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Mediation. We show that a combination of searches using the inner detector and the muon
spectrometer yields a wide range of potential early LHC discoveries for NLSP lifetimes
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the TRT, or using the muon spectrometer alone. Finally, we also demonstrate that there
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in the delayed Z(`+`−) + 6ET channel. While our discussion centers on gauge mediation,
many of the results apply to any scenario with a long-lived neutral particle decaying to
charged particles.
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1 Introduction

In this work, we will study the collider signatures of neutral, heavy, long-lived particles
that decay to multiple charged particles and missing energy. Such signatures are interest-
ing for a variety of reasons. First, the combination of displaced decays, significant missing
energy, and high invariant mass generally leads to extremely clean, nearly background-free
channels. So such signatures can be excellent discovery channels for new physics. Second,
the presence of multiple charged particles generally allows for detailed reconstruction of
the event kinematics, including the position and time of the displaced vertex. This in turn
can be used to deduce the properties of the neutral parent particle, including its mass
and lifetime.
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The prototypical scenario we have in mind is gauge-mediated SUSY breaking (GMSB)
with a long-lived general neutralino NLSP.1 The general neutralino NLSP is a mixture of
bino, Higgsino, and wino gauge eigenstates. If the NLSP has a significant Higgsino or wino
component, then it can have O(1) branching fractions to Z + G̃ and h+ G̃, where G̃ is the
gravitino. Subsequent decays of the Z and h can then give rise to the signatures involving
charged particles and missing energy. In particular, Z → e+e−, Z → µ+µ−, Z → τ+τ−,
Z → jets and h→ bb̄ plus missing energy are all possible signatures. In this paper, we will
focus primarily on the simplest and cleanest cases, namely Z → `+`− with ` = e or µ. For
the purposes of discovery with early LHC data, we will also consider Z → jets.

While Higgsino and wino NLSPs do not occur in minimal gauge mediation, they are
perfectly reasonable possibilities in the context of General Gauge Mediation [3, 4]. Higgsino
NLSPs also arise in the simplest extensions of minimal gauge mediation [5] and can alleviate
fine-tuning [6]. For a review of minimal gauge mediation and its collider phenomenology,
and many original references, see e.g. [7].

The NLSP lifetime is determined by the fundamental scale of SUSY breaking,
√
F .

For
√
F . 102 TeV, the NLSP generally decays promptly, while for

√
F between ∼ 102 −

103 TeV, it mostly decays away from the primary vertex but inside the detector. Promptly-
decaying neutralino NLSPs were considered some time ago at the Tevatron [8–15] and
the LHC [16]. More recently in [17], we have considered current Tevatron limits on and
future prospects for discovery of promptly-decaying general neutralino NLSPs. In addition,
the possibility of finding Higgsino NLSPs decaying promptly to boosted Higgses using jet
substructure was recently discussed in [18].

By contrast, displaced Z’s from NLSP decays are not as well-studied. The possibility
of such signatures was first raised in [9–11, 13, 15]. Motivated by minimal gauge mediation
(where Br(χ̃0

1 → Z + G̃) � 1), Ambrosanio and Blair [19] examined this signature at a
hypothetical 500 GeV e+e− linear collider, focusing on its uses for the post-discovery study
of supersymmetry. As far as we know, our paper is the first to study this signature in detail
at hadron colliders, and to examine its potential as a discovery channel for new physics.

On the experimental side, long-lived neutralino NLSPs have received relatively little
attention, save for the case of a bino NLSP (again, motivated by minimal gauge mediation),
which decays dominantly to photons. Such decays have been searched for at CDF [20, 21]
using the EM timing system installed early in Run II [22, 23]. Preliminary studies of
non-pointing photons have been carried out by the CMS [24, 25] and ATLAS collabora-
tions [26–28]. Both CMS and ATLAS explored the possibility of using their electromagnetic
calorimeter (ECAL) to determine that photons were non-pointing (i.e. originate from a di-
rection other than that of the primary vertex), while ATLAS additionally explored the use
of timing information in the ECAL and reconstructed tracks from photon conversions.

By adapting the ATLAS work on non-pointing photons to the case of Z → e+e−, we
will see that a combination of the ECAL and tracking can lead to precise determination
of the neutralino mass and lifetime. Such displaced decays allow us to reconstruct the full

1Although our discussion focuses on GMSB for concreteness, many of our results will apply to more

general scenarios with long-lived neutral particles decaying to charged particles, such as Hidden Valleys [1, 2].
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kinematics of an event in ways that are simply impossible in events where all decays are
prompt, or where the decay products are neutral. For comparison, the study [26] had to
work with a longer a decay chain ˜̀→ `χ̃0

1 → `γG̃, use photon conversions for extra direc-
tional information, and make use of known masses to fully reconstruct events. (For another
recent discussion of the use of long-lived particles for full kinematic reconstruction, see [29].)

We also investigate Z(µ+µ−) final states using the muon spectrometer. These play
a complementary role to Z(e+e−) final states; by analyzing both electron and muon final
states, we can cover a much wider range of possible NLSP lifetimes. The muon chambers
are at the largest distance from the interaction point, and at both LHC experiments full 3D
tracking information is recorded. Using this information, plus potential timing information
from the muon system, a full kinematic reconstruction of standalone muons can be done
in principle, extending the detailed event study to much longer lifetimes than is possible
with electrons alone.

In reconstructing events, we are limited at short lifetimes by the timing resolution,
which at best is O(100 ps).2 We stress that this is the best any proposed study can do
for shorter lifetimes without having to rely upon additional kinematic information about
the masses. However, if one is interested in discovery of new physics and not full event
reconstruction, there is additional reach at short lifetimes, since here it is not necessary to
use timing information at all. Given that the decays we investigate come from a Z or h, the
high invariant mass or large separation of any charged particles produced at a displaced
vertex eliminate backgrounds such as conversions. We will show that including information
from the inner silicon layers of an LHC detector opens up discovery possibilities for delayed
decays that have hitherto not been stressed for the LHC.

