those already known by U-duality trans-

formations and this effort led to the discovery of new branes and the introduction of the

democratic formulations of the type II supergravities [2] dealing simultaneously with all

the relevant electric and magnetic supergravity fields in a consistent way.

The search for all the extended states of String Theory has motivated the search for all

the fields that can be consistently introduced in the corresponding Supergravity Theories,

a problem that has no simple answer for the d-, (d− 1) and (d− 2)-form fields, which are

not the duals of electric fields already present in the standard formulation, at least in any

obvious way. The branes that would couple to them can play important rôles in String

Theory models, which makes this search more interesting.

As mentioned before, U-duality arguments have been used to find new supergravity

fields but U-duality can only reach new fields belonging to the same orbits as the known

fields. To find other possible fields, a systematic study of the possible consistent super-

symmetry transformation rules for p-forms has been carried out in the 10-dimensional

maximal supergravities in refs. [2–7] but this procedure is long and not systematic. The

conjectured E11 symmetry [8–10] can be used to determine the bosonic extended field con-

tent of maximal supergravity in different dimensions.1 Thee results have been recently

used to construct the U-duality-covariant Wess-Zumino terms of all possible branes in all

dimensions [12, 13]. In this approach supersymmetry is not explicitly taken into account,

only through the U-duality group.

Another possible systematic approach to this problem (that does not take supersym-

metry into account explicitly either) is provided by the embedding-tensor formalism.2 This

formalism, introduced in refs. [17–21] allows the study of the most general deformations of

field theories and, in particular, of supergravity theories [22–30]. One of the main features

of this formalism is that it requires the systematic introduction of new higher-rank poten-

tials which are related by Stückelberg gauge transformations. This structure is known as

the tensor hierarchy of the theory [20, 21, 27, 31–33] and can be taken as the (bosonic)

extended field content of the theory. In Supergravity Theories one may need to take into

account additional constraints on the possible gaugings, but, if the gauging is allowed by

supersymmetry, then gauge invariance will require the introduction of all the fields in the

associated tensor hierarchy and, since gauge invariance is a sine qua non condition for su-

1Smaller Kač-Moody algebras can be used in supergravities with smaller number of supercharges such

as N = 2 theories in d = 4, 5, 6 dimensions [11].
2For recent reviews see refs. [14–16].
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persymmetry, the tensor hierarchy will be automatically compatible with supersymmetry.

Furthermore, if we set to zero all the deformation parameters (gauge coupling constants,

Romans-like mass parameters [34] etc.) the fields that we have introduced will remain in

the undeformed theory.

This formalism, therefore, provides another systematic way of finding the extended

field content of Supergravity Theories. However, it cannot be used in the most interesting

cases, N = 1, d = 11 and N = 2A,B, d = 10 Supergravity, because these theories cannot

be gauged because they do not have 1-forms (N = 1, d = 11 and N = 2B, d = 10) or

the 1-form transforms under the only (Abelian) global symmetry (N = 2A, d = 10). Only

N = 2A, d = 10 can be deformed through the introduction of Romans’ mass parameter,

but the consistency of this deformation does not seem to require the introduction of any

higher-rank potentials. The dimensional reduction to d = 9 of these theories, though, has

3 vector fields, and their embedding-tensor formalism can be used to study all its possible

gaugings and find its extended field content.

Some gaugings of the maximal d = 9 supergravity have been obtained in the past by

generalized dimensional reduction [35] of the 10-dimensional theories with respect to the

SL(2,R) global symmetry of the N = 2B theory [36–38] or other rescaling symmetries [39].3

All these possibilities were systematically and separately studied in ref. [41], taking into

account the dualities that relate the possible deformation parameters introduced with the

generalized dimensional reductions. However, the possible combinations of deformations

were not studied, and, as we will explain, some of the higher-rank fields are associated to

the constraints on the combinations of deformations. Furthermore, we do not know if other

deformations, with no higher-dimensional origin (such as Romans’ massive deformation of

the N = 2A, d = 10 supergravity) are possible.

Our goal in this paper will be to make a systematic study of all these possibilities

using the embedding-tensor formalism plus supersymmetry to identify the extended-field

content of the theory, finding the rôle played by the possible 7-, 8- and 9-form potentials,

and compare the results with the prediction of the E11 approach. We expect to get at least

compatible results, as in the N = 2, d = 4, 5, 6 cases studied in [30] and [11].

This paper is organized as follows: in section 2 we review the undeformed maximal

9-dimensional supergravity and its global symmetries. In section 3 we study the possible

deformations of the theory using the embedding-tensor formalism and checking the closure

of the local supersymmetry algebra for each electric p-form of the theory. In section 4

we summarize the results of the previous section describing the possible deformations and

the constraints they must satisfy. We discuss the relations between those results and the

possible 7- 8- and 9-form potentials of the theory and how these results compare with those

obtained in the literature using the E11 approach. Section 5 contains our conclusions. Our

conventions are briefly discussed in appendix A. The Noether currents of the undeformed

theory are given in appendix B. A summary of our results for the deformed theory (de-

formed field strengths, gauge transformations and covariant derivatives, supersymmetry

transformations etc.) is contained in appendix C.

3An SO(2)-gauged version of the theory was directly constructed in ref. [40].
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2 Maximal d = 9 supergravity: the undeformed theory

There is only one undeformed (i.e. ungauged, massless) maximal (i.e. N = 2, containing

no dimensionful parameters in their action, apart from the overall Newton constant) 9-

dimensional supergravity [42]. Both the dimensional reduction of the massless N = 2A, d =

10 theory and that of the N = 2B, d = 10 theory on a circle give the same undeformed

N = 2, d = 9 theory, a property related to the T duality between type IIA and IIB string

theories compactified on circles [43, 44] and from which the type II Buscher rules can be

derived [45].

The fundamental (electric) fields of this theory are,
{

eµ
a, ϕ, τ ≡ χ+ ie−φ, AI

µ, B
i
µν , Cµνρ, ψµ, λ̃, λ,

}

. (2.1)

where I = 0, i, with i, j,k = 1, 2 and i, j, k = 1, 2.4 The complex scalar τ parametrizes an

SL(2,R)/U(1) coset that can also be described through the symmetric SL(2,R) matrix

M ≡ eφ

(

|τ |2 χ
χ 1

)

, M−1 ≡ eφ

(

1 −χ
−χ |τ |2

)

. (2.2)

The undeformed field strengths of the electric p-forms are, in our conventions5,6

F I = dAI , (2.3)

H i = dBi + 1
2δ

i
i(A

0 ∧ F i +Ai ∧ F 0) , (2.4)

G = d[C − 1
6εijA

0ij] − εijF
i ∧
(

Bj + 1
2δ

j
jA

0j
)

, (2.5)

and are invariant under the undeformed gauge transformations

δΛA
I = −dΛI , (2.6)

δΛB
i = −dΛi + δi

i

[

ΛiF 0 + Λ0F i + 1
2

(

A0 ∧ δΛAi +Ai ∧ δΛA0
)]

, (2.7)

δΛ[C − 1
6εijA

0ij] = −dΛ − εij

(

F i ∧ Λj + Λi ∧Hj − δΛA
i ∧Bj

+1
2δ

j
jA

0i ∧ δΛAj
)

. (2.8)

The bosonic action is, in these conventions, given by

S =

∫

{

− ⋆R + 1
2dϕ ∧ ⋆dϕ+ 1

2

[

dφ ∧ ⋆dφ+ e2φdχ ∧ ⋆dχ
]

+ 1
2e

4√
7
ϕ
F 0 ∧ ⋆F 0

+1
2e

3√
7
ϕ
(M−1)ijF

i ∧ ⋆F j + 1
2e

− 1√
7
ϕ
(M−1)ijH

i ∧ ⋆Hj + 1
2e

2√
7
ϕ
G ∧ ⋆G

−1
2

[

G+ εijA
i ∧
(

Hj − 1
2δ

j
jA

j ∧ F 0
)]

∧
{[

G+ εijA
i ∧
(

Hj − 1
2δ

j
jA

j ∧ F 0
)]

∧A0

−εij
(

H i − δi
iA

i ∧ F 0
)

∧
(

Bj − 1
2δ

j
jA

0j
)}}

. (2.9)

4Sometimes we need to distinguish the indices 1, 2 of the 1-forms (and their dual 6-forms) from those

of the 2-forms (and their dual 5-forms). We will use boldface indices for the former and their associated

gauge parameters.
5We use the shorthand notation AIJ ≡ AI ∧ AJ , Bijk ≡ Bi ∧Bj ∧Bk etc.
6The relation between these fields and those of refs. [37] and [41] are given in appendix A.2.
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The kinetic term for the SL(2,R) scalars φ and χ can be written in the alternative

forms

1
2

[

dφ ∧ ⋆dφ+ e2φdχ ∧ ⋆dχ
]

=
dτ ∧ ⋆dτ̄
2(ℑmτ)2

= 1
4Tr

[

dMM−1 ∧ ⋆dMM−1
]

, (2.10)

the last of which is manifestly SL(2,R)-invariant. The Chern-Simons term of the action

(the last two lines of eq. (2.9)) can also be written in the alternative form

−1
2d
[

C − 1
6εijA

0ij − εijA
i ∧Bj

]

∧
{

d
[

C − 1
6εijA

0ij − εijA
i ∧Bj

]

∧A0

−εijd
(

Bi − 1
2δ

i
iA

0i
)

∧
(

Bj − 1
2δ

j
jA

0j
)}

,
(2.11)

that has an evident 11-dimensional origin.

The equations of motion of the scalars, derived from the action above, are

d ⋆ dϕ− 2√
7
e

4√
7
ϕ
F 0 ∧ ⋆F 0 − 3

2
√

7
e

3√
7
ϕ
(M−1)ijF

i ∧ ⋆F j

+ 1
2
√

7
e
− 1√

7
ϕ
(M−1)ijH

i ∧ ⋆Hj − 1√
7
e

2√
7
ϕ
G ∧ ⋆G = 0 , (2.12)

d

[

⋆
dτ̄

(ℑmτ)2

]

− i
dτ ∧ ⋆dτ̄
(ℑmτ)3

− ∂τ (M−1)ij

[

F i ∧ ⋆F j +H i ∧ ⋆Hj
]

= 0 , (2.13)

and those of the fundamental p-forms (p ≥ 1), after some algebraic manipulations, take

the form

d
(

e
4√
7
ϕ
⋆ F 0

)

= −e−
1√
7
ϕM−1

ij F
i ∧ ⋆Hj + 1

2G ∧G , (2.14)

d
(

e
3√
7
ϕM−1

ij ⋆ F j
)

= −e
3√
7
ϕM−1

ij F
0 ∧ ⋆Hj + εije

2√
7
ϕ
Hj ∧ ⋆G , (2.15)

d
(

e
− 1√

7
ϕM−1

ij ⋆ Hj
)

= εije
2√
7
ϕ
F j ∧ ⋆G− εijH

j ∧G , (2.16)

d
(

e
2√
7
ϕ
⋆ G
)

= F 0 ∧G+ 1
2εijH

i ∧Hj . (2.17)

2.1 Global symmetries

The undeformed theory has as (classical) global symmetry group SL(2,R) × (R+)2. The

(R+)2 symmetries correspond to scalings of the fields, the first of which, that we will

denote by α,7 acts on the metric and only leaves the equations of motion invariant while

the second of them, which we will denote by β, leaves invariant both the metric and the

action. The β rescaling corresponds to the so-called trombone symmetry which may not

survive higher-derivative string corrections.

