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1 Introduction

Working in the framework of the gauge theory/string theory correspondence of Malda-

cena [2, 3], Policastro, Son and Starinets computed the ratio of the shear viscosity η to

entropy density s of the N = 4 SU(N) supersymmetric Yang-Mills (SYM) plasma, in the

planar (’t Hooft) limit and for infinitely large ’t Hooft coupling1 λ = g2
Y MN → ∞ [4],

finding
η

s
=

1

4π
. (1.1)

Shortly afterwards it was argued in [5] that (1.1) is in fact a universal result in all gauge

theory plasma at infinite coupling that allow for a dual holographic description.2

The holographic result (1.1) is remarkable in a sense that a simple quasi-particle picture

of hydrodynamic transport suggests a quantum mechanical bound [12]

η

s
& O (1) . (1.2)

This fact, along with the observation that all known fluids in nature3 have larger shear

viscosity to entropy density ratios, led Kovtun, Son and Starinets (KSS) to conjecture a

bound for any fluid [6]:
η

s
≥ 1

4π
. (1.3)

1We set ~ = kB = 1.
2Further generalizations/proofs of the shear viscosity universality theorem appeared in [6–11].
3A strongly coupled Quark-Gluon Plasma might be a counterexample [13].
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It is possible to construct a phenomenological counterexample in which, by increasing the

number of species in the fluid while keeping the dynamics essentially independent of the

species type, the bound can be violated [14]. Unfortunately, the particular example [14]

does not have a well-defined relativistic quantum field theory completion [15].

The first test confirming the KSS bound, at least for N = 4 SYM at large (but finite)

’t Hooft coupling, was done in [16].4 The finite ’t Hooft coupling corrections on the gauge

theory side translate into higher-derivative gravitational corrections on the string theory

side of the holographic correspondence [3]. This model, along with generalizations [19, 20],

describes a superconformal gauge theory plasma — a consistent relativistic quantum field

theory — with the same anomaly coefficients (central charges) c = a in the trace of the

stress-energy tensor,

〈T µ
µ〉CFT =

c

16π2
I4 −

a

16π2
E4 . (1.4)

Here E4 and I4 correspond, respectively, to the four-dimensional Euler density and the

square of the Weyl curvature:

E4 = RµνρλR
µνρλ − 4RµνR

µν +R2 , I4 = RµνρλR
µνρλ − 2RµνR

µν +
1

3
R2 . (1.5)

In [22] Kats and Petrov put forth the first consistent example of a relativistic quantum field

theory which violates the KSS viscosity bound5 — the N = 2 Sp(N) superconformal gauge

theory plasma with 4 fundamental and 1 antisymmetric hypermultiplets. The violation of

the viscosity bound can be traced back to the inequality between the central charges of

the theory, c 6= a. More precisely, the bound is violated once c− a > 0, which is generic in

superconformal gauge theories with c 6= a [24]. Moreover, since c− a ∼ N , this is a finite

N correction, and is not due to having finite ’t Hooft coupling. Once again, the inequality

for the central charges on the gauge theory side translates into particular higher-derivative

corrections to the supergravity approximation [25], which, to insure reliable computations,

have to be regarded as being ’small’. As a result, the KSS bound violation in holographic

models realized in string theory is necessarily perturbative.

The work [22] convincingly established that the original KSS bound (1.3) can not be a

quantitative formulation of a loose quantum-mechanical bound (1.2). Thus, the question

remained as to whether or not a bound of the type (1.2) existed. As we mentioned above,

because of the universality of the shear viscosity in the supergravity approximation, any

finite violation of the KSS bound has to be studied in a holographic model of the AdS/CFT

correspondence, rather than a particular realization of the holographic correspondence in

string theory. A simple enough model to fulfill this purpose is that of Gauss-Bonnet gravity

with a negative cosmological constant [23]:

SGB =
1

2l3P

∫

d5x
√−g

[

R+
12

L2
+
λGB

2
L2

(

R2 − 4RµνR
µν +RµνρλR

µνρλ
)

]

. (1.6)

Up to field redefinitions, for λGB ≪ 1 the gravitational model (1.6) is equivalent to the

string theory holographic example of Kats and Petrov [22], for sufficiently large ’t Hooft

4For further analysis and generalizations see [17–21].
5See also [23].
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coupling, where one identifies

c− a

c
= 4λGB + O

(

λ2
GB

)

. (1.7)

The advantage of (1.6) compared to [22] is that the former gravitational model is consistent

for arbitrary values of λGB > 1
4 [23]. As such, it defines via the AdS/CFT correspondence

a dual conformal gauge theory plasma, which we call GB plasma, with central charges [26]

c =
π2

23/2

L3

ℓ3P
(1 +

√

1 − 4λGB)3/2
√

1 − 4λGB ,

a =
π2

23/2

L3

ℓ3P
(1 +

√

1 − 4λGB)3/2
(

3
√

1 − 4λGB − 2
)

, (1.8)

and hence
c− a

c
= 2

(

1√
1 − 4λGB

− 1

)

. (1.9)

Notice the parallel with the construction of [14]: we identified a relativistic quantum field

theory as a holographic dual to (1.6), with a shear viscosity to entropy density ratio given

by [23]
η

s
=

1

4π
(1 − 4λGB) , (1.10)

which apparently leads to an arbitrary violation of the KSS bound (or any bound of the

type (1.2)), given appropriate choices of λGB (or equivalently of the central charges of the

theory). To complete the analysis one needs to address the question of the consistency of

the GB plasma, as a relativistic quantum field theory. This was done in [1, 27]. It was

found that once

λGB >
9

100
, (1.11)

the spectrum of excitations in the GB plasma contains modes that propagate faster than

the speed of light [1]. Likewise, for

λGB < − 7

36
, (1.12)

the GB plasma also contains microcausality violating excitations [27]. Given (1.11)

and (1.12) we are led to conclude that consistency of the GB plasma as a relativistic

QFT constrains its viscosity ratio to be

16

9
≥ 4π

η

s
≥ 16

25
. (1.13)

Exactly the same constraint arises by requiring “positivity of energy” measured by a de-

tector in the GB plasma [28].

To summarize, the example of the GB plasma appears to suggest a link between the

violation of the shear viscosity bound of the type (1.2) and the violation of microcausal-

ity/positivity of energy in the theory.6 In this paper we argue that such a link can not be

of fundamental nature.
6Further work exploring and generalizing this link appeared in [29–33].

