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1 Introduction and summary

Interest in Yang-Mills theories in dimensions greater than four grew essentially after the dis-

covery of superstring theory, which contains supersymmetric Yang-Mills in the low-energy

limit in the presence of D-branes as well as in the heterotic case. In particular, heterotic

strings yield d=10 heterotic supergravity interacting with the N=1 supersymmetric Yang-

Mills multiplet [1]. Supersymmetry-preserving compactifications on spacetimes M10−d×Xd

with further reduction to M10−d impose the first-order BPS-type gauge equations which are

a generalization of the Yang-Mills anti-self-duality equations in d=4 to higher-dimensional

manifolds with special holonomy. Such equations in d>4 dimensions were first introduced

in [2] and further considered e.g. in [3–16]. Some of their solutions were found e.g. in [17–24].

Initial choices for the internal manifold X6 in string theory were Kähler coset spaces

and Calabi-Yau manifolds, as well as manifolds with exceptional holonomy group G2 for

d=7 and Spin(7) for d=8. However, it was realized recently that the internal manifold

should allow non-trivial p-form fluxes whose back reaction deforms its geometry. In partic-

ular, a three-form flux background implies a nonzero torsion whose components are given

by the structure constants of the holonomy group, T a
bc = κ fa

bc, with a real parameter κ.

String vacua with p-form fields along the extra dimensions (‘flux compactifications’) have

been intensively studied in recent years (see e.g. [25–27] for reviews and references). Flux

compactifications have been investigated primarily for type II strings and to a lesser extent

in the heterotic theories, despite their long history [28–32]. The number of torsionful ge-

ometries that can serve as a background for heterotic string compactifications seems rather

limited. Among them there are six-dimensional nilmanifolds, solvmanifolds, nearly Kähler

and nearly Calabi-Yau coset spaces. The last two kinds of manifolds carry a natural al-

most complex structure which is not integrable (for their geometry see e.g. [33–37] and

references therein).

In the present paper, we solve the torsionful Yang-Mills equations on G2-manifolds of

topology R×X6 with nearly Kähler cosets X6. The allowed gauge bundle is restricted by

the G2-instanton equations [13, 14]. For each coset X6 = G/H, we parametrize the general

G-invariant connection by a set of complex scalars φi, which depend on the coordinate τ

of the R factor. The Yang-Mills equations then descend to Newton’s equations for the

coordinates φi(τ) of a point particle under the influence of an inverted double-well-type

potential, whose shape depends on κ. For this potential we derive the critical points of

zero energy, which correspond to the τ→±∞ asymptotic configurations of the finite-action

Yang-Mills solutions. We then present a variety of zero-energy solutions φi(τ), of kink and

of bounce type, analytically as well as numerically. The kinks translate to instantons for

the gauge fields.

Furthermore, by replacing the factor R with S1, we obtain periodic solutions with a

sphaleron interpretation. Finally, in the Lorentzian case iR×G/H, the double-well-type

potential gets flipped back, and there exist bounce solutions with a dyonic interpretation,

some of which have finite action. The different types of finite-action Yang-Mills solutions

on R×G/H or iR×G/H occur in the following ranges of the parameter κ:

– 2 –



J
H
E
P
1
0
(
2
0
1
0
)
0
4
4

κ ∈ (−∞,−3) (−3,+1) (+1,+3) (+3,+5) (+5,+9) (+9,+∞)

Euclidean bounces instantons instantons bounces — —

Lorentzian dyons — — — dyons dyons
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2 Yang-Mills fields on R × G/H

2.1 Yang-Mills equations with torsion

Instantons [38] play an important role in modern gauge theories [39, 40]. They are non-

perturbative BPS configurations in four Euclidean dimensions solving the first-order anti-

self-duality equations and forming a subset of solutions to the full Yang-Mills equations.

In dimensions higher than four, BPS configurations can still be found as solutions to

first-order equations, known as generalized anti-self-duality equations [2–10] or Σ-anti-self-

duality [11–14]. These appear in superstring compactifications as conditions of survival of

at least one supersymmetry [1]. Various solutions to these first-order equations were found

e.g. in [17–24], mostly on flat space R
d and various cosets.

The BPS-type instanton equations in d > 4 dimensions can be introduced as follows.

Let Σ be a (d−4)-form on a d-dimensional Riemannian manifold M . Consider a complex

vector bundle E over M endowed with a connection A. The Σ-anti-self-dual gauge equations

are defined [11, 12] as the first-order equations,

∗ F = −Σ ∧ F , (2.1)

on a connection A with the curvature F = dA+A∧A. Here ∗ is the Hodge star operator

on M .

Differentiating (2.1), we obtain the Yang-Mills equations with torsion,

d ∗ F + A∧ ∗F − ∗F ∧ A + ∗H ∧ F = 0 , (2.2)

where the torsion three-form H is defined by the formula

∗ H := dΣ ⇒ H = (−1)3(d−3) ∗ dΣ . (2.3)

The torsion term in (2.2) naturally appears in string theory [25–27].1 If Σ is closed, H = 0

and (2.2) reduce to the standard Yang-Mills equations. The Yang-Mills equations with

torsion (2.2) are equations of motion for the action

S =

∫

M

tr
(
F ∧ ∗F + (−1)d−3Σ ∧ F ∧ F

)

=

∫

M

tr
(
F ∧ ∗F + ∗H ∧

(
dA ∧A + 2

3A3
))

−
∫

M

d
(
Σ ∧ tr

(
A ∧ dA + 2

3A3
))

,

(2.4)

1For a recent discussion of heterotic string theory with torsion see e.g. [41–50] and references therein.
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where the last term is topological. In what follows we consider the equations (2.2) on

manifolds M = R × G/H, where G/H are compact nearly Kähler six-dimensional homo-

geneous spaces.

2.2 Coset spaces

Consider a compact semisimple Lie group G and a closed subgroup H of G such that G/H

is a reductive homogeneous space (coset space). Let {IA} with A=1, . . . ,dim G be the

generators of the Lie group G with structure constants fA
BC given by the commutation

relations

[IA, IB ] = fC
AB IC . (2.5)

We normalize the generators such that the Killing-Cartan metric on the Lie algebra g of

G coincides with the Kronecker symbol,

gAB = fC
AD fD

CB = δAB . (2.6)

More general left-invariant metrics can be obtained by rescaling the generators.

