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1 Introduction

The rôle of p-branes in string theory and supergravity can hardly be overestimated. They
appear as fundamental objects in string theory and as (solitonic) solutions of the equations
of motion of supergravity and are crucial for the understanding of many aspects of string
theory, such as gauge/gravity duals, string phenomenology, string cosmology and non-
perturbative effects, to mention a few.

p-branes typically arise as solutions of the equations of motion of supergravity-like
actions that describe D-dimensional Einstein gravity coupled to a dilaton and form-fields,

SD =
∫

dDx
√
|ĝ|
[
R̂− 1

2
(∂φ̂)2 − 1

2(p+ 2)!
ebφ̂F̂µ̂1...µ̂p+2F̂

µ̂1...µ̂p+2

]
. (1.1)

Most of the fundamental p-brane solutions in ten and eleven dimensions are known since
the 1990’s [1]–[6] and the general solution of the type

dŝ2 = H2A(r) ηij dxidxj + H2B(r)
(
dr2 + r2dΩ2

n

)
,

e−2φ̂ = HC(r), F̂i1...ip+1r = ∂rH
E(r) εi1...ip+1 , (1.2)

can be found in, for example, [7, 8], with the constants A, B, C and E and the amount of
preserved supersymmetry depending on the parameters D, p and b in the action (1.1).
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There are several known generalisations of the above (flat) p-brane Ansatz. In [9]–[11]
it was shown that the Ansatz (1.2) can be easily generalised to include a curved worldvol-
ume metric g̃ij = g̃ij(x), without changing the constants A, B, C and E, as long as the
worldvolume geometry is Ricci-flat, R̃ij = 0. In that case, the amount of supersymmetry of
the Ricci-flat solution reduces to the number of Killing spinors of g̃ij . On the other hand,
a vast list of domain wall solutions is known (either exactly or numerically), whose world-
volume has constant curvature, or at least has an Einstein geometry, R̃ij = Λ̃ g̃ij [12]–[22].
Recall that domain walls are special kind of p-branes, defined by having co-dimension one
only and that they are magnetically charged with respect to a 0-form “field strength”. This
means we can find such solutions from in theories with gravity coupled to a scalar with
some scalar potential:

SD =
∫

dDx
√
|ĝ|
[
R̂ − 1

2
(∂φ̂)2 − V (φ̂)

]
. (1.3)

Curiously enough, to our knowledge, there are very few known p-brane solutions for
general p (i.e. not domain walls) that have an Einstein geometry in their worldvolume, and
even so, they are sometimes not interpreted as such. Yet the construction of these solutions
would be very interesting: p-branes with a positive worldvolume curvature could yield an
alternative way to obtain de Sitter-like solutions in supergravity in the sense of Randall-
Sundrum [23] (see also [20]). But also in the context of compact extra dimensions curved
brane solutions are relevant. A generic flux compactification down to (anti-)de Sitter space
involves brane sources that fill the lower-dimensional non-compact space and wrap some
submanifold in the internal space (or are simply pointlike in the internal space). This
implies that the brane’s worldvolume is necessarily curved. In most cases these solutions
are only understood in the limit that the branes are smeared over the internal space. The
full backreacted solutions turn out subtle and might not always exist [24]–[26]. Finally,
p-branes with an AdS geometry in their worldvolume might give rise to a new class of
supersymmetric solutions, as domain walls with AdS curvature have been observed to be
supersymmetric in specific cases.

It is well known that there is a one to one correspondence between D-dimensional
p-branes and domain walls in (p + 2) dimensions, by reducing the solutions (1.2) over
the angular part dΩ2

n of the transverse space, where after reduction the radial coordinate
r corresponds to the direction transverse to the domain wall. This suggests a obvious
way to find p-branes with Einstein geometry, by lifting up curved domain walls to
D = p+ n+ 2 dimensions.

