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1 Introduction

Following the important results of [1–3], tremendous progress has been achieved recently in

understanding the AdS4/CFT3 correspondence. In particular, for N ≥ 2 supersymmetry

there is often good control on both sides of the correspondence. On the gravity side, the

simplest setup is that of Freund-Rubin AdS4 × Y SE
7 backgrounds of M-theory where Y SE

7

is a Sasaki-Einstein manifold,1 and deformations thereof. These are conjectured to be

dual to the theory on a large number of multiple M2-branes placed at a Calabi-Yau four-

fold singularity. Rather generally, these field theories are believed to be strongly coupled

Chern-Simons-matter theories at a conformal fixed point.

While gravity computations are relatively amenable, obtaining results directly in the

three-dimensional strongly coupled field theories has been prohibitively difficult until very

recently. For this reason, non-trivial quantitative tests of the AdS4/CFT3 correspondence

were not available. The situation has improved considerably with the results of [4, 5]

(based on [6]), who showed that the partition function Z of N = 2 supersymmetric field

1Particular cases with N > 2 include 3-Sasakian manifolds and orbifolds of the round seven-sphere.
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theories on the three-sphere can be reduced to more manageable matrix integrals using

localization techniques. Moreover, in [4] it has been conjectured that at a conformal fixed

point the free energy, defined as F = − log |Z|, is extremized as a function of all possible

R-symmetries. If this is true, this quantity would then be analogous to the central charge

a of four dimensional SCFTs. More generally, there are expectations that the free energy

is a good measure of the number of degrees of freedom of three-dimensional field theories,

even without supersymmetry.

In [7–9] the leading large N contribution to the free energy of Chern-Simons-matter

theories on S3 was computed for large classes of N = 2 theories, and succesfully matched to

the gravity prediction in a class of Sasaki-Einstein geometries. This remarkable matching

was first obtained in [10] for the ABJM theory and then in [11] for several N = 3 examples.

In this paper we will derive an expression for the (holographic) free energy F , valid for

a very general class of AdS4 × Y7 solutions dual to N = 2 three-dimensional SCFTs. In

fact, we will consider the most general class of M-theory AdS4 solutions with non-zero M2-

brane charge, finding very similar results to the type IIB AdS5 geometries with non-zero

D3-brane charge in [12]. We will prove the geometric formula

F = N3/2

√

32π6

9
∫

Y7
σ ∧ (dσ)3

, (1.1)

where N is the quantized M2-brane charge and σ is a particular contact form on Y7, that

we will discuss.

We will also present a formula for the scaling dimension of BPS operators OΣ5
dual

to probe M5-branes wrapped on supersymmetric five-submanifolds Σ5 ⊂ Y7. In particular,

the scaling dimension ∆(OΣ5
) of these operators can be calculated from the contact volume

of the five-submanifold Σ5 as

∆(OΣ5
) = πN

∣

∣

∣

∣

∣

∫

Σ5
σ ∧ (dσ)2

∫

Y7
σ ∧ (dσ)3

∣

∣

∣

∣

∣

. (1.2)

Both of these formulae are natural generalizations of those holding in the Sasaki-Einstein

case, and are analogous to the results presented in [12].

The results of this paper stem from a systematic analysis of the geometry underly-

ing general AdS4 × Y7 M-theory solutions preserving at least N = 2 supersymmetry. In

particular, we will identify a u(1) symmetry, generated by a Killing vector field ξ, which

is the geometric counterpart to the u(1) R-symmetry of the dual N = 2 superconformal

field theory. In addition, we will demonstrate the existence of a contact structure on Y7,

that will play a key role in deriving our main results. These geometric objects are con-

structed from the Killing spinors preserved by the backgrounds [12, 13], and constitute a

subset of a canonically defined SU(2) structure on Y7. In a subsequent work [14] we will

present the necessary and sufficient conditions that this SU(2) structure obeys in order to

have an N = 2 supersymmetric solution. In [14] we will also present more details of the

computations that lead to the results discussed here.