The outline of our paper is as follows. In section 2, we will discuss the detector geometry
of ATLAS, as well as the ability of different detector components to perform specialized
measurements useful for long-lifetime searches, such as arrival times or the direction of a
particle passing through a subdetector. In section 3, we discuss the prospects for a discovery
at the LHC in early data (1 fb−1 taken at 7 TeV). For discovery, we are not interested in
detailed reconstruction of events so much as simply establishing a signal that is distinct
from Standard Model backgrounds. By making use of the pixel detector, the TRT, or the
muon spectrometer, in the Z → e+e−, Z → µ+µ− and Z → jets final states, we show
that a range of six orders of magnitude in lifetimes can be covered, from cτ = 10−1 − 105

mm. In section 4, we turn to the prospects for doing more detailed event reconstruction
with the ATLAS detector using 10 fb−1 of data at 14 TeV. Either the ECAL together with
the TRT or the muon spectrometer alone allow full kinematic reconstruction of decays
based on timing and directional information. We show that masses, lifetimes, and angular
distributions can be measured accurately. In section 5, we give a discussion of our results,
including how they generalize to CMS. Appendix A gives a summary of existing Tevatron
searches for long lifetime and presents a possible search that could discover long-lived
NLSPs at D∅.

2At long lifetimes we are limited only by the acceptance of the muon chambers. For much longer lifetimes,

one might consider using detectors far from the LHC [30].
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Figure 1. A cartoon of what an interesting long-lifetime event could look like in a detector. The
neutralino NLSP travels for a while and then decays to Z(e+e−)+gravitino. The solid black lines
denote additional jets, tracks, etc. that can be used to find the primary vertex. These can come
from e.g. initial state radiation or decays of directly-produced colored sparticles to the NLSP.

2 Long-lived neutral particles at ATLAS

In the rest of the paper, we will discuss the capabilities for ATLAS to identify displaced
NLSP decays into Z(e+e−) or Z(µ+µ−) (and in section 3 also Z → jets) along with a
gravitino. These can serve as benchmark scenarios for more general long-lived neutral
particle decays. A schematic view of an interesting decay of this type is shown in figure 1.

2.1 ATLAS detector geometry

In scenarios with a late-decaying particle, the collider signatures are determined by the
interplay of kinematics and geometry. We show an example of such a geometry in figure 2.
Note that the muon detectors occupy a large volume, while the inner detectors and track-
ing systems extend out to about a meter away from the beamline and a few meters along
the beamline.

In gauge mediation, the overall scale of the NLSP decay width is set by a dimensionful
quantity A:

A =
m5
χ̃0

1

16πF 2
≈
(

mχ̃0
1

100 GeV

)5(100 TeV√
F

)4 1
0.1 mm

. (2.1)

Here
√
F is the fundamental scale of SUSY breaking; it is related to the gravitino mass

via m3/2 = F/(
√

3MPl). In figure 3, we plot (at left) the relationship between lifetime
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Figure 2. Simplified illustration of one quadrant of the ATLAS detector geometry.
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Figure 3. Left plot: contour plot of Higgsino NLSP proper lifetime vs. NLSP mass and SUSY-
breaking scale. Right plot: Fraction of decays located in different subdetectors at ATLAS, as a
function of χ̃0

1 lifetime. Here the NLSP was taken to have mNLSP = 250 GeV and was assumed
to come from decays of 600 GeV gluinos. However, the dependences on NLSP and gluino mass are
not very strong compared to the effects of cτ and detector geometry.

and SUSY-breaking scale and (at right) the fraction of decays occurring within different
regions of the detectors at ATLAS as a function of the lifetime. (A plot similar to the
right-hand plot, generated for hidden-valley models, has appeared in refs. [31–33].) The
general pattern is this: at short lifetimes, nearly all of the decays occur within the inner
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detector. Consequently, nearly all the decays leave tracks in the TRT. As the lifetime
becomes of order meters, 10-20% of the decays can occur in the outer layers of the detector:
the electromagnetic or hadronic central calorimeters, the forward calorimeters, or the muon
detectors. However, at very long lifetimes, most NLSPs will escape the detector altogether.
The distribution of decay locations for those NLSPs that decay inside the detector is
essentially flat, i.e. it depends only on the relative volumes of the different subdetectors.

Analogous plots can be made for CMS and for the Tevatron detectors. Essentially the
only qualitative difference these have with figure 3 is the fraction of decays in the muon
detectors. At ATLAS, the very large volume of the muon system allows it to surpass the
number of decays in the inner detector for lifetimes of around 6 meters or more. At the
other detectors, decays in the muon system are somewhat less common, but still a useful
tool at long lifetime.

The general lesson we learn here is that if a substantial fraction of events have NLSP
decays anywhere in the detector, they will have NLSPs decaying in the inner detector. Thus
we expect that the decay products will pass through the calorimeters, and potentially leave
tracks. It is also interesting to look for anomalous tracks in the muon detectors. Decays
in the ECAL or HCAL are comparatively rare, and they offer less precision directional
information, so we will not pursue the use of such decays for reconstructing events. Of
course, ultimately, one would hope to find decays in all parts of the detector, and use their
relative rates to help characterize lifetimes.

2.2 ATLAS detector capabilities

2.2.1 Z → e+e−: TRT and ECAL

When focusing on Z(e+e−), the goal is to use as much precision information as possible
from the ECAL and the TRT to reconstruct the decay chain and fit masses and other
kinematic information. There are two sets of resolutions we will be interested in: those
pertaining to how well the ECAL can measure energy, timing, and pointing information,
and how well the TRT can in principle be used for finding displaced vertices. We will use
resolutions reported in the ATLAS note [27, 28] (see also [34]), which is a detailed follow-up
on an earlier paper examining the capability of ATLAS to find non-pointing photons in
minimal gauge mediation [26].

