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1 Introduction

Since the work by Maldacena [1] there has appeared a wealth of papers in the literature

based on holographic AdS/QCD-inspired models with various phenomenological claims. In

refs. [2, 3], an attempt was made to identify the Kaluza-Klein states of a five dimensional

quantum field theory with the infinity of meson resonances obtained in QCD in the large-Nc

limit. Although tantalizing, this identification is not without shortcomings. For instance,

no asymptotically-free beta function was obtained and, although in some particular cases

the parton model logarithm was reconstructed for the short distance behavior of two-point

functions, the full condensate expansion at large momentum was missing. Furthermore, a

linear spacing rule was obtained for the meson masses rather than their squares, unlike the

case of the Regge trajectories. It was then claimed [4] that one could obtain this infinite

spectrum for large-Nc QCD from a Padé approximation to the parton model logarithm,

an approach that had been proposed many years earlier in ref. [5]. This is certainly a

rather courageous statement as there are an infinity of spectra which are consistent with

the same parton model logarithm at high momentum [6–8]. A non trivial dilaton field was

later on introduced in ref. [9] as a possible mechanism to recover the right Regge behavior

in the spectrum.

The lack of a proper Operator Product Expansion (OPE) was tackled in ref. [10].

In this reference, it was recognized that, in order to accomplish matching with the OPE

in QCD, it is necessary to assume a different five-dimensional metric for the vector and

for the axial channels, giving up on the existence of a single gravity dual, which was the

original motivation of the approach. Moreover, it has been recently pointed out in ref. [11]

that a consistent treatment of the vector and tensor channels precludes the introduction of

dilatonic backgrounds as a mechanism to achieve the correct QCD-like Regge behavior of

the spectrum, calling into question the viability of the aforementioned mechanism proposed

in [9]. Other properties of QCD, such as its typical jet-like structure in parton collisions,

also show disagreement with those based on theories with a gravity dual [12].

Given this state of affairs, we think it would be extremely interesting if one could show

the claimed gravity equivalence in the one case in which the solution of large-Nc QCD is
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known, namely in two dimensions. Although in [13] some progress has been made along

these lines, the full solution was not found. This could also help establish the connection

with the light-front formulation discussed in [14].

We think it is fair to say that, up until now, the concrete proposals show a very

large model dependence, which seriously questions whether one is truly learning about real

QCD. It is crucial that some predictions may be found for which there is some type of

universality that could put them on a firmer basis, independently of the particular gravity

model chosen. Fortunately, one such prediction has recently appeared in the literature [15].

The authors of [15] claim that, in a whole class of theories whose gravity dual is de-

scribed by the Yang-Mills-Chern-Simons theory with chiral symmetry broken by boundary

conditions in the infrared, the following relation can be considered as a generic result (see

eqs. (1.4) and (1.9) below):

wL(Q2) − 2wT (Q2) = −2Nc

f2
π

ΠLR(Q2) , (1.1)

and that this result holds, at least approximately, in real QCD. Moreover, in the other

class of theories with a scalar field representing the chiral condensate [3] the previous

result does not follow and, according to [15], this second class of theories should be ruled

out as QCD-like candidates, at least in their simplest setting. Since this second class are

sort of complementary to the first, this leaves us with the validity of the result (1.1) as a

clear-cut test of whether, as a matter of principle, the present AdS/CFT-related ideas can

be useful for QCD or not. Consequently, in this note we would like to discuss the validity

of (1.1) for QCD.

Since the relation (1.1) is a highly non-trivial one, let us first review what is known in

QCD about the various Green’s functions which appear in it.

In the r.h.s. ΠLR(Q2) denotes the self-energy of the familiar correlation function

Πµν
LR(q) = 2i

∫
d4x eiq·x〈0 | T

(
Lµ(x)Rν(0)†

)
| 0〉 , (1.2)

of left and right currents:

Lµ(x) = d̄(x)γµ 1

2
(1 − γ5)u(x) and Rµ(x) = d̄(x)γµ 1

2
(1 + γ5)u(x) . (1.3)

In the chiral limit where the light quark masses are set to zero (Q2 = −q2 ≥ 0 for q2

spacelike)

Πµν
LR(q) = (qµqν − gµνq2)ΠLR(Q2) , (1.4)

and the self-energy function ΠLR(Q2) vanishes order by order in perturbation theory; it

becomes an order parameter of the spontaneous breakdown of chiral symmetry for all

values of the momentum transfer [16, 17]. Unless otherwise stated we shall be working in

the chiral limit.

