
J
H
E
P
0
9
(
2
0
2
4
)
0
8
6

Published for SISSA by Springer

Received: July 17, 2024
Revised: August 22, 2024

Accepted: August 26, 2024
Published: September 17, 2024

Tensor renormalization group study of
(1 + 1)-dimensional U(1) gauge-Higgs model at θ = π

with Lüscher’s admissibility condition

Shinichiro Akiyama a,b and Yoshinobu Kuramashi a

aCenter for Computational Sciences, University of Tsukuba,
Tsukuba, Ibaraki 305-8577, Japan

bGraduate School of Science, University of Tokyo,
Bunkyo-ku, Tokyo 113-0033, Japan

E-mail: akiyama@ccs.tsukuba.ac.jp, kuramasi@het.ph.tsukuba.ac.jp

Abstract: We investigate the phase structure of the (1+1)-dimensional U(1) gauge-Higgs
model with a θ term, where the U(1) gauge action is constructed with Lüscher’s admissibility
condition. Using the tensor renormalization group, both the complex action problem and
topological freezing problem in the standard Monte Carlo simulation are avoided. We find
the first-order phase transition with sufficiently large Higgs mass at θ = π, where the Z2
charge conjugation symmetry is spontaneously broken. On the other hand, the symmetry
is restored with a sufficiently small mass. We determine the critical endpoint as a function
of the Higgs mass parameter and show the critical behavior is in the two-dimensional Ising
universality class.

Keywords: Algorithms and Theoretical Developments, Other Lattice Field Theories, Phase
Transitions

ArXiv ePrint: 2407.10409

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP09(2024)086

https://orcid.org/0000-0003-1415-5620
https://orcid.org/0000-0002-3734-0194
mailto:akiyama@ccs.tsukuba.ac.jp
mailto:kuramasi@het.ph.tsukuba.ac.jp
https://doi.org/10.48550/arXiv.2407.10409
https://doi.org/10.1007/JHEP09(2024)086


J
H
E
P
0
9
(
2
0
2
4
)
0
8
6

Contents

1 Introduction 1

2 Tensor network formulation 3
2.1 The model on a lattice 3
2.2 Tensor network formulation 3
2.3 Coarse-graining algorithm 6

3 Numerical results 6
3.1 Pure U(1) gauge theory 6
3.2 The U(1) gauge-Higgs model 8

4 Summary and outlook 12

A Comparison with the Wilson gauge action 13

1 Introduction

At the end of the last century, Lüscher introduced an admissibility condition for the gauge
fields to be separated into disconnected subspaces corresponding to topological charges in
the continuum theory [1]:

∥1 − Pµν(n)∥ < ϵ ∀n, µ, ν, (1.1)

where ϵ is a positive constant and Pµν(n) is a product of link variables Uµ(n) as in the
standard way,

Pµν(n) = Uµ(n)Uν(n + µ̂)U †
µ(n + ν̂)U †

ν (n). (1.2)

The link variable Uµ(n) lives on the link connecting the sites n and n + µ̂. As an example, he
proposed the following gauge action to make the link variables satisfy the above condition:

βSg =


β

∑
n,µ>ν

1 − RePµν(n)
1 − ∥1 − Pµν(n)∥/ϵ

if ∥1 − Pµν(n)∥ < ϵ,

∞ otherwise,

(1.3)

with the inverse gauge coupling β. This action should have an advantage in investigating
the topological effects of the gauge theories. However, early numerical studies with this
action revealed that the topological change is substantially suppressed in the Monte Carlo
histories [2] and it is difficult to evaluate the contributions from different topological sectors.
As long as the Monte Carlo method is employed, the possible way is to perform calculations
in the fixed topological sectors [2–5] or to utilize open boundary conditions, dismissing the
translational invariance of the system [6].
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Figure 1. Schematic phase diagram of (1+1)d U(1) gauge-Higgs model with a θ term. The horizontal
axis denotes the Higgs mass-squared. The red line denotes the first-order phase transition, which
terminates at the critical endpoint expressed by the red blob.