The Lie algebra g of G can be decomposed as g = h ⊕ m, where m is the orthog-

onal complement of the Lie algebra h of H in g. Then, the generators of G can be

divided into two sets, {IA} = {Ia} ∪ {Ii}, where {Ii} are the generators of H with

i, j, . . . = dim G−dim H+1, . . . ,dim G, and {Ia} span the subspace m of g with a, b, . . . =

1, . . . ,dim G−dimH. For reductive homogeneous spaces we have the following commuta-

tion relations:

[Ii, Ij ] = fk
ij Ik , [Ii, Ia] = f b

ia Ib and [Ia, Ib] = f i
ab Ii + f c

ab Ic . (2.7)

For the metric (2.6) on g we have

gab = 2f i
adf

d
ib + f c

adf
d
cb = δab , (2.8)

gij = fk
ilf

l
kj + f b

iaf
a
bj = δij and gia = 0 . (2.9)

2.3 Torsionful spin connection on G/H

The metric (2.8) on m lifts to a G-invariant metric on G/H. A local expression for this

can be obtained by introducing an orthonormal frame as follows. The basis elements IA

of the Lie algebra g can be represented by left-invariant vector fields ÊA on the Lie group

G, and the dual basis êA is a set of left-invariant one-forms. The space G/H consists of

left cosets gH and the natural projection g 7→ gH is denoted π : G → G/H. Over a small

contractible open subset U of G/H, one can choose a map L : U → G such that π ◦L is the

identity, i.e. L is a local section of the principal bundle G → G/H. The pull-backs of êA

by L are denoted eA. Among these, the ea form an orthonormal frame for T ∗(G/H) over

U , and for the remaining forms we can write ei = ei
ae

a with real functions ei
a. The dual

frame for T (G/H) will be denoted Ea. By the group action we can transport ea and Ea

from inside U to everywhere in G/H. The forms eA obey the Maurer-Cartan equations,

dea = −fa
ib ei ∧ eb − 1

2 fa
bc eb ∧ ec and dei = −1

2 f i
bc eb ∧ ec − 1

2 f i
jk ej ∧ ek . (2.10)
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The local expression for the G-invariant metric then is

gG/H = δabe
aeb . (2.11)

Recall that a linear connection is a matrix of one-forms Γ = (Γa
b ) = (Γa

cbe
c). The

connection is metric compatible if gacΓ
c
b is anti-symmetric, and its torsion is a vector of

two-forms T a determined by the structure equations

dea + Γa
b ∧ eb = T a = 1

2 T a
bc eb ∧ ec . (2.12)

We choose the torsion tensor components on G/H proportional to the structure constants

fa
bc,

T a
bc = κ fa

bc , (2.13)

where κ is an arbitrary real parameter. Then the torsionful spin connection on G/H

becomes

Γa
b = fa

ibe
i + 1

2 (κ+1) fa
cb ec =: Γa

cbe
c . (2.14)

2.4 Yang-Mills equations on R × G/H

Consider the space R × G/H with a coordinate τ on R, a one-form e0 := dτ and the

Euclidean metric

g = (e0)2 + δab eaeb . (2.15)

The torsionful spin connection Γ on R × G/H is given by (2.14), with

Γa
cb = ei

c fa
ib + 1

2 (κ+1) fa
cb and Γ0

0b = Γa
0b = Γ0

cb = 0 . (2.16)

For our choice of the metric, gab = δab, we can pull down indices in (2.13) and introduce

the three-form

H = 1
3! Tabc ea ∧ eb ∧ ec = 1

6 κfabc ea ∧ eb ∧ ec =⇒ Habc = Tabc = κfabc . (2.17)

Consider the trivial principal bundle P (R×G/H,G) = (R×G/H)×G over R×G/H

with the structure group G, the associated trivial complex vector bundle E over R×G/H

and a g-valued connection one-form A on E with the curvature F = dA + A ∧ A. In the

basis of one-forms {e0, ea} on R×G/H, we have

A = A0e
0 + Aae

a and F = F0a e0 ∧ ea + 1
2 Fab ea ∧ eb . (2.18)

In the following we choose a ‘temporal’ gauge in which A0 ≡ Aτ = 0.

The Yang-Mills equations with torsion (2.2) on R×G/H are equivalent to

EaFa0 + Γa
abFb0 + [Aa,Fa0] = 0 , (2.19)

E0F0b + EaFab + Γd
daFab + Γb

cdFcd + [Aa,Fab] = 0 , (2.20)

where we used (2.16) and (2.17) and the gauge A0 = 0 with E0 = d/dτ . Note that these

equations also follow from the action functional (2.4) with H given in (2.17).
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2.5 G-invariant gauge fields

Let us associate our complex vector bundle E → R×G/H with the adjoint representation

adj(G) of the structure group G. Then the generators of G are realized as dim G×dim G

matrices

Ii =
(
IA
iB

)
=
(
fA

iB

)
=
(
f j

ik

)
⊕
(
fa

ib

)
and Ia =

(
IA
aB

)
=
(
fA

aB

)
. (2.21)

According to [51] (see also [52–55]), G-invariant connections on E are determined by linear

maps Λ : m → g which commute with the adjoint action of H:

Λ
(
Ad(h)Y

)
= Ad(h)Λ(Y ) ∀h ∈ H and Y ∈ m . (2.22)

Such a linear map is represented by a matrix (XB
a ), appearing in

Xa := Λ(Ia) = XB
a IB = Xi

aIi + Xb
aIb . (2.23)

For the cases we will consider one can always choose Xi
a = 0. In local coordinates the

connection is written

A = eiIi + eaXa ⇔ Aa = ei
aIi + Xa , (2.24)

and its G-invariance imposes the condition

[Ii,Xa] = f b
iaXb ⇔ Xb

af
c
bi = f b

iaX
c
b . (2.25)

The curvature F of the invariant connection (2.24) reads

F = dA + A ∧A = Ẋae
0 ∧ ea − 1

2

(
f i

bcIi + fa
bcXa − [Xb,Xc]

)
eb ∧ ec ⇔ (2.26)

F0a = Ẋa and Fbc = −
(
f i

bcIi + fa
bcXa − [Xb,Xc]

)
, (2.27)

where dots denote derivatives with respect to τ . For our choice (2.8) and (2.9) of the

metric one can pull down all indices in the Yang-Mills equations (2.19) and (2.20) as

well as in (2.16). It is now a matter of computation to substitute (2.24) and (2.27)

into (2.19) and (2.20), making use of the Jacobi identity for the structure constants. One

finds that (2.20) is equivalent to

Ẍa =
(

1
2 (κ+1)facdfbcd − facjfbcj

)
Xb − 1

2 (κ+3)fabc[Xb,Xc] −
[
Xb, [Xb,Xa]

]
, (2.28)

and (2.19) reduces to the constraint

[Xa, Ẋa] = 0 (sum over a) (2.29)

on the matrices Xa. Note that the equations (2.28) can also be obtained from the ac-

tion (2.4) reduced to a matrix-model action after substituting (2.24) and (2.27) into (2.4).

The subsidiary relation (2.29) is the Gauss-law constraint following from the gauge fix-

ing A0 = 0.
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3 Invariant gauge fields on homogeneous G2-manifolds

Here, we choose G/H to be a compact six-dimensional nearly Kähler coset space. Such

manifolds are important examples of SU(3)-structure manifolds used in flux compactifica-

tions of string theories (see e.g. [35–37, 48–50] and references therein). Their geometry is

fairly rigid and features a 3-symmetry, which generalizes the reflection symmetry of sym-

metric spaces. This allows for a very explicit description of their structure and a complete

parametrization of G-invariant Yang-Mills fields, which we present in this section.

