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1 Introduction

Nonlinear theories of electrodynamics (NLED) are generally defined [1–4] by means of a
Lagrangian density function L(S, P ) of the two Lorentz (pseudo)scalars

S = 1
2
(
E2 − B2

)
, P = E · B , (1.1)

where (E, B) are the (electric, magnetic) 3-vector-field components of the abelian 2-form field
strength F = dA on Minkowski spacetime, and (E, B) are their respective magnitudes. A
feature of all NLED theories in this “Plebanski” class is that the degrees of freedom remain
those of the free-field Maxwell theory, although superluminal signal propagation (and hence
causality violation) is potentially possible, and the physical theories are those for which it
is not possible. These features are shared by some NLED theories outside the Plebanski
class, some of which are physical [5–8], but they have no weak-field limit. In this paper we
assume the existence of a (conformal) weak-field limit.

We also focus on a class of NLED theories that share with the free-field Maxwell
electrodynamics the property of electromagnetic duality invariance. In the Maxwell case this
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can be viewed as an invariance of the (source-free) Maxwell equations under any constant
shift of the phase of the complex 3-vector field E + iB. However, this definition applies
only in Cartesian coordinate systems since E and B are 3-vectors in dual vector spaces. A
better definition, which not only applies for any coordinate system but also generalises to
nonlinear electrodynamics, is as an invariance of the Hamiltonian density under any constant
phase shift of the complex 3-vector field [9, 10]

D + iB , D := ∂L
∂E . (1.2)

Invariance of the field equations is then a consequence of the invariance of the Hamiltonian.
For the Maxwell case, D = E in Cartesian coordinates, and we therefore recover the earlier
definition. Following what has become standard terminology, we shall say that any NLED
theory with this U(1) symmetry is “self-dual”.

Within the Lagrangian formulation, the restriction to a self-dual theory is achieved
by requiring the Lagrangian density to satisfy the following partial differential equation
(PDE) [5, 11, 12]:

P
(
L2

S − L2
P − 1

)
= 2SLSLP . (1.3)

The first example, excepting the free-field Maxwell case, was the Born-Infeld theory [2],
although its self-duality was noticed by Schrödinger a few years later [9]. Since the re-
appearance of Born-Infeld electrodynamics in the 1990s as (or as part of) an effective theory
for open strings of string theories [13–16] there has been a resurgence of interest in nonlinear
electrodynamics. In particular, the possibility of a Born scale in electrodynamics is now
taken seriously for its potential relevance to the physics of magnetars, e.g. [17, 18], and to
particle physics experiments at future colliders [19].

One motivation for our focus on self-dual NLED theories is that many of the special
properties of Born-Infeld are consequences of its self-duality. Another motivation is the recent
result that strong-field causality is implied by weak-field causality for all self-dual NLED
with a weak-field limit [20]. We elaborate below on the significance of this fact, and one
purpose of this paper is to provide more details of the results of [20].

Another purpose is to expand the results of [20] to include the Hamiltonian formulation.
As this is equivalent to the Lagrangian formulation for all causal NLED theories, we did
not expect surprises. However, various additional remarkable properties of self-dual theories
emerge from the conjunction of the Lagrangian and Hamiltonian formulations. For the
remainder of this Introduction we provide the necessary background and a sketch of our
main new results.

The self-duality PDE (1.3) can be simplified by expressing L as a function of S and

Φ :=
√

S2 + P 2 . (1.4)

This is possible only if L preserves parity since both S and Φ are parity even whereas P is
parity odd, but this restriction is not a limitation for self-dual NLED because self-duality
implies parity, for a reason to be explained below. The self-duality PDE for L(S, Φ) is [12]

L2
S − L2

Φ = 1 . (1.5)
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For some purposes it is convenient to use the alternative independent variables

U = 1
2(Φ − S) , V = 1

2(Φ + S) . (1.6)

Notice that (U, V ) as defined are both non-negative because Φ ≥ |S|. This implies that
the ‘physical’ values of (U, V ) are restricted to the positive quadrant in the (U, V )-plane.
The self-duality PDE for L(U, V ) is [11]

LULV = −1 . (1.7)

The general solution to this equation in the positive (U, V )-quadrant, in terms of the boundary
function ℓ(V ) := L(0, V ), is [21]

L = ℓ(τ) − 2U

ℓ̇(τ)
, τ = V + U

ℓ̇2(τ)
, (1.8)

where
ℓ̇(τ) = dℓ(τ)

dτ
> 0 . (1.9)

We shall call this the Courant-Hilbert (CH) solution, and ℓ(τ) a “CH-function”. Notice
that τ ≥ 0 by definition, with equality only for U = V = 0. The choice ℓ(τ) = τ yields
the free-field Maxwell case.

To verify that (1.8) solves (1.7), we may take the differential of both sides of both
equations of (1.8). The resulting pair of equations for the differentials may then be solved
for dL and dτ in terms of dU and dV . The result for dL implies

LV = ℓ̇ , LU = −ℓ̇−1 , (1.10)

which confirms that LULV = −1. The result for dτ is

Gdτ = ℓ̇(dU + ℓ̇2dV ) , (1.11)

where
G := ℓ̇3 + 2ℓ̈U . (1.12)

The main implications of (1.11) were briefly discussed in [20] and we review this, with more
detail, in the following section.

Within the Plebanski NLED class, the necessary and sufficient conditions for causality
were found in [22], subject to an assumption about the domain of the function L(S, P )
that can be interpreted physically as the existence of a weak-field limit. These conditions
can be separated into two sets according to whether a violation is possible (generically)
for weak fields, or only for strong fields. The former set are equivalent to convexity of the
function L(S, P ), which are also the conditions for convexity of L as a function of E [23].
The remaining (strong-field) causality condition was provided with some intuition and an
alternative derivation in [24]. For self-dual NLED theories with a weak-field limit, we showed
in [20] that all these causality conditions reduce to the following simple inequalities to be
satisfied by derivatives of the CH-function ℓ(τ):

ℓ̇ ≥ 1 , ℓ̈ ≥ 0 . (1.13)
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Apart from its simplicity, this result is remarkable because there was no a priori reason to
suppose that the causality conditions on ℓ would be independent of (U, V ). Notice that the
condition ℓ̈ ≥ 0 tells us that ℓ(τ) is a convex function.

The assumption of a weak-field limit can also be expressed in terms of the function ℓ(τ);
it is the statement that ℓ(τ) should have a Taylor-series expansion in τ . Omitting the constant
term in this expansion on the grounds that it is irrelevant to the NLED dynamics; we have

ℓ(τ) = eγτ + O(τ2) , (1.14)

for some dimensionless constant γ, which must be non-negative in order to satisfy the causality
condition ℓ̇ ≥ 1 in the weak-field limit. In this limit ℓ(τ) = eγτ , which yields the free-field
Maxwell theory for γ = 0 and ModMax (the “modified Maxwell” theory [25]) for γ > 0.
Both are conformal because the conformality condition for self-dual NLED is equivalent to
degree-1 homogeneity of ℓ(τ), as we show in section 3. Another feature of the existence of
a weak-field expansion is that ℓ(τ) defines a function not only for τ ≥ 0 (which is all that
is relevant to the CH solution of the self-duality PDE) but also for τ < 0, at least in some
neighbourhood of τ = 0. We shall see later the significance of this fact.

A feature of the CH equations (1.8) is that many simple functions ℓ(τ) satisfying (1.13)
allow L(U, V ) to be found analytically, leading to explicit Lagrangian densities for a variety
of causal self-dual NLED theories. These include Born-Infeld [2] and its Mod-Max-type
generalisation [25, 26] that we call, for brevity, “ModMaxBorn”. Other examples were given
in [20] and more will be given here.

We shall expand on the results of [20] in the following section but, as stated above, our
main purpose is to explore the Hamiltonian formulation for self-dual NLED. An advantage of
this formulation is that self-duality can be implemented simply by restricting the Hamiltonian
density H(D, B) to be a function of the two duality-invariant rotation scalars

s = 1
2
(
D2 + B2

)
, p = |D × B| (D = |D|). (1.15)

As both s and p are parity-even (parity flips the sign of D) it follows that any function
H(s, p) is both duality and parity invariant, and hence that all self-dual NLED theories
preserve parity, as claimed above. This result was proved (although not stated) in [27], is
implicit in [28], and may be known to others, but it is possibly not appreciated how obvious
it becomes in the Hamiltonian formulation.

A disadvantage of the Hamiltonian formulation is that Lorentz invariance is not manifest.
The condition for a generic, and not necessarily duality-invariant, Hamiltonian density to
define a Lorentz invariant NLED was found in [5]. Here we need this condition for functions
of (s, p) only, and if we trade these variables for s and

φ :=
√

s2 − p2 , (1.16)

then the Lorentz invariance condition for H(s, φ) is the PDE

H2
s −H2

φ = 1 , (1.17)

which is formally identical to the Lagrangian self-duality PDE of (1.5).
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For some purposes it is convenient to use the new independent variables1

u = 1
2 (s − φ) , v = 1

2 (s + φ) , (1.18)

Notice that (u, v) are both non-negative, and that v ≥ u, so the ‘physical’ region in the
(u, v)-plane is the region of the positive quadrant bounded by u = 0 and v = u. The condition
for H(u, v) to define a Lorentz invariant NLED is [26]

HuHv = 1 . (1.19)

This is mathematically equivalent to (1.7) since the sign on the right-hand side can be changed
by using (−u, v) instead of (u, v) as the independent variables, and the general solution for H
is then formally the same as the solution of (1.8) for L. However, we shall use the variables
(u, v) as defined above because they are both non-negative. Notice that (1.19) has the solution

H(u, v) =
√

4uv = p , (1.20)

which defines the conformal Bilaynicki-Birula electrodynamics [5]. There is no analogous
solution of (1.7) because of the different sign on the right-hand side.

All other solutions of (1.19), expressed in terms of the boundary function H(0, v) = h(v),
are given by

H = h(σ) + 2u

h′(σ) , σ = v − u

[h′(σ)]2
(h′ > 0), (1.21)

where h(σ) is a new CH-function analogous to ℓ(τ).
Corresponding to every causal NLED defined by a function L(U, V ) there is a Hamiltonian

density function H(u, v) and the two are related by a Legendre transform. This is because
convexity of L (as a function of E) implies convexity of H (as a function of D) and this
implies that the Legendre transform is an involution, although “strict” convexity (non-zero
Hessian determinant) is needed to apply this theorem to the Plebanski class of NLED theories.
For self-dual theories a corollary of this correspondence is that the functions ℓ(τ) and h(σ)
must be related in some way that allows one to be found from the other. What we find is
that the following functions are Legendre transforms of each other:

L(
√

2τ) = ℓ(τ) , H(
√

2σ) = h(σ) . (1.22)

In other words, the functions ℓ and h are related by a Legendre transform2 but in terms of the
new variables

√
2τ and

√
2σ. Our choice of notation is motivated by the fact that the functions

L and H can be interpreted as the Lagrangian and Hamiltonian of a particle mechanics model
associated to the NLED defined by the Lagrangian and Hamiltonian densities L and H. This
was a motivating analogy for Born’s original NLED theory, and a correspondence between
Born-Infeld and the massive relativistic particle is a consequence of T-duality for the effective

1These differ from the definitions of (u, v) in [25] by the exchange u ↔ v, which facilitates comparison
between the Lagrangian and Hamiltonian formulations of self-dual NLED.

2As we explain later, this requires σ ≥ 0.
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worldvolume field theories of D-branes (see e.g. [29, 30]). However, the correspondence applies
more generally, as we discuss in section 7.

Our Hamiltonian results for self-dual NLED theories allow us to ‘translate’ the causality
conditions on ℓ(τ) to corresponding causality conditions on h(σ). As we shall see, these are

0 < h′(σ) ≤ 1 , h′′(σ) ≤ 0 , (1.23)

and
h′(σ) + 2σh′′(σ) > 0 . (1.24)

This last condition is equivalent to strict convexity of the function H(
√

2σ), which is required
for its interpretation as the Legendre dual of L(

√
2τ), which is in turn required for the

interpretation of H as the Legendre dual of L. Notice that h(σ) is required to be a concave
function (h′′ ≤ 0) in contrast to the convexity condition (ℓ̈ ≥ 0) on ℓ(τ).