Concretely, our strategy to construct p-brane solutions with Einstein worldvolume will
be that of mapping the most general two-block Ansatz for D-dimensional curved branes

dŝ2 = e2A(r) g̃ij(x) dxidxj + e2B(r)
(
dr2 + r2dΣ2

n

)
, (1.4)

onto a (p+ 2)-dimensional domain wall Ansatz

ds2 = a2(z)g̃ij(x) dxidxj + f2(z)dz2, (1.5)
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by reducing over the angular part dΣ2
n = h̄ab(θ)dθadθb of the transverse space and than

look for solutions whose worldvolume metric g̃ij is Einstein. The angular metric h̄ab(θ) is
allowed to have a positive, negative of zero Einstein curvature,

R̄ab = (n− 1)K̄h̄ab, K̄ = 0,±1. (1.6)

For convenience we prefer to work with the dual formulation of the gauge field, where the
p-brane is magnetically charged under a n-form fields strength, with n = D − p− 2.

2 Reduction to a domain wall problem

As explained in the introduction, our strategy to obtain curved p-brane solutions of the
form (1.4) will consist of reducing the problem to that of finding domain wall solutions with
curved worldvolume. We therefore consider the following Ansatz for the metric, dilaton
and gauge field,1

dŝ2 = e2αχ gµν dxµdxν + e2βχ h̄ab dθadθb,

φ̂ = φ(x), F̂a1...an =
1√
|h̄|

Q ε̄a1...an , (2.1)

where the Greek indices µ, ν run from 0 to p+2, while the Latin indices a, b run from 1 to n.
The functions gµν(x), χ(x) and φ(x) depend on the external coordinates xµ and the angular
metric h̄ab(θ) satisfies the property (1.6). The (p+2)-dimensional metric gµν contains both
the (p + 1)-dimensional worldvolume and the radial coordinate r of the transverse space
and should be identified with the domain wall spacetime (1.5), while χ is a breathing mode.
The metric in the form (2.1) can be obtained from (1.4) through the identifications

eβχ(z) = eB(r)r, eαχ(z) a(z) = eA(r), (2.2)

together with the coordinate transformation

eαχ(z) f(z) dz = eB(r) dr. (2.3)

Substituting the Ansatz (2.1) in the action (1.1), we find that the latter reduces to the
action of (p+2)-dimensional gravity coupled to two scalars φ and χ in a double-exponential
potential,

Sp+2 =
1
κ

∫
dp+2x

√
|g|
[
R− 1

2(∂φ)2 − 1
2(∂χ)2 − 1

2ebφ+cχQ2 + n(n− 1)edχK̄
]
, (2.4)

where we have imposed the conditions

pα = −nβ, α =
√

n

2p(p+ n)
, (2.5)

1Our conventions are such that ε̄1...n = 1 and ε̄a1...an = h̄a1b1 . . . h̄anbn ε̄
b1...bn .
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in order to be able to write the action in Einstein frame and to canonically normalise χ,
respectively. Hence β and the parameters c and d in the potential are given by

β = −
√

p

2n(p+ n)
, c = (p+ 1)

√
2n

p(p+ n)
, d =

√
2(p+ n)
pn

. (2.6)

The curved domain wall solutions we will be interested in are of the type

ds2 = a2(z)g̃ij(x) dxidxj + f2(z)dz2,

φ = φ(z), χ = χ(z), (2.7)

where the worldvolume metric g̃ij satisfies the Einstein condition

R̃ij = p Λ̃ g̃ij . (2.8)

The equations of motion, for this Ansatz, can be written as

f2a−2Λ̃ +
a′′

a
− f ′a′

fa
+

1
2p

(φ′)2 +
1
2p

(χ′)2 = 0,

p(p+ 1)f2a−2Λ̃− p(p+ 1)
(a′
a

)2
+

1
2

(φ′)2 +
1
2

(χ′)2

−1
2f

2ebφ+cχQ2 + n(n− 1)f2edχK̄ = 0,

φ′′ + (p+ 1)
a′

a
φ′ − f ′

f
φ′ − 1

2b ebφ+cχf2Q2 = 0, (2.9)