3.1 Nearly Kähler six-manifolds

An SU(3)-structure on a six-manifold is by definition a reduction of the structure group of

the tangent bundle from SO(6) to SU(3). Manifolds of dimension six with SU(3)-structure

admit a set of canonical objects, consisting of an almost complex structure J , a Riemannian

metric g, a real two-form ω and a complex three-form Ω. With respect to J , the forms

ω and Ω are of type (1,1) and (3,0), respectively, and there is a compatibility condition,

g(J ·, ·) = ω(·, ·). With respect to the volume form Vg of g, the forms ω and Ω are normalized

so that

ω ∧ ω ∧ ω = 6Vg and Ω ∧ Ω̄ = −8iVg . (3.1)

Then, a nearly Kähler six-manifold is an SU(3)-structure manifold with the differentials

dω = 3ρ ImΩ and dΩ = 2ρω ∧ ω (3.2)

for some real non-zero constant ρ (if ρ was zero, the manifold would be Calabi-Yau). More

generally, six-manifolds with SU(3)-structure are classified by their intrinsic torsion [56],

and nearly Kähler manifolds form one particular intrinsic torsion class.

There are only four known examples of compact nearly Kähler six-manifolds, and they

are all coset spaces [33, 34]:

SU(3)/U(1)×U(1) , Sp(2)/Sp(1)×U(1) , G2/SU(3)=S6, SU(2)3/SU(2)=S3×S3 . (3.3)

Here Sp(1)×U(1) is chosen to be a non-maximal subgroup of Sp(2): if the elements of

Sp(2) are written as 2 × 2 quaternionic matrices, then the elements of Sp(1)×U(1) have

the form diag(p, q), with p ∈Sp(1) and q ∈U(1). Also, SU(2) is the diagonal subgroup of

SU(2)3. These coset spaces are all 3-symmetric, because the subgroup H is the fixed point

set of an automorphism s of G satisfying s3 = Id [33, 34].

The 3-symmetry actually plays a fundamental role in defining the canonical structures

on the coset spaces. The automorphism s induces an automorphism S of the Lie algebra

g = h ⊕ m of G which acts trivially on h and non-trivially on m; one can define a map

J : m → m by S|m = −1
2 +

√
3

2 J = exp
(

2π
3 J
)

. (3.4)

The map J satisfies J2 = −1 and provides the almost complex structure on G/H. The

components Ja
b of the almost complex structure J are defined via J(Ib) = Ja

b Ia. Local
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expressions for the G-invariant metric, almost complex structure, and the two-form ω on

a nearly Kähler space G/H in an orthonormal frame {ea} are

g = δabe
aeb , J = Jb

aeaEb and ω = 1
2Jabe

a ∧ eb . (3.5)

One can also obtain a local expression for (3,0)-form Ω by using (3.2) and the Maurer-

Cartan equations. From (2.10) one can compute dω and hence ∗dω:

dω = −1
2 f̃abc ea ∧ eb ∧ ec and ∗ dω = 1

2 fabc ea ∧ eb ∧ ec , (3.6)

where

f̃abc := fabdJdc (3.7)

are the components of a totally antisymmetric tensor on a nearly Kähler six-manifold in

the list (3.3). The structure constants on nearly Kähler cosets obey the identities

facifbci = facdfbcd = 1
3 δab , (3.8)

Jcdfadi = Jadfcdi and Jabfabi = 0 . (3.9)

From the normalization (3.1) and (3.8) we compute that

||ω||2 := ωabωab = 3 and ||Im Ω||2 := (Im Ω)abc(Im Ω)abc = 4 . (3.10)

So it must be that

ImΩ = − 1√
3
f̃abc ea ∧ eb ∧ ec , ReΩ = − 1√

3
fabc ea ∧ eb ∧ ec and ρ = 1

2
√

3
. (3.11)

Note that on all four nearly Kähler coset spaces (3.3) one can choose the non-vanishing

structure constants such that

{fabc} : f135 = f425 = f416 = f326 = − 1
2
√

3
(3.12)

and therefore

{f̃abc} : f̃136 = f̃426 = f̃145 = f̃235 = − 1
2
√

3
(3.13)

for J such that

ω = 1
2Jab ea ∧ eb = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6 . (3.14)

Then we have

Ω = ReΩ+i Im Ω = e135+e425+e416+e326+i(e136+e426+e145+e235) =: Θ1∧Θ2∧Θ3 , (3.15)

where eabc ≡ ea ∧ eb ∧ ec and

Θ1 := e1 + ie2 , Θ2 := e3 + ie4 and Θ3 := e5 + ie6 (3.16)

are forms of type (1,0) with respect to J .
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3.2 Yang-Mills equations and action functional

In the previous subsection we described the geometry of nearly Kähler six-manifolds. Now

we would like to consider the Yang-Mills theory on seven-manifolds R×G/H, where G/H

is a nearly Kähler coset space. Note that on such manifolds

M = R × G/H (3.17)

one can introduce three-forms

Σ = e0 ∧ ω + Im Ω , (3.18)

and

Σ′ = e0 ∧ ω + ReΩ . (3.19)

Each of the two, Σ as well as Σ′, defines a G2-structure on R×G/H, i.e. a reduction of the

holonomy group SO(7) to a subgroup G2 ⊂ SO(7). From (3.18) and (3.19) one sees that

both G2-structures are induced from the SU(3)-structure on G/H.

On the seven-manifold (3.17), the matrix equations (2.28) and (2.29) simplify to

Ẍa = 1
6(κ−1)Xa − 1

2(κ+3)fabc[Xb,Xc] −
[
Xb, [Xb,Xa]

]
, (3.20)

[Xa, Ẋa] = 0 (sum over a) (3.21)

after using the identities (3.8). We notice that the equations (3.20) and (3.21) are the

equation of motion and the Gauss constraint for the action

S = −1
4

∫

R×G/H
tr
(
F ∧ ∗F +

κ

3
e0 ∧ ω ∧ F ∧ F

)
. (3.22)

Substituting (2.24) and (2.27) into (3.22) and imposing the gauge A0 = 0, we obtain

S = −1
4 Vol(G/H)

∫
dτ tr

(
ẊaẊa − 1

6(κ−3)fiabfjabIiIj + 1
6(κ−1)XaXa

− 1
3 (κ+3)fabcXa[Xb,Xc] + 1

2 [Xb,Xc][Xb,Xc]
)

.
(3.23)

The Euler-Lagrange equations for this matrix-model action are (3.20).

3.3 Solution of the G-invariance condition

The G-invariance condition (2.25),

[Ii,Xa] = f b
iaXb for Xa = Xb

aIb ∈ Lie(G)−Lie(H) , (3.24)

says that the Xa must transform in the six-dimensional representation R of H which arises

in the decomposition (2.21),

adj(G)
∣∣
H

= adj(H) ⊕R , (3.25)
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of the adjoint of G restricted to H, i.e. (R(Ii))
b
a = f b

ia. It is real but reducible and

decomposes into complex irreducible parts as

R =

q∑

p=1

Rp ⊕
q∑

p=1

Rp , (3.26)

with
∑q

p=1 dimRp = 3. This is the same H-representation as furnished by the Ia. Hence,

for each irrep Rp one can find complex linear combinations I
(p)
αp of the Ia, with αp =

1, . . . ,dimRp, such that

[Ii , I(p)
αp

] = f
βp

i αp
I
(p)
βp

(3.27)

close among themselves for each p. In the absence of a condition on [Xa,Xb], the Xa appear

linearly and thus may always be multiplied by a common factor φp inside each irrep Rp.

