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1 Introduction

The discovery of graphene sparked a great interest towards a better understanding of the
behavior of relativistic fermions in 2 + 1 dimensions. These fermions describe the low energy
effective excitations around special points of the Brillouin zone and were found/predicted
for a number of systems. Sometimes, the position of Dirac cones in momentum space may
be changed by a band tuning parameter. Fine tuning this parameter the Dirac cones might
merge [1] and this merging results into a topological phase transition between a semi-metallic
Dirac state and a band insulator featuring a band gap. When these two phases meet we
have two possibilities for the topological critical point: either it disperses quadratically in
both directions or it disperses quadratically in one direction while linearly in the other,
featuring an anisotropic Dirac semimetal [2]. For instance, this kind of behavior was observed
experimentally in black phosphorus [3], where the dispersion is linear along armchair direction
and it is quadratic in the zigzag direction of the underlying honeycomb lattice. Other systems
where this anisotropic dispersion was proposed include TiO2/VO2 nanostructures under
confinement [4] and photonic metamaterials [5]

Understanding the quantum field theoretical description of these non-relativistic critical
points with interactions using standard methods as the ϵ expansion or the large N limit give
ambiguous results depending on the way limits are taken [6–9]. In this context one may
wonder if the AdS/CFT duality might give some insightful understanding via an alternative
approach. Over the last decades, the holographic duality (also known as the AdS/CFT
and gauge/gravity duality) has been used to study several condensed matter systems in the
strong coupling regime. For a review of the last developments see [10–12]. In the context of
topological phase transitions in 3 + 1 dimensions we have gravitational holographic duals
for Weyl semimetals [13–16], multi-Weyl semimetals [17, 18] and nodal line semimetals [19]
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among others. On the other hand, 2 + 1 dimensional topological phase transitions featuring
quadratic band touching were recently studied in [20–22].

In this paper we propose an holographic construction featuring a topological phase
transition characterized by a Dirac semimetal at its critical point. To do so we will start
by considering a free toy model in section 2 featuring the desired anisotropic dispersion
relation. We will study the symmetry breaking pattern of the free model, and mimic it for
the boundary conditions of some classical fields living outside an AdS black hole, in section 3,
where we introduce our holographic model. Then, we will study the dynamics of probe
fermions living on top of our holographic model in section 4. In section 5 we take a slight
detour to probe our numerical algorithm against previously reported analytic results for
pole-skipping frequencies. In this way, we confirm that the near horizon analysis presented
in [23] is consistent with the full fermionic Green function. We then turn to the main results
of this paper in section 6. These consist on the study of the fermionic Green function
in our holographic model and specially on the identification of an anisotropic dispersion
relation dispersing linearly in one direction while quadratically in the other. We conclude
by enumerating some likely future directions in section 7. Appendix A shows some details
on boundary conditions and its relation to pole-skipping.

2 A free fermionic model

Our starting point will be a free fermionic model featuring the topological phase transition
we are interested in. From this model we will extract a symmetry breaking pattern associated
to the construction that we will use as inspiration for our holographic model. We should
enphasize here that the holographic model will not be dual to this free fermionic model, but
we are only using it to understand the underlying symmetries associated to our construction.

Let us start with a simple free fermionic model in 2 + 1 dimensions that consists on two
Dirac fermions in the UV coupled via the gausian relevant deformations ∆1 and ∆2 [24]

H2 = HD ⊗ σ0 + (∆1σ1 ⊗ σ1 +∆2σ3 ⊗ σ3) , (2.1)

where we denote the Pauli matrices by σj (j = 1, 2, 3), as well as σ0 = I2×2. The free-Dirac
Hamiltonian HD is defined as HD = −γt(γxkx+ γyky), with γµ = (σ3,−iσ2, iσ1) [20, 21]. As
shown in figure 1, whenever ∆2 > ∆1 this system is gaped, while it features two Dirac cones
separated in momentum when ∆2 < ∆1. The spectrum for ∆1 = ∆2 ≡ ∆ reads

ω = ±
√
k2 + 2∆2 ± 2

√
k2
x∆2 +∆4 (2.2)

The conduction and the valence bands crossing at zero energy features an anisotropic
dispersion relation given by:

ω ≈ ±

√
k2
y +

k4
x

4∆2 (2.3)

