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1 Introduction

In this note, we compute the soft masses in the minimal four-dimensional construction [1, 2]

of “gaugino mediation” [3, 4] (see also [5] for a recent discussion). The model is presented

in figure 1. The chiral superfields Q, Q̃ are the matter fields of MSSM, L, L̃ is a single pair

of “link fields” in the bifundamental of GSM1
× GSM2

, whose VEV breaks this product

group to the diagonal Standard-Model (SM) gauge group, GSM , and T, T̃ is a single pair

of messengers, which couple to the spurion of SUSY-breaking, S, whose scalar components

get VEVs,

S = M + θ2F , (1.1)

as in Minimal Gauge Mediation (MGM). The superpotential of the model takes the form

W = ST T̃ +K(LL̃− v2) , (1.2)

where K is a Lagrange multiplier superfield, introduced to set the VEV of the link fields

to v.
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Figure 1. Quiver diagram for our setting.

For simplicity, we first take GSM1
×GSM2

to be U(1)1 × U(1)2.
1 Let us introduce the

two dimensionless parameters x and y:

x ≡ F

M2
, y ≡ mv

M
, mv ≡ 2v

√

g2
1 + g2

2 , (1.3)

where mv is the mass of the massive combination of gauge bosons of the broken U(1)1 ×
U(1)2, and g1,2 are the gauge couplings of U(1)1,2, respectively. The parameter x is a

measure of the SUSY-breaking scale, F/M , relative to the messenger scale, M , while y

interpolates between MGM (as y → ∞) and minimal gaugino mediation (when y ≪ 1).

We thus refer to this model as “Minimal gaugino-Gauge Mediation” (MgGM).

The main result of this note is the following. The soft scalar masses (at the messenger

scale) in this theory, m2
f̃
, are obtained by adding to the two-loop integrands in [6] the

common factor,

f(k2,m2
v) ≡

(

m2
v

k2 −m2
v

)2

, (1.4)

namely,

m2
f̃

=

∫

d4p

(2π)4
d4k

(2π)4
([6]) f , (1.5)

where ([6]) in the integrand is the same as for MGM in [6], and the momentum k amounts

to the one on the massless propagator in each of the two-loop diagrams. The SM coupling,

ge, is given in terms of g1,2 by

1

g2
e

=
1

g2
1

+
1

g2
2

. (1.6)

When v is much smaller than M , eq. (1.5) implies that m2
f̃

has a suppression factor of order

v2/M2 relative to MGM, while f → 1 if v → ∞, in which case one recovers the results of

MGM [6, 7]. On the other hand, the gaugino masses, mg̃, are as in MGM, with the SM

coupling given by (1.6), for any v.

This note is organized as follows. In section 2, the theoretical setting is introduced.

In section 3, the two-loop graphs contributing to the sfermions mass are discussed, and in

section 4 they are evaluated. In section 5, we present the soft masses for MSSM, and in

section 6 we discuss our results. Finally, in a couple of appendices, we list some technical

details about the evaluation of the gaugino and sfermion graphs.

1The generalization to GSM = SU(3) × SU(2) × U(1) is simple, and will be presented in section 5.
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2 Theoretical setting

We consider the setting in figure 1, discussed in the introduction. The matter fields are

taken with charge ±1, with the following sign choice:

DµQ = ∂µQ+ ig1A
1
µQ , DµT = ∂µT + ig2A

2
µT , (2.1)

DµL = ∂µL+ ig1A
1
µL− ig2A

2
µL .

The potential is the sum of D and F terms:

VD =
g2
1

2

(

QQ† − Q̃†Q̃+ LL† − L̃†L̃
)2

+
g2
2

2

(

−LL† + L̃†L̃+ TT † − T̃ †T̃
)2

, (2.2)

VF = |LL̃− v2|2 + |KL|2 + |KL̃|2 + |ST |2 + |ST̃ |2 + |T T̃ + F |2 .

The VEVs of the scalars are:

L = L̃ = v , K = T = T̃ = Q = Q̃ = 0 , S = M .