The low Q2 behaviour of ΠLR(Q2) is governed by the effective chiral Lagrangian of

QCD, i.e. the Lagrangian formulated in terms of the Goldstone degrees of freedom and

external local sources only and, in the large-Nc limit, reads:

−Q2ΠLR(Q2) ∼

Q2 →0
f2

π + 4L10Q
2 + 8C87Q

4 + O(Q6) , (1.5)
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where fπ is the pion coupling constant (the same fπ which appears in the r.h.s. of eq. (1.1))

and L10 and C87 denote specific coupling constants of O(p4) and O(p6) of the low energy

effective chiral Lagrangian [18, 19]. For later use, let us note, at this stage, that the right-

hand side of eq. (1.1) can also be expressed, in terms of the function Π̂LR(Q2) defined by

Π̂LR(Q2) = − 1

3
gµνΠµν

LR(q) = −Q2ΠLR(Q2), (1.6)

as

− 2Nc

f2
π

ΠLR(Q2) = + lim
m→0

2Nc

Q2

Π̂LR(Q2)

Π̂LR(0)
, (1.7)

for all Q2. This way of writing eq. (1.1) also stresses the fact that it is not a linear relation

between Green’s functions.

The high Q2 behaviour of ΠLR(Q2) is governed by the operator product expansion [20]

and, in the large-Nc limit, one obtains

ΠLR(Q2) ∼

Q2 →∞
−4π2

(αs

π
+ O(α2

s)
)
〈ψ̄ψ〉2 1

Q6
+ O

(
1

Q8

)
. (1.8)

On the other hand, the functions wL(Q2) and wT (Q2) which appear in the l.h.s. of

eq. (1.1) are the longitudinal and transverse functions of the VVA triangle of electroweak

hadronic currents in a specific kinematic configuration [21]:

Q2
[
wL(Q2)−2wT (Q2)

]
=

16π2

√
3

∫
d4x

∫
d4yeiq·x(x−y)λǫµνρλ〈0|T̂

{
L3

µ(x)V 3
ν (y)R8

ρ(0)
}
|0〉,
(1.9)

where (λi are flavour SU(3) Gell-Mann matrices)

L3
µ(x)= ψ̄(x)

λ3

2
γµ

1 − γ5

2
ψ(x), R8

ρ(0)= ψ̄(0)
λ8

2
γρ

1 + γ5

2
ψ(0), V 3

ν (y)= ψ̄(y)
λ3

2
γνψ(y),

(1.10)

and T̂ denotes the appropriate prescription for the chronological product [21]. The com-

bination of functions wL(Q2) − 2wT (Q2) in the chiral limit is also an order parameter of

spontaneous chiral symmetry breaking. The same combination of functions appears natu-

rally in the calculation of the contribution to the muon anomaly from the VVA triangle of

electroweak currents [21–23].

The Adler-Bell-Jackiw anomaly fixes wL(Q2) at all values of Q2:

wL(Q2) = 2
Nc

Q2
, (1.11)

with Nc the number of colors (the same Nc as in eq. (1.1)).

As for the transverse function wT (Q2) the present situation in QCD is as follows: at

the one loop level in perturbation theory (pQCD)

wpQCD
T (Q2) =

Nc

Q2
(1.12)

and, surprisingly, as first shown by Vainshtein [24] and subsequently confirmed in ref. [21],

this result remains valid to all orders in pQCD. However, as first shown in ref. [22], wT (Q2)

– 3 –
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receives non-perturbative QCD contributions and the result in eq. (1.12) ceases to be valid

as one enters moderate and low Q2 values. In fact, at large-Q2 values and in the large-Nc

limit [22, 23]

wT (Q2) ∼

Q2 →∞

Nc

Q2
− 32π4

(αs

π
+ O(α2

s)
)
〈ψ̄ψ〉 ΠVT(0)

1

Q6
+ O

(
1

Q8

)
, (1.13)

where ΠVT(0) denotes the invariant function of the vector–tensor correlation function at

zero momentum transfer:

∫
d4yeik·y〈0|T

{
ψ̄γσ

λa

2
ψ(y) ψ̄σβδ λ

b

2
ψ(0)

}
|0〉 = (kβδδ

σ − kδδβ
σ )δabΠVT(k2) . (1.14)

At small Q2 values [22]

wT (Q2) ∼

Q2 →0
128π2CW

22 + O(Q2) , (1.15)

with CW
22 one of the O(p6) low-energy constants of the effective chiral Lagrangian in the

odd-parity sector [25].

