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1 Introduction

Axion-like particles (ALPs) are hypothetical particles that arise in several extensions of the
Standard Model (SM) of particle physics as pseudo-Goldstone bosons with a shift symmetry [1–
10]. They are characterized by a low mass and a weak coupling to ordinary matter, which
makes them difficult to detect. However, their existence is predicted by various theories
that attempt to solve some of the outstanding problems in physics, such as the strong CP
problem [11–17], the nature of dark matter [18, 19] and experimental anomalies [20–23].

In the effective field theory (EFT) framework [24], possible interaction operators of
ALP(s) and SM particles start at dimension-five [25] and continue to higher order ones [26].
We can explore the effect of each term separately or some of them collectively. On the other
hand, the ALP mass range in the general EFT extends from almost massless to the electroweak
scale or above. Therefore, there are various search strategies for different ALP interactions
and masses including laboratory-based [27], beam-dump [28, 29], Higgs factories [30, 31],
and high energy collider [26, 30] experiments, as well as cosmological and astrophysical
observations [32] (for a recent summary please see ref. [33]).

Among various kinds of ALP searches, the collider experiments are sensitive to probe
the GeV to TeV scale ALPs. Although there were already a number of studies to explore
the properties of ALPs at the Large Hadron Collider(LHC) [30, 34–40] and other future
colliders [26, 39, 41–46], we find that most of the previous studies of ALP production channels
at the LHC only focus on a single ALP effective operator in each process. However, people
often overlook the potential for interference effects among different ALP operators except
for the global analysis [40]. An interesting example in the SM is the associated production
of the Higgs boson with a single top quark [47–54], in which the HWW coupling interferes
non-trivially with the top-Yukawa coupling and experimentally it can be disentangled. With
the same spirit, we propose an alternative approach that takes into account two or more
relevant ALP effective operators simultaneously in a single production process and explore
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their interference effects. In particular, we study the ALP-W +W− and the ALP-tt couplings
in the process pp → tja at the LHC.

The process pp → tja as well as pp → jγa and pp → tt̄a have been considered in ref. [36].
However, interference effects among different ALP effective operators for these processes are
not explored in that work. The process pp → jγa involves the ALP-quark pair, ALP-gluon
pair, ALP-ZZ, and ALP-Zγ couplings. Similarly, the process pp → tt̄a involves both ALP-tt̄
and ALP-gluon pair couplings. Moreover, ref. [36] focuses only on Ma < 100 MeV, where
the ALPs become invisible particles at the LHC. Therefore, further study on interference
effects and heavy ALPs with prompt decays to SM particles is essential and complementary
to exploring the properties of ALPs at the LHC.

In this work, we focus on the process pp → tja with a → γγ, in which only the ALP-
W +W− and ALP-tt couplings are involved. Especially, the final state with two isolated
photons and a top quark decaying semi-leptonically is considered for 25 GeV < Ma < 100 GeV.
Although this process is similar to the associated production of the Higgs boson with a
single top quark, the relevant ALP coupling types are different from the Higgs boson ones.
Therefore, the process pp → tja can generate quite distinct predictions. Our proposed
approach allows us to explore novel ALP production processes that involve multiple ALP
operators and investigate their interference effects.

The organization of this paper is as follows. In the next section, we describe the ALP
interactions relevant to this study in the EFT framework. In section 3, we explore the
interference effects between the ALP-W +W− and ALP-tt couplings in pp → taX processes
where “X” is the possible SM particles. In section 4, we describe the experimental setup for
discriminating the signal from the related SM backgrounds. We give the numerical results
and sensitivity reach of the ALP couplings in section 5. Finally, we conclude in section 6.