– 3 –



J
H
E
P
1
0
(
2
0
1
0
)
0
2
6

Indeed, the shear viscosity is one of the coupling coefficients of the effective hydrody-

namic description of the theory at lowest momenta and frequency, i.e., , for

IR : ω ≪ min(T, µ, · · ·) , |~k| ≪ min(T, µ, · · ·) , (1.14)

where · · · stand for any microscopic scales of the plasma, other than temperature and

chemical potential(s) for the conserved charge(s). On the contrary, the microcausality of

the theory is determined by the propagation of the modes in exactly the opposite regime,

i.e., for

UV : ω ≫ max(T, µ, · · ·) , |~k| ≫ max(T, µ, · · ·) . (1.15)

A link between the features of the theory governing its microcausality and its shear viscosity

is only possible if the same phase of the theory extends over the entire range of the energy

scales — from the infrared to the ultraviolet. In other words, there must not be any phase

transitions in the plasma. This is precisely what is happening in the GB plasma! Since the

GB plasma is conformal, and temperature is the only available scale in the model, there

can not be any phase transition in the theory as a function of temperature. The only free

parameter of the model is the GB coupling constant λGB, which determines both the shear

viscosity ratio and its microcausality properties. Hence the link between the two, originally

found in [1], is not surprising — rather, in a sense, it is an accident.

Consider a conformal plasma in the presence of chemical potential, defined as a holo-

graphic dual to appropriately — see the next section for details — generalized GB gravity.

Assume that this plasma undergoes a second order phase transition below some critical

temperature Tc ∝ µ associated with the spontaneous breaking of some global U(1) sym-

metry and the generation of a condensate of some irrelevant operator Oc:

〈Oc〉
{

= 0 , T > Tc

6= 0 , T < Tc .
(1.16)

Clearly, if the model is engineered in such a way that the effective GB coupling of the dual

gravitational description is

λGB

∣

∣

∣

∣

effective

∝ Oc , (1.17)

it is natural to expect given (1.16) that

λGB

∣

∣

∣

∣

effective
{

= 0 , UV

6= 0 , IR .
(1.18)

In such a model, microcausality features — governed by the unbroken phase – would be

completely decoupled from the physics that determines the shear viscosity of the symmetry-

broken phase of the plasma. Also, as a result, the shear viscosity to entropy density ratio in

the UV would differ from that in the IR. Thus, although η/s does not flow in any Wilsonian

sense (see e.g. [34]), in this construction the decoupling of the UV physics from the IR is

reflected in the different behavior of η/s in the two regimes.

– 4 –



J
H
E
P
1
0
(
2
0
1
0
)
0
2
6

In the next section we present a detailed holographic model of AdS/CFT correspon-

dence implementing the “decoupling idea” outlined above. We study the thermodynamics

of the model in section 3. The results of the ratio of the shear viscosity to the entropy den-

sity and the causality analysis of the model are discussed in sections 4 and 5, respectively.

We conclude in section 6.

2 The holographic model

Following the general idea presented in the introduction, we would like to engineer a holo-

graphic model of AdS/CFT with a spontaneous symmetry breaking in the IR and non-

universal shear viscosity in the symmetry-broken phase.

Our starting point is the holographic model of superfluidity proposed in [35]

(GHPT) and described by

Lsuperfluid = R− L2

3
FµνF

µν +

(

2L

3

)3 1

4
ǫλµνσρFλµFνσAρ + LSUGRA

scalar , (2.1)

with

LSUGRA
scalar = −1

2

[

(∂µφ)2 + sinh2 φ (∂µθ − 2Aµ)2 − 6

L2
cosh2 φ

2
(5 − coshφ)

]

. (2.2)

Here, φ and θ are the modulus and the phase of a complex scalar Ψ, which is dual to a

chiral primary operator O with scaling dimension ∆. By a U(1) gauge transformation we

can set θ = 0. The model (2.1) is a consistent truncation of type IIB supergravity, and

represents a string holographic realization of the mean-field second-order phase transition.

We now briefly summarize the features and the dynamics of the model (2.1).7 The

gauge field Aµ is dual to a global U(1) R-symmetry current, and has been normalized in

such a way that chiral primaries have R-charge |R| = 2∆/3 [36]. By expanding the scalar

potential to quadratic order in φ,

V (φ) = − 12

L2
− 3

2L2
φ2 + . . . , (2.3)

we can read off the mass of the scalar m2L2 = ∆(∆−4) = −3, and extract the dimension of

the dual operator. Thus, we can identify Ψ with a chiral primary operator O of dimension

∆ = 3 and R-charge R = 2. Since the non-normalizable component of φ is set to zero, the

dual QFT is a conformal gauge theory.

Consider this gauge theory at finite temperature T and nonzero chemical potential µ.

It was found in [35] that for T < Tc ≈ 0.0607µ the GHPT plasma undergoes a mean-field

second-order phase transition associated with the development of the condensate for O:

〈O〉
{

= 0 , T > Tc

∝ (T − Tc)
1/2 , T ≤ Tc .

(2.4)

7 See [35] for further details.
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On the gravity side, while at high temperatures the background is that of an electrically

charged AdS black hole, once the temperature drops below Tc the black hole develops scalar

hair. Since O is charged under the global U(1) symmetry, the condensation breaks this

symmetry spontaneously. While the precise value of the critical temperature is sensitive to

the details of the full scalar Lagrangian LSUGRA
scalar (dual to O) in the gravitational description,

the existence of the transition itself depends only on the set of values (R,∆) of the operator

in question [37]. Thus, for the purpose of engineering the phase transition only — we are

going to give up the string theory embedding anyway — we simplify

LSUGRA
scalar → Lscalar = −1

2

[

(∂µφ)2 + 4φ2AµA
µ
]

+
12

L2
+

3

2L2
φ2 , (2.5)

while maintaining (R = 2,∆ = 3) for the dual operator O.

So far, while the simplified Lsuperfluid describes a second-order phase transition, the

universality theorem of [8] guarantees that the shear viscosity to entropy density ratios of

the low-temperature (symmetry broken) and the high-temperature (symmetry unbroken)

phases in this plasma are the same as in (1.1). Furthermore, since in the UV the asymptotic

geometry described by Lsuperfluid is the same as that of the Reissner-Nordstrom black hole

in AdS5 [35], the causality properties of the dual plasma must be identical to those of

N = 4 SYM plasma. In particular, we do not expect any violation of microcausality.8

To proceed, we need to introduce higher-derivative gravitational corrections into

Lsuperfluid in such a way that:

• the resulting equations of motion for the background and the fluctuations are always

of second order;

• these corrections must vanish in the symmetric phase, while being nonzero in the

symmetry-broken phase;

• the phase transition itself should not be destroyed by these corrections.