χ′′ + (p+ 1)
a′

a
χ′ − f ′

f
χ′ − 1

2c ebφ+cχf2Q2 + dn(n− 1)edχf2K̄ = 0,

where a prime denotes differentiation with respect to z. A few comments are in order.
The Einbein f(z) is not a dynamical degree of freedom, but a gauge choice, as different
choices of f(z) correspond to different parametrisations of the transverse direction. In the
forthcoming sections we will usually take f(z) = 1. This coordinate reparametrisation
freedom also implies a degeneracy in the above equations of motion. One can check that
only three out of four differential equations are independent, as, for example, conservation
of energy together with the last three yield the first equation. The last three equations are
therefore sufficient to determine the dynamical degrees of freedom a(z), φ(z) and χ(z).

Obviously these equations should be able not only to describe curved p-brane solutions,
but also to recover the known standard (flat) p-branes (1.2). Indeed, it is easy to show that
for example the M2-brane of 11-dimensional supergravity (p = 2, n = 7, Λ̃ = 0, K̄ = 1)
corresponds to the following solution:

a(r) = (r6 +R6
0)1/4 r2, χ(r) =

1
18
√

7
ln(r6 +R6

0),

f(r) = (r6 +R6
0)3/4 r−2, Q = ±6R6

0. (2.10)
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3 Curved branes without flux and the AJS domain wall

To our knowledge, the first domain wall solution with an Einstein geometry in the world-
volume was given in [14], which we will refer to as the AJS domain wall. Though the
original derivation was done in five dimensions (p = 3), the generalisation to arbitrary p

is straightforward. The domain wall appears as a solution of the Einstein-Hilbert action
coupled to a single scalar in an exponential potential,

Sp+2 =
∫

dp+2x
√
|g|
[
R− 1

2(∂χ)2 − edχΛ
]
, (3.1)

for general scalar coupling d and (p + 2)-dimensional cosmological constant Λ. The AJS
domain wall is then given by2

ds2 =
[
1 + d

√
−Λ
2p z

]2
g̃ij dxidxj + dz2, eχ =

[
1 + d

√
−Λ
2p z

]− 2
d
, (3.2)

where the worldvolume metric g̃ij satisfies the Einstein condition (2.8) and where the
worldvolume curvature Λ̃ is determined by the scalar coupling d and the bulk cosmological
constant Λ,

Λ̃ =
2− p d2

2p2
Λ. (3.3)

The minus sign under the square root in (3.2) allows only negative values for Λ and hence
we see that we can have de Sitter domain walls for d2 > 2/p and AdS ones for d2 < 2/p.

In our case, d and Λ are determined by the reduction Ansatz (2.1),

d =

√
2(p+ n)
pn

, Λ = −n(n− 1)K̄. (3.4)

In order for Λ to be negative, we are forced to take K̄ = +1, i.e. the angular part in (1.4)
and (2.1) is the n-sphere Sn. In this notation the domain wall solution takes the form

ds2 =
[
1 + λ z

]2
g̃ij dxidxj + dz2,

eχ =
[
1 + λ z

]−q
2pn
p+n , (3.5)

with λ = p−1
√

(n− 1)(n+ p). Note that the solutions exist for all values of p between
1 and D − 4 and that they all require de Sitter sliced domain walls3 with worldvolume
curvature

Λ̃ =
1
3

(n− 1). (3.6)

2Using a simple shift of the coordinate z, one can write the scale factor as a(z) = λz. This we will

occasionally do in this paper without mentioning. The reason to keep the constant term is to make a

comparison with [14].
3When we consider the coordinate transformation y = 1 + λz the solution reads ds2 = dy2 + y2ds̃2p+1

with ds̃2p+1 being the metric on (p + 1)-dimensional de Sitter space. This can be confusing, since it is

(almost) identical to flat space in Milne coordinates. However the reason that these domain walls do not

describe flat space is because the metric ds2 = dy2 + y2ds̃2p+1 only corresponds to flat space for a specific

normalisation of the curvature of the de Sitter slice, namely R̃p+1 = (p + 1)p. In all our solutions the de

Sitter curvature is in fact different.
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One can understand the range for the values of p as follows: p-branes with p < 1 are
pointlike and cannot have a curved worldvolume, while p-branes with p > D − 4 have
codimension 2 or smaller, such that the angular part of the transverse space cannot be
curved either.