2 Theoretical setup

In this study, the relevant ALP operators include the ALP-gauge boson pair and the ALP-top
quark pair couplings, which start at dimension-five. The CP -odd couplings of the ALP to
the electroweak gauge boson fields are given by

LEW ⊃ − a

fa

(
CW W W i

µνW̃ iµν + CBBBµνB̃µν
)

, (2.1)

where i = 1, 2, 3 represents the SU(2) index, and W̃ iµν and B̃µν are the dual field strength
tensors. Here the ALP field and its decay constant are represented by a and fa, respectively.
After transforming W i and B to the physical fields γ, Z, W±, the interactions in eq. (2.1)
can be written as

LEW ⊃ −1
4a
(
gaγγFµνF̃ µν + gaγZFµνZ̃µν + gaZZZµνZ̃µν + gaW W WµνW̃ µν

)
, (2.2)

where Fµν , Wµν , and Zµν are the field strength tensors of the photon, W±, and Z bosons,
respectively. Thus, the dimensionful couplings of the photon and the electroweak gauge
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Figure 1. Two key contributing Feynman diagrams for the process pp → tja at the LHC.

bosons to the ALP can be written in terms of CW W and CBB [25, 31, 35, 38, 46],

gaγγ = 4
fa

(CBBc2
w + CW W s2

w), (2.3)

gaW W = 4
fa

CW W , (2.4)

gaZZ = 4
fa

(CBBs2
w + CW W c2

w), (2.5)

gaZγ = 8
fa

swcw(CW W − CBB) , (2.6)

where cw and sw are cosine and sine of the Weinberg angle that is related to the rotation
between the electroweak fields and the physical fields as in

W 3
µ = cwZµ + swAµ, Bµ = −swZµ + cwAµ .

On the other hand, the ALP-top quark pair interaction is given by [55]

Latt = Caϕ
∂µa

2fa
(t̄γµγ5t). (2.7)

After applying the equation of motion, the above Lagrangian, eq. (2.7), can be written as

Latt = −iCaϕ
mta

fa
(t̄γ5t). (2.8)

where mt is the top quark mass. As we can see, the ALP-quark pair coupling is proportional to
the mass of the quark. Therefore, for the similar size of Caϕ/fa, the att coupling can provide
stronger interaction than other aqq couplings. Equipped ourselves with these theoretical
setups, we are now ready to discuss the interference effects between the aW +W− and the
att couplings in the process pp → tja.

3 Production and interference effects in pp → taX processes

In this section, our focus is on investigating the interference effects between the aW +W−

and the att operators in the process pp → taX where “X” is the possible SM particles at the
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Figure 2. Production cross sections for the signal process pp → j t a with a → γγ and t → bW, W →
lνl at the LHC (

√
s = 14 TeV) for Ma = 25, 50, 100 GeV. We fix the aW +W − coupling by setting

CW W = CBB = 1 and fa = 10 TeV. The att coupling Caϕ varies from −10 to +10.

Figure 3. Two key contributing Feynman diagrams for the process pp → tjba at the LHC.

LHC with
√

s = 14 TeV. Firstly, two key contributing Feynman diagrams for pp → tja are
shown in figure 1. The ALP can bremsstrahlung off a W propagator and also off a top-quark
leg.1 Thus, these two sets of diagrams can interfere.

We apply MadGraph5_aMC@NLO [56] with the 5-flavor scheme (u, d, s, c, b) to calculate the
production cross sections for the process pp → tja fixing the parameters: CW W = CBB = 1
and fa = 10 TeV, and vary the att coupling labeled by Caϕ from −10 to 10. We show in
figure 2 the production cross sections for Ma = 25, 50, 100 GeV at the LHC (

√
s = 14 TeV),

including the branching ratios for a → γγ and t → bW, W → lνl (l = e, µ).
1Here we do not involve the Feynman diagrams in which the ALP attached to the b quark or light quarks

since their contributions are much smaller than that from the att coupling with the same Caϕ/fa value.
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Figure 4. Two key contributing Feynman diagrams for the process pp → tWa at the LHC.

Figure 5. Two key contributing Feynman diagrams for the process pp → tba at the LHC.

