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aDepartment of Physics, University of California, Santa Barbara,

Santa Barbara, CA 93106, U.S.A.
bKavli Institute for Theoretical Physics, University of California,

Santa Barbara, CA 93106, U.S.A.

E-mail: gcompere@physics.ucsb.edu, sdebuyl@physics.ucsb.edu,

detourn@kitp.ucsb.edu

Abstract: We analyze the asymptotic solutions of Chiral Gravity (Topologically Massive

Gravity at µℓ = 1 with Brown-Henneaux boundary conditions) focusing on non-Einstein

metrics. A class of such solutions admits curvature singularities in the interior which are

reflected as singularities of the corresponding linear solutions. A non-linear solution is

found exactly. The back-reaction induces a repulsion of geodesics and a shielding of the

singularity by an event horizon but also introduces closed timelike curves.

Keywords: Models of Quantum Gravity, Classical Theories of Gravity

ArXiv ePrint: 1006.3099

Open Access doi:10.1007/JHEP10(2010)042

mailto:gcompere@physics.ucsb.edu
mailto:sdebuyl@physics.ucsb.edu
mailto:detourn@kitp.ucsb.edu
http://arxiv.org/abs/1006.3099
http://dx.doi.org/10.1007/JHEP10(2010)042


J
H
E
P
1
0
(
2
0
1
0
)
0
4
2

Contents

1 Asymptotic solutions of chiral gravity 2

2 Linear perturbations 3

3 Back-reaction effects: repulsion, horizon shielding but closed timelike

curves 7

4 Discussion 10

Chiral gravity has recently been proposed as a consistent, non-trivial and stable pure

gravity theory in three dimensions containing black holes [1], which would make it an

extremely valuable toy model to study various aspects of quantum gravity. This theory

is a special case of Topologically Massive Gravity (TMG) [2–4] at a particular point in

parameter space and with phase space defined by asymptotically AdS3 Brown-Henneaux

boundary conditions [5]. The chirality of the theory at the classical level manifests itself

through its asymptotic symmetry group consisting in a single copy of a Virasoro algebra

acting on the phase space of the theory [6, 7]. It has furthermore been conjectured [1] that

a positive energy theorem holds for the theory.

At the linearized level, examples were proposed in the literature disproving positiv-

ity [4, 8–11]. However, it was subsequently shown that they all suffer from linearization

instabilities [14]. Defining a theory with consistent massive graviton excitations at the

chiral point instead requires to relax the Brown-Henneaux boundary conditions allowing

for a logarithmic term, as described in [17–19]. This leads to a theory that is dual to a

logarithmic CFT [17, 20]. At the non-perturbative level, it was proven that all stationary,

axially symmetric solutions of chiral gravity are the familiar BTZ black holes [21] from

pure Einstein gravity [14]. Whether all solutions of chiral gravity are Einstein metrics had

been left as an open question.

At the quantum level, it was argued that the partition function computed by summing

over real saddle points including all perturbative corrections is the chiral half of the extremal

partition function proposed by Witten as the dual of pure 3d gravity [14, 22, 23]. The latter

real saddle points turned out to satisfy euclidean Einstein’s equations.

The purpose of this note is to show that there exists solutions to chiral gravity which do

not satisfy Einstein’s equations. These solutions are non-stationary or non-axisymmetric in

accordance with the Birkoff theorem proven in [14]. Our analysis will be based on the recent

work [24] which determined the most general asymptotic solution of TMG at the chiral point

in Fefferman-Graham form. As we will see in section 1, the equations of motion of TMG

are less restrictive than in pure gravity, and allow for more general asymptotic solutions.

The latter are in general expressed as an infinite asymptotic series at the boundary. We

should however worry about the regularity of the solution in the interior geometry in order
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to know if we should regard them as physical or not. We address that issue from two

different perspectives. In section 2, we analyze a large class of linear perturbations around

AdS and the BTZ black holes absent in pure Einstein gravity but obeying Brown-Henneaux

boundary conditions. We find that those perturbations are singular. Also, the bulk current

associated to ∂t integrated on a spacelike slice has an infinite contribution from the interior

boundary, which provides further support to the existence of a singularity in the interior.