2.1 Tree-level masses

After the VEV insertion, the following term gives mass to a combination of the two U(1)’s:

2v2(g2
1 + g2

2)

(

g1A
1
µ − g2A

2
µ

√

g2
1 + g2

2

)2

, (2.3)

which gives mv = 2v
√

g2
1 + g2

2 for the combination of the two vectors which gets a mass.

The part of the Lagrangian corresponding to the scalar masses reads:

(

δT ∗ δT̃
)

(

M2 F

F M2

) (

δT

δT̃ ∗

)

+ 2v2|δK|2 (2.4)

+v2|δL+ δL̃|2 +
g2
1 + g2

2

2
v2(δL+ δL∗ − δL̃− δL̃∗)2 .

The imaginary part of the scalar (δL−δL̃)√
2

is eaten by Higgs mechanism; the real part of the

same scalar takes the same mass mv as the gauge boson (it is in the same supermultiplet).

The scalar messengers T± = (T ± T̃ ∗)/
√

2 get mass squared m2
± = M2 ± F .

The piece corresponding to the fermion masses is:

iv
√

2(g1λ1 − g2λ2)(ψL − ψL̃) − (MψTψT̃ + vψKψL̃ + vψKψL) + c.c. (2.5)

The combination

λA = i
g2λ1 + g1λ2
√

g2
1 + g2

2

, (2.6)

remains massless at tree level, while

λB = i
g1λ1 − g2λ2
√

g2
1 + g2

2

, η =
ψL̃ − ψL√

2
, (2.7)

mix to make the following Dirac fermion

κ =

(

(λB)α
(η∗)α̇

)

, (2.8)

whose mass is mv. Finally, the fermionic messengers ψT , ψT̃ get a mass mf = M .
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2.2 Gaugino couplings

In Weyl spinor notation, the gaugino couplings with the Q, Q̃, T, T̃ hypermultiplets are:

− ig2
√

2
(

Tψ∗
Tλ

∗
2 − T ∗ψTλ2 − T̃ ψ∗

T̃
λ∗2 + T̃ ∗ψT̃λ2

)

(2.9)

−ig1
√

2
(

Qψ∗
Qλ

∗
1 −Q∗ψQλ1 − Q̃ψ∗

Q̃
λ∗1 + Q̃∗ψQ̃λ1

)

.

After some manipulations these couplings are:

1
√

g2
1 + g2

2

(

g1g2T+(ψ∗
Tλ

∗
A − ψT̃λA) + g1g2T−(ψ∗

Tλ
∗
A + ψT̃λA) (2.10)

+g2
2T+(ψT̃λB − ψ∗

Tλ
∗
B) − g2

2T−(ψ∗
Tλ

∗
B + ψT̃λB)

)

+

√
2

√

g2
1 + g2

2

Q
(

g1g2ψ
∗
Qλ

∗
A + g2

1ψ
∗
Qλ

∗
B

)

+ c.c. .

It is useful to write some of these couplings in Dirac notation; the following spinors are

introduced for this purpose:

ωT =

(

(ψT )α
(ψ∗

T̃
)α̇

)

, ωQ =

(

(ψQ)α
(ψ∗

Q̃
)α̇

)

, λM =

(

(λA)α
(λ∗A)α̇

)

. (2.11)

The couplings involving λM , ωQ,T and Q,T+, T− are:

ge

(√
2Qω̄Q

1 + γ5

2
λM + T+ω̄Tγ5λM + T−ω̄TλM

)

+ c.c. , (2.12)

where ge is defined in (1.6), while the couplings involving the Dirac spinor κ (2.8) are:

1
√

g2
1 + g2

2

(√
2g2

1Qω̄Q
1 + γ5

2
κc + g2

2T+

(

ω̄T
1 − γ5

2
κ− ω̄T

1 + γ5

2
κc

)

(2.13)

−g2
2T−

(

ω̄T
1 − γ5

2
κ+ ω̄T

1 + γ5

2
κc

))

+ c.c. .

