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Abstract: We find classes of driven conformal field theories (CFT) in d+ 1 dimensions with
d > 1, whose quench and floquet dynamics can be computed exactly. The setup is suitable for
studying periodic drives, consisting of square pulse protocols for which Hamiltonian evolution
takes place with different deformations of the original CFT Hamiltonian in successive time
intervals. These deformations are realized by specific combinations of conformal generators
with a deformation parameter β; the β < 1 (β > 1) Hamiltonians can be unitarily related to
the standard (Lüscher-Mack) CFT Hamiltonians. The resulting time evolution can be then
calculated by performing appropriate conformal transformations. For d ≤ 3 we show that the
transformations can be easily obtained in a quaternion formalism. Evolution with such a
single Hamiltonian yields qualitatively different time dependences of observables depending
on the value of β, with exponential decays characteristic of heating for β > 1, oscillations
for β < 1 and power law decays for β = 1. This manifests itself in the behavior of the
fidelity, unequal-time correlator, and the energy density at the end of a single cycle of a
square pulse protocol with different hamiltonians in successive time intervals. When the
Hamiltonians in a cycle involve generators of a single SU(1, 1) subalgebra we calculate the
Floquet Hamiltonian. We show that one can get dynamical phase transitions for any β

by varying the time period of a cycle, where the system can go from a non-heating phase
which is oscillatory as a function of the time period to a heating phase with an exponentially
damped behavior. Our methods can be generalized to other discrete and continuous protocols.
We also point out that our results are expected to hold for a broader class of QFTs that
possesses an SL(2, C) symmetry with fields that transform as quasi-primaries under this. As
an example, we briefly comment on celestial CFTs in this context.
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1 Introduction

The study of time evolution of a driven quantum system with a time dependent Hamiltonian
is a valuable tool for gaining insight into its non-equlibrium properties. Useful drive protocols
include quantum quench, ramp, and periodic or quasi-periodic drive protocols [1–4]. Recently,
properties of quantum systems driven via periodic protocols have been most intensely studied;
such systems undergo evolution governed by Hamiltonian periodic in time with a time period
T . Interestingly, at strobosocopic times t = nT , where n is an integer, the evolution operators
of such systems can be written as U(nT, 0) = exp[−iHFnT ]; the corresponding dynamics
is then completely controlled by the Floquet Hamiltonian HF .

However, most of these studies require numerical work: analytically tractable models are
limited to free field theories or two dimensional conformal field theories. For the latter class
of theories, the underlying infinite dimensional symmetry algebra provides a powerful tool
to calculate physical quantities of interest. One example involves a sudden quench from a
massive theory to a two dimensional CFT whose IR properties can be well approximated by
a Cardy-Calabrese state [5], and the time evolution can be calculated by using conformal
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mapping. A more recent example involves quench and Floquet dynamics in a two dimensional
CFT [6–16]: once again the time evolution can be obtained by conformal maps. No such
analytical results are known in higher dimensions, and one has to typically resort to numerical
calculations which are often limited by finite size effects.1

In this paper we demonstrate that a class of time dependent problems can be exactly
studied in conformal field theories in arbitrary number of dimensions and lead to interesting
non-trivial dynamics. Our work is inspired by the work of [6] who studied a 1 + 1 dimensional
CFT on a strip which starts from the usual CFT Hamiltonian and is quenched by a sine
squared deformed (SSD) one. The SSD-CFT2 has been studied previously in [17–21]. Both
these Hamiltonians belong to the global part of the Virasoro algebra. The time evolution then
becomes a Möbius transformation. The global part of the Virasoro algebra is (in Euclidean
signature) SO(3, 1) (generated by L0, L±1 and their hermitian conjugates). Floquet general-
izations to periodically driven CFTs by a sequence of the usual CFT Hamiltonian and SSD
Hamiltonian for successive time durations Ti were studied in [12, 14, 16]. Generalizations of
the SSD to other SL2 subgroups of Virasoro were studied in [15]. Holographic interpretations
were investigated in [7–9, 11] and from a different perspective in [22].

In higher dimensions (d + 1), the conformal algebra is SO(d + 2, 1). This suggests
that a natural generalization to higher dimensional systems can be obtained by considering
different generators of the conformal algebra as Hamiltonians and considering sequences of
non-commuting Hamiltonians in successive time intervals. Similar to the two dimensional
case, the dynamics is expected to be equivalent to conformal transformations.

In this work we consider conformal field theories on Sd × time. The class of Hamiltonians
are combinations of generators which belong to SL(2, R) ∼ SU(1, 1) subrgoups of the
conformal group. More specifically we consider

H(β,Π) = 2iD + iβ(Kµ + Pµ)Πµ , (1.1)

where the operators D,Kµ, Pµ (µ, ν = 0, · · · d) are generators of conformal transformations
(see below) and Πµ is a projector along µ-direction (e.g. Π0 = (1, 0, 0, . . .)). In the field
theory Hilbert space the hermiticity properties of these generators are

D† = −D K†
µ = −Pµ (1.2)

black Note that there are (d+ 1) such different SL(2, R) subalgebras corresponding to (d+ 1)-
inequivalent choices of Πµ. This provides a wider class of drive protocols where one can use
different members of the class of Hamiltonians H(β,Π), for different time intervals. In the
latter case, the net transformation is not a SU(1, 1) transformation.

In terms of the energy momentum tensor, the Hamiltonian on Sd × (time) may be
written as

H(β,Π) = 2
∫
dΩd

[
1 + 1

2βYµΠµ
]
Tww (1.3)

where Y µ denote cartesian coordinates on a Rd+1, where the sphere Sd is the surface Y µYµ = 1,
dΩd denotes the volume element on Sd and w denotes the Euclidean time.

1A different class of problems involving fast smooth quenches in conformal field theories in arbitrary
dimension can be addressed using conformal properties [23, 24].
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As will be shown below, when β < 1 a Hamiltonian of the form (1.1) can be transformed
to the standard CFT Hamiltonian (HST = 2iD) (on the plane), while for β > 1 it can be
transformed to the Lüscher-Mack (LM) type Hamiltonian (HLM = i(Pµ + Kµ)). We note
that for a CFT on Sd, HLM shares the same vacuum as the HST. However as we shall show,
the two Hamiltonians are related by a non-unitary transformation. Furthermore unitary time
evolution with HLM results in exponential time dependence.

As is standard in CFT’s, it is convenient to first work in Euclidean signature and perform
a Weyl transformation to a plane Rd+1

ds2 = dw2 + dΩ2
d = 1

r2 [δµνdx
µdxν ] (1.4)

where xµ are cartesian coordinates on Rd+1 and

r2 = δµνx
µxν = ew. (1.5)

The operator (2iD) becomes the dilatation operator on the plane, while Pµ generates transla-
tions on the plane. Acting on functions on Rd+1 the conformal generators are represented
by the following differential operators

D = −ixµ∂µ, Pµ = −i∂µ, Kµ = −i(2xµ(xν∂ν) − r2∂µ),
Lµν = −i(xµ∂ν − xν∂µ) . (1.6)

For a fixed µ the generators D,Pµ,Kµ form an SU(1, 1) subalgebra of the Euclidean conformal
algebra SO(d+ 2, 1). There are d+ 1 such subgroups corresponding to different choice of µ.
The SU(1, 1) nature of these subgroups can be understood by noting that the commutation
of these generators satisfy

[D,Kµ] = −iKµ, [D,Pµ] = iPµ, [Kµ, Pµ] = 2iD . (1.7)

Our strategy for calculating the response is analogous to the earlier works in 1 + 1
dimensions. We will perform a Weyl transformation to Rd+1, where the expressions for
the generators and the resulting conformal transformation become simple, calculate the
time evolution by evaluating the corresponding conformal transformation, transform back
to Sd × time and finally continue to real time. While this is straightforward in principle,
this becomes quickly cumbersome in practice for d > 1.

The key technical tool which facilitates our calculations is the fact that when d ≤ 3, a point
on Rd+1 can be represented by a quaternion and the action of finite conformal transformations
take a simple form, generalizing Möbius transformations on the complex plane to Möbius
transformations on the field of quaternions, SL(2, H). In general, the parameters of these
transformations are themselves quaternions. However, when the transformation belongs
to an SL(2, R) subgroup of the conformal group one can judiciously choose the quaternion
representation such that these parameters become real numbers. When continued to real
time, these transformations are represented by SU(1, 1) transformations on quaternions and
correspond to real transformations of the coordinates While this simplifies our calculations
considerably, this necessitates switching quaternionic representations whenever we switch

– 3 –



J
H
E
P
0
9
(
2
0
2
4
)
0
9
5

from one SL(2, R) subgroup to another. It should be emphasized that when a cycle involves
different SL(2, R) ∼ SU(1, 1) subgroups the net transformation is not a SL(2, R) ∼ SU(1, 1)
transformation. This is then essentially different from the d = 1 case investigated in the
literature. In this work, we provide explicit results for 3 + 1 dimensions, though it should
be emphasized that the framework is completely general for any d ≤ 3.

In the following we first consider properties of various quantities after a single drive cycle
as a function of the time period T of the drive and β. Each cycle involves Hamiltonians of
the form (1.1) with various Πµ, µ = 0, 1, · · · 3 for successive time intervals of equal value. The
value of β is either zero, or some fixed value, i.e. we do not consider different non-zero values
of β for different time intervals. These restrictions are for simplicity. All these diagonistics
show that for β < 1 the response is oscillatory as a function of the time period, while for
β > 1 one exponential decays for large time period. β = 1 is a critical value, where the
quantities have power law behavior. Since the driving Hamiltonians break rotation invariance
on the Sd the system develops inhomogenities. The nature of the inhomogeneties is richer in
these higher dimensional cases, since we have the ability to break different sets of symmetries
by choosing different sequences of H1 · · ·Hd+1. It can be easily seen that if we use different
nonzero values of β the behavior is oscillatory when all the β values are less than 1, power law
when all the β are equal to one. If any of the β exceed 1, the behavior will be exponential.

When all the hamiltonians in a cycle belong to the same SU(1, 1) subgroup of the
conformal group, we calculate the Floquet hamiltonian explicitly, so that the behavior after
an arbitrary number of cycles, n, can be then read off easily. We show that the three
conjugacy classes of SU(1, 1) correspond to exponential, oscillatory and power law behaviors
as a function of the number of cycles, n. By changing the time intervals inside a single cycle we
show that one can make transitions between these different phases both for β < 1 and β > 1.

When the cycles involve different Mobius subgroups, one needs to look at conjugacy
classes of SL(2, H). We indicate how one can proceed in this general case, but defer a detailed
investigation to a future publication.