A natural modification, obviously satisfying the constraints above, is achieved by gen-

eralizing the Gauss-Bonnet coupling λGB of the higher-derivative term in (1.6) as

λGB

2
→ β (ΨΨ∗)n = β φ2n , n ≥ 2 , (2.6)

for some fixed coupling constant β. Indeed, the Gauss-Bonnet combination leads to second-

order equations of motion. In the symmetric phase the expectation value of Oc ≡ (ΨΨ∗)n

vanishes, suggesting that the UV properties of the theory must be exactly as for β = 0; the

n ≥ 2 condition guarantees that the mass of Ψ (and thus the dimension of the operator

O) will not change as β 6= 0. Finally, the sign of β will control whether the shear viscosity

ratio in the symmetry-broken phase is above or below the universal result (1.1).

We can now present our model:

L = R− L2

3
FµνF

µν +

(

2L

3

)3 1

4
ǫλµνσρFλµFνσAρ + Lscalar + LGB , (2.7)

8We explicitly verify this in section 5.
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where Lscalar is given by (2.5), and

LGB = βφ4L2

(

R2 − 4RµνR
µν +RµνρλR

µνρλ

)

. (2.8)

Thus, while in the UV the scalar field is turned off and one has the simple Einstein-Maxwell

two-derivative theory, at low energies the scalar field condenses, and controls the strength

of the higher-derivative GB correction. Note that we have set n = 2 in (2.6). Finally, we

will consider the dynamics of (2.7) while taking the non-normalizable component of φ to be

zero. Thus, L defines holographically a dual conformal gauge theory plasma with a global

U(1) symmetry.

To describe the equilibrium state of the plasma — dual to (2.7) — at finite temperature

and in the presence of a U(1) chemical potential we take the following ansatz for the

background fields:

ds25 = −c21dt2 + c22d~x
2 + c23dr

2 , Aµ = Aδ0µ ,

c1 =
z0
√
f√
r
, c2 =

z0√
r
, c3 =

g

2
√
fr

, A = αz0 .
(2.9)

where {f , g , α , φ} are functions of the radial coordinate r only. Without loss of generality

we can choose this radial coordinate such that r = 0 corresponds to the boundary while

r = 1 is the location of the horizon, i.e.,

lim
r→1

−

c1 = 0 , lim
r→1

−

c2 = finite ≡ z0 , lim
r→0+

c1
c2

= 1 , (2.10)

for an arbitrary constant z0. Lastly, we set L = 1.

3 The background geometry

In this section we discuss the thermodynamics of the holographic model (2.7)–(2.9). It is

straightforward to derive the equations of motion for the background fields {f, g, α, φ} —

in the parametrization (2.9), we find two second order equations for {α, φ}, and two first

order equations for {f, g}.9
The asymptotic solution near the boundary is given by

α = α0 + α1 r +
1

4
p2
1α0 r

3 + O(r4) ,

φ = p1 r
1/2

(

r − 1

2
α2

0r
2 +

(

1

12
α4

0 −
1

3
α0α1 −

3

8
f2

)

r3 + O(r4)

)

,

f = 1 + f2 r
2 +

2

9
α2

1 r
3 + O(r4) ,

g = 1 − 1

4
p2
1 r

3 + O(r4) .

(3.1)

Thus, at the boundary the metric reduces to the simple form:

ds2 =
z2
0

r
(−dt2 + d~x2) +

dr2

4r2
. (3.2)

9These equations are too long to be presented here. They are available from the authors upon request.
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Note that we have set the non-normalizable component of φ to zero, since we are discussing

spontaneous symmetry breaking in conformal gauge theories. Altogether the UV asymp-

totics are determined by 4 parameters: {α0, α1, p1, f2}. Of these, the first one, namely α0,

is the coefficient of the non-normalizable mode related to the U(1)R chemical potential µ,

while the rest are related to the expectation values of various operators. The parameter

α1, for instance, is the charge density conjugate to the chemical potential.

The asymptotic solution near the horizon y ≡ 1 − r is given by

α = ah
1 y + O(y2) ,

φ = ph
0 + O(y) ,

f = O(y) ,

g = gh
0 + O(y) ,

(3.3)

where we indicated only the independent parameters. Thus, in the IR altogether we have

3 independent parameters: {ah
1 , p

h
0 , g

h
0 }.

The temperature T and chemical potential µ are

T =
z0(72(g

h
0 )2 + 9(gh

0 p
h
0)2 − 8(ah

1)2)

72πgh
0

, (3.4)

µ = z0 α0 . (3.5)

The thermodynamic potentials are given by10

Ω = − P =
1

2l3P

(

z4
0f2

)

, E = 3P ,

sT =
1

2l3P

4z4
0(α0α1 − 3f2)

3
, ρ = − 1

2l3P

4

3
z3
0α1 ,

(3.6)

with Ω denoting the Gibbs free energy. When translating to gauge theory variables,

we identify
1

2l3P
=
N2

8π2
, (3.7)

as in the case of N = 4 SYM.

Note that the expression for the entropy density in (3.6) was derived imposing the

basic thermodynamic relation

Ω = E − s T − µ ρ . (3.8)

Alternatively, the entropy density can be computed using Wald’s entropy formula [42],

S = −2π

∫

Σ
dD−2x

√
−h δL

δRµνρσ
ǫµνǫρσ , (3.9)

where Σ denotes the horizon cross section, h is the induced metric on it and ǫµν is the

binormal to the horizon cross section. For our geometry the binormal is ǫtr = c1c3, obeying

ǫµνǫ
µν = −2, and

2l3P
δL

δRµνρσ
= gµρgνσ + 2βφ4L2 (Rgµρgνσ − 4gµρRνσ +Rµνρσ) . (3.10)

10These expressions can be obtained following the same procedure as in [40].
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Putting all the various ingredients together, we find that

S = −2πAh
δL

δRµνρσ
ǫµνǫρσ =

1

2l3P
Ah

(

4π − 48πβφ4L2 (∂rc2)
2

c22c
2
3

)
∣

∣

∣

∣

horizon

, (3.11)

where Ah denotes
∫

Σ d
D−2x

√
−h. Given (2.9), from (3.11) we find that the entropy

density is

s
∣

∣

Wald
=

1

2l3P
4π z3

0 . (3.12)

We mention in passing that a highly nontrivial consistency check on our numerical data

would be the agreement of the entropy density in (3.6) with the one in (3.12). We will

return to this point later in this section.