Using the reduction relations (2.2), we can write the solution (3.5) as a purely gravi-
tational solution in D = p+ n+ 2 dimensions,

dŝ2 =
(
1 + λ z

) 2p
p+n g̃ij dxidxj +

(
1 + λ z

)− 2n
p+n dz2 +

(
1 + λ z

) 2p
p+n dΩ2

n. (3.7)

Applying the coordinate transformation

1 + λ z = rλ, (3.8)

the solution can be written in the more pleasing form

dŝ2 = r
2

q
n−1
p+n g̃ij dxidxj + r

2
q

n−1
p+n
−2 [dr2 + r2dΩ2

n

]
, (3.9)

where g̃ij satisfies the Einstein condition (2.8).
The solution (3.5) is a so-called scaling solution, due to the polynomial dependence

in the scale factor a(y). These solutions are often found in FLRW cosmologies coupled
to scalars in an exponential potential. It is therefore no surprise that we find a similar
behaviour here, as the domain wall/cosmology correspondence relates these two types of
solutions [27, 28]. The fact that we are dealing with scaling solutions will make it easy to
generalise them to the case with non-zero flux (Q 6= 0).

Recently an extension of this model has been considered in [20] where the exponential
potential contains a linear combination of two scalar fields. A suitable rotation in field
space maps this model to the model with a single scalar field in the exponential plus one
free decoupled scalar field.

4 Curved branes with flux

4.1 The scaling solutions for general parameters

A more interesting case is that of domain walls with two scalars in a double exponential
potential, as these can be interpreted as dilatonic p-branes with non-zero charge. Inspired
by the scaling solution of the previous section, we insist on both χ and φ depend logarith-
mically on a(z),

φ = N1 log a(z), χ = N2 log a(z). (4.1)

Again the requirement that the potential scales like a−2 fixes the constants N1 and N2 as

N1 =
2(c− d)
bd

, N2 = −2
d
, (4.2)

and the domain wall solution is then given by

ds2 =
[
1 + λ z

]2
g̃ij dxidxj + dz2,

eφ =
[
1 + λ z

] 2(c−d)
bd , eχ =

[
1 + λ z

]− 2
d , (4.3)
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provided that

λ = bd

√
−Λ

2p (b2 + c2 − cd)
,

Q2 =
−2(c− d)d
b2 + c2 − cd

Λ,

Λ̃ =
b2 + (c− d)2 − 1

2pb
2d2

p2(b2 + c2 − cd)
Λ. (4.4)

In the reduction context, where c, d and Λ are given by (2.6) and (3.4), this solution
takes the form

ds2 =
[
1 + λ z

]2
g̃ij dxidxj + dz2,

eφ =
[
1 + λ z

] 2p(n−1)
(p+n)b , eχ =

[
1 + λ z

]−q
2pn

(p+n) , (4.5)

where now

λ =
b(p+ n)

p

√
(n− 1) K̄

(p+ n)b2 + 2(p+ 1)(n− 1)
,

Q2 =
4(n− 1)2(p+ n)

(p+ n)b2 + 2(p+ 1)(n− 1)
,

Λ̃ =
n− 1
p

(p+ n)b2 − 2(n− 1)2

(p+ n)b2 + 2(p+ 1)(n− 1)
K̄. (4.6)

Again we find that necessarily the square root in the expression for λ forces us to take
K̄ = +1. We see therefore that in the case with flux, we find both positively and negatively
curved p-branes, depending on the value of the dilaton coupling b. In particular we can
have de Sitter geometry if the dilaton coupling b is big enough, b > (n− 1)

√
2/(p+ n).