– 2 –
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2 Supersymmetric AdS4 solutions of M-theory

Supersymmetric AdS4 solutions of M-theory have been discussed before [15–17]; however,

we will derive our results without recourse to the literature. In [14] we will present an

analysis of the most general conditions for such solutions, in particular focusing on solutions

preserving at least N = 2 supersymmetry. In this section we summarize the Killing spinor

equations that are used to derive many of the results presented in the remainder of the

paper. We refer the reader to [14] for further details.

The bosonic fields of eleven-dimensional supergravity consist of a metric g11 and a

three-form potential C with four-form field strength G = dC. The signature of the metric

is (−,+,+, . . . ,+) and the action is

S =
1

2κ2

∫

R ∗11 1− 1

2
G ∧ ∗11G− 1

6
C ∧G ∧G , (2.1)

where 2κ2 = (2π)8ℓ9p with ℓp the eleven-dimensional Planck length. We consider AdS4

solutions of M-theory of the warped product form

g11 = e2∆ (gAdS4
+ gY7

) ,

G = mvol4 + F . (2.2)

Here vol4 denotes the Riemannian volume form on AdS4, and without loss of generality2

we take RicAdS4
= −12gAdS4

. In order to preserve the SO(3, 2) invariance of AdS4 we take

∆ to be a function on the compact seven-manifold Y7. F is the pull-back of a four-form on

Y7, and the Bianchi identity dG = 0 requires that m is constant and F is closed.

In an orthonormal frame, the Clifford algebra Cliff(10, 1) is generated by gamma ma-

trices ΓA satisfying {ΓA,ΓB} = 2ηAB , where A = 0, . . . , 10, and η = diag(−1, 1, . . . , 1),

and we choose a representation with Γ0 · · ·Γ10 = 1. The Killing spinor equation is

∇M ǫ+
1

288

(

Γ NPQR
M − 8δN

MΓPQR
)

GNPQR ǫ = 0 , (2.3)

where ǫ is a Majorana spinor and M,N, . . . are spacetime indices. We may decompose

Cliff(10, 1) ∼= Cliff(3, 1) ⊗ Cliff(7, 0) via

Γα = ρα ⊗ 1 , Γa+3 = ρ5 ⊗ γa , (2.4)

where α, β = 0, 1, 2, 3 and a, b = 1, . . . , 7 are orthonormal frame indices for AdS4 and Y7

respectively, {ρα, ρβ} = 2ηαβ , {γa, γb} = 2δab, and we have defined ρ5 = iρ0ρ1ρ2ρ3. Notice

that our eleven-dimensional conventions imply that γ1 · · · γ7 = i 1.

The spinor ansatz preserving N = 1 supersymmetry in AdS4 is correspondingly

ǫ = ψ+ ⊗ e∆/2χ+ (ψ+)c ⊗ e∆/2χc , (2.5)

2The factor here is chosen to coincide with standard conventions in the case that Y7 is a Sasaki-Einstein

seven-manifold. For example, the AdS4 metric in global coordinates then reads gAdS4
= 1

4
(− cosh2 ρ dτ 2 +

dρ2 + sinh2 ρdΩ2
2).
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where ψ+ is a positive chirality Killing spinor on AdS4, so ρ5ψ
+ = ψ+, satisfying

∇µψ
+ = ρµ(ψ+)c . (2.6)

The superscript c in (2.5) denotes charge conjugation in the relevant dimension, and the

factor of e∆/2 is included for later convenience. Substituting (2.5) into the Killing spinor

equation (2.3) leads to the following algebraic and differential equations for the spinor field

χ on Y7:

1

2
γn∂n∆χ− im

6
e−3∆χ+

1

288
e−3∆Fnpqrγ

npqrχ+ χc = 0 ,

∇mχ+
im

4
e−3∆γmχ− 1

24
e−3∆Fmpqrγ

pqrχ− γmχ
c = 0 . (2.7)

For a supergravity solution one must also solve the equations of motion resulting from (2.1),

as well as the Bianchi identity dG = 0.