Let us now write the action that describes these two Dirac fermions Ψ = (ψ, ξ),

S =
∫
d3x

(
iψ̄γa∂aψ + iξ̄γa∂aξ +∆2

(
ψ̄ψ − ξ̄ξ

)
−∆1

(
iψ̄γ1ξ + iξ̄γ1ψ

))
(2.4)

where γa = (σ3,−iσ2, iσ1).
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Figure 1. Dispersion relations for low energy quasi-particle excitations (QPE’s) for all different
choices of coupling parameters ∆1 and ∆2. The left-most plot corresponds to the case in which
∆1 > ∆2, when this graphene-like system behaves like a semimetal. The middle plot shows the
anisotropic semi-Dirac phase-transition (∆1 = ∆2) in which the energy bands behave quadratically
for kx and linearly for ky. The right-most plot shows the remaining case, when ∆1 < ∆2, resulting in
a gapped system.

Interestingly this action is equivalent to coupling Ψ to a constant SU(2) gauge field
A

(1)
x = ∆1 and a constant scalar field transforming in the adjoint representation of SU(2),

φ = ∆2σ3.
Next we proceed to construct an holographic model featuring these dispersion relations.

Our procedure will be the standard bottom up approach. We identify the symmetries and
the scheme of symmetry breaking of our toy free model. Then we gauge those symmetries
in one extra dimension and also add a scalar doublet to realize the symmetry breaking
pattern described above. Hence a very minimal choice will consist on studying the dynamics
of a SU(2) gauge field and a scalar in the adjoint representation of SU(2) living in a fixed
AdS black hole background.

3 Holographic model

Inspired in our free model in the previous section, we will propose that a minimal construction
in the probe limit will consist on a scalar fields transforming in the adjoint representation of
SU(2) coupled to a gauge field, both living on top of a fixed AdS black hole metric

Sb =
∫
d4x

√
−g

[
Tr
(
(DµΦ)† (DµΦ)

)
+m2Tr

(
Φ†Φ

)
+ 1

4Tr (GµνG
µν)
]
, (3.1)

where G is the strength of the SU(2) gauge field defined from B = Bj σj with j = 1, 2, 3
in the standard way: G = dB + i(qe/2)B ∧ B. Also, since the scalar field Φ will be used
in the adjoint representation of SU(2), it corresponds to a 2× 2 matrix, and therefore the
covariant derivative acts in the corresponding representation as

DµΦ = ∂µΦ+ iqe
[
σaB

a
µ,Φ

]
, (3.2)

where one would consider naively that qe = 2qf = 2q taking for instance the intuition from
Landau’s theory of superconductivity, although that might not be the case here. A similar
model, with different boundary conditions, was studied in [25].
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As stated before, we work in the probe-limit, where the background fields Φ and B

do not backreact on the space-time metric. Therefore, the black-brane AdS4-Schwarzschild
solution can be imposed for the Einstein equations

ds2 = 1
r2

(
−f(r)dt2 + dx2 + dy2 + dr2

f(r)

)
(3.3)

where Poincaré coordinates have been used (the AdS boundary is at r = 0), and the AdS
radius L has been set to 1. Also, setting the black-brane event horizon at r = 1, the blackening
factor is f(r) = 1 − r3 and the temperature reads T = 3

4π .
The equations of motion (EOM’s) for the scalar and gauge fields are the covariant

Klein-Gordon and Yang-Mills equations given by

(DµD
µ −m2)Φ = 0

DµG
µν = iq

([
Φ†, DνΦ

]
−
[
Φ†, DνΦ

]†)
. (3.4)

Now we will turn on a relevant deformation that breaks the boundary SU(2) group in
the precise way described in section 2 and we let the corresponding fields to evolve into the
bulk while remaining homogeneous in the boundary space-time directions. This translates
into the following ansatz and boundary conditions

Φ = ϕ(r)σ3 −−−→
r→0

r∆2σ3 ,

B = B(r)σ1dx −−−→
r→0

∆1σ1dx . (3.5)

Using the ansatz given in (3.5) and the metric in (3.3), the equations of motion obtained
from (3.4) read

(4r2B(r)2 − 2)ϕ(r)− r

[
r
df
dr

dϕ
dr + f(r)

(
r
d2ϕ

dr2 − 2dϕdr

)]
= 0

8B(r)ϕ(r)2 − r2
(
dB
dr

df
dr + f(r)d

2B

dr2

)
= 0 . (3.6)

Notice that the mass of the scalar field has been set to m2 = −2, so that the dual
boundary scalar operator has dimension 2. This is done so the aforementioned dual operator
has the same dimension as a fermion mass term operator ψψ, the would be naive scaling
dimension we expect for these couplings.