With the ECAL alone, we measure the five quantities listed in table 1. Given Z →
e+e−, we thus measure ten numbers characterizing the two electrons. Up to discrete
ambiguities and measurement errors, one can think of these numbers as equivalent to
two three-momenta p(e+) and p(e−), together with the four coordinates of the decay
vertex, (xd, yd, zd, td). In particular, the two timing measurements and two pointing angle
measurements can be used to solve for the four decay coordinates (xd, yd, zd, td); p(e+) and
p(e−) then point from the decay vertex to the calorimeters and have magnitude determined
by the energy measurement. With the further assumption that we have a decay χ̃0

1 →
ZG̃ → e+e−G̃, where G̃ is massless, this allows us to fully reconstruct the kinematics of
the NLSP decay.3

3Dropping the assumption of a massless gravitino, the quantity that is measured is the Z boson energy

– 6 –
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Measurement Resolution

ECAL

E δE ∼ 0.1
√
E GeV

ηdet, ϕdet ση = 0.004/
√
E/GeV, σϕ = 0.005/

√
E/GeV

θdir σθ =
(

0.080 + |ze.v.|
100 cm0.340

)
/
√
E/GeV

tdet σt = 100 ps
TRT ϕdir σϕdir = 1 mrad

Muon
p σp = 0.04p

θdir,ϕdir σϕdir = σθdir = 15 mrad
tdet σt = 2 ns

Table 1. Measured parameters and their resolutions in the ATLAS detector. The det subscripts
refer to a position or absolute time measured in the detector. The dir subscripts refer to the
direction of the energy/momentum as measured by the detector. The “effective z-vertex” ze.v. is
found by extrapolating the particle’s direction back in the z − r plane to the point at which it
intersects the r = 0 axis.

We are not limited to the ECAL for measurements of Z(e+e−). We assume that
ATLAS will be able to measure some tracking information for the e+ and e− using the
barrel TRT. The barrel TRT is only able to measure the direction of charged particles in
the transverse (r−ϕ) plane with a resolution listed in table 1. The use of the TRT to gain
more directional information will possibly require additional experimental work. Tracks
can be constructed from an “outside-in” tracking algorithm, although the description in
ref. [35] suggests that tracks are only reconstructed by this algorithm if they point back to
the beamline. Nonetheless, we expect that if there are sufficiently many TRT hits, a simple
modification of the Hough transform algorithm [36] can find the tracks of our electrons,
especially with the constraints that the tracks are nearly straight and hit the ECAL at the
location of the energy deposits.

2.2.2 Z → µ+µ−: Muon spectrometer

For the case of Z(µ+µ−), we are interested in the resolution achieved for standalone muon
reconstruction (without requiring a matched TRT track). We have estimated these resolu-
tions on the basis of information in the ATLAS muon TDR [37], table 6.1 of reference [38]
and discussions with ATLAS experimentalists [39]. In table 1 we collect the various reso-
lutions used in the study for Z(e+e−) and Z(µ+µ−).

Much like the combination of ECAL and TRT, the muon spectrometer provides 3d
directional and timing information. We assume that its position measurements (ηdet and
ϕdet) have negligible error relative to directional measurements (θdir and ϕdir). Thus,
the muon spectrometer alone provides a set of measurements that allow reconstruction
comparable to that of the ECAL+TRT. Note that its time resolution is worse than that
of the ECAL, but (being located at larger radius and encompassing a large volume) it is
sensitive to decays with longer lifetime, so this is acceptable. Furthermore, unlike the TRT,

in the neutralino rest frame, Erest
Z = 1

2m
χ̃0
1

“
m2
χ̃0
1

+ m2
Z −m2

G̃

”
. This shows that in general, a degeneracy

remains, so that mχ̃0
1

and mG̃ can both be increased consistent with all measurements.

– 7 –



J
H
E
P
1
0
(
2
0
1
0
)
0
6
7

Cuts Shared by Discovery and Reconstruction Analyses:
|ηdet| < 0.8 Passes through barrel TRT
rd < 800 mm Leaves sufficiently many TRT hits for track to be found

∆R(e+, e−) > 0.4 Well-separated, unlike conversions
ET > 20 GeV Triggerable (2gamma20)

Cuts Specific to Discovery with Silicon:
rd < 50 mm Electrons pass through all Si layers
rd > 0.05 mm Reduce background

DCA > 0.05 mm (either) Reduce background
Cuts Specific to Discovery with TRT:

rd > 1 cm Reduce background
DCA > 1 cm (either) Reduce background

Cuts Specific to Reconstruction with ECAL+TRT:
ze.v. < 1200 mm Pointing resolution not too degraded

∆t > 0.3 ns Significantly delayed

Table 2. Cuts defining acceptance for Z → e+e− analyses. Unless marked “(either)”, all cuts
apply to both electrons in the decay. ∆R, as usual, denotes

√
∆η2 + ∆φ2.

the muon spectrometer’s default algorithm should already be able to find 3D muon tracks
without matching to hits in the inner detector.

3 Discovery potential with early LHC data

In this section, we will consider the capabilities of the ATLAS detector to discover new
physics through displaced Z → e+e−, Z → µ+µ− and Z → jj decays. We will focus on the
discovery potential with early LHC data (1 fb−1 at 7 TeV), primarily through direct produc-
tion of colored sparticles. For this purpose, we have in mind a GMSB spectrum containing
light-to-moderate mass squarks and/or gluinos which decay down to the neutralino NLSP
(possibly through intermediate sparticles). The NLSP then decays with Br(χ̃0

1 → ZG̃) ∼ 1.
Such a spectrum does not occur in minimal gauge mediation, but as mentioned in the in-
troduction, it is a perfectly viable possibility in General Gauge Mediation [3, 4].

3.1 Z → e+e− with Si+TRT

For early discovery with electrons, we consider an analysis analogous to the Tevatron
searches discussed in appendix A: we use the tracker (TRT) to select events with signifi-

cantly displaced decay radius rd =
√
x2
d + y2

d. In addition, we use the fact that the silicon
pixel detector at ATLAS is sufficiently large and precise that it can also be used to detect
displaced Z → e+e− for shorter lifetimes. The combination of these can be used to cover
lifetimes (cτ) ranging from 10−1 to 103 mm.

The acceptance cuts used in this analysis are listed in detail in table 2. Some of
them are shared with the more detailed reconstruction analysis we will present in the next

– 8 –
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Cuts Shared by Discovery and Reconstruction Analyses:
rd < 4500 mm Passes through all muon layers

|ηdet| < 1.1 at r = 4.5, 7.0, 10.0 m Contained in the central muon spectrometer
Separation > 30 mm at r = 4.5, 7.0, 10.0 m Resolve two muons

rd > 500 mm Significantly displaced vertex
pT > 20 GeV Triggerable

∆t < 6 ns (either) Correct bunch-crossing ID

Table 3. Cuts defining acceptance for Z → µ+µ− analyses. Unless marked “(either)”, all cuts
apply to both muons in the decay. We take ∆t to be measured at a radius of 7000 mm.

section. They guarantee that the events leave tracks in the TRT, can be triggered on, and
do not resemble conversion backgrounds.