It is not difficult to see the interference effects when we look at the cross-section curves
at both ends (−10 and +10), although the effects are moderate at only about 10% difference.
Moreover, we have observed that the contribution from the att interaction with Caϕ ∼ 1
is smaller than that from the aW +W− interaction with CW W = CBB = 1 in this process.
Meanwhile, the constraints for the aW +W− coupling are much stronger than that for the
att coupling as shown in refs. [37, 55, 57].

Furthermore, we would like to discuss some other associated ALP production with a
single top quark processes. The first one is pp → t j b a (figure 3), which can be regarded as
a higher-order correction from pp → t j a when the b-quark is not tagged in the final state.
To identify this process from pp → t j a and avoid the collinear divergence, the following
cuts are applied to the b and j in the final state (note that the PTj and |ηj | cuts used in
the signal-background analysis in the next section are different):

PTb
> 25 GeV, |ηb| < 2.5, PTj > 10 GeV, |ηj | < 5. (3.1)

The second and the third ones are pp → t W a (figure 4) and pp → t b a (figure 5) processes,
respectively. In order to fairly compare the production cross-sections of these processes, we
do not impose any cuts for them here, except for pp → t j b a with the cuts in eq. (3.1)
to avoid the double-counting. The production cross-sections for the processes pp → t j a,
pp → t j b a, pp → t W a, and pp → t b a at the LHC (

√
s = 14 TeV) for Ma = 50 GeV are

shown in figure 6. We fix the ALP-gauge boson pair coupling by setting CW W = CBB = 1
and fa = 10 TeV and vary the att coupling Caϕ from −10 to +10. Firstly, the shape of
pp → t j b a is similar to pp → t j a, but the cross-section is smaller as we expect it to be a
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Figure 6. Production cross sections for the signal processes pp → t j a, pp → t j b a, pp → t W a,
and pp → t b a at the LHC (

√
s = 14 TeV) for Ma = 50 GeV. We fix the ALP-gauge boson pair

coupling by setting CW W = CBB = 1 and fa = 10 TeV. The att coupling Caϕ varies from −10 to +10.

higher-order correction. Secondly, pp → t W a is also a promising process which can show
obvious interference effects. However, its cross-section is less sensitive to the variation of Caϕ

than the one from pp → t j a and the decay modes of W should be taken into account. Note
that for the processes pp → tjba and pp → tWa, the agg coupling can also be included to
study the interference effects among the aW +W−, att̄, and agg couplings simultaneously.
Finally, pp → t b a displays sizable interference effects as well, but its cross-section is much
smaller than the other three processes. Therefore, we will stick with the process pp → t j a

for the analysis in this study.

4 Experimental setup and simulations

In this section, we describe the calculation and experimental setup for discriminating the
signal from dominant SM backgrounds. We show the event rates for the center-of-mass
energy

√
s = 14 TeV and integrated luminosities of 300 fb−1 (current run) and 3000 fb−1

(High-Luminosity LHC) [58].

4.1 Signal and relevant SM background processes

The Monte Carlo simulations of signal and relevant SM background events are calculated
utilizing MadGraph5_aMC@NLO. The UFO model file of the ALP EFT framework (eqs. (2.2)
and (2.8)) is employed for the signal event simulation [24].2 In our simulation, 104 events
are generated for the signal process and 105 events for each SM background process. The
subsequent steps involve parton showering and hadronization using Pythia8 [59], and

2This UFO model file is publicly accessible for download at https://feynrules.irmp.ucl.ac.be/wiki/ALPsEFT.
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detection simulations conducted with Delphes3 [60], incorporating the ATLAS_card.dat for
accuracy and consistency. Here a jet cone size R = 0.4 is employed for clustering jets using
FastJet [61] with the anti-kT algorithm [62]. The output root files from Delphes3 are passed
to the Python-based tool uproot [63] for further analysis.