We now proceed to integrate numerically equations (3.6) using a shooting method from
a regular near horizon

ϕIR(r) = a0 + a1(1− r) + a2(1− r)2 + a3(1− r)3 + · · · ,
BIR(r) = b0 + b1(1− r) + b2(1− r)2 + b3(1− r)3 + · · · , (3.7)

towards UV boundary conditions given by (3.5). A typical profile is shown in figure 2. We will
interpret the values of the fields at fixed radial coordinate r as the renormalized values of the
deformation parameters ∆i as we run along the RG flow. Hence we expect that the topological
phase transition will occur at the point ϕ(rh) = B(rh), following the intuition from [13]. We
will see this is indeed the case when we probe our black holes with some bulk fermions.

– 4 –



J
H
E
P
0
9
(
2
0
2
4
)
0
8
0

0.2 0.4 0.6 0.8 1 1.2 1.4
Δ2

0.2

0.4

0.6

0.8

1

a0,b0

b0 a0

Δ2 = 0.95 , Δ1 = 1

( a0 , b0 ) = ( 0.46 , 0.32 )

0.005 0.05 0.5
r

0.4

0.5

0.6

0.7

0.8

0.9

1

ϕ(r)/r , B(r)

ϕ(r)/r B(r)

Figure 2. Left plot: dependence of the shooting parameters a0 and b0 on ∆2, for fixed ∆1 = 1.
The existence of a critical value for ∆2 is insinuated by the point of crossing of a0 and b0 at
∆2 = ∆(c)

2 ≈ 0.8831 . . . Right plot: profiles for the background bosonic fields at a sample value for the
shooting parameters a0 and b0 (and their corresponding values for the UV boundary conditions for
the background fields, ∆1 and ∆2). The r-axis is set in logarithmic scale. Notice that the choice to
plot ϕ(r)/r is made so as to explicitly see the value of ∆2 as the intersection of the dashed curve with
the vertical axis.

4 Fermions in the AdS bulk

In order to test our minimal model we will add some fermionic probe fields to the bulk
coupled to our metric and matter field, to check if the dual dispersion relations follow the
expected behaviors in the different regimes.

To do so we will consider a fermion SU(2) doublet Ψ =
(
ψ1
ψ2

)
. In this framework, it

corresponds to an 8-tuple, since the gauge interaction introduces an additional index to the
4-dimensional Dirac spinors ψi [21, 26]. We will minimally couple this Dirac fermion to our
SU(2) gauge field and we will also incorporate a Yukawa coupling to the adjoint scalar

Sf = i

∫
d4x

(
Ψ /DΨ+ λΨΦΨ

)
. (4.1)

Here the spinorial covariant derivative has both a gravitational and a gauge sector

Dµ = (I4×4 ⊗ I2×2)∇µ + (Γµ ⊗ I2×2) +
(
I4×4 ⊗ iqfB

a
µσa

)
, (4.2)

where Γµ are the affine connections for this geometry, which couple the spinors to the curved
gravitational background. Notice that a different coupling charge qf has been implemented
for fermions.

Given the background geometry of the bulk in equation (3.3), the appropriate set of
vielbeins is given by:

e0 = −r ∂t√
f(r)

, e1 = r∂x , e2 = r∂y , e3 = r
√
f(r)∂r.

To write down the Dirac equation, one must go through the standard procedure of calculating
the spin connections ωabµ from these vielbeins, to obtain the Γµ matrices through Γµ =
1
8ωabµ

[
γa, γb

]
, where γa are a certain representation of the Clifford algebra in 4 dimensions.