The plan of the rest of this work is as follows. In section 2 we study the properties of
Hamiltonians of the form (1.1). This is followed by section 3 which deals with our strategy
for calculating the response to the dynamics for general d and the formulation in terms
of quaternions for d = 3. Next, in section 4, we provide results for three quantities under
the dynamics. The first corresponds to the fidelity of an evolving primary state at the
end of a drive cycle; this is discussed in subsection 4.1. The second constitutes behavior
of unequal-time correlation functions of the CFT under such evolution; this is discussed
subsection 4.2. The evolution of the stress tensor, starting from a primary CFT state, is
discussed in subsection 4.3. As expected, the conformal anomaly plays a role in this
calculation. In section E we find the fixed points and fixed surfaces for quaternionic Möbius
transformations which belong to a single SU(1, 1) and determine the trajectories of points
under successive cycles of a periodic drive. Finally, we discuss our main results and conclude
in section 5. Some details of the calculation are provided in the appendix.

2 The deformed CFTs

In this section we will discuss some properties of deformed CFT’s with a Hamiltonian of
the form (1.1).
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2.1 β < 1 and Möbius quantization

When β < 1, for the choice e.g. Πµ = (1, 0, 0, 0), the Hamiltonian H (defined in (1.1)) can be
thought of a different quantization of the theory with the undeformed hamitonian (β = 0)
upto a scaling of the new time. For d = 1 this has been called “Möbius quantization”.
Consider the Hamiltonian

H̃ = 1√
1 − β2H = (cosh θ)2iD + i(sinh θ)(K0 + P0) β = tanh θ . (2.1)

This Hamiltonian is related to the dilatation operator by a similarity transformation

U−1H̃U = (2iD), U = exp
[
− i

2θ(K0 − P0)
]
. (2.2)

This can be verified by explicit calculation. However since the left hand side of (2.2) depends
only on the commutators of the generators of the SU(1, 1) group, the equation must be
independent of the specific representation.

To verify (2.2) it is convenient to use a representation of the SU(1, 1) using Pauli matrices,

D = iσz/2, K0 = σ−, P0 = σ+ σ± = 1
2(σx ± iσy). (2.3)

The transformed special conformal and translation generators can be now deduced using
the identities

U−1σzU ≡ τz = σz cosh θ + iσx sinh θ
U−1σxU ≡ τx = σx cosh θ − iσz sinh θ, τy = σy . (2.4)

Using the representation (2.3) this leads to

U−1DU = D cosh θ + 1
2(K0 + P0) sinh θ

U−1K0U = 1
2(1 + cosh θ)K0 −

1
2(1 − cosh θ)P0 −D sinh θ ,

U−1P0U = 1
2(1 + cosh θ)P0 −

1
2(1 − cosh θ)K0 −D sinh θ . (2.5)

To calculate the transformation of the other generators of the conformal algebra, it is useful
to consider the combinations

Aµ ≡ 1
2(Kµ − Pµ) Bµ ≡ 1

2(Kµ + Pµ) . (2.6)

The conformal algebra then leads to a closed SL(2, R) subalgebra for the generators (A0, Aj , L0j)
for each value of j = 1, 2, 3

[A0, L0j ] = iAj [A0, Aj ] = iL0j [L0j , Aj ] = iA0 . (2.7)

Now consider the transformed Aj or L0j (these angular momentum generators are defined
in (1.6)),

U−1AjU = eiθA0Aje
−iθA0 U−1L0jU = eiθA0L0je

−iθA0 (2.8)
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Once again, the result is determined entirely in terms of commutators. We can therefore use
any representation of the algebra (2.7) to perform the calculation, e.g. the representation
in terms of Pauli matrices

L0j → 1
2σx Aj → 1

2 iσz A0 → −1
2 iσy (2.9)

to obtain

U−1AjU = Aj cosh θ − L0j sinh θ
U−1L0jU = L0j cosh θ −Aj sinh θ . (2.10)

Furthermore the conformal algebra implies

[A0,Kj + Pj ] = [A0, Lij ] = 0 . (2.11)

This leads to final form of the deformed generators:

U−1DU = D cosh θ − 1
2(K0 + P0) sinh θ

U−1K0U = 1
2(1 + cosh θ)K0 −

1
2(1 − cosh θ)P0 −D sinh θ

U−1P0U = 1
2(1 + cosh θ)P0 −

1
2(1 − cosh θ)K0 −D sinh θ

U−1KjU = 1
2(1 + cosh θ)Kj + 1

2(1 − cosh θ)Pj − L0j sinh θ

U−1PjU = 1
2(1 + cosh θ)Pj + 1

2(1 − cosh θ)Kj + L0j sinh θ

U−1L0jU = cosh θ L0j + 1
2 sinh θ(Pj −Kj), U−1LijU = Lij . (2.12)

These relations can be alternatively derived by first looking at the coordinate transfor-
mations resulting from the action of U with infinitesimal θ, and exponentiating them and
requiring that the correct commutation relations are satisfied by the deformed generators.
This is detailed in the appendix.

The results of this subsection imply that for β < 1 the deformed Hamiltonian is pro-
portional to a standard CFT Hamiltonian (dilatation operator) which is quantized with a
different notion of time. Consequently aspects of the physics of the deformed Hamiltonian
are expected to be qualitatively similar to the undeformed Hamiltonian.

2.2 β > 1 and Lüscher-Mack Hamiltonians

The unitary transformation which relates the deformed theory to the undeformed theory for
β < 1 does not work when β > 1. We will now demonstrate that for β > 1 the Hamiltonian
can be instead deformed to the generator K0 + P0. Consider the Hamiltonian

Ĥ = 1√
β2 − 1

H = 2iD sinhϕ+ i(K0 + P0) coshϕ β = cothϕ . (2.13)

Using manipulations entirely similar to the previous subsection it is easy to show that

U−1ĤU = i(K0 + P0), U = exp
[
− i

2ϕ(K0 − P0)
]
. (2.14)
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The transformations of the other generators can be worked out following a procedure entirely
analogous to the previous subsection. This shows that the physics of the deformed theory for
β > 1 is similar to a theory with a Lüscher-Mack Hamiltonian HLM = i

2(K0 + P0) rather
than the dilatation operator. In fact one has the following relationship:

i

2(K + P ) = e
π
4 (K−P )De−

π
4 (K−P ). (2.15)

If we let |∆̃n⟩ be the eigenstate of D, i.e. D|∆̃n⟩ = ∆̃n|∆̃n⟩ (with ∆̃n = iR), then one can
define left and right eigenvectors of LM Hamiltonian:

|nr⟩ = e
π
4 (K−P )|∆̃n⟩, ⟨nℓ| = ⟨∆̃n|e−

π
4 (K−P ). (2.16)

These states satisfy: ⟨nℓ|n′r⟩ = δ∆̃n,∆̃′
n

and,
∑
n
|nr⟩⟨nℓ| = I. This construction is similar to the

one recently used in [25]. If we consider the thermal partition function of the LM theory at
temperature T , which is: ZLM (T ) = Tr e−

i
2T

(K+P ), we may use the above eigenstates to show
that this is given by Tr e−

i
T

(iD). Hence finite temperature for LM theory gets Wick-rotated
into imaginary temperature partition function of the standard CFT:

ZLM (T ) = ZCF T (−iT ). (2.17)

This is suggestive of the fact that if we look at real time evolution in LM, we may have
thermal like behaviours marked by exponential dependence in real time. This we can confirm
using the 2 × 2 representations eq. (2.3). The unitary evolution operator U(t) takes the form:

U(t) = exp (−itHLM ) = e
t
2 σx =

(
cosh t

2 sinh t
2

sinh t
2 cosh t

2

)
. (2.18)

As we will see, this difference manifests in dynamical processes like quantum quench by
the appearance of a heating phase for β > 1 and an oscillating phase for β < 1.

3 Dynamics as a conformal transformation

As mentioned above, it is convenient to think of the time evolution by Hamiltonians like (1.1)
by first performing a Weyl transformation to Rd+1 using eqs. (1.4) and (1.5). Euclidean time
evolution with the Hamiltonian H(β,Π) is equivalent to a conformal transformation. This
transformation can be obtained by using the Baker-Campbell-Hausdorff formula [26]

UµΠµ ≡ U(Π) = e−(2iwD+iwβ(Pµ+Kµ)Πµ) = eΛ+KµΠµ
eln Λ0iD/2eΛ−PµΠµ

Λ0 =
(
coshwν0 − (wν0)−1 sinhwν0

)−2
,

Λ+ = −Λ− = iβν−1
0 sinh(wν0)Λ1/2

0 (3.1)

where we have defined

ν0 =
√

1 − β2 (3.2)
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To write down the explicit transformations, we separate out the components. For example,
using the above relations, one obtains:

eα1iDxνe
−α1iD = eα1xν , eiα2Pµxνe

−iα2Pµ = xν + α2x̂µ,

eiα3Kµxνe
−iα3Kµ = xν

1 − 2α3xµ + r2α2
3
, (3.3)

where Kµ and xµ denote the µ-th component of the corresponding vectors.2 Identifying
α1 = (1/2) ln Λ0, α2 = −iΛ−, and α3 = −iΛ+, we find, after a few lines of algebra and
for ν ̸= µ

x′ν = xν

Dµ
, (3.4)

where the denominator, Dµ =
[ (

coshwν0 − (wν0)−1 sinhwν0
)2

+ 2xµβν
−1
0 sinhwν0

×
(
coshwν0 − (wν0)−1 sinhwν0

)
+ β2r2(wν0)−2 sinh2 τν0

]
.

A similar, but more complicated expression can be obtained for ν = µ in a similar manner.
One obtains

x′µ =
[
xµ(2(cosh2wν0 − (wν0)−2 sinh2wν0) − 1) − βν−1

0 sinhwν0(coshwν0(1 − r2)

− (wν0)−1 sinhwν0(1 + r2))
]
/Dµ . (3.5)

These finite conformal transformations can be then used to express time evolved quantities
in terms of the quantities at initial time for any d.