In order to investigate the final-state signature of two isolated photons, we focus on the
ALP within a mass range spanning from 25 GeV to 100 GeV.3 In this simulation, some specific
benchmark values are assigned to the model parameters: fa = 10 TeV, CW W = CBB = 1,
and a scan of Caϕ from −10 to 10. A nonzero Caϕ together with CW W = 1 initiates ALP
production from top bremsstralung, alongside with ALP production from W -boson fusion.
In contrast, the choice of Caϕ = 0 prohibits the top bremsstralung into ALP. The variation
Caϕ offers additional insights into the interference effects among these ALP operators. We
have already shown the interference effects in figure 2 in the last section.

The signal final state consists of the decay of the ALP and the top quark, as well as a
hadronic jet. The dominant decay mode of the ALP is into a pair of isolated photons for
the ALP mass range from 25 − 100 GeV for the setting CW W = CBB = 1. We choose the
semi-leptonic decay of the top quark: t → Wb, W → lνl in this study. For such a final
state, we consider two main SM backgrounds: (i) p p → t j γ γ (labeled as BG1) and (ii)
p p → W j j γ γ (labeled as BG2). Note that BG1 emerges as the predominant background
in comparison to BG2. In order to estimate the sensitivity reach of the ALP coupling, we
evaluate the total number of signal and background events at the LHC with a center-of-mass
energy of

√
s = 14 TeV. The total number of events is defined as:

Ns, Nb = σs,b ×
Nselected

Nsim
× L× ηb−tag , (4.1)

where σb and σs denote the cross-sections of background and signal events, respectively.
The ratio Nselected

Nsim
represents the selection rate, and L is the integrated luminosity. The

factor ηb−tag represents the b-quark tagging efficiency or b-mistag probability according to
b or j in the context.

One may concern about the tt̄-related backgrounds such as tt̄, tt̄j, or even tt̄γj when
j’s are mis-tagged as photons. Since we have applied isolation cuts among the photons, the
jet, the b-jet, and lepton shown in eq. (4.2), the mis-tag probability for Pj→γ ≃ 5 × 10−4 [64].
Therefore, with such a small factor we do not expect these tt̄ related backgrounds can affect
significantly the sensitivity estimates.

4.2 Event selections

In an effort to reduce these two main SM background events, we scrutinize the kinematic
characteristics between the signal and background events, aiming to determine a suitable
threshold. As discussed in the preceding section, we explore ALP masses ranging from
Ma = 25 GeV to Ma = 100 GeV. To illustrate interference effects, we select three benchmark
values for the ALP mass, namely Ma = 10, 25, and 100 GeV, and keeping CW = CB = 1 fixed.
Additionally, we examine the cases with Caϕ = −10,−5, 0, 5, 10. By observing variations in

3Two photons from the ALP decay will become too collimated to pass the isolation criteria when Ma ≲
20 GeV. In this situation, a photon-jet forms in the final state [38, 39, 45] instead of two isolated photons.
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Figure 7. Kinematical distributions for the signal with Ma = 50 GeV and two main SM backgrounds
BG1 and BG2. Here fa = 10 TeV and CW W = CBB = 1 are fixed. The “leading” in P leading

Tγ
and

|ηleading
γ | refers to the photon with the highest transverse momentum.

the number of events (as already depicted in figure 2, where the event rate quantifies the
interference effect) for couplings with the same magnitude but opposite signs, we can readily
discern the interference effect. Finally, the results for the integrated luminosities 300 fb−1

(current run) and 3000 fb−1 (High-Luminosity LHC) will be shown in the next section.
Various kinematical distributions for the signal case of Ma = 50 GeV along with two main

SM backgrounds at detector level are shown in figure 7. The signal cases for Ma = 25 GeV
and 100 GeV show similar behavior. As an initial requirement for event selection, we applied
a set of cuts on the transverse momentum PT and rapidity |η| of the final-state particles. We
refer to these cuts as “Basic Cuts”. The Basic Cuts are given below in eq. (4.2):