Here κc is the charge conjugate spinor of κ:

κc =

(

(η)α
(λ∗B)α̇

)

. (2.14)

3 Calculation of the sfermion masses

The aim is to generalize the two-loops calculations by Martin [6] in minimal gauge medi-

ation. These graphs come in three different classes: there is a graph due to the exchange

of scalars, some graphs which are due to the exchange of gauge bosons and a graph which

is due to exchange of gauginos. In this section we examine each of these contributions

separately.
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Figure 2. Graph corresponding to the contribution due to D-term (on the left at infinite v, on the

right at finite v).

3.1 Scalar graph

The graph corresponding to the contribution due to scalar exchange is shown in figure 2.

The two Φ4 interactions

g2
eQQ

∗(T+T
∗
− + T ∗

+T−) ,

of the minimal gauge mediation case are replaced by four Φ3 interactions.

The detailed form of these interactions is:

− 2v

(

g2
1

δLR − δL̃R√
2

QQ∗ + g2
2

δLR − δL̃R√
2

(T+T
∗
− + T−T

∗
+)

)

, (3.1)

where L = v + (δLR + iδLI)/
√

2 and L̃ = v + (δL̃R + iδL̃I)/
√

2. Notice that this cubic

vertex couples just with the eigenvector of the mass matrix whose mass is mv (1.3). So the

propagator that must be inserted between each couple of vertical cubic vertices is

i

k2 −m2
v

.

In the v → ∞ limit the usual Φ4 interaction is recovered, with the diagonal U(1) effective

coupling constant g2
e . A direct evaluation gives:

−2

∫

d4p

(2π)4
d4k

(2π)4
1

(k − p)2 −m2
+

1

p2 −m2
−

1

k2

(

4g2
1g

2
2v

2

k2 −m2
v

)2

(3.2)

= −2g4
e

∫

d4p

(2π)4
d4k

(2π)4
1

(k − p)2 −m2
+

1

p2 −m2
−

1

k2
f(k2,m2

v)

=

∫

d4p

(2π)4
d4k

(2π)4
([6]) f ,

where f is given in (1.4). This proves the claim in eq. (1.5) for the scalar graph.

3.2 Gauge boson graphs

The graphs which give the contribution due to the exchange of gauge bosons are shown in

figure 3. In the case of minimal gauge mediation [6], which corresponds to the v → ∞ limit

of our setting, only the contribution of a massless gauge boson must be taken into account.

In our more general setting, we can introduce the following mass eigenstates:

AA
µ =

g2A
1
µ + g1A

2
µ

√

g2
1 + g2

2

, AB
µ =

g1A
1
µ − g2A

2
µ

√

g2
1 + g2

2

, (3.3)
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Figure 3. Graphs corresponding to gauge boson exchange. In the minimal gauge mediation case

there is just the contribution from a massless gauge boson; in our setting the contribution of both

the massless and the massive gauge bosons must be taken into account.

The combination AA
µ is massless, while AB

µ get a mass mv due to Higgs mechanism. The

covariant derivatives of Q and T in the new variables are:

DµQ = ∂µQ+ igeA
A
µQ+

ig2
1

√

g2
1 + g2

2

AB
µQ , (3.4)

DµT = ∂µT + igeA
A
µT − ig2

2
√

g2
1 + g2

2

AB
µ T ,

where ge is defined in (1.6).

Let us denote with k the momentum on the gauge boson propagators. Three kinds

of graphs must then be taken into account: the one with two massless AA
µ propagators,

the ones with two massive AB
µ exchanges and the ones with one massless and one massive

propagators. The contribution of the last kind of graphs comes with a relative minus sign

with respect to the first two; the result is:

∫

d4p

(2π)4
d4k

(2π)4
([6])

(

1 +
(k2)2

(k2 −m2
v)

2
− 2k2

(k2 −m2
v)

)

. (3.5)

Here ([6]) is the same as the integrand for MGM in [6], while the expression in the second

parentheses gives the common factor f(k2,m2
v), where the momentum k corresponds to

the one on the massless propagator. This proves the claim in eq. (1.5) for the gauge boson

graphs; the detailed evaluation of the graphs is presented in appendix B.
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Figure 4. Contribution due to the mediation of the massless gaugino.
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Figure 5. Contribution due to the mediation of the dirac fermion κ.