We analyze in section 3 the effects of back-reaction on one particular perturbation. The

non-linear solution admits a curvature singularity which however coincides with a past event

horizon. The singularity is therefore shielded. However, naked closed timelike curves are

also present in the interior geometry and allow causality violation. We will conclude with

a discussion on the implications of these solutions on classical and quantum chiral gravity.

1 Asymptotic solutions of chiral gravity

Asymptotically anti-de Sitter space times can be defined as conformally compact manifolds

whose boundary metric is conformal to a cylinder. Such spacetimes admit an asymptotic

Fefferman-Graham expansion whose precise form depend on the equations of motion of the

theory considered. In Topologically Massive Gravity (TMG) at µℓ = 1, such an expansion

was determined in [24] to be1

ds2 =
dr2

r2
+ (−r2dt2 + r2dφ2) +

(

log rb(2)ij + g(2)ij + o(r0)
)

dxidxj (1.1)

where b(2)ij and g(2)ij , i = t, φ are further constrained by the equations of motion. Chi-

ral gravity can be defined as the subset of this theory where the logarithmic branch is

turned off,

b(2)ij ≡ 0, (1.2)

which can be done consistently with the equations of motion. This condition is equivalent

to setting the left set of Virasoro charges to zero [14] and reduces the phase space to metrics

obeying the Brown-Henneaux boundary conditions [5]. At second order in the Fefferman-

Graham expansion, the equations of motion imply that g(2) is traceless and that a chiral

projection of its divergence is fixed. In Einstein gravity, the whole divergence of g(2) is

fixed [25], but in TMG at the chiral point, one condition is relaxed and only a chiral half

of the divergence is fixed by the equations of motion [26]. The general non-linear solution

at second order is then

g(2)ij =

(

1 1

1 1

)

ij

F (t, φ) +

(

1 −1

−1 1

)

ij

L̄(t − φ). (1.3)

It is easy to check that the modes of the function L̄(t−φ) are in one-to-one correspondence

with the eigenvalues of the right-moving Virasoro charges while the function F (t, φ) does

not appear in the asymptotically conserved charges, see the definitions of charges e.g. in [7].

1We use the conventions of [1] and ǫ
rtφ = +1.
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Also, the holographically renormalized stress-tensor [24, 27]

Tφφ = Ttt =
1

2G
L̄, Ttφ = − 1

2G
L̄ (1.4)

does not depend on F , as it should since there is an equivalence between holographic

charges and Hamiltonian charges in asympotically (globally) AdS spacetimes [12, 13]. We

observe that the Cotton tensor is zero at second order in r if and only if F (t, φ) is a

left-moving function L(t + φ) corresponding to solutions of Einstein gravity. The novelty

in Chiral gravity with respect to Einstein gravity comes therefore from the part of the

function F (t, φ) which is not of the form L(t+φ). Such a function cannot be removed by a

diffeomorphism. As a reminder, the two functions L̄(t − φ) and L(t + φ) except their zero

modes can be removed upon acting with a globally defined large diffeomorphisms generated

by the two Virasoro algebras. The zero modes of L(t + φ) and L̄(t + φ) are equal to the

two parameters of the BTZ, see e.g. eq (1) of [28].

The asymptotic solutions with F (t, φ) 6= 0 can be solved at higher orders with the

following expansion

ds2 =
dr2

r2
+ (−r2dt2 + r2dφ2) +

(

g(2)ij +
1

r2
g(4)ij +

1

r4
g(6)ij + . . .

)

dxidxj (1.5)

Using the differential operator Da ≡ ∂t + a∂φ, one finds

g(4)ij =
1

16

(

−D−3 D1

D1 3D−1/3

)

ij

D−1F (t, φ) +

(

−1 0

0 1

)

ij

F (t, φ) L̄(t − φ), (1.6)

g(6)ij =
1

576

(

−D−1+
√

6D−1−
√

6 D2+
√

3D2−
√

3

D2+
√

3D2−
√

3 5D(1+
√

6)/5D(1−
√

6)/5

)

ij

D2
−1F

+
1

8

(

1 1

1 1

)

ij

(FD−1 −
1

12
D−1F )D−1F +

1

72

(

1 −1

−1 1

)

ij

L̄′D−1F,

+
1

72
L̄

(

−D17 −8D−1

−8D−1 17D1/17

)

ij

D−1F

g(8)ij = . . . (1.7)

In general, the Fefferman-Graham expansion does not terminate. It terminates at order 4

(g(6)ij and higher are zero) for all solutions of Einstein gravity [29] where D−1F = 0.