Basic Cuts:
PTb

> 25 GeV, |ηb| < 2.5, P lead
Tj

> 25 GeV, |ηlead
j | < 2.5,

PTl
> 25 GeV, |ηl| < 2.5, P lead

Tγ
& P sub−lead

Tγ
> 20 GeV, |ηlead

γ | & |ηsub−lead
γ | < 2.5,

∆Rij > 0.4 for i, j = γ, l, j, b (except ∆Rγγ > 0.3). (4.2)

Here “lead” and “sub-lead” refer to the leading and sub-leading orders according to PT .
Additionally, the b-quark tagging efficiency and mistag probability are adopted from the
ATLAS template in Delphes3.
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We impose the following cuts for event selection: Mbl < 150 GeV, ensuring the invariant
mass of the system consisting of the b-jet and the charged lepton from the top-quark decay is
less than 150 GeV. This helps isolate events where the b-jet and charged lepton originate from
the top-quark decay. The cut ∆Rbl < 2.5 ensures that the angular separation between the
b-jet and the charged lepton (in η-ϕ space) is less than 2.5, ensuring the b-jet and charged
lepton are sufficiently close, as expected from top-quark decays. We require P leading

Tγ
> 60

GeV, ensuring the transverse momentum of the leading (highest pT ) photon is greater than
60 GeV, to select high-energy photons from the ALP decay. The cut |ηleading

γ | < 1.7 ensures
the pseudorapidity of the leading photon is within 1.7, selecting photons within the central
detector region where detection efficiency is higher. The cut on ∆Rlγ > 2.0 ensures the
angular separation between the charged lepton and the photon (in η-ϕ space) is greater than
2.0, ensuring the charged lepton and photon are well separated, reducing the background from
misidentified charged leptons and photons. Finally, we impose the invariant-mass window
cut on the diphoton from the ALP decay: |Mγγ − Ma| < 5 GeV. As shown in figure 7, the
ALP mass window within 10 GeV is broad enough to encompass the major part of this
resonance in the invariant diphoton mass distribution. Our cut on |Mγγ − Ma| < 5 GeV
could be further refined in a real experimental bump hunt analysis. Since the chosen ALP
mass window reflects the energy measurement precision of the relevant detectors, such an
analysis is beyond the scope of this study.

We summarize the above cuts for the signal and background event selections:

• Basic Cuts in eq. (4.2),

• Mbl < 150 GeV,

• ∆Rbl < 2.5,

• P leading
Tγ

> 60 GeV,

• |ηleading
γ | < 1.7,

• ∆Rlγ > 2.0,

• |Mγγ − Ma| < 5 GeV.

The cut-flow tables for Ma = 25, 50, and 100 GeV are given in tables 1, 2 3, respectively.
We found that the ALP invariant-mass window cut is the strongest one to reduce events
from both BG1 and BG2 but keep the signal events.

5 Numerical results

After imposing the event selections provided in the last section, the number of signal events
are comparable to, if not larger than, the background events. It is thus meaningful to calculate
the significance of the signal and set limits on the cutoff scale fa. The relation between the
ALP signal events, Ns, and the ALP cutoff scale, fa, is given as follows:

Ns ∝ f−2
a . (5.1)

– 9 –
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Cut BG1 BG2 Signal
Caϕ = −10 Caϕ = −5 Caϕ = 0 Caϕ = 5 Caϕ = 10

Basic Cuts 404.35 8.95 4.25 1.64 0.35 1.85 4.67
Mbl < 150 GeV 371.85 3.23 3.88 1.50 0.32 1.69 4.24
∆Rbl < 2.5 219.2 1.72 2.38 0.97 0.18 1.00 2.58
P leading