This solution can be lifted up to D = p+ n+ 2 dimensions as

dŝ2 = rA g̃ij dxidxj + rA−2
[
dr2 + r2dΩ2

n

]
,

eφ̂ = rB, F̂a1...an =
Q√
|h̄|

ε̄a1...an , (4.7)

where Λ̃ and Q are given in (4.6), A and B by

A =

√
4b2(n− 1)

(p+ n)b2 + 2(p+ 1)(n− 1)
, B =

√
4(n− 1)3

(p+ n)b2 + 2(p+ 1)(n− 1)
, (4.8)

and the worldvolume metric g̃ij satisfies the Einstein relation

R̃ij = −p Λ̃ g̃ij for b2 > 2(n−1)2

(p+n) ,

R̃ij = +p Λ̃ g̃ij for b2 < 2(n−1)2

(p+n) . (4.9)
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4.2 The scaling solutions in 10-dimensional supergravity

The general solutions found in the previous subsection simplify remarkably for the case of
ten-dimensional Type IIA/B supergravity. For the case of the RR fields, we have that

b =
p− 3

2
, (4.10)

such that the conditions (4.4) become

λ =
p− 3
p

√
7− p

2
, Q2 = (7− p)2 , Λ̃ = −(7− p)(5− p)

2p
. (4.11)

These Einstein D-branes are negatively curved (AdS) for p < 5 and positive (dS) for p > 5.
The case p = 5 is special, as it is (Ricci) flat. The solution is given by

dŝ2 = r
1
2 g̃ij dxidxj + r−

3
2
[
dr2 + r2dΩ2

3

]
,

eφ̂ = r, F̂a1...a3 =
2√
|h̄|

ε̄a1...a3 , (4.12)

with R̃ij = 0. It can easily be shown that this corresponds to the near-horizon geometry
of the standard (Ricci-flat) D5-brane. In section 6 we will show that this results is in fact
quite general, in the sense that the flat scaling solutions of the equations (2.9) yield the
near-horizon geometries of the standard p-branes.

The D7 and D8 are also special, as the angular part of the transverse space is either one-
or zero-dimensional and can therefore not be curved. Nevertheless, curved scaling solutions
can still be constructed in these cases, by considering solutions with a single exponential
scalar potential, coming from the flux form field in higher dimensions (i.e. turning off the
exponential proportional to K̄). We will not give the exact expressions here, as they can
be easily derived form the general results of section 3. Yet it is useful to remark that the
flat D8-brane solution is in fact a scaling solution as well. This is not true for the other
flat BPS branes, as we explain in section 6.

Note that the metric becomes ill-defined for p = 3. It is well known that the flat
D3-brane does not have a scaling solutions as its near-horizon limit due to the absence
of the dilaton. It is easy to see that the same argument extends to the curved case, for
which no scaling solutions will exist. The case p = 3 should therefore be excluded from our
solutions, as it falls beyond the Ansatz used here.

Finally, the remaining F1 and the NS5-brane are easy to discuss: as they couple
(magnetically) to the NSNS 7- and 3-form respectively, we have that

F1 : b = −1 , p = 1 ,

NS5 : b = +1 , p = 5 , (4.13)

and their solutions are the same as the D1 and D5-brane, up to a minus sign in the dilaton
exponential (as can be expected from S-duality). We therefore find a negatively curved
(AdS) F1 and a Ricci-flat NS5-brane.
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Figure 1. The general timelike/spacelike brane correspondence from the DW/FLRW correspon-
dence.

5 Timelike/spacelike p-brane correspondence

So far we have only considered timelike p-branes, whose worldvolume is Lorentzian and
which have static geometries. Similarly there exist spacelike brane solutions [29], which
have Euclidean worldvolume and a time-dependent geometry (i.e. the warp factors in the
two-block Ansatz depends solely on time)

dŝ2 = e2A(t) g̃ij(x) dxidxj + e2B(t)
(
− dt2 + t2dΣ2

n

)
, (5.1)

It should be clear that the same procedure applied to timelike branes can equally well
be performed on the spacelike ones: we can dimensionally reduce over the slicing dΣ2

n of
the transverse space, which will give rise to a (p + 2)-dimensional FLRW solution after
reduction,

ds2 = − f2(t)dt2 + a2(t)g̃ij(x) dxidxj . (5.2)

These metrics are solutions to a set of differential equations analogous to (2.9), which differ
from that latter in the sign of Λ̃ and the potential. Obviously, the time coordinate t is the
analogue of the transverse direction z in the domain wall case, as it is transverse to the
spatial sections of the FLRW metric. Note that now Λ̃ has the usual interpretation of the
FLRW spatial curvature, usually denoted k.