Motivated by the discussion in the introduction, in this paper we will focus on N =

2 supersymmetric AdS4 solutions for which there are two independent solutions χ1, χ2

to (2.7). In particular, the general N = 2 Killing spinor ansatz may be written as

ǫ =
∑

i=1,2

ψ+
i ⊗ e∆/2χi + (ψ+

i )c ⊗ e∆/2χc
i . (2.8)

In this case there is a u(1) R-symmetry which rotates these spinors as a doublet. It is then

convenient to introduce

χ± ≡ 1√
2

(χ1 ± iχ2) , (2.9)

which will have charges ±2 under the Abelian R-symmetry. For an N = 2 solution one

can show that the spinor equations (2.7) imply that, without loss of generality, one can

normalize χ̄±χ± = 1 [14]. We shall impose this normalization in what follows.

3 Contact structure

In this section we show that any N = 2 supersymmetric AdS4 solution with m 6= 0 admits

a canonically defined contact structure. Moreover, the Reeb vector field ξ for this contact

structure is also a Killing vector field which preserves all bosonic fields, and the spinors

χ± in (2.9) have charges ±2 under ξ. We thus interpret ξ as the dual of the expected

u(1) R-symmetry.

3.1 R-symmetry Killing vector

We begin by defining the one-form bilinear and its dual vector field

K ≡ i χ̄c
+γ(1)χ− , ξ ≡ g−1

Y7
(K, · ) , (3.1)

where we denote γ(n) ≡ 1
n!γm1...mn

dym1 ∧ . . . ∧ dymn . A priori the one-form K in (3.1)

is complex; however, one can show that the spinor equations (2.7) imply that ImK = 0

– 4 –
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so that K is real. It is then straightforward to show that K is a Killing one-form for the

metric gY7
on Y7, and hence that the dual vector field ξ is a Killing vector field. We note

for future reference the square norm

‖ξ‖2 ≡ gY7
(ξ, ξ) = |χ̄c

+χ+|2 +
m2

36
e−6∆ . (3.2)

In particular when m 6= 0 we see that ξ is nowhere zero, and thus defines a one-dimensional

foliation of Y7.

The algebraic equation in (2.7) leads immediately to Lξ∆ = 0, and using both equa-

tions in (2.7) one can show that

d(e3∆ χ̄c
+γ(2)χ−) = −iξyF . (3.3)

It follows that

LξF = d(ξyF ) + ξydF = 0 , (3.4)

provided the Bianchi identity dF = 0 holds.3 Thus ξ preserves all of the bosonic fields.

One can also show that

Lξχ± = ±2iχ± , (3.5)

so that χ± have charges ±2 under ξ. We thus identify ξ as the canonical vector field dual

to the R-symmetry of the N = 2 SCFT.

3.2 Contact form

Provided m 6= 0 we may define the real one-form bilinear

σ ≡ − 6

m
e3∆ χ̄+γ(1)χ+ . (3.6)

Using the spinor equations one can readily show that

dσ = −12

m
e3∆ Re χ̄c

+γ(2)χ− , (3.7)

and an algebraic computation then leads to

σ ∧ (dσ)3 =
2734

m3
e9∆vol7 , (3.8)

where vol7 denotes the Riemannian volume form of Y7. It follows that σ ∧ (dσ)3 is a

nowhere-zero top degree form on Y7, and thus by definition σ is a contact form on Y7.

Again, straightforward algebraic computations lead to

ξyσ = 1 , ξydσ = 0 . (3.9)

This implies that the Killing vector field ξ is also the unique Reeb vector field for the

contact structure defined by σ.

3In fact this is implied by supersymmetry, as we will show shortly — cf. equation (4.4).
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4 Free energy on S
3

In this section we present a general supergravity formula for the free energy F of the dual

N = 2 SCFT on S3. When m 6= 0, which is equivalent to a non-zero M2-brane charge of

the AdS4 background, this may be expressed in terms of the contact volume
∫

Y7
σ ∧ (dσ)3

via (1.1).

4.1 Newton constant

The effective four-dimensional Newton constant G4 is computed by dimensional reduction

of eleven-dimensional supergravity on Y7. More precisely, by definition 1/16πG4 is the

coefficient of the four-dimensional Einstein-Hilbert term, in Einstein frame. A standard

computation determines this to be

1

16πG4
=
π

∫

Y7
e9∆vol7

2(2πℓp)9
, (4.1)

where recall that ℓp denotes the eleven-dimensional Planck length.