There are additional cuts specific to using the TRT or Si layers to discover displaced
decays, which impose a minimum radial decay distance rd as measured by the intersection of
the electron tracks in the r−ϕ plane. These cuts reduce backgrounds and select genuinely
displaced decays. To be safe, we also require that at least one of the electron tracks
(extrapolated backwards and forwards) satisfy a cut on the distance of closest approach
(DCA) to the beamline. For the pixel analysis, we require r > 0.05 mm and DCA> 0.05
mm. This is based on the resolution of the pixel detector, which is given by the impact
parameter resolution of about 0.01 mm reported in the ATLAS TDR [40]. For the TRT
analysis, we require r and DCA> 1 cm, again based on the TRT resolution in table 1.
We will refer to the fraction of events with a Z → e+e− decay that pass these cuts as the
“acceptance”.

Further background rejection could come from a 6ET cut. These events will generically
have large intrinsic 6ET, arising not only from the invisible gravitini and the escaping NLSP,
but also because NLSP decay products hit the calorimeter at displaced locations relative
to particles arising from the primary vertex. If there is significant strong production, the
events will also contain hard jets from gluino or squark decays, giving another handle on
backgrounds. While more detailed study from the experiment will be necessary to confirm
that our signal can be isolated with high purity, we believe that (provided the experiment
achieves its claimed resolutions) the signal would be dramatic and clean.

3.2 Z → µ+µ− with the muon system

For Z → µ+µ− we focus on decays before the first layer of the muon system at r = 4500
mm. The acceptance cuts are listed in table 3. Standalone muon tracks extrapolated back
to the inner detector have an impact parameter resolution of ∼ 100 mm, so we require a
decay radius rd > 500 mm, so that our muons are significantly displaced. (Furthermore,
they will have no matched track in the silicon layers.) We drop the ∆R cut for muons,
because conversions are less of a worry. However, a 30 mm minimum separation between
the muons is imposed, and the muons cannot both arrive with too long a delay relative
to promptly produced muons. If ∆t > 6 ns for both muons, the muons are likely to be
associated with the wrong bunch crossing [31–33]. This imposes an upper bound to the

– 9 –
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range of lifetimes that can be probed with the muon spectrometer. Given all these cuts,
we expect the background to be negligible.

As we will see below, searching in this final state extends the lifetime reach roughly an
order of magnitude beyond Z → e+e−. Note that we only consider central barrel muons
for this analysis, and the discovery potential could probably be further increased by using
endcap muons.

3.3 Z →jets

We have focused on electrons and muons because they each give one clean track that can
be measured well and used in reconstruction. However, for simply discovering new physics,
one may wish to use decays to jets. Triggers that have been developed for Hidden Valley
scenarios [1, 2] could prove useful for this purpose [31–33, 41]. We focus on a trigger path
based on multiple “regions of interest” in the muon spectrometer. If a neutral object decays
into jets after the HCAL, but before the first RPC layer in the muon system these events
can be triggered on. We assume that if a Z decays to jets in the muon spectrometer and
is triggered on, there are enough handles in the event that backgrounds can be completely
eliminated. Thus, to estimate the discovery potential in this channel, it suffices to estimate
the trigger efficiency for the signal.

The trigger demands that there are at least 3 regions of interest in the muon system
without a corresponding jet in the calorimeter, or tracks pointing to the same regions of
interest. Similar to the muon trigger, one of these regions of interest must have a ∆t < 6 ns
so that the event is found in the correct bunch crossing. Additionally a jet ET > 35 GeV is
required. As shown in [33] this trigger is approximately 70% efficient for decays occurring
between 4250 and 7000 mm in r.

As we will show in the next subsection, a trigger-based analysis in this channel has
the potential to extend the lifetime reach by another order of magnitude as compared
to Z → µ+µ−. This is because decays are allowed to happen out to 7000 mm for this
trigger. Again we only utilize barrel-based muon regions of interest (|η| < 1), but the
acceptance can be further increased by using endcap muons (|η| < 2.5). Also, we have
focused on a specific trigger pathway based on the muon system, but other triggers have
been developed [31–33, 41] which would be interesting to explore. For instance, one can
use an additional jet based trigger where logEHAD/EEM > 1 to find jets that originate
from decays in the HCAL. This trigger has a similar efficiency to the region of interest
trigger but for shorter lifetimes.

3.4 Results

Now we put together the various analyses described above and estimate the discovery reach
in early LHC running. Simulations in this subsection were performed with Pythia [42]. De-
tector geometry and resolutions were modeled with simple code implementing the relevant
quantities discussed in earlier sections.

In figure 4, we show how the acceptance changes as a function of lifetime, for different
values of the gluino mass. We see that for a given analysis, there is a slow loss of efficiency
at longer lifetimes, as more NLSPs decay at too large a radius to give a signal in the

– 10 –
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Figure 4. Plots of the acceptances for the individual Si, TRT, muon, and jet based analyses
as described in the text, as a function of the NLSP lifetime. These acceptances have all been
normalized to the number of Z → µ+µ− decays. The jet acceptance has been multiplied by the
ratio of the branching fractions Br(Z → jj)/Br(Z → µ+µ−). The different curves (blue, red,
yellow) correspond to different choices of the gluino mass (Mgluino = 600, 800, 1000).

relevant detector component (as expected from figure 3). However, we also see that the
analyses using the pixel detector, TRT and muon systems are nicely complementary to one
another. Together, they provide coverage of lifetimes spanning ∼ 6 orders of magnitude,
from ∼ 10−1 to 105 mm. This corresponds to slightly more than one order of magnitude
in
√
F , from a few hundred to a few thousand TeV (cf. the left-hand plot of figure 3).
As mentioned at the beginning of this section, at the LHC we imagine that production

of colored sparticles (gluinos, squarks) is the primary source of neutralino NLSPs. To
estimate the discovery reach in the lifetime and colored cross section plane, we take the
following benchmark scenario: gluinos and squarks decaying directly down to Higgsino
NLSPs. We will fix the NLSP mass at 250 GeV, since the discovery potential does not
depend strongly on it in most of the parameter space. We also assume for simplicity that
Br(χ̃0

1 → Z+G̃) = 1. We expect that the discovery potential is insensitive to the details of
the spectrum between the colored sparticles and the NLSP, because the analyses described
above are fully inclusive.