However, this problem is potentially solved by the tensor renormalization group (TRG)
method.1 The major advantages of the TRG method over the Monte Carlo simulation
are (i) no sign problem [15–27], (ii) logarithmic computational cost on the system size,
(iii) direct manipulation of the Grassmann variables [8, 10, 11, 28–35], and (iv) evaluation
of the partition function or the path integral itself. The advantage (iv) ensures that the
TRG calculation automatically includes full contributions from different topological sectors.
Moreover, the TRG method assumes the translational invariance of the system and can
easily impose periodic boundary conditions.

In this paper, we investigate the phase structure of the (1+1)-dimensional ((1+1)d)
U(1) gauge-Higgs model with a θ term, where the topological effects play an essential role,
employing Lüscher’s gauge action of eq. (1.3). The Monte Carlo simulation of this model
is extremely difficult due to a double whammy of the complex action problem and the
topological freezing. Figure 1 illustrates the expected phase diagram [36]. The model exhibits
the first-order phase transition at θ = π, where the Z2 charge conjugation symmetry is
spontaneously broken in the large positive Higgs mass-squared regime, including the pure
gauge limit.2 Once the Higgs mass-squared is sufficiently reduced, the symmetry is restored.
We determine the critical endpoint as a function of the Higgs mass-squared and show its
critical behavior is in the 2d Ising universality class based on the numerical analysis of the
transfer matrix and topological charge density. We also compare our results with the previous
work employing the dual lattice simulation based on the Villain gauge action, which is a
non-compact gauge action on the lattice [39].

This paper is organized as follows. In section 2, we define the U(1) gauge-Higgs model
with a θ term on a (1+1)d lattice. We also demonstrate how to represent the path integral
as a tensor network. In section 3, we first present the results for the pure U(1) gauge action

1In this paper, the “TRG method” or the “TRG approach” refers to not only the original numerical
algorithm proposed by Levin and Nave [7] but also its extensions [8–14].

2There are several earlier studies on the 2d pure gauge theory with a θ term by the density of state
approach [37], complex Langevin method [38], and TRG [21, 27].
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which corresponds to the infinitely heavy limit of the Higgs mass, where the first-order phase
transition takes place at θ = π. After that, we discuss the phase transition with the finite
lattice Higgs mass and determine the critical endpoint and its universality class. Section 4
is devoted to summary and outlook.

2 Tensor network formulation

2.1 The model on a lattice

The U(1) gauge-Higgs model with a θ term is defined by

S = βSg + Sh + Sθ. (2.1)

We always consider the model on a square lattice with periodic boundary conditions. We
employ the Lüscher gauge action,

Sg =


∑

n

1 − ReP12(n)
1 − [1 − ReP12(n)]/ϵ

if “admissible”

∞ otherwise,

(2.2)

where P12(n) is defined by eq. (1.2) with Uν(n) = eiϑν(n) and ϑν(n) ∈ [−π, π]. The admis-
sibility condition is given by

1 − ReP12(n) < ϵ. (2.3)

When this condition is satisfied, the corresponding gauge fields are called admissible. The
admissibility condition makes gauge fields smooth and unphysical configurations are sup-
pressed. The space of admissible gauge fields is separated into disconnected subspaces which
are labeled by the integers corresponding to topological charges in the continuum [1]. The
Higgs part is defined by

Sh = −
∑

n

∑
ν

[ϕ∗(n)Uν(n)ϕ(n + ν̂) + ϕ∗(n + ν̂)U∗
ν (n)ϕ(n)] + M

∑
n

|ϕ(n)|2 + λ
∑

n

|ϕ(n)|4 .