A solution of chiral gravity has to obey regularity conditions in the interior. If curvature

singularities are present, they should be shielded by an horizon. We now turn our attention

to that issue by studying first the linearized theory.

2 Linear perturbations

Studying the physical content of the entire class of metrics (1.5) is a tedious task. In order

to grasp some insight we will study linear perturbations around anti-de Sitter space and

– 3 –



J
H
E
P
1
0
(
2
0
1
0
)
0
4
2

around the BTZ black hole and investigate whether these linear solutions are regular in

the interior geometry and have finite energy.

Anti-de Sitter space and the BTZ have the form (1.5) where the only non-vanishing

Fefferman-Graham coefficients are

g(2)ij =

(

m + α α − m

α − m m + α

)

ij

, g(4)ij =

(

−mα 0

0 mα

)

ij

. (2.1)

Anti-de Sitter space is given by m = α = −1/4 while the BTZ black holes have m,α ≥ 0.

The Fefferman-Graham coordinate r extends from infinity to r = 1/2 for AdS where the

spacetime ends. For the black holes, the coordinate r reaches the horizon at r+ = (mα)1/4.

These bounds are more easily seen by using the standard BTZ coordinate R = (r2 + (m +

α) + mαr−2)1/2 such that gφφ = R2dφ2. For the sake of completeness, the Virasoro zero

modes are given by

L0 = 0, L̄0 =
m

2G
. (2.2)

As a starter, one could try to find if highest-weight solutions exist in the Fefferman-Graham

gauge as they do in traceless-transverse gauge [1]. In Fefferman-Graham coordinates, the

SL(2, R)L generators have the form

L0 =
i

2
(∂t + ∂φ) (2.3)

L−1 =
i

2
e−i(t+φ)

(

4r2 − 1

4r2 + 1
∂t +

4r2 + 1

4r2 − 1
∂φ + ir∂r

)

(2.4)

L1 =
i

2
ei(t+φ)

(

4r2 − 1

4r2 + 1
∂t +

4r2 + 1

4r2 − 1
∂φ − ir∂r

)

. (2.5)

and obey [L1, L−1] = 2L0, [L±1, L0] = ∓L±1. The SL(2, R)R generators L̄n are obtained

by inverting φ → −φ in the above. Starting from the anzatz

hµνdxµdxν = e−i(h+h̄)t+i(h−h̄)φ(g1(r)dφ2 + 2g2(r)dtdφ + g3(r)dφ2) (2.6)

and imposing that the perturbation is invariant under L−1 and L̄−1, one finds that h = h̄

and g1 ∼ g2 ∼ g3 ∼ (r−1 + 4r2)2h. The equations of motion then fix h = 1 and g1 =

g2 = 0. The linearized solution do not obey the Brown-Henneaux boundary conditions

and is therefore not tangent to the phase space of chiral gravity. There are therefore no

highest weight state perturbations in the Fefferman-Graham gauge. We therefore turn our

attention to perturbations which do not fall in highest weight representations.

Let us consider the following anzatz

F (t, φ) = α + ǫt, L̄(t − φ) = m. (2.7)

Keeping only terms linear in ǫ in the equations of motion, we obtain the following

linear solution

hµνdxµdxν = t(dt + dφ)2 +
mt

r2
(−dt2 + dφ2) (2.8)

which admits a finite Fefferman-Graham series expansion. The solution is linearly diver-

gent in time and might potentially represent an instability of the background if it is a

– 4 –
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Background geometry α m degree of divergence