Tγ
> 60 GeV 135.46 1.17 0.92 0.34 0.09 0.40 1.14

|ηleading
γ | < 1.7 111.89 1.00 0.83 0.30 0.07 0.35 0.93

∆Rlγ > 2.0 87.47 0.66 0.69 0.23 0.05 0.29 0.82
20 GeV < Mγγ < 30 GeV 0.74 0.00 0.69 0.23 0.05 0.29 0.80

Table 1. Cutflow table for the SM backgrounds (BG1: p p → t j γ γ and BG2: p p → W j j γ γ), and
the signal: p p → j t a with various Caϕ couplings. Here we set Ma = 25 GeV, fa = 10 TeV, CW W =
CBB = 1, and Caϕ = −10,−5, 0, 5, 10 GeV. Basic Cuts in the first row denotes the total number
of events passed the cuts coded in eq. (4.2). The number of events are calculated by eq. (4.1) and
integrated luminosity is set to L = 3000 fb−1.

Cut BG1 BG2 Signal
Caϕ = −10 Caϕ = −5 Caϕ = 0 Caϕ = 5 Caϕ = 10

Basic Cuts 404.35 8.95 18.52 6.46 2.07 7.36 20.84
Mbl < 150 GeV 371.85 3.23 16.09 5.72 1.88 6.59 18.26
∆Rbl < 2.5 219.2 1.72 11.81 4.11 1.26 4.42 12.35
P leading

Tγ
> 60 GeV 135.46 1.17 9.86 3.54 1.17 3.81 10.51

|ηleading
γ | < 1.7 111.89 1.0 8.84 3.18 0.98 3.36 9.4

∆Rlγ > 2.0 87.47 0.66 7.99 2.72 0.83 3.05 8.69
45 GeV < Mγγ < 55 GeV 3.2 0.02 7.91 2.68 0.82 3.01 8.62

Table 2. Cutflow table for the SM backgrounds (BG1: p p → t j γ γ and BG2: p p → W j j γ γ), and
the signal: p p → j t a with various Caϕ couplings. Here we set Ma = 50 GeV, fa = 10 TeV, CW W =
CBB = 1, and Caϕ = −10,−5, 0, 5, 10 GeV. Basic Cuts in the first row denotes the total number
of events passed the cuts coded in eq. (4.2). The number of events are calculated by eq. (4.1) and
integrated luminosity is set to L = 3000 fb−1.

Cut BG1 BG2 Signal
Caϕ = −10 Caϕ = −5 Caϕ = 0 Caϕ = 5 Caϕ = 10

Basic Cuts 404.35 8.95 27.3 10.31 4.22 11.07 31.21
Mbl < 150 GeV 371.85 3.23 23.67 8.91 3.75 9.58 27.16
∆Rbl < 2.5 219.2 1.72 17.92 6.75 2.73 7.04 20.63
P leading

Tγ
> 60 GeV 135.46 1.17 17.29 6.49 2.7 6.83 19.84

|ηleading
γ | < 1.7 111.89 1.0 15.63 5.8 2.3 6.07 17.91

∆Rlγ > 2.0 87.47 0.66 13.98 5.1 1.92 5.49 16.77
95 GeV < Mγγ < 105 GeV 5.96 0.04 13.93 5.05 1.9 5.46 16.7

Table 3. Cutflow table for the SM backgrounds (BG1: p p → t j γ γ and BG2: p p → W j j γ γ), and
the signal: p p → j t a with various Caϕ couplings. Here we set Ma = 100 GeV, fa = 10 TeV, CW W =
CBB = 1, and Caϕ = −10,−5, 0, 5, 10 GeV. Basic Cuts in the first row denotes the total number
of events passed the cuts coded in eq. (4.2). The number of events are calculated by eq. (4.1) and
integrated luminosity is set to L = 3000 fb−1.
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Figure 8. Exclusion regions at 95% confidence level (C.L.) for the ALP cutoff scale fa derived from
the process pp → j t a followed by a → γγ and t → blνl at the LHC with

√
s = 14 TeV. This analysis

is conducted with different choices of Caϕ = 0, 10 and under two sets of integrated luminosities,
L = 300 fb−1 and 3000 fb−1. Solid lines in the plot represent sensitivity curves with a 10% systematic
uncertainty, while the dashed lines depict the curves without incorporating systematic uncertainty.
The gray areas represent the existing limits from LEP [65, 66], CDF [67], and LHC [68, 69].