Surprisingly, the function h can be used to directly construct not only the Hamiltonian
density but also the Lagrangian density, again via the Courant-Hilbert solution but now
for boundary conditions at V = 0 rather than U = 0. Since U and V are exchanged by an
exchange of E and B, this is a type of electromagnetic duality, which is indirectly equivalent
to a Legendre duality. As we shall see, this fact implies a remarkably simple relation between
the Lagrangian and Hamiltonian densities of any self-dual NLED. For example, given the
Lagrangian density in the form L(S, Φ) the Hamiltonian density in the form H(s, φ) can
be found from the following procedure:

L(S, Φ) −→ −L(−s, φ) = H(s, φ) . (1.25)

This allows us to find H from L without the need for a Legendre transform! For the free-field
Maxwell case, we have

L = S −→ −(−s) = H ⇒ H = s . (1.26)

This result suggests that ℓ and h must be similarly related since they determine L and
H. We find, in some cases, that there is indeed a very simple relation between these two
CH-functions, but the general case requires consideration of what we call the “Φ-parity”
(equivalently, “φ-parity”) dual NLED defined by

L̂(S, Φ) := L(S,−Φ) , Ĥ(s, φ) := H(s,−φ) . (1.27)

In some cases, such as Born-Infeld, L̂ = L. For this Φ-parity invariant subset of self-dual
NLED we find that

ℓ(x) + h(−x) = 0 , x ∈ R , (L̂ = L). (1.28)

As mentioned above, only the values of ℓ(x) for x ≥ 0 are relevant to the CH solution for
L(U, V ), but ℓ(x) is defined for x < 0 if there is a weak field limit (which we are assuming
here). We now see that for any Φ-parity invariant NLED (with a weak-field limit) the CH
function ℓ(x) for x ≤ 0 determines the other CH function h. It remains true, of course, that
ℓ and h are related by their relation to the Legendre dual pair of functions {L, H}, but no
Legendre transform is needed to find one from the other!
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More generally, L̂ ̸= L and L̂ is associated with a pair of CH-functions {ℓ̂, ĥ} that differ
from {ℓ, h}. For these cases we find that {ℓ, ℓ̂} are related to {h, ĥ} by a pair of relations
similar to (1.28) but intertwined by Φ-parity.

An obvious question is whether there is a simple characterisation, in terms of restrictions
on the CH functions {ℓ, h}, of the subclass of self-dual NLED theories that are also Φ-parity
invariant. There is, but it involves an alternative solution of the self-duality PDE, also given
by Courant and Hilbert [21], in terms of a function ω(x) of a positive variable x. The Φ-parity
invariant self-dual theories are those for which ω(x) is invariant under x → 1/x, and for these
theories we show that ω(x) is the Legendre-dual of ℓ(τ) with respect to τ (rather than

√
2τ).

Born-Infeld corresponds to the choice of a linear function of (x + 1/x).
Another topic that we discuss is “Legendre self-duality”, which has no direct connection

to the topics described above, but could potentially be confused with them. The Hamiltonian
density H is the Legendre transform of the Lagrangian density L with respect to E. If we
now take the Legendre transform of H with respect to B we arrive at a ‘dual’ Lagrangian
density L̃, which is a function of Lorentz scalars constructed from the Legendre-duals of
(E, B). It was noticed by Born, for Born-Infeld, that L and L̃ are the same function3 of their
respective Lorentz scalars [31]. Much later, it was shown by Gaillard and Zumino [12] that
any (electromagnetically) self-dual theory shares this property of “Legendre self-duality”, and
we prove this here by using the CH formula (1.8) for the general self-dual NLED theory. A
subsequent clarification of Kuzenko and Theisen was the observation that “Legendre self-
duality” relies only on invariance under a discrete Z2 subgroup of the U(1) electromagnetic
duality group [32]. Here we give another proof based on the observation that if H(D, B) is
invariant under D ↔ B then a Legendre transform with respect to D must yield the same
function as a Legendre transform with respect to B. As an illustration, we explain how
Born’s original NLED theory of 1933 [1] is Legendre self-dual without also being self-dual
in the sense used here (and in [12, 32]).

We conclude, in a final section, with a summary of our main results and a brief discussion
of further implications and future directions.

2 Strong-field causality redux

As mentioned in the introduction, weak-field causality implies strong-field causality for self-
dual NLED theories if a weak-field limit is assumed. Without this assumption, causality
requires the additional condition G > 0, where G is given in (1.12). Either way, G > 0 for
causal theories and we can investigate its implications, as we did briefly in [20]. We now
elaborate on some aspects of this topic here because it will be useful when we later extend
the results to the Hamiltonian formulation.

From the equation for τ in (1.8) we learn that fixing τ restricts (U, V ) to a line in the
positive-quadrant in the (U, V ) plane; i.e. the curves of constant τ in this quadrant are
straight lines, with slopes

(dV/dU)(τ) = −1/[ℓ̇(τ)|2 . (2.1)
3Born refers, confusingly, to the dual Lagrangian as the “Hamiltonian”, with the recognition that this is an

abuse of terminology.
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(a) (b)

Figure 1. The lines of constant τ for the two cases: (a) Maxwell, ℓ(τ) = τ . (b) Born-Infeld,
ℓ(τ) = T −

√
T (T − 2τ) (for T = 1).

Recalling the equation (1.11) for dτ we see that if G = 0 at some point in the positive (U, V )
quadrant then we can take τ → τ + dτ for (U, V ). In other words, G = 0 at the intersection
point of the lines of constant τ and constant τ + dτ . It follows that if G > 0 everywhere in
the domain of L(U, V ) (which is either the entire positive (U, V ) quadrant or a connected
subregion of it that includes the origin) then no two lines of τ can intersect in this domain.
This is because the line of constant τ can intersect the line of constant τ + c, for any positive
constant c, only if it also intersects the line of constant τ + dτ for positive infinitesimal dτ .
Thus, if G > 0 in the domain of L then this domain is foliated by lines of constant τ , as
illustrated for Maxwell and Born-Infeld in figure 1.

We can interpret this conclusion in another way. If the solution of (1.8) for L(U, V )
is unique then τ is uniquely determined by (U, V ) at each point in the domain of L(U, V ).
However, there are at least two distinct values for τ at an intersection point, so τ cannot be
uniquely determined by (U, V ) in any region that includes an intersection point. A necessary
and sufficient condition for the uniqueness of the solution (1.8) is therefore that G is nowhere
zero in the domain of L(U, V ). In those cases for which ℓ(τ) has a power-series expansion of the
form (1.14), we know that G > 0 is implied by the causality/convexity inequalities of (1.13),
and hence that the solution for τ will be unique if these inequalities on ℓ̇ and ℓ̈ are satisfied.
Given the importance of this point, we shall show how it can be deduced in a more direct way.

We first rewrite the equation for τ in (1.8) as

f(τ) = F(U,V )(τ) ; f := ℓ̇2 , F(U,V ) := U

τ − V
. (2.2)

The solution for τ is unique if the graph of the function f has precisely one intersection
with the graph of the function F(U,V ), for any choice of (U, V ) in the domain of L. The
function f has the properties

f(0) ≥ 1 , ḟ(τ) ≥ 0 , (2.3)

which follow from (1.14) and (1.13); i.e. f(τ) is a function of non-negative slope for all τ > 0,
with the minimum value being f(0) ≥ 1. The graph of the function F(U,V )(τ) for U > 0 is
the branch of a hyperbola that has the line τ = V as one asymptote, and the τ -axis as the
other asymptote. From this description it is obvious that the graphs of the two functions
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Figure 2. Unique intersection (determining τ) of the graph of f(τ) (blue curve) with the graph of
F(U,V )(τ) (red curve) for a) ModMax (ℓ = eγτ with γ = 0.5), and b) Born-Infeld (ℓ = T−

√
T (T − 2τ)).

intersect at precisely one point for each choice of (U, V ), which confirms that (2.2) has a
unique solution for τ , as illustrated in figure 2 for ModMax and Born-Infeld.

2.1 Auxiliary fields and the stress-energy tensor

It was observed in [20] that the two equations of (1.8) may be combined (for causal theories)
into the single equation

L(U, V ; λ, τ) = ℓ(τ) − 2U

ℓ̇(τ)
− λ

(
τ − V − U

[ℓ̇(τ)]2

)
, (2.4)

where λ is a Lagrange multiplier. This is because λ and τ are, jointly, a pair of auxiliary
fields that can be consistently eliminated by their algebraic field equations. Varying τ yields
the equation G(λ − ℓ̇) = 0, which implies λ = ℓ̇ if G > 0. Varying λ yields a constraint that
uniquely determines τ when G > 0 (as illustrated in the previous subsection). Elimination of
(λ, τ) thus yields the Lagrangian density defined by (1.8). Since (U, V ) are parity-even, we
might expect to be able to make parity assignments for the auxiliary fields (λ, τ) such that
the Lagrangian density of (2.4) has even parity. This is true: if we assign even parity to both
λ and τ then both ℓ(τ) and ℓ̇(τ) are parity-even, and hence so is L(U, V ; λ, τ).

An implicit assumption in the definitions of (S, P ), and hence of (U, V ), is that the
Minkowski spacetime metric is the standard Minkowski metric (with a “mostly plus” signature).
To generalize to curvilinear coordinates {xµ; µ = 0, 1, 2, 3}, we have only to define (S, P )
as the scalar fields

S = −1
4 gµρgνσ FµνFρσ , P = − 1

8
√
|g|

εµνρσFµνFρσ , (2.5)

where g is the Minkowski metric in the chosen coordinates (with |g| = − det g) and F = dA

is the 2-form abelian field strength for 1-form potential A on the Minkowski spacetime. It
then follows that (U, V ) are scalars and hence so is τ and ℓ(τ), and the equations of (1.8)
still apply but with L a scalar rather than a scalar density. With this understood, (2.4) is
unchanged but the Lagrangian scalar density is now

L :=
√
|g| L =

√
|g| [ℓ(τ) − λτ ] +

[
λ − 2ℓ̇

ℓ̇2

]
U + λV , (2.6)
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where (U ,V) are the scalar densities
√
|g| (U, V ), which are related to the scalar densities

(S,P) =
√
|g| (S, P ) in the same way that (U, V ) are related to (S, P ).

We are not restricted to Minkowski spacetime; by re-interpreting the metric g as an
arbitrary spacetime metric that can be freely varied, we can find the stress-energy tensor
T by the Hilbert formula

Tµν = − 2√
|g|

∂L

∂gµν
. (2.7)

Since P is metric independent, this formula yields

Tµν = (ℓ − λτ)gµν +
{

λ
∂V
∂S

+
[

λ − 2ℓ̇

ℓ̇2

]
∂U
∂S

}
T Max

µν , (2.8)

where
T Max

µν := − 2√
|g|

∂S
∂gµν

, (2.9)

which is the Maxwell stress-energy tensor. Using

∂V
∂S

= ∂V

∂S
= V

U + V
,

∂U
∂S

= ∂U

∂S
= − U

U + V
, (2.10)

and the auxiliary-field equations, we can simplify this result to4

Tµν =
[

τ ℓ̇

U + V

]
T Max

µν + (ℓ − τ ℓ̇)gµν ,
(
τ = V + ℓ̇−2U

)
. (2.11)

This agrees with the result of [33]; the novelty here is that we have taken as our starting
point the auxiliary-field formulation (2.6) for the Lagrangian density of a generic self-dual
NLED in a general spacetime.

3 The self-dual NLED Hamiltonian

We have seen in the Introduction that the Hamiltonian density for the general self-dual and
Lorentz invariant NLED may be expressed in terms of a one-variable CH function h(σ) via
the equations of (1.21). This was by analogy to the equations of (1.8) for the Lagrangian
density, and the same steps may be used here to verify it. By taking the exterior derivative
of both sides of both equations of (1.21) we find two equations that are jointly equivalent to

dH = h′dv + du

h′
, G̃dσ = h′

[
(h′)2dv − du

]
, (3.1)

where G̃ is the Hamiltonian analog of the function G of (1.12):

G̃ = (h′)3 − 2uh′′ . (3.2)

We shall see later that causality requires G̃ > 0, with consequences analogous to those
that follow from G > 0.

4We thank Dmitri Sorokin for pointing out an error in the stress-energy tensor formula appearing in the
original arXiv version of [20].
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The first equation of (3.1) tells us that

Hv = h′ , Hu = 1/h′ , (3.3)

and hence that H solves (1.19). Notice that any constant term in h(σ), which makes no
contribution to h′(σ), appears only as a constant term in H; it represents a constant uniform
background energy density that has no effect on the NLED field equations.