(2.4)

The complex-valued Higgs fields are denoted by ϕ(n) and M = m2 + 4 is the lattice Higgs
mass where m corresponds to the Higgs mass parameter in the continuum action. The quartic
coupling constant is denoted by λ. Finally, the θ term is defined by

Sθ = − iθ
2π

∑
n

ln P12(n). (2.5)

2.2 Tensor network formulation

We consider the tensor network representation of the path integral defined as

Z =
∏
n,ν

∫ π

−π

dϑν(n)
2π

∏
n

∫
C

dϕ(n)
2π

exp(−S). (2.6)
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Parametrizing the complex-valued Higgs field by ϕ(n) = r(n)eiφ(n), the integral measure
is represented as ∫

C

dϕ(n)
2π

=
∫ ∞

0
r(n)dr(n)

∫ π

−π

dφ(n)
2π

, (2.7)

and Sh reads

Sh = −
∑

n

∑
ν

2r(n)r(n + ν̂) cos [φ(n + ν̂) − φ(n) + ϑν(n)] +
∑

n

[
Mr(n)2 + λr(n)4

]
.

(2.8)

We further introduce ℓ(n) = r(n)2 and rewrite eq. (2.8) as

Sh = −
∑

n

∑
ν

2
√

ℓ(n)ℓ(n + ν̂) cos [φ(n + ν̂) − φ(n) + ϑν(n)] +
∑

n

[
Mℓ(n) + λℓ(n)2

]
.

(2.9)

Using the invariance of the Haar measure, or choosing the unitary gauge, we can eliminate
φ(n) from the path integral,

Z =
∏
n,ν

∫ π

−π

dϑν(n)
2π

∏
n

∫ ∞

0

dℓ(n)
2 exp

[
−βSg − S′

h − Sθ

]
, (2.10)

with

S′
h = −

∑
n

∑
ν

2
√

ℓ(n)ℓ(n + ν̂) cos ϑν(n) +
∑

n

[
Mℓ(n) + λℓ(n)2

]
. (2.11)

In this study, we use the Gauss-Laguerre quadrature rule to discretize the integral over
ℓ(n) and the Gauss-Legendre one for ϑν(n). The efficacy of these Gauss quadrature rules has
been reported in the previous TRG studies for the U(1) pure gauge theory with a θ term [21]
and complex ϕ4 theories [20, 40].3 The path integral is now approximated by

Z ≃ Z(Kg, Kh)

=
∏
n,ν

∑
ϑ̃ν(n)∈Dg

wϑ̃ν(n)
2

∏
n

∑
ℓ̃(n)∈Dh

wℓ̃(n)eℓ̃(n)

2 exp
[
−βS̃g − S̃′

h − S̃θ

]
, (2.12)

where

S̃g =


∑

n

1 − cos π
(
ϑ̃1(n) + ϑ̃2(n + 1̂) − ϑ̃1(n + 2̂) − ϑ̃2(n)

)
1 −

[
1 − cos π

(
ϑ̃1(n) + ϑ̃2(n + 1̂) − ϑ̃1(n + 2̂) − ϑ̃2(n)

)]
/ϵ

if admissible

∞ otherwise,

(2.13)

S̃′
h = −

∑
n

∑
ν

2
√

ℓ̃(n)ℓ̃(n + ν̂) cos πϑ̃ν(n) +
∑

n

[
Mℓ̃(n) + λℓ̃(n)2

]
, (2.14)

S̃θ = − iθ
2π

∑
n

ln
[
eiπ(ϑ̃1(n)+ϑ̃2(n+1̂)−ϑ̃1(n+2̂)−ϑ̃2(n))]

. (2.15)

3Another way to discretize the integral would be the character expansion. Although there is no systematic
comparative study between the Gauss quadrature and the character expansion, a clear advantage of the former
is that it can be easily applied to more complicated forms of lattice actions.
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In eq. (2.12), ℓ̃(n) denotes the sampling point according to the Gauss-Laguerre quadrature
and wℓ̃(n) is the corresponding weight. The number of sampling points in Dh is denoted by
Kh. Similarly, ϑ̃ν(n) denotes the sampling point according to the Gauss-Legendre quadrature
and wϑ̃ν(n) is the corresponding weight. The number of sampling points in Dg is denoted by
Kg. In the limits of Kg → ∞ and Kh → ∞, the original path integral is restored. Eq. (2.12)
is ready to be described as a tensor network. We introduce four-leg pure gauge tensors
on each plaquette as follows,