By Schur’s lemma this is in fact the only freedom, i.e.

X(p)
αp

= φp I(p)
αp

with φp ∈ C and αp = 1, . . . ,dimRp (3.28)

is the unique solution to the G-invariance condition inside Rp. The six antihermitian

matrices Xa are then easily reconstructed via
{
Xa

}
=
{

1
2

(
X(p)

αp
− X

(p)
αp

)
, 1

2i

(
X(p)

αp
+ X

(p)
αp

)}
(3.29)

and will depend on q complex functions φp(τ). The same holds for any smaller G-

representation D instead of adj(G).

For computations, we choose a basis in g such that the first dim(R1) generators Iα1

span R1, the next dim(R2) generators Iα2
span R2 etc., and the last dim(H) generators

span h. Such a basis decomposes R into the said blocks. Fusing all irreducible blocks and

adj(H) together again, we obtain a realization of Ii, Ia and Xa as matrices in adj(G). Since

G is the gauge group, these matrices enter in the action (3.23). However, for calculations it

is more convenient to take a smaller G-representation D. This affects only the normalization

of the trace,

trD(IAIB) = −χD δAB , (3.30)

where the (2nd-order) Dynkin index χD depends on the representation used. We normalize

our generators such that χadj(G) = 1, and choose D in all cases (see below) such that χD = 1
6 .

With this, the constant term in the action (3.23) computes to

− 1
6 (κ−3)fiabfjab trD(IiIj) = 1

36(κ−3)fiabfiab = 1
18 (κ−3) . (3.31)

4 Yang-Mills fields on R× SU(3)/U(1)×U(1)

4.1 Explicit form of Xa matrices

The structure constants for SU(3) which conform with the nearly Kähler struc-

ture (3.12)–(3.16) are

f135 = f425 = f416 = f326 = − 1

2
√

3
, (4.1)

f127 = f347 =
1

2
√

3
, f128 = −f348 = −1

2
and f567 = − 1√

3
.
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The adjoint of SU(3), restricted to U(1)×U(1), decomposes as

8 (of SU(3)) = ((0, 0)+(0, 0))adj+(3, 1)+(−3,−1)+(3,−1)+(−3, 1)+(0, 2)+(0,−2) , (4.2)

where the Rp are labelled by the charges (r, s) under U(1)×U(1). Obviously, we have q=3

complex parameters. We employ the fundamental representation D = 3 of SU(3). It is

easy to check that indeed χ3/χ8 = 1/6.

For the generators I7,8 of the subgroup U(1)×U(1) of SU(3) chosen in the form

I7 = − i

2
√

3




0 0 0

0 1 0

0 0−1



 and I8 =
i

6




2 0 0

0−1 0

0 0 −1



 , (4.3)

the solution to the SU(3)-invariance equation (3.24) then reads

X1 =
1

2
√

3




0 0−φ1

0 0 0

φ̄1 0 0



 , X3 =
1

2
√

3




0 −φ̄2 0

φ2 0 0

0 0 0



 , X5 =
1

2
√

3




0 0 0

0 0 −φ̄3

0 φ3 0



 ,

X2 =
1

2
√

3




0 0 iφ1

0 0 0

iφ̄1 0 0



 , X4 =
−1

2
√

3




0 iφ̄2 0

iφ2 0 0

0 0 0



 , X6 =
−1

2
√

3




0 0 0

0 0 iφ̄3

0 iφ3 0



 ,

(4.4)

where φ1, φ2, φ3 are complex-valued functions of τ . Note that for φ1 = φ2 = φ3 = 1

from (4.4) one obtains the normalized basis for m which yields the nearly Kähler structure

on SU(3)/U(1)×U(1) in the standard form (3.2), (3.5) and (3.12)–(3.16).

4.2 Equations of motion

Substituting (4.4) into the action (3.23), we obtain the Lagrangian

18L = 6
(
|φ̇1|2+|φ̇2|2+|φ̇3|2

)
− (κ−3) + (κ−1)

(
|φ1|2+|φ2|2+|φ3|2

)
(4.5)

−(κ+3)
(
φ1φ2φ3+φ̄1φ̄2φ̄3

)
+ |φ1φ2|2 + |φ2φ3|2 + |φ3φ1|2 + |φ1|4 + |φ2|4 + |φ3|4 ,

whose quartic terms may be rewritten as

1
2

(
|φ1|4 + |φ2|4 + |φ3|4

)
+ 1

2

(
|φ1|2 + |φ2|2 + |φ3|2

)2
. (4.6)

The equations of motion for the gauge fields on R× SU(3)/U(1)×U(1) can be obtained by

plugging (4.4) in (3.20) and (3.21). We get

6 φ̈1 = (κ−1)φ1 − (κ+3) φ̄2φ̄3 +
(
2|φ1|2 + |φ2|2 + |φ3|2

)
φ1 ,

6 φ̈2 = (κ−1)φ2 − (κ+3) φ̄1φ̄3 +
(
|φ1|2 + 2|φ2|2 + |φ3|2

)
φ2 ,

6 φ̈3 = (κ−1)φ3 − (κ+3) φ̄1φ̄2 +
(
|φ1|2 + |φ2|2 + 2|φ3|2

)
φ3 ,

(4.7)

as well as

φ1
˙̄φ1 − φ̇1φ̄1 = φ2

˙̄φ2 − φ̇2φ̄2 = φ3
˙̄φ3 − φ̇3φ̄3 . (4.8)

The equations (4.7) are the Euler-Lagrange equations for the Lagrangian (4.5) obtained

from (3.22) after fixing the gauge A0 = 0.
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4.3 Zero-energy critical points

Writing the equations of motion (4.7) as

6 φ̈i =
∂V

∂φ̄i
, (4.9)

we see that they describe the motion of a particle on C
3 under the influence of the inverted

quartic potential −V , where

V = −(κ−3) + (κ−1)
(
|φ1|2+ |φ2|2+ |φ3|2

)
+
(
|φ1|4+ |φ2|4+ |φ3|4

)

− (κ+3)
(
φ1φ2φ3 + φ̄1φ̄2φ̄3

)
+ |φ1φ2|2 + |φ2φ3|2 + |φ3φ1|2 ,

(4.10)

or, alternatively, the dynamics of three identical particles on the complex plane, with an

external potential given by the (negative of) the first line in (4.10) and two- and three-body

interactions in the second line.