Our first task will be to determine the relation between the functions ℓ and h implied by
Legendre duality of the Lagrangian and Hamiltonian densities. The existence of this duality
is guaranteed by the convexity of L as a function of E, the fact that the Legendre transform
of any function is convex, and the theorem that the Legendre transform is an involution
when acting on convex functions. For B = 0, this transform is

L(E, 0) = sup
D

{D · E −H(D, 0)} ,

H(D, 0) = sup
E

{E · D − L(E, 0)} .
(3.4)

When B = 0 we also have

(U, V ) = (0, τ) , τ = 1
2E2 ,

(u, v) = (0, σ) , σ = 1
2D2 ,

(3.5)

and hence, from (1.8) and (1.21),

L(E, 0) = ℓ(τ) = L(E) ,

H(D, 0) = h(σ) = H(D) ,
(3.6)

where L and H are the functions introduced in (1.22). Combining this with (3.4), we have

L(E) = sup
D

{D · E − H(D)} ,

H(D) = sup
E

{E · D − L(E)} .
(3.7)

Notice that although L(E) and H(D) were defined in (1.22) as functions of a single
variable (respectively, E =

√
2τ and D =

√
2σ), we are required by (3.7) to consider them as

functions of E and D, respectively. In contrast, the claim in the Introduction that L and
H are each other’s Legendre transform is the claim that

L(E) = sup
D

{DE − H(D)} ,

H(D) = sup
E

{ED − L(E)} .
(3.8)

However, it is not difficult to see that (3.7) implies (3.8). Variation of D and E in the
respective expressions of (3.7) for L(E) and H(D) yields

E =
( 1

D

∂H

∂D

)
D = h′(σ)D ⇒ D · E = DE ,

D =
( 1

E

∂L

∂E

)
E = ℓ̇(τ)E ⇒ E · D = ED ,

(3.9)
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and a further implication is

E = h′(σ)D , D = ℓ̇(τ)E , (3.10)

which is exactly what one finds from variation of D and E in the expressions of (3.8) for
L(E) and H(D), respectively. The variation of 3-vector fields needed to find the functions L

and H from (3.7) therefore yields the same result as the variation of scalar fields in (3.8).
Further implications of (3.10) are the relations5

ℓ̇(τ)h′(σ) = 1 , (3.11)

and
σ = τ ℓ̇2 , τ = σ(h′)2 . (3.12)

These relations allow us to find h(σ) (up to the addition of a constant) given ℓ̇(τ), and
vice versa.

The fact that functions h and ℓ are related by Legendre transformations, but with respect
to variable

√
2τ and

√
2σ, can be summarized by the equations

ℓ(τ) + h(σ) = 2τ ℓ̇ = 2σh′ . (3.13)

The second equality is equivalent to (3.12) given (3.11). The first equality tells us that any
constant term in the power-series expansion of ℓ(τ) also appears in the power-series expansion
of h(σ) with the opposite sign, while the remaining information of this equality may be
verified by taking the exterior derivative of both sides to get

h′dσ = (ℓ̇ + 2τ ℓ̈)dτ . (3.14)

Using (3.11), we may rewrite this as dσ = d
(
τ ℓ̇2
)
, which is true as a consequence of the

relation σ = τ ℓ̇2 of (3.12).
There are other differences between the Lagrangian and Hamiltonian formulations of

self-dual NLED theories that go beyond sign changes. One is the difference in the potential
range of the independent variables: although τ is non-negative by its definition in (1.8), the
definition of σ in (1.21), which we may rewrite as

σ = (v − u) + [(h′)2 − 1]u
(h′)2 , (3.15)

allows σ to be negative. For h′ = 1, which is the free-field (Maxwell) case, σ = v − u ≥ 0,
and this remains true for all causal NLED theories that have Maxwell as their weak-field
limit. This is easily seen by writing the second equation in (1.21) as

f(σ) := (h′)2(σ) = u

v − σ
:= g(σ) . (3.16)

The function f(σ) is positive, with f(0) = 1 (because the weak-field limit is Maxwell). It
is also a monotonically decreasing function of σ (because h′ > 0 but h′′ < 0 for any causal

5A relation similar to (3.11) appears in [34] in relation to an involution defined in the context of 6D chiral
electrodynamics.
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interacting NLED). The function g(σ) takes the value u/v ≤ 1 at σ = 0 but then increases
monotonically, becoming infinite at σ = v, and then negative. There is therefore a unique
non-negative value of σ at which f = g (as illustrated in figure 4a below).

In contrast, if the weak-field limit is ModMax (with γ > 0) then f(0) < 1. This means
that there will be a choice of (u, v) such that f(0) < g(0), which implies that f = g for σ < 0,
as illustrated in figure 4b. In these cases σ < 0 is not excluded by its definition in (1.21);
instead the inequality σ ≥ 0 is a restriction on the domain of H required by equivalence to the
Lagrangian formulation. Specifically, it restricts the Hamiltonian fields to the region in field-
space for which H(u, v) is a convex function of D; i.e. to its “convex domain”. For ModMax,
the boundary of this convex domain corresponds to Lagrangian fields with U = V = 0, which
includes all exact plane-wave solutions of the ModMax field equations [25].

3.1 Convexity/concavity and causality

In the Lagrangian formalism, and assuming the existence of a weak-field limit, the necessary
and sufficient conditions for causality are the conditions for convexity of L, which are
equivalent to [20]

ℓ̇(τ) ≥ 1 , ℓ̈ ≥ 0 . (3.17)

By combining the first of these inequalities with the relation (3.11) we deduce that

0 < h′ ≤ 1 . (3.18)

Next, we take the exterior derivative of the first of the relations in (3.11) to find, again
using (3.11), that

ℓ̇2h′′ = −
(

dτ

dσ

)
ℓ̈ . (3.19)

Taking the exterior derivative of the first of the relations of (3.12), we also find that

dτ

dσ
= 1

ℓ̇
(
ℓ̇ + 2τ ℓ̈

) , (3.20)

and hence that

−h′′ = ℓ̈

ℓ̇3
(
ℓ̇ + 2τ ℓ̈

) . (3.21)

Using both inequalities of (3.17), and the fact that τ is non-negative, we see that the
right-hand side of this equation is non-negative, and hence

h′′ ≤ 0 . (3.22)

We have now found the ‘translation’ of the causality/convexity conditions (3.17) on ℓ(τ) to
the corresponding conditions to be satisfied by h(σ). They are

0 < h′ ≤ 1 , h′′ ≤ 0 . (3.23)
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The second of these equations is equivalent to the statement that h(σ) is a concave function,
and a corollary of this is that

G̃ > 0 , (3.24)

where G̃ was defined in (3.2). We postpone a discussion of the consequences of this corollary
as we still need to explain the origin of the condition (1.24) of the Introduction.

By taking the exterior derivative on both sides of the second of the relations of (3.12),
we get another formula for dτ/dσ:

dτ

dσ
= h′(h′ + 2σh′′) . (3.25)

Comparing this with (3.20), and again using (3.11), we find that(
ℓ̇ + 2τ ℓ̈

)(
h′ + 2σh′′

)
= 1 . (3.26)

The first factor on the left-hand side is positive, for reasons explained above. The second
factor is not obviously positive, but is required to be so; this is the condition (1.24). To
understand its significance, we return to the functions L(E) and H(D). Because they are
each other’s Legendre transform, we know that they are both convex; in fact strictly convex
because L is a strictly convex function of E. Thus

0 <
∂2L(E)
∂E∂E

= ℓ̇ + 2τ ℓ̈ , 0 <
∂2H(D)
∂D∂D

= h′ + 2σh′′ . (3.27)

This allows us to interpret (3.26) as the statement that the Hessian of L(E) is the inverse of the
Hessian of H(D). This requires, of course, that both Hessians are non-zero and finite, which
is equivalent to the statement that both L(E) and H(D) are both strictly convex functions.

We now return to the significance of (3.24). We see from (1.21) that the curves of constant
σ in the (u, v)-plane are straight lines. Only the half-lines in the ‘physical’ region of this plane
are relevant; this is the wedge-shaped region bounded by the lines u = 0 (the v-axis) and the
line v = u (since v ≥ u ≥ 0 by definition). Because G̃ > 0, no two lines of constant σ can
intersect in this region (for reasons identical to those explained in our discussion of section 2
for G > 0 in the context of lines of constant τ in the positive (U, V ) quadrant). The lines of
constant σ therefore foliate either the entire physical region or some connected subregion of it.

From (1.21) we see that all lines of constant σ intersect the v-axis at v = σ, which implies
(since v ≥ 0) that the lowest line is the one with σ = 0; this confirms that σ ≥ 0 is required
for an equivalence of the Lagrangian and Hamiltonian formulations. The slope of the lines is

(dv/du)(σ) = 1/[h′(σ)]2 ≥ 1 , (3.28)

where the inequality follows from the first causality condition of (3.23). The slope of the
lowest line is therefore 1/[h′(0)]2. Assuming that h(σ) has a power-series expansion about
σ = 0 (which is equivalent to the assumption of a weak-field limit) we conclude (omitting
the irrelevant constant term in the expansion) that

h(σ) = e−γσ + O(σ2) , (3.29)
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Figure 3. Lines of constant σ, defined in (1.21), for (a) Maxwell, h(σ) = σ, (b) ModMax, h(σ) = e−γσ,
γ = 0.5. and (c) Born-Infeld, h(σ) =

√
T (T + 2σ) (for T = 1).

for some constant γ ≥ 0. The special case for which h(σ) = e−γσ yields ModMax, with
Maxwell as the free-field γ = 0 subcase. For Maxwell, the lines of constant σ foliate the
entire wedge-shaped physical region in the (u, v)-plane. For ModMax (γ > 0) they foliate the
wedge-shaped subregion that is bounded from below by the σ = 0 line, which is

v = e2γu (σ = 0). (3.30)

For both Maxwell and ModMax the lines of constant σ are parallel because h′ is constant.
For BI, the slope increases as σ increases because h′′ < 0. These three cases are illustrated
in figure 3.

For the examples that we consider in the following section, there is no maximum value
of σ, so the lines of constant σ foliate the wedge-shaped region bounded by the positive
v-axis and the σ = 0 line. We have found an example with an upper bound on σ but we
do not discuss it here.

A further implication of G̃ > 0 is that there is a Hamiltonian counterpart to (2.4). The
two equations of (1.21) may be combined into the one equation

H = h(σ) + 2u

h′(σ) − λ̃

(
σ − v + u

[h′(σ)]2

)
, (3.31)

where λ̃ is a Lagrange multiplier imposing the constraint on σ, but the fields (λ̃, σ) are an
auxiliary pair. Varying σ we get the equation G̃(λ̃ − h′) = 0, which is equivalent to λ̃ = h′

when G̃ > 0. Varying λ̃ we get the equation for σ, which has a unique solution when G̃ > 0
for reasons identical to those explained in section 2 for G > 0 in the context of the equation
for τ . This is illustrated in figure 4. Elimination of the auxiliary fields in (3.31) therefore
yields precisely the Hamiltonian density defined by (1.21).

As for the Lagrangian auxiliary-field formulation of (2.4), we can make parity assignments
for the Hamiltonian auxiliary fields (λ̃, σ) such that the Hamiltonian density of (3.31) has
even parity. Since both u and v are parity-even, this is achieved by assigning even parity to
both λ̃ and σ. A consequence of parity conservation is that the U(1) ∼= SO(2) electromagnetic
duality group is enhanced to O(2) because parity acts by the transformation D → −D.
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Figure 4. Unique intersection (determining σ) of the graph of (h′(σ))2 (blue curve) with the graph of
u/(v − σ) (red curve) for: a) Born-Infeld at u = v/4. For any u, v, u ≤ v, intersection occurs at σ ≥ 0.
b) ModMaxBorn with γ = 0.5. When u = v/4 the intersection occurs at σ ≥ 0, but when u > ve−2γ

the intersection occurs at σ < 0 (T = 1).

3.2 Simple examples

We now illustrate the construction of the Hamiltonian from h and the causality conditions
on h with a few examples.

ModMax. The ModMax Lagrangian and Hamiltonian densities are6 [25]

LMM = eγV − e−γU = (cosh γ)S + (sinh γ)
√

S2 + P 2 ,

HMM = e−γv + eγu = (cosh γ)s − (sinh γ)
√

s2 − p2 .
(3.32)

Maxwell is included as the special case with γ = 0. The Lagrangian CH-function for ModMax
is ℓ = eγτ + const. [20] (but we may ignore the constant term as it has no effect on the
field equations). The convexity/causality conditions of (1.13) require γ ≥ 0, as expected
since LMM is a convex function of E for γ ≥ 0 but not for γ < 0. The function ℓ(τ) = eγτ

corresponds to L(E) = 1
2eγE2. Its Legendre transform is H(D) = 1

2e−γD2, which yields

h(σ) = e−γσ . (3.33)

Using this in (1.21) we have

H = e−γσ + 2ueγ , σ = v − e2γu , (3.34)

which gives us the ModMax Hamiltonian density.
As shown in [25], HMM is a convex function of D for γ > 0 only for those values of

(D, B) for which

s ≥ (cosh γ)p . (3.35)

Values of (D, B) violating this bound do not correspond to any values of (E, B). In other
words, the bound is needed for a correspondence between the Lagrangian and Hamiltonian

6Recall that (u, v) as defined in this paper differ from the definitions in [25] by u ↔ v.