3.1 d = 3 and quaternions

In d ≤ 3 dimensions in general an efficient way to compute the transformed coordinates under
the SU(1, 1) subgroup of conformal transformations is to use the quaternion formulation. In
what follows, we provide details this formulation for d = 3 + 1. In Euclidean signature the
coordinates are denoted by Xµ with x0 = τ , x1 = x and so on. We shall also define the
2 × 2 matrices τ0 = I and τj = −iσj where σj are the standard Pauli matrices and I denotes
the identity matrix. The first step of using the quaternion formulation is then to write the
coordinates xµ using a 2 × 2 matrix by associating each component of the coordinate to
one of the τµ, where τ⃗ = (I,−iσj), for j = 1, 2, 3:

Qν = Ixν − i
3∑

j=1
σjyj . (3.6)

The yj which appears here are the components of xµ with µ ̸= ν. The choice of ν and µ is
arbitrary at this stage. As an example, we may choose ν = 1. The three other coordinates
xj which appear are y1 = x0 = τ, y2 = x2 = y, y3 = x3 = z, leading to

Q1 =
(

x− iz −i(τ − iy)
−i(τ + iy) x+ iz

)
(3.7)

2To present these formulae in a completely covariant form, one needs to implement an appropriate projection
operator, which we do not use here. Our notation therefore breaks covariance. Nonetheless, we hope it is clear
from the context whether we are referring to a vector or a particular component of it.
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Clearly Qν is not unique even after we fix ν and associate xν with the identity matrix
since there is freedom of associating the rest of the coordinates with other Pauli matrices in
different ways. All such choices lead to identical results for final coordinates under the class
of conformal transformations that we discuss. Moreover it is also possible to carry out the
transformation when Q is chosen in a different manner, i.e., without necessarily associating
xν with the identity matrix; this is discussed in details in appendix B.

A general conformal transformation on Rd+1 is then represented by a quaternionic
Mobius transformation

Q′
µ = Ix′µ − i

∑
j ̸=µ

σjx
′
j = (ã1Qµ − iã2I).(iã3Qµ + ã4I)−1 (3.8)

where ã1, ã2, ã3, ã4 are quaternions obeying

Det
[
ã1ã

−1
3 ã4ã3 − ã2ã3

]
= 1 (3.9)

Two successive transformations lead to another Mobius transformation where the matrices
ai get multiplied by matrix multiplication [29]. Consider transforming Q′

µ by a further
mobius transformation,

Q′′
µ = Ix′′µ − i

∑
j ̸=µ

σjx
′′
j = (ã′1Q′

µ − iã′2I).(iã′3Q′
µ + ã′4I)−1 (3.10)

Then
Q′′

µ = (ã′′1Qµ − iã′′2I).(iã′′3Qµ + ã′′4I)−1 (3.11)
where

ã′′1 = ã′1ã1 + ã′2ã3 ã′′2 = ã′1ã2 + ã′2ã4

ã′′3 = ã′3ã1 + ã′4ã3 ã′′4 = ã′3ã2 + ã′4ã4 (3.12)

However, for the SL(2, R) ∼ SU(1, 1) subgroup generated by D,Kµ, Pµ these parameters
become real numbers provided one chooses the quaternion Qµ as in (3.6), i.e. with xµ being
the coefficient of the identity matrix. The action of the SU(1,1) transformations is then
obtained by representing the generators by Pauli matrices as in (2.3). The operator U(Πµ)
in (3.1) is then represented by the 2 × 2 matrix,

U(Πµ) = e−w(−σz+iβσx) =
(
ã1 ã2
ã3 ã4

)
ã1 =

(
coshwν0 + ν−1

0 sinhwν0
)
, ã4 =

(
coshwν0 − ν−1

0 sinhwν0
)

ã2 = ã3 = −iβν−1
0 sinhwν0 (3.13)

with ã1ã4 − ã2ã3 = 1. To find the transformed coordinates, we note that the quaternion
matrix Qµ transforms, upon action of U(Πµ) to Q′

µ given by [27–30]

Q′
µ = Ix′µ − i

∑
j ̸=µ

σjx
′
j = (ã1Qµ − iã2I).(iã3Qµ + ã4I)−1

=

 xµ(2ã1ã4−1)−i(ã2ã4−ã1ã3r2)−ixν1
ã2

4+2iã3ã4xµ−ã2
3r2

−i(xν2−ixν3 )
ã2

4+2iã3ã4xµ−ã2
3r2

−i(xν2 +ixν3 )
ã2

4+2iã3ã4xµ−ã2
3r2

xµ(2ã1ã4−1)−i(ã2ã4−ã1ã3r2)+ixν1
ã2

4+2iã3ã4xµ−ã2
3r2

 (3.14)
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where µ ̸= ν1, ν2, and ν3. The transformed coordinates are then obtained from the relation
x′α = Tr[τ−1

α Q′
µ]/2 and yields

x′µ = xµ(2ã1ã4 − 1) − i(ã2ã4 − ã1ã3r
2)

ã2
4 + 2iã3ã4xµ − ã2

3r
2 , x′ν = xν

ã2
4 + 2iã3ã4xµ − ã2

3r
2 (3.15)

Substituting eq. (3.13) in eq. (3.15), one recovers eqs. (3.4) and (3.5). This shows that the
quaternionic approach provides a vastly simpler way to obtain the transformed coordinates.

In the rest of the paper we will deal with d = 3. The transformation from R × S3

to R4 is given by

τ = ew cos θ , x = ew sin θ cosϕ , y = ew sin θ sinϕ cosψ , z = ew sin θ sinϕ sinψ , (3.16)

where wµ = (w, θ, ϕ, ψ) are the coordinates on the cylinder R × S3, and w denotes time
on the cylinder.

The above transformations are in euclidean signature. Upon continuation to real time
w → w̃ = −iw while the angles remain the same. Let us denote the analytically continued
transformation matrix by

U =
(
a b

c d

)
(3.17)

For the transformation (3.13) we have a = d⋆ while b = c⋆ = real. Using (3.15) it may be
checked that the transformed time, w̃′ and the transformed angles θ′, ϕ′, ψ′ remain real.

We will be interested in time evolution with square pulse protocol with different β and
different Πµ in different intervals. When these hamiltonians have the same Πµ the time
evolution in the different intervals correspond to transformations which lie in the same
SU(1, 1) subgroup of the conformal group. In this case the net transformation can be simply
obtained by usual matrix multiplication of the different U ’s. The net parameters will obey
a = d⋆ and b = c⋆, which are the SU(1, 1) conditions, but b, c will not be in general real.
However, the SU(1, 1) conditions are sufficient to ensure that the transformed coordinates
on (time) × S3 are real.

The expression (3.13) shows that the behavior of the system under real time evolution
depends on β. Continuing to real time w̃ and recalling that ν0 is given by (3.2) and we
see that the resulting conformal transformation involves trigonometric functions of time for
β < 1, hyperbolic functions for β > 1 and power laws when β = 1. Thus for late times,
observables will decay exponentially in time for β > 1 and oscillate when β < 1.

While we have illustrated this formalism for d = 3 the same formalism can be used for
d = 1, 2 by setting some of the coordinates in eq. (3.7) to zero.

4 Floquet dynamics

In this section, we shall study Floquet dynamics of 3 + 1 dimensional CFTs, using a square
pulse protocol, described below. The protocols we consider have different hamiltonians in
successive time intervals and we choose these time intervals to be equal. We will compute
various physical properties at the end of each cycle. The strategy can be generalized to
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arbitrary number of cycles. We defer the analysis for multiple cycles to future work. In
what follows, we shall choose the amplitude of the pulses within a drive period (denoted
by β below) to be same for simplicity.

In most of this section, we shall focus on dynamics of driven system at the end of a drive
cycle; more specifically, we shall study the behavior of the operator expectation and fidelity
starting from a primary state and unequal time correlators starting from vacuum, at t = T

as a function of T and β. Here T is the time extent (or time period) of a single cycle. Our
analysis can be extended to study the micromotion (dynamics for t ≤ T ) of these quantities;
however, in the present work we focus on their properties at t = T .

The corresponding macromotion, which yields information about stroboscopic dynamics
of the driven system at t = nT (n ∈ Z and n > 1), is governed by the Floquet Hamiltonian
HF ; we shall derive HF for a class of drive protocols involving a single SU(1, 1) subgroup
in section 4.4. In section E we discuss the structure of fixed points and surfaces for
this special case. However, the corresponding analysis of macromotion for a generic drive
protocol which involves multiple SU(1, 1) subgroups is more complicated and is left as a
subject of future study.

The strategy will be to perform the computations on R4 (coordinates xµ), Weyl transform-
ing to R×S3 (coordinates wµ), and finally analytically continuing to real time t = iw. Under
the Weyl transformation, a primary operator with conformal dimension ∆ transforms as

O∆(wµ) = ew∆O∆(xµ). (4.1)

We shall use these relations to transform between the physical coordinates wµ on the cylinder
and those on the plane (xµ).

As discussed above, unitary time evolution governed by a Hamiltonian of the form (1.1)
is equivalent to a conformal transformation xµ → x′µ given by (3.15). The transformation
of the primary operators of the CFT having conformal dimension ∆ due to such dynamics
is given by [31]:

O(xµ) → U †O(xµ)U = O(x′µ)J∆/4
2 , J2 =

∣∣∣∣∣∂x′µ∂xν

∣∣∣∣∣ = |Det[iã3Q+ ã4I]|−4 (4.2)

where the last expression holds if the coordinates x′ and x are related by the transformation
given by eqs. (3.13) and (3.14).

4.1 Fidelity

In this section, we shall compute the fidelity F (T ) of a primary state |∆⟩ of the CFT at
the end of a drive cycle. This is defined, in Euclidean time, as

F (T0) = ⟨∆|U(T0, 0)|∆⟩
⟨∆|∆⟩

=
limx2µ→∞,x1µ→0⟨0|ϕ(x2)U(T0, 0)ϕ(x1)|0⟩

limx2µ→∞,x1µ→0⟨0|ϕ(x2)ϕ(x1)|0⟩ (4.3)

where ϕ(x) ≡ ϕ(τ, x, y, z) denotes a primary CFT field of dimension h, T = −iT0 is the drive
period in real time and |0⟩ denotes the CFT vacuum. Throughout this section, we shall work
in Euclidean time and analytically continue to real time whenever necessary.
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Figure 1. Schematic representation of the protocol for computing fidelity F (t). See text for details.

The protocol we choose for computing F (T ) is schematically shown in figure 1. The
evolution operator U(Πµ) in each cycle is chosen to be

U(Πµ; τ, 0) = e−H(Πµ)τ , H(Πµ) = i(2D + β(Kµ + Pµ)Πµ . (4.4)

The total evolution operator at the end of one cycle is given by

U = U †(Π1; 0, T0/2)U(Π3;T0/2, T0/4)U(Π0;T0/4, 0) , (4.5)
Π1 = (0, 1, 0, 0) , Π3 = (0, 0, 0, 1) , Π0 = (1, 0, 0, 0) . (4.6)

Note that we use the different deformed CFT Hamiltonians with same deformation parameter
β to generate the evolution operator U . The fidelity is computed at the end of the cycle.