3.1 Symmetric phase

In the symmetric phase the field φ is identically zero, which tells us that the parameters

p1 and ph
0 vanish. Thus, once {T, µ} are fixed — i.e. given {z0, α0} — we are left with 4

integration constants {α1, f2, a
h
1 , g

h
0 } — precisely the correct number necessary to uniquely

solve a coupled system of 1 second-order differential equation (for α) and 2 first-order

differential equations (for {f, g}). Actually, in this case the background equations of motion

can be solved analytically.11 We find:

α = α0(1 − r) , f = 1 − r2 +
2α2

0

9
(r3 − r2) , g = 1 . (3.13)

In this case the thermodynamics is that of the N = 4 SYM plasma with the same chem-

ical potentials for all the U(1)3 ⊂ SU(4) R-symmetry global charges [43]. The expression

for the temperature reduces to

T =
z0
π

(

1 − α2
0

9

)

, (3.14)

in terms of which the entropy density becomes

s =
1

2l3P

4π4 T 3

(

1 − α2
0

9

)3 . (3.15)

3.2 Broken phase

In the broken phase the field φ is no longer zero, and the parameters p1, p
h
0 are now turned

on. Thus, for a fixed {T, µ} — given {z0, α0} — we are left with 6 integration constants

{α1, p1, f2, a
h
1 , p

h
0 , g

h
0 }. This is precisely the correct number necessary to uniquely solve

a coupled system of 2 second-order differential equations (for {α, φ}) and 2 first-order

differential equations (for {f, g}). We use numerical techniques developed in [41] to study

the thermodynamics of the low-temperature symmetry-broken phase of (2.7) for different

values of the coupling constant β.

We find that the mean field second-order phase transition at β = 0 persists for β 6= 0.

The positive values of β tend to increase the ratio T
µ (for fixed non-normalizable modes

11Our numerical results are in excellent agreement with the exact analytical result.
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Figure 1. (Colour online) Left plot: the Gibbs free energy densities of the symmetric phase

(purple curve) and the symmetry-broken phases at β = 0 (black curve) and β = −1 (blue curve) as

a function of 2πT
µ

. Right plot: the ratio of the Gibbs free energies in the symmetric and the broken

phases at β = −1.

{z0, a0}), while the negative values of β tend to decrease it. We have not performed an

exhaustive analysis of the phase diagram of the system, but rather identified interesting

values of the coupling with regards to the ratio of shear viscosity to entropy density (see

section 4).

A representative case of this analysis is the comparison between the Gibbs free energy

densities of the broken and unbroken phases as a function of 2πT
µ at β = {0,−1}, which is

shown in figure 1. On the left, the “thin purple” curve represents the Gibbs free energy

density of the symmetric phase

8

π2N2

Ω

T 4
≡ fpurple

(

x ≡ 2πT

µ

)

= −1024

27

3x2 + 4 − x
√

9x2 + 16

x4(
√

9x2 + 16 − 3x)4
. (3.16)

On the other hand the “thick black”and the ”thick blue” curves represent the Gibbs free

energy densities of the broken phase at, respectively, β = 0 and β = −1. As the temperature

increases, the condensate of the dimension-3 operator 〈O3〉 dual to the holographic scalar

φ in (2.5)

〈O3〉 ∝ p1 (3.17)
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1.02

1.03

1.04

2πT
µ

Ωbroken/Ωsymmetric

Figure 2. (Colour online) Ratios of the Gibbs free energy densities in the broken and unbroken

phases as a function of 2πT
µ

, for select values of the coupling. From top to bottom: β = −1

(blue), β = −2 (red), β = −5 (orange) and β = −10 (green). Note that these ratios are greater

than one, which, given that Ωsymmetric < 0 — see figure 1, implies that the Gibbs free energy of a

symmetry-broken phase is lower, making it a thermodynamically favorable one at low temperatures.

decreases, ultimately vanishing at some critical temperature Tc = Tc(β). We find

2πTc

µ

∣

∣

∣

∣

β=0

= 0.65396(3) ,
2πTc

µ

∣

∣

∣

∣

β=−1

= 0.63040(9) . (3.18)

The right plot in figure 1 represents the ratio of the free energies in the broken and un-

broken phases at β = −1. Clearly, the broken phases are thermodynamically favorable at

low temperatures.

To get to the interesting regime in the shear viscosity ratios η
s (in the broken phases) we

need to get to temperatures several times smaller than the appropriate critical temperature.

Figure 2 shows ratios of the Gibbs free energy densities in the broken and unbroken phases

for a select set of couplings, β = {−1,−2,−5,−10}. The broken phases, while being closer

and closer to the unbroken phase as β decreases, are thermodynamically preferable for each

given temperature.

An important consistency check on our numerical analysis is the comparison12 of the

entropy density derived from the basic thermodynamic relation (3.8) — see (3.6) — and

the one obtained directly from the Wald’s entropy — see (3.12). In all instances we find

∣

∣

∣

∣

s

s|Wald
− 1

∣

∣

∣

∣

< 10−6 . (3.19)

12Of course, this is a nontrivial check in the symmetry broken phases only.
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4 Shear viscosity

In the hydrodynamic approximation, linear response theory implies that the retarded

Green’s function of the stress energy tensor of the conformal fluid in the tensor channel is

given by [44]

Gxy,xy
R

(

w ≡ ω

2πT
,~k = 0

)

= −i
∫

dt d~x eiωtθ(t) 〈[Txy(x), Txy(0)]〉

= P

(

1 − 2πwi
η

s

P + E − µρ

P
+ O(w2)

)

.

(4.1)

Techniques for computing this correlation function in a dual gravitational model are well

developed [12], and we will not review them here. In particular, the analysis which we

perform in this note is equivalent to that in [16].

On the gravity side, computation of the Green’s function (4.1) entails adding a metric

perturbation of the form

gxy → gxy + hxy , (4.2)

and finding the effective action for the fluctuation hxy. Thus, we take the metric to be

ds25 = −c21dt2 + c22(dx
2 + dy2 + dz2 + 2 ǫΦ dxdy) + c23dr

2 , (4.3)

and expand

Φ(t, r, z) =

∫

d4k

(2π)4
e−iωt+ikzϕk(r) . (4.4)

Since we are ultimately interested in the correlator at vanishing spatial momentum, we can

set k = 0 at this stage and consider perturbations which depend on (r, t) only. Expanding

the action (2.7) to second order in the perturbations, we can easily see that the effective

action for the fluctuation is of the form originally found in [16],

S(2)
ϕ =

1

2l3P

∫

d4k

(2π)4
dr

[

A(r)ϕ′′
kϕ−k +B(r)ϕ′

kϕ
′
−k + C(r)ϕ′

kϕ−k +D(r)ϕkϕ−k +

+E(r)ϕ′′
kϕ

′′
−k + F (r)ϕ′′

kϕ
′
−k

]

+ KGB + Kcounter . (4.5)