– 16 –



J
H
E
P
0
9
(
2
0
2
4
)
1
0
7

formulations of ModMax. However, we have seen in section 3, for any self-dual NLED, that
this correspondence exists iff σ ≥ 0. It follows that the ModMax convexity bound (3.35)
must be equivalent to σ ≥ 0, and this conclusion is easily verified: from (1.21) we see that

σ ≥ 0 ⇔ v ≥ e2γu , (3.36)

but this constraint on the values of (u, v) is equivalent to (3.35).

ModMaxBorn. The Born-Infeld-type generalization of ModMax, introduced in [25] in its
Hamiltonian formulation, was called ModMaxBorn in [20, 24]. The ModMaxBorn Lagrangian
density was found by Legendre transform in [26]. The Lagrangian and Hamiltonian densities
are, respectively,

LMMB = −
√

T 2 − 2TLMM − P 2 ,

HMMB =
√

T 2 + 2THMM + p2 .
(3.37)

The Born-Infeld theory is included as the γ = 0 case. Here and in other examples to follow,
there is a non-zero vacuum energy, which can be simply removed by the addition of a constant.

It was shown in [20] that LMMB is found from the CH-function

ℓMMB(τ) = −
√

T (T − 2eγτ) = −T

(
1 − 2eγτ

T

) 1
2

. (3.38)

From the results of section 3 we find that the Hamiltonian CH-function h(σ) is

hMMB(σ) =
√

T (T + 2e−γσ) = T

(
1 + 2e−γσ

T

) 1
2

, (3.39)

Using this result in (1.21) we recover the ModMaxBorn Hamiltonian density, and we find that

σ = T (v − e2γu)
T + 2eγu

. (3.40)

For γ > 0 this allows σ < 0, but for reasons already explained we must impose σ ≥ 0, which
is again equivalent to the bound (3.35).

q-deformed hMMB. Consider the following choice:

h = T

(
1 + e−γσ

qT

)q

, (3.41)

for which

h′ = e−γ

(
1 + e−γσ

qT

)q−1

, h′′ = −e−2γ(1 − q)
qT

(
1 + e−γσ

qT

)q−2

. (3.42)

From this we see that the conditions h′ ≤ 1 and h′′ ≤ 0 require 0 < q ≤ 1. We also have

h′ + 2σh′′ = e−γ

(
1 + e−γσ

qT

)q−2(
1 + (2q − 1)σe−γ

qT

)
, (3.43)
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which is positive, as required, if q ≥ 1
2 . Therefore, this class of self-dual NLED theories

is causal for
1
2 ≤ q ≤ 1 . (3.44)

However, the Hamiltonian density can be found explicitly only for special values of q in
this range; for example q = 1

2 , which yields Born-Infeld. Another special choice is q = 3
4 ,

which will be discussed later.

3.3 Conformal invariance redux

The condition for conformal invariance of any Hamiltonian density H(D, B) is degree-
2 homogeneity in the electric and magnetic fields (D, B). For a self-dual NLED with
Hamiltonian density function H(u, v) this condition becomes degree-1 homogeneity in (u, v):

uHu + vHv = H . (3.45)

We recall here that our (u, v) variables, defined in (1.18), differ (by the exchange u ↔ v)
from those used in [25]. The general solution of this equation can be expressed in the form

H = vf(x) , x := u/v . (3.46)

Notice that u/v remains finite as v → 0 since u ≤ v. The Lorentz invariance condition (1.19)
then implies that f ′(f − xf ′) = 1. This equation is solved by (i) any linear function of x

and (ii) f = ±
√

4x, which yield the following solutions for H [25]:

(i) : H = ãv + ã−1u , (ii) : H = ±
√

4uv . (3.47)

The first of these is ModMax if ã = e−γ with γ ≥ 0. The second solution defines (for positive
sign) the Bialynicki-Birula (BB) electrodynamics theory [5, 6], which has no weak-field limit.
ModMax is therefore the unique interacting causal ‘extension’ of Maxwell electrodynamics
with the same symmetries [25].

The condition for conformal invariance of any Lagrangian density L(S, P ) is the ho-
mogeneity condition

SLS + PLP = L . (3.48)

Any function linear in (S, P ) will satisfy this relation, but this does not include ModMax.
If parity is assumed then, as observed in the Introduction, one may replace the variables
(S, P ) by (S, Φ) (we recall that Φ =

√
S2 + P 2). The homogeneity condition is then solved

by any function linear in S and Φ, and self-duality selects the particular linear function that
is the ModMax Lagrangian density, found originally by Legendre transform of the ModMax
Hamiltonian density [25]. This observation was made in [35], but it does not exclude the
possibility of other conformal self-dual NLED theories for which L is a nonlinear homogeneous
function of (S, Φ); for this we need a general solution to the homogeneity condition (3.48).

One might expect to be able to express the general solution to (3.48) in terms of an
arbitrary function f of one dimensionless ratio of functions of (S, P ), by analogy to the
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general solution of (3.46) to the Hamiltonian homogeneity condition (3.45). However, the fact
that both S and P may have either sign, and may be zero for non-vacuum field configurations,
prevents it. For example, the formula L =

√
SPf(

√
S/P ) was suggested in [36] but even

L = S cannot be written in this form when S < 0. The alternative formula L = Sf(P/S),
suggested in [25], has a similar problem with L =

√
S2 + P 2. If parity invariance is assumed

then we may use the variables (U, V ), in which case (3.48) is replaced by

V LV + ULU = L (3.49)

In this case we could attempt to solve the homogeneity condition by setting L(U, V ) =
V f(U/V ). This is the natural Lagrangian analog of (3.46), and imposing the self-duality
condition leads formally to f ′(f − xf ′) = −1; the different sign on the right-hand side now
allows only a linear function of x, which again leads uniquely to ModMax. However this is
still unsatisfactory because U/V is generically infinite at V = 0, so the initial expression
for L is not well-defined for all (U, V ).

It appears that the only way to establish directly that the ModMax Lagrangian density
is the unique possibility compatible with conformal invariance and self-duality is to first solve
the self-duality condition, e.g. as in (1.8). We then impose the homogeneity condition (3.49).
Using (1.10), this leads to

V ℓ̇ − U

ℓ̇
= ℓ − 2U

ℓ̇
(3.50)

and hence

ℓ =
(

V + U

ℓ̇2

)
ℓ̇ = τ ℓ̇ (3.51)

where the last equality uses the definition of τ in (1.8). We thus arrive at the conclusion,
for self-dual NLED, that L will satisfy the homogeneity condition (3.49) iff ℓ satisfies the
homogeneity condition

τ ℓ̇(τ) = ℓ(τ) . (3.52)

The general solution is ℓ(τ) = aτ for constant a. Causality restricts to a ≥ 1, which yields
ModMax.

4 Hamiltonian without Legendre transform

The solution (1.8) to the self-duality PDE (1.7) results from a choice of boundary conditions
on the U = 0 boundary of the positive (U, V ) quadrant: L(0, V ) = ℓ(V ). However, we could
equally well choose initial conditions on the V = 0 boundary of the positive (U, V ) quadrant;
i.e. L(U, 0) = −m(U) for some new one-variable function m (the minus sign is included for
later convenience). The solution analogous to (1.8) is then

L(U, V ) = −m(κ) + 2V

ṁ(κ) , κ = U + V

ṁ2(κ) , (4.1)

where
ṁ(κ) := dm(κ)

dκ
> 0 . (4.2)
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For the identity function m(κ) = κ these equations yield L = V − U = S. To verify that
they yield a solution for arbitrary m(κ), we proceed as before by taking the differential of
both sides of both equations to find that

dL = 1
ṁ

dV − ṁdU , (ṁ3 + 2m̈V )dκ = ṁ
(
dV + ṁ2dU

)
. (4.3)

From the first of these equations we have

LU = −ṁ , LV = 1/ṁ , (4.4)

and hence LULV = −1, as required.
We now have two different ways in which the Lagrangian density function L(U, V ) of any

given self-dual NLED theory can be constructed from an associated one-variable function; in
one case we call the function ℓ(τ) and in the other case we call it m(κ). By comparing (4.4)
with (1.10) we see that these two functions are such that7

ℓ̇(τ)ṁ(κ) = 1 . (4.5)

Using this relation, a comparison of the equation (1.8) for τ with equation (4.1) for κ provides
an equation for τ as a function of κ, and vice versa:

τ = κṁ2(κ) , κ = τ ℓ̇2(τ) . (4.6)

If we use the relations (4.5) and (4.6) in the equation of (4.1) for κ we deduce that

τ = V + U

ℓ̇2 , (4.7)

which is the equation for τ of (1.8). Since the equations for the auxiliary variable (τ or κ)
are equivalent in both solutions of the self-duality PDE, which yield the same Lagrangian
density function, it follows that

ℓ(τ) − 2U

ℓ̇(τ)
= −m(κ) + 2V

ṁ(κ) (4.8)

or, equivalently,

ℓ(τ) + m(κ) = 2
[
ṁU + ℓ̇V

]
. (4.9)

A surprising feature of this ‘dual’ description of the Lagrangian density L(U, V ) of a self-
dual NLED is that the new one-variable function m is same as the one-variable Hamiltonian
function h(σ)! This can be seen as follows: replacing m(κ) by h(σ) in (4.5) and (4.6) we get
precisely the relations that determine h(σ) in terms of ℓ(τ), and vice versa. Furthermore, we
know how the functions ℓ(τ) and h(σ) are related (by a Legendre transform in terms of the
variables

√
2τ and

√
2σ), so ℓ and m are related in the same way, which is

ℓ(τ) + m(κ) = 2κṁ = 2τ ℓ̇ . (4.10)

Comparing this with (4.9) we recover the equations for κ and for τ in terms of (U, V ).
7Recall that ℓ̇ = dℓ/dτ and ṁ = dm/dκ.
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Returning to (4.1), let us replace m(κ) by h(σ), since they are the same function, and
then relabel the independent variables of the function L as follows:

(U, V ) → (v,−u) . (4.11)

We then get

−L(v,−u) = h(σ) + 2u

h′
, σ = v − u

(h′)2 . (4.12)

Comparison with (1.21) shows that H(u, v) is the same function as −L(v,−u). Explicitly,
given any Lagrangian density L(U, V ), we may find its Legendre dual Hamiltonian density
H(u, v) by the following procedure:

L(U, V ) −→ −L(v,−u) = H(u, v) , (4.13)

Given any Hamiltonian density H(u, v) we can similarly find its Legendre-dual Lagrangian
density L(U, V ):

H(u, v) −→ −H(−V, U) = L(U, V ) . (4.14)

Notice that the change of variables (4.11) implies that

V − U → −(v + u) , V + U → v − u . (4.15)

Using the expressions given in the Introduction for (U, V ) in terms of (S, P ), and (u, v) in
terms of (s, p), we deduce that

S → −s , Φ → φ . (4.16)

For Maxwell, for example, we get H = −L(s) = s, as expected. More generally, once L is
expressed in the form L(S, Φ) we get H in the form H(s, φ) by the following procedure:

L(S, Φ) −→ −L(−s, φ) = H(s, φ) , (4.17)

which is the boxed equation (1.25) of the Introduction. The converse formula is

H(s, φ) −→ −H(−S, Φ) = L(S, Φ) . (4.18)

As we shall see in the following section, these results enormously simplify the task of finding
the Hamiltonian density associated to any known Lagrangian density of a self-dual NLED,
and vice versa.

4.1 Further examples

No maximum-τ case. This possibility was illustrated in [20] by the choice ℓ = T (1 +
2eγτ/(3T ))

3
2 which is defined for all τ ≥ 0 and satisfies the causality conditions of (1.13).

The corresponding Lagrangian density is

L =
√

2 T

(
1 + 2eγV

3T
− ∆

2

)√
1 + 2eγV

3T
+ ∆ , (4.19)
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with ∆ =
√(

1 + 2eγV
3T

)2
+ 8e−γ U

3T . As expected, it is defined in the entire positive (U, V )
quadrant, and it reduces to ModMax with coupling constant γ in the weak-field limit.

The function h for this case is

h = 2√
3

√
e−γT

σ
(Λ − 1)

(
σ − 3

8eγT (1 + Λ)
)

, Λ =
√

1 + 8e−γσ/(3T ) . (4.20)

The weak-field expansion is h = const. + e−γσ + O(σ2), as expected.
The standard method of computing the Hamiltonian as a Legendre transform of L

leads to complicated equations. The Courant-Hilbert construction of the Hamiltonian based
on (1.21) using the above h(σ) also leads to complicated equations. However, the Hamiltonian
can be immediately written down by using (4.13). This gives

H =
√

2 T

(
−1 + 2eγu

3T
+ ∆′

2

)√
1 − 2eγu

3T
+ ∆′ , (4.21)

with ∆′ =
√(

1 − 2eγu
3T

)2
+ 8e−γ v

3T .