Therefore, we can rescale the factor fa to match the expected signal events Ns. The
significance of the signal is given by [31]

Z =

√√√√2
[
(Ns + Nb) ln

(
(Ns + Nb)(Nb + σ2

B)
Nb

2 + (Ns + Nb)σ2
B

)
−

N2
b

σ2
B

ln
(

1 + σ2
BNs

Nb(Nb + σ2
B)

)]
, (5.2)

where Ns, Nb are the number of signal and background events, and σB is the systematic
uncertainty in background estimation, which is taken to be zero and 0.1Nb in the presentation.
The 95% confidence level (C.L.) sensitivity curves for the ALP cutoff scale fa to the ALP
mass Ma are obtained by requiring the significance Z > 2.

In figure 8, we show 95% C.L. exclusion region for the ALP cutoff scale, fa. This exclusion
region is obtained through the process pp → j t a with a → γγ and t → bW, W → lνl at the
LHC with

√
s = 14 TeV. In the figure, we fix CW W = CBB = 1 and set Caϕ = 0 and Caϕ = 10

as two benchmark points. Two different sets of integrated luminosities, L = 300 fb−1 and
3000 fb−1 are plotted. In the plot, solid lines denote sensitivity curves accounting for a 10%
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systematic uncertainty, while dashed lines represent curves without incorporating systematic
uncertainty. We can find that the systematic uncertainty only slightly changes the predictions
of future bounds in this study. It indicates that our results are robust against possible
uncertainties. The gray shaded areas correspond to the existing limits from LEP [65, 66],
CDF [67], and LHC [68, 69]. The lines in figure 8 unmistakably demonstrate that sensitivity
curves with non-zero values of Caϕ can yield better limits on fa than those with Caϕ = 0. It
can also be observed in figure 2 in which the minimal production cross section for the signal
process appears at Caϕ = 0 and it enhances as the |Caϕ| increases.

Specifically, the sensitivity reach corresponding to Caϕ = 10 and L = 300 (3000) fb−1

(depicted by the red (green) line) exhibits enhanced sensitivity compared to current constraints
for Ma > 60 GeV (Ma > 45 GeV). Even in the absence of the Caϕ coupling (Caϕ = 0), the
HL-LHC (L = 3000 fb−1) can impose the sensitivity on fa (indicated by the blue curve)
for Ma > 80 GeV.

6 Conclusions

In summary, we have presented a novel approach that considers simultaneous presence of
two or more ALP interaction operators in a single process at the LHC. In particular, we
demonstrated the interference effects of the ALP-gauge boson pair and the ALP-top quark
pair couplings in the process pp → tja as shown in figure 2. Through a detailed analysis
of pp → tja, followed by a → γγ and semi-leptonic decay of the top quark, as a case study,
we demonstrated the efficacy of this approach in constraining ALP interactions as well as
their interference within a single process.

Our findings indicate that the sensitivity of the ALP cutoff scale fa could potentially
reach down to the values around 1/fa ∼ 5 × 10−2 TeV−1 for the ALP masses ranging from
25 GeV to 100 GeV at the HL-LHC as shown in figure 8. It indicates that some uncovered
parameter space can be further explored from the process pp → tja in the near future.
Furthermore, once the absolute size of the ALP-gauge boson pair and the ALP-top quark
pair couplings can be pinned down by other ALP production channels, this process can
provide extra information about the relative sign (or phase) between two coefficients of ALP
interaction operators. In our case, we observe a positive interference between the processes in
figure 1 which is visible from the fact that the cross-section increases with Caϕ.
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