Varying the gluino, common squark mass, and lifetime, we have calculated Npass, the
number of events in 1 fb−1 at 7 TeV passing an OR of all the analyses described above.
Shown on the left in figure 5 are contours of constant Npass = 5 in the Msquark, Mgluino

plane, for different values of the lifetime. On the right in figure 5 are contours of constant
Npass in the Mgluino, cτ plane for Msquark = 1 TeV. Note that in the right panel of figure 5
there are bands of constant Npass as a function of the gluino mass, centered around cτ ∼ 1
m. These bands exist because there is still EW production of charginos and neutralinos
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Figure 5. Discovery potential for Higgsino NLSPs decaying to displaced Z’s (in the final states
discussed in this section) at ATLAS in 1 fb−1 at 7 TeV. Left plot: lines of constant σ ×Br× ε = 5,
for different values of cτ , in the Mgluino-Msquark plane. Right plot: Contours of σ × Br× ε in the
Mgluino-cτ plane, for fixed Msquark = 1 TeV. In both plots we have taken mNLSP = 250 GeV.

at the LHC. Even for a modestly heavy Higgsino NLSP, without having colored particles
within reach, the LHC at 7 TeV still has discovery potential during the first inverse fb.
With the inclusion of colored sparticles, the search for displaced Z decays becomes a
golden channel for the discovery of new physics in the first year of the LHC.

4 Detailed event study at 14TeV

Having explored the discovery potential in early LHC data, we will now turn to detailed,
post-discovery analysis of displaced Z decays at the LHC design energy (14 TeV). We will
show that by combining the capabilities of different parts of the ATLAS detector, full kine-
matic reconstruction of the event is possible. That in turn will enable detailed properties of
the NLSP to be measured precisely, including its mass, lifetime and wino/Higgsino content.

4.1 Sample points

Using Herwig 6.5 with full spin correlations [43–45], we have simulated some sample points
to test the ability to fully reconstruct events at 14 TeV. The parameter choices, corre-
sponding total SUSY production cross sections, and cross sections for events containing
the χ̃0

1 → G̃ Z(→ e+e−) are listed in table 4. We have chosen points with two NLSP
masses, ≈ 250 GeV and ≈ 450 GeV (denoted “L” and “H”); two gauge eigenstate contents,
Higgsino and wino (denoted “H” and “W”); and two gluino masses, 1000 GeV and 600 GeV
(the latter denoted with an “S”). For the most part we will show plots for the optimistic
point LHS with a 250 GeV Higgsino and a 600 GeV gluino, but some more detailed com-
parisons of the points appear in table 5 and section 4.5. For the Higgsino points, roughly
half of the χ̃0

1 decays are to Z; this could be increased to nearly 100% by taking tanβ ≈ 1.

– 12 –



J
H
E
P
1
0
(
2
0
1
0
)
0
6
7

Point µ M2 Mg̃ σtot σZ→e+e−

LH 250 800 1000 2.0 pb 79 fb
LHS 250 800 600 12.9 pb 506 fb
LW 800 245 1000 2.0 pb 30 fb
LWS 800 245 600 12.4 pb 200 fb
HH 450 800 1000 1.8 pb 47 fb
HHS 450 800 600 12.2 pb 388 fb
HW 800 445 1000 1.9 pb 34 fb
HWS 800 445 600 12.2 pb 233 fb

Table 4. Simulated points. Designations: first letter is “L” or “H” for “light” or “heavy” neutralino
NLSP (242 GeV and 438 GeV, respectively); second letter is “H” or “W” for “Higgsino-like” or
“wino-like” NLSP; “S” as the third letter means “enhanced strong production”, i.e. a relatively
light gluino. Parameters not listed in the table are identical for every point: M1 = 800 GeV all
squarks and sleptons are at 1 TeV, and tanβ = 20. Cross sections are as reported by Herwig
6.5 [43–45].

4.2 Cuts, acceptance, and efficiency

4.2.1 ECAL and TRT

We impose a set of cuts that is intended to give a rough characterization of which events
are potentially reconstructible and low-background. These cuts are listed in table 2. If only
the ECAL is used for reconstruction, the cut on detector eta is weakened to |ηdet| < 1.4,
as the electrons are no longer required to pass through the TRT.

We have included here two cuts which were not used in the discovery analysis of
section 3. They arise because pointing and timing information are necessary in order to fully
reconstruct the events. First, we require that the effective z-vertex satisfies |ze.v.| < 120 cm,
so that the pointing angle resolution σθ remains reasonably small [27, 28]. Second, to
guarantee that we look at events that are noticeably delayed in time, we require a time
delay (relative to an electron from the primary vertex) of 0.3 ns for both electrons. In
simulating the time delay we assume that the beam spot is essentially Gaussian with
σz = 5.6 cm (σx,y = 15µm). We assume that the primary vertex z position will be
measured well enough that smearing by a Gaussian of width 100 µm gives a reasonable
description of its uncertainty [40]. We will refer to the fraction of events with a Z → e+e−

decay that pass these cuts as the “acceptance.”

4.2.2 Muons

Because the muon system does not have separate tracking and pointing, but simply mea-
sures 3d tracks and their arrival time, and because the acceptance cuts in section 3 already
included a requirement of large decay radius rd > 500 mm, we use the same acceptance
cuts as in the discovery analysis. They are listed in table 3.
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Figure 6. Geometric and kinematic acceptance (dashed blue line for ECAL+TRT, dashed yellow
line for muons) and reconstruction efficiency (solid purple line for ECAL+TRT, solid green line
for muons) as a function of lifetime for point LHS. The reconstruction efficiency is defined as the
fraction of all Z → `+`− events that are well-reconstructed.