This analogy is part of what has been named the domain wall/cosmology correspon-
dence [27, 28]. Interestingly, this correspondence here gets uplifted (and hence generalised)
to a more general timelike/spacelike p-brane correspondence,4 as is schematically depicted
in figure 1.

4This has been discussed briefly before in [30].
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Let us quickly discuss this for the simplest case, with Q2 = 0. The DW/FLRW
correspondence tells us that domain wall scaling solutions get mapped to FLRW solutions
with the opposite sign of the potential and opposite sign of the worldvolume curvature (i.e.
wall curvature for domain walls and spatial curvature of FLRW metrics). This implies that
for p = 1, . . . , 6 we have a set of S-brane scaling solutions with opposite spatial curvature
Λ̃ (negative in the Q2 = 0 case) and a negatively curved slicing in the space transverse to
the brane, K̄ < 0. The scale factor takes the form

a(t) = 1 + λt , (5.3)

with the appropriate sign flips for K̄ and Λ̃ in the expression for λ.
In the case with Q2 6= 0, we cannot reverse the sign of the flux contribution. However

if we would nonetheless insist on doing so, this would bring us to supergravity theories with
ghostlike kinetic terms. In this context the DW/COSM correspondence has been discussed
as well [31, 32].

Having hyperbolically sliced transverse directions, K̄ < 0, is often -though not always-
part of the definition of an S-brane, as flat S-branes asymptote to flat space in Milne
coordinates at late times. This is similar in the way that timelike p-branes with K̄ > 0
approach flat space in radial coordinates at spatial infinity.

6 Scaling solutions as near-horizon regions

The above timelike/spacelike brane correspondence allows us to understand better the
scaling solutions constructed in this paper, using knowledge from the cosmology side. For
the case of FLRW cosmologies with exponential potentials, it is known that scaling solutions
do not describe all solutions but they are critical points of an autonomous system of
equations of motion, such that they correspond to the late-time or early time behavior of
the most general solution. In other words, they can describe attractors or repellers. We
refer to [33, 34] for a treatment of this in a general setting that include the scalar potentials
discussed here.

In the appendix we have written down the autonomous system corresponding to the
equations of motion (2.9) and derived its critical points. In the curved case we reproduce
exactly the scaling solutions a(z) ∼ z, presented in the previous sections. In the flat case
(Λ̃ = 0) we can also find scaling solutions, that now go like

a(z) ∼ z` with ` =
(9− p)
(p− 3)2

. (6.1)

Notice that for the 5-brane we have that ` = 1, which agrees nicely with the fact that the
same solutions appears also as the Ricci-flat case of the Einstein branes (which all have
` = 1). In a certain sense the 5-branes are the intersection of the two classes of solutions.

In order to interpret these flat scaling solutions, let us uplift them to 10 dimensions.
Plugging the expressions for a(z) and χ(z) in the full 10-dimensional metric and performing
the following coordinate transformation

z = r
(p−3)2

2p , (6.2)

– 10 –
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we find the near-horizon solutions for the standard extremal Dp-branes:

ds2 = H
p−7
8 ds2

p+1 +H
p+1
8
(
dr2 + r2dΩ2

)
(6.3)

with
H ∼ rp−7 . (6.4)

The full extremal brane solutions are given by H = α + βrp−7, but only the near-horizon
case α = 0 corresponds to a scaling solution (or equivalently, a critical point of the
autonomous system).

There are two important lessons that we can draw from this:

1. The scaling solutions (both flat as curved ones) are not the general solutions, but
describe the near-horizon of these. We just showed this explicitly for the flat case,
but there is no reason to assume that it would be different for the curved case. In
fact the autonomous system formalism tells us so: the critical points of the flow
equations (the scaling solutions) are particular limits of the full solutions, which in
turn are described by the flow lines of the autonomous system. In other words, there
must exist extensions of our curved Einstein branes that interpolate between different
scaling solutions for small and large r.