3.3 Gaugino graphs

The contribution due to gaugino exchange is given by three classes of graphs, one for the

combination of the two gauginos that is massless at tree level, one for the combination that

gets a tree-level Dirac mass, and a mixed one. It is very useful for the evaluation to use the

Feynman rules given in [8] for Majorana fermions and for interactions with explicit charge

conjugate spinors.

We first recall the evaluation of the gaugino graph in MGM. The contribution due to

T− is shown in figure 4; the contribution due to T+ is similar.2 The evaluation gives:

4g4

∫

d4p

(2π)4
d4k

(2π)4
Tr(/k 1−γ5

2
/k 1+γ5

2
/k(/k − /p+mf ))

(k2)3((k − p)2 −m2
f )(p2 −m2

±)

= 4g4

∫

d4p

(2π)4
d4k

(2π)4
2(k2 − kp)

(k2)2((k − p)2 −m2
f )(p2 −m2

±)
.

In the case of MgGM there is the same diagram, corresponding to the exchange of the

massless gaugino λA, weighted by g4 = g4
e .

There is also a diagram corresponding to the exchange of the Dirac fermion κ (see

figure 5):

4g4
e

∫

d4p

(2π)4
d4k

(2π)4
2k(k − p)

(k2 −m2
v)

2((k − p)2 −m2
f )(p2 −m2

±)
.

Finally, there are also mixed diagrams which exchange both λM , κ, as shown in figure 6.

They have a minus sign with respect to the previous ones, and they all give the same

contribution; the total is:

−8g4
e

∫

d4p

(2π)4
d4k

(2π)4
2k(k − p)

(k2 −m2
v)(k

2)((k − p)2 −m2
f )(p2 −m2

±)
.

2There are some extra ±γ5 factors which at the end give rise to the same evaluation, with the replacement

m
−
→ m+.
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Figure 6. Mixed contribution due to the combined action of λM , κ.

All in all, the sum of the three kinds of diagrams is:3

4g4
e

∫

d4p

(2π)4
d4k

(2π)4
2(k2 − kp)

(k2)2((k − p)2 −m2
f )(p2 −m2

±)

(

1 +
(k2)2

(k2 −m2
v)

2
− 2k2

(k2 −m2
v)

)

,

which gives the same factor inside the integral as for the other contributions. This completes

the proof of eq. (1.5).

4 Evaluation of the integrals

In this section, we write the integrals for the sfermions mass in a notation similar to the

one in [9]; we pass to Euclidean variables, and define

〈m11, . . . ,m1n1
|m21, . . . ,m2n2

|m31, . . . ,m3n3
〉 (4.1)

=

∫

ddk

πd/2

ddq

πd/2

n1
∏

i=1

n2
∏

j=1

n3
∏

l=1

1

k2 +m2
1i

1

q2 +m2
2j

1

(k − q)2 +m2
3l

.

In this notation the integral that should be evaluated in order to compute the sfermions

mass is:

(g4
em

4
v/(4π)d) (−〈m+|m+|0,mv ,mv〉 − 〈m−|m−|0,mv ,mv〉 (4.2)

−4〈mf |mf |0,mv ,mv〉 − 2〈m+|m−|0,mv ,mv〉 + 4〈m+|mf |0,mv ,mv〉
+4〈m−|mf |0,mv,mv〉 − 4m2

+〈m+|m+|0, 0,mv ,mv〉
−4m2

−〈m−|m−|0, 0,mv ,mv〉 + 8m2
f 〈mf |mf |0, 0,mv ,mv〉

+4(m2
+ −m2

f )〈m+|mf |0, 0,mv ,mv〉 + 4(m2
− −m2

f )〈m−|mf |0, 0,mv ,mv〉
)

.

Note that this is obtained from the result in [6] by adding the last two entries in each term:

〈[6]〉 → 〈[6],mv,mv〉.
3More manipulations with this integral are presented in appendix B.
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We will use the following expression taken from [9], with the convention d = 4 − 2ǫ:

〈m0|m1|m2〉 =
1

−1 + 2ǫ

(

m2
0〈m0,m0|m1|m2〉 +m2

1〈m1,m1|m0|m2〉 +m2
2〈m2,m2|m0|m1〉

)

.