Here KGB denotes the generalized Gibbons-Hawking boundary term, needed to ensure a

well-defined variational principle, and Kcounter is a local boundary counterterm, necessary

to remove UV divergences in the stress energy tensor correlation functions.13

For our model (2.7) we find that E(r) = 0, which is in agreement with the expectation

that the equation of motion corresponding to Gauss-Bonnet gravity should not contain

more than two derivatives. When E = 0 the generalized Gibbons-Hawking term takes the

simple form

KGB =

∫

∂M

d4k

(2π)4

[

−Aϕ′
kϕ−k − F

2
ϕ′

kϕ
′
−k

]

. (4.6)

13For the construction of the generalized Gibbons-Hawking boundary terms and counterterms for

Einstein-Maxwell theory in the presence of generic R2 corrections, see [48].
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Furthermore, the local boundary counterm is precisely as in the case of pure AdS5 [45]:

Kcounter =

∫

∂M

d4k

(2π)4

[ B
2
ϕkϕ−k

]

. (4.7)

It turns out to be particularly convenient to rewrite the action in the form

S(2)
ϕ =

1

2l3P

∫

M

d4k

(2π)4
dr

[(

B −A− F ′

2

)

ϕ′
kϕ

′
−k +

(

D − C ′ −A′′

2

)

ϕkϕ−k

]

+

+
1

2l3P

∫

∂M

d4k

(2π)4
1

2
(C −A′ + B)ϕkϕ−k , (4.8)

from which one can easily read off the radial canonical momentum for the scalar ϕ,

Πk(r) ≡
δS

(2)
ϕ

δϕ′
−k

=
1

l3P

(

B −A− F ′

2

)

ϕ ′
k . (4.9)

Introducing an “effective mass” term for the scalar fluctuation

Meff (r) ≡ 1

l3P

(

D − C ′ −A′′

2

)

, (4.10)

the scalar equation of motion can be written in the simple form

∂rΠk = Meffϕk . (4.11)

By making use of the background equations of motion it is straightforward to verify that

Meff = O(w2), which in turn means that the radial flow of Π is trivial in the w → 0 limit,

and the mass term Meff does not contribute to (4.1) to order O(w).

Finally, we note that evaluating the on-shell action to order O(w) turns out to be

equivalent to evaluating the following boundary term14

Son-shell =

∫

d4k

(2π)4
Fk (4.12)

=
1

2l3P

∫

d4k

(2π)4

[(

B −A− 1

2
F ′

)

ϕ′
kϕ−k +

1

2
(C −A′ + B)ϕkϕ−k

]
∣

∣

∣

∣

r=1

r=0

,

with the flux Fk directly related to the retarded Green’s function:

GR
xy,xy = − lim

r→0

2Fk

ϕk(r)ϕ−k(r)
. (4.13)

Much like the background in the broken phase (see section 3), the equation of motion

for the scalar ϕk (4.11) has to be solved numerically. The fluctuation ϕk must satisfy an

incoming wave boundary condition at the horizon [46]

ϕk = (1 − r)−iw/2 ψk(r) , lim
r→1

ψk = 1 , (4.14)

14Explicit expressions for {A, B, C, F,B} are too long to be presented here. They are available from the

authors upon request.
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where ψk(r) is regular near the horizon, r → 1−. Note that we used a conventional nor-

malization for ψk. To compute the correlator (4.13) to order O(w), we need to solve (4.11)

to order O(w) as well. We represent

ψk(r) = ψ0
k(r) + iw ψ1

k(r) + O(w2) . (4.15)

Demanding regularity at the horizon we find

ψ0
k = 1 (4.16)

identically. The second order linear inhomogeneous equation for ψ1
k has the following

asymptotic solution

ψ1
k = ψ0 −

1

2
r + ψ2 r

2 − 1

6
r3 −

(

1

8
+

1

8
f2 +

1

2
f2ψ2

)

r4 + O(r5) ,

ψ1
k = O(y) .

(4.17)

close to the boundary r → 0 and the horizon y → 0 correspondingly. It is uniquely spec-

ified by two parameters {ψ0, ψ2}. Comparing the holographic expression for the Green’s

function (4.13) with that of the hydrodynamics (4.1), we arrive at a fairly simple expression

for the ratio of shear viscosity to entropy density:

η

s
=

3

8π

1 + 4ψ2

α0α1 − 3f2
. (4.18)

4.1 Shear viscosity of the symmetric phase

In the symmetric phase the background is known analytically, and is given by (3.13). The

equation of motion for ψ1
k takes the following form

0 = ψ1 ′′
k +

4α2
0(r

3 − r2) − 9(1 + r2)

(r2 − r)(2α2
0r

2 − 9(r + 1))
ψ1 ′

k − 2α2
0r

2 + 9

2(r2 − r)(2α2
0r

2 − 9(1 + r))
, (4.19)

which can be solved analytically:

ψ1
k =

∫ 1

r
dx

2α2
0x+ 9

2(9(1 + x) − 2α2
0x

2)
. (4.20)

From (4.20) we can extract

ψ2 =
1

4
− 1

18
α2

0 . (4.21)

Finally, using the explicit solution (3.13), relation (4.18) reproduces the shear viscosity of

the N = 4 SYM plasma in the presence of U(1)R chemical potential [47]:

η

s
=

1

4π
. (4.22)
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Figure 3. (Colour online) Ratios of shear viscosity to entropy density in the broken phase for

select values of the coupling: β = −1 (blue), β = −2 (red), β = −5 (orange) and β = −10

(green), as a function of 2πT
µ

. The dashed black line indicates the Gauss-Bonnet viscosity bound:

η/s ≥ 16/25 [1].

4.2 Shear viscosity of the broken phase

In the broken phase the equation for motion for ψ1
k (4.15) and the shear viscosity to entropy

density ratio (4.18) must be computed numerically. First, for β = 0 we find

∣

∣

∣

∣

4π
η

s
− 1

∣

∣

∣

∣

β=0

< 10−7 , (4.23)

and therefore recover the universal η/s = 1/4π result [8] expected for a two-

derivative theory.

Figure 3 represents the results of the numerical analysis of the shear viscosity in the

symmetry-broken phase of the holographic model (2.7), for select values of the coupling.

We show β = −1 (blue), β = −2 (red), β = −5 (orange) and β = −10 (green), as a

function of 2πT
µ . Notice that for β = −1 the shear viscosity remains above the causality

bound for Gauss-Bonnet gravity found in [1]

4π
η

s
≥ 16

25
= 0.64 , (4.24)

while for the other values of β we consider, it dips below this bound. As we observed in the

thermodynamic analysis of the broken phase, see figure 2, decreasing β makes the broken

phase (while still thermodynamically preferable) closer and closer to the unbroken phase.