One can also discuss two more scaling symmetries γ and δ, but γ is just a subgroup of

SL(2,R) and δ is related to the other scaling symmetries by

4
9α− 8

3β − γ − 1
2δ = 0 . (2.18)

7This discussion follows closely that of ref. [41] in which the higher-dimensional origin of each symmetry

is also studied. In particular, we use the same names and definitions for the scaling symmetries and we

reproduce the table of scaling weights for the electric fields.
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R
+ eµ

a eϕ eφ χ A0 A1 A2 B1 B2 C ψµ λ λ̃ ǫ L
α 9/7 6/

√
7 0 0 3 0 0 3 3 3 9/14 −9/14 −9/14 9/14 9

β 0
√

7/4 3/4 −3/4 1/2 −3/4 0 −1/4 1/2 −1/4 0 0 0 0 0

γ 0 0 −2 2 0 1 −1 1 −1 0 0 0 0 0 0

δ 8/7 −4/
√

7 0 0 0 2 2 2 2 4 4/7 −4/7 −4/7 4/7 8

Table 1. The scaling weights of the electric fields of maximal d = 9 supergravity.

We will take α and β as the independent symmetries. The weights of the electric fields

under all the scaling symmetries are given in table 1. We can see that each of the three

gauge fields AI
µ has zero weight under two (linear combinations) of these three symmetries:

one is a symmetry of the action, the other is a symmetry of the equations of motion only.

The 1-form that has zero weight under a given rescaling is precisely the one that can be used

to gauge that rescaling, but this kind of conditions are automatically taken into account

by the embedding-tensor formalism and we will not have to discuss them in detail.

The action of the element of SL(2,R) given by the matrix

(

Ωi
j

)

=

(

a b

c d

)

, ad− bc = 1 , (2.19)

on the fields of the theory is

τ ′ =
aτ + b

cτ + d
, M′

ij = Ωi
kMklΩj

l ,

Ai ′ = Ωj
iAj , Bi ′ = Ωj

iBj ,

ψ′
µ = e

i
2
lψµ , λ = e

3i
2

lλ ,

λ̃′ = e−
i
2
lλ̃ , ǫ′ = e

i
2
lǫ .

(2.20)

where

e2il ≡ c τ∗ + d

c τ + d
. (2.21)

The rest of the fields (eaµ, ϕ,A
0
µ, Cµνρ), are invariant under SL(2,R).

We are going to label the 5 generators of these global symmetries by TA, A = 1, · · · , 5.
{T1, T2, T3} will be the 3 generators of SL(2,R) (collectively denoted by {Tm}, m = 1, 2, 3),

and T4 and T5 will be, respectively, the generators of the rescalings α and β. Our choice

for the generators of SL(2,R) acting on the doublets of 1-forms Ai and 2-forms Bi is

T1 = 1
2σ

3 , T2 = 1
2σ

1 , T3 = i
2σ

2 , (2.22)

where the σm are the standard Pauli matrices, so

[T1, T2] = T3 , [T2, T3] = −T1 , [T3, T1] = −T2 . (2.23)

Then, the 3 × 3 matrices corresponding to generators acting (contravariantly) on the 3

1-forms AI (and covariantly on their dual 6-forms ÃI to be introduced later) are

(

(T1)J
I
)

= 1
2

(

0 0

0 σ3

)

,
(

(T2)J
I
)

= 1
2

(

0 0

0 σ1

)

,
(

(T3)J
I
)

= 1
2

(

0 0

0 iσ2

)

,

(

(T4)J
I
)

= diag(3, 0, 0) ,
(

(T5)J
I
)

= diag(1/2,−3/4, 0) . (2.24)
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We will sometimes denote this representation by T
(3)
A . The 2×2 matrices corresponding to

generators acting (contravariantly) on the doublet of 2-forms Bi (and covariantly on their

dual 5-forms B̃i to be introduced later) are

(

(T1)j
i
)

= 1
2σ

3 ,
(

(T2)j
i
)

= 1
2σ

1 ,
(

(T3)j
i
)

= i
2σ

2 ,
(

(T4)j
i
)

= diag(3, 3) ,
(

(T5)j
i
)

= diag(−1/4, 1/2) . (2.25)

We will denote this representation by T
(2)
A . The generators that act on the 3-form C

(sometimes denoted by T
(1)
A ) are

T1 = T2 = T3 = 0 , T4 = 3 , T5 = −1/4 . (2.26)

We will also need the generators that act on the magnetic 4-form C̃ (see next section), also

denoted by T
(1̃)
A

T̃1 = T̃2 = T̃3 = 0 , T̃4 = 6 , T̃5 = 1/4 . (2.27)

We define the structure constants fAB
C by

[TA, TB ] = fAB
CTC . (2.28)

The symmetries of the theory are isometries of the scalar manifold (R×SL(2,R/U(1)).

The Killing vector associated with the generator TA will be denoted by kA and will be

normalized so that their Lie brackets are given by

[kA, kB ] = −fAB
CkC . (2.29)

The SL(2,R)/U(1) factor of the scalar manifold is a Kähler space with Kähler potential,

Kähler metric and Kähler 1-form, respectively given by

K = − logℑmτ = φ , Gττ∗ =∂τ∂τ∗K= 1
4e

2φ , Q= 1
2i

(∂τKdτ − c.c.) = 1
2e

φdχ . (2.30)

In general, the isometries of the Kähler metric only leave invariant the Kähler potential

up to Kähler transformations:

£km
K = km

τ∂τK + c.c. = λm(τ) + c.c. , £km
Q = − i

2dλm , (2.31)

where the λm are holomorphic functions of the coordinates that satisfy the equivariance

property

£km
λn − £kn

λm = −fmn
pλp . (2.32)

Then, for each of the SL(2,R) Killing vectors km, m = 1, 2, 3, it is possible to find a

real Killing prepotential or momentum map Pm such that

km τ∗ = Gτ∗τkm
τ = i∂τ∗Pm ,

km
τ∂τK = iPm + λm ,

£km
Pn = −fmn

pPp .

(2.33)
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The non-vanishing components of all the Killing vectors are8

k1
τ = τ , k2

τ = 1
2(1 − τ2) , k3

τ = 1
2(1 + τ2) , k4

τ = 0 , k5
τ = −3

4τ . (2.34)

and

k4
ϕ = 6/

√
7 , k5

ϕ =
√

7/4 . (2.35)

The holomorphic functions λm(τ) take the values

λ1 = −1
2 , λ2 = 1

2τ , λ3 = −1
2τ , (2.36)

and the momentum maps are given by:

P1 = 1
2e

φχ , P2 = 1
4e

φ(1 − |τ |2) , P3 = 1
4e

φ(1 + |τ |2) . (2.37)

These objects will be used in the construction of SL(2,R)-covariant derivatives for

the fermions.

2.2 Magnetic fields

As it is well known, for each p-form potential with p > 0 one can define a magnetic dual

which in d − 9 dimensions will be a (7 − p)-form potential. Then, we will have magnetic

4-, 5- and 6-form potentials in the theory.

A possible way to define those potentials and identify their (8−p)-form field strengths

consists in writing the equations of motion of the p-forms as total derivatives. Let us take,

for instance, the equation of motion of the 3-form C eq. (2.17). It can be written as

d
∂L
∂G

= d

{

e
2√
7
ϕ
⋆ G−

[

G+ εijA
i ∧
(

Hj − 1
2δ

j
jA

j ∧ F 0
)]

∧A0

+1
2εij

(

H i − δi
iA

i ∧ F 0
)

∧
(

Bj − 1
2δ

j
jA

0j
)

}

= 0 . (2.38)

We can transform this equation of motion into a Bianchi identity by replacing the combi-

nation of fields on which the total derivative acts by the total derivative of a 4-form which

we choose for the sake of convenience9

d
[

C̃ − C ∧A0 − 3
4εijA

0i ∧Bj
]

≡ e
2√
7
ϕ
⋆ G−

[

G+ εijA
i ∧
(

Hj − 1
2δ

j
jA

j ∧ F 0
)]

∧A0

+1
2εij

(

H i − δi
iA

i ∧ F 0
)

∧
(

Bj − 1
2δ

j
jA

0j
)

, (2.39)

where C̃ will be the magnetic 4-form. This relation can be put in the form of a duality

relation

e
2√
7
ϕ
⋆ G = G̃ , (2.40)

where we have defined the magnetic 5-form field strength

G̃ ≡ dC̃ + C ∧ F 0 − 1
24εijA

0ij ∧ F 0 − εij
(

H i − 1
2dB

i
)

∧Bj . (2.41)

The equation of motion for C̃ is just the Bianchi identity of G rewritten in terms of G̃.

8The holomorphic and anti-holomorphic components are defined by k = kτ∂τ + c.c. = kχ∂χ + kφ∂φ.
9With this definition G̃ will have exactly the same form that we will obtain from the embedding tensor

formalism.
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0 1 2 3 4 5 6 7 8 9

jA AI Bi C C̃ B̃i ÃI ÃA
(7) Ã(8) Ã(9)

F I H i G G̃ H̃i F̃I F̃A
(8) F̃(9)

Table 2. Electric and magnetic forms and their field strengths.

R
+ C̃ B̃2 B̃1 Ã2 Ã1 Ã0

α 6 6 6 9 9 6

β 1/4 −1/2 +1/4 0 +3/4 −1/2

γ 0 1 -1 1 -1 0

δ 4 6 6 6 6 8

Table 3. The scaling weights of the magnetic fields of maximal d = 9 supergravity can be deter-

mined by requiring that the sum of the weights of the electric and magnetic potentials equals that

of the Lagrangian. The scaling weights of the 7-, 8- and 9-forms can be determined in the same

way after we find the entities they are dual to (Noether currents, embedding-tensor components

and constraints, see section 4).