Logarithmic self-dual electrodynamics. The choice ℓ = −eγT log(1 − τ/T ) yields the
Lagrangian density [20]

L = −eγ(Σ0 − T ) − eγT log
(

e2γ

2U
(Σ0 − T )

)
, (4.22)

where
Σ0 =

√
T 2 + 4e−2γU(T − V ) . (4.23)

The corresponding h-function is

h = Teγ
(

M − 1 − log 1 + M

2

)
, M =

√
1 + 4e−2γσ

T
. (4.24)

As in the previous case, in order to obtain the Hamiltonian, one can circumvent the long
calculation through a Legendre transform and directly make use of (4.13). This gives

H = eγ(Σ′
0 − T ) + eγT log

(
e2γ

2v
(Σ′

0 − T )
)

, (4.25)

where
Σ′

0 =
√

T 2 + 4e−2γv(T + u) . (4.26)

5 Φ-parity duality

The self-duality PDE (1.5) is invariant under the “Φ-parity” transformation Φ → −Φ, which
therefore takes a given solution L(S, Φ) into its Φ-parity dual solution

L̂(S, Φ) = L(S,−Φ) . (5.1)
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The Hamiltonian density Ĥ(s, φ) corresponding to L̂(S, Φ) can therefore be found by using
the formula (4.17):

L(S,−Φ) −→ −L(−s,−φ) = H(s,−φ) , (5.2)

and hence

Ĥ(s, φ) = H(s,−φ) . (5.3)

Obviously, L̂ = L whenever L(S, Φ) is Φ-parity invariant; in this class of NLED theories
the weak-field expansion of L(S, Φ) is a power-series expansion in S and P 2. Otherwise (i.e.
L̂ ̸= L) both have a weak-field expansion in powers of S and Φ, with odd powers of Φ that
cannot be rewritten as a sum of positive powers of S and P 2.

The transformation Φ → −Φ for fixed S is equivalent to

(U, V ) → −(V, U) . (5.4)

Similarly, the transformation φ → −φ for fixed s is equivalent to

(u, v) → (v, u) . (5.5)

The formula (5.2) connects Ĥ(u, v) to the original Lagrangian density L. Using the version
of this formula for L(U, V ), i.e. (4.13), we have

L̂(U, V ) = L(−V,−U) −→ −L(u,−v) = Ĥ(u, v) . (5.6)

Similarly, applying (4.14) to the φ-parity dual of H(u, v) yields

Ĥ(u, v) = H(v, u) −→ −H(U,−V ) = L̂(U, V ) . (5.7)

These results show how the Lagrangian and Hamiltonian densities of generic NLED
theories are related to those of their Φ-parity duals. We now turn to the special class of
(electromagnetic) self-dual NLED theories.

5.1 The Φ-parity dual of self-dual NLED

Using the CH constructions for L and Ĥ in (5.6) we see that

−ℓ(τ) + 2u

ℓ̇(τ)
= ĥ(σ) + 2u

[ĥ′](σ)
, (5.8)

with
τ = −v + u

ℓ̇2(τ)
, σ = v − u

[ĥ′]2(σ)
. (5.9)

These equations imply that

ĥ(σ) = −ℓ(τ) , τ = −σ
[
⇒ ĥ′(σ) = ℓ̇(τ)

]
, (5.10)

and hence that

ℓ(−σ) = −ĥ(σ) . (5.11)

– 23 –



J
H
E
P
0
9
(
2
0
2
4
)
1
0
7

H, h Ĥ, ĥ

L, ℓ L̂, ℓ̂

φ ↔ −φ

Legendre

Φ ↔ −Φ

Legendre

Figure 5. Schematic picture of different transformations. The cross arrows represent the simple
relations ĥ(σ) = −ℓ(−σ) and ℓ̂(τ) = −h(−τ). For theories symmetric under Φ → −Φ, L̂ = L and
h(σ) = −ℓ(−σ).

Similarly, using the CH constructions for H and L̂ in (5.7), we conclude that

h(−τ) = −ℓ̂(τ) . (5.12)

We mentioned in the Introduction that the existence of a weak-field limit implies that
ℓ(τ) is defined for τ < 0, even though only its values for τ ≥ 0 are relevant to the CH
formula for L(U, V ). Now we see from (5.11) that the function ℓ(τ) for τ ≤ 0 is (minus)
the one-parameter function ĥ for the “φ-parity” dual of the Hamiltonian density H that is
Legendre-dual to L. Similarly, we see from (5.12) that the function h(σ) for σ ≤ 0 is (minus)
the one-parameter function ℓ̂ for the “Φ-parity” dual of the Lagrangian density L. The
general picture is illustrated in figure 5, and we present some illustrative examples below.

For the special case of Φ-parity invariant theories, ℓ̂ = ℓ and ĥ = h and the two
relations (5.11) and (5.12) reduce to the one relation

ℓ(κ) + h(−κ) = 0 , κ ∈ R . (5.13)

Born-Infeld provides a simple example, and we return to a study of Φ-parity invariant
self-dual NLED theories at the end of this section.

We now present examples that illustrate the general case.

Illustrative examples. Let us consider self-dual NLED theories defined by

ℓ(τ) = −T

(
1 − eγτ

qT

)q

. (5.14)

According to the formula (5.11), the h-function of the Φ-dual theory is

ĥ(σ) = −ℓ(−σ) = T

(
1 + eγσ

qT

)q

. (5.15)
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For γ = 0 this is the same as the “q-deformed” function of (3.41), which tells us that the
case under consideration now is, for γ = 0, the Φ-parity dual of the “q-deformed” case
of subsection (3.2)

For q = 1/2 we have the ModMaxBorn theory. In this case

ℓMMB(τ) = −
√

T 2 − 2eγTτ

hMMB(σ) =
√

T 2 + 2e−γTσ ,
(5.16)

but Φ-duality flips the sign of γ, so that

ℓ̂MMB(τ) = −
√

T 2 − 2e−γTτ

ĥMMB(σ) =
√

T 2 + 2eγTσ ,
(5.17)

and both (5.11) and (5.12) are therefore satisfied. Obviously, in the BI (γ = 0) case there
is no distinction between the dual (hatted) functions and the original functions, since BI
theory is Φ-parity invariant.

The q = 3/4 case. The Lagrangian and Hamiltonian densities can also be found explicitly
in the q = 3/4 case, where

ℓ(τ) = −T

(
1 − 4eγτ

3T

) 3
4

. (5.18)

Using (1.8), we find

L = −T

(
Λ − 2e−γU

3T

) 1
2
(

Λ + 4e−γU

3T

)
, (5.19)

where

Λ =

√
1 − 4V eγ

3T
+
(2e−γU

3T

)2
. (5.20)

Using the relations (3.11), (3.12), (3.13) we find the corresponding h-function:

h(σ) = T

√1 + 4e−2γσ2

9T 2 + 4e−γσ

3T


√√√√√1 + 4e−2γσ2

9T 2 − 2e−γσ

3T
. (5.21)

The Hamiltonian can now be found via the CH construction of (1.21), but it is much simpler
to use (4.13) to obtain

H = T

(
Λ′ − 2e−γv

3T

) 1
2
(

Λ′ + 4e−γv

3T

)
, (5.22)

where

Λ′ =

√
1 + 4ueγ

3T
+
(2e−γv

3T

)2
. (5.23)
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Notice that ĥ(σ) of (5.21) is different from −ℓ(−σ) of (5.18), even at γ = 0. This tells
us that this theory is not Φ-parity self-dual, even at γ = 0. The one-parameter CH functions
of the Φ-parity dual theory are easily found from (5.11) and (5.12):

ĥ = T

(
1 + 4eγσ

3T

) 3
4

, (5.24)

ℓ̂(τ) = −T

√1 + 4e−2γτ2

9T 2 − 4e−γτ

3T


√√√√√1 + 4e−2γτ2

9T 2 + 2e−γτ

3T
. (5.25)

Comparing with the example (3.41) for q = 3/4, we note that Φ-duality has again flipped the
sign of γ; for weak fields the Φ-parity dual theory becomes ModMax but with γ → −γ.

The Φ-dual Lagrangian L̂ and Hamiltonian Ĥ can now be found by the maps (5.4), (5.5).
Alternatively, they can be obtained from the CH construction using the above expressions
for ℓ̂ and ĥ. For example, from (1.21) and (5.24), we have the equations

σ + e2γu

√
1 + 4eγσ

3T
− v = 0 . (5.26)

This gives √
1 + 4eγσ

3T
= −2e−γu

3T
+ Σ , Σ =

√
1 + 4veγ

3T
+
(2e−γu

3T

)2
, (5.27)

which leads to

Ĥ = T

(
Σ + 4e−γu

3T

)(
Σ − 2e−γu

3T

) 1
2

, (5.28)

in accordance with the formula Ĥ(u, v) = H(v, u).

5.2 The alternative CH construction

In addition to the construction of (1.8) that gives the Lagrangian density L of the general
self-dual NLED in terms of a boundary function ℓ, Courant and Hilbert show that the solution
to the partial differential equation (1.7) may also be expressed as [21]

L(U, V ) = V

x
− xU + ω(x) , (5.29)

where ω(x) is defined for positive dimensionless variable x, which is determined implicitly
by the equation

xω′(x) = xU + V

x
. (5.30)

To verify this we take the differentials of both sides of (5.29). Simplifying the result by
using (5.30) we find that

dL = dV

x
− xdU , (5.31)
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and hence that LULV = −1. We also see, by comparison with (1.10), that the relation of
ω(x) to ℓ(τ) must be such that ℓ̇ = 1/x. In fact, the relation is given implicitly by

ℓ(τ) = ω(x) + xω′(x) , τ = x2ω′(x) , (5.32)

from which we find that

ℓ̇ =
(
2ω′ + x2ω′′

) dx

dτ
= 1

x

d(x2ω′)
dx

dx

dτ
= 1

x
, (5.33)

as expected. This alternative to the CH constructions described in the Introduction is useful
when considering the implications of Φ-parity; conversely, consideration of Φ-parity yields
insights into the relation between ℓ and ω that are in some respects similar to what we
have already found for ℓ and h.

Recall that Φ → −Φ is equivalent to (U, V ) → −(V, U). Applying this to (5.29) we find
that the Φ-parity transform of L(U, V ) is

L̂(U, V ) = xV − U

x
+ ω(x) (5.34)

where x is now determined by the equation

−xω′(x) = xV + U

x
. (5.35)

If we now define a new variable y and a new function ω̂ by

y := 1
x

, ω̂(y) := ω(x) , (5.36)

then the equations (5.34) and (5.35) defining L̂(U, V ) become, respectively

L̂(U, V ) = V

y
− yU + ω̂(y) , (5.37)

and
yω̂′(y) = yU + V

y
. (5.38)

These are formally the same as the original equations (5.29) and (5.30) that define L(U, V ),
but the function ω̂ determining L̂ is generally different from the function ω determining L,
since ω̂(x) = ω(1/x). In the following subsection we focus on the special class of Φ-parity
invariant theories for which ω(x) = ω(1/x), and hence L̂ = L.

There is also a CH construction of L̂ in terms of a function ℓ̂, with a relation of ℓ̂ to
ω̂ that is formally the same as the relation of ℓ to ω expressed by the equations of (5.32).
The relation of ℓ to ω̂ is different, however. In terms of the new variable y and the new
function ω̂, the equations of (5.32) become

ℓ(τ) = ω̂(y) + τy , τ = −ω̂′(y) . (5.39)

This has a remarkably simple interpretation: it tells us that ℓ(τ) is the Legendre transform
of −ω̂(y) with respect to y:

ℓ(τ) = sup
y

{yτ + ω̂(y)} . (5.40)
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From the equation for τ in (5.39) we have

−ω̂′′(y) = dτ

dy
= −x2 dτ

dx
, (5.41)

which is the inverse of ℓ̈ (since ℓ̇ = 1/x); i.e.

ℓ̈(τ)ω̂′′(y) = −1 . (5.42)

This result tells us that ω̂(y) is a strictly concave function iff ℓ(τ) is a strictly convex function,
as is required for causality, except that causality also allows ℓ̈ = 0, which is realized by
ModMax and its Maxwell limit. These conformal NLED theories are therefore not obviously
included in the alternative CH construction of self-dual NLED theories.

To better understand why ModMax and Maxwell are special cases, we observe that
the converse of (5.40) is

−ω̂(y) = sup
τ

{yτ − ℓ(τ)} . (5.43)

That is, −ω̂(y) is the Legendre transform of ℓ(τ), with respect to τ (recall that h(σ), expressed
as the function H(

√
2σ), is its Legendre transform with respect to

√
2τ). For the choice

ℓ(τ) = eγτ , we have

ω̂(y) = sup
τ

{(y − eγ) τ} , (5.44)

which is defined only for y = eγ , and is zero at this one point in its domain. Using this
function in (5.34) yields the ModMax Lagrangian density, and Maxwell for γ = 0. Thus, (5.37)
does include Modmax and Maxwell if the function ω̂ is defined in terms of the CH function
ℓ, as in (5.44), and a similar (dual) statement applies if the function ω in (5.29) is defined
as (minus) the Legendre transform of ℓ̂.