AdS −1/4 −1/4 1

non-extremal BTZ > 0 > 0 3/2

Extremal BTZ with L̄0 = 0 > 0 0 2

Vacuum BTZ 0 0 4

Extremal BTZ with L̄0 > 0 0 > 0 5

Table 1. Degree of divergence of the energy of the linearized solution linear in time in the interior

of the background geometry at R = R0.

normalizable and bounded perturbation, see e.g. discussions in [30]. The perturbation is

manifestly not bounded when t goes to infinity. However, since the (r, t) coordinate system

breaks down at the black hole horizon, one has to re-express the perturbation in Kruskal

coordinates (U, V, φ) (see [21]) to be sure this is not a coordinate artifact. We checked

that the perturbation indeed blows up at the black hole horizon for the cases m = α and

m,α > 0, and therefore does not represent a genuine instability. This divergence suggests

that any non-linear completion of the perturbation (2.8) of the form g = ḡ + h + h(2) + . . .

admits curvature singularities. Another argument for the irregularity of the perturbation

goes as follows. The energy of the linear mode is zero as can be seen from the fact that

the boundary stress-tensor (1.4) is unchanged when the function F in (2.7) is turned on.

The equations of motion Eµν ≡ √−g(Gµν − gµν + Cµν) admit the perturbative expansion

Eµν [g] = Eµν [ḡ] + E
(1)
µν [h; ḡ] + E

(2)
µν [h, h; ḡ] + E

(1)
µν [h(2); ḡ] + . . . . The bulk charge

Qbulk(∂t) =
1

16πG

∫

Σ
∗((∂t)

µE(2)
µν (h, h; ḡ)dxν), (2.9)

where Σ is a constant time slice can be written in terms of boundary integrals at the

boundary ∂Σ of Σ, see e.g. section 4 of [14] for a recent derivation in the context of TMG.

The boundary integral at infinity is the canonical energy of the linear mode in the sense

of [15, 16], which is zero. The boundary ∂Σ however has a second component in the interior

either at the origin of AdS R0 = 0 or at the horizon of BTZ R0 =
√

m +
√

α. Now, the

surface integral in this interior component diverges. Indeed, we find

Qbulk(∂t) ∼
∫ ∞

R0

dR

(R − R0)d+1

(

1 + O(R1)
)

∼ ∞ for d > 0 (2.10)

where the degree of divergence d (defined with respect to the coordinate R) is always

positive. Its explicit value turns out to depend on the background metric in an non-trivial

manner, see table 1. We interpret this divergence as the sign of a singularity at R = R0.

One can generalize the above analysis to the anzatz

F (t, φ) = ǫ tn, L̄(t − φ) = m n ≥ 2 (2.11)

with a polynomial function of time of degree 2 or higher. We choose to analyze the solutions

around the background α = 0 for simplicity. It turns out that the linear solution has a finite

Fefferman-Graham expansion which stops at r−2⌊n
2
⌋ around the vacuum BTZ (m = 0) and
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at r−4⌊n
2
⌋−2 around the extremal BTZ with L̄0 > 0 (m > 0). The linear solution takes the

form

hµνdxµdxν =

⌊n/2⌋
∑

i=0

n!

22i((i + 1)!)2(n − 2i)!

tn−2i

r2i





i+1
∑

j=0

ds2
(i,j)

mj

r2j



 (2.12)

where

ds2
(0,0) = (dt + dφ)2, ds2

(0,1) = −dt2 + dφ2,

ds2
(1,0) = −dt2 + 2dtdφ + dφ2, ds2

(1,1) =
2

9
(−dt + 17dφ)(−dt + dφ),

ds2
(1,2) = (dt − dφ)2,

ds2
(i,0) = −dt2 + 2dtdφ + (2i + 1)dφ2,

. . . , ds2
(i,i+1) =

1

Cat(i)
(dt − dφ)2 ∀i ≥ 1 (2.13)

where Cat(i) = 2i!
i!2(i+1)

are the Catalan numbers. The general expression ds2
(i,j), 0 < j ≤ i

can be expressed in terms of intricate combinatorial factors that we do not need to write

down here for our arguments. We checked that (2.12) is a linear solution around the

background (2.1) with α = 0 and m arbitrary for all n ≤ 15.