On the other hand, via the AdS/CFT correspondence G4 also determines the free

energy F of the dual CFT on S3:

F ≡ − log |Z| =
π

2G4
. (4.2)

More precisely, the left hand side of (4.2) is minus the free energy of the unit radius AdS4

computed in Euclidean quantum gravity, where Z is the gravitational partition function.

The latter is regularized to give the finite result on the right hand side of (4.2) using the

boundary counterterm subtraction method of [18]. Combining (4.1) and (4.2) leads to the

supergravity formula

F =
4π3

∫

Y7
e9∆vol7

(2πℓp)9
. (4.3)

4.2 Flux quantization

Using the spinor equations (2.7) one can derive the general expression

mF = 6d(e6∆Im χ̄c
+γ(3)χ−) . (4.4)

Thus provided m 6= 0 we see that F automatically obeys the Bianchi identity dF = 0,

and moreover F is in fact exact. There is thus no Dirac quantization condition for the

four-form F when m 6= 0.4

On the other hand, the total M2-brane charge of the AdS4 background is

N = − 1

(2πℓp)6

∫

Y7

∗11G+
1

2
C ∧G . (4.5)

4This is certainly not the case for solutions with m = 0, as discussed in section 7.
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Dirac quantization requires this to be an integer. Equation (4.4) implies that F = dA

where we may take the three-form potential A to be the globally defined form

A ≡ 6

m
e6∆Im χ̄c

+γ(3)χ− . (4.6)

Note that using (3.5) it immediately follows that this choice of gauge is invariant under ξ,

that is,

LξA = 0 . (4.7)

Of course, one is free to add to A any closed three-form c, which will result in the same

curvature F :

A → A+
1

(2πℓp)3
c . (4.8)

If c is exact this is a gauge transformation of A and leads to a physically equivalent M-theory

background. In fact more generally if c has integer periods then the transformation (4.8) is

a large gauge transformation of A, again leading to an equivalent solution. It follows that

only the cohomology class of c in the torus H3(Y7; R)/H3(Y7; Z) is a physically meaningful

parameter, and this corresponds to a marginal parameter in the dual CFT. In fact the free

energy will be independent of this choice of c, which is why we have set c = 0 in (4.6). There

is also the possibility of adding discrete torsion to A when H4
torsion(Y7; Z) is non-trivial, but

we will not discuss this here.

Substituting our ansatz (2.2) into the general expression (4.5) leads to

N =
1

(2πℓp)6

∫

Y7

me3∆vol7 −
1

2
A ∧ F . (4.9)

Using (4.6) and the algebraic equation in (2.7) one can easily compute

N =
1

(2πℓp)6
m2

2532

∫

Y7

σ ∧ (dσ)3 . (4.10)

Combining (4.10), (4.3) and (3.8) now leads straightforwardly to (1.1).

5 Scaling dimensions of BPS M5-branes

A probe M5-brane whose world-space is wrapped on a generalized calibrated five-

submanifold Σ5 ⊂ Y7 and which moves along a geodesic in AdS4 is expected to correspond

to a BPS operator OΣ5
in the dual three-dimensional SCFT. In particular, when Y7 is a

Sasaki-Einstein manifold, the scaling dimension of this operator can be calculated from the

volume of the five-submanifold Σ5 [19]. In this section we show that a simple generalization

of this correspondence holds for the general N = 2 supersymmetric AdS4 × Y7 solutions5

treated in this paper, and in particular we prove the formula (1.2). The calculation is a

simple adaptation of that presented in [22], and more details will appear in [14].

5Such supersymmetric M5-branes exist only for certain boundary conditions [20, 21], and our discussion

here applies to these cases.
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5.1 Generalized calibration

Given a Killing spinor ǫ of eleven-dimensional supergravity, it is simple to derive the BPS

bound [22, 23]

ǫ†ǫ LDBI vol5 ≥ 1

2
(k̂yH) ∧H + µ̂ ∧H + ν̂ . (5.1)

This bound is saturated if and only if P−ǫ = 0, where P− ≡ (1 − Γ̃)/2 is the κ-symmetry

projector, and corresponds to a probe M5-brane preserving supersymmetry. Here H is the

three-form on the M5-brane, defined by H = h + j∗C where h is closed and j∗ denotes

the pull-back to the M5-brane world-volume. The one-form k̂, two-form µ̂ and five-form ν̂

denote the pull-back to Σ5 of the differential forms [24] defined by the bilinears k = ǭΓ(1)ǫ,

µ = ǭΓ(2)ǫ, and ν = ǭΓ(5)ǫ, respectively, and vol5 is the volume form on the world-space of

the M5-brane. We have defined ǭ ≡ ǫ†Γ0 as usual.