(4.3)

The basic object to compute then is

〈m0,m0|m1|m2〉 =
1

2ǫ2
+

1/2 − γ − logm2
0

ǫ
(4.4)

+γ2 − γ +
π2

12
+ (2γ − 1) logm2

0 + log2m2
0 −

1

2
+ h(a, b) .

The function h is given by the integral [9]:

h(a, b) =

∫ 1

0
dx

(

1 + Li2(1 − µ2) − µ2

1 − µ2
log µ2

)

, (4.5)

where the dilogarithm is defined by Li2(x) = −
∫ 1
0

dt
t log(1 − xt), a = m2

1/m
2
0, b = m2

2/m
2
0,

and

µ2 =
ax+ b(1 − x)

x(1 − x)
. (4.6)

For a = 0, the function h simplifies to h(0, b) = 1 + Li2(1 − b). It is also possible to write

an analytical expression:

h(a, b) = 1 − log a log b

2
− a+ b− 1√

∆

(

Li2

(

−u2

v1

)

+ Li2

(

− v2
u1

)

(4.7)

+
1

4
log2 u2

v1
+

1

4
log2 v2

u1
+

1

4
log2 u1

v1
− 1

4
log2 u2

v2
+
π2

6

)

,

where

∆ = 1 − 2(a+ b) + (a− b)2 , u1,2 =
1 + b− a±

√
∆

2
, (4.8)

v1,2 =
1 − b+ a±

√
∆

2
.

The integrals with two massless propagators are infrared divergent and so a mass mǫ must

be introduced there as an infrared cutoff; this artificial parameter will disappear at the end

of the calculation. A useful relation [6] is:

〈ma|mb|mǫ,mǫ〉 =
Γ(1 + 2ǫ)

2

(

1

ǫ2
+

1 − 2 logm2
ǫ

ǫ
+ 1 − π2

6
(4.9)

−F2(m
2
a,m

2
b) − 2F3(m

2
a,m

2
b) + (−2 + 2F1(m

2
a,m

2
b) logm2

ǫ + log2m2
ǫ)

)

,

where

F1(a, b) =
a log a− b log b

a− b
, F2(a, b) =

a log2 a− b log2 b

a− b
, (4.10)

F3(a, b) =
aLi2(1 − b/a) − bLi2(1 − a/b)

a− b
,

– 9 –
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Figure 7. Contour plot for s(x, y). On the right we zoom on the regime near x = 1 and small y,

and we find that the sfermion is tachyonic below the zero mass line.

for a 6= b and

F1(a, a) = 1 + log a , F2(a, a) = 2 log a+ log2 a , F3(a, a) = 2 . (4.11)

We can then use the following expressions [10] to relate the integrals to the known objects

〈m0|m1|m2〉 or 〈m0,m0|m1|m2〉:

〈ma|mb|0,mv ,mv〉=
〈ma|mb|0〉 − 〈ma|mb|mv〉

m4
v

− 〈ma|mb|mv,mv〉
m2

v

, (4.12)

〈ma|mb|mǫ,mǫ,mv,mv〉=
〈ma|mb|mv,mv〉+〈ma|mb|mǫ,mǫ〉

(m2
v −m2

ǫ)
2

+2
〈ma|mb|mv〉−〈ma|mb|mǫ〉

(m2
v −m2

ǫ)
3

.

The sfermions mass can be expressed as:4

m2
f̃

= 4

(

F

M

)2
(αe

4π

)2
s(x, y) , (4.13)

where x and y are defined in eq. (1.3); note that x < 1 (to avoid unstable messengers).

The analytic expression for s(x, y) is:

s(x, y) =
1

2x2

(

s0 +
s1 + s2
y2

+ s3 + s4 + s5

)

+ (x→ −x) , (4.14)

4The 4 factor is due to our choice of U(1) charges.
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Figure 8. Left: the function s(x, y), plotted along the x axis for y = 1, 5, 10, 50. The top line

corresponds to the gauge mediation case (formally y → ∞). Right: the same plot for y = 1/10.