In a similar fashion we can define a doublet of 5-forms B̃i with field strengths denoted by

H̃i, and a singlet and a doublet of 6-forms Ã0, Ãi with field strengths denoted, respectively,

by F̃0 and F̃i. The field strengths can be chosen to have the form

H̃i = dB̃i − δijB
j ∧G+ δijC̃ ∧ F j + 1

2δij

(

A0 ∧ F j +Aj ∧ F 0
)

∧ C

+ 1
2δijεklB

jk ∧ F l , (2.42)

F̃0 = dÃ0 + 1
2C ∧G− εijF

i ∧
(

δjkB̃k − 2
3B

j ∧ C
)

− 1
18εijA

ij ∧
(

G̃− F 0 ∧C − 1
2εklB

k ∧H l
)

− 1
6εijA

i ∧
(

Bj ∧G− C ∧Hj − 2
3δ

j
jC̃ ∧ F j − εklB

jk ∧ F l
)

, (2.43)

F̃i = dÃi + δij

(

Bj + 7
18δ

j
kA

0k
)

∧ G̃− δi
jF 0 ∧ B̃j − 1

9δij

(

8A0 ∧ F j +Aj ∧ F 0
)

∧ C̃

− 1
3δijεlm

(

Bj + 1
3δ

j
kA

0k
)

∧Bl ∧Hm − 1
6δijεkl

(

A0 ∧Hj −Bj ∧ F 0
)

∧Ak ∧Bl

− 1
9A

0 ∧ F 0 ∧ δij
(

7
2A

j ∧ C + δjkεlmA
lm ∧Bk

)

, (2.44)

and the duality relations are

H̃i = e
− 1√

7
ϕM−1

ij ⋆ Hj , (2.45)

F̃0 = e
4√
7
ϕ
⋆ F 0 , (2.46)

F̃i = e
3√
7
ϕM−1

ij ⋆ F j . (2.47)

The situation is summarized in table 2. The scaling weights of the magnetic fields are

given in table 3.
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This dualization procedure is made possible by the gauge symmetries associated with

all the p-form potentials for p > 0 (actually, by the existence of gauge transformations

with constant parameters) and, therefore, it always works for massless p-forms with p > 0

and generically fails for 0-form fields. However, in maximal supergravity theories at least,

there is a global symmetry group that acts on the scalar manifold and whose dimension is

larger than that of the scalar manifold. Therefore, there is one Noether 1-form current jA
associated with each of the generators of the global symmetries of the theory TA. These

currents are conserved on-shell, i. e. they satisfy

d ⋆ jA = 0 ,

on-shell, and we can define a (d− 2)-form potential ÃA
(d−2) by

dÃA
(d−2) = GAB ⋆ jB ,

where GAB is the inverse Killing metric of the global symmetry group, so that the conser-

vation law (dynamical) becomes a Bianchi identity.

Thus, while the dualization procedure indicates that for each electric p-form with p > 0

there is a dual magnetic (7− p)-form transforming in the conjugate representation, it tells

us that there are as many magnetic (d−2)-form duals of the scalars as the dimension of the

global group (and not of as the dimension of the scalar manifold) and that they transform

in the co-adjoint representation. Actually, since there is no need to have scalar fields in

order to have global symmetries, it is possible to define magnetic (d − 2)-form potentials

even in the total absence of scalars.10

According to these general arguments, which are in agreement with the general results

of the embedding-tensor formalism [29–31, 33], we expect a triplet of 7-form potentials

Ãm
(7) associated with the SL(2,R) factor of the global symmetry group [37] and two singlets

Ã4
(7), Ã

5
(7) associated with the rescalings α, β (see table 2).

Finding or just determining the possible magnetic (d− 1)- and d-form potentials in a

given theory is more complicated. In the embedding-tensor formalism it is natural to expect

as many (d−1)-form potentials as deformation parameters (embedding-tensor components,

mass parameters etc.) can be introduced in the theory since the rôle of the (d−1)-forms in

the action is that of being Lagrange multipliers enforcing their constancy.11 The number

of deformation parameters that can be introduced in this theory is, as we are going to

see, very large, but there are many constraints that they have to satisfy to preserve gauge

and supersymmetry invariance. Furthermore, there are many Stückelberg shift symmetries

acting on the possible (d − 1)-form potentials. Solving the constraints leaves us with

the independent deformation parameters that we can denote by m♯ and, correspondingly,

10See refs. [29, 30] for examples.
11The embedding-tensor formalism gives us a reason to introduce the (d−1)-form potentials based on the

deformation parameters but the (d−1)-form potentials do not disappear when the deformation parameters

are set equal to zero.
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with a reduced number of (d− 1)-form potentials Ã♯
(d−1) on which only a few Stückelberg

symmetries (or none at all) act.12

The d-form field strengths F̃ ♯
(d) are related to the scalar potential of the theory through

the expression [29–31, 33]

F̃ ♯
(d) = 1

2 ⋆
∂V

∂m♯
. (2.48)

Thus, in order to find the possible 8-form potentials of this theory we need to study its

independent consistent deformations m♯. We will consider this problem in the next section.

In the embedding-tensor formalism, the d-form potentials are associated with con-

straints of the deformation parameters since they would be the Lagrange multipliers en-

forcing them in the action [26]. If we do not solve any of the constraints there will be many

d-form potentials but there will be many Stückelberg symmetries acting on them as well.

Thus, only a small number of irreducible constraints that cannot be solved13 and of associ-

ated d-forms may be expected in the end, but we have to go through the whole procedure

to identify them. This identification will be one of the main results of the following section.

However, this is not the end of the story for the possible 9-forms. As it was shown in

ref. [30] in 4- 5- and 6-dimensional cases, in the ungauged case one can find more d-forms

with consistent supersymmetric transformation rules than predicted by the embedding-

tensor formalism. Those additional fields are predicted by the Kač-Moody approach [11].

However, after gauging, the new fields do not have consistent, independent, supersymmetry

transformation rules to all orders in fermions,14 and have to be combined with other d-

forms, so that, in the end, only the number of d-forms predicted by the embedding-tensor

formalism survive.

This means that the results obtained via the embedding-tensor formalism for the 9-

forms have to be interpreted with special care and have to be compared with the results

obtained with other approaches.

The closure of the local supersymmetry algebra needs to be checked on all the fields

in the tensor hierarchy predicted by the embedding-tensor formalism and, in particular, on

the 9-forms to all orders in fermions. However, given that gauge invariance is requirement

for local supersymmetry invariance, we expect consistency in essentially all cases with the

possible exception of the 9-forms, according to the above discussion. In the next section

we will do this for the electric fields of the theory.

3 Deforming the maximal d = 9 supergravity

In this section we are going to study the possible deformations of d = 9 supergravity,

starting from its possible gaugings using the embedding-tensor formalism and constructing

the corresponding tensor hierarchy [17–21, 31, 33] up to the 4-form potentials.

12The (d − 1)-form potentials that “disappear” when we solve the constraints are evidently associated

with the gauge-fixing of the missing Stückelberg symmetries.
13In general, the quadratic constraints cannot be used to solve some deformation parameters in terms of

the rest. For instance, in this sense, if a and b are two of them, a constraint of the form ab = 0 cannot be

solved and we can call it irreducible.
14The insufficience of first-order in fermions checks was first noticed in ref. [6].
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If we denote by ΛI(x) the scalar parameters of the gauge transformations of the 1-forms

AI and by αA the constant parameters of the global symmetries, we want to promote

αA −→ ΛI(x)ϑI
A , (3.1)

where ϑI
A is the embedding tensor, in the transformation rules of all the fields, and we are

going to require the theory to be covariant under the new local transformations using the

1-forms as gauge fields.

To achieve this goal, starting with the transformations of the scalars, the successive

introduction of higher-rank p-form potentials is required, which results in the construction

of a tensor hierarchy. Most of these fields are already present in the supergravity theory

or can be identified with their magnetic duals but this procedure allows us to introduce

consistently the highest-rank fields (the d-, (d − 1)- and (d − 2)-form potentials), which

are not dual to any of the original electric fields. Actually, as explained in section 2.2, the

highest-rank potentials are related to the symmetries (Noether currents), the independent

deformation parameters and the constraints that they satisfy, but we need to determine

these, which requires going through this procedure checking the consistency with gauge

and supersymmetry invariance at each step.

Thus, we are going to require invariance under the new gauge transformations for the

scalar fields and we are going to find that we need new couplings to the gauge 1-form

fields (as usual). Then we will study the modifications of the supersymmetry transforma-

tion rules of the scalars and fermion fields which are needed to ensure the closure of the

local supersymmetry algebra on the scalars. Usually we do not expect modifications in

the bosons’ supersymmetry transformations, but the fermions’ transformations need to be

modified by replacing derivatives and field strengths by covariant derivatives and covari-

ant field strengths and, furthermore, by adding fermion shifts. The local supersymmetry

algebra will close provided that we impose certain constraints on the embedding tensor

components and on the fermion shifts.

Repeating this procedure on the 1-forms (which requires the coupling to the 2-forms)

etc. we will find a set of constraints that we can solve, determining the independent com-

ponents of the deformation tensors15 and the fermions shifts. Some constraints (typically

quadratic in deformation parameters) have to be left unsolved and we will have to take

them into account towards the end of this procedure.

As a result we will identify the independent deformations of the theory and the con-

straints that they satisfy. From this we will be able to extract information about the

highest-rank potentials in the tensor hierarchy.

3.1 The 0-forms ϕ, τ

Under the global symmetry group, the scalars transform according to

δαϕ = αAkA
ϕ , δατ = αAkA

τ , (3.2)

15As we are going to see, besides the embedding tensor, one can introduce many other deformation

tensors.

– 12 –



J
H
E
P
1
0
(
2
0
1
1
)
0
6
8

where the αA are the constant parameters of the transformations, labeled by A = 1, · · · , 5,
and where kA

ϕ and kA
τ are the corresponding components of the Killing vectors of the

scalar manifold, given in eq. (2.35) (eq. (2.34)).

According to the general prescription eq. (3.1), we want to gauge these symmetries

making the theory invariant under the local transformations

δΛϕ = ΛIϑI
AkA

ϕ , δΛτ = ΛIϑI
AkA

τ , (3.3)

where ΛI(x), I = 0,1,2, are the 0-form gauge parameters of the 1-form gauge fields AI

and ϑI
A is the embedding tensor.

To construct gauge-covariant field strengths for the scalars it is enough to replace their

derivatives by covariant derivatives.

3.1.1 Covariant derivatives

The covariant derivatives of the scalars have the standard form

Dϕ = dϕ+AIϑA
I kA

ϕ , Dτ = dτ +AIϑA
I kA

τ , (3.4)

and they transform covariantly provided that the 1-form gauge fields transform as

δΛA
I = −DΛI + ZI

iΛ
i , (3.5)

where the Λi, i = 1, 2, are two possible 1-form gauge parameters and ZI
i is a possible new

deformation parameter that must satisfy the orthogonality constraint

ϑI
AZI

i = 0 . (3.6)

Furthermore, it is necessary that the embedding tensor satisfies the standard quadratic

constraint

ϑI
ATA J

KϑK
C − ϑI

AϑJ
BfAB

C = 0 , (3.7)

that expresses the gauge-invariance of the embedding tensor.