To obtain F (T ), we first note that the two point correlation function of a primary
operator with dimension ∆ can be written in the quaternion formalism as [29]

C0 = ⟨0|ϕ(x2)ϕ(x1)|0⟩ = 1
(Det[Q(x2) −Q(x1)])∆ (4.7)

In the above equation we have not specified a subscript for the quaternions since this particular
result is independent of which Q(µ) we use. For the unequal-time correlation function under
a transformation by Uµ(T, 0), this leads to

C1 = ⟨0|U †
µ(T, 0)Πµϕ(x2)Uµ(T, 0)Πµϕ(x1)|0⟩

= 1
Det[Q′

µ(x′2) −Qµ(x1)]∆ Det[(iã3Qµ(x2) + ã4I)−1]∆

= 1
Det[(ã1Qµ(x2) − iã2I) −Qµ(x1)(iã3Qµ(x2) + ã4I)]∆ . (4.8)

Note that the second term in the denominator vanishes when x1µ → 0. Further when
x2µ → ∞, we find C1 → 1/Det[ã1Qµ1(x2)]∆. Furthermore similar analysis shows for multiple
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Figure 2. Plot of |F (T )| as a function of β and T with ∆ = 1. For β < 1, |F (T )| oscillates with T

characterizing the non-heating phase and reaches ≃ 1 for ν = nπ where n is an integer. For β > 1,
|F (T )| decays exponentially with T which is a signature of the heating phase.

subsequent transformations given by

UµiΠµ =
(
ãi b̃i

c̃i d̃i

)
, ãid̃i − b̃ic̃i = 1 (4.9)

C1 → 1/Det[(
∏

i ãi)Qµi(x2)]∆. This allows us to write the final expression for F (T0)

F (T0) = 1
(ã0(T0)ã3(T0)ã1(T0))∆ (4.10)

To compute the ã0, ã1 and ã3, we use the 2 × 2 matrix representation of the operators D,
Kµ and Pµ given in eq. (2.3). Using this one can write

Uµ(τ)Πµ = e−τ
√

1−β
2
(−nzσz+nxσx), nz = 1√

1 − β2 , nx = iβ√
1 − β2 (4.11)

Defining ν =
√

1 − β2T/4, we find, after analytically continuing to real time T = −iT0
and using ãµ(T0) = aµ(T )

a0(T ) = a3(T ) = (cos ν + iT (4ν)−1 sin ν), a1(T ) = (cos 2ν − iT (2ν)−1 sin 2ν)

F (T ) = 1
[(cos ν + iT (4ν)−1 sin ν)2(cos 2ν − iT (2ν)−1 sin 2ν)]∆ for β ̸= 1

=
( 1

(1 + iT/4)2(1 − iT/2)

)∆
for β = 1 (4.12)

The behavior of each of the ai and hence F (T ) depends crucially on the value of the
parameter β. For β < 1 these are oscillatory functions of the time T , while for β > 1 they
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decay exponentially for large T . These two behaviors are higher dimensional versions of the
non-heating and heating phases. In between these phases there is a critical point β = 1 where
we have a power law decay in time, |F (T )| ∼ 1/[(1 + T 2/16)2(1 + T 2/4)]∆/2. This behavior
is charted out in figure 2 which shows the behavior |F (T )| for ∆ = 1. In between, at β = 1,
we find a line which represents a critical line separating the two phases.

Our analysis of F (T ) indicates special frequencies at which |F (T )| = 1 indicating perfect
overlap of the driven state with the initial states. These frequencies, which exist only in the
non-heating phase can be read off from eq. (4.12) and are given by T = T ∗

n(β) where

T ∗
n(β) = 4nπ/

√
1 − β2, (4.13)

and n is an integer. The existence of these frequencies can also be seen in figure 2.
Thus we find that under a drive schematically represented by figure 1, F exhibits perfect

revival at special frequencies in the non-heating phase and an exponential (power-law) decay
with T in the heating phase (on the critical line).

The different behaviors for different values of β reflect the properties of the Hamiltonians
used for time evolutions which have been discussed in the previous section. Each of these
Hamiltonians represent a different SU(1, 1) subgroup of the conformal group. We chose the
same β for each of the three Hamiltonians, so the conjugacy classes of each of these SU(1, 1) are
the same. The results can be trivially extended to the cases where the three β’s are different.

The above procedure can be also used to calculate transition amplitudes between a primary
state and its descendants. In 1 + 1 dimensions there are eficient algorithms to do this [32]: it
will be interesting to see if an analogous proecure can be developed in higher dimensions.3

4.2 Unequal-time correlators

In this section, we compute the unequal-time two-point correlation function of the primary
fields with conformal dimension ∆ in the presence of a drive. We consider the fields on
a cylinder and map them onto the plane using eq. (3.16). The initial coordinates on the
plane corresponds to

x2 = (τ2, x2, y2, z2) = (cos θ2, sin θ2 cosϕ2, sin θ2 sinϕ2 cosψ2, sin θ2 sinϕ2 sinψ2),
x1 = (τ1, x1, y1, z1) = (1, 0, 0, 0) (4.14)

where we have taken initial time on the cylinder w = 0 without loss of generality. We
have also chosen the coordinates θ1 = 0 for simplicity. In what follows we shall consider
the correlation function

C1(T ) = ⟨0|U †(T, 0)O(x2)U(T, 0)O(x1)|0⟩ = J
∆/4
2

(Det[Q(x′
2) −Q(x1)])∆ (4.15)

where x′
2 represents the transformed coordinate and J2 denotes the Jacobian of the coordinate

transformation.
3We thank the referee for a question about this issue.
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Figure 3. Plot of |C1(T )/C1(0)| as a function of θ2 and T for β = 0.2 (left panel) and β1 = 1.2 (right
panel) corresponding to a square pulse protocol. See text for details.

To study the dynamics, we first consider a square pulse protocol given by

H = H(−) = 2iD for t ≤ T/2
H = H(+) = 2iD + iβ (K0 + P0) for t > T/2. (4.16)

We will calculate the correlator at time T .
The evolution operator for this is

U(T, 0) = U0(T, 0) = e−T0(2iD+iβ(K0+P0))/2e−iDT0 =
(
ã b̃

c̃ d̃

)

a = d∗ =
(

cosh ηT/2 + i

η
sinh ηT/2

)
eiT/2, b = c∗ = e−iT/2β

η
sinh ηT/2, (4.17)

Q0(x′
2) = (aQ0(x2) − ibI).(icQ0(x2) + dI)−1, J2 = |(Det[icQ0(x2) + dI])∆|−4 (4.18)

where η =
√
β2 − 1 and I is the 2×2 identity matrix. Here we have used eqs. (3.13) and (3.15),

performed a Wick rotation T = −iT0, and denoted ã(T0), b̃(T0), c̃(T0), and d̃(T0) after the
rotation as a(T ), b(T ), c(T ), and d(T ) respectively. Substituting eqs. (4.18) in eq. (4.15),
we find after transforming back to cylinder coordinates4

C1(T ) = C1(0)
[ 2(1 − cos θ2)

(a− ic)2 − (b− id)2 − 2i(a− ic)(b− id) cos θ2

]∆
,

C1(0) = 1
2(1 − cos θ2)∆ (4.19)

The dependence of C1(T ) on both T and β can be obtained by substituting the expressions
of a, b, c and d from eq. (4.18). We note that for β > 1, the system is in the heating phase
and the correlation decays exponentially; in contrast, for β < 1, the dynamics is oscillatory.
Also, we find that C(T ) depends only on θ2 and is independent of other coordinates. This

4The Weyl factors cancel in the following expressions.
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is a consequence of the choice of the drive protocol which involves only K0 and P0. These
features of the correlation function are shown in figure 3 where |C1(T )/C1(0)| is plotted for
∆ = 1 as a function of θ2 and T for β = 0.2 (left panel) and β = 1.2 (right panel).

We next consider a drive protocol involving two different sets of generators given by

H(−) = 2iD + iβ(K(0) + P(0)), H(+) = 2iD + iβ(K(3) + P(3))

U(T0, 0) = U(+)(T0, T0/2)U(−)(T0/2, 0), U(±)(τ, 0) = e−τH(±)/ℏ =
(
ã± b̃±
c̃± d̃±

)
(4.20)

To obtain the correlator corresponding to this protocol, we consider the action of U− on
Q(x2) ≡ Q2 which is given by

Q
(1)
2 = (ã−Q2 − ib̃−I).(ic̃−Q2 + d̃−I)−1 =

(
τ ′ − iz′ −i(x′ − iy′)

−i(x′ + iy′) τ ′ + iz′

)

τ ′ = τ(2ã−d̃− − 1) − i(ã−c̃− − b̃−d̃−r
2)

d̃2
− + 2ic̃−d̃−τ − c̃2

−r
2 , x′j = xj

d̃2
− + 2ic̃−d̃−τ − c̃2

−r
2 (4.21)

where xj = (x, y, z) for j = (1, 2, 3). Next, we rewrite Q(1)
2 as Q

′(1)
2 = z′I−iσzτ

′−iσxx
′−iσyy

′

and perform the second transformation

Q
(2)
2 = (ã+Q

′(1)
2 − ib̃+I).(ic̃+Q

′(1)
2 + d̃+I)−1 =

(
z′′ − iτ ′′ −i(x′′ − iy′′)

−i(x′′ + iy′′) z′′ + iτ ′′

)

z′′ = z′(2ã+d̃+ − 1) − i(ã+c̃+ − b̃+d̃+r
′2)

d̃2
+ + 2ic̃+d̃+z′ − c̃2

+r
′2 , x′′j =

x′j

d̃2
+ + 2ic̃+d̃+z′ − c̃2

+r
′2 (4.22)

where x′′j = (τ ′′, x′′, y′′) for j = (1, 2, 3).
The rest of the calculation is cumbersome but straightforward. A somewhat lengthy

algebra yields

C2(T ) =C1(0)
( 2(1−cosθ2)
α+β1 cosθ2+β2 sinθ2+β3 cos2θ2+γ(θ2)sinθ2 sinϕ2 sinψ2

)∆
. (4.23)

Here α, βi (i = 1, 2, 3), and γ are functions of the drive parameters through functions a,
b, c and d given by

a = d∗ =
(

cosh ηT/2 + i

η
sinh ηT/2

)
, b = c = β

η
sinh ηT/2, (4.24)

γ(θ2) = −4ib(a− d)(b2 − d2 − 2ibd cos θ2), β2 = b2 − a2

β3 = 1
2
[
8a3d(1 − ad) + a2(−1 + 8(b+ 2id)d2) − 8iabd(d+ b(2bd− i))

+ b2(1 + 8d(ib− d(b2 − d2)))
]

β1 = 4i
[
2a4bd− c3b(1 + 2d2) + a(b3 + ib2d(1 + 4b2) + 2b3d2 − id3) − b3d(1 + 4d2)

+ a2d(b− 2b3 − 4ib2c4 + 2id3) + b(2b4d+ ibd2 + 2d5 − ib3(1 + 2d2))
]

where we have analytically continued to real time T = −iT0. The function α is cumbersome
but can be expressed in terms of a, b, c and d.
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Figure 4. Plot of |C2(T )/C2(0)| as a function of ϕ2 and ψ2 for β = 0.2, T = 5 and θ = π/4. See text
for details.