One utility of the alternative CH construction described above is that new explicit
examples of self-dual NLED theories can be found that would otherwise be difficult to find.
This is illustrated by the following example.

Generalized logarithmic NLED. We start from the function

ω(x) = cT − T

2

(
eγx + 1

eγx

)
+ ηT log(x) , (5.45)

where c is a parameter that can be chosen to arrange for zero vacuum energy, and η is a
further real parameter. Using (5.29) we find the Lagrangian density:

L = cT − Σ − ηT log
( Σ − ηT

eγT + U

)
, (5.46)

with
Σ ≡

√
(T + 2e−γU)(T − 2eγV ) + η2T 2 . (5.47)

For η = 0 this reduces to ModMaxBorn.
Recalling again that Φ-parity takes (U, V ) to −(V, U), one sees from inspection that this

generalized logarithmic NLED theory is Φ-parity invariant iff η = 0 and γ = 0, in which
case it reduces to Born-Infeld. For all other choices of these parameters the Φ-parity dual
is found by changing the signs of both η and γ.
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5.3 The general “Φ-parity” invariant self-dual theory

Comparing (5.34) to (5.37) we see that L̂ = L whenever ω̂ = ω, i.e. whenever ω(1/x) = ω(x).
In this case

ω′(x) = − 1
x2 ω′(1/x) , (5.48)

which implies that ω′(1) = 0. From the equation for τ in (5.32) we see that x = 1 is equivalent
to τ = 0, so the weak-field expansion

ℓ(τ) = τ + 1
2T

τ2 + O(τ3) (5.49)

must be equivalent to an expansion of ω(x) about x = 1. From the expressions for ℓ(τ)
and τ in (5.32), one finds that this expansion is

ω(x) = −T

2 (1 − x)2 + O[(1 − x)3] . (5.50)

This result is a direct consequence of the fact that ω′(1) = 0 and the identity (5.42) (for
τ = (1 − x) = 0). The corresponding weak-field expansion of L is

L(S, Φ) = S + Φ2

2T
+ O(1/T 2) . (5.51)

A very simple choice for ω(x) that is manifestly invariant under x → 1/x is

ω(x) = T − T

2
(
x + x−1) . (5.52)

In this case the solution of (5.30) for x is

x =
√

T − 2U

T + 2V
. (5.53)

This yields the Born-Infeld theory. The weak-field expansions of ω and ℓ are exactly as above
in this case. In general, a rescaling of the parameter T in (5.49) and (5.52) will be necessary.

It is a simple matter to write down other functions ω(x) that are invariant under x → 1/x,
but any such function must also have the property that the equation (5.30) has a unique
solution for x, and we must also impose causality conditions. For example, the condition
ℓ̇ ≥ 1 requires x ≤ 1. Another aid to separating the causal from the acausal NLED theories
is the relation (5.42), which implies that ω̂(y) is a concave function of y whenever ℓ(τ) is a
convex function of τ , as required. The implications for ω(x) are generically not obvious but
ω̂ = ω for Φ-parity invariant theories, and therefore ω(x) must also be concave (for x ≤ 1).

Consider, for example the following one-parameter generalization of Born-Infeld, de-
fined by

ω(x) = −T

2

{(
x + 1

x

)
+ a

(
x + 1

x

)2
}

, (5.54)

where a is a constant. One finds that

ω′(x) = T

{
(1 − x2)

2x2 + a
(1 − x4)

x3

}
(5.55)

– 29 –



J
H
E
P
0
9
(
2
0
2
4
)
1
0
7

and
ω′′(x) = − T

x4

(
x + ax4 + 3a

)
. (5.56)

Using (5.55) in (5.30) we find the following equation for x:

(T − 2V ) + 2aT (1 − x4)
x

= (T + 2U)x2 . (5.57)

Inspection of the graphs of the functions of x on both sides of this equation shows that a
unique solution exists for all (U, V ) in the positive quadrant iff a ≥ 0. From (5.56) we see
that this is also required for ω(x) to be a concave function for 0 ≤ x ≤ 1. For a > 0 we
have a one parameter self-dual deformation of Born-Infeld that preserves Φ-parity invariance.
Moreover, as (5.57) is a quartic equation for x, which has an explicit and unique solution
for 0 ≤ x ≤ 1, the Lagrangian density can still be found explicitly.

6 Legendre self-duality

So far we have considered the Lagrangian and Hamiltonian densities. In both cases, the NLED
field equations may be written in first-order form as the “macroscopic Maxwell equations”

Ḋ = ∇ × H , ∇ · D = 0 ,

Ḃ = −∇ × E , ∇ · B = 0 ,
(6.1)

together with constitutive relations which are either

D = ∂L/∂E , H = −∂L/∂B , (6.2)

or
E = ∂H/∂D , H = ∂H/∂B . (6.3)

However, we may also specify the constitutive relations in terms of a ‘dual’ Hamiltonian density

H̃(E, H) = sup
B

{−B · H − L} , (6.4)

in which case

D = −∂H̃
∂E , B = −∂H̃

∂H , (6.5)

or in terms of a ‘dual’ Lagrangian density

L̃(D, H) = sup
(E,B)

{L − E · D + B · H} , (6.6)

in which case

E = − ∂L̃
∂D , B = ∂L̃

∂H . (6.7)

The possibility of a description in terms of one of four “fundamental functions” was observed
by Born in [31] but here we use the more standard terminology of Bialynicki-Birula [5], except
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for sign changes to ensure that the addition of a constant to L implies the addition of the
same constant to L̃, and its subtraction from both H and H̃.

Another of Born’s observations was that, for Born-Infeld, L and L̃ are identical functions
of their respective scalar variables, appropriately defined; this has been called “Legendre
self-duality”. As mentioned in the Introduction, this was shown by Gaillard and Zumino to
be a property of any (electromagnetically) self-dual NLED theory [12], and a later proof of
Theisen and Kuzenko [32] showed that only a Z2 electromagnetic duality was needed. The
starting point of this proof was (in our notation) the Lagrangian density

L(F, Ã) = L(F ) − B · Ẽ − E · B̃ , (6.8)

where (E, B) are the electric/magnetic components of F , now an arbitrary 2-form field, and
(Ẽ, B̃) are the electric/magnetic components of F̃ = dÃ. The combined field equations found
from varying both F and Ã are equivalent to those of L(F ) for F = dA (since variation of Ã

yields the equation dF = 0). However, the equations found from varying F , which are

B̃ = ∂L(F )
∂E = D , Ẽ = ∂L(F )

∂B = −H , (6.9)

may be used to eliminate F ; this yields the dual Lagrangian density L̃(F̃ ). Theisen and
Kuzenko show that the functions L(F ) and L̃(F̃ ) are the same for all NLED invariant under
a discrete Z2 electromagnetic duality transformation. To state this result in our notation,
we observe that a further implication of the equations (6.9) is

S̃ = 1
2
(
|Ẽ|2 − |B̃|2

)
≡ −1

2
(
|D|2 − |H|2

)
,

P̃ = Ẽ · B̃ ≡ −D · H .
(6.10)

In other words, Legendre self-duality can be restated as the equivalence, for self-dual NLED, of
the functions L(S, P ) and L̃(S̃, P̃ ), with (S̃, P̃ ) defined in terms of (H, D) according to (6.10).

Here we show that this result follows directly from the definition of the dual Lagrangian
density L̃ whenever the Hamiltonian density is invariant under the −π/2 duality-rotation
taking (D, B) to (B,−D), which implies that

H(D, B) = H(B,−D) . (6.11)

This is obviously a property of any self-dual NLED, but it also a property of some other
NLED theories that are not self-dual.

We begin with the observation that

H(D, B) = sup
E

{D · E − L(E, B)} . (6.12)

This relation implies the following two relations

L(E, B) = sup
D

{E · D −H(D, B)} ,

L̃(D, H) = sup
B

{H · B −H(D, B)} .
(6.13)
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The first of these is just the inverse of (6.12). The second follows by using (6.12) to replace
H on the right-hand side; this yields the definition of (6.6) for L̃. We see from these relations
that both L and L̃ are Legendre transforms of H(D, B), but one is with respect to the
first 3-vector variable and the other is with respect to the second 3-vector variable. Let
us now rewrite (6.13) more abstractly as

L(X, Y) = sup
Z

{X · Z −H(Z, Y)} ,

L̃(Y,−X) = sup
Z

{X · Z −H(Y,−Z)} ,
(6.14)

for 3-vectors (X, Y, Z). From this, we see that the property (6.11) of any self-dual theory
implies that

L(X, Y) = L̃(Y,−X) . (6.15)

Given Lorentz invariance of the function L(X, Y) on the left-hand side, it may be expressed
as a function of the Lorentz scalars |X|2 − |Y|2 and X ·Y. The same is true of the right-hand
side but with (X, Y ) replaced by (Y,−X), as we should expect from the minus signs in the
definitions of (S̃, P̃ ) in (6.10). We thus conclude that L(S, P ) and L̃(S̃, P̃ ) are the same,
as functions, for any self-dual NLED theory.

As a simple illustration of Legendre self-duality, we consider a class of NLED theories,
introduced in [37], that may be defined by the following one-parameter family of Lagrangian
densities in which (a, b) are a pair of auxiliary fields:

LRT = T − T

2

[
a + (1 + b2)

a

]
+ aS + ξbP . (6.16)

The family parameter is ξ, which we may assume to be non-negative. For ξ = 1 we have the
Roček-Tseytlin (RT) formulation of Born-Infeld [38]; elimination of the auxiliary fields yields
LBI(S, P ). For ξ = 0, we get the original Born theory [31]; the general case was discussed
in detail in [24]. An advantage of this auxiliary-field formulation is that the 3-vector fields
(D, H) are now linear functions of (E, B):(

D
H

)
=
(

a ξb

−ξb a

)(
E
B

)
. (6.17)

This implies that

E · D − B · H = 2(aS + ξbP ) , (6.18)

and hence that the dual RT Lagrangian density is

L̃RT = T − T

2

[
a + (1 + b2)

a

]
− (aS + ξbP ) , (6.19)

but with (S, P ) expressed as functions of (S̃, P̃ ).
Using (6.10) and (6.17), it is straightforward to show that(

S

P

)
= 1

(a2 + ξ2b2)2

(
ξ2b2 − a2 2ξab

−2ξab ξ2b2 − a2

)(
S̃

P̃

)
, (6.20)
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and hence that

aS + ξbP = −
(
ãS̃ + ξb̃P̃

)
, (6.21)

where
ã = a

a2 + ξ2b2 , b̃ = − b

a2 + ξ2b2 . (6.22)

This auxiliary-field redefinition is such that

a + (1 + b2)
a

= ã + (fξ(ã, b̃) + b̃2)
ã

, (6.23)

where
fξ(ã, b̃) = 1 + (ξ2 − 1)b̃2

[
1 − 1

ã2 + ξ2b̃2

]
(6.24)

We thus deduce for ξ = 1, that

L̃(ξ=1)
RT = T + T

2

[
ã + (1 + b̃2)

ã

]
+ ãS̃ + b̃P̃ . (6.25)

As this is formally the same as the ξ = 1 case of (6.16), elimination of the auxiliary fields
(ã, b̃) now yields the BI Lagrangian density but with (S, P ) replaced by (S̃, P̃ ); i.e.

L̃BI(S̃, P̃ ) = T −
√

T 2 − 2T S̃ − P̃ 2 , (6.26)

which is formally identical to LBI(S, P ).
For all other values of ξ, we have L̃RT ̸= LRT, but ξ = 0 is a special case because then

the only b̃-dependence is via the b̃2 term of fξ, which implies that fξ → 1 upon elimination
of b̃. Elimination of ã then yields LBorn, so Born’s original theory is also Legendre self-dual.
The reason for this is that HBorn satisfies the condition (6.11). The results of [24] for the
Hamiltonian density for arbitrary ξ show that (6.11) is satisfied only for ξ = 0 and ξ = 1.