T
(g)
xgygx′

gy′
g

=


√

wxg wyg wx′
g
wy′

g

22 exp

−β
1−cos π

(
y′g +xg−yg−x′

g

)
1−

[
1−cos π

(
y′g +xg−yg−x′

g

)] /
ϵ

 if admissible

0 otherwise,

(2.16)

T
(θ)
xgygx′

gy′
g

= exp
( iθ

2π
ln

[
eiπ(y′

g+xg−yg−x′
g)])

. (2.17)

For the Higgs part, we introduce the following hopping matrix,

Hℓ̃(n)θ̃ν(n)ℓ̃(n+ν̂)

=
4
√

wℓ̃(n)wℓ̃(n+ν̂)e(ℓ̃(n)+ℓ̃(n+ν̂))/4
√

2

× exp
[
2
√

ℓ̃(n)ℓ̃(n + ν̂) cos πθ̃ν(n) − M

4
(
ℓ̃(n) + ℓ̃(n + ν̂)

)
− λ

4
(
ℓ̃(n)2 + ℓ̃(n + ν̂)2

)]
.

(2.18)

Now, we perform the singular value decomposition (SVD) of the ν-directional hopping
matrix, which gives us

Hℓ̃(n)ϑ̃ν(n)ℓ̃(n+ν̂) ≃
χ∑

α=1
Aℓ̃(n)ϑ̃ν(n)αBℓ̃(n+ν̂)α, (2.19)

where A and B are defined by unitary matrices multiplied by the square root of singular
values σα. In this study, we choose χ in eq. (2.19) such that the singular values satisfying
σα/σ1 > 10−7 are kept. Note that σ1 is the largest singular value and σα is in the descending
order. We are now allowed to integrate out ℓ̃(n) at each site n. As a result, we can define
a six-leg tensor at each lattice site as,

T
(h)
xhyhx′

gx′
h

y′
gy′

h
=

∑
ℓ̃(n)

Aℓ̃(n)y′
gxh

Aℓ̃(n)x′
gyh

Bℓ̃(n)x′
h
Bℓ̃(n)y′

h
. (2.20)

Therefore, the tensor network representation for eq. (2.12) is obtained as

Z(Kg, Kh) = tTr
[∏

n

Tn

]
, (2.21)

with the fundamental tensor Tn at each site n,

(Tn)xyx′y′ = T
(g)
xgygx′

gy′
g
T

(θ)
xgygx′

gy′
g
T

(h)
xhyhx′

gx′
h

y′
gy′

h
, (2.22)

whose bond dimension is Kgχ. Note that the subscripts in the left-hand side of eq. (2.22)
are defined as i = (igih) with i = x, y, x′, y′.
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2.3 Coarse-graining algorithm

We apply the bond-weighted TRG (BTRG) algorithm [41] to approximately compute the
path integral in eq. (2.21). BTRG allows us to approximately carry out the contractions
among 2q local tensors within the q times of coarse-graining. Since each local tensor in
eq. (2.22) is defined on each lattice site, q relates to the volume V via V = 2q and the linear
system size L via L = 2q/2. For the algorithmic details, see ref. [41].4

This algorithm improves the accuracy of the original Levin-Nave TRG at the same bond
dimension. Remarkably, the computational cost of BTRG is completely the same as the
Levin-Nave TRG. In benchmarking by the 2d Ising model in ref. [41], the BTRG shows better
performance not only than the Levin-Nave TRG but also than the higher-order TRG [9], one
of the most commonly used TRG algorithms, whose computational cost is greater than the
Levin-Nave TRG as well as BTRG. The essence of the BTRG is to introduce a weight on each
edge of the tensor network. These weights mimic the effect of the environment, which is not
taken into account in the original Levin-Nave TRG. Therefore, the BTRG can be regarded
as a variant of the second renormalization group (SRG) algorithms [43, 44], but without any
backward iteration to update the environment tensors as in the conventional SRG algorithms.
Moreover, there is no variational determination of local tensors as in the tensor network
renormalization (TNR) [45, 46] and loop-TNR [47]. Since such variational calculations are
time-consuming, it is usually difficult to increase the bond dimension in these algorithms, and
their application to the lattice model with continuous degrees of freedom might be limited.