Eq. (4.23) indicates a clear rotational symmetry breaking in the correlation function.
This is a consequence of application of two different sets of generators (K0, P0) and (K3, P3)
for constructing U(T, 0). This dependence is shown for a fixed T = 1, θ2 = π/4 and β = 0.2
in figure 4 where |C2(T )/C2(0)| is plotted as a function of ϕ2 and ψ2.

4.3 Local probes of the driven state

In this section we will probe the time-evolving state with local operators, i.e., we are
interested in computing:

⟨∆|U †
µ(T, 0)ΠµA(wα)Uµ(T, 0)Πµ|∆⟩. (4.25)

We will find here as in the d = 1 case [33] that there is localization in the local observables.

Energy density

Consider first the energy density, i.e. when the operator A(wα) is chosen to be Tww(wα).
Therefore we will need the transformation of the stress tensor. For d = 3, the conformal
dimension of the energy-momentum tensor is 4, so that the Weyl factor is simply e4w. Along
with the factors coming from the transformation of a spin-2 tensor, the energy density
translates to

Tww(wµ) = e4w ∂x
ρ

∂w

∂xσ

∂w
Tρσ(x) + 3a

8π2 , (4.26)
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where the last term comes from the Weyl anomaly. Conjugation of the Rd+1 stress tensor
Tρσ(x) gets with the deformed evolution operators Uµ(T, 0)Πµ leads to a conformal trans-
formation. In D flat spacetime for a spin-2 conformal primary like the stress-tensor the
transformation rule is:

U †Tµν(x)U = T ′
µν(x) = J

D−2
D
∂x′ρ

∂xµ

∂x′σ

∂xν
Tρσ(x′), (4.27)

where J denotes the Jacobian of the conformal transformation. Finally we shall be left
to compute a plane three point function involving a stress-tensor and two primaries. This
is given by [34]:

⟨O(x1)O(x2)Tµν(x3)⟩ = − 4∆
6π2

Hµν(x1, x2, x3)
|x12|2∆−2|x13|2|x23|2

, (4.28)

where, Hµν = V µV ν − 1
4V

2δµν , with, V µ = xµ
13
x2

13
− xµ

23
x2

23
.

Putting everything together, the time-dependent piece (i.e. modulo the anomalous piece)
in the energy density of the driven state is:

⟨∆|U †Tww(wµ)U |∆⟩T = −2 ∆
3π2

e4wJ
−1/2
2

|x′(wµ)|2
∂xρ

∂w

∂xσ

∂w

∂x′α

∂xρ

∂x′β

∂xσ
Hαβ(x′(wµ)), (4.29)

where, Hρσ(x′) =
x′ρx

′
σ − x′2

4 δρσ

(x′)4 .

We consider a square pulse drive given by:

H = H(−) = 2iD for t ≤ T/2

H = H(+) = 2iD + iβ
(
K(1) + P(1)

)
for t > T/2. (4.30)

For this protocol the evolution operator is parametrized as:
(
a b

c d

)
with a, b, c, d as in

eq. (4.17). Below in figure 5 and figure 6 we plot the absolute value of the normalized
energy density

E(θ, ϕ, ψ, T ) = ⟨∆|U †Tww(wµ)U |∆⟩T

⟨∆|U †Tww(wµ)U |∆⟩T =0
(4.31)

in various regimes. Note that β denotes the amplitude of the deformation and can be used
to enter and leave the heating regime. When β > 1 and we are in the heating regime we
find clear signatures of localization of the energy density in the angular directions, whereas
the non-heating regime is characterized by oscillations. Furthermore the localization occurs
in both the angular directions θ and ϕ as is clear from the density plot of figure 7, and is
independent of the ψ direction. Due to the latter feature we omit ψ from E(θ, ϕ, ψ, T ).

The explicit formula for the energy density as obtained from the analytic expression
eq. (4.29) turns out to be too complicated. Thus we turn our attention to a simpler observable,
namely, that of a local primary probe in the driven state, which allows for an explanation
of the angular localization.
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Primaries

Here we choose the probe to be another primary operator in place of A(wα) in eq. (4.25). The
transformation rule of a primary is already given as in eq. (4.2), using which along with the
Weyl factor, eq. (4.1), and the universal formula for three point primary correlator, we obtain:

⟨∆|U †
µΠµ(T, 0)O∆1(wα)Uµ(T, 0)Πµ|∆⟩ = ew∆1J

∆1/4
2

C∆∆∆1

|x′|∆1
, (4.32)
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Figure 7. Density plots of normalized density |E(θ, ϕ, T )| in the ϕ, θ plane for T = 6, in the heating
phase, β = 1.1.

where C∆∆∆1 is the operator product expansion coefficient which is part of the CFT data.
The above expression in the cylindrical coordinates, with initial time w = 0, for a generic
SU(1, 1) drive in the x direction, takes the form:

⟨∆|O∆1(T )|∆⟩ = C∆∆∆1

[((1 + a2a3)2 − a2
2a

2
4)2 + 4a2

2a
2
4(1 + a2a3)2 cos2 ϕ sin2 θ]−∆1/4

a−4∆1
4 [a4

4(a2
3 − a2

4)2 + 4a2
3a

6
4 sin2 θ cos2 ϕ]3∆1/4

= C∆∆∆1O(θ, ϕ, T )∆. (4.33)

Once again there is independence in ψ. Notice that when either θ = 0 or ϕ = π/2 the above
becomes space independent. Once again, we consider the square-pulse protocol involving
deformation in the x direction, as in eq. (4.30). The parameter β denotes the amplitude of
the drive and can be used to enter and leave the heating regime. In figure 8 on the β, T plane
we obtain a density plot very similar to figure 2. In particular we notice, that oscillations die
into exponential fall-offs as the β = 1 line is crossed from below. At β = 1 the functional
dependence of the absolute value squared of the one point function in the driven state is:

|O(θ,ϕ,T )|2∆ =(
(8+4T 2+T 4+T 2(T 2−4)cos2T+4T 3 sin2T )2−4T 2 cos2ϕ(T 2(4+T 2)2

+(8+4T 2+T 4)((T 2−4)cos2T+4T sin2T ))sin2 θ+4T 4(4+T 2)2 cos4ϕsin4 θ
)−∆1

. (4.34)

At large T , dropping the rapidly oscillatory pieces, we find:

|O(θ, ϕ, T )|2∆ ∼ 1
T 8∆1(1 − 2 cos2 ϕ sin2 θ)2∆1

+ O(T−10∆1). (4.35)

It turns out that the higher order terms in the 1/T series (with rapidly oscillating terms
dropped) contains higher order singularities of 1 − 2 cos2 ϕ sin2 θ:

|O(θ, ϕ, T )|2∆ =
∞∑

n=1

fn,∆1(cos2 ϕ sin2 θ)

T∆1(6+2n)(1 − 2 cos2 ϕ sin2 θ)
1
2 (2n+1−(−1)n)∆1

. (4.36)
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oscillations with T characterizing the non-heating phase and for β > 1, the one-point function decays
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Figure 9. Density plots of normalized |O(θ, ϕ, T )|∆ in the θ, T plane for ϕ = 0. Left Panel: in the
heating phase with β = 1.1 we find progressive localization. Right panel: in the non-heating phase
with β = 0.1 we find oscillations. The conformal dimension is taken to be ∆1 = 0.4.

These singularities give rise to localization in the angular directions, and as we numerically
investigate next, also persists in the heating, β > 1 regime.

Below in figure 9 we plot the normalized one point function amplitude in various regimes.
We find clear signatures of localization of the amplitude in the angular directions, where
as the non-heating regime is characterized by oscillations. Localization occurs in both the
ϕ as well as θ directions as is clear from the left panel of figure 10. In the right panel of
figure 10 we have plotted the contours of the function cos2 ϕ sin2 θ since at least in the β = 1
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plane for T = 3.3, in the heating phase, β = 1.1. The conformal dimension is set to ∆1 = 0.4. Right
Panel: contour lines of cos2 ϕ sin2 θ. See text for details.

line we expect from eq. (4.36) localization along the 1
2 contour. The plots are indicative of

the fact that similar singularities extend into the heating regime as well. It is very natural
that a similar effect is responsible for the localization in the energy density when the primary
gets replaced by the stress-tensor.

4.4 Floquet Hamiltonian for protocols involving a single SU(1, 1) subalgebra
and Dynamical Phases

In this sub-section, we shall derive the Floquet Hamiltonian for any periodic drive where
the hamiltonians for each piece of a square pulse protocol all belong to the same SU(1, 1)
subgroup of the conformal group generated by D,Kµ, Pµ. As explained earlier the real time
evolution over a single cycle of time extent T the evolution operator can be represented
by a SU(1, 1) matrix

U(T, 0) =
(
a b

b∗ a∗

)
|a|2 − |b|2 = 1 (4.37)

The parameters then determine the transformation of the quaternion as in (3.8),

Q′
µ = (aQµ − ibI)(ib⋆Qµ + a⋆I)−1 (4.38)

The Floquet Hamiltonian HF (T ) is defined by (in ℏ = 1 units)

U(T, 0) = exp[−iHF (T )T ]. (4.39)

This should be a linear combination of the generators

HF (T ) = iα1D + iα2(Kµ + Pµ) + α3(Kµ − Pµ) (4.40)
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Here α1, α2, α3 are real numbers. This is ensured by the hermiticity properties of the hermitian
hamiltonians in each portion of the square pulse protocol. For s given protocol HF (T ) can
be obtained by using a Baker-Hausdorff-Campbell rule. However, since the result depends
only on the algebra one can instead use the representation (2.3) of the generators in terms
of Pauli matrices σi. In this representation

HF (T ) ∼
∑

i=x,y,z

σiγi (4.41)

Note that it follows from the representation (2.3) that one must have γ1, γ2 purely imaginary
and γ3 real. Comparing eqs. (4.37) and (4.39) we can proceed to solve for γi.