The potential (4.10) is invariant under permutations of the φi as well as under the

U(1)×U(1) transformations

(
φ1 , φ2 , φ3

)
7→

(
eiδ1φ1 , eiδ2φ2 , eiδ3φ3

)
with δ1 + δ2 + δ3 = 0 mod 2π , (4.11)

which include the 3-symmetry, φi 7→ e2πi/3φi. Such a transformation may be used to align

the phases of the φi, i.e. arg(φ1) = arg(φ2) = arg(φ3). These phases only enter in the cubic

term of the potential, which is proportional to cos(
∑

i arg φi). Therefore, the extrema of

V are attained at
∑

i arg φi = 0 or π, and so, employing (4.11), we may take φi ∈ R in our

search for them.2 Furthermore, the Noether charges of the U(1)×U(1) symmetry (4.11)

are just the differences ℓi − ℓj of the ‘angular momenta’

ℓi := φi
˙̄φi − φ̇iφ̄i . (4.12)

Hence, the constraints (4.8) may be interpreted as putting these charges to zero. Note,

however, that the individual angular momenta are not conserved, since

ℓ̇i = −1
6(κ+3)

(
φ1φ2φ3 − φ̄1φ̄2φ̄3

)
. (4.13)

Finite-action solutions φi(τ) must interpolate between critical points with zero poten-

tial,

lim
τ→±∞

φi(τ) =: φ±
i and (φ±

1 , φ±
2 , φ±

3 ) ∈
{
φ̂
}

with V (φ̂) = 0 = dV (φ̂) . (4.14)

Modulo the symmetry (4.11) and permutations, the complete list of such critical points

reads: where γ± = −(1+
√

3)±2
√

2(
√

3−1) takes the numerical values of −0.31 and −5.15.

The zero modes of V ′′ are enforced by the symmetries; their number indicates the dimension

of the critical manifold in C
3. A critical point is marginally stable only when V ′′ has no

positive eigenvalues. At the critical points ℓ̇i = 0 is guaranteed, hence the product φ̂1φ̂2φ̂3

has to be real unless κ = −3. The latter value is special because all phase dependence

disappears, and the symmetry (4.11) is enhanced to U(1)3. We will not consider this special

situation (type A’) further. Appendix A proves that the list below is complete.

2We thank N. Dragon for this remark.
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type φ̂1 φ̂2 φ̂3 κ eigenvalues of V ′′

A 1 1 1 any 0 0 3(κ+3) 2(κ+4) 2(κ+4) 5−κ

A’ eiα eiα eiα −3 0 0 0 2 2 8

B 0 0 0 +3 2 2 2 2 2 2

C 0 0
√

1+
√

3 −1−2
√

3 0 γ− γ− γ+ γ+ 4(1+
√

3)

4.4 Some solutions

Finite-action trajectories φi(τ) require the conserved Newtonian energy to vanish,

E := 6
(
|φ̇1|2+|φ̇2|2+|φ̇3|2

)
− V (φ1, φ2, φ3)

!
= 0. (4.15)

They can be of two types: Either φ+
i 6= φ−

i (kink), or φ+
i = φ−

i (bounce). Since this choice

occurs for each value of i = 1, 2, 3, mixed solutions are possible. We now present some

special cases.

Transverse kinks at −3<κ<+3. The two-dimensional type A critical manifold exists

for any value of κ, so one may try to find trajectories connecting two critical points of

type A. As a particularly symmetric choice we wish to interpolate

(φ−
i ) = (1 , e2πi/3, e−2πi/3) −→ (φ+

i ) = (e2πi/3, e−2πi/3, 1) . (4.16)

The three independent conserved quantities (E, ℓi−ℓj) do not suffice to integrate the equa-

tions of motion (4.7), so generically one has to resort to numerical methods. With a little ef-

fort, zero-energy ‘transverse’ kinks can be found in the range κ ∈ (−3,+3). We display the

trajectory (φi(τ)) ∈ C
3 as three curves φi(τ) ∈ C in figure 1 for κ = −2,−1, 0,+1,+2. Ap-

parently, the 3-symmetry effects a permutation since φ2(τ) = e2πi/3φ1(τ) = e−2πi/3φ3(τ).

This relation takes care of the constraint (4.8). Of course, acting with the transforma-

tions (4.11) generates a two-parameter family of such ‘transverse’ kinks.

At the magical value of κ=−1 the trajectories become straight, and the solution ana-

lytic:

φ1(τ) =
(

1
4+i

√
3

4

)
+
(
− 3

4+i
√

3
4

)
tanh

(
τ−τ0

2

)
,

φ2(τ) = −1
2 − i

√
3

2 tanh
(

τ−τ0
2

)
,

φ3(τ) =
(

1
4−i

√
3

4

)
+
(

3
4+i

√
3

4

)
tanh( τ−τ0

2 ) .

(4.17)

Radial kinks at κ = 3. For this value of κ the critial point at the origin is degenerate

with (1, 1, 1) and its symmetry orbits. Therefore, we can connect any type A critical point

to the unique type B point via ‘radial kinks’, such as

φ1(τ) = 1
2

(
1 + tanh

(
τ−τ0
2
√

3

))
,

φ2(τ) =
(
− 1

4+i
√

3
4

)(
1 + tanh

(
τ−τ0
2
√

3

))
,

φ3(τ) =
(
− 1

4−i
√

3
4

)(
1 + tanh

(
τ−τ0
2
√

3

))
,

(4.18)
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Figure 1. Contour plots of V (φ1=φ2=φ3), with critical points and zero-energy kink trajectories.

which connects

(0 , 0 , 0) −→ (1 , e2πi/3, e−2πi/3) (4.19)

in a 3-symmetric fashion and is also marked in the lower right plot of figure 1. It is the

limiting case of the transverse kinks for κ → +3. In the other limit, κ → −3, the particles

move infinitely slowly on the degenerate unit circle, |φ| = 1.
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Figure 2. Contour plots of V (φ1=φ2=φ3), with critical points and zero-energy bounce trajectories.

Bounces at κ<−3 and +3<κ<+5. In the range κ ∈ (−∞,−3) ∪ (+3,+5) finite-

action bounce solutions must exist, in the form

φk(τ) = e2πi(k−1)/3 fκ(τ) with fκ(±∞) = 1 and fκ(0) = 1
6

(
κ−3+

√
κ2−9

)
, (4.20)

where fκ(τ) is a real function, so the trajectories are straight. It is easy to find it numeri-

cally. Figure 2 shows the trajectories for κ = −4 and κ = +4.

Radial bounce/kink at κ = −1−2
√

3. If we put φ1(τ) = φ2(τ) ≡ 0 at this κ value,

the remaining function is governed by the rotationally symmetric potential

V (0, 0, φ3) = 2(2+
√

3) − (1+
√

3)|φ3|2 + |φ3|4 , (4.21)

admitting the kink solution

φ3(τ) = eiα
√

1+
√

3 tanh

{√
1+

√
3

6 τ

}
while φ1(τ) = φ2(τ) ≡ 0 , (4.22)

which interpolates between antipodal type C critical points via point B,

(0 , 0 ,−eiα
√

1+
√

3) −→ (0 , 0 ,+eiα
√

1+
√

3) . (4.23)

5 Yang-Mills fields on R× Sp(2)/Sp(1)×U(1)

5.1 Explicit form of Xa matrices

The adjoint of Sp(2), restricted to Sp(1)×U(1), decomposes as

10 (of Sp(2)) = (30 + 10)adj + 2+1 + 2−1 + 1+2 + 1−2 , (5.1)

where the subscript denotes the U(1) charge. Clearly, one has q=2 complex parameters.