4.2.3 Reconstruction

With either the ECAL+TRT combination or the muon spectrometer alone, the kinematics
of the decay are overconstrained (12 measurements for 10 unknowns). To reconstruct the
events, we begin with a “seed choice.” The goal is to take the measured parameters for each
electron, (E, ηdet, ϕdet, θdir, ϕdir, tdet) and produce a preliminary description of the event
kinematics, as specified by (xd, yd, zd, td) and p(e±). We determine (xd, yd) by finding the
intersection of the lines in the r−ϕ plane determined by (ϕdet, ϕdir) for the two electrons.
Given (xd, yd), we then estimate (zd, td) by choosing one of the electrons (arbitrarily) and
extrapolating backward (using its arrival time td and angle θdir). This gives an initial seed,
from which we can then search for a local minimum of the χ2 for the measured quantities
(i.e.

∑
i(Oi−Ei)2/σ2

i ). The resolutions σi depend on measured quantities like E and ze.v.;
we compute these from the initial seed point, rather than allowing σ to vary across the set
of values we minimize over.

We consider the event “well-reconstructed” if it additionally satisfies a tight Z mass
window cut 81< mZ < 101 GeV and a loose NLSP mass window cut 90< mχ̃0

1
< 1000 GeV.

The fraction of events that are well-reconstructed by this criterion will be referred to as
the “efficiency.” In practice, the acceptance and efficiency are similar, indicating that our
acceptance cuts select reconstructible events almost always.

In figure 6, we show how the acceptance and efficiency change as a function of lifetime.
At cτ of about 1 meter, the muon spectrometer takes over from the ECAL as the preferred
way to measure long-lived decays. At very long lifetimes, the trigger requirement of a time
delay below 6 ns is somewhat limiting, but the muon spectrometer still has sensitivity to
lifetimes beyond 100 meters provided cross sections are not too small. To give a sense of
how efficiencies and mass reconstruction vary as a function of the spectrum, we fix a lifetime
of 1 ns (so that the ECAL is the preferred detector component) and tabulate efficiencies
and reconstructed masses for all of the samples in table 5. We also include the results of
the ECAL-only reconstruction for comparison. It gives comparable, or sometimes higher,
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Point mrec σmrec Nev ε m
(ECAL)
rec σ

(ECAL)
mrec N

(ECAL)
ev ε(ECAL)

LH 242.9 1.8 61.9 0.078 239.5 4.5 75.4 0.095
LHS 242.6 0.74 571 0.113 240.2 0.92 791 0.156
LW 242.3 4.0 14.5 0.048 238.2 6.5 22 0.073
LWS 242.1 1.3 193 0.096 241.7 1.5 268 0.134
HH 436.4 2.4 58.3 0.124 428.2 12.6 76.7 0.163

HHS 436.2 0.92 546 0.141 424.9 3.8 678 0.175
HW 435.5 4.8 37.9 0.111 433.4 18.4 45.8 0.135

HWS 436.8 1.1 293 0.126 428.9 4.6 359 0.154

Table 5. Ability to reconstruct the various simulation points; for each, ten independent 10 fb−1

samples were run with the lifetime fixed at 1 ns. We report the average and standard deviation of
the reconstructed mass mrec (found by Gaussian fit seeded with the median of distribution) over
the ten samples, and the average number of reconstructed events Nev and corresponding efficiency
ε. The final four columns report results relying only on the ECAL.

efficiencies, but broader and less accurate distributions.

4.3 Mass reconstruction

In figure 7, we show histograms of reconstructed neutralino masses in a 10 fb−1 sample
of events passing the cuts of section 4.2, together with a nonlinear least-squares fit to a
Gaussian to find the mass. For the point LHS, there are 554 well-reconstructed events; for
the point HHS, there are 561. In both cases, we also show, in the background, the results
of a fit using only information from the ECAL. Notice that the ECAL-only efficiency is
comparable, as a similar number of events are reconstructed, but the resolution is noticeably
worse, and a typical event will be reconstructed far more accurately if the TRT is used.
This highlights the importance of understanding how to construct standalone TRT tracks
originating at a given calorimeter cell that do not necessarily point near the primary vertex.

Figure 8 shows a similar result for reconstruction using the muon spectrometer. Here
the lifetime is 14 m, a factor of 40 larger than that shown in figure 7. For this lifetime
there are 286 well-reconstructed events at point LHS and 150 at point HHS.

4.4 Lifetime measurement

In GMSB, one of the most interesting quantities to measure is the lifetime of the NLSP,
from which the fundamental scale of SUSY breaking

√
F can be derived. Our cuts require

delays of 0.3 ns for reconstruction with the ECAL, and decay radii of 500 mm for use of
the muon spectrometer, so finding a sample of well-reconstructed events with a clean mass
peak automatically implies that one is viewing events with a long lifetime. However, the
distribution of reconstructed lifetimes is shaped by multiple effects. First, the distribution
of proper lifetimes e−t/τ is convolved with the effects of boost factors which depend on
the mass of the produced particles (like gluinos or squarks) as well as the NLSP mass.
On an event-by-event basis, the boost can be measured and corrected for, but with some
error. Second, the geometry of the detector imposes limitations; for instance, for events
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Figure 7. Reconstructed mχ̃0
1

for a Higgsino-like NLSP, using the ECAL and the TRT. Here we
have restricted to events with mZ reconstructed within 10 GeV of the true value, and performed
a nonlinear least-squares fit to a Gaussian. The points are LHS and HHS, and the Gaussian fit is
accurate within 1 GeV for both. The gray histograms and dotted lines in the background show the
ECAL-only reconstruction and corresponding Gaussian fit.

Figure 8. Reconstructed mχ̃0
1

for a Higgsino-like NLSP, in points LHS and HHS, using the muon
spectrometer. This demonstrates the capacity to reach significantly longer lifetimes.

reconstructed with the ECAL, decays at t >∼ 3 ns will be too long-lived to be detected, so
the tail of the distribution is chopped off. Events at lifetimes that are too short are not
reconstructible, so the beginning of the distribution is also shaped by cuts. As a result,
very little remnant of an exponential distribution of proper times is left (see figure 9).

The unknown spectrum presents a challenge, but given the good kinematic reconstruc-
tion of decays that we have shown is achievable, it seems likely that masses of squarks and
gluinos can be measured well. The cross section also contains information about these
masses. Such mass determination problems are orthogonal to the subject of this paper,
so we will not consider them in detail here. For the time being, we will simply assume
that the unknown spectrum has been independently measured, so that the distribution of
NLSP lifetimes can be simulated accurately.