There are three classes, corresponding to the three conjugacy classes of the SU(1, 1)
transformation. In the following we will denote

ar = Re[a], aI = Im[a], br = Re[b], bI = Im[b] (4.42)

1. a2
r < 1. This corresponds to

∑
i γ

2
i > 0. In this case the transformation belongs to the

elliptic conjugacy class. Then the Floquet hamiltonian is

HF = Λ(T )√
1 − a2

r

[2iaID + ibr(Kµ + Pµ) − bI(Pµ −Kµ)] (4.43)

where
TΛe(T ) = arccos(ar) (4.44)

The evolution operator after n-cycles of the drive can be written as U(nT, 0) =
exp[−inHF (T )T ]. In matrix form this can be written, for any integer n, as

U(nT, 0) =
(
an bn

b∗n a∗n

)
an = cos(nΛeT ) + i

aI

sin(ΛeT ) sin(nΛeT )

bn = br + ibI

sin(ΛeT ) sinnΛeT (4.45)

These coefficients are periodic in the number of cycles n with a period Tp

Tp = 2π
arccos(ar) (4.46)

so that the stroboscopic time evolution is periodic. The system is in a non-heating
oscillatory phase.

2. a2
r = 1. We now have

∑
i γ

2
i = 0 and the transformation is in the parabolic conjugacy

class. In this case one has

HF = 2iaID + ibr(Kµ + Pµ) − bI(Pµ −Kµ) (4.47)
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At the end of n cycles we have

U(nT, 0) =
(
an bn

b∗n a∗n

)
an = 1 + inaI

bn = n(br + ibI) (4.48)

As a function of n these grow linearly in n, leading to a response which grows with
Floquet time in a linear fashion.

3. a2
r > 1. In this case one has

∑
i γ

2
i < 0 and the transformation is the hyperbolic

conjugacy class. Now the Floquet hamiltonian is

HF = Λh(T )√
a2

r − 1
[2iaID + ibr(Kµ + Pµ) − bI(Pµ −Kµ)] (4.49)

where
TΛh(T ) = arccosh(ar) (4.50)

The matrix which corresponds to time evolution by n cycles is now given by

U(nT, 0) =
(
an bn

b∗n a∗n

)
an = coshnΛhT + i

aI

sinh(ΛhT ) sinhnΛhT

bn = br + ibI

sinh(ΛhT ) sinhnΛhT (4.51)

For large stroboscopic times n the response of the system now grow exponentially in
the Floquet time n, characteristic of a heating phase.

Since the phase in Floquet dynamics is determined by the conjugacy class of the corre-
sponding conformal transformation it is possible to go between these phases by changing the
time extents during which the different hamiltonians act within a single period. Consider
for example a slight variation of the protocol (4.16),

H = H(−) = 2iD for t ≤ T1

H = H(+) = 2iD + iβ (K0 + P0) for T1 ≤ t ≤ T1 + T2. (4.52)

The period is now T = T1 + T2. The corresponding matrix elements of (4.37) are given
by, for β > 1,

a = eiT1

(
cosh ηT2 + i

η
sinh ηT2

)
b = e−iT1 β

η
sinh ηT2, η =

√
β2 − 1 (4.53)

while for β < 1 we have

a = eiT1

(
cos νT2 + i

ν
sin νT2

)
b = e−iT1 β

ν
sin νT2, ν =

√
1 − β2 (4.54)
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Figure 11. Contours of (Re[a])2. Left Panel: we use equation (4.53) with β = 1.2. The blue line is
(Re[a])2 = 1, the red line is (Re[a])2 = 0.3 for and the green line has (Re[a])2 = 1.5. Right panel: we
use equation (4.54) with β = 0.8. The blue line is (Re[a])2 = 1, the red line is for (Re[a])2 = 0.3 and
the green line has (Re[a])2 = 1.5.

The conjugacy class is determined by the real part of a, one can have heating as well as a
non-heating phases in Floquet dynamics for any value of β. Left panel of figure 11 shows
a contour plot of (Re[a])2 for β = 1.2, while right panel of figure 11 shows a contour plot
of Re[a] for β = 0.8.

These figures show how that can get dynamical phase transitions between heating and
non-heating phases by changing T1 and T2 both for β < 1 and for β > 1.

Finally, the different dynamical phases can be also understood in terms of the structure
of fixed points of the quaternionic Mobius transformations (restricted to a single SU(1, 1).
This is discussed in appendix E.

Note that we are using the word “heating” in a heuristically — in the sense that the Floquet
dynamics is exponentially damped as a function of the number of cycles. Thermalization in
conformal field theories are non-standard. In 1 + 1 dimensions the presence of an infinite
number of KdV charges implies that the system can evolve into a Generalized Gibbs Ensemble
(see e.g. [38]). We are not aware of an analogous result in higher dimensions.5

4.5 Floquet dynamics for protocols with different SU(1, 1) subgroups

The preceding results for Floquet dynamics were for the special case where the protocol is
such that the transformation belongs to a single SU(1, 1) subgroup of the conformal group.
When the protocol involves different SU(1, 1) subgroups in different time intervals, as in the
calculation of fidelity above, the entries in the net quaternionic Mobius transformation (3.8
cannot be chosen to be complex numbers with any choice of the quaternion representation.
Consider for example a two step square pulse protocol where we first use a hamitonian
H(Π0) for 0 < t < T/2 and a hamiltonian H(Π1) for T/2 < t < T . In our calculations
we dealt with this by switching the representation of quaternions, using Q0 for the first
interval and then collecting the transformed coordinates into a quaternion Q1. However,

5We thank the referee for a comment about this point.
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as explained in appendix B, we could have also used the quaternion representation Q1 in
the first step. This would lead to a transformed Q′

1 given by (3.8) where the entries are
themselves quaternions. In the next time interval the transformation on Q′

1 is simple since
the entries are now numbers. More generally, the net result for composing two different
quaternionic transformations take the form (3.12).

A derivation of the Floquet hamiltonian is likewise more involved. We leave this
important aspect to a future publication.

5 Discussions

In this paper we initiated a program of studying periodic quantum dynamics of driven
deformed conformal field theories in arbitrary number of dimensions, inspired by recent work
in 1 + 1 dimensions. More concretely, we studied the properties of driven 3 + 1 dimensional
CFTs using square protocols which involve evolution by non-commuting Hamiltonians in
successive time intervals after a single drive cycle.

There are several points worth emphasizing regarding this approach. First, the method
of exactly computing the dynamics works in arbitrary number of dimensions. We performed
explicit calculations in 3 + 1 dimensions in this work. But our use of quaternion formalism
provides a simple way to perform these calculations all d ≤ 3. Secondly, our method can be
straightforwardly generalized to other drive protocols including continuous ones; we leave
this as a subject of future work. For a class of drive protocols which uses same µ but
different β for each pulse within a drive cycle, we have shown how to obtain the necessary
transformations for arbitrary number of cycles. This is similar to d = 1, and we can have
dynamic control over the transition from the heating to the non-heating phase similar to
that found in d = 1 driven CFTs [12, 14, 16]. Explicit results for multiple cycles of this
type will appear in a future paper. For pulses with different µ, the situation is less clear
and this issue is left as a subject of future study.

While the power of conformal symmetry allows us to calculate observables and the details
associated with the phase structure, perhaps it is useful to ponder over a simpler physical
intuition of the underlying physics. In this regard, it is useful to consider e.g. free theories in
(1 + 1)-dimensions. For free Bosons, the stress-tensor T (w) = (−1/2) : ∂ϕ(w)∂ϕ(w) : and for
free Fermions it is given by T (w) = (1/2) : ψ(w)∂ψ(w) : and subsequently the Virasoro modes
are extracted from the stress-tensor: Ln = (1/(2πi))

∮
wn+1dwT (w). The standard radial

quantization in CFT chooses a Hamiltonian H ∼ L0, which corresponds to a stress-tensors
of the form: ∂ϕ(w)∂ϕ(w) for Bosons and ψ(w)∂ψ(w) for Fermions. Choosing a different
Hamiltonian involving {Lm, L−m}-modes (i.e. a different quantization) yields a non-trivial
w-factor in front of the derivative terms in the stress-tensor and therefore will correspond
to a non-trivial red-shift physics for the system. Consequently, thermal-phases may appear
as a result of this.6 Note, however, that this is too crude to pass as an argument since we
have not factored in the inequivalent conjugacy classes and we have also been imprecise
about where the “red-shift” matters, i.e. near the origin of the complex plane or near infinity.
Nonetheless, it raises an intriguing possibility of a more precise physical picture along these
lines and we hope to address this in future.

6Qualitatively, this is similar to the Rindler-physics, although it appears more subtle and layered.
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For holographic CFT’s, it would be insightful to get a dual gravitational description of
the dynamics. This can be done from two different perspectives: one that is based on the
explicit time-dependent Hamiltonian and the other that is based on the Floquet Hamiltonian.
While the former yields a dynamical geometry, the latter is capable of describing static
“patches” of the geometry which correspond to the different phases (heating and non-heating)
and the phase boundary. For the 1 + 1 dimensional case, the dynamical scenario has
been explored in [7–9], while the Floquet-Hamiltonian based approach is discussed in [22].
In [7], a non-trivial dynamical horizon structure has been observed, whereas the different
geometric patches of [22] were obtained by solving integral curves that are generated by the
(appropriate combination of) bulk Killing vector that is dual to the CFT Floquet Hamiltonian.
Interestingly, the integral curve approach is also explored in a completely different context
of “bulk reconstruction” in which a local bulk observer in an AdS-geometry is described in
terms of the CFT Hamiltonian, see e.g. [36, 37],.

The higher dimensional generalization of the bulk geometric description is potentially
very interesting. First, it is rather non-trivial to obtain horizons with structures in higher
dimensional black holes. Secondly, it is also technically involved to obtain dynamical horizons,
outside Vaidya-type geometries. Moreover, from the integral curve perspective, a local bulk
observer seems readily describable in terms of the CFT Floquet Hamiltonian using the
bulk Killing vectors that describe the SL(2, C) sub-algebra of the conformal algebra, see
for example appendix C for explicit expressions of the corresponding generators. We are
currently exploring this aspect in detail.