As a convenient representation, let us take the fundamental D = 4 of Sp(2)⊂U(4). Again,

it turns out that χ4/χ10 = 1/6.
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We choose the generators of the subgroup Sp(1)×U(1) of Sp(2) in the form

I7,8,9 =
i

2
√

3

(
σ1,2,3 02

02 02

)
and I10 =

i

2
√

3

(
02 02

02 σ3

)
. (5.2)

Then solutions of the Sp(2)-invariance conditions (2.25) are given by matrices

X1 =
1

2
√

6





0 0 0 −ϕ

0 0 −ϕ̄ 0

0 ϕ 0 0

ϕ̄ 0 0 0



 , X2 =
1

2
√

6





0 0 0 iϕ

0 0 −iϕ̄ 0

0 −iϕ 0 0

iϕ̄ 0 0 0



 ,

X3 =
1

2
√

6





0 0 −ϕ̄ 0

0 0 0 ϕ

ϕ 0 0 0

0−ϕ̄ 0 0



 , X4 =
−1

2
√

6





0 0 iϕ̄ 0

0 0 0 iϕ

iϕ 0 0 0

0 iϕ̄ 0 0



 ,

X5 =
1

2
√

3





0 0 0 0

0 0 0 0

0 0 0 χ̄

0 0 −χ 0



 , X6 =
1

2
√

3





0 0 0 0

0 0 0 0

0 0 0 iχ̄

0 0 iχ 0



 ,

(5.3)

where ϕ and χ are complex-valued functions of τ . Note that the generators {Ia} of the

group Sp(2) are obtained from (5.3) if one put ϕ = 1 = χ. The choice (5.2) and (5.3)

agrees with the standard form (3.2), (3.5) and (3.12)–(3.16) of the nearly Kähler structure

on the manifold Sp(2)/Sp(1)×U(1).

5.2 Equations of motion

The equations of motion for Sp(2)-invariant gauge fields on R×Sp(2)/Sp(1)×U(1) are ob-

tained by plugging (5.3) into (3.20) and (3.21). After tedious calculations we get

6 ϕ̈ = (κ−1)ϕ − (κ+3) ϕ̄χ̄ + (3|ϕ|2 + |χ|2)ϕ ,

6 χ̈ = (κ−1)χ − (κ+3) ϕ̄2 + (2|ϕ|2 + 2|χ|2)χ ,
(5.4)

and

ϕ ˙̄ϕ − ϕ̇ϕ̄ = χ ˙̄χ − χ̇χ̄ (5.5)

Notice that these equations follow from (4.7), (4.8) after identification

φ1 = φ2 =: ϕ and φ3 =: χ . (5.6)

Furthermore, substituting (5.3) into the action functional (3.23), we obtain the Lagrangian

18L = 12|ϕ̇|2+6|χ̇|2−(κ−3)+(κ−1)
(
2|ϕ|2+|χ|2

)
−(κ+3)

(
ϕ2χ+ϕ̄2χ̄

)
+3|ϕ|4+2|ϕχ|2+|χ|4 ,

(5.7)

which also follows from (4.5) after identification (5.6). The equations (5.4) are the Euler-

Lagrange equations for the Lagrangian (5.7),

12 ϕ̈ =
∂V

∂ϕ̄
and 6 χ̈ =

∂V

∂χ̄
, (5.8)
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and the constraint (5.5) derives from the U(1) symmetry

(
ϕ ,χ

)
7→

(
eiδϕ , e−2iδχ

)
(5.9)

of the potential

V = −(κ−3) + (κ−1)
(
2|ϕ|2+|χ|2

)
− (κ+3)

(
ϕ2χ+ϕ̄2χ̄

)
+ 3|ϕ|4 +2|ϕχ|2 + |χ|4 . (5.10)

5.3 Some solutions

Clearly, the solutions to (5.4) and (5.5) form a subset of the solutions to (4.7) and (4.8),

namely those where two functions coincide. Since in all examples of the previous section

this can be arranged by applying a U(1)×U(1) transformation (4.11), one gets ϕ(τ) = χ(τ)

equal to any of the functions appearing on the right-hand sides of (4.17) and (4.18) or

depicted in figure 1, after dialling the corresponding κ value. In addition, (4.22) translates

to a solution with ϕ ≡ 0 and a kink χ.

5.4 Specialization to S6 and flow equations

By further identification

φ1 = φ2 = φ3 =: φ (5.11)

we resolve the constraint equations (4.8) and reduce (4.7) to the equation

6 φ̈ = (κ−1)φ − (κ+3) φ̄2 + 4|φ|2φ =
1

3

∂V

∂φ̄
(5.12)

with

V = −(κ−3) + 3(κ−1) |φ|2 − (κ+3)
(
φ3+φ̄3

)
+ 6 |φ|4 . (5.13)

The U(1) symmetry (5.9) is broken to the discrete 3-symmetry. Clearly, the La-

grangian (4.5) maps to

18L = 18 |φ̇|2 + V (φ) , (5.14)

which describes G2-invariant gauge fields on R × S6, where S6 = G2/SU(3) [24]. All is

consistent with the decomposition

14 (of G2) = 8adj + 3 + 3̄ (of SU(3)) . (5.15)

Obviously, any function on the right-hand sides of (4.17) and (4.18) or shown in figure 1

is a zero-energy solution φ(τ), as was already noticed in [24]. Vice versa, any solution

of (5.12) gives a special solution to the equations (5.4), (5.5) and (4.7), (4.8).

Let us for a moment investigate the possibility of straight-trajectory solutions φ(τ) ∈ C

to (5.12). With a 3-symmetry transformation, any such solution can be brought into a form

where either Reφ(τ) = const or Imφ(τ) = const. Then, the vanishing of the left-hand side

of Re (5.12) yields two conditions on Reφ and κ, whose solutions follow a Hamiltonian

flow [24]:

κ =−1 and Reφ =−1
2 ⇒

√
3 Imφ̇ = 3

4 − (Imφ)2 ⇔
√

3 φ̇ =i (φ̄2 − φ) ,

κ =−3 and Reφ = 0 ⇒
√

3 Imφ̇ =1 − (Imφ)2 ⇔
√

3 φ̇ = φ
|φ| (1−|φ|2) ,

κ =−7 and Reφ =1 ⇒
√

3 Imφ̇ =3 − (Imφ)2 ⇔
√

3 φ̇ = i (φ̄2 + 2φ) .