The linear perturburation is always singular at r = 0 which is at the horizon of the

massive BTZ black hole (m > 0) or at the origin of the vacuum BTZ (m = 0). We there-

fore expect that any non-linear completion of this perturbation will be singular. Further

evidence comes from the bulk integral

Qbulk(∂t) ∼
∫ ∞

√
m

dR

(R −√
m)3+2n

(

1 + O(R1)
)

∼ ∞ for all n ≥ 2, m ≥ 0 (2.14)

which always diverges with a degree of divergence d = 2n + 2 ≥ 6 for n ≥ 2 superior to

the ones of the perturbation linear in time. In that sense, the polynomial solutions are

more and more singular with increasing n. The divergence in the bulk charge here does

not signal a breakdown of the Brown-Henneaux boundary conditions. Rather, it signals

the existence of a singularity in the interior geometry.

We have explored a restricted set of non-Einstein linearized perturbations, namely

a subset of which have a finite Fefferman-Graham expansion. In all cases analyzed, the

perturbations are singular and have infinite bulk charge associated to ∂t. Moreover, the

divergence in the bulk charge increases qualitatively for polynomial modes in time of higher

order. We don’t expect that adding an angular dependence in F (t, φ) will resolve these

singularities. In order to prove or disprove the conjecture that the only regular solutions

of chiral gravity are Einstein metrics, one would have to analyze the entire class of linear

solutions with F (t, φ) arbitrary. It seems to be a hard problem that we leave unsolved.

A caveat of the above analysis is that even if solutions of chiral gravity are irregular,

the singularities might be hidden by an horizon introduced by back-reaction effects. In

order to study that possibility we now turn our attention to a particular case where the

back-reacted solution can be found.
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3 Back-reaction effects: repulsion, horizon shielding but closed timelike

curves

One can ask if the presence of a singularity that we infered in the last section from the

linear analysis could not be hidden by an horizon in the non-linear solution when all higher

order perturbative corrections are taken into account. We will develop the answer to that

question for the most simple example of the linear time perturbation (2.8) around the

extremal BTZ background with L̄0 = 0 (m = 0) in what follows. First, we note that in

this simple case the perturbative expansion stops at second order. The non-linear solution

g = ḡ + h + h(2) is given by

ds2 =
dr2

r2
+ (−r2dt2 + r2dφ2) +

(

α + tγ − γ2

96r4

)

(dt + dφ)2. (3.1)

This solution falls into the class (1.5) with g(6) 6= 0 and no higher Fefferman-Graham

coefficients. We set the parameter α to zero by a shift of time. The conserved charges of

this solutions are simply

L0 = 0, L̄0 = 0. (3.2)

At r = 0, the system of coordinates breaks down but two physical effects can be seen: the

norm of the Killing vector field ∂
∂φ is infinite and the Ricci tensor contracted two times

with ∂
∂φ is infinite as well. If r = 0 can be reached by geodesics in finite affine time, it

represents a physical singularity. Indeed, a vector field on a regular manifold cannot have

infinite norm except asymptotically close to its open boundaries. However, this singularity

might be hidden if geodesics cannot reach r = 0 in finite coordinate time t. Another source

of concern is the presence of closed timelike curves in the spacetime region beyond the

velocity of light surface (VLS) where the norm of ∂φ becomes null,

r2 + tγ − γ2

96r4
= 0 (V LS). (3.3)

One could ask whether geodesics can probe or not that region and reach the AdS boundary

and whether the coordinate time always increases on timelike and null geodesics.

In order to settle those questions, we have to solve the geodesics equations. Since the

spacetime is time-dependent these equations do not have a simple form and have to be

solved numerically. Nevertheless, before doing so, one can get some insights in the role of

the back-reaction term h(2) by considering null geodesics around the spacetime

ds2 =
dr2

r2
+ (−r2dt2 + r2dφ2) − γ̂2

r4
(dt + dφ)2. (3.4)

which is a valid approximation to the near r = 0 region of (3.1) with γ̂ = γ/(4
√

6) 6= 0

when t is finite. Denoting by E = ẋµgµt and J = ẋµgµφ the conserved energy and angular

momentum along the null geodesic xµ(τ), we find that

ṙ2 = (E2 − J2) − γ̂2

r6
(E − J)2 (3.5)
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where the dot denotes differentiation with respect to affine time τ . Since ṙ2 ≥ 0, geodesics

admit a solution only for E2 > J2 or E = J . For E = J , the null rays lie on circular orbits

at fixed radius while for E2 > J2 null rays reach a minimum radius and are repulsed to

infinite radius as can be seen from the second order differential equation for r

r̈ =
3γ̂2(E − J)2

r7
. (3.6)

The back-reaction term can therefore be thought of as inducing a repulsive barrier close

to r = 0.