Assuming that the spectrum has been measured, one can simulate a variety of different
lifetimes and perform a χ2 fit to find the true lifetime. We show the results of such a fit
in figure 10. A wide range of lifetimes can be measured with ∼ 10% accuracy. It is likely
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Figure 9. Distribution of reconstructed decay lengths, for a case using the ECAL and TRT (at
left, cτ = 0.3 m) and using the muon spectrometer (at right, cτ = 14 m).

Figure 10. Ability to reconstruct lifetimes: mean and standard deviation of the ratio of measured
to true lifetime inferred from 10 independent pseudoexperiments of 10 fb−1 each, by χ2 fitting of
the distribution of reconstructed times for each event. We show the point LHS, which has a large
cross section, and for which the lifetime can be measured accurately. Blue points are measured with
electrons in the ECAL+TRT, whereas purple points are measured with the muon spectrometer.

that one of the best tools for understanding lifetime is the ratio of events measured in
different parts of the detector, as we discussed in section 2.1, provided that the efficiencies
and kinematics are understood. For relatively short lifetimes, it would be interesting to
consider how well the silicon can be used to measure cτ , although such events would not be
fully reconstructible as they would occur at times to short to use the ECAL timing system.

4.5 NLSP angular distributions

So far we have focused on reconstructing basic kinematic information like masses and decay
widths. More detailed information can be obtained by studying angular distributions. For
example, a neutral wino decays to transversely polarized Z bosons, whereas a neutral
Higgsino decays to gravitino plus longitudinal Z. In the decay chain χ̃0

1 → G̃Z(→ e+e−),
the invariant mass

M2(e−, G̃) =
1
2

(
m2
χ̃0

1
−m2

Z

)
(1 + cos θ∗) (4.1)
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Figure 11. Invariant mass squared M2(e−, G̃) of the electron and gravitino in a neutralino decay
chain, after reconstruction of the event, with 10 fb−1 of data and cτ = 0.3 m. At left: a mostly-
Higgsino NLSP (model point LHS), with dotted line showing the idealized longitudinal distribution
∝ 1 − cos2 θ∗. At right: a mostly-wino NLSP (model point LWS), with dotted line showing the
idealized transverse distribution ∝ 1 + cos2 θ∗.

where θ∗ is the angle in the Z rest frame between the e− direction and the boost direction
from the χ̃0

1 rest frame to the Z rest frame. In this variable, the expected angular distri-
bution is 1 + cos2 θ∗ for transversely polarized Z bosons and 1− cos2 θ∗ for longitudinally
polarized Z bosons. Similar techniques were discussed in the context of the hypothetical
ILC in [19]. Note that this is an idealized theoretical prediction that will be shaped by cuts.
(In particular, cos θ∗ → 1 is a limit in which the e+ is soft and the event will fail our cuts.)

In figure 11 we illustrate the ability of ATLAS to discriminate between transversely
and longitudinally polarized Z bosons (and, hence, neutral wino vs Higgsino NLSPs). A
Kolmogorov-Smirnov test shows that these distributions differ at the 99% confidence level.
This is based on points LHS and LWS, i.e. two points with a 600 GeV gluino to enhance the
production cross section. The lifetime is 1 ns and we have used ECAL and TRT information
in the reconstruction. In addition to the cuts we took to define a “well-reconstructed event”
in section 4.2.3, we further keep only events for which the reconstructed value of mχ̃0

1
is

within 10 GeV of the best-fit value, which gives a cleaner sample. This simple example
illustrates that we can move beyond studying just masses and branching ratios to actually
probing the structure of the Lagrangian.

5 Discussion

In this paper we have established that the LHC can discover long-lived neutral particles
decaying to Z bosons, with lifetimes (cτ) ranging from about 0.1 mm to 100 meters, using
just 1 fb−1 of data at 7 TeV. We have seen that this is a clean, well-motivated, and powerful
discovery channel for new physics, and it is one that has up till now been neglected at the
LHC. Thus it presents an exciting prospect that could be put to the test within the next
two years.

Because our long-lived particles decay to multiple charged particles, and these particles
arrive with a time delay in a direction that does not point back to the beamline, the problem
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of reconstructing the event kinematics becomes highly overconstrained. For lifetimes from
a few centimeters to tens of meters, we have shown that the ECAL and TRT or the muon
spectrometer provide enough precision information to allow masses, lifetimes, and even
angular distributions to be accurately measured with 10 fb−1 of data at 14 TeV. This should
be contrasted with prompt decays or even displaced decays to photons, where much less
information is available, and one must work much harder to reconstruct these quantities.

We have not necessarily exhausted the full set of options for using the ATLAS de-
tector to study long lifetimes; for instance, the Tile (hadronic) calorimeter can measure
arrival time with resolution ranging from hundreds of picoseconds to 1.5 ns depending on
energy [46]. In general, we expect that decays inside a calorimeter will offer less precise
directional information than those in a tracking system, but they can still be interesting
both for discovery and to get a better understanding of lifetime by counting decays in
different detector components.

Our results have been specialized to ATLAS, but most of them carry over to CMS with
minimal changes. Perhaps the most important difference is simply the volume of the two
detectors: CMS has a radius of 7.3 meters [47], whereas the muon spectrometer at ATLAS
extends out to 10 meters. Thus CMS can be expected to have a somewhat more limited
ability to probe very long lifetimes. Aside from the geometry, however, CMS should perform
well in measuring standalone muons from long-lifetime decays, with full 3d directional
information, and a timing resolution of ∼ 1 ns from RPCs [48]. The CMS detector also
has an EM timing system, which like that of ATLAS has a resolution of 100 ps for EM
showers (and has achieved synchronization across crystals of 500 ps with early events) [49].
The ability of the CMS ECAL to measure non-pointing angles is more limited, but at a
crude level it is possible [24, 25]. On the other hand, whereas the ATLAS TRT provides
information only in the r−ϕ plane, at CMS the first two layers of both the TIB (“Tracker
Inner Barrel”) and TOB (“Tracker Outer Barrel”) are stereo [47], so provided a decay is
prompt enough, the tracker can be used to provide 3d directional information in place of
pointing information from the calorimeter. The stochastic term in the CMS ECAL is quite
good, σE ≈ 0.036