(5.16)
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On the other hand, for Imφ̈ = 0 one finds

any κ and Imφ = 0 ⇒ 6Reφ̈ = (κ−1)Reφ − (κ+3)(Reφ)2 + 4(Reφ)3 =
1

3

∂VR

∂Reφ
,

(5.17)

with

VR =
(
Reφ − 1

)2 (
6(Reφ)2 − (κ−3)(2Reφ + 1)

)
. (5.18)

This includes the gradient-flow situations [24]

κ = +3 and Imφ = 0 ⇒
√

3 Reφ̇ = (Reφ)2 − Reφ ⇔
√

3 φ̇ = φ̄2 − φ ,

κ = +9 and Imφ = 0 ⇒
√

3 Reφ̇ = (Reφ)2 − 2Reφ ⇔
√

3 φ̇ = φ̄2 − 2φ .
(5.19)

All kink solutions to (5.16) and (5.19) were given in [24]. They have zero energy and thus

finite action only for κ = −3, −1 and +3. The latter two cases are also displayed in (4.17)

and (4.18), respectively. In addition, for κ<−3 and +3<κ<+5 one can also numerically

construct finite-action bounce solutions to (5.17).

Remark. Note that a nearly Kähler structure exists also on the space S3 × S3. How-

ever, we do not consider the Yang-Mills equations on R × S3 × S3 since this was already

done in [21].

6 Instanton-anti-instanton chains and dyons

If we replace R × G/H with S1 × G/H, the time interval will be of finite length, namely

the circle circumference L, and we are after solutions periodic in τ . In this case, the action

is always finite, and the E=0 requirement gets replaced by φi(τ+L) = φi(τ). The physical

interpretation of such configurations is one of instanton-anti-instanton chains.

6.1 Periodic solutions

As the simplest case we take G/H = G2/SU(3) and consider the magical κ values which

admit analytic solutions for φ(τ) ∈ C. Switching from τ ∈ R to τ ∈ S1, we must impose

the periodicity conditions

φ(τ+L) = φ(τ) (6.1)

not on the flow equations (5.16) and (5.19) but on the corresponding second-order equa-

tions,

κ = −1 and Reφ = −1
2 ⇒ 3

2 Imφ̈ = Imφ
(
Imφ2 − 3

4

)
,

κ = −3 and Reφ = 0 ⇒ 3
2 Imφ̈ = Imφ (Imφ2 − 1) ,

κ = −7 and Reφ = 1 ⇒ 3
2 Imφ̈ = Imφ (Imφ2 − 3) ,

κ = +3 and Imφ = 0 ⇒ 3
2 Reφ̈ = Reφ

(
Reφ − 1

2

)
(Reφ − 1) ,

κ = +9 and Imφ = 0 ⇒ 3
2 Reφ̈ = Reφ (Reφ − 1) (Reφ − 2) .

(6.2)

At finite L, we obtain a different kind of solution (sphalerons), namely

φ(τ) = β ± i
√

3 γ k b(k) sn[b(k)γτ ; k]with (κ;β, γ)=
(
−1;−1

2 , 1
)
,
(
−3; 0, 2√

3

)
, (−7; 1, 2) ,

φ(τ) = β ±
√

3 γ k b(k) sn[b(k)γτ ; k]with (κ;β, γ)=
(
+ 3; 1

2 , 1√
3

)
,
(

+ 9; 1, 2√
3

)
. (6.3)
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Here b(k) = (2+2k2)−1/2 and 0 ≤ k ≤ 1. Since the Jacobi elliptic function sn[u; k] has a

period of 4K(k) (see appendix B), the condition (6.1) is satisfied if

γ b(k)L = 4K(k)n for n ∈ N , (6.4)

which fixes k = k(L, n) so that φ(τ ; k(L, n)) =: φ(n)(τ). Solutions (6.3) exist if L ≥
2π

√
2n [57–59].

By virtue of the periodic boundary conditions (6.1), the topological charge of the

sphaleron φ(n) is zero. In fact, the configuration is interpreted as a chain of n kinks and

n antikinks, alternating and equally spaced around the circle [40, 57–59]. Interpreted as a

static configuration on S1 × G/H, the energy of the sphaleron is

E =

L∫

0

dτ
{
|φ̇|2 + V (φ)

}
(6.5)

and e.g. for the case of κ = −3 in (6.3) we obtain

E [φ(n)] =
2n

3
√

2

[
8(1+k2)E(k) − (1−k2)(5+3k2)K(k)

]
, (6.6)

where K(k) and E(k) are the complete elliptic integrals of the first and second kind,

respectively [57–59].

The non-BPS solutions (6.3) can be embedded into the other cosets G/H, where they

are special solutions, with ϕ = χ or φ1 = φ2 = φ3, respectively. Their degeneracy may

be lifted by applying a symmetry transformation (5.9) or (4.11), respectively. Substituting

our non-BPS solutions into (4.4) or (5.3) and then into (2.24), we obtain a finite-action

Yang-Mills configuration which is interpreted as a chain of n instanton-anti-instanton pairs

sitting on S1 ×G/H with six-dimensional nearly Kähler coset space G/H. Away from the

magical κ values, such chains are to be found numerically.

6.2 Dyonic solutions

Let us finally change the signature of the metric on R×G/H from Euclidean to Lorentzian

by choosing on R a coordinate t = −iτ so that ẽ0 = dt = −idτ . Then as metric on R×G/H

we have

ds2 = −(ẽ0)2 + δabe
aeb . (6.7)

The G-invariant solutions (4.4) and (5.3) for the matrices Xa are not changed. After

substituting them into the Yang-Mills equations on R×G/H, we arrive at the same second-

order differential equations as in the Euclidean case, except for the replacement

φ̈i −→ −d2φi

dt2
. (6.8)

In particular, this implies a sign change of the left-hand side relative to the right-hand side

in (4.7), (5.4) and (5.12). Thus, in the Lagrangians we effectively have a sign flip of the

potential V , so that the analog Newtonian dynamics for (φi(t)) is based on +V .
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Let us again for simplicity look at the case of G/H = G2/SU(3). Although the

Lorentzian variant of (5.12),

6
d2φ

dt2
= −(κ−1)φ + (κ+3) φ̄2 − 4|φ|2φ = −1

3

∂V

∂φ̄
(6.9)

with V from (5.13), does not follow from first-order equations for any of the magical values

κ = −1, −3, −7, +3 or +9, it can still be explicitly integrated in those cases,

φ(t) = β ± i
√

3
2 γ cosh−1 γ t√

2
with (κ;β, γ) =

(
− 1;−1

2 , 1
)
,
(
− 3; 0, 2√

3

)
, (−7; 1, 2) ,

φ(t) = β ±
√

3
2 γ cosh−1 γ t√

2
with (κ;β, γ) =

(
+ 3; 1

2 , 1√
3

)
,
(

+ 9; 1, 2√
3

)
. (6.10)

The 3-symmetry action maps these solutions to rotated ones. Any such configuration is a

bounce in our double-well-type potential, which most of the time hovers around a saddle

point. For other values of κ, such bounce solutions may be found numerically.