As a general rule, all the deformation tensors have to be gauge-invariant and we can

anticipate that we will have to impose the constraint that expresses the gauge-invariance

of ZI
i, namely

XJ K
IZK

i −XJ i
jZI

j = 0 , (3.8)

where

XI J
K ≡ ϑI

ATA J
K , XJ i

j ≡ ϑJ
ATA i

j . (3.9)

3.1.2 Supersymmetry transformations of the fermion fields

We will assume for simplicity that the supersymmetry transformations of the fermion fields

in the deformed theory have essentially the same form as in the undeformed theory but
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covariantized (derivatives and field strengths) and, possibly, with the addition of fermion

shifts which we add in the most general form:

δǫψµ = Dµǫ+ fγµǫ+ kγµǫ
∗ + i

8·2!e
− 2√

7
ϕ
(

5
7γµγ

(2) − γ(2)γµ

)

F 0ǫ

− 1
8·2!e

3

2
√

7
ϕ+ 1

2
φ
(

5
7γµγ

(2) − γ(2)γµ

)

(F 1 − τF 2)ǫ∗

− i
8·3!e

− 1

2
√

7
ϕ
(

3
7γµγ

(3) + γ(3)γµ

)

(H1 − τH2)ǫ∗

− 1
8·4!e

1√
7
ϕ
(

1
7γµγ

(4) − γ(4)γµ

)

Gǫ , (3.10)

δǫλ̃ = i 6Dϕǫ∗ + g̃ǫ+ h̃ǫ∗ − 1√
7
e
− 2√

7
ϕ 6F 0ǫ∗ − 3i

2·2!
√

7
e

3

2
√

7
ϕ+ 1

2
φ
(6F 1 − τ∗ 6F 2)ǫ

− 1
2·3!

√
7
e
− 1

2
√

7
ϕ+ 1

2
φ
(6H1 − τ∗ 6H2)ǫ− i

4!
√

7
e

1√
7
ϕ 6Gǫ∗ , (3.11)

δǫλ = −eφ 6Dτǫ∗ + gǫ+ hǫ∗ − i
2·2!e

3

2
√

7
ϕ+ 1

2
φ
(6F 1 − τ 6F 2)ǫ

+ 1
2·3!e

− 1

2
√

7
ϕ+ 1

2
φ
(6H1 − τ 6H2)ǫ . (3.12)

In these expressions, f, k, g, h, g̃, h̃ are six functions of the scalars and deformation parame-

ters to be determined, the covariant field strengths have the general form predicted by the

tensor hierarchy (to be determined) and the covariant derivatives of the scalars have the

forms given above. Furthermore, in δǫψµ, Dµǫ stands for the Lorentz- and gauge-covariant

derivative of the supersymmetry parameter, which turns out to be given by

Dµǫ ≡
{

∇µ + i
2

[

1
2e

φ
D

5
µχ+AI

µϑI
mPm

]

+ 9
14γµ 6AIϑI

4
}

ǫ (3.13)

where Pm 1, 2, 3 are the momentum maps of the holomorphic Killing vectors of SL(2,R),

defined in eq. (2.33) and given in eq. (2.37), ∇µ is the Lorentz-covariant derivative and

D
5
µχ ≡ ∂µχ− 3

4A
I
µϑI

5χ (3.14)

is the derivative of χ covariant only with respect to the β rescalings. It can be checked

that Dµǫ transforms covariantly under gauge transformations if and only if the embedding

tensor satisfies the standard quadratic constraint eq. (3.7).

An equivalent expression for it is

Dµǫ =
{

∇µ + i
2

[

1
2e

φ
Dµχ−AI

µϑI
mℑmλm

]

+ 9
14γµ 6AIϑI

4
}

ǫ , (3.15)

where the λm, m = 1, 2, 3, of SL(2,R) and defined in eq. (2.33) and given in eq. (2.36) and

where now

Dµχ ≡ ∂µχ+AI
µϑI

AkA
χ , (3.16)

is the total covariant derivative of χ (which is invariant under both the α and β scaling

symmetries as well as under SL(2,R)).

The actual form of the (p+1)-form field strengths will not be needed until the moment

in which study the closure of the supersymmetry algebra on the corresponding p-form

potential.
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3.1.3 Closure of the supersymmetry algebra on the 0-forms ϕ, τ

We assume that the supersymmetry transformations of the scalars are the same as in the

undeformed theory

δǫϕ = − i
4 ǭλ̃

∗ + h.c. , (3.17)

δǫτ = −1
2e

−φǭ∗λ . (3.18)

To lowest order in fermions, the commutator of two supersymmetry transformations

gives

[δǫ1 , δǫ2 ]ϕ = ξµ
Dµϕ+ ℜe(h̃)b−ℑm(g̃)c+ ℜe(g̃)d , (3.19)

[δǫ1, δǫ2 ] τ = ξµ
Dµτ + e−φ [g(c − id) − ihb] , (3.20)

where ξµ is one of the spinor bilinears defined in appendix A.1 that clearly plays the rôle

of parameter of the general coordinate transformations and a, b, c, d are the scalar bilinears

defined in the same appendix.

In the right hand side of these commutators, to lowest order in fermions, we expect a

general coordinate transformation (the Lie derivative £ξ of the scalars with respect to ξµ)

and a gauge transformation which has the form of eq. (3.3) for the scalars. Therefore, the

above expressions should be compared with

[δǫ1 , δǫ2 ]ϕ = £ξϕ+ ΛIϑI
AkA

ϕ , (3.21)

[δǫ1, δǫ2 ] τ = £ξτ + ΛIϑI
AkA

τ , (3.22)

from which we get the relations

ℜe(h̃)b−ℑm(g̃)c+ ℜe(g̃)d = (ΛI − aI)ϑI
AkA

ϕ , (3.23)

g(c − id) − ihb = eφ(ΛI − aI)ϑI
AkA

τ , (3.24)

which would allow us to determine the fermion shift functions if we knew the gauge pa-

rameters ΛI . In order to determine the ΛIs we have to close the supersymmetry algebra

on the 1-forms. In these expressions and in those that will follow, we use the shorthand

notation

aI ≡ ξµAI
µ , biµ ≡ ξνBi

νµ , cµν ≡ ξρCρµν , etc. (3.25)

3.2 The 1-forms AI

The next step in this procedure is to consider the 1-forms that we just introduced to

construct covariant derivatives for the scalars.

3.2.1 The 2-form field strengths F I

The gauge transformations of the 1-forms are given in eq. (3.5) and we first need to deter-

mine their covariant field strengths. A general result of the embedding-tensor formalism

tells us that we need to introduce 2-form potentials in the covariant field strengths. In
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this case only have the SL(2,R) doublet Bi at our disposal and, therefore, the 2-form field

strengths have the form

F I = dAI + 1
2XJK

IAJ ∧AK + ZI
iB

i , (3.26)

where XJK
I has been defined in eq. (3.9) and ZI

i is precisely the deformation tensor we

introduced in eq. (3.5). F I will transform covariantly under eq. (3.5) if simultaneously the

2-forms Bi transform according to

δΛB
i = −DΛi − 2hIJ

i
[

ΛIF J + 1
2A

I ∧ δΛAJ
]

+ ZiΛ , (3.27)

where hIJ
i and Zi are two possible new deformation tensors the first of which must satisfy

the constraint

X(JK)
I + ZI

ihJK
i = 0 , (3.28)

while Zi must satisfy the orthogonality constraint

ZI
iZ

i = 0 . (3.29)

Both of them must satisfy the constraints that express their gauge invariance:

XI j
ihJK

j − 2XI(J
LhK)L

i = 0 , (3.30)

XIZ
i −XI j

iZj = 0 , (3.31)

where

XI ≡ ϑI
AT

(1)
A . (3.32)

3.2.2 Closure of the supersymmetry algebra on the 1-forms AI

We assume, as we are doing with all the bosons, that the supersymmetry transformations

of the 1-forms of the theory are not deformed by the gauging, so they take the form

δǫA
0
µ = i

2e
2√
7
ϕ
ǭ
(

ψµ − i√
7
γµλ̃

∗
)

+ h.c. , (3.33)

δǫA
1

µ = i
2τ

∗e
− 3

2
√

7
ϕ+ 1

2
φ
(

ǭ∗ψµ − i
4 ǭγµλ+ 3i

4
√

7
ǭ∗γµλ̃

∗
)

+ h.c. , (3.34)

δǫA
2

µ = i
2e

− 3

2
√

7
ϕ+ 1

2
φ
(

ǭ∗ψµ − i
4 ǭγµλ+ 3i

4
√

7
ǭ∗γµλ̃

∗
)

+ h.c. (3.35)

The commutator of two of them gives, to lowest order in fermions,

[δǫ1 , δǫ2 ]A
0
µ = ξνF 0

νµ − Dµ

(

e
2√
7
ϕ
b
)

+ 2√
7
e

2√
7
ϕ
{[

ℜe(h̃) −
√

7ℑm(f)
]

ξµ

+
[

ℜe(g̃) −
√

7ℑm(k)
]

σµ +
[

ℑm(g̃) −
√

7ℜe(k)
]

ρµ

}

, (3.36)

[δǫ1 , δǫ2 ]A
1

µ = ξνF 1
νµ − ∂µ

[

e
− 3

2
√

7
ϕ+ 1

2
φ
(χd+ e−φc)

]

−AI
µ

[

(1
2ϑI

1 − 3
4ϑI

5)e
− 3

2
√

7
ϕ+ 1

2
φ
(χd+ e−φc) + 1

2 (ϑI
2 + ϑI

3)e
− 3

2
√

7
ϕ 1

2
φ
d
]

(3.37)

−2e
− 3

2
√

7
ϕ+ 1

2
φ
{

χ
[

ℑm(k)+ 3
4
√

7
ℜe(g̃)− 1

4ℜe(g)
]

+ e−φ
[

−ℜe(k)− 3
4
√

7
ℑm(g̃)− 1

4ℑm(g)
]}

ξµ

−2e
− 3

2
√

7
ϕ+ 1

2
φ
{

χ
[

−ℜe(f)− 3
4
√

7
ℑm(h̃)+ 1

4ℑm(h)
]

+e−φ
[

−ℑm(f)− 3
4
√

7
ℜe(h̃)− 1

4ℜe(h)
]}

ρµ

−2e
− 3

2
√

7
ϕ+ 1

2
φ
{

χ
[

ℑm(f)+ 3
4
√

7
ℜe(h̃)− 1

4ℜe(h)
]

+ e−φ
[

−ℜe(f)− 3
4
√

7
ℑm(h̃)− 1

4ℑm(h)
]}

σµ,
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and

[δǫ1, δǫ2 ]A
2

µ = ξνF 2
νµ − ∂µ

(

e
− 3

2
√

7
ϕ+ 1

2
φ
d
)

−AI
µ

[

1
2(ϑI

2 − ϑI
3)e

− 3

2
√

7
ϕ+ 1

2
φ
(χd+ e−φc) − 1

2ϑI
1e

− 3

2
√

7
ϕ+ 1

2
φ
d
]

−2e
− 3

2
√

7
ϕ+ 1

2
φ
[

ℑm(k) + 3
4
√

7
ℜe(g̃) − 1

4ℜe(g)
]

ξµ

−2e
− 3

2
√

7
ϕ+ 1

2
φ
[

−ℜe(f) − 3
4
√

7
ℑm(h̃) + 1

4ℑm(h)
]

ρµ

−2e
− 3

2
√

7
ϕ+ 1

2
φ
[

ℑm(f) + 3
4
√

7
ℜe(h̃) − 1

4ℜe(h)
]

σµ , (3.38)

where σµ and ρµ are spinor bilinears defined in appendix A.1.