We write the AdS4 metric in global coordinates (cf. footnote 2) and choose the static

gauge embedding {τ = σ0, xm = σm}, where τ is global time in AdS4 and xm, with

m = 1, . . . , 5, are coordinates on Y7. The Dirac-Born-Infeld Lagrangian is given by LDBI =
√

det(δ n
m +H∗n

m ), where the two-form H∗ ≡ ∗5H is the world-space dual of H. Using the

explicit form of the eleven-dimensional N = 2 Killing spinor (2.8) one can show that the

bound (5.1) is saturated when ρ = 0 (i.e. the M5-brane is at the centre of AdS4) and

e∆

2
LDBI vol5 =

1

2
(k̂yH) ∧H + µ̂ ∧H + ν̂ . (5.2)

5.2 Energy of a BPS M5-brane

The energy density of an M5-brane can be computed by solving the Hamiltonian con-

straints, leading to

E = Pτ = TM5

(

e∆

2
LDBI + Cτ

)

, (5.3)

where TM5 = 2π/(2πℓp)
6 is the M5-brane tension and the contribution from the Wess-

Zumino coupling is Cτvol5 = ∂τyC6 − 1
2(∂τyC) ∧ (C − 2H), with the potential C6 defined

through dC6 = ∗11G + 1
2C ∧G. However, from the explicit expression of C we presented

earlier one can check that we have Cτ = 0. The M5-brane energy is then given by

EM5 = TM5

∫

Σ5

e∆

2
LDBI vol5 = TM5

∫

Σ5

1

4
(ξyH) ∧H + µ̂ ∧H + ν̂ , (5.4)

where we used that the time-like Killing vector k# dual to the one-form k is given by

k# = ∂τ + 1
2ξ. Let us briefly discuss this expression for the energy. With our gauge

choice (4.6) for the three-form potential, in general we have H = A+h, where h is a closed

three-form. If h is exact and invariant6 under k#, namely h = db with Lk#b = 0, then

one can check that the integral does not depend on h. To see this, one has to recall that

Lk#A = 0, use the results of [24], and apply Stokes’ theorem repeatedly. If h is not exact,

6One should obviously require that ∂/∂τ and ξ generate symmetries of the M5-brane action.
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a priori it will contribute to the energy, and hence we expect the dimension of the dual

operator to be affected. We leave an investigation of this interesting possibility for future

work, and henceforth set H = A.

After some straightforward computations [14] the integrand in (5.4) can be evaluated

in terms of the contact structure, and we get the remarkably simple result7

EM5 = −TM5
m2

2632

∫

Σ5

σ ∧ (dσ)2 . (5.5)

Combining the latter with (4.10), and identifying ∆(OΣ5
) with the energy EM5 in global

AdS, leads straightforwardly to the formula (1.2) for the scaling dimension.

6 Applications

As in [12], the formulae (1.1) and (1.2) have some immediate applications.

6.1 Topological and localization formulae

Let us suppose that the Reeb vector field ξ is quasi-regular, which means that all its orbits

are closed and hence ξ integrates to a U(1) = U(1)R isometry of Y7. Since (3.2) implies

that ξ is nowhere zero, it follows that in this case Y7 is the total space of a U(1) principal

orbifold bundle L over a six-dimensional orbifold V ≡ Y7/U(1)R; the latter is smooth

precisely when U(1)R acts freely on Y7. If we denote by v the canonically normalized

generator of the U(1)R action, so that we may write v = ∂/∂ϕ where the coordinate ϕ has

period 2π, then ξ = kv for some constant k > 0, and the contact volume may be written

k4

(2π)4

∫

Y7

σ ∧ (dσ)3 =

∫

V
c1(L)3 ∈ Q . (6.1)

Here we have used the general fact that the first Chern class c1(L) of a principal U(1)

orbifold bundle L over an orbifold V is a rational cohomology class. The constant k must

also be rational, since one computes

Lξ

(

χ̄c
±χ±

)

= ±4i χ̄c
±χ± , (6.2)

which implies that χ̄c
±χ± has charge ±4 under U(1)R. On the other hand, χ̄c

±χ± must

have an integer charge under v, in order to be single-valued in ϕ, implying that 4/k ∈ N.