The sfermion becomes tachyonic near x = 1.

Figure 9. The function s(x, y), plotted along the y axis for x = 1/100. On the right we zoom on

the small y regime; the upper line corresponds to a quadratic fit on the values with y ≤ 0.1, which

gives s ≈ 0.1643 y2 in this regime; this fit is a good approximation as long as mv < M/3.

where

s0 = 2(1 + x)

(

log(1 + x) − 2Li2

(

x

1 + x

)

+
1

2
Li2

(

2x

1 + x

))

, (4.15)

s1 = −4x2 − 2x(1 + x) log2(1 + x) − x2 Li2(x
2) ,

s2 = 8 (1 + x)2 h

(

y2

1 + x
, 1

)

− 4x (1 + x)h

(

y2

1 + x
,

1

1 + x

)

− 4xh
(

y2, 1 + x
)

− 8h
(

y2, 1
)

,

s3 = −2h

(

1

y2
,

1

y2

)

− 2xh

(

1 + x

y2
,

1

y2

)

+ 2(1 + x)h

(

1 + x

y2
,
1 + x

y2

)

,

s4 = (1 + x)

(

2h

(

y2

1 + x
,

1

1 + x

)

− h

(

y2

1 + x
, 1

)

− h

(

y2

1 + x
,
1 − x

1 + x

))

,

s5 = 2h
(

y2, 1 + x
)

− 2h
(

y2, 1
)

.

The expressions s0(x) and s1(x) were simplified by using standard dilogarithm identities.

Note that in the y → ∞ limit only s0 contributes; the result then reduces to the one in

minimal gauge mediation [6, 7].

Some plots of the function s(x, y) are shown in figures 7, 8 and 9. In particular, we

see that the sfermion is tachyonic in some regime in parameters space.
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5 MSSM sparticle mass spectrum

In the case of the MSSM the result for the sfermions mass is:

m2
f̃

= 2

(

F

M

)2
∑

r

(αr

4π

)2
C f̃

r nrs(x, yr) , (5.1)

where

yr =
mvr

M
, mvr = 2v

√

(

g
(r)
1

)2
+
(

g
(r)
2

)2
, (5.2)

with g
(r)
1,2 being the couplings of GSM1,2

in figure 1, respectively; r = 1, 2, 3 for U(1), SU(2),

SU(3), respectively, and

αr ≡

(

g
(r)
SM

)2

4π
,

1
(

g
(r)
SM

)2 =
1

(

g
(r)
1

)2 +
1

(

g
(r)
2

)2 . (5.3)

In eq. (5.1), C f̃
r is the quadratic Casimir invariant of the MSSM scalar field f̃ , in a normal-

ization where C3 = 4/3 for color triplets, C2 = 3/4 for SU(2) doublets and C1 = 3
5Y

2; nr

is the Dynkin index for the pair of messengers in a normalization where nr = 1 for N + N̄

of SU(N), and n1 = 6
5Y

2 for a messenger pair with weak hypercharge Y = QEM − T3 (we

use the GUT normalization for α1, as in [6]).

In the limit mv → ∞ the well known result of [6, 7] is recovered, with s = t(x) (see

the previous section):

t(x) =
1 + x

x2

(

log(1 + x) − 2Li2

(

x

1 + x

)

+
1

2
Li2

(

2x

1 + x

))

+ (x→ −x) . (5.4)

The gauginos mass is instead the same as in minimal gauge mediation:

mg̃r =
αr

4π

F

M
nr q(x) , (5.5)

where αr are given in (5.3), and

q(x) =
1

x2
((1 + x) log(1 + x) + (1 − x) log(1 − x)) . (5.6)

6 Discussion

In this note we computed the sparticle mass spectrum in Minimal gaugino-Gauge Medi-

ation (MgGM) as a function of the parameters x and y in (1.3). We have not studied

the Renormalization Group Evolution of the soft masses, and it should be interesting to

investigate how it affects the sparticle spectrum at the weak scale.