The closure of the local supersymmetry algebra requires the commutators to take the

form

[δǫ1 , δǫ2 ]A
I
µ = £ξA

I
µ − DµΛI + ZI

iΛ
i
µ , (3.39)

which will only happen if gauge parameters ΛI are given by

Λ0 = a0 + e
2√
7
ϕ
b ,

Λ1 = a1 + e
− 3

2
√

7
ϕ+ 1

2
φ
(χd+ e−φc) ,

Λ2 = a2 + e
− 3

2
√

7
ϕ+ 1

2
φ
d ,

(3.40)

and the 1-form gauge parameters Λi
µ satisfy the relations

[

ℜe(h̃) −
√

7ℑm(f)
]

ξµ +
[

ℜe(g̃) −
√

7ℑm(k)
]

σµ +
[

ℑm(g̃) −
√

7ℜe(k)
]

ρµ

=
√

7
2 e

− 2√
7
ϕ
Z0

i

[

Λi
µ − (biµ − hIJ

iaIAJ
µ)
]

, (3.41)
{

χ
[

ℑm(k) + 3
4
√

7
ℜe(g̃) − 1

4ℜe(g)
]

+ e−φ
[

−ℜe(k) − 3
4
√

7
ℑm(g̃) − 1

4ℑm(g)
]}

ξµ

+
{

χ
[

−ℜe(f) − 3
4
√

7
ℑm(h̃) + 1

4ℑm(h)
]

+ e−φ
[

−ℑm(f)− 3
4
√

7
ℜe(h̃) − 1

4ℜe(h)
]}

ρµ

+
{

χ
[

ℑm(f) + 3
4
√

7
ℜe(h̃) − 1

4ℜe(h)
]

+ e−φ
[

−ℜe(f) − 3
4
√

7
ℑm(h̃) − 1

4ℑm(h)
]}

σµ ,

= −1
2e

+ 3

2
√

7
ϕ− 1

2
φ
Z1

i

[

Λi
µ − (biµ − hIJ

iaIAJ
µ)
]

, (3.42)
[

ℑm(k) + 3
4
√

7
ℜe(g̃) − 1

4ℜe(g)
]

ξµ +
[

−ℜe(f) − 3
4
√

7
ℑm(h̃) + 1

4ℑm(h)
]

ρµ

+
[

ℑm(f) + 3
4
√

7
ℜe(h̃) − 1

4ℜe(h)
]

σµ ,

= −1
2e

+ 3

2
√

7
ϕ− 1

2
φ
Z2

i

[

Λi
µ − (biµ − hIJ

iaIAJ
µ)
]

. (3.43)

Using the values of the parameters ΛI that we just have determined in the relations

eqs. (3.23) and (3.24) we can determine some of the fermions shifts:

ℜe(h̃) = ϑ0
AkA

ϕe
2√
7
ϕ
, (3.44)

g̃ = (ϑ1
Aτ∗ + ϑ2

A)kA
ϕe

− 3

2
√

7
ϕ+

1
2φ
, (3.45)

h = iϑ0
AkA

τe
2√
7
ϕ+φ

, (3.46)

g = ϑ1
AkA

τe
− 3

2
√

7
ϕ+ 1

2
φ
. (3.47)
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As a matter of fact, g is overdetermined: we get two different expression for it that

give the same value if and only if

(ϑ1
Aτ + ϑ2

A)kA
τ = 0 , (3.48)

which, upon use of the explicit expressions of the holomorphic Killing vectors kA
τ in sec-

tion 2.1, leads to the following linear constraints on the components of the embedding

tensor:
ϑ2

2 + ϑ2
3 = 0 ,

ϑ1
2 + ϑ1

3 + 2ϑ2
1 − 3

2ϑ2
5 = 0 ,

ϑ2
2 − ϑ2

3 − 2ϑ1
1 + 3

2ϑ1
5 = 0 ,

ϑ1
2 − ϑ1

3 = 0 .

(3.49)

These constraints allow us to express 4 of the 15 components of the embedding tensor

in terms of the remaining 11, but we are only going to do this after we take into account

the constraints that we are going to find in the closure of the local supersymmetry algebra

on the doublet of 2-forms Bi.

The values of g, h.g̃, h̃ and the above constraints are compatible with those of the

primary deformations found in ref. [41].

3.3 The 2-forms Bi

In the previous subsection we have introduced a doublet of 2-forms Bi with given gauge

transformations to construct the 2-form field strengths F I . We now have to construct their

covariant field strengths and check the closure of the local supersymmetry algebra on them.

3.3.1 The 3-form field strengths H i

In general we need to introduce 3-form potentials to construct the covariant 3-form field

strengths and, since in maximal 9-dimensional supergravity, we only have C at our disposal,

the 3-form field strengths will be given by

H i = DBi − hIJ
iAI ∧ dAJ − 1

3X[IJ
LhK]L

iAIJK + ZiC , (3.50)

and they transform covariantly under the gauge transformations of the 1- and 2-forms that

we have previously determined provided if the 3-form C transforms as

δΛC = −DΛ + gIi

[

−ΛIH i − F I ∧ Λi + δΛA
I ∧Bi − 1

3hJK
iAIJ ∧ δΛAK

]

+ ZΛ̃ . (3.51)

where gIi and Z are two possible new deformation parameters. gIi must satisfy the con-

straint

2hIJ
iZJ

j +XI j
i + ZigIj = 0 , (3.52)

while Z must satisfy the orthogonality constraint

ZiZ = 0 . (3.53)
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Both must by gauge-invariant, which implies the constraints

XIJ
LgLi +XI i

jgJj −XIgJi = 0 , (3.54)

(XI − X̃I)Z = 0 , (3.55)

where

X̃I ≡ ϑI
AT

(1̃)
A . (3.56)

Using the constraints obeyed by the deformation parameters and the explicit form of

the 2-form field strengths F I we can rewrite the 3-form field strengths in the useful form

H i =DBi−hIJ
iAI∧F J + 1

6X[IJ
LhK]L

iAIJK− 1
2XIj

iAI∧Bj+Zi
(

C − 1
2gIjA

I∧Bj
)

. (3.57)

3.3.2 Closure of the supersymmetry algebra on the 2-forms Bi

In the undeformed theory, the supersymmetry transformation rules for the 2-forms are

δǫB
1 = τ∗e

1

2
√

7
ϕ+ 1

2
φ
[

ǭ∗γ[µψν] − i
8 ǭγµνλ− i

8
√

7
ǭ∗γµν λ̃

∗
]

−δ1i

(

A0
[µ|δǫA

i
|ν] +Ai

[µ|δǫA
0
|ν]

)

+ h.c. , (3.58)

δǫB
2 = e

1

2
√

7
ϕ+ 1

2
φ
[

ǭ∗γ[µψν] − i
8 ǭγµνλ− i

8
√

7
ǭ∗γµν λ̃

∗
]

−δ2i

(

A0
[µ|δǫA

i
|ν] +Ai

[µ|δǫA
0
|ν]

)

+ h.c. . (3.59)

The last terms in both transformations are associated with the presence of derivatives of

A1 and A2 in the field strengths of B1 and B2 in the undeformed theory (see eq. (2.4)).

In the deformed theory, the terms −(A0 ∧ dAi + Ai ∧ dA0) are replaced by more general

couplings −hIJ
iAI ∧ dAJ and, therefore, it would be natural to replace the last terms in

δǫB
i
µν by

− 2hIJ
iAI

[µ|δǫA
J
|ν] . (3.60)

In the commutator of two supersymmetry transformations on the 2-forms, these terms

give the right contributions to the terms −2hIJ
iΛIF J of the gauge transformations (see

eq. (3.27)). However, these terms must receive other contributions in order to be complete

and it turns out that the only terms of the form −2hIJ
iΛIF J that can be completed are

precisely those of the undeformed theory, which correspond to

hi0
j = −1

2δi
j . (3.61)

In order to get more general hIJ
is it would be necessary to deform the fermions’

supersymmetry rules, something we will not do here. Furthermore, the structure of the

Chern-Simons terms of the field strengths is usually determined by the closure of the

supersymmetry algebra at higher orders in fermions and it is highly unlikely that a more

general structure of the Chern-Simons terms will be allowed by supersymmetry. Therefore,

from now on, we will set hIJ
i to the above value and we will set the values of the deformation

tensors in the Chern-Simons terms of the higher-rank field strengths, to the values of the

undeformed theory. Using the above value of hIJ
i in the constraints in which it occurs will
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help us to solve them, sometimes completely, as we will see. Nevertheless, we will keep

using the notation hIJ
i for convenience.

Using the identity

ξρH i
ρµν − 2hIJ

iAI
µ£ξA

J
ν = £ξB

i
µν − 2D[µ|(b

i
|ν] − hIJ

iaIAJ
|ν])]

−2hIJ
iaIF J

µν

+Zi
(

cµν − gIja
IBj

µν + 2
3gJjhIK

jaIAJK
µν]

)

,

(3.62)

we find that the local supersymmetry algebra closes on the Bis in the expected form (to

lowest order in fermions)

[δǫ1 , δǫ2 ]B
i
µν = £ξB

i
µν + δΛB

i
µν , (3.63)

where δΛB
i
µν is the gauge transformation given in eq. (3.27) in which the 0-form gauge

parameters ΛI are as in eqs. (3.40), the 1-form gauge parameters Λi
µ are given by

Λi
µ = λi

µ + biµ − hIJ
iaIAJ

µ , (3.64)

where

λ1
µ ≡ e

1

2
√

7
ϕ+ 1

2
φ
(χσµ − e−φρµ) ,

λ2
µ ≡ e

1

2
√

7
ϕ
σµ ,

(3.65)

and the shift term is given by

Z1
[

Λµν −
(

cµν − gIja
IBj

µν + 2
3gJjhIK

jaIAJK
µν

)]

= e
1

2
√

7
ϕ+ 1

2
φ
[(

1
2ℑm(g) − 4ℜe(k) + 1

2
√

7
ℑm(g̃)

)

χ

−
(

1
2ℜe(g) + 4ℑm(k) − 1

2
√

7
ℜe(g̃)

)

e−φ
]

ξµν , (3.66)

Z2
[

Λµν −
(

cµν − gIja
IBj

µν − 2
3gJjhIK

jaIAJK
µν

)]

= e
1

2
√

7
ϕ+ 1

2
φ
(

1
2ℑm(g) − 4ℜe(k) + 1

2
√

7
ℑm(g̃)

)

ξµν . (3.67)

Now, let us analyze the constraints that involve hIJ
i. From those that only involve

the embedding tensor we find seven linear constraints that imply those in eqs. (3.49) and

that can be used to eliminate seven components of the embedding tensor:

ϑ2
1 = 0 , ϑ1

2 = 3
4ϑ2

5 , ϑ1
3 = 3

4ϑ2
5 ,

ϑ1
1 = 3

2ϑ1
5 , ϑ2

2 = 3
4ϑ1

5 , ϑ2
3 = −3

4ϑ1
5 ,

ϑ0
4 = −1

6ϑ0
5 ,

(3.68)

leaving the eight components (a triplet of SL(2,R) in the upper component, a singlet and

two doublets of SL(2,R) in the lower components)

ϑ0
m , m = 1, 2, 3 , ϑ0

5 , ϑi
4 , ϑi

5 , i = 1,2 , (3.69)

as the only independent ones. These components correspond to the eight deformation

parameters of the primary deformations studied in ref. [41]. More precisely, the relation

between them are

ϑ0
m = mm , (m = 1, 2, 3) ϑ1

4 = −m11 , ϑ1
5 = m̃4 ,

ϑ0
5 = −16

3 mIIB , ϑ2
4 = mIIA , ϑ2

5 = m4 .
(3.70)
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From the constraints that relate hIJ
i to ZI

i, Z
i and gIi we can determine all these

tensors, up to a constant ζ, in terms of the independent components of the embedding

tensor:

Z i
j = ϑ0

m(Tm)j
i − 3

4ϑ0
5δj

1δ1
i , Z0

i = 3ϑi
4 + 1

2ϑi
5 ,

g0i = 0 , gij = εij .
(3.71)

The constant ζ is the coefficient of a Chern-Simons term in the 4-form field strength

and, therefore, will be completely determined by supersymmetry.