Let us now go back to the solution of chiral gravity (3.1). The repulsion of geodesics

will take place as long as the time coordinate t(τ) does not diverge when r(τ) approaches

zero. When t(τ) diverges, the approximation (3.4) is not valid and one has to solve the

complete geodesic equations. However, in the later case, the singularity will be in the future

or past event horizon of an observer at infinity. This effect can be probed more directly

by noting that the two equations J = ẋµgµφ and gµν ẋµẋν = 0 imply as a consequence of

ṫ2 ≥ 0 that

γt ≥ γ2

96r4
− r2

(

J2

ṙ2
+ 1

)

. (3.7)

When γ = 0, there is no constraint. Also, at infinity there is no constraint, consistently

with the behavior of geodesics in AdS. The relation now implies that all geodesics crossing

r = 0 will necessarily reach t = +∞ when γ > 0 and t = −∞ when γ < 0. This points

to the existence of a past event horizon and a future event horizon for γ > 0 and γ < 0,

respectively. Once the choice of time flow in the boundary AdS metric is fixed, the solution

with γ positive or negative are physically inequivalent. In the former case the singularity

lies in the future and cannot influence the past, while in the latter case the singularity lies

in the past and influences the asymptotic observer. The latter spacetime is pathological

since the singularity r = 0 is naked. We will therefore only consider γ > 0 in what follows.

The curvature singularity is then safely hidden beyond a past event horizon. In that sense,

the back-reaction resolves the singularity found in the linear theory by shielding it with

an horizon.

Let us now study in more details the closed timelike curves. Let us pick up a point

p lying beyond the velocity of light surface (3.3) but outside the singularity rp > 0. The

norm of ∂φ at that point is given by −c2 with c > 0. Choosing for convenience the proper

time of the geodesic such that ṙ(p) = ±1, the constraint (3.7) then enforces that

c ≤ rp|J |. (3.8)

We see that geodesics without angular momentum cannot probe the region with closed

timelike curves. The constraint (3.7) is then exactly the condition that geodesics cannot

penetrate inside the velocity of light surface. However, nothing prevents to probe regions

with arbitrary negative norm ∂φ with geodesics with a high enough angular momentum. An

example is presented using the numerics in Fig 3. The closed timelike curves are therefore

naked and we conclude that the spacetime (3.1) is not very physical.
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Figure 1. Future-directed null geodesic with J = 0, t0 = 0. The geodesic comes from AdS on the

right-hand side and goes towards the singular horizon r = 0, t = ∞. The region to the left of the

dashed curve (VLS) is the region with CTCs forbidden by (3.7).

Figure 2. Future-directed null geodesic with J = 0, t0 = −2. The geodesic comes from AdS on

the right-hand side and goes back to AdS after bouncing at positive radius. The region to the left

of the dashed curve (VLS) is the region with CTCs forbidden by (3.7).

Let us present the numerical results. Using a rescaling of the coordinates and a change

of periodicity of φ (that will not affect any of the results here), one can set γ = +1. We will

integrate the geodesic starting from the AdS boundary r = ∞ at τ = 0. We can rescale

the affine time τ such that ṙ(0) = −1 and we fix φ(0) = 0. The initial data of the geodesic

then only reduces to the angular momentum J and to the initial time t(0) = t0 both taking

values in R, and, the sign of the time flow ṫ(∞).