One peculiar result is that in low-scale gaugino mediation, the sfermions become tachy-

onic (at the messenger scale M) when the effective SUSY-breaking scale, F/M , approaches

M . This occurs in a very small corner of the (x, y) plane, where it is likely that the RGE
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flips the sign ofm2
f̃
. For small v, there are also important three-loop contributions [5], which

we ignored in this note; in particular, these may also cure the instabilities mentioned above.

The models studied here provide a particular class of General Gauge Mediation (GGM)

models [11] (although they do not fall into the class of General Messenger Gauge Mediation

(GMGM) models [12, 13]). Some possible generalizations of our work are the following.

First, one may define General gaugino-Gauge Mediation (GgGM) models and compute

their soft masses. In particular, it will be interesting to compute the soft masses in the

“Direct Gaugino Mediation” models of [5] and their generalizations, namely, in dynami-

cal realizations of MgGM and its generalizations in (deformed) SQCD. It should also be

interesting to find which of the parameters space of GGM is being covered, and to inves-

tigate the phenomenological aspects, e.g. constraints on the spectrum, the NLSP and the

experimental signatures for the classes of models above.

Note added. The result (1.4), (1.5) was generalized to an arbitrary SUSY-breaking

sector in [14]. See also the recent work [15].
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A One-loop gaugino masses

For completeness, the 1-loop gaugino mass is presented; it is given by the MGM one, with

the gauge couplings in the unbroken GSM group. This is obtained from the sum of two

diagrams, one with the scalar messenger with mass m− (whose coupling is proportional to

λ̄MωT ) and one with mass m+ (whose coupling is proportional to λ̄M (γ5)ωT ) running in

the loop:

g2

∫

d4k

(2π)4
F

(k2 −M2 + F )(k2 −M2 − F )

/k +M

k2 −M2
(A.1)

= g2

∫ 1

0
dx

∫ 1−x

0
dy

∫

d4k

(2π)4
2FM

(k2 −M2 − F (y − x))3
.

Going to Euclidean variables, the evaluation gives:

α

4π

F

M

∫ 1

0
dx

∫ 1−x

0
dy

1

1 + (x− y) F
M2

,

which after an integration gives the well known result (which is in eqs. (5.5), (5.6) of this

note). In the case of MgGM, the same formula applies with g = ge (1.6), since the gaugino

is in the gauge multiplet of the unbroken GSM group.
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B Evaluation of the gauge boson and gaugino graphs

Let us evaluate the graphs in figure 3 explicitly; Feynman gauge is used. The evaluation

of graph 1 is:

2g4
e

∫

d4p

(2π)4
1

p2 −m2
±

∫

d4k

(2π)4
1

(k2)2
f(k2,m2

v) , (B.1)

where f(k) is given in (1.4), and there is a symmetry factor S = 2. Here and below, a
∑

m+,m
−

is understood.

The evaluation of graph 2 gives:

−g4
e

∫

d4p

(2π)4
d4k

(2π)4
((2p + k)k)2

(k2)3((p + k)2 −m2
±)(p2 −m2

±)
f(k2,m2

v)

= −g4
e

∫

d4p

(2π)4
d4k

(2π)4

(

1

p2 −m2
±
− 1

(p+ k)2 −m2
±

)

2pk + k2

(k2)3
f(k2,m2

v)

= −g4
e

∫

d4p

(2π)4
d4k

(2π)4
−2pk

(k2)3((p + k)2 −m2
±)

f(k2,m2
v)

= −g4
e

∫

d4s

(2π)4
d4k

(2π)4
−2sk + 2k2

(k2)3(s2 −m2
±)

f(k2,m2
v)

= −g4
e

∫

d4s

(2π)4
d4k

(2π)4
2

(k2)2(s2 −m2
±)

f(k2,m2
v) , (B.2)

where at last we have done the change of variable s = p + k. So we have that the total

contribution of graphs 1 and 2 cancels, as in [6].