Finally, using all these results in eqs. (3.41)–(3.43) we find

k = − 9i
14e

− 3

2
√

7
ϕ+ 1

2
φ
(ϑ1

4τ + ϑ2
4) , (3.72)

ℑm(f) = 3
28ϑ0

5e
2√
7
ϕ
, (3.73)

ℜe(f) + 3
4
√

7
ℑm(h̃) = 1

4e
2√
7
ϕ+φ {1

2(ϑ0
2 + ϑ0

3) +
(

ϑ0
1 − 3

4ϑ0
5
)

χ

−1
2(ϑ0

2 − ϑ0
3)|τ |2

}

, (3.74)

which determines almost completely all the fermion shifts. We find that, in order to

determine completely ℜe(f) and ℑm(h̃), separately, one must study the closure of the

supersymmetry algebra on the fermions of the theory or on the bosons at higher order in

fermions. The result is

ℜe(f) = 1
14e

2√
7
ϕ
ϑ0

mPm , (3.75)

ℑm(h̃) = 4√
7
e

2√
7
ϕ
ϑ0

mPm . (3.76)

All these results are collected in appendix C.

3.4 The 3-form C

In the next step we are going to consider the last of the fundamental, electric p-forms of

the theory, the 3-form C, whose gauge transformation is given in eq. (3.51).

3.4.1 The 4-form field strength G

The 4-form field strength G is given by

G = DC − gIi

(

F I − 1
2Z

I
jB

j
)

∧Bi − 1
3hIK

igJiA
IJ ∧ dAK + ZC̃ , (3.77)

and it is covariant under general gauge transformations provided that the 4-form C̃ trans-

forms as

δΛC̃ = −DΛ̃− g̃I

[

ΛIG+ C ∧ δΛAI + F I ∧ Λ + 1
12gJihKL

iAIJK ∧ δΛAL
]

−g̃ij[2H
i ∧ Λj −Bi ∧ δΛBj + 2hIJ

iBj ∧AI ∧ δΛAJ ]

−g̃IJK

[

3ΛIF JK + 2(F I − ZI
iB

i) ∧AJ ∧ δΛAK − 1
4XLM

JAILM ∧ δΛAK
]

+ZiΛ̃i ,

(3.78)
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where the new deformation tensors that we have introduced, g̃I , g̃ij = −g̃ji and g̃IJK =

g̃(IJK), are subject to the constraints

gI[iZ
I
j] + Zg̃ij = 0 , (3.79)

XI + gIiZ
i + Zg̃I = 0 , (3.80)

h(IJ
igK)i − Zg̃IJK = 0 , (3.81)

plus the constraints that express the gauge invariance of the new deformation parameters

X̃I g̃J −XI J
K g̃K = 0 , (3.82)

X̃I g̃ij − 2XI [i|
kg̃k|j] = 0 , (3.83)

X̃I g̃JKL − 3XI (J
M g̃KL)M = 0 . (3.84)

3.4.2 Closure of the supersymmetry algebra on the 3-form C

Taking into account the form of δǫCµνρ in the undeformed case and the form of the field

strength G, we arrive at the following Ansatz for the supersymmetry transformation of the

3-form C:

δǫCµνρ =−3
2e

− 1√
7
ϕ
ǭγ[µν

(

ψρ] + i

6
√

7
λ̃∗
)

+h.c.+3δǫA
I
[µ|
(

gIiB
i
|νρ] +

2
3hIJ

igKiA
JK

|νρ]

)

. (3.85)

The last two terms are written in terms of the tensors gIi and hIJ
i. In the undeformed

theory these tensors have values which are determined by supersymmetry (at orders in

fermions higher than we are considering here) and that cannot be changed in the deformed

theory, as we already discussed when we considered the 2-forms for hIJ
i. Thus, hIJ

i is

given by eq. (3.61) and gIi is given by eqs. (3.71) with ζ = +1

Using the identity

ξσGσµνρ + 3£ξA
I
[µ|
[

gIiB
i
|νρ] +

2
3hIJ

igKiA
JK

|νρ]

]

=

= £ξCµνρ − 3D[µ|
[(

c|νρ] − gIja
IBj

|νρ] + 2
3gJjhIK

jaIAJK
|νρ]

)]

+gIi

[

−aIH i
µνρ − 3F I

[µν|(b
i
|ρ] − hJK

iaJAK
|ρ])
]

+Z
{

c̃µνρ − g̃Ia
ICµνρ + 3g̃ijB

i
[µν|(b

j
|ρ] − hJK

jaJAK
ρ) − 12g̃IJKa

IAJ
[µ∂νA

K
ρ]

+3hIJ
ig̃ija

IAJ
[µB

j
νρ] − 1

4

(

hIJ
igKig̃L + 3XJK

M g̃ILM

)

aIAJKL
µνρ

}

, (3.86)

one can see that the local supersymmetry algebra closes into a general coordinate trans-

formation plus a gauge transformation of C of the form eq. (3.51) with

Λµν = e
1√
7
ϕ
ξµν +

(

cµν − gIja
IBj

µν − 2
3gJjhIK

jaIAJK
µν

)

, (3.87)

and with the identification

Z
{

Λ̃µνρ − c̃µνρ + g̃Ia
ICµνρ + 3g̃ijB

i
[µν|
(

bj |ρ] − hJK
jaJAK

|ρ]

)

− 12g̃IJKa
IAJ

[µ∂νA
K

ρ]

−3g̃ijhIJ
iaIAJ

[µB
j
νρ] + 1

4

(

g̃LgKihIJ
i + 3g̃ILNXJK

N
)

aIAJKL
µνρ

}

= 6e
− 1√

7
ϕ
[

ℑm(f) + 1
6
√

7
ℜe(h̃)

]

ζµνρ . (3.88)
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Comparing eq. (3.87) with eqs. (3.66) and (3.67) we find that

Z1 = X2 = 3ϑ2
4 − 1

4ϑ2
5 , Z2 = −X1 = −3ϑ1

4 + 1
4ϑ1

5 . (3.89)

To make further progress it is convenient to compute the 5-form G̃ since it will contain

the tensors g̃I , g̃ij , g̃IJK that appear in the above expression. These tensors cannot be

deformed (just as it happens with hIJ
i) and their values can be found by comparing the

general form of G̃ with the value found by duality, eq. (2.41).

The generic form of the magnetic 5-form field strength G̃ is

G̃ = DC̃ − g̃J

[

(F J − ZJ
jB

j) ∧ C + 1
12gKjhMN

jAJKM ∧ dAN
]

+2g̃ij

(

H i − 1
2DBi

)

∧Bj − g̃JKL

(

AJ ∧ dAKL + 3
4XMN

LAJMN ∧ dAK
)

+ZiB̃i ,

(3.90)

and comparing this generic expression with eq. (2.41) we find that

g̃I = −δI0 , g̃ij = −1
2εij , g̃IJK = 0 . (3.91)

Plugging these values into the constraints that involve Z eqs. (3.53), (3.55),

and (3.79)–(3.81) we find that it must be related to ϑ0
5 by

Z = −3
4ϑ0

5 , (3.92)

and that ϑ0
5 must satisfy the two doublets of quadratic constraints

ϑi
4ϑ0

5 = 0 , (3.93)

ϑi
5ϑ0

5 = 0 . (3.94)

Plugging our results into all the other constraints between deformation tensors, we find

that all of them are satisfied provided that the quadratic constraints

εijϑi
4ϑj

5 = 0 , (3.95)

ϑ0
m
(

12ϑi
4 + 5ϑi

5
)

= 0 , (3.96)

ϑj
4 (ϑm

0 Tm)i
j = 0 , (3.97)

are also satisfied. This set of irreducible quadratic constraints that cannot be used to solve

some deformation parameters in terms of the rest in an analytic form, and with which the

9-form potentials of the theory may be associated as explained in section 2.2 is one of our

main results.

4 Summary of results and discussion

In the previous section we have constructed order by order in the rank of the p-forms

the supersymmetric tensor hierarchy of maximal 9-dimensional supergravity, up to p = 3,

which covers all the fundamental fields of the theory.
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As it usually happens in all maximal supergravity theories, all the deformation pa-

rameters can be expressed in terms of components of the embedding tensor. Furthermore,

we have shown that gauge invariance and local supersymmetry allow for one triplet, two

doublets and one singlet of independent components of the embedding tensor

ϑ0
m , m = 1, 2, 3 , ϑ0

5 , ϑi
4 , ϑi

5 , i = 1,2 . (4.1)

They can be identified with the deformation parameters studied in ref. [41]:

ϑ0
m = mm , (m = 1, 2, 3) ϑ1

4 = −m11 , ϑ1
5 = m̃4 ,

ϑ0
5 = −16

3 mIIB , ϑ2
4 = mIIA , ϑ2

5 = m4 .
(4.2)

This proves, on the one hand, that no more deformations are possible and, on the other

hand, that all the deformations of maximal 9-dimensional supergravity have a higher-

dimensional origin, as shown in ref. [41].

Furthermore, we have also shown that it is not possible to give non-zero values to

all the deformation parameters at the same time, since they must satisfy the quadratic

constraints

ϑ0
m
(

12ϑi
4 + 5ϑi

5
)

≡ Qm
i = 0 , (4.3)

ϑi
4ϑ0

5 ≡ Q4
i = 0 , (4.4)

ϑi
5ϑ0

5 ≡ Q5
i = 0 , (4.5)

ϑj
4 (ϑm

0 Tm)i
j ≡ Qi = 0 , (4.6)

εijϑi
4ϑj

5 ≡ Q = 0 , (4.7)

all of which are related to gauge invariance.