Correspondingly, for smaller values of β the shear viscosity is closer to the universal result

down to lower and lower temperatures. However, for sufficiently low temperatures it drops

even steeper. It is technically challenging to perform our numerical analysis reliably at

temperatures lower than those reported; nonetheless, the data obtained suggests that the
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holographic plasma (2.7) does not have any lower bound on the ratio of the shear viscosity

to the entropy ratio as one varies β.

Finally, we note that for positive values of β the broken phase of the holographic

plasma (2.7) has a shear viscosity ratio exceeding the universal result; we have not studied

this parameter regime in detail.

5 Causality of holographic superfluid plasma

Consistency of a holographic plasma as a relativistic quantum field theory requires that it

does not propagate modes faster than the speed of light. The dispersion relation of the

linearized fluctuations in the plasma is identified with the dispersion relation of the quasi-

normal modes of a black hole in the dual gravitational background. There are three types of

quasi-normal modes in gravitational geometries with translationally invariant horizons [49]:

• a scalar channel (helicity-two graviton polarizations);

• a shear channel (helicity-one graviton polarizations);

• a sound channel (helicity-zero graviton polarizations).

In the case of the GB plasma, the lower bound on the shear viscosity (the upper bound

on λGB (1.11)) comes from the scalar channel quasi-normal modes [1]. On the other hand

the upper bound on the shear viscosity (the lower bound on λGB (1.12)) comes from

the sound channel quasi-normal modes [27]. In our case, the study of the quasi-normal

modes in the sound channel is the most difficult — it requires understanding holographic

viscous hydrodynamics in the presence of Goldstone modes associated with the spontaneous

breaking of a global U(1) symmetries. To our knowledge such theory has not been developed

yet.15 Instead, as in [1], we limit our discussion to the scalar channel quasi-normal modes.

We expect that analysis of the other channels will not change our conclusions with regards

to causality.

Our discussion here follows closely [1]. Due to their complexity, we omit most technical

details.16 The quasi-normal equation for the scalar channel fluctuations for the holographic

plasma dual to (2.7) takes the form

Z ′′
[scalar](r) + C(1)

scalar Z
′
[scalar](r) + C(2)

scalar Z[scalar](r) = 0 . (5.1)

Following [1], it is possible to introduce a new radial coordinate y = y(r), with y → −∞
corresponding to the horizon and y → 0− corresponding to the boundary, and to rescale

the radial profile as

Z[scalar] =
1

G ψ[scalar] , (5.2)

such that (5.1) can be brought into the form of an effective Schrödinger equation:

− ~
2 ∂2

y ψ[scalar] + U[scalar] ψ[scalar] = c2s ψ[scalar] , ~ ≡ 1

k
, cs =

w

k

where U[scalar] = U0
[scalar] + ~

2 U1
[scalar] , ∂cs

U0
[scalar] = 0 , ∂cs

U1
[scalar] 6= 0 .

(5.3)

15For a step in this direction see [50].
16Omitted expressions are available from the authors upon request.
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Figure 4. (Colour online) Effective scalar potential in the symmetric phase, see (5.5). The blue,

green and red curves correspond to, respectively, α0 = {1, 3, 5}. The regime α0 > 3 is unphysical,

since it corresponds to negative temperatures.

Notice that in the limit k → ∞ (or ~ → 0), everywhere except in the tiny region y & − 1
k

the dominant contribution to the effective potential Uscalar comes from U0
scalar. Thus, in

this limit it is a good enough approximation to take

~
2 U1

[scalar] =

{

0 y < 0 ,

+∞ y ≥ 0 .
(5.4)

As explained in [1, 23], the bound states of the resulting 1-dimensional quantum me-

chanical problem (5.3) with “energy” c2s > 1 point to the presence of quasi-normal modes

in the plasma, propagating faster than the speed of light. On the other hand, bound states

with energy c2s < 0 indicate the presence of instabilities (tachyonic modes in the plasma in

the limit k → ∞).

5.1 Causality of the symmetric phase

The effective potential U[scalar] defined in (5.3) and (5.4) can be computed analytically in

the symmetric phase, and is given by:

U[scalar] =

{

1 − r2
(

1 + 2
9α

2
0

)

+ 2
9α

2
0 r

3 , 0 < r ≤ 1 ,

+∞ , r ≤ 0 .
(5.5)

Figure 4 shows the potential U[scalar] above for select values of α0. The blue, green and red

curves correspond, respectively, to α0 = {1, 3, 5}. In the α0 = 1, 3 plots, U[scalar] decreases

monotonically between the boundary and the horizon, and never develops a maximum in

the intermediate region. In all cases there are no bound states with energy c2s > 1 — there

are no superluminal quasi-normal modes and, as expected, the theory is causal. Notice

that for α0 > 3 the potential (5.5) develops a negative energy minimum, which implies
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Figure 5. (Colour online) Effective potential U[scalar] in the symmetry broken phase of the holo-

graphic plasma (2.7) at β = −5 and 2πT
µ

= 0.01(9), corresponding to 4π η

s
= 0.4(9) . The dashed

red lines correspond to c2s = {0, 1}.

the existence of negative energy bound states, and as a result tachyonic (unstable) quasi-

normal modes in the k → ∞ limit. However, this does not cause any problems: for α0 > 3

the temperature of our plasma in the symmetric phase

T =
z0
π

(

1 − α2
0

9

)

(5.6)

becomes negative, and the tachyons are therefore not physical.

5.2 Causality of the broken phase

In the symmetry-broken phase the effective scalar potential U[scalar] (5.3), (5.4) can only be

computed numerically. A representative example of such computation is shown in figure 5.

Here, β = −5 and 2πT
µ = 0.01(9), corresponding to 4π η

s = 0.4(9) (the low temperature

endpoint of the orange curve in figure 3). Notice that this potential does not support

bound states with energy c2s > 1; neither does it support states with c2s < 0.

We conclude that, at least in the scalar channel, the gauge theory plasma holograph-

ically dual to the gravitational model (2.7) does not violate causality. We also find that

it does not contain any tachyonic modes in the k → ∞ limit — the theory appears to

be perfectly well-behaved over the entire range of parameters. Unlike the case of the GB

plasma (1.6), here the self-consistency of the CFT doesn’t place any constraints (whether
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from below or above) on the size of the higher-derivative coupling. While it is possible that

the shear and sound channels might lead to additional instabilities, previous studies [27, 31]

suggest that this should not be the case.