3 Numerical results

In the following, we always set β = 3.0 and the positive constant ϵ in eq. (2.3) as ϵ = 1.0.
For the gauge-Higgs model, the quartic coupling is fixed as λ = 0.5. Note that the cutoff
effects from the finite lattice spacing of the Lüscher gauge action and standard Wilson gauge
action are different even at the same inverse gauge coupling β. With the same value of β, the
Lüscher gauge action is expected to be closer to the continuum limit than the Wilson action.
See appendix A for the comparison between the Lüscher and Wilson gauge actions.

3.1 Pure U(1) gauge theory

We start by studying the (1+1)d pure gauge theory with a θ term to validate our tensor
network formulation. In this case, the local tensor in eq. (2.22) is defined without T (h) and
the bond dimension in eq. (2.21) is equal to Kg.

At θ = π, the theory is expected to undergo the first-order transition. We calculate the
topological charge density ⟨Q⟩/V , which is defined by

⟨Q⟩
V

= − i
V

∂ ln Z

∂θ
. (3.1)

Figure 2 shows the volume dependence of ⟨Q⟩/V at β = 3.0 as a function of θ. We set
D = Kg = 30 and employed the numerical differentiation to evaluate eq. (3.1). As the volume

4Since the model is defined on a square lattice, we always set the hyperparameter in the BTRG algorithm
as k = −0.5 [41, 42].
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Figure 2. Topological charge density for the pure U(1) gauge theory as a function of θ/π at β = 3.0
with D = Kg = 30.

increases, the topological charge density gradually becomes discontinuous and we observe a
clear jump at θ = π with L ≥ 213. This is a signal of the first-order transition at θ = π.

Taking advantage of the TRG method, we also compute the ground state degeneracy
by introducing

X = (TrA)2

Tr (A2) , (3.2)

following ref. [48]. After sufficient times of coarse-graining, this quantity counts the ground
state degeneracy. In eq. (3.2), A is a transfer matrix defined from the local tensor via

Ayy′ =
∑

x

Txyxy′ . (3.3)

Figure 3 shows X in eq. (3.2) as a function of θ. With sufficiently large volume, X = 2 is
realized only at θ = π. Therefore, the current TRG computation successfully reproduces
the spontaneous Z2 symmetry breaking at θ = π as expected.

Additionally, we apply the finite-size scaling analysis for the topological susceptibility,
which is given by

χQ = ∂

∂θ

⟨Q⟩
V

. (3.4)

We use the numerical differentiation with the O(∆4) accuracy, setting ∆ = π × 10−5 around
θ = π, to evaluate eq. (3.4). Since the peak of the topological susceptibility always appears
at θ = π, we examine the system size dependence of the values of χQ at θ = π. Let χpeak(L)
be the value of χQ at θ = π with the linear system size L. Using the following ansatz,

χpeak(L) = c0 + c1Lp, (3.5)

– 7 –
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Figure 3. The ground state degeneracy X of eq. (3.2) for the pure U(1) gauge theory as a function
of θ/π at β = 3.0 with D = Kg = 30.

the data of χpeak(L) are fitted as shown in figure 4. The fit is performed on the data over
L ∈ [4, 256

√
2] and we obtain p = 2.00001(6), c0 = −0.0196(6), and c1 = 0.0009944(3).