Let us now offer some comments that are not necessarily limited to CFTs. It is evident
that the crucial ingredients of our results are the following: (i) The existence of an SL(2, C)
algebra as a sub-algebra of the symmetry group of the system and (ii) a “quasi-primary”
representation of the fields under this SL(2, C).7 Interestingly, scattering matrix elements
in (3 + 1) and (2 + 1)-dimensions can be recast into correlation functions of quasi-primary
operators at null infinity known as the celestial sphere, see e.g. [40–42] for explicit details on
this. These quasi-primaries form the continuous principal series, ∆ = d−1

2 + is, in (d+ 1)-
dimensions and s is real-valued; we have collected some relevant and explicit formulae in
appendix D for a more direct comparison. Even though the “CFT-spectrum” is continuous
and complex-valued, the corresponding correlators are real-valued since it involves both ∆ and
∆̄. Thus, the presence of a heating and a non-heating phase along with a phase boundary is
expected in this case as well. Note, however, that this entails a rather non-trivial quantization
of the system: the Minkowski coordinates, Xµ, are first mapped to a stereographic coordinates
on the null sphere, w; subsequently, the w-plane is mapped to the cylinder by ζ = exp(2πw/L).
Identifying ζ = T + ix and analytically continuing T → iTL yields the Lorentzian system
(with Lorentzian time TL) for which the phases are expected to exist for different conjugacy
classes of the SL(2, C)-transformations. It will be very interesting to explore this aspect as
well as its connection with scattering matrix physics in detail, which we leave for future.

7A similar statement holds for an SL(2, R) algebra as well.
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A Transformation of the generators

In this section, we use infinitesimal coordinate transformations to obtain expressions of the
generators in the deformed frame as eluded to in the main text. To this end, we recollect
from the main text that the transformation of the generators D, K0 and P0 can be easily
obtained as follows

U−1σzU = τz = cosh θσz + sinh θiσx

U−1σxU = τx = cosh θσx − iσz sinh θ, τy = σy (A.1)

where U = exp[−iθ(K0 − P0)/2] as defined in the main text and the last relation follows
from the fact that U commutes with σy. Eq. (A.1) therefore species the relations between
the generators D, Kt and Pt and their deformed versions D′, K ′

0 and P ′
0. These are given by

D′ = D cosh θ − 1
2(K0 + P0) sinh θ

K ′
0[P ′

0] = 1
2(1 + cosh θ)K0[P0] − 1

2(1 − cosh θ)P0[K0] −D sinh θ (A.2)

where we have used eq. (2.3) to obtain the generators from the Pauli matrices.
To construct rest of the transformed generators, we need to use their coordinate rep-

resentation. For this, it is convenient to first consider an infinitesimal transformation
Uinf = 1 − iθ(K0 − P0)/2. The transformation of coordinates (τ, x, y, z) ≡ (τ, xj) under the
action of Uinf can be computed and yields

τ ′ = Uτ = τ − θ

2(1 + r2 − 2τ2), x′j = Uxj = xj(1 + θτ) (A.3)

The reverse transformation expressing (τ, xj) in terms of (τ ′, x′j) can be obtained from
eq. (A.3) and yields

τ = τ ′ + θ

2(1 + (r′)2 − 2τ ′2), xj = x′j(1 − θτ ′) (A.4)

We now use the transformed coordinates to write the expressions of the generators.
For example, one finds

P ′
0 = −i∂τ ′ = −i∂τ + iθ(τ∂τ +

∑
j

xj∂j) = P0 − θD (A.5)
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where we have used eq. (A.4). Note that this coincides with the infinitesimal version of
eq. (A.2) as expected; this can also be explicitly checked for D and K0.

Next we find the other generators where the use of the transformed coordinates provides
us the infinitesimal version of the generators in the deformed frame. For example, one finds

P ′
j = −i∂x′

j
= −i(∂xj + θ(xj∂τ − τ∂xj )) = Pj + θL0j (A.6)

K ′
j = −i(x′j(τ ′∂τ ′ +

∑
j

x′j∂x′
j
) − (r′)2∂x′

j
)

= −i(xj(τ∂τ +
∑

j

xj∂xj ) − r2∂xj ) − iθ(τ∂xj − xj∂τ ) = Kj − θL0j (A.7)

where Lµν = i(xµ∂xν −xν∂xµ) are the angular momentum generators. A simlar analysis yields

L′
0j = L0j + θ

2(Pj −Kj), L′
ij = Lij . (A.8)

It can be easily checked that the generators obtained in eqs. (A.6), (A.7), and (A.8), together
with the infinitesimal version of D, K0 and P0 obtained from eq. (A.2), satisfy the conformal
algebra to O(θ).

Next, we look for the transformed generators for finite conformal transformation. Instead
of a direct calculation via coordinate transformations which is cumbersome, we use the results
obtained for infinitesimal transformations and the criteria that these generators must satisfy
the conformal algebra. It turns out that these two criteria can uniquely specify the deformed
generators. To see this, we first consider Pj . Eq. (A.6) dictates the infinitesimal version of
P ′

j ; taking cue from this and eq. (A.2), we write

P ′
j = 1

2(1 + cosh θ)Pj + 1
2(1 − cosh θ)Kj + L0j sinh θ (A.9)

The first check to ensure that this is the correct form is to verify the commutator [D′, Pj ] = iP ′
j .

Written explicitly, using standard commutation relation of conformal generators, this yields

[D′, P ′
j ] = i

(cosh θ(1 + cosh θ)
2 Pj −

cosh θ(1 − cosh θ)
2 Kj −

1
2 sinh2 θ(Pj +Kj)

+ sinh θL0j

)
= iP ′

j (A.10)

Next, we need to check the commutation relation between P ′
j and K ′

j . For this one needs to
know K ′

j . Using eq. (A.7) and taking cue from the form of P ′
j , we write

K ′
j = 1

2(1 + cosh θ)Kj + 1
2(1 − cosh θ)Pj − L0j sinh θ (A.11)

This form ensures [D′,K ′
j ] = −iK ′

j and this can be checked in a similar manner. The
commutation of K ′

j and P ′
j can be computed to be

[K ′
j , P

′
j ] = 2i

(
(1 + cosh θ)2 − (1 − cosh θ)2

4 D − sinh θ(K0 + P0)
)

= 2iD′ (A.12)
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The commutation of P ′
0 and K ′

j can also be checked and yields

[K ′
j , P

′
0] = 2i

(
(1 + cosh θ)2 − (1 − cosh θ)2

4 L0j + 1
2 sinh θD(Pj −Kj)

)
= 2i (cosh θ L0j + sinh θ(Pj −Kj)/2) = 2iL′

0j (A.13)

Note that the form of L′
0j = cosh θ L0j + sinh θ(Pj −Kj)/2 so obtained is consistent with

eq. (A.8). Further it can be checked that [D′, L′
0j ] = 0. The other commutation relations

involving L′
ij and L′

0j also holds provided we set L′
ij = Lij . Thus the final expressions of

the deformed generators, used in the main text, are given by

D′ = D cosh θ − 1
2(K0 + P0) sinh θ

K ′
0 = 1

2(1 + cosh θ)K0 −
1
2(1 − cosh θ)P0 −D sinh θ

P ′
0 = 1

2(1 + cosh θ)P0 −
1
2(1 − cosh θ)K0 −D sinh θ

K ′
j = 1

2(1 + cosh θ)Kj + 1
2(1 − cosh θ)Pj − L0j sinh θ

P ′
j = 1

2(1 + cosh θ)Pj + 1
2(1 − cosh θ)Kj + L0j sinh θ

L′
0j = cosh θ L0j + 1

2 sinh θ(Pj −Kj), L′
ij = Lij (A.14)

Thus eq. (A.14) provides a complete description of the deformed CFT in terms of the
new generators.

B Coordinate transformation involving different subgroups

In this subsection, we provide an alternative formulation for coordinate transformation
involving different SU(1, 1) subgroups. To this end we define the initial quaternion matrix to be

Q = xµI − i(σixν + σjxλ + σkxδ) (B.1)

where σi,j,k denote Pauli matrices with σjσk = −iσi, I is the 2 × 2 identity matrix, and
µ ̸= ν, λ, δ.

Next we consider a transformation involving D, Kν , and Pν , where ν ̸= µ. Let us consider
a evolution operator U(T, 0) constructed using D, Kν and Pν given by

Uν =
(
ãν b̃ν

c̃ν d̃ν

)
(B.2)

where ãν d̃ν − b̃ν c̃ν = 1. We consider a quaternion matrix Q′ which can be written as

Q′ = xνI − i(σixµ + σjxδ + σkxλ). (B.3)

In this frame, the transformation of coordinates is known to be

Qnew = (ãνQ
′ − ib̃νI).(ic̃νQ

′ + d̃νI)−1 (B.4)
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To obtain from Qnew starting from Q (eq. (B.1)), we therefore need to transform Q to Q′.
This can be done by noting that

Q′ = σjQσk (B.5)

where we have used σjσk = −iσi. Substituting eq. (B.5) in eq. (B.4) we find

Qnew = (AQ− iB).(iCQ+D)−1 (B.6)
A = ãνσj , B = b̃νσk

C = c̃νσj , D = d̃νσk

The above transformations indicate that a square-pulse protocol involving different
SU(1, 1) subgroups do not have a SU(1, 1) valued U(T, 0); this can be seen by noting that
one needs to carry out intermediate basis changes to find the final coordinate when the
transformation involves different Uµ (as in eqs. (4.4) and (4.6) of section 4.1) and a simple
matrix product involving different Uµ does not yield the correct coordinate transformation.
Our analysis here also demonstrates that the arrangement of coordinates in the initial
quaternion matrix Q may be done arbitrarily without affecting the final result as eluded
to in section 3.1

C Conformal algebra in d-dimensions

In this appendix, for completeness, we briefly collect the well-known conformal algebra and
the corresponding generators. We will closely follow the notations of [39]. The conformal
algebra in Rd is given by the SO(d+ 1, 1) algebra, with the following commutation relations:

[D,Pµ] = iPµ , [D,Kµ] = −iKµ , [Kµ, Pν ] = 2i (δµνD −Mµν) , (C.1)
[Mµν , Pα] = i(δναPµ − δµαPν) , [Mµν ,Kα] = i(δναKµ − δµαKν) , (C.2)

[Mαβ ,Mµν ] = i(δαµMβν + δβνMαµ − δβµMαν − δανMβµ) . (C.3)

The differential operator representation of this algebra is given by

Pµ = −i∂µ , D = −ixµ∂µ , Mµν = −i(xµ∂ν − xν∂µ) , (C.4)
Kµ = −2ixµx

ν∂ν + ix2∂µ . (C.5)

The corresponding Euclidean AdS spacetime can be described by the hyperboloid in Rd+1,1:

−(X0)2 + (X1)2 + . . . (Xd+1)2 = −L2 . (C.6)

In the global patch, the AdS metric is given by

ds2 = L2
(
cosh2 ρ dτ2 + dρ2 + sinh2 ρ dY 2

d−1

)
, Y · Y = 1 . (C.7)

The SO(d+ 1, 1) algebra is generated by the following Killing vectors in global coordinate:

D = −i∂τ , Mµν = −i
(
Yµ

∂
∂Y ν − Yν

∂
∂Y µ

)
,

Pµ = −ie−τ
[
Yµ(∂ρ + tanh ρ ∂τ ) + 1

tanh ρ∇µ

]
, ∇µ = ∂

∂Y µ − YµY
ν ∂

∂Y ν ,

Kµ = −ieτ
[
Yµ(−∂ρ + tanh ρ ∂τ ) − 1

tanh ρ∇µ

]
. (C.8)
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One can check that on the boundary ρ = ∞ these Killing vectors generate via eq. (1.3)
the Lüscher-Mack term Kµ + Pµ.