√
E GeV, although as with standard photon or electron measurements at

CMS, the large amount of material in the tracker could complicate precise measurement.
It is interesting to consider to what extent the reconstruction techniques we discuss

can be pushed to shorter lifetimes. It is conceivable that future detector upgrades could
have picosecond-resolution timing [50], giving two orders of magnitude improvement and
allowing silicon to be used in place of pointing for 3d directional information. The use of
such high-precision timing would essentially allow the entire discovery reach discussed in
section 3 to be accurately reconstructed along the lines of section 4.
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A Tevatron searches for long-lived neutral particles

In this appendix, we will discuss Tevatron searches for delayed decays of long-lived, heavy,
neutral particles [20, 21, 51–53, 55, 56]. We will focus on their discovery potential for
general neutralino NLSPs decaying to Z(`+`−) + 6ET. Currently, there are no Tevatron
analyses which directly search in this final state. However, several searches motivated by
other theoretical considerations have the potential to indirectly constrain this scenario.

CDF has performed two searches for a long-lived neutral particle decaying to a Z boson
and possibly other particles, visible or invisible. These studies use well-reconstructed tracks
found by the default algorithms, so in particular, any particle that decays at a radius larger
than ∼ 1 cm would be missed. Both were motivated by a possible fourth generation quark
b′ → bZ decaying through a loop. The first searched for Z → e+e− in a 90 pb−1 sample [51],
whereas the second searched for Z → µ+µ− in a 163 pb−1 sample [52]. Both studies
imposed a Z mass window cut and required a minimum Lxy, the distance in the transverse
plane between the interaction point and the vertex where the lepton pair originates, of
order 0.1 cm. Both searches set limits of order 1 pb for lifetimes near 0.1 to 1 cm.

D∅ has carried out studies that offer more flexibility in the range of lifetimes probed,
by not requiring standard track quality cuts. One study used 380 pb−1 of data to search
for a displaced µ+µ− pair [53], motivated by the NuTeV anomaly [54] and RPV decays of
a neutralino. The muons were required to have a minimum distance of closest approach
of the tracks to any vertex in both the transverse plane (0.01 cm) and the z direction (0.1
cm), and were not required to leave silicon hits. This search required ∆R(µ+µ−) < 0.5,
which leads to its optimal reach being at lower masses than the Z, so it is not optimal for
gauge mediation searches. The limit was about 0.1 pb for a lifetime of about 1 cm.

More interestingly for us, D∅ has undertaken a study with 1.1 fb−1 of data that
searches for displaced electrons or photons using pointing [55] and not using tracking.
The pointing measurement gives full 3d information on the direction of an object interact-
ing with the EM calorimeter, by fitting a line through five shower positions. This allows a
great deal more flexibility in the range of lifetimes probed than studies that rely on track-
ing information. This is the only Tevatron search that we are aware of which constrains
this scenario using timing or pointing. This search is sensitive to longer displacements
(∼ O(10 − 100) cm) than the tracking-based searches, and so it offers a complementary
approach to the searches described above.
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Figure 12. Number of events at D∅ in 10 fb−1, using the cuts from an existing study [55] in
combination with a MET cut of 30 GeV.

Since this search was again motivated at least partly by the b′ → bZ scenario, the
cuts were not optimized for gauge mediation. In particular, there was no requirement on
missing energy, and consequently there was a nonzero expected background. We expect
that with a hard MET cut, the background could have been completely eliminated, so that
with more data, this channel could become a clear discovery mode for GMSB.

To illustrate this we first reproduced the acceptances given in [55] for b′ → bZ(ee)
using a Pythia simulation [42]. We then calculated the number of events coming from
direct production of a Z-rich Higgsino NLSP using the same cuts as in the previous study
but including a MET cut of 30 GeV.4 In figure 12 we plot the number of events in 10 fb−1

at D∅ as a function of lifetime and mass. We clearly see that D∅ has the potential to
discover GMSB for Higgsino NLSPs for larger lifetimes, assuming the background can be
made negligible. Note that since we are assuming only direct production of neutralinos
and charginos, our result should be viewed as a conservative estimate of the reach, since
any additional particles (sleptons, gluinos, squarks) will only add to the total rate for this
inclusive search.

Although our paper is focused on signatures of displaced Z → `+`−, for completeness’
sake, let us also briefly discuss various Tevatron searches for other displaced final states.
Recently D∅, motivated by Hidden Valleys [1, 2], has looked for pairs of neutral long lived
particles that decay into bb̄ pairs, both with displaced vertices [56]. This study is sensitive
to displacements between 1.6 cm and ∼ 20 cm. This study could be potentially very useful
for bounding Higgs-rich Higgsino NLSPs. Unfortunately, QCD is the background for this
search and it is quite large. Once again, however, this search did not include a MET cut.

4Note that in [55] the same MET cut was applied, but the invariant mass was only required to be above

20GeV, which left 7 background events in 1.1 fb−1. For Higgsinos, the electrons will satisfy both a tight Z

mass window cut and a hard MET cut. We expect the combination of these will completely eliminate the

background.
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Including a hard MET cut could reduce the background significantly and with more data
could turn this into a discovery mode.

Using an EM calorimeter timing system with a resolution of about 1 ns [22, 23],
CDF has searched for long lived neutralinos in GMSB that decay into photons at large
displacements in [20, 21]. In minimal gauge mediation, this has its best reach for lifetimes
of about 150 cm, excluding a bino mass of about 105 GeV. This search could conceivably
also be used to bound light Higgsino or wino NLSPs, where decays to heavier gauge bosons
and Higgses are phase-space suppressed. Clearly, further studies using the EM timing
system of CDF would be useful and would be complementary to D∅’s studies. Interesting
searches using EM timing that could probe long-lived general neutralino NLSPs include
searches for out-of-time tracks or jets. Another possibility would be to search in the single
photon plus 6ET channel. Making this an exclusive final state (i.e. vetoing on other activity
in the event) would be an interesting way to look for light Higgsino or wino NLSPs, where
one decays outside the detector, while the other decays inside to γ + G̃. Since Higgsinos
and winos (in contrast to binos) can be directly produced, there would not be complicated
SUSY cascade decays giving rise to many high pT particles, and hence not much activity
in the event other than the single photon plus missing energy.
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