Therefore, χpeak(L) is proportional to the volume and this is another indication of the
first-order phase transition. Although we employed the finite bond dimension D and cutoff
Kg, the current computation correctly reproduces the first-order phase transition at θ = π.
We have also tried the same analysis with D = Kg = 20, which results in p = 2.00000(5),
c0 = −0.0197(5), and c1 = 0.0009973(3). Therefore, D, Kg ≥ 20 seems sufficiently large to
investigate the phase transition at θ = π for the pure U(1) gauge theory at β = 3.0.

3.2 The U(1) gauge-Higgs model

We now investigate the critical behavior of the U(1) gauge-Higgs model at θ = π. Figure 5
shows the thermodynamic topological charge density at M = 2.99 and M = 3.00, where we set
Kg = 20, Kh = 20 which result in χ = 8 according to eq. (2.19). We also set D = Kgχ = 160.
As we will see, our choice of D = Kgχ = 160 is sufficiently large to determine the universality
class at the critical endpoint. The behavior of topological charge density is highly different
between these two mass parameters; ⟨Q⟩/V varies continuously around θ = π at M = 2.99
but the discontinuity appears at θ = π when M = 3.00. Therefore, the critical mass Mc
should exist in the range of 2.99 ≤ Mc ≤ 3.00. To locate the critical point Mc more precisely,
we use the ground state degeneracy X in eq. (3.2). When M > Mc, we should have X = 2
due to the Z2 charge symmetry breaking and with M < Mc, we must have X = 1. Figure 6
shows the degeneracy X as a function of M , which results in 2.99747 ≤ Mc ≤ 2.99748.

To identify the universality class, we analyze the eigenvalue spectrum of the transfer
matrix A defined in eq. (3.3). Note that the analysis on the transfer matrix obtained from the
TRG has been employed in investigating several spin models [48–52] and the lattice Schwinger
model [18]. For a comprehensive overview, see ref. [53]. Although we are dealing with
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Figure 4. System size dependence of χpeak for the pure U(1) gauge theory at β = 3.0 with
D = Kg = 30.
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Figure 5. Topological charge density in the thermodynamic limit for the U(1) gauge-Higgs model
as a function of θ/π at β = 3.0 and λ = 0.5 with Kg = 20, Kh = 20, and D = 160. The circle and
diamond denote M = 2.99 and M = 3.00, respectively.
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Figure 6. The ground state degeneracy X computed on V = 240 as a function of M .

continuous gauge and scalar degrees of freedom, a similar analysis should be possible if our
discretization scheme based on the Gauss quadrature rules is working. Particularly, we employ
the tensor-network-based level spectroscopy proposed in refs. [49, 51]. Let λn (n = 0, 1, · · · )
be an n-th eigenvalue of the transfer matrix A. Assuming that these eigenvalues are in
descending order, we can obtain the scaling dimension xn(L) at the finite system size L via

xn(L) = 1
2π

ln λ0(L)
λn(L) . (3.6)

When these quantities are computed at the criticality and on a sufficiently large volume,
they give us the scaling dimension of the conformal field theory (CFT). Figure 7 shows
x1(L) as a function of the Higgs mass M . The volume independence can be observed at
M ∼ 2.99748 with x1 = 1/8, which is consistent with the 2d Ising universality class. From
now on, we assume the critical phenomenon is in the 2d Ising universality class. Following
ref. [51], we consider a combined scaling dimension,

xcmb(L) = x1(L) + 1
16x2(L), (3.7)

which removes the effect of the leading irrelevant perturbation associated with the scaling
dimension 4. Since x2 = 1 in the 2d Ising universality class, xcmb = 3/16 is expected at the
criticality. Figure 8 shows xcmb(L) against the Higgs mass M which is in agreement with this
expectation. Note that xcmb(L) shown in figure 8 also agrees with the previous estimation by
X: 2.99747 ≤ Mc ≤ 2.99748. Moreover, we apply a scheme to determine the critical point
following ref. [51], which assumes the phase transition is in the 2d Ising universality class.
We first choose two mass parameters M (+) and M (−) such that M (−) ≤ Mc ≤ M (+) and
compute δxcmb(L) = xcmb(L) − 3/16. When M ≤ Mc (M ≥ Mc), δxcmb(L) should increase
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Figure 7. The system-size dependence of the scaling dimension x1(L). The dashed line denotes the
theoretical value of the 2d Ising universality class, x1 = 1/8.