6.1 A proof from the CH formula

We shall now present a proof that (electromagnetic) self-duality implies Legendre self-duality,
by taking the CH formula (1.8) as our starting point. We know the first derivatives of L(U, V )
from (1.10), and we know how (U, V ) depend on (S, P ) and hence on E and B. This allows
us to compute the derivatives of L with respect to both E and B. Recalling the definitions
of (D, H) as derivatives of L, we find that(

D
H

)
=
(

a b

−b a

)(
E
B

)
, (6.27)

where, now,

a = ℓ̇2V + U

ℓ̇(V + U)
, b = (ℓ̇2 − 1)P

2ℓ̇(V + U)
. (6.28)

From this result we may compute (S̃, P̃ ). One finds that

S̃ = U

ℓ̇2 − ℓ̇2V P̃ = −P , (6.29)
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which allows us to determine (Ũ , Ṽ ) in terms of (U, V ) and ℓ̇. The result is

Ũ = ℓ̇2V , Ṽ = U

ℓ̇2 . (6.30)

We also find from (6.27) that

−E · D + B · H = 2U

ℓ̇
− 2ℓ̇V , (6.31)

and hence, using the CH formula for L, that

L̃ = ℓ(τ) − 2U

ℓ̇
+
[2U

ℓ̇
− 2ℓ̇V

]
≡ ℓ(τ) − 2ℓ̇V

= ℓ(τ) − 2Ũ

ℓ̇
,

(6.32)

where
τ = V + U

ℓ̇2 = Ṽ + Ũ

ℓ̇2 . (6.33)

We thus deduce that L̃(Ũ , Ṽ ) is given by the CH formula for the same function ℓ that we
used for L. This implies that L and L̃ are identical functions.

7 The NLED/particle-mechanics correspondence

The starting point for section 3 was the obvious fact that setting the magnetic field to zero
in any Legendre pair of functions L(E, B) and H(D, B) yields functions L(E) and H(D),
respectively, that are a Legendre pair when viewed as functions of E and D, respectively. We
then showed that this remains true if L(E) and H(D) are viewed as one-variable functions, and
we explained how they are related to the one-variable CH-functions ℓ and h that determine
L and H for a self-dual NLED.

We now provide a different interpretation of the functions L(E) and H(D), viewed as
functions of E and D, respectively. Rather than set to zero the magnetic field, as we did
in section 3, we replace the Euclidean 3-space with a flat 3-torus of 3-volume v3, and we
truncate the Fourier expansion of fields on this 3-torus by setting all space derivatives of
the 1-form potential to zero. We then have B = 0 but also E = −Ȧ, where A(t) is the
3-vector potential, now a function only of the time coordinate t. The Lagrangian obtained
by integrating over T 3 is therefore

L(ν) = v3L(E) , ν := −
√

v3/m E , (7.1)

where m is an arbitrary mass parameter needed to make ν dimensionless (for unit speed of
light). The Hamiltonian (obtained by Legendre transform of L) is

H(π) = v3H(D) , π = −
√

mv3 D , (7.2)

where π is the Legendre dual of ν. We may interpret L and H as the Lagrangian and Hamil-
tonian for a point particle with velocity ν and momentum π in a locally-Euclidean 3-space.
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For Maxwell we have (ν = |ν| and π = |π|)

L = 1
2v3E2 = 1

2mν2 , H = 1
2v3D2 = π2

2m
, (7.3)

which are the Lagrangian and Hamiltonian for a non-relativistic particle of mass m.
For the Born-Infeld theory we may (since m was an arbitrary mass parameter) set

T = m/v3 , (7.4)

in which case

L = −m
√

1 − ν2 , H =
√

m2 + π2 , (7.5)

which are the Lagrangian and Hamiltonian for a relativistic particle of mass m. As a
consistency check, we observe that

τ = 1
2Tν2 , σ = 1

2T (π/m)2 , (7.6)

and the relations of (3.12) then imply

π = mν√
1 − ν2

(7.7)

as expected.
There is a string-theory interpretation of this correspondence between the Born-Infeld

field theory and the massive relativistic particle, because (as mentioned in the Introduction) it
is implied by the T-duality relation between the D3-brane and D0-brane of Type II superstring
theory. However the correspondence obtained above is more general because it applies to
any self-dual NLED. For ModMaxBorn, for example, we find that

L = −m
√

1 − eγν2 , H =
√

m2 + e−γπ2 , (7.8)

which are again the Lagrangian and Hamiltonian for a relativistic particle but with a “modified
light-speed” of e−2γ , which is subluminal for γ > 0 and superluminal for γ > 1. For this
“relativistic” particle mechanics model, considered in isolation, we could redefine the “speed
of light” to be e−γ/2. However, as derived above, the particle mechanics model describes
the ‘corner’ of full self-dual NLED model for which |B| = 0 and −E is a space-independent
but time-dependent 3-vector that we interpret as a particle velocity vector, and the speed of
light is what it is in the full theory, i.e. unity. From this perspective, we should expect that
the particle velocity can be superluminal only for an acausal NLED, and our ModMaxBorn
example confirms this.

8 Summary and outlook

In any generalisation of an established physical theory, such as Maxwell electrodynamics,
the question arises of which features should be preserved and which may be discarded. The
principal feature preserved by the Plebanski class of nonlinear electrodynamics is the canonical
structure, and hence the number of degrees of freedom per space point. This means that
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small amplitude waves still have two distinct polarisations, but these waves will typically
interact with each other. In addition, they need not travel at light-speed, which leads to the
possibility of superluminal propagation in some backgrounds. This was initially investigated
by considering shock waves in generic smooth electromagnetic backgrounds, but equivalent
results are found by considering plane-wave perturbations of a generic constant uniform
background, which can be viewed as a homogeneous optical medium.

For weak-field backgrounds (typically defined in relation to a Born scale introduced by
interactions) the absence of superluminal propagation can be ensured by imposing simple
convexity conditions on the Lagrangian density. However, generic theories satisfying these
conditions will still allow superluminal propagation for some strong-field backgrounds. The
systematic study of this possibility dates back to a 2016 paper by Schellstede et al. [22],
whose results we have confirmed, and explored in the context of models proposed for a variety
of phenomenological reasons over the past few decades [24]. One lesson from this work is that
the simplest way to find a causal model is to choose one that is self-dual because weak-field
causality implies strong-field causality (given the existence of a weak-field limit) [20].

Thus, one major reason for the study of self-dual NLED theories is that it is easy to
separate the causal from the acausal cases. In fact, this becomes even easier once it is
appreciated that the Lagrangian density L of any self-dual NLED theories (with a weak-field
limit) can be constructed from a corresponding one-variable function ℓ. This function, defined
on a half-line, provides the boundary condition needed to integrate the PDE that L must
satisfy for any self-dual theory; we have called this the Courant-Hilbert (CH) construction
since the PDE and its solution can be found in [21]. The causality conditions then reduce to
simple constraints on the first and second derivatives of the function ℓ [20].

The initial aim of this paper was to extend these results to the Hamiltonian formulation.
Self-duality in this context is trivially ensured by restricting the Hamiltonian density H to
depend on duality-invariant variables, but now Lorentz invariance requires H to satisfy a
PDE, which (in appropriate variables) is formally the same as the one that L must satisfy
to ensure self-duality. This means that there is a CH construction for H in terms of some
other one-variable function h, also defined on a half-line, and {L,H} is a Legendre-dual
pair for any causal self-dual NLED. We have shown that the one-variable functions {L, H}
defined by L(

√
2τ) = ℓ(τ) and H(

√
2σ) = h(σ) are also a Legendre-dual pair. This defines a

correspondence between any causal self-dual NLED and a particle-mechanics model, with
Born-Infeld corresponding to the massive relativistic point particle.

The results just summarized also simplify the construction of H from L, and vice versa,
by reducing this problem to the Legendre transform of a one-variable function. However,
a much greater simplification is possible by taking advantage of a ‘dual’ CH construction
of L from h. The fact that both L and H can be constructed from h implies a very simple
relation between them. A procedure for finding H given L, for example, is given in the
one-line boxed equation (1.25) of the Introduction. This is one of our main results, derived
from an unexpected ‘duality’.

Since L and H are so simply related, it is natural to suppose that the CH-functions
ℓ and h must also be related in a way that is simpler than via Legendre transform of the
associated one-variable functions (L, H). This is indeed true for some “simple” cases, such as
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Born-Infeld, but the general case requires consideration of what we have called “Φ-parity”.
The variables (U, V ) are linear combinations of variables (S, Φ), with Φ =

√
S2 + P 2, and

the Φ-parity dual of L(S, Φ) is L̂(S, Φ) = L(S,−Φ). The “simple” cases referred to above are
those for which L̂ = L; i.e. the Φ-parity invariant NLED theories. For these cases the CH
functions {ℓ, h}, both defined on a half-line, collectively define a single variable on a whole
line; more precisely, they are related by the boxed equation (5.13) of section 5.

Generically, L̂ ̸= L and we have a Φ-parity pair of NLED theories with CH-functions
(ℓ, h) and (ℓ̂, ĥ), which are related in a similar way to (5.13), but with a Φ-parity twist; more
precisely, the relations are those of the boxed equations (5.11) and (5.12) of section 5. In
other words, the CH-function ℓ (h) of one self-dual NLED theory is simply related to the
CH-function ĥ (ℓ̂) of its Φ-parity dual, and this reduces to the simple relation of (5.13) for
the Φ-parity invariant cases.

A major theme of this paper has been that many interesting features of self-dual NLED
theories are a corollary of simple features of their associated CH functions {ℓ, h}. Examples
are causality and conformal invariance, and the simple relation between Lagrangian and
Hamiltonian densities summarised in the boxed equation (1.25) of the Introduction.

We have also shown how an alternative CH construction, again described by Courant
and Hilbert, introduces a new CH function, that in “simple” cases is (minus) the Legendre
transform of the CH ℓ-function. More generally, it is the Legendre transform of the ℓ-function
of a “Φ-parity” dual theory. The “simple” cases are therefore those that are “Φ-parity”
invariant, and the simplest example is Born-Infeld. We have thus uncovered a new special
property of Born-Infeld that may be of relevance in its applications, e.g. in string theory.

Various other aspects of generic self-dual NLED theories deserve further investigation.
It appears that only Born-Infeld is compatible with maximal (Minkowski spacetime) su-
persymmetry, but the constraints of non-maximal supersymmetry are usually weaker. We
have omitted coupling to electric and magnetic charges; their inclusion is of obvious inter-
est, and we expect the results of [39], for example, to be relevant to this. We also expect
the CH construction of self-dual NLED theories to be useful in the exploration of NLED
theories coupled to gravity. For example, the spacetime metric describing the analog of the
Reissner-Nordstrom black hole might be expected to be invariant under an electromagnetic
duality rotation of its parameters. We certainly expect causality to be a significant issue, and
our previous result that the stress-energy tensors of causal NLED theories obey the same
energy conditions as the Maxwell stress-energy tensor [33] is an indication that results for
Maxwell-Einstein will generalize simply to self-dual NLED theories.

To conclude, we remark that our Hamiltonian results can be applied directly to chiral
2-form electrodynamics in 6D Minkowski spacetime, for reasons spelled out in detail in [26];
essentially, one only has to re-interpret the variables (u, v). As the 4D NLED theory is then
a dimensional reduction from 6D we expect that the 4D NLED causality conditions on h will
still apply, and may still be sufficient as well as necessary conditions for causality in 6D. This
may be relevant to the recently investigated T T̄ -flows of 6D chiral 2-form theories [40].

– 37 –



J
H
E
P
0
9
(
2
0
2
4
)
1
0
7

Acknowledgments

PKT has been partially supported by STFC consolidated grant ST/T000694/1. JGR
acknowledges financial support from grants 2021-SGR-249 (Generalitat de Catalunya) and
a MINECO grant PID2019-105614GB-C21.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.

References

[1] M. Born and L. Infeld, Electromagnetic mass, Nature 132 (1933) 970.1 [INSPIRE].

[2] M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. Lond. A 144 (1934)
425 [INSPIRE].

[3] J. Plebański, Lectures on non linear electrodynamics, The Niels Bohr Institute and NORDITA,
Copenhagen, Denmark (1970) [INSPIRE].

[4] G. Boillat, Nonlinear electrodynamics — Lagrangians and equations of motion, J. Math. Phys.
11 (1970) 941 [INSPIRE].

[5] I. Bialynicki-Birula, Nonlinear electrodynamics: variations on a theme by Born and Infeld in
Quantum theory of particles and fields, B. Jancewicz and J. Lukierski eds., World Scientific,
Singapore (1983), p. 31 [INSPIRE].

[6] I. Bialynicki-Birula, Field theory of photon dust, Acta Phys. Polon. B 23 (1992) 553 [INSPIRE].

[7] J.G. Russo and P.K. Townsend, Nonlinear electrodynamics without birefringence, JHEP 01
(2023) 039 [arXiv:2211.10689] [INSPIRE].

[8] L. Mezincescu, J.G. Russo and P.K. Townsend, Hamiltonian birefringence and Born-Infeld limits,
JHEP 02 (2024) 186 [arXiv:2311.04278] [INSPIRE].

[9] E. Schrödinger, Contributions to Born’s new theory of the electromagnetic field, Proc. Roy. Soc.
Lond. A 150 (1935) 465 [INSPIRE].

[10] M.K. Gaillard and B. Zumino, Duality rotations for interacting fields, Nucl. Phys. B 193 (1981)
221 [INSPIRE].