The upshot is that for gravity solutions with a U(1)R isometry, the coefficient of πN3/2

in the free energy (1.1) is the square root of a rational number, and that the latter has a

topological interpretation as a Chern number. The corresponding result for supersymmetric

AdS5 solutions of type IIB string theory in [12] is that the central charge a computed via

supergravity is rational when one has a U(1)R isometry. In the dual d = 4, N = 1 SCFT

this is clear, since there is a well-known cubic expression for a in terms of R-charges with

rational coefficients [26]. On the other hand, it is currently unclear, at least to the authors,

why the coefficient of πN3/2 in the free energy should be the square root of a rational

7The sign arises from our choice of conventions, cf. [25].

– 9 –



J
H
E
P
1
0
(
2
0
1
1
)
0
3
9

number when one has rational R-charges in the d = 3, N = 2 SCFT. We may thus regard

this as a prediction of supergravity for field theory.

Also as in [12], we may write the contact volume in terms of a Duistermaat-Heckman

integral on the cone X over Y7

∫

Y7

σ ∧ (dσ)3 =

∫

X
e−r2/2 ω

4

4!
. (6.3)

Here r > 0 is a coordinate on R+ in X ∼= R+ × Y7, ω = 1
2d(r2σ) is a symplectic form on

X, and r2/2 is a Hamiltonian function for the Reeb vector field ξ. The right hand side

of (6.3) may then often be computed via localization. Roughly, this involves choosing an

equivariant symplectic resolution of the singularity of X at r = 0. We refer to [12] and

references therein for a more detailed discussion, especially in the case that X is symplectic

toric. In practice, this is often a very useful method for computing the left hand side of (6.3)

using only topological methods.

6.2 Massive deformations of CY3 × C

As a concrete example, in this section we briefly consider the supergravity solutions of [27].

The original solution in this paper is a warped AdS4×S̃7 background with internalG-flux on

the (squashed and stretched) seven-sphere S̃7. This has a dual field theory interpretation

as deforming the ABJM theory, dual to the round S7 solution, by a mass deformation

and flowing to the IR, with the warped AdS4 solution of [27] describing the IR fixed

point [28]. In fact more generally one can consider M2-branes probing the Calabi-Yau

four-fold geometry CY3 × C, where CY3 denotes any Calabi-Yau three-fold cone. One

expects these to have dual field theory descriptions in which one can give a mass to a

gauge-invariant scalar chiral primary operator, the latter being dual to a Kaluza-Klein

mode arising from the holomorphic function z0 on C. This will trigger a renormalization

group flow, whose end-point has a gravity dual described by a generalization of the warped

S̃7 solution of [27]. The latter is in fact then the special case CY3 = C3. Other special

cases of such solutions, and their field theory duals, have been discussed recently in [9, 29].

We shall discuss the general case in more detail in [14].

Here we use the results of the previous sections to prove that these renormalization

group flows are universal, in the sense that the ratio of the free energies in the IR and UV

is independent of the choice of three-fold CY3. This was anticipated recently in [9]. A key

point is that we do not need the generalization of the explicit supergravity solution in [27],

but rather the universal formula

FIR

FUV
=

√

16

27
(6.4)

in fact follows straightforwardly from the contact volume formula (1.1).

To see this, consider a general CY3 × C Calabi-Yau four-fold, whose (generically sin-

gular) Sasaki-Einstein link Y SE
7 describes the UV background. This has at least a C∗ ×C∗

symmetry, in which the first C∗ acts on the CY3, and under which the CY3 Killing spinors

have charge 1
2 , and the second C∗ acts in the obvious way on the copy of C. Let us denote
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the components of the Reeb vector field for the Calabi-Yau four-fold in this basis as (ξ1, ξ0).