(decrease) by enlarging the system size as shown in figure 8. Secondly, we perform linear
interpolations of δxcmb(L) between M (+) and M (−), and find a crossing point M∗(L) of
two lines with the system size L and

√
2L. Then, Mc is obtained via M∗(L) = Mc + aL,

where Mc and a are the parameters determined by the numerical fit. The fit results in
Mc = 2.997480(2), where we set M (−) = 2.99747, M (+) = 2.99749 using the data with
L ∈ [210, 214√2]. Therefore, the tensor-network-based level spectroscopy confirms the critical
point estimated by the ground state degeneracy. We also investigate the finite-size correction
for the free energy in the thermodynamic limit via

1
L2 ln λ0 = −f∞ + πc

6L2 , (3.8)

where f∞ is the thermodynamic free energy and c is the central charge of the CFT at
criticality. Using eq. (3.8) as a fitting ansatz for ln λ0/L2, we can determine the central
charge. As a representative point, we choose M = 2.99748 and the fit using the data with
L ∈ [210, 215] results in c = 0.50(7), which is consistent with c = 1/2, as expected.

We finally remark on the location of Mc which slightly depends on the algorithmic
parameters, Kg, Kh, and D = Kgχ. Table 1 shows the critical endpoint Mc estimated by the
scheme in ref. [51]. In table 1, the error originates from the fit based on M∗(L) = Mc + aL.
We find that these estimations are comparable with Mc = 2.989(2) obtained in ref. [39],
where the gauge-field Boltzmann weight is given by the Villain form and the Monte Carlo
simulation is performed based on the dual representation. Note that Mc = 2.989(2) in
ref. [39] is obtained at β = 3.0 and λ = 0.5.
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Figure 8. The system-size dependence of the scaling dimension xcmb(L). The dashed line denotes
the theoretical value of the 2d Ising universality class, xcmb = 3/16.

Kg Kh χ D Mc
24 20 8 192 2.9982886(1)
22 20 8 176 2.9998263(13)
20 20 8 160 2.9974765(14)
24 10 6 144 2.9929635(1)
22 10 6 132 2.9945222(9)
20 10 7 140 2.9921698(6)

Table 1. Comparison of the critical endpoint Mc against the algorithmic parameters.

4 Summary and outlook

We have analyzed the phase structure of the (1+1)d U(1) gauge-Higgs model with a θ term,
whose gauge action is constructed with Lüscher’s admissibility condition. Although the
model suffers from a complex action problem and topological freezing within the Monte
Carlo simulation, the TRG approach allows us to deal with the model successfully. We have
observed the first-order phase transition at θ = π with sufficiently large lattice Higgs mass M ,
including the pure gauge theory, with the finite gauge coupling β and the quartic coupling
λ. We have determined the critical endpoint and its universality class from the numerical
analysis of the transfer matrix, which can be directly obtained from the TRG computation.
Employing the tensor-network-based level spectroscopy, we have confirmed that the scaling
dimensions are consistent with the 2d Ising universality class.

All these results show that the TRG is a promising approach to deal with the lattice gauge
theory with Lüscher’s admissibility condition. We emphasize that one can easily combine the
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Lüscher gauge action with fermions and extend the theory for the higher dimensions within
the tensor network formulation. It would be an interesting future work to investigate the
Schwinger model with a θ term under Lüscher’s admissibility condition.
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A Comparison with the Wilson gauge action

Employing the pure U(1) gauge theory with a θ term, we make a comparison between the
Lüscher gauge action in eq. (2.2) and the Wilson gauge action,

Sg =
∑

n

(1 − ReP12(n)) . (A.1)

Here, we consider a θ term defined by

Sθ = iθ
2π

∑
n

ImP12(n), (A.2)

instead of eq. (2.5). In the continuum limit, eq. (A.2) reproduces

Sθ = iθ
2π

∫
d2xF12(x), (A.3)

which is a topological term of the continuum theory and F12(x) is the field strength in two
dimensions. The continuum limit is defined by β → ∞ and V → ∞ with fixing β/V . The
θ term in eq. (A.2) reproduces the 2π periodicity of observables as a function of θ with
sufficiently large β and V [55].