2. In those cases we could not obtain a curved p-brane scaling solution (e.g. AdS curved
branes without flux, or the p = 3 case with flux), there still exist curved brane
solutions: they just do not not have a scaling regimes. To understand the full space
of solutions for either sign of the curvature we refer to [22] for a treatment of the
single exponential case.

At the moment we have not been able to find the full analytic solution interpolating between
scaling solutions but hope to report on it in the future.

7 Discussion

In this paper we have constructed many new solutions that have the interpretation of p-
brane whose worldvolume is a curved Einstein space. The exact solutions we were able
to find correspond to scaling solutions. This means that, when the brane is reduced to a
(curved) domain wall, the warp factor a(z) is a simple power-law z`,

ds2 = dz2 + z`g̃ijdxidxj , (7.1)

where the (p+ 1)-dimensional wall geometry is Einstein

R̃ij = p Λ̃ g̃ij . (7.2)

When the curvature is non-zero the power-law necessarily has ` = 1.
Scaling solutions uplift to p-brane near-horizons. This is explicitly confirmed in sec-

tion 6 for the known case of the standard flat branes, but it is natural to extrapolate this
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to the case of curved branes. A formal proof of this was achieved by rewriting the equa-
tions as an autonomous system for which the scaling solutions are the attractor critical
points. Therefore there exist more general solutions that interpolate between a proper
scaling solution (the near-horizon) and a non-proper scaling solution, with infinite fields
(spatial infinity).

Our approach can be generalised trivially to S-branes. Whereas timelike branes
reduce to domain walls, spacelike branes reduce to FLRW cosmologies. The domain
wall/cosmology correspondence in this framework gets generalised to a general time-
like/spacelike brane correspondence. In this context curved branes are perhaps more nat-
ural since they correspond to the curvature of the spatial part of the FLRW metric.

Amongst our explicit curved timelike brane solutions we have many that have de Sitter
worldvolumes. This was the case for all fluxless brane solutions and for the solutions with
flux when p = 6. However, when we consider an internal slicing that is not spherical, K̄ 6= 1,
we can get de Sitter curved worldvolumes. De Sitter branes have appeared earlier in [14]
and [35]–[37] however the solutions in [35, 36] are written in more complicated coordinates.
Our approach makes clear that these solutions are not the most general, but should be
seen as near-horizons. These de Sitter solutions can not be regarded as warped de Sitter
compactifications since the space transverse to the brane worldvolume is necessarily non-
compact. However, as warped non-compactifications, such a solution might be relevant if
gravity is localised sufficiently and there is some understanding of the presence of gauge
forces living on these branes.

Finally we want to compare our method with another well known method that employs
dimensional reduction. This method is based on reducing flat p-branes over their worldvol-
ume [38] (see also [30]), a technique inspired from the special case of black holes [39]. Since
the worldvolume is flat, this does not generate a scalar potential, rather one just obtains
a sigma model that is solvable and whose integrability can be understood in a formal way
using group theory and the Hamilton-Jacobi formalism [40]. This works for a very large
class of generalisations with much less worldvolume symmetries [38]. This is in contrast
with the technique used in this paper, where we reduce over the curved slice in the trans-
verse space instead of the worldvolume (see for a discussion of the two approaches [41]) .
However we could equally reduce over the curved worldvolume here and it would generate
a scalar potential as well. It would be interesting to see whether in this case the equations
of motion could be fully solvable as well.
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A Autonomous equations of motion

The autonomous variables are given by

X1 =
φ′

H
√

2p(p+ 1)
, X2 =

χ′

H
√

2p(p+ 1)
,

Y1 = 1
2

Q2ebφ+cχ

p(p+ 1)H2
, Y2 =

−K̄n(n− 1)edχ

p(p+ 1)H2
, (A.1)

where H = a′/a. One can check that the equations become first-order equations

Ẋ1 =X1(p+ 1)
(
X2

1 +X2
2 − 1 +

εΛ̃
(p+ 1)ȧ2

)
+ bε

√
p(p+1)