The SY-relation in eq. (1.1) is claimed to be valid at all Q2 values. We will now discuss

its consequences for low and high-Q2.

2 The SY-relation at short and long distances

We observe that at large-Q2 values the leading 1
Q2 behaviours of wL(Q2) and wT (Q2) in

the combination wL(Q2)−2wT (Q2) cancel out and we are left, both in the l.h.s. and in the

r.h.s. of eq. (1.1), with leading terms which are O
(

1
Q6

)
. Unfortunately, the calculation of

the residue [22] of the O
(

1
Q6

)
term in wT (Q2) involves the unknown parameter ΠVT(0)

which, so far, can only be estimated with models. The SY-relation in eq. (1.1), with neglect

of higher order αs corrections, would imply

ΠVT(0)|SY =
1

8π2

Nc

f2
π

〈ψ̄ψ〉 . (2.1)

Notice, however, that the result for the OPE in eq. (1.13) has not really been obtained with

the five-dimensional gravity theory in [15]. In particular, no tensor fields were considered

in this reference, which leaves the function ΠVT appearing in (1.13) out of reach. The

gravity dual theory only relates the two sides of the eq. (1.1) for any Q2. Were one really

to compute the OPE from the dual theory, one would obtain at best an exponential fall-

off in Q2 beyond the parton model logarithm, as explicitly demonstrated in the appendix

of [15]. In fact, in ref. [11], an analysis of the combined set of sum rules for the vector and

tensor channels in the context of holographic models has been undertaken. The conclusion

of this analysis is that both the mechanism for linear confinement suggested in [9] and the

usual AdS/CFT prescription are incompatible with these sum rules. As we emphasized in

the introduction, the problem of reproducing the condensate expansion remains.
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Concerning the long-distance behaviour of the SY-relation in eq. (1.1), the leading 1
Q2

term from wL(Q2) in the l.h.s. exactly cancels the leading term on the r.h.s. and, to first

non-trivial order, one is left with the equality

CW
22 |SY = − Nc

32π2f2
π

L10 . (2.2)

Unfortunately, contrary to the coupling L10 which is well known phenomenologically, there

is no model independent determination of the constant CW
22 . We notice, however, that

eq. (2.2) is a rather strange one since it relates a coupling of the parity odd sector in the

effective chiral Lagrangian to another coupling which is in the parity even sector. We

therefore suggest to investigate the issue under discussion from yet another point of view.

3 The SY-relation in perturbative QCD (pQCD)

Equation (1.1) implies a relationship between Green’s functions. If valid in QCD it should

also be formally valid in pQCD. Of course, we know that the evaluation of Green’s functions

using pQCD at long distances ceases, in general, to reproduce hadronic physics correctly;

but an equation among Green’s functions should also hold when using pQCD to evaluate

the two sides of that equation. This is precisely what we want to examine next. Although

this is a rather academic exercise, we think it is nevertheless a valid one if the goal is an

assessment of the validity of identities such as (1.1).

Using (1.11) and (1.12), and given that (1.2) identically vanishes in pQCD in the

chiral limit, one might initially think that (1.1) is trivially satisfied. However, fπ in the

denominator also vanishes in pQCD in this limit, so the validity of (1.1) is, in fact, far

from obvious. One should first discuss how this chiral limit is taken, and this requires the

consideration of a nonvanishing quark mass.

Given a non-zero quark mass m, and some convenient UV regulator,1 evaluation of the

Green’s function (1.9) in pQCD leads to the result (for m2 ≪ Q2) [26]

lim
ǫ→0

[
wL(Q2;m, ǫ)−2 wT (Q2;m, ǫ)

]
=
Nc

Q2

(
N2

c −1

2Nc

)
αs

π

m2

Q2

(
2 log

Q2

m2
+1

)
+O(m4/Q4, α2

s).

(3.1)

One then has that

lim
m→0

lim
ǫ→0

[
wL(Q2;m, ǫ) − 2wT (Q2;m, ǫ)

]
= 0 , (3.2)

as expected since, as already stated, the combination wL(Q2) − 2wT (Q2) is an order pa-

rameter of spontaneous chiral symmetry breaking [21] .