Inserting (6.10) into the gauge potential, we arrive at dyon-type configurations with

smooth nonvanishing ‘electric’ and ‘magnetic’ field strength F0a and Fab, respectively. The

total energy

− tr (2F0aF0a + FabFab) × Vol(G/H) (6.11)

for these configurations is finite, but their action diverges unless φ(±∞) = e2πik/3. These

are saddle points for κ < −3 and κ > +5. Thus, for |κ−1| > 4 the potential (5.13) admits

pairs φ±(t) of finite-action dyons, with

φ±(±∞) = 1 and φ±(0) = 1
6

(
κ−3 ±

√
κ2−9

)
for κ > +5 (6.12)

and a more complex behavior for κ < −3. The κ=−7 and κ=+9 straight-line solutions

in (6.10) are among these. Numerical trajectories for some intermediate values are shown

in the plots of figure 3.
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A Zero-energy critical points

Here, we prove that the table in subsection 4.3 lists all zero-energy critical points (φ̂1, φ̂2, φ̂3)

of the potential (4.10), modulo permutations of the φ̂i and actions of the U(1)×U(1)

symmetry (4.11).

With the help of this symmetry, we can remove the phases of φ̂1 and φ̂2. Since it was

already argued that extremality implies
∑

i arg φ̂i = 0 or π, also φ̂3 must be real. Hence,

we may take

φ̂1 , φ̂2 ∈ R+ and φ̂3 ∈ R (A.1)
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Figure 3. Contour plots of V (φ1=φ2=φ3), with critical points and finite-action dyon trajectories.

and investigate the solution space of dV =0=V , i.e.

(κ−1) φ̂i − (κ+3)φ̂j φ̂k + (2φ̂2
i + φ̂2

j + φ̂2
k) φ̂i = 0 for i 6=j 6=k ∈ {1, 2, 3} (A.2)

and (κ−1)
∑

iφ̂
2
i −2(κ+3) φ̂1φ̂2φ̂3 +

∑
iφ̂

4
i +
∑

i<jφ̂
2
i φ̂

2
j = κ−3 . (A.3)

Let us first look at the exceptional cases where one of the φ̂i vanishes. From (A.2) it
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follows that φ̂i = 0 implies φ̂j φ̂k = 0. The trivial solution is

φ̂1 = φ̂2 = φ̂3 = 0
(A.3)⇒ κ = 3 (A.4)

and is labelled as type B in the table. Generically, however, we have

φ̂1 = φ̂2 = 0 and φ̂3 6= 0
(A.2)⇒ κ−1 + 2 φ̂2

3 = 0
(A.3)⇒ κ = −1 ± 2

√
3 (A.5)

and reproduce type C in the table.3

It remains to study the situation where all φ̂i are nonzero. Multiplying (A.2) with φ̂i

and taking the difference of any two of the resulting three equations, we obtain the three

conditions (
κ−1 + 2φ̂2

i + 2φ̂2
j + φ̂2

k

) (
φ̂2

i − φ̂2
j

)
= 0 . (A.6)

Likewise, multiplying (A.2) with φ̂j φ̂k and taking the difference of any two of those three

equations, we find three more conditions,
(
(κ+3) φ̂2

k + φ̂1φ̂2φ̂3

) (
φ̂2

i − φ̂2
j

)
= 0 . (A.7)

A little thought reveals that there are only two options. The first one is

φ̂2
1 = φ̂2

2 = φ̂2
3 ⇒ φ̂1 = φ̂2 = ±φ̂3 =: φ̂ ∈ R+ . (A.8)

The potential on this subspace becomes

V (φ̂, φ̂,±φ̂) =
(
6 φ̂2 ∓ (κ−3)(2φ̂ − 1)

) (
φ̂ ∓ 1

)2
, (A.9)

and its critical zeros on the positive real axis are

(φ̂1, φ̂2, φ̂3; κ) = (+1,+1,+1; any) and (+1,+1,−1; −3) (A.10)

for the two sign choices, respectively. We have recovered types A and A’ of our table.

The second option for fulfilling (A.6) and (A.7) is, modulo permutation,

φ̂2
1 = φ̂2

2 6= φ̂2
3 ⇒ φ̂1 = φ̂2 =: ϕ̂ ∈ R+ and φ̂3 =: χ̂ ∈ R , (A.11)

with the simultaneous requirements

κ−1 + 3ϕ̂2 + 2χ̂2 = 0 and κ+3 + χ̂ = 0 (A.12)

from (A.6) and (A.7), respectively. The solution

ϕ̂ =
√

−2
3κ2 − 13

3 κ − 17
3 and χ̂ = −κ − 3 (A.13)

restricts −13−
√

33 < 4κ < −13+
√

33, but one finds that

V (ϕ̂, ϕ̂, χ̂) = −1
3 (κ+1) (κ+4)3 , (A.14)

which leaves only

κ = −4 ⇒ ϕ̂ = χ̂ = 1 , (A.15)

falling back to type A. Thus, the list of critical zeros presented in subsection 4.3 is

exhaustive.
3Only one of the two values for κ leads to a real bφ3.
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B Jacobi elliptic functions

The Jacobi elliptic functions arise from the inversion of the elliptic integral of the first kind,

u = F (ξ, k) =

ξ∫

0

dx√
1 − k2 sin x

, 0 ≤ k2 < 1 , (B.1)

where k = modu is the elliptic modulus and ξ = am(u, k) = am(u) is the Jacobi amplitude,

giving

ξ = F−1(u, k) = am(u, k) . (B.2)

Then the three basic functions sn, cn and dn are defined by

sn[u; k] = sin(am(u, k)) = sin ξ , (B.3)

cn[u; k] = cos(am(u, k)) = cos ξ , (B.4)

dn[u; k]2 = 1 − k2 sin2(am(u, k)) = 1 − k2 sin2 ξ . (B.5)

These functions are periodic in K(k) and K̃(k),

sn[u+2mK+2niK̃; k] = (−1)msn[u; k] , (B.6)

cn[u+2mK+2niK̃; k] = (−1)m+ncn[u; k] , (B.7)

dn[u+2mK+2niK̃; k] = (−1)ndn[u; k] , (B.8)

where K(k) is the complete elliptic integral of the first kind,

K(k) := F (π
2 , k) and K̃(k) := K(

√
1−k2) = F (π

2 ,
√

1−k2) . (B.9)

In the following we sometimes drop the parameter k, i.e. write sn[u; k] = sn(u) etc.

The Jacobi elliptic functions generalize the trigomonetric functions and satisfy analo-

gous identities, including

sn2u + cn2u = 1 , (B.10)

k2sn2u + dn2u = 1 , (B.11)

cn2u +
√

1−k2 sn2u = 1 (B.12)

as well as

sn[u; 0] = sin u , (B.13)

cn[u; 0] = cos u , (B.14)

dn[u; 0] = 1 . (B.15)

One may also define cn, dn and sn as solutions y(x) to the respective differential

equations

y′′ = (2−k)2y + y3 , (B.16)

y′′ = −(1−2k2)y + 2k2y3 , (B.17)

y′′ = −(1+k2)y + 2k2y3 . (B.18)
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