[11] G.W. Gibbons and D.A. Rasheed, Electric-magnetic duality rotations in nonlinear
electrodynamics, Nucl. Phys. B 454 (1995) 185 [hep-th/9506035] [INSPIRE].

[12] M.K. Gaillard and B. Zumino, Nonlinear electromagnetic selfduality and Legendre
transformations, in the proceedings of the A Newton institute euroconference on duality and
supersymmetric theories, (1997) [hep-th/9712103] [INSPIRE].

[13] E.S. Fradkin and A.A. Tseytlin, Nonlinear electrodynamics from quantized strings, Phys. Lett. B
163 (1985) 123 [INSPIRE].

[14] E. Bergshoeff, E. Sezgin, C.N. Pope and P.K. Townsend, The Born-Infeld action from conformal
invariance of the open superstring, Phys. Lett. B 188 (1987) 70 [INSPIRE].

[15] R.G. Leigh, Dirac-Born-Infeld action from Dirichlet sigma model, Mod. Phys. Lett. A 4 (1989)
2767 [INSPIRE].

– 38 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/132970a0
https://inspirehep.net/literature/1421883
https://doi.org/10.1098/rspa.1934.0059
https://doi.org/10.1098/rspa.1934.0059
https://inspirehep.net/literature/9141
https://inspirehep.net/literature/1103928
https://doi.org/10.1063/1.1665231
https://doi.org/10.1063/1.1665231
https://inspirehep.net/literature/65191
https://inspirehep.net/literature/205976
https://inspirehep.net/literature/343511
https://doi.org/10.1007/JHEP01(2023)039
https://doi.org/10.1007/JHEP01(2023)039
https://doi.org/10.48550/arXiv.2211.10689
https://inspirehep.net/literature/2512994
https://doi.org/10.1007/JHEP02(2024)186
https://doi.org/10.48550/arXiv.2311.04278
https://inspirehep.net/literature/2720171
https://doi.org/10.1098/rspa.1935.0116
https://doi.org/10.1098/rspa.1935.0116
https://inspirehep.net/literature/1321334
https://doi.org/10.1016/0550-3213(81)90527-7
https://doi.org/10.1016/0550-3213(81)90527-7
https://inspirehep.net/literature/165994
https://doi.org/10.1016/0550-3213(95)00409-L
https://doi.org/10.48550/arXiv.hep-th/9506035
https://inspirehep.net/literature/396050
https://doi.org/10.48550/arXiv.hep-th/9712103
https://inspirehep.net/literature/452195
https://doi.org/10.1016/0370-2693(85)90205-9
https://doi.org/10.1016/0370-2693(85)90205-9
https://inspirehep.net/literature/217865
https://doi.org/10.1016/0370-2693(87)90707-6
https://inspirehep.net/literature/22335
https://doi.org/10.1142/S0217732389003099
https://doi.org/10.1142/S0217732389003099
https://inspirehep.net/literature/26399


J
H
E
P
0
9
(
2
0
2
4
)
1
0
7

[16] A.A. Tseytlin, Born-Infeld action, supersymmetry and string theory, in The many faces of the
superworld, World Scientific, Singapore (2000), p. 417 [DOI:10.1142/9789812793850_0025]
[hep-th/9908105] [INSPIRE].

[17] J.P. Pereira, J.G. Coelho and R.C.R. de Lima, Born-Infeld magnetars: larger than classical
toroidal magnetic fields and implications for gravitational-wave astronomy, Eur. Phys. J. C 78
(2018) 361 [arXiv:1804.10182] [INSPIRE].

[18] V.I. Denisov and S.I. Svertilov, Vacuum nonlinear electrodynamic effects in hard emission of
pulsars and magnetars, Astron. Astrophys. 399 (2003) L39 [astro-ph/0305557] [INSPIRE].

[19] J. Ellis, N.E. Mavromatos, P. Roloff and T. You, Light-by-light scattering at future e+e−

colliders, Eur. Phys. J. C 82 (2022) 634 [arXiv:2203.17111] [INSPIRE].

[20] J.G. Russo and P.K. Townsend, Causal self-dual electrodynamics, Phys. Rev. D 109 (2024)
105023 [arXiv:2401.06707] [INSPIRE].

[21] R. Courant and D. Hilbert, Methods of mathematical physics, volume II, Wiley Interscience
(1962), p. 91.

[22] G.O. Schellstede, V. Perlick and C. Lämmerzahl, On causality in nonlinear vacuum
electrodynamics of the Plebański class, Annalen Phys. 528 (2016) 738 [arXiv:1604.02545]
[INSPIRE].

[23] I. Bandos, K. Lechner, D. Sorokin and P.K. Townsend, ModMax meets Susy, JHEP 10 (2021)
031 [arXiv:2106.07547] [INSPIRE].

[24] J.G. Russo and P.K. Townsend, Born again, SciPost Phys. 16 (2024) 124 [arXiv:2401.04167]
[INSPIRE].

[25] I. Bandos, K. Lechner, D. Sorokin and P.K. Townsend, A non-linear duality-invariant conformal
extension of Maxwell’s equations, Phys. Rev. D 102 (2020) 121703 [arXiv:2007.09092]
[INSPIRE].

[26] I. Bandos, K. Lechner, D. Sorokin and P.K. Townsend, On p-form gauge theories and their
conformal limits, JHEP 03 (2021) 022 [arXiv:2012.09286] [INSPIRE].

[27] S.M. Kuzenko and S. Theisen, Nonlinear selfduality and supersymmetry, Fortsch. Phys. 49
(2001) 273 [hep-th/0007231] [INSPIRE].

[28] E.A. Ivanov and B.M. Zupnik, New approach to nonlinear electrodynamics: dualities as
symmetries of interaction, Phys. Atom. Nucl. 67 (2004) 2188 [hep-th/0303192] [INSPIRE].

[29] E. Bergshoeff and M. De Roo, D-branes and T duality, Phys. Lett. B 380 (1996) 265
[hep-th/9603123] [INSPIRE].

[30] M.B. Green, C.M. Hull and P.K. Townsend, D-brane Wess-Zumino actions, t duality and the
cosmological constant, Phys. Lett. B 382 (1996) 65 [hep-th/9604119] [INSPIRE].

[31] M. Born, Nonlinear theory of the electromagnetic field, Ann. Inst. Henri Poincare 7 (1937) 155
[INSPIRE].

[32] S.M. Kuzenko and S. Theisen, Nonlinear self-duality and supersymmetry, Fortsch. Phys. 49
(2001) 273 [hep-th/0007231].

[33] J.G. Russo and P.K. Townsend, Causality and energy conditions in nonlinear electrodynamics,
JHEP 06 (2024) 191 [arXiv:2404.09994] [INSPIRE].

[34] M. Perry and J.H. Schwarz, Interacting chiral gauge fields in six-dimensions and Born-Infeld
theory, Nucl. Phys. B 489 (1997) 47 [hep-th/9611065] [INSPIRE].

– 39 –

https://doi.org/10.1142/9789812793850_0025
https://doi.org/10.48550/arXiv.hep-th/9908105
https://inspirehep.net/literature/505610
https://doi.org/10.1140/epjc/s10052-018-5849-2
https://doi.org/10.1140/epjc/s10052-018-5849-2
https://doi.org/10.48550/arXiv.1804.10182
https://inspirehep.net/literature/1670238
https://doi.org/10.1051/0004-6361:20030083
https://doi.org/10.48550/arXiv.astro-ph/0305557
https://inspirehep.net/literature/619800
https://doi.org/10.1140/epjc/s10052-022-10565-w
https://doi.org/10.48550/arXiv.2203.17111
https://inspirehep.net/literature/2060743
https://doi.org/10.1103/PhysRevD.109.105023
https://doi.org/10.1103/PhysRevD.109.105023
https://doi.org/10.48550/arXiv.2401.06707
https://inspirehep.net/literature/2746315
https://doi.org/10.1002/andp.201600124
https://doi.org/10.48550/arXiv.1604.02545
https://inspirehep.net/literature/1444965
https://doi.org/10.1007/JHEP10(2021)031
https://doi.org/10.1007/JHEP10(2021)031
https://doi.org/10.48550/arXiv.2106.07547
https://inspirehep.net/literature/1868416
https://doi.org/10.21468/SciPostPhys.16.5.124
https://doi.org/10.48550/arXiv.2401.04167
https://inspirehep.net/literature/2744878
https://doi.org/10.1103/PhysRevD.102.121703
https://doi.org/10.48550/arXiv.2007.09092
https://inspirehep.net/literature/1807764
https://doi.org/10.1007/JHEP03(2021)022
https://doi.org/10.48550/arXiv.2012.09286
https://inspirehep.net/literature/1837102
https://doi.org/10.1002/1521-3978(200102)49:1/3<273::AID-PROP273>3.0.CO;2-0
https://doi.org/10.1002/1521-3978(200102)49:1/3<273::AID-PROP273>3.0.CO;2-0
https://doi.org/10.48550/arXiv.hep-th/0007231
https://inspirehep.net/literature/531042
https://doi.org/10.1134/1.1842299
https://doi.org/10.48550/arXiv.hep-th/0303192
https://inspirehep.net/literature/615583
https://doi.org/10.1016/0370-2693(96)00523-0
https://doi.org/10.48550/arXiv.hep-th/9603123
https://inspirehep.net/literature/416854
https://doi.org/10.1016/0370-2693(96)00643-0
https://doi.org/10.48550/arXiv.hep-th/9604119
https://inspirehep.net/literature/417848
https://inspirehep.net/literature/1718053
https://doi.org/10.1002/1521-3978(200102)49:1/3<273::AID-PROP273>3.0.CO;2-0
https://doi.org/10.1002/1521-3978(200102)49:1/3<273::AID-PROP273>3.0.CO;2-0
https://doi.org/10.48550/arXiv.hep-th/0007231
https://doi.org/10.1007/JHEP06(2024)191
https://doi.org/10.48550/arXiv.2404.09994
https://inspirehep.net/literature/2777862
https://doi.org/10.1016/S0550-3213(97)00040-0
https://doi.org/10.48550/arXiv.hep-th/9611065
https://inspirehep.net/literature/425712


J
H
E
P
0
9
(
2
0
2
4
)
1
0
7

[35] B.P. Kosyakov, Nonlinear electrodynamics with the maximum allowable symmetries, Phys. Lett.
B 810 (2020) 135840 [arXiv:2007.13878] [INSPIRE].

[36] B.P. Kosyakov, Introduction to the classical theory of particles and fields, Springer (2007)
[INSPIRE].

[37] S.I. Kruglov, On generalized Born-Infeld electrodynamics, J. Phys. A 43 (2010) 375402
[arXiv:0909.1032] [INSPIRE].

[38] M. Rocek and A.A. Tseytlin, Partial breaking of global D = 4 supersymmetry, constrained
superfields, and three-brane actions, Phys. Rev. D 59 (1999) 106001 [hep-th/9811232] [INSPIRE].

[39] K. Lechner, P. Marchetti, A. Sainaghi and D.P. Sorokin, Maximally symmetric nonlinear
extension of electrodynamics and charged particles, Phys. Rev. D 106 (2022) 016009
[arXiv:2206.04657] [INSPIRE].

[40] C. Ferko et al., Interacting chiral form field theories and TT -like flows in six and higher
dimensions, JHEP 05 (2024) 320 [arXiv:2402.06947] [INSPIRE].

– 40 –

https://doi.org/10.1016/j.physletb.2020.135840
https://doi.org/10.1016/j.physletb.2020.135840
https://doi.org/10.48550/arXiv.2007.13878
https://inspirehep.net/literature/1809078
https://inspirehep.net/literature/752473
https://doi.org/10.1088/1751-8113/43/37/375402
https://doi.org/10.48550/arXiv.0909.1032
https://inspirehep.net/literature/830426
https://doi.org/10.1103/PhysRevD.59.106001
https://doi.org/10.48550/arXiv.hep-th/9811232
https://inspirehep.net/literature/457515
https://doi.org/10.1103/PhysRevD.106.016009
https://doi.org/10.48550/arXiv.2206.04657
https://inspirehep.net/literature/2093871
https://doi.org/10.1007/JHEP05(2024)320
https://doi.org/10.48550/arXiv.2402.06947
https://inspirehep.net/literature/2757560

	Introduction
	Strong-field causality redux
	Auxiliary fields and the stress-energy tensor

	The self-dual NLED Hamiltonian
	Convexity/concavity and causality
	Simple examples
	Conformal invariance redux

	Hamiltonian without Legendre transform
	Further examples

	Phi-parity duality
	The Phi-parity dual of self-dual NLED
	The alternative CH construction
	The general ``Phi-parity'' invariant self-dual theory

	Legendre self-duality
	A proof from the CH formula

	The NLED/particle-mechanics correspondence
	Summary and outlook