At zero angular momentum, the geodesics fall into two distinct classes depending if t0
is bigger or smaller than the numerically found critical value

t∗ = −1.4165 ± 0.0001 (3.9)

When t0 > t∗, future-going geodesics reach r = 0 in finite affine parameter. The time

coordinate t diverges there and ∂φ has positive norm. The geodesic reaches the singularity.

When t0 < t∗ future-going geodesics reach a minimal positive radius and bounce back

to the AdS region. The geodesics can be extended to infinite affine parameter and the

coordinate t reaches a finite value, as it should in AdS.

– 9 –



J
H
E
P
1
0
(
2
0
1
0
)
0
4
2

Figure 3. Initially future-directed null geodesic with J = −200, t0 = −10000. The geodesic comes

from AdS on the upper part of the right-hand side, enters the CTC region after crossing the velocity

of light surface plotted by the vertical line, and goes back to the AdS region at a lower coordinate

time t thereby violating causality.

When the angular momentum is turned on one can find numerically a critical time

t∗(J) < 0 such that geodesics either reach the horizon r = 0 at t = ∞ or bounce back. The

function t∗(J) is not symmetric upon flipping the sign of J as a consequence of the metric

being parity violating. Most importantly, there exists null geodesics probing the CTC

region and going back to the AdS region at an earlier time, thereby violating causality. An

example of such a geodesic is shown in Fig 3 as previously announced.

4 Discussion

The existence of non-Einstein solutions to chiral gravity raises a certain number of ques-

tions, both on the classical and quantum consistency of chiral gravity. We argued that

curvature singularities could be present for all solutions. Such singularities might be hid-

den by an horizon, as we showed on one example, but other pathologies, like closed timelike

curves, possibly render these solutions unphysical. We leave as an open classical problem

the interested reader to show the (non-)existence of regular non-Einstein solutions to chiral

gravity. It is interesting to observe that the structure underlying these solutions is specific

to the chiral point µl = 1 and to AdS boundary conditions and therefore does not depend

on any free parameter in TMG.

Let us now comment on the role of the non-Einstein solutions to the quantum theory

of chiral gravity. Building on the work of Witten [22], the authors of [14] showed that

summing only the real saddle points of the Euclidean action amounts to consider only

Einstein metrics, because the euclidean equations of motion for TMG have the simple form

Gµν + iℓCµν = 0. (4.1)

The fact these Einstein metrics are all locally isometric to three dimensional hyperbolic

space drastically simplifies the computation of the sum over geometries with a two-torus as

conformal boundary. The regularized sum then coincides with a chiral half of an extremal
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CFT partition function [22, 31]. It was also noted that all non-Einstein solutions of TMG

admit a complex analytical continuation as can be seen from (4.1). Now, the existence of

Lorentzian non-Einstein solutions of TMG opens the possibility that complex geometries

might play a role in the euclidean path integral, as would do e.g. the complex Euclidean

Kerr geometry in four-dimensional gravity. The question of regularity is crucial since the

path integral is usually restricted to smooth geometries: for instance, negative mass black

holes — corresponding to conical defects — are not included. Moreover, when one considers

a boundary torus as conformal completion, the geometry should be well-defined everywhere

which constraints the potential complex saddle points, e.g. the analytic continuation of the

solution (3.1) cannot be defined on the torus since it would be multi-valued.

The existence of regular complex saddle points with a conformal boundary torus is

speculative but plausible since any anzatz F (t, φ) = enteimφ in (1.5) would lead to such a

well-defined saddle point upon analytic continuation, at least close to the boundary. The

classical regularized Euclidean action Icl of such saddle points can be computed using the

arguments of [32]. Since the boundary stress-tensor does not depend on the function F (t, φ)

and the diffeomorphism anomaly does not play a role on the boundary torus, we obtain

e−Icl = q̄L̄0 for any solution of the form (1.5). The boundary gravitons can be included as

well with the standard arguments. The partition function would then factorize

Z(τ) = Tr
(

q̄L̄0

)

= N Z̄(τ) (4.2)

where Z̄(τ) is the anti-holomorphic extremal partition function described in [14] and N is

a (regularized) degeneracy due to the complex saddle points.2 This leads us to conclude

that even if such saddle points exist, the partition function of chiral gravity is still likely

to be chiral and modular invariant.
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