Since the cutoff effects in the Lüscher and Wilson gauge actions should differ, how to
approach the continuum limit should also be different. In figure 9, the free energy density
ln Z/V is shown as a function of θ/π at various β with fixing β/V = 0.1. All these results
are obtained by the BTRG with D = Kg = 30. The left and right panels are obtained by
the Lüscher action with ϵ = 1 and Wilson action at the same β and V . Figure 10 shows the
topological charge density ⟨Q⟩/V defined by eq. (3.1) in the same way. With the same β, the
Lüscher action gives a result closer to the continuum limit than the Wilson action.

– 13 –



J
H
E
P
0
9
(
2
0
2
4
)
0
8
6

-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0

θ/π

1.390

1.391

1.392

1.393

1.394

1.395

ln
Z

/V

-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0

θ/π

1.00

1.05

1.10

1.15

1.20

ln
Z

/V

(a) (β, V ) = (1.6, 24)

-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0

θ/π

1.645

1.646

1.647

1.648

1.649

1.650

1.651

ln
Z

/V

-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0

θ/π

1.44

1.45

1.46

1.47

1.48

1.49

1.50

ln
Z

/V

(b) (β, V ) = (3.2, 25)

-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0

θ/π

1.929

1.930

1.931

1.932

1.933

1.934

ln
Z

/V

-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0

θ/π

1.824

1.826

1.828

1.830

1.832

1.834

1.836

1.838

1.840

ln
Z

/V

(c) (β, V ) = (6.4, 26)

-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0

θ/π

2.2375

2.2380

2.2385

2.2390

2.2395

2.2400

2.2405

2.2410

2.2415

ln
Z

/V

-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0

θ/π

2.183

2.184

2.185

2.186

2.187

2.188

2.189

ln
Z

/V

(d) (β, V ) = (12.8, 27)

Figure 9. Free energy density ln Z/V at various (β, V ) by the Lüscher gauge action (left) and Wilson
gauge action (right) with fixing β/V = 0.1.
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Figure 10. Topological charge density ⟨Q⟩/V at various (β, V ) by the Lüscher gauge action (left)
and Wilson gauge action (right) with fixing β/V = 0.1.
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β Lüscher (ϵ = 1) Wilson
1.6 1.11932(3) 1.67903(2)
3.2 1.08112(2) 1.26026(1)
6.4 1.05111(4) 1.09604(7)
12.8 1.03070(3) 1.04296(1)

Table 2. Comparison of θc/π obtained by the Lüscher gauge action (ϵ = 1) and Wilson gauge action
fixing β/V = 0.1.

For more quantitative discussion, we compute the topological susceptibility χQ given
by eq. (3.4) employing the numerical differentiation with the O(∆4) accuracy, setting ∆ =
π × 10−5. In particular, we investigate the peak position of χQ varying β and V with fixing
β/V , fitting χQ via three parameters χpeak, c, and θc by

χQ(θ) = χpeak + c(θ − θc)2 (A.4)

in the vicinity of the first peak appearing in the region where θ is positive. Typically, we
use 2000 data points around θc. Table 2 summarizes the resulting peak position θc in the
unit of π. At the same β, the Lüscher action results in the peak position closer to θc = π

than the Wilson action. Since we should observe the peaks in the topological susceptibility
at θ = nπ (n = ±1,±3, · · · ) in the limits of β → ∞ and V → ∞, we can conclude that
the Lüscher gauge action shows a faster convergence toward the continuum limit than the
Wilson gauge action.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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