In full QCD, the correlation function Πµν
LR(q) in the presence of light quark masses

(mu = md = m for simplicity), depends in general on two invariant functions [27]:

Πµν
LR(q) = (qµqν − gµνq2)Π

(1)
LR(Q2) + qµqνΠ

(0)
LR(Q2) . (3.3)

In the chiral limit one has that Π
(1)
LR = ΠLR in eq. (1.4), and Π

(0)
LR = 0

1We will take dimensional regularization, with D = 4 − ǫ, for simplicity.
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The result in eq. (1.1) means, on account of the relation (1.7), that the double limit

in (3.2) can also be computed on the following combination of vacuum polarization func-

tions, in the presence of a quark mass m and UV regulator ǫ,2

lim
m→0

lim
ǫ→0

{
2Nc

Q2

Π̂LR(Q2)

Π̂LR(0)

}

. (3.4)

This result should also vanish to agree with (3.2). Equivalently, the equality

wL(Q2) − 2wT (Q2) =

{
2Nc

Q2

Π̂LR(Q2)

Π̂LR(0)

}

proposed in ref. [15], has to be verified order by order in a simultaneous expansion in αs and

ǫ in the regulated bare theory, as any Ward identity is supposed to do, but only to O(m0)

since its validity is limited to the chiral limit. However, using lowest order perturbation

theory, we will now explicitly see that this is not the case.

An elementary calculation of the one-loop diagram yields Π
(1)
LR(Q2) = −Π

(0)
LR(Q2), with

the following result

Πµν
LR(q) = 2i Nc ν

−ǫ

∫
dDp

(2π)D
2m2gµν

(p2 −m2 + iǫ)[(p − q)2 −m2 + iǫ]

= − Nc

4π2

{
2

ǫ
− γE + log 4π −

∫ 1

0
dx log

[
m2 + x(1 − x)Q2 − iǫ

ν2

]}
m2gµν

= − Nc

4π2
m2gµν

{
2

ǫ
− γE + log 4π − log

m2

ν2

+2 +

√

1 +
4m2

Q2
log





√
1 + 4m2

Q2 − 1
√

1 + 4m2

Q2 + 1




}
. (3.5)

This same result may also be obtained from an unsubtracted dispersion relation with

the following spectral functions3

1

π
ImΠ

(1)
LR(t) = − 1

π
ImΠ

(0)
LR(t) (3.6)

=
Nc

4π2

m2

t

√
1− 4m2

t
θ(t− 4m2) − Nc

4π2
m2

{
2

ǫ
− γE + log 4π − log

m2

ν2

}
δ(t) .

Let us now use the above expression (3.5) to compute the combination appearing

in (3.4). One obtains (for m2 ≪ Q2)

2
Nc

Q2
lim
m→0

lim
ǫ→0

{
Π̂LR(Q2)

Π̂LR(0)

}

= 2
Nc

Q2
lim
m→0

lim
ǫ→0

2
ǫ
−γE+log 4π−log m2

ν2 +2+log m2

Q2 +O
(

m2

Q2 log m2

Q2

)

2
ǫ
−γE+log 4π−log m2

ν2

= 2
Nc

Q2
(3.7)

2We do not explicitly write the dependence on m and ǫ in Π
(0,1)
LR for simplicity of notation.

3It is interesting to notice the presence of the delta-function term to account for the UV divergence.
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which does not vanish and is leading at large Nc. In principle, one could expect that quark

mass corrections, which are chirally suppressed nonperturbatively, could fix this problem.4

However, this would require two wonders rather than one, as the mismatch between (3.1)

and (3.7) involves not only the powers of the quark mass but also the powers of αs. Whether

this is possible or not would require full knowledge of the equation (1.1) away from the

chiral limit.We conclude that eq. (1.1) is unlikely to be an identity in QCD, even in the

large-Nc limit.

4 Conclusion

On the basis of the previous analyses we conclude that the SY-relation is unlikely to hold in

QCD, at least for the wide class of models considered in [15], even when the large-Nc limit

is taken. Whether (1.1) may still be considered valid in some “approximate” dynamical

sense will completely depend on the type (and size) of the corrections one expects to (1.1).

Without this knowledge, the usefulness of (1.1) is, regretfully, very limited. However,

we fail to imagine what this dynamical approximation may possibly be. Our conclusion,

therefore, is that, unless a major breakthrough takes place, the so-called “AdS/QCD”

approach is very unlikely to teach us about properties of QCD.
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