It is straightforward to see that the CY4 Killing spinors have charge 2, as in equation (3.5),

precisely when

ξ1 + ξ0 = 4 , (6.5)

which is also equivalent to the holomorphic (4, 0)-form Ω(4,0) = Ω(3,0) ∧ dz0 having charge

4. As shown in appendix B of [30], in general the contact volume is a function of the Reeb

vector field. In our case the contact volume of Y7 is given by the general formula

Vol(Y7)[ξ1, ξ0] =
1

ξ0
Vol(Y5)[ξ1] , (6.6)

where Y5 denotes the five-manifold link of CY3. Then one easily shows that ξ1 = 3 for

a Sasaki-Einstein metric, so that (6.6) implies the relation Vol(Y SE
7 ) = Vol(Y SE

5 ) between

Sasaki-Einstein volumes. Notice here that ξ0 = 1 follows from (6.5), and that this indeed

gives the expected scaling dimension ∆ = 1
2 of a free chiral field.8

Let us now consider the IR solution corresponding to the mass deformation. Since the

operator dual to z0 is given a mass, the scaling dimension necessarily changes from ∆ = 1
2

to ∆ = 1. Thus one expects ξ0 = 2 in the supergravity solution, and one indeed sees that

this is the case. The Killing spinors always have charge 2 (3.5); thus equation (6.5) still

holds, and we conclude that ξ1 = 2 for the mass-deformed background. Using this, together

with the fact that the contact volume of Y5 has homogeneous degree −3 [30] under ξ1, we

conclude from (6.6) that

Vol(Y mass
7 ) =

1

2
Vol(Y5)[2] =

1

2
·
(

2

3

)−3

Vol(Y5)[3] =
27

16
Vol(Y SE

7 ) . (6.7)

Using (1.1) then leads directly to (6.4).

7 Discussion

In this paper we have taken a glimpse at the geometry characterizing general N = 2

supersymmetric AdS4 solutions of M-theory with non-zero M2-brane charge. In particular,

we have shown that these admit a Killing vector ξ that realizes the u(1) R-symmetry of

the dual field theories, and a contact one-form σ, in terms of which the free energy and the

scaling dimensions of certain BPS operators can be written. The geometry of Y7 is a natural

generalization of Sasaki-Einstein geometry, precisely as was found in [12, 25] for general

supersymmetric AdS5 × Y5 solutions of type IIB supergravity. As an application of our

results we have briefly discussed a class of solutions discovered in [27]. An investigation

of new solutions is currently under way [14]. We should point out that there exist in

the literature N = 2 supersymmetric AdS4 × Y7 backgrounds where the M2-brane charge

vanishes. An example is the solution discussed in [32] (originally found in [33]), representing

8Note there is a factor of 1
2

in going from the geometric scaling dimension under r∂r to the scaling

dimension ∆ in field theory, cf. equation (2.31) of [31].
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the near-horizon limit of M5-branes wrapped on a special Lagrangian submanifold inside a

Calabi-Yau three-fold times R2. Our results do not apply to this solution, and in particular

we expect that the free energy in this case will scale as N3. However we leave the study of

this class of solutions for the future.

In [14] the geometry of Y7 will be explored in greater detail. In particular, we will

show that this geometry is characterized by a local SU(2) structure, which turns out to be

strikingly similar to the SU(2) structure characterizing supersymmetric AdS5×Y6 solutions

of M-theory [34]. From the findings of this paper, and of [14], arise a number of interesting

questions to address. In [25] the results of [13] and [12] have been elegantly reformulated

in terms of generalized geometry of the cone C(Y5), where the metric and NS B-field are

unified. Similarly, it is tempting to speculate that the geometry of the eight-dimenional

cones C(Y7) will turn out to be an analogous kind of generalized geometry, that treats the

metric and C-field on equal footing [35–38]. We also anticipate a generalization of volume

minimization of Sasaki-Einstein manifolds [39, 40], along the lines of [30]. Finally, it would

be very interesting to understand whether a direct relationship between localization on the

field theory side [6] and localization on the gravity side, discussed here and in [12, 39–41],

can be established.
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