Graph 3 is very similar to graph 1, up to a numerical constant and negative relative

sign: there is a 4 coming for the gµνg
µν , the symmetry factor is 2 and there is a 4 from the

two photon-scalar vortices. At the end the evaluation gives −4 times graph 1.

A similar strategy can be employed with graph 4:

g4
e

∫

d4p

(2π)4
d4k

(2π)4
f(k2,m2

v)
(2p + k)2

(k2)2(p2 −m2
±)((p + k)2 −m±)2

= g4
e

∫

d4p

(2π)4
d4k

(2π)4
f(k2,m2

v)

(

4

(k2)2(p2 −m2
±)

− 1

(k2)(p2 −m2
±)((p + k)2 −m2

±)

+
4m2

±
(k2)2(p2 −m2

±)((p + k)2 −m2
±)

− 4pk + 2k2

(k2)2(p2 −m2
±)((p + k)2 −m2

±)

)

. (B.3)

The last term is zero because it is proportional to the integral

∫

d4p

(2π)4
d4k

(2π)4
f(k2,m2

v)
2

(k2)2

(

1

p2 −m2
±
− 1

(p + k)2 −m2
±

)

= 0 .

The symmetry factor is S = 2.
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The evaluation of graph 5 is:

−g4
e

∫

d4p

(2π)4
d4k

(2π)4
f(k2,m2

v)
Tr(γµ(/k + /p+mf )γρ(/p +mf ))gµρ

(k2)2(p2 −m2
f )((p + k)2 −m2

f )

= g4
e

∫

d4p

(2π)4
d4k

(2π)4
f(k2,m2

v)
8p(p+ k) − 16m2

f

(k2)2(p2 −m2
f )((p + k)2 −m2

f )

= g4
e

∫

d4p

(2π)4
d4k

(2π)4
f(k2,m2

v)

(

4

(k2)2(p2 −m2
f )

+
4

(k2)2((p + k)2 −m2
f )

−
8m2

f

(k2)2((p + k)2 −m2
f )(p2 −m2

f )
− 4

(k2)((p + k)2 −m2
f )(p2 −m2

f )

)

.

There is a symmetry factor S = 2.

Now let us check that graph 6 is zero (this is just in Feynman gauge, which is the one

used in the calculation):

g4
e

∫

d4p

(2π)4
d4k

(2π)4
f(k2,m2

v)
kµkσ

(k2)3
Tr(γµ(/k + /p+mf ))γσ(/p +mf )

((k + p)2 −m2
f )(p2 −m2

f )

= g4
e

∫

d4p

(2π)4
d4k

(2π)4
f(k2,m2

v) 4
2(pk)2 + (pk)k2 − k2p2 + k2m2

f

(k2)3((k + p)2 −m2
f )(p2 −m2

f )
.

Let us then subtract from that

g4
e

∫

dp4

(2π)4
d4k

(2π)4
f(k2,m2

v)
4kp

(k2)3(p2 −m2
f )
,

which is clearly zero by symmetry. What is left is:

−4g4
e

∫

d4p

(2π)4
d4k

(2π)4
f(k2,m2

v)

(

1

(k2)2((p+ k)2 −m2
f )

+
kp

(k2)3((p+ k)2 −m2
f )

)

,

which vanishes (this can be shown by using the auxiliary variable s = p+ k).

Finally, the gaugino graphs give:

4g4
e

∫

d4p

(2π)4
d4k

(2π)4
Tr(/k 1−γ5

2
/k 1+γ5

2
/k(/k − /p+mf ))

(k2)3((k − p)2 −m2
f )(p2 −m2

±)
f(k)

= 4g4
e

∫

d4p

(2π)4
d4k

(2π)4
2(k2 − kp)

(k2)2((k − p)2 −m2
f )(p2 −m2

±)
f(k)

= 4g4
e

∫

d4p

(2π)4
d4k

(2π)4

(

1

(k2)2(p2 −m2
±)

+
1

(k2)((k − p)2 −m2
f )(p2 −m2

±)

− 1

(k2)2((k − p)2 −m2
f )

−
(m2

± −m2
f )

(k2)2((k − p)2 −m2
f )(p2 −m2

±)

)

f(k) .
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