Using these results, we can now apply the arguments developed in section 2.2 to relate

the number of symmetries (Noether currents), deformation parameters, and quadratic con-

straints to the numbers (and symmetry properties) of 7-, 8- and 9-forms of the theory. Our

results can be compared with those presented in ref. [12] (table 6) and ref. [13] (table 3)

and found from E11 level decomposition.

Associated with the symmetry group of the equations of motion of the theory,

SL(2,R) × R
2 there are 5 Noether currents jA that fit into one triplet and two singlets

of SL(2,R) and are explicitly given in appendix B. Their weights are given in table 4.

They can be dualized as explained in section 2.2 into a triplet and two singlets of 7-forms

Ã(7) whose weights are given in table 7. In refs. [12, 13] the β rescaling has not been con-

sidered. As mentioned before, it corresponds to the so-called trombone symmetry which

may not survive to higher-derivative string corrections. The associated 7-form singlet Ã5
(7)

does not appear in their analysis. The weights assigned in those references to the fields

correspond to one third of the weight of the α rescaling in our conventions.

Associated with each of the SL(2,R) multiplets of independent embedding-tensor com-

ponents there is a dual multiplet of 8-forms Ã(8) (i.e. one triplet, two doublets and one

singlet) whose weights are given in table 7. The doublet and singlet associated with the

gauging of the trombone symmetry using the doublet and singlet of 1-forms are missing in
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R
+ j1 j2 − j3 j2 + j3 j4 j5
α 0 0 0 0 0

β 0 +3/4 −3/4 0 0

γ 0 −2 +2 0 0

δ 0 0 0 0 0

Table 4. Weights of the Noether currents.

R
+ ϑ0

1 ϑ0
2 − ϑ0

3 ϑ0
2 + ϑ0

3 ϑ1
4, ϑ1

5 ϑ1
4, ϑ2

5 ϑ0
5

α −3 −3 −3 0 0 −3

β −1/2 −5/4 1/4 3/4 0 −1/2

γ 0 2 −2 −1 1 0

δ 0 0 0 −2 −2 0

Table 5. Weights of the embedding tensor components.

R
+ Q1

1 Q2
1 Q1

2−3 Q2
2−3 Q1

2+3 Q2
2+3 Q1

4,Q1
5 Q2

4,Q2
5 Q1 Q2 Q

α −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 0

β 1/4 −1/2 −1/2 −5/4 1 1/4 1/4 −1/2 1/4 −1/2 3/4

γ −1 1 1 3 −3 −1 −1 1 −1 1 0

δ −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −4

Table 6. Weights of quadratic constraints components.

refs. [12, 13], but the rest of the 8-forms and their weights are in perfect agreement with

those obtained from E11. Given the amount of work that it takes to determine which are

the independent components of the embedding tensor allowed by supersymmetry, this is a

quite non-trivial test of the consistency of the E11 and the embedding-tensor approaches.

Finally, associated with each of the quadratic constraints that the components of the

embedding tensor must satisfy Qi
m,Qi

4,Qi
5,Qi,Q there is a 9-form potential Ã(9). The

weights of these potentials are given in table 7. If we set to zero the embedding-tensor

components associated with the trombone symmetry ϑA
5, the only constraints which are

not automatically solved are

Qi
m = 12ϑ0

mϑi
4 = 0 , Qi = ϑj

4 (ϑm
0 Tm)i

j = 0 . (4.8)

The first of these constraints can be decomposed into a quadruplet and a doublet:

rewriting Qi
m in the equivalent form

Qi(jk) = ϑi
4 (ϑm

0 Tm)j
lεkl , (4.9)

the quadruplet corresponds to the completely symmetric part Q(ijk) and the doublet to

εjkQj(ki) = −Qi , (4.10)

which is precisely the other doublet. Therefore, we get the quadruplet and one doublet of

9-forms with weight 4 under α/3, while one more doublet is found in refs. [12, 13].
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R
+ Ãm

(7) Ã4
(7) Ã5

(7) Ãm
(8) Ã4 i

(8) Ã5 i
(8) Ã4

(8) Ãi
(9) m

Ãi
(9) 4 Ãi

(9) 5 Ãi
(9) Ã(9)

α 9 9 9 12 9 9 12 12 12 12 12 9

δ 8 8 8 8 2 2 8 10 10 10 10 12

Table 7. Weights of the 7-, 8- and 9-form fields.

This situation is similar to the one encountered in the N = 2 theories in d = 4, 5, 6

dimensions [30]. In those cases, the Kač-Moody (here E11) approach predicts one doublet of

d-form potentials more than the embedding-tensor formalism [11]. However, it can be seen

that taking the undeformed limit of the results obtained in the embedding-tensor formalism,

one additional doublet of d-forms arises because some Stückelberg shifts proportional to

deformation tensors that could be used to eliminate them, now vanish. Furthermore, the

local supersymmetry algebra closes on them as independent fields.

By analogy with what happens in the N = 2 theories in d = 4, 5, 6 dimensions, the

same mechanism can make our results compatible with those of the E11 approach (up

to the trombone symmetry): we expect the existence of two independent doublets of

9-forms in the undeformed theory but we also expect new Stückelberg transformations

in the deformed theory such that one a combination of them is independent and the

supersymmetry algebra closes.

This possibility (and the exclusion of any further 9-forms) can only be proven by the

direct exploration of all the possible candidates to 9-form supersymmetry transformation

rules, to all orders in fermions, something that lies outside the boundaries of this work.

5 Conclusions

In this paper we have applied the embedding-tensor formalism to the study of the most

general deformations (i.e. gaugings and massive deformations) of maximal 9-dimensional

supergravity. We have used the complete global SL(2,R)×R
2 symmetry of its equations of

motion, which includes the so-called trombone symmetry. We have found the constraints

that the deformation parameters must satisfy in order to preserve both gauge and super-

symmetry invariance (the latter imposed through the closure of the local supersymmetry

algebra to lowest order in fermions). We have used most of the constraints to express

some components of the deformation tensors in terms of a few components of the embed-

ding tensor which we take to be independent and which are given in eq. (4.1). At that

point we have started making contact with the results of ref. [41], since those independent

components are precisely the 8 possible deformations identified there. All of them have a

higher-dimensional origin discussed in detail in ref. [41]. The field strengths, gauge trans-

formations and supersymmetry transformations of the deformed theory, written in terms

of the independent deformation tensors, are collected in appendix C.

The 8 independent deformation tensors are still subject to quadratic constraints, given

in eq. (4.3), but those constraints cannot be used to express analytically some of them in

terms of the rest, and, therefore, we must keep the 8 deformation parameters and we must

enforce these irreducible quadratic constraints.
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In section 4 we have used our knowledge of the global symmetries (and corresponding

Noether 1-forms), the independent deformation tensors and the irreducible quadratic con-

straints of the theory, together with the general arguments of section 2.2 to determine the

possible 7-, 8- and 9-forms of the theory (table 7), which are dual to the Noether currents,

independent deformation tensors and irreducible quadratic constraints. We have compared

this spectrum of higher-rank forms with the results of refs. [12, 13], based on E11 level de-

composition. We have found that, in the sector unrelated to the trombone symmetry, which

was excluded from that analysis, the embedding-tensor formalism predicts one doublet of

9-forms less than the E11 approach. However, both predictions are not contradictory: the

extra doublet of 9-forms may not survive the deformations on which the embedding-tensor

formalism is built: new 9-form Stückelberg shifts proportional to the deformation parame-

ters may occur that can be used to eliminate it so only one combination of the two 9-form

doubles survives. This mechanism is present in the N = 2 d = 4, 5, 6 theories [30], although

the physics behind it is a bit mysterious.

We can conclude that we have satisfactorily identified the extended field content (the

tensor hierarchy) of maximal 9-dimensional supergravity and, furthermore, that all the

higher-rank fields have an interpretation in terms of symmetries and gaugings. This situ-

ation is in contrast with our understanding of the extended field content of the maximal

10-dimensional supergravities (N = 2A,B) for which the E11 approach can be used to

get a prediction of the higher-rank forms (which turns out to be correct [4–6]) but thw

embedding-tensor approach apparently cannot be used16 for this end. This seems to pre-

clude an interpretation for the 9- and 10-form fields in terms of symmetries and gaugings,17

at least if we insist in the standard construction of the tensor hierarchy that starts with

the gauging of global symmetries. Perhaps a more general point of view is necessary.
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n 0 1 2 3 4 5 6 7 8 9

an − + − + − + − + − +

bn + − − + + − − + + −

Table 8. Values of the coefficients an and bn defined in eqs. (A.3).

A Conventions

We follow the conventions of ref. [41]. In particular, we use mostly plus signature

(−,+, · · · ,+) and the gamma matrices satisfy

γ∗a = −γa , γa = ηaaγ
†
a . (A.1)

The Dirac conjugate of a spinor ǫ is defined by

ǭ ≡ ǫ†γ0 . (A.2)

Then, we have

(ǭγ(n)λ)∗ = anǭ
∗γ(n)λ∗ ,

(ǭγ(n)λ)∗ = bnλ̄γ
(n)ǫ ,

(A.3)

where the signs an and bn are given in table 8

A.1 Spinor bilinears

We define the following real bilinears of the supersymmetry parameters ǫ1 and ǫ2:

ǭ2ǫ1 ≡ a+ ib , (A.4)

ǭ2ǫ
∗
1 ≡ c+ id , (A.5)

ǭ2γµ1···µnǫ1 ≡ ξµ1···µn + iζµ1···µn , (A.6)

ǭ2γµ1···µnǫ
∗
1 ≡ σµ1···µn + iρµ1···µn , (A.7)

A.2 Relation with other conventions

The electric fields used in this paper are related to those used in ref. [37] (which uses a

mostly minus signature) as follows:

K = e
√

7

3
ϕ , (A.8)

λ ≡ C(0) + ie−ϕ = τ ≡ χ+ ie−φ , (A.9)

A(1) = A0 , (A.10)

A(1) = Ai , (A.11)

A(2) = Bi + 1
2A

0i , (A.12)

A(3) = −C + 1
2εijA

i ∧Bj − 1
12εijA

0ij , (A.13)

A(4) = −C̃ + C ∧A0 − 1
4εijB

i ∧A0j . (A.14)
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The field strengths are related by

F(2) = F 0 , (A.15)

F(2) = F i , (A.16)

F(3) = H i , (A.17)

F(4) = −G , (A.18)

F(5) = −G̃ . (A.19)

The relation with the fields used in ref. [41] (which also uses mostly plus signature) is

given by (our fields are in the r.h.s. of these equations)

Bi = −
(

Bi + 1
2A

0i
)

, (A.20)

C = −
(

C − 1
6εijA

0ij
)

, (A.21)

while the field strengths are related by

H i = −H i , (A.22)

G = −G . (A.23)

The rest of the fields are identical.