D SL(2, C), quasi-primaries, Lorentz symmetry

In this appendix we collect some relevant formulae and basic statements regarding the
SL(2, C) action of the Lorentz group in (3 + 1)-dimensions. We will closely follow [40–43]. It
is well-known that given a four-vector Xµ, we can associate a hermitian matrix:

X =
[
X0 −X3 X1 + iX2

X1 − iX2 X0 +X3

]
, det(X) = −XµXµ . (D.1)

Now, an SL(2, C) matrix Θ acts on the hermitian matrix X as:

X ′ = ΘXΘ† , Θ =
[
a b

c d

]
, with ad− bc = 1 , (D.2)

such that det(X ′) = det(X).8

A more detailed action can be obtained by noting that the Lorentz group in (3 + 1)-
dimensions acts as the global conformal group on the celestial sphere at infinity. More
explicitly, given the Minkowski coordinates Xµ, µ = 0, . . . 3, the celestial sphere is defined
by ηµνX

µXµ = 0, on which we can define: w = (X1 + iX2)/(X0 + iX3). Under a Lorentz
transformation: X ′µ = Λµ

νX
ν , we get: w′ = (aw + b)/(cw + d), where ad − bc = 1 and

a, b, c, d are complex-valued. Subsequently, the (3 + 1)-dimensional scattering amplitudes
can be expressed as celestial CFT correlators.

For an explicit realization, [40–42] has defined quasi-primary fields under this SL(2, C)
in the principal series, with a conformal dimension ∆ = 1 + is, where s is real-valued.9

Moreover, there is a precise state-operator correspondence as well. The states are described
by
∣∣∣h, h̄, w, w̄〉 where {w, w̄} are the stereographic coordinates of the celestial sphere. Lorentz

transformation, denoted by U(Λ) acts on these states as follows:

U(Λ)
∣∣∣h, h̄, w, w̄〉 = 1

(cw + d)h

1
(c̄w̄ + d̄)h̄

∣∣∣∣∣h, h̄, aw + b

cw + d
,
āw̄ + b̄

c̄w̄ + d̄

〉
, (D.3)

Λ ∈ SL(2, C) , h = 1 + is− σ

2 , h̄ = 1 + is+ σ

2 , (D.4)

where σ denotes the helicity of the massless particle.
The corresponding basis quasi-primary states are given by

|s, σ, w = 0 = w̄⟩ = 1√
8π4

∫ ∞

0
dEEis |E, 0, 0, E, σ⟩ , (D.5)

8In (2 + 1)-dimensions a similar description holds for a real-symmetric matrix [43]:

X =
[

X0 − X2 X1

X1 X0 + X2

]
, X ′ = ΛXΛT , Λ ∈ SL(2, R) .

9In (d + 1)-dimensions, the corresponding conformal dimensions are ∆ = d−1
2 + is.
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such that the states are normalized as follows:

⟨s1, σ1, w1, w̄1|s2, σ2, w2, w̄2⟩ = δ (s1 − s2) δ(2) (w1 − w2) δσ1σ2 , (D.6)

where
|s, σ, w, w̄⟩ =

( 1
1 + ww̄

)1+is

U (R(w, w̄)) |s, σ, 0, 0⟩ , (D.7)

in which U (R(w, w̄)) are the unitary rotation operators. The action of the Lorentz group
on these states then yields equation (D.3), which essentially is comprised of SL(2, C) matrix
multiplications. The corresponding operators, denoted by Oh,h̄ will evolve in the Heisenberg
picture according to:

U(Λ)Oh,h̄ (w, w̄) U(Λ)† =
(
∂Λw
∂w

)h (∂Λw̄
∂w̄

)h̄

Oh,h̄ (Λw,Λw̄) . (D.8)

A very similar description exists in (2 + 1)-dimensions as well, we refer the interested Reader
to e.g. [43] for more details on this.

E Fixed points and trajectories for a single SU(1, 1) subgroup

For transformations which involve the subalgebra formed by D,K0, P0, one can choose

Q = x0I − i
3∑

i=1
σixi (E.1)

so that the transformations on R4 become (3.8) with the entries ai real numbers satisfying (3.9).
In the following we will use the notation

ã = ã1 b̃ = iã2 c̃ = iã3 d̃ = ã4 (E.2)

so that the transformation is

Q′ = (ãQ+ b̃)(c̃Q+ d̃)−1 (E.3)

A fixed point Q̄ satisfies

Q̄(c̃Q̄+ d̃) = ãQ̄+ b̃ ãd̃− b̃c̃ = 1 (E.4)

Using (E.4) and standard properties of the Pauli matrices it is then easy to see that there
are three kinds of fixed points or surfaces.

1. Q̄± = x̄±0 I, i.e. x̄i = 0. Here

x̄±0 = 1
2c̃

[
(ã− d̃) ±

√
(ã+ d̃)2 − 4

]
(E.5)

In deriving (E.5) we have used (E.3). These are two fixed points and requires

(ã+ d̃)2 > 4 (E.6)

The corresponding matrix [
ã b̃

c̃ d̃

]
(E.7)

is in the hyperbolic conjugacy class.

– 33 –



J
H
E
P
0
9
(
2
0
2
4
)
0
9
5

2. When (ã+ d̃)2 < 4 there is a fixed two dimensional hypersurface defined by

x̄0 = ã− d̃

2c̃

3∑
i=1

(x̄i)2 = 1
4c̃2

(
4 − (ã+ d̃)2

)
(E.8)

and now the matrix in (E.7) is in the elliptic conjugacy class.

3. The case (ã+ d̃)2 = 4 is marginal and corresponds to the parabolic conjugacy class.

It is now straightforward to see that the transformation (E.3) can be re-expressed in
the following form for hyperbolic and elliptic transformations:

(Q′ − Q̄+)(Q′ − Q̄−)−1 = (c̃Q̄− + d̃)(Q− Q̄+)(Q− Q̄−)−1(c̃Q̄+ + d̃)−1 (E.9)

For the elliptic conjugacy class, the Q̄± in this equation refer to two antipodal points on
the fixed 2-surface defined in (E.8).

To prove (E.9) we substitute (E.3) in the left hand side of this equation so that the
left hand side becomes[

(ã− c̃Q̄+)Q+ (b̃− d̃Q̄+)
] [

(ã− c̃Q̄−)Q+ (b̃− d̃Q̄−)
]−1

(E.10)

while the right hand side of (E.9) becomes[
(c̃Q̄− + d̃)Q− (c̃Q̄− + d̃)Q̄+

] [
(c̃Q̄+ + d̃)Q− (c̃Q̄+ + d̃)Q̄−

]−1
(E.11)

For the hyperbolic case, Q̄± are both proportional to the identity matrix. For the elliptic
case, we can take the antipodal points on the fixed 2-surface to be along the 3 axis without
any loss of generality. For both these cases one can then explicitly check that

Q̄+ + Q̄− = ã− d̃

c̃
· I Q̄+Q̄− = Q̄−Q̄+ = − b̃

c̃
· I (E.12)

Using these relations and the relation (E.4) it may be checked that (E.10) and (E.11) are
equal term by term.

The relationship (E.3) can be iterated to yield

Q′(n) =
(
I−(c̃Q−+d̃)nα±(Q)(c̃Q++d̃)−n

)−1(
Q+−

(
(c̃Q−+d̃)nα±(Q)(c̃Q++d̃)−n

)
Q−

)
,

(E.13)

where
α±(Q) =

[
(Q−Q+)(Q−Q−)−1

]
.

which can be used to determine the trajectory of a point under successive transformations.
The Euclidean distance between two points represented by quaternions Q1 and Q2 are

given by
√
|Det(Q1 −Q2)|. Equation (E.9) implies

Det(Q′ − Q̄+)
Det(Q′ − Q̄−)

= R2 Det(Q− Q̄+)
Det(Q− Q̄−)

(E.14)

– 34 –



J
H
E
P
0
9
(
2
0
2
4
)
0
9
5

where

R2 = Det(c̃Q− + d̃)
Det(c̃Q+ + d̃)

=

 ã+ d̃−
√

(ã+ d̃)2 − 4

ã+ d̃+
√

(ã+ d̃)2 − 4

2

(Hyperbolic)

R2 = 1 (Elliptic) (E.15)

The equation can be recursively applied to yield

Det(Q(n) − Q̄+)
Det(Q(n) − Q̄+)

= R2n Det(Q− Q̄+)
Det(Q− Q̄+)

(E.16)

where Qn denotes the transformed point after n such transformations. The expressions for
R2 then immediately implies that for hyperbolic transformations a point converges to one of
the fixed points for large n, whereas for ellipic transformations, the point keeps moving on a
circle of fixed radius around a point on the fixed surface. Note that when we analytically
continue to Lorentzian times we end up with a = d∗ which keeps the combination a+ d real.
Hence we can classify dynamics based on if R2 is a pure phase or real. This corresponds
to Re(a) being either less than 1 or greater.

Using the relation (E.13) we can calculate various physical quantities under a Floquet drive
of this type, after n cycles. The result depends on the conjugacy class of the transformation at
the end of a cycle. However the general features will be similar to the d = 1 case, i.e. hyperbolic
classes lead to a heating phase while elliptic classes lead to oscillatory phase [12, 14, 16].

When a cycle involves two different SL(2, R) subgroups of the conformal group, e.g. two
different Πµ’s, one can no longer represent the net transformation by a SL(2, H) transformation
with parameters proportional to the identity, rather a change is basis in required, see appendix
section B.The analysis of fixed points (surfaces) etc. needs to be re-done by investigating
the conjugacy invariants of SL(2, H) [35], and the result of such Floquet drives will be quite
different. Explicit results for physical quantities under Floquet dynamics will appear in
a future publication.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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