2 Y1 ,

Ẋ2 =X2(p+ 1)
(
X2

1 +X2
2 − 1 +

εΛ̃
(p+ 1)ȧ2

)
+ cε

√
p(p+1)

2 Y1 + dε

√
p(p+1)

2 Y2 ,

Ẏ1 =
√

2p(p+ 1)Y1

(
bX1 + cX2

)
+ 2(p+ 1)Y1

(
X2

1 +X2
2 +

εΛ̃
(p+ 1)ȧ2

)
,

Ẏ2 = d
√

2p(p+ 1) Y2X2 + 2(p+ 1)Y2

(
X2

1 +X2
2 +

εΛ̃
(p+ 1)ȧ2

)
, (A.2)

together with the constraint

X2
1 +X2

2 − εY1 − εY2 + ε
Λ̃
ȧ2

= 1 . (A.3)

We used a dot to denote differentiation with respect to ln(a) whereas a prime we have been
using to denote differentiation with respect to z. We furthermore introduced ε, which takes
value ε = +1 for domain walls and ε = −1 for FLRW cosmologies.

The constraint equation (A.3) is not really an independent equation. One can show
that, when the initial conditions obey the constraint, so will the evolution. This can be
proven by taking the derivative of the constraint equation and showing that it is automat-
ically satisfied using the equations (A.2).

When Λ̃ = 0 we have a true autonomous system whose dynamics can be understood
partially from the critical points, defined as solutions with constant X,Y . These are the
simplest solutions and general solutions interpolate between these critical points. These
critical points come in two kinds: those with finite values of the scalars and those with
infinite valued scalars [33]. The latter class can describe solutions at spacelike or timelike
infinity. Let us here discuss the first class of critical points, with finite scalars. Solving
the algebraic equations that one gets when Ẋ1 = Ẋ2 = Ẏ1 = Ẏ2 = 0 gives the following
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solution

Y1 = ε
2− 2(p+ 1)`
p(p+ 1)`2

(
b−2 − cb−2d−1

)
,

Y2 = ε
2− 2(p+ 1)`
p(p+ 1)`2

(
− b−2cd−1 + c2b−2d−2 + d−2

)
,

X1 = −1
`

√
2

p(p+1)

(
b−1 − cb−1d−1

)
,

X2 = −1
`

√
2

p(p+1) d
−1 ,

` =
2
p

(
b−2 + d−2 + b−2c2d−2 − 2b−2cd−1

)
. (A.4)

When we consider the following equation

H ′

H2
= −ε Λ̃

a′2
− (p+ 1)X2

1 − (p+ 1)X2
2 . (A.5)

for the case Λ̃ = 0 we find that a critical point must obey

H ′

H2
≡ −`−1 = constant =⇒ a(z) ∼ z` . (A.6)

So the scale factor a is given by a simple power-law. These solutions are called scaling
solutions since every term in the action, or equations of motion, scales in the same way.
The scaling solutions, in terms of the fields, read

φ(z) = X1`
√
p(p+ 1) ln(z) + φ(1) , χ(z) = X2`

√
p(p+ 1) ln(z) + χ(1) . (A.7)

Let us now consider the case of standard flat timelike p-branes Λ̃ = 0, K̄ = 1. Then we find
that the values for the Y ’s are such that a solution exists for p = 0, . . . 6 excluding p = 3.
If we plug in the specific values for b, c and d we find that

` =
(9− p)
(p− 3)2

. (A.8)

The same strategy still applies when Λ̃ 6= 0. For the latter case we necessarily have
that (see e.g. (A.3)) that Λ̃ȧ−2 is constant. Therefore

a(z) ∼ z . (A.9)

One can easily check, using the techniques of [34] that we obtain exactly the scaling solu-
tions given in the previous sections. All expressions for X and Y (A.4) are still valid if we
use ` = 1.
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