6 Conclusion

In this paper we have argued that microscopic constraints (causality, positivity of energy,

etc.), while important for the general consistency of a plasma as a relativistic quantum field

theory, are not necessarily responsible for setting the lower bound on the ratio of shear vis-

cosity to entropy density in the plasma. The basic reason is that the hydrodynamic trans-

port of the system is determined by its infrared properties, which do not necessarily enter

into the microcausality analysis of the theory. To this end, we generalized the holographic

model of “GB plasma” introduced in [1] in such a way that the Gauss-Bonnet coupling

of the former is replaced with an (irrelevant) operator. Our holographic model, see (2.7),

undergoes a second order phase transition at low temperatures, where this operator devel-

ops a vacuum expectation value. As a result, the effective Gauss-Bonnet coupling in our

model is nonzero in the broken phase (which is necessary to generate the non-universal

ratio of shear viscosity to entropy density), but being identified with an irrelevant operator

it does not effect the ultraviolet properties of the model — the dynamics at high energies

is equivalent to that of holographic superconductors [35].

We identified parameters in our model where the shear viscosity drops below the causal-

ity bound17

η

s
≥ 1

4π

16

25
, (6.1)

determined in [1]. It would certainly be interesting to identify the lowest bound in our

model — however, this is not the main focus of this paper. It is clear that, whatever the

lowest bound (assuming it exists) on the shear viscosity ratio in holographic plasma (2.7),

it does not affect its causal properties. To complete the analysis one would need to study

causality in the vector and the sound channels of the plasma quasi-normal spectrum18 [27].

As we already stated, we do not believe that such analysis would modify the physical

picture presented here.

To summarize, the question of the bound on the ratio η
s suggested by a quasi-particle

picture of the fluid, its very existence, and the physics that determines it remains open.

Acknowledgments

We would like to thank Ofer Aharony, Micha Berkooz, Ramy Brustein, Jim Liu, Rob My-

ers and Aninda Sinha for interesting discussions. A.B. would like to thank the Mitchell

Institute for Fundamental Physics and Astronomy, the Weizmann Institute for Science and

17The current lowest bound on the ratio of the shear viscosity to the entropy density in 4-dimensional

plasma was reported in [51]. It is not clear though whether the model discussed there is a consistent

relativistic QFT.
18The analysis of the sound quasinormal models are most challenging and will be reported elsewhere.

– 19 –



J
H
E
P
1
0
(
2
0
1
0
)
0
2
6

the Aspen Center for Physics for hospitality during various stages of this project. Re-

search at Perimeter Institute is supported by the Government of Canada through Industry

Canada and by the Province of Ontario through the Ministry of Research & Innovation.

A.B. gratefully acknowledges further support by an NSERC Discovery grant and support

through the Early Researcher Award program by the Province of Ontario. The work of S.C.

has been supported by the Cambridge-Mitchell Collaboration in Theoretical Cosmology,

and the Mitchell Family Foundation.

References

[1] M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The viscosity bound and causality

violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [SPIRES].

[2] J.M. Maldacena, The large N limit of superconformal field theories and supergravity,

Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113]

[hep-th/9711200] [SPIRES].

[3] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories,

string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

[4] G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N = 4

supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066]

[SPIRES].

[5] A. Buchel and J.T. Liu, Universality of the shear viscosity in supergravity,

Phys. Rev. Lett. 93 (2004) 090602 [hep-th/0311175] [SPIRES].

[6] P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field

theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231]

[SPIRES].

[7] A. Buchel, On universality of stress-energy tensor correlation functions in supergravity,

Phys. Lett. B 609 (2005) 392 [hep-th/0408095] [SPIRES].

[8] P. Benincasa, A. Buchel and R. Naryshkin, The shear viscosity of gauge theory plasma with

chemical potentials, Phys. Lett. B 645 (2007) 309 [hep-th/0610145] [SPIRES].

[9] K. Landsteiner and J. Mas, The shear viscosity of the non-commutative plasma,

JHEP 07 (2007) 088 [arXiv:0706.0411] [SPIRES].

[10] N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane

paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [SPIRES].

[11] E.I. Buchbinder and A. Buchel, The fate of the sound and diffusion in holographic magnetic

field, Phys. Rev. D 79 (2009) 046006 [arXiv:0811.4325] [SPIRES].

[12] D.T. Son and A.O. Starinets, Viscosity, black holes and quantum field theory,

Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [SPIRES].

[13] M. Luzum and P. Romatschke, Conformal relativistic viscous hydrodynamics: applications to

RHIC results at
√
sNN = 200GeV, Phys. Rev. C 78 (2008) 034915 [Erratum ibid. C 79

(2009) 039903] [arXiv:0804.4015] [SPIRES].

[14] T.D. Cohen, Is there a ’most perfect fluid’ consistent with quantum field theory?,

Phys. Rev. Lett. 99 (2007) 021602 [hep-th/0702136] [SPIRES].

– 20 –

http://dx.doi.org/10.1103/PhysRevLett.100.191601
http://arxiv.org/abs/0802.3318
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0802.3318
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9711200
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://arxiv.org/abs/hep-th/9905111
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9905111
http://dx.doi.org/10.1103/PhysRevLett.87.081601
http://arxiv.org/abs/hep-th/0104066
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0104066
http://dx.doi.org/10.1103/PhysRevLett.93.090602
http://arxiv.org/abs/hep-th/0311175
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0311175
http://dx.doi.org/10.1103/PhysRevLett.94.111601
http://arxiv.org/abs/hep-th/0405231
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0405231
http://dx.doi.org/10.1016/j.physletb.2005.01.052
http://arxiv.org/abs/hep-th/0408095
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0408095
http://dx.doi.org/10.1016/j.physletb.2006.12.030
http://arxiv.org/abs/hep-th/0610145
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0610145
http://dx.doi.org/10.1088/1126-6708/2007/07/088
http://arxiv.org/abs/0706.0411
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0706.0411
http://dx.doi.org/10.1103/PhysRevD.79.025023
http://arxiv.org/abs/0809.3808
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0809.3808
http://dx.doi.org/10.1103/PhysRevD.79.046006
http://arxiv.org/abs/0811.4325
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.4325
http://dx.doi.org/10.1146/annurev.nucl.57.090506.123120
http://arxiv.org/abs/0704.0240
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0704.0240
http://dx.doi.org/10.1103/PhysRevC.78.034915
http://arxiv.org/abs/0804.4015
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.4015
http://dx.doi.org/10.1103/PhysRevLett.99.021602
http://arxiv.org/abs/hep-th/0702136
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0702136


J
H
E
P
1
0
(
2
0
1
0
)
0
2
6

[15] D.T. Son, Comment on ’Is there a ’most perfect fluid’ consistent with quantum field theory?’,

Phys. Rev. Lett. 100 (2008) 029101 [arXiv:0709.4651] [SPIRES].

[16] A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity

in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264]

[SPIRES].

[17] A. Buchel, Shear viscosity of boost invariant plasma at finite coupling,

Nucl. Phys. B 802 (2008) 281 [arXiv:0801.4421] [SPIRES].