B Noether currents

The Noether 1-form currents of the undeformed theory jA are given by

⋆jm = ⋆ dMij

(

M−1
)

jk
Tmi

k + e
4√
7
ϕ
(M−1

ij )Tmk
iAk ∧ ⋆F j

+ Tmk
i
[

e
− 1√

7
ϕM−1

ij

(

Bk − 1
2A

0k
)

∧ ⋆Hj + 1
2εij

(

−2e
2√
7
ϕ
Aj ∧Bk ∧ ⋆G

+
(

Bj −A0j
)

∧Bk ∧G+ εlnA
l ∧Bjk ∧

(

Hn − 1
2A

n ∧ F 0
)

+1
4εlnA

0ln ∧Bk ∧Hj
)]

, (B.1)

⋆j4 = 6√
7
⋆ dϕ+ 3

[

e
4√
7
ϕ
A0∧⋆F 0+e

− 1√
7
ϕM−1

ij

(

Bi+ 1
2A

0i
)

∧⋆Hj +e
2√
7
ϕ
(

C− 1
6εijA

0ij
)

∧⋆G

+A0 ∧
(

C + εijA
i ∧Bj

)

∧G
]

+ 3
2εij

[(

−C + εklA
k ∧Bl − 7

12εklA
0kl
)

∧Bi ∧Hj

−3
2A

0i ∧ C ∧Hj +
(

Ai ∧Bj − 1
2A

0ij
)

∧ F 0 ∧ C
]

, (B.2)

⋆j5 =
√

7
4 ⋆ dϕ− 3

8 ⋆
τdτ̄ + c.c.

(ℑmτ)2
+ e

4√
7
ϕ
T50

0A0 ∧ ⋆F 0 + e
3√
7
ϕ
T5k

iM−1
ij A

k ∧ ⋆F j

+ e
− 1√

7
ϕM−1

ij

[

T5k
i
(

Bk − 1
2A

0k
)

+ 1
4A

0i
]

∧ ⋆Hj

+ e
2√
7
ϕ
(

T5C − 1
12εijA

0ij − T5k
iεij

(

Ak ∧Bj − 1
6A

0kj
))

∧ ⋆G

+ 1
4εij

[

T5k
i
(

−2Bjk + 3A0j ∧Bk − 5A0k ∧Bj
)

− 1
2A

0i ∧Bj
]

∧G

+ 1
4εij

[

T5k
i
(

+2εlnA
l∧Bnk−εlnA0ln∧Bk

)

−T5

(

6A0i+Bi
)

∧C− 1
12εklA

0kl∧Bi
]

∧Hj

+ εijεlnT5k
i
[

5
6A

0jk ∧Bl −A0lj ∧Bk + 1
2A

k ∧Bjl
]

∧Hn

+ T5

[

A0 ∧ C ∧G+ 1
2εij

(

Bj + 1
2A

0j
)

∧Ai ∧ F 0 ∧ C
]

(B.3)
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C Final results

In this appendix we give the final form of the deformed covariant field strengths, covari-

ant derivatives, gauge and supersymmetry transformations in terms of the independent

deformation parameters given in eq. (4.1). We must bear in mind that they are assumed

to satisfy the irreducible quadratic constraints given in eq. (4.3) and only then the field

strengths etc. have the right transformation properties.

The covariant derivatives of the scalar fields are given by

Dϕ = dϕ− 137
24

√
7
ϑ0

5A0 +
(

−
√

7
4 ϑi

4 + 6√
7
ϑi

5
)

Ai , (C.1)

Dτ = dτ + ϑ0
mkm

τA0 − 3
4ϑ0

5τA0 + 3
4

(

ϑ1
5τ + ϑ2

5
) (

A1 − τA2
)

, (C.2)

and their gauge transformations are explictly given by

δΛϕ = − 137
24

√
7
ϑ0

5Λ0 +
(

−
√

7
4 ϑi

4 + 6√
7
ϑi

5
)

Λi , (C.3)

δΛτ = ϑ0
mkm

τΛ0 − 3
4ϑ0

5τΛ0 + 3
4

(

ϑ1
5τ + ϑ2

5
) (

Λ1 − τΛ2
)

. (C.4)

The deformed p-form field strengths are given by

F 0 = dA0 − 1
2

(

3ϑi
4 + 1

2ϑi
5
)

A0i +
(

3ϑi
4 + 1

2ϑi
5
)

Bi , (C.5)

F i = dAi + 1
2

(

ϑ0
m(T (3)

m )j
iA0j − 3

4δ1
iϑ0

5A01 + 3
2ε

ijϑj
5A12

)

+ϑ0
m(T (3)

m )j
iBj − 3

4δ1
iϑ0

5B1 , (C.6)

H i = DBi + 1
2

(

A0 ∧ dAi +Ai ∧ dA0
)

+ 1
6ε

ij
(

3ϑj
4 + 1

2ϑj
5
)

A012

+εij
(

3ϑj
4 − 1

4ϑj
5
)

C , (C.7)

G = DC − εij

[

F i ∧Bj − 1
2δ

j
j

(

Ai ∧ dAj − 1
3d(A

0ij)
)]

+1
2

(

εijϑ0
m(T (2)

m )k
iBjk − 3

4ϑ0
5B12

)

+ ZC̃ , (C.8)

where the covariant derivatives acting on the different fields are given by

DBi = dBi + ϑ0
m(T (2)

m )j
iA0 ∧Bj − 3

4δ1
iϑ0

5A0 ∧B1

+
(

3ϑk
4 − 1

4ϑk
5
)

Ak ∧Bi + 3
4δj

iϑk
5Aj ∧Bk , (C.9)

DC = dC − 3
4ϑ0

5A0 ∧ C +
(

3ϑi
4 − 1

4ϑi
5
)

Ai ∧C . (C.10)

The field strengths transform covariantly under the gauge transformations

δΛA
0 = −DΛ0 +

(

3ϑi
4 + 1

2ϑi
5
)

Λi , (C.11)

δΛA
i = −DΛi + ϑ0

m(T (3)
m )j

iΛj − 3
4δ1

iϑ0
5Λ1 , (C.12)

δΛB
i = −DΛi + F 0 ∧ Λi + F iΛ0 + 1

2

(

A0 ∧ δΛAi +Ai ∧ δΛA0
)

+εij
(

3ϑj
4 − 1

4ϑj
5
)

Λ , (C.13)

δΛ

(

C − 1
6εijA

0ij
)

= −DΛ − εij

(

ΛiHj + F i ∧ Λj − δΛA
i ∧Bj

)

−1
2εijA

0iδΛA
j + ZΛ̃ , (C.14)
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where the covariant derivatives of the different gauge parameters are given by

DΛ0 = dΛ0 +
(

3ϑi
4 + 1

2ϑi
5
)

AiΛ0 , (C.15)

DΛi = dΛi + ϑ0
m(T (3)

m )j
iA0Λj − 3

4δ1
iϑ0

5A0Λ1 + 3
4ε

ijεklϑj
5AkΛl , (C.16)

DΛi = dΛi + ϑ0
m(T (2)

m )j
iA0 ∧ Λj +

(

3ϑk
4 − 1

4ϑk
5
)

Ak ∧ Λi

+3
4δj

iϑk
5Aj ∧ Λk , (C.17)

DΛ = dΛ − 3
4ϑ0

5A0 ∧ Λ +
(

3ϑi
4 − 1

4ϑi
5
)

Ai ∧ Λ . (C.18)

The supersymmetry transformation rules of the fermion fields are given by

δǫψµ = Dµǫ+ fγµǫ+ kγµǫ
∗ + i

8·2!e
− 2√

7
ϕ
(

5
7γµγ

(2) − γ(2)γµ

)

F 0ǫ

− 1
8·2!e

3

2
√

7
ϕ+ 1

2
φ
(

5
7γµγ

(2) − γ(2)γµ

)

(F 1 − τF 2)ǫ∗

− i
8·3!e

− 1

2
√

7
ϕ
(

3
7γµγ

(3) + γ(3)γµ

)

(H1 − τH2)ǫ∗

− 1
8·4!e

1√
7
ϕ
(

1
7γµγ

(4) − γ(4)γµ

)

Gǫ , (C.19)

δǫλ̃ = i 6Dϕǫ∗ + g̃ǫ+ h̃ǫ∗ − 1√
7
e
− 2√

7
ϕ 6F 0ǫ∗ − 3i

2·2!
√

7
e

3

2
√

7
ϕ+ 1

2
φ
(6F 1 − τ∗ 6F 2)ǫ

− 1
2·3!

√
7
e
− 1

2
√

7
ϕ+ 1

2
φ
(6H1 − τ∗ 6H2)ǫ− i

4!
√

7
e

1√
7
ϕ 6Gǫ∗ , (C.20)

δǫλ = −eφ 6Dτǫ∗ + gǫ+ hǫ∗ − i
2·2!e

3

2
√

7
ϕ+ 1

2
φ
(6F 1 − τ 6F 2)ǫ

+ 1
2·3!e

− 1

2
√

7
ϕ+ 1

2
φ
(6H1 − τ 6H2)ǫ , (C.21)

where

Dµǫ =
{

∇µ + i
2

[

1
2e

φ
D

5
µχ+AI

µϑI
mPm

]

+ 9
14γµ 6AIϑI

4
}

ǫ , (C.22)

D
5
µχ = ∂µχ− 3

4A
I
µϑI

5χ , (C.23)

and where the fermion shifts are given by

f = 1
14e

2√
7
ϕ (
ϑ0

mPm + 3i
2 ϑ0

5
)

, (C.24)

k = − 9i
14e

− 3ϕ

2
√

7
+ φ

2
(

ϑ1
4τ + ϑ2

4
)

, (C.25)

g̃ = e
− 3ϕ

2
√

7
+ φ

2

[

6√
7

(

ϑ1
4τ∗ + ϑ2

4
)

+
√

7
4

(

ϑ1
5τ∗ + ϑ2

5
)

]

, (C.26)

h̃ = 4√
7
e

2√
7
ϕ ( 3

16ϑ0
5 + iϑ0

mPm

)

, (C.27)

g = 3
4e

− 3ϕ

2
√

7
+ φ

2
(

ϑ1
5τ + ϑ2

5
)

, (C.28)

h = ie
2ϕ√

7
+φ (

ϑ0
mkm

τ − 3
4ϑ0

5τ
)

. (C.29)
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The supersymmetry transformations of the bosonic fields are

δǫϕ = − i
4 ǭλ̃

∗ + h.c. , (C.30)

δǫτ = −1
2e

−φǭ∗λ , (C.31)

δǫA
0
µ = i

2e
2√
7
ϕ
ǭ
(

ψµ − i√
7
γµλ̃

∗
)

+ h.c. , (C.32)

δǫA
1

µ = i
2τ

∗e
− 3

2
√

7
ϕ+ 1

2
φ
(

ǭ∗ψµ − i
4 ǭγµλ+ 3i

4
√

7
ǭ∗γµλ̃

∗
)

+ h.c. , (C.33)

δǫA
2

µ = i
2e

− 3

2
√

7
ϕ+ 1

2
φ
(

ǭ∗ψµ − i
4 ǭγµλ+ 3i
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ǭ∗γ[µψν] − i
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