[18] A. Buchel, Shear viscosity of CFT plasma at finite coupling, Phys. Lett. B 665 (2008) 298

[arXiv:0804.3161] [SPIRES].

[19] A. Buchel, Resolving disagreement for η/s in a CFT plasma at finite coupling,

Nucl. Phys. B 803 (2008) 166 [arXiv:0805.2683] [SPIRES].

[20] A. Buchel, R.C. Myers, M.F. Paulos and A. Sinha, Universal holographic hydrodynamics at

finite coupling, Phys. Lett. B 669 (2008) 364 [arXiv:0808.1837] [SPIRES].

[21] R.C. Myers, M.F. Paulos and A. Sinha, Quantum corrections to η/s,

Phys. Rev. D 79 (2009) 041901 [arXiv:0806.2156] [SPIRES].

[22] Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the

dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [SPIRES].

[23] M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in

higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [SPIRES].

[24] A. Buchel, R.C. Myers and A. Sinha, Beyond η/s = 1/4π, JHEP 03 (2009) 084

[arXiv:0812.2521] [SPIRES].

[25] M. Blau, K. S. Narain and E. Gava, “On subleading contributions to the AdS/CFT trace

anomaly,” JHEP 9909 (1999) 018 [arXiv:hep-th/9904179].

[26] R.C. Myers, M.F. Paulos and A. Sinha, Holographic studies of quasi-topological gravity,

JHEP 08 (2010) 035 [arXiv:1004.2055] [SPIRES].

[27] A. Buchel and R.C. Myers, Causality of holographic hydrodynamics, JHEP 08 (2009) 016

[arXiv:0906.2922] [SPIRES].

[28] D.M. Hofman, Higher derivative gravity, causality and positivity of energy in a UV complete

QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [SPIRES].

[29] J. de Boer, M. Kulaxizi and A. Parnachev, AdS7/CFT6, Gauss-Bonnet gravity and viscosity

bound, JHEP 03 (2010) 087 [arXiv:0910.5347] [SPIRES].

[30] X.O. Camanho and J.D. Edelstein, Causality constraints in AdS/CFT from conformal

collider physics and Gauss-Bonnet gravity, JHEP 04 (2010) 007 [arXiv:0911.3160]

[SPIRES].

[31] A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111

[arXiv:0911.4257] [SPIRES].

[32] J. de Boer, M. Kulaxizi and A. Parnachev, Holographic Lovelock gravities and black holes,

JHEP 06 (2010) 008 [arXiv:0912.1877] [SPIRES].

[33] X.O. Camanho and J.D. Edelstein, Causality in AdS/CFT and Lovelock theory,

JHEP 06 (2010) 099 [arXiv:0912.1944] [SPIRES].

[34] I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Wilsonian approach to fluid/gravity

duality, arXiv:1006.1902 [SPIRES].

– 21 –

http://dx.doi.org/10.1103/PhysRevLett.100.029101
http://arxiv.org/abs/0709.4651
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0709.4651
http://dx.doi.org/10.1016/j.nuclphysb.2004.11.055
http://arxiv.org/abs/hep-th/0406264
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0406264
http://dx.doi.org/10.1016/j.nuclphysb.2008.03.009
http://arxiv.org/abs/0801.4421
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0801.4421
http://dx.doi.org/10.1016/j.physletb.2008.05.072
http://arxiv.org/abs/0804.3161
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.3161
http://dx.doi.org/10.1016/j.nuclphysb.2008.05.024
http://arxiv.org/abs/0805.2683
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0805.2683
http://dx.doi.org/10.1016/j.physletb.2008.10.003
http://arxiv.org/abs/0808.1837
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.1837
http://dx.doi.org/10.1103/PhysRevD.79.041901
http://arxiv.org/abs/0806.2156
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.2156
http://dx.doi.org/10.1088/1126-6708/2009/01/044
http://arxiv.org/abs/0712.0743
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0712.0743
http://dx.doi.org/10.1103/PhysRevD.77.126006
http://arxiv.org/abs/0712.0805
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0712.0805
http://dx.doi.org/10.1088/1126-6708/2009/03/084
http://arxiv.org/abs/0812.2521
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.2521
http://dx.doi.org/10.1007/JHEP08(2010)035
http://arxiv.org/abs/1004.2055
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1004.2055
http://dx.doi.org/10.1088/1126-6708/2009/08/016
http://arxiv.org/abs/0906.2922
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0906.2922
http://dx.doi.org/10.1016/j.nuclphysb.2009.08.001
http://arxiv.org/abs/0907.1625
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0907.1625
http://dx.doi.org/10.1007/JHEP03(2010)087
http://arxiv.org/abs/0910.5347
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0910.5347
http://dx.doi.org/10.1007/JHEP04(2010)007
http://arxiv.org/abs/0911.3160
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0911.3160
http://dx.doi.org/10.1007/JHEP03(2010)111
http://arxiv.org/abs/0911.4257
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0911.4257
http://dx.doi.org/10.1007/JHEP06(2010)008
http://arxiv.org/abs/0912.1877
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0912.1877
http://dx.doi.org/10.1007/JHEP06(2010)099
http://arxiv.org/abs/0912.1944
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0912.1944
http://arxiv.org/abs/1006.1902
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1006.1902


J
H
E
P
1
0
(
2
0
1
0
)
0
2
6

[35] S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from superstrings,

Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [SPIRES].

[36] D. Berenstein, C.P. Herzog and I.R. Klebanov, Baryon spectra and AdS/CFT

correspondence, JHEP 06 (2002) 047 [hep-th/0202150] [SPIRES].

[37] F. Denef and S.A. Hartnoll, Landscape of superconducting membranes,

Phys. Rev. D 79 (2009) 126008 [arXiv:0901.1160] [SPIRES].

[38] R.C. Myers, M.F. Paulos and A. Sinha, Holographic hydrodynamics with a chemical

potential, JHEP 06 (2009) 006 [arXiv:0903.2834] [SPIRES].

[39] S. Cremonini, K. Hanaki, J.T. Liu and P. Szepietowski, Higher derivative effects on η/s at

finite chemical potential, Phys. Rev. D 80 (2009) 025002 [arXiv:0903.3244] [SPIRES].

[40] A. Buchel, Critical phenomena in N = 4 SYM plasma, Nucl. Phys. B 841 (2010) 59

[arXiv:1005.0819] [SPIRES].

[41] O. Aharony, A. Buchel and P. Kerner, The black hole in the throat — Thermodynamics of

strongly coupled cascading gauge theories, Phys. Rev. D 76 (2007) 086005

[arXiv:0706.1768] [SPIRES].

[42] R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427

[gr-qc/9307038] [SPIRES].
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