– 5 –



J
H
E
P
0
9
(
2
0
2
4
)
0
8
0

The Dirac equation for the massless fermions reads(
/D + λΦ

)
Ψ = 0, (4.3)

Notice that the representation of the Dirac γ-matrices with Greek indices corresponds to the
curved version of the flat matrices taken in the following representation

γ0 =
[
0 iσ2
iσ2 0

]
, γ1 =

[
0 σ1
σ1 0

]
, γ2 =

[
0 σ3
σ3 0

]
, γ3 =

[
−I2×2 0

0 I2×2.

]
(4.4)

From this last equation, we must obtain the boundary values of the fermion fields to
calculate the retarded fermionic correlator. To holographically encode fermions, we must go
into momentum space by writing Ψ(t, r, x, y) =

[
Ψ1(r)
Ψ2(r)

]
ei(ωt−kxx−kyy), and then project the

8-tuple Ψ onto the eigen-space of the radial γ3 matrix [26, 27]. Naming the two resulting
4-spinors Ψ± respectively, we finally perform the re-scaling Ψ± := r3/2f(r)−1/4ζ± [21]. Taking
the ansatz for the background fields (3.5) into account we obtain two coupled first-order ODE’s

dζ+
dr + i√

f(r)
Uζ− = −λ

r

ϕ(r)√
f(r)

γ3ζ+ (4.5)

dζ−
dr − i√

f(r)
Uζ+ = λ

r

ϕ(r)√
f(r)

γ3ζ−, (4.6)

where the operator U has been defined as:

U(r;ω, kx, ky) =



ky kx − ω√
f(r)

0 qfB(r)

kx + ω√
f(r)

−ky qfB(r) 0

0 qfB(r) ky kx − ω√
f(r)

qfB(r) 0 kx + ω√
f(r)

−ky


. (4.7)

The Dirac equation must be solved, of course, with appropriate boundary conditions
in the IR and the UV. First, the conditions in the IR are the standard in-falling boundary
conditions at the black hole horizon r = 1 [21, 28, 29]:

ζ±(r) = F±(r;ω, kx, ky)(1− r)−iω/3, (4.8)

where the function F±(r;ω, kx, ky) is an undetermined function that must be numerically
solved by power series (up to a sufficiently high order) using the Dirac equation expansion
near the horizon (r = 1). Since the Dirac equation is not analytic at r = 1 due to the

√
f(r)

factors coming from the vielbeins, this series solution will not be the typical Fröbenius-like
infinite power series, but rather a half-integer power series expansion that requires much
more terms for each order of approximation of F± [23, 30]:

ζIR
± (r) = (1− r)−iω/4πT

(
a±0 + a±1/2

√
1− r + a1(1− r) + a±3/2(

√
1− r)3 + a±2 (1− r)2 + · · ·

)
.

(4.9)

The zeroth order imposing of these boundary conditions reads

ζIR
−,0 = −i(I2×2 ⊗ σ2)ζIR

+,0. (4.10)
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Therefore, the present system only has 4 undetermined constants that can be chosen arbitrarily
a priori.

In the UV we have, on the other hand:

ζUV
± (r) = ζUV

±,0 +O(r). (4.11)

According to the AdS/CFT dictionary, the leading term of either of the fermion fields ζ± in
the UV can be chosen as the source of the dual fermionic operator, while the leading term
of the other will be interpreted as the response [28, 31]. The dispersion relation of fermion
quasi-normal modes ω ≡ ω(kx, ky; ∆1,∆2) is obtained numerically from the poles of a matrix
correlator S(ω, kx, ky; ∆1,∆2) that relates the source and response of the fermion operator as

ζUV
+,0 = S(ω, kx, ky; ∆1,∆2)ζUV

−,0 (4.12)

Since the Dirac equation is lineal, a linear relation is expected to hold between the fields in the
deep IR and in the UV, through an undetermined matrix that depends on the parameters ∆1,2
and the momentum components, and that must be solved numerically [21]. Since the fields
in the deep IR are related to each other through (4.10), a relation of the form ζUV

± =M±ζ
IR
−,0

can be numerically calculated, where M± are matrices that propagate the IR fields towards
the UV, and that once again depend on the background and the fermions’ momentum [21].
Using this fact, the correlator S in eq. (4.12) can be expressed as

S =M+M
−1
− (4.13)

and therefore the poles of the correlator can be read-off from the zeroes of the determinant
of M− [21]. This numerical method has been exploited previously in the context of quadratic
band-touching [21] and for non-abelian holographic superconductors [27], so we apply it here
to this new type of system to explicitly obtain the band structure of the boundary fermions,
and its behavior through the phase transition that we expect to find.

The correlator S is related to the retarded fermionic Green’s function in linear-response
theory through the following identity [28, 32]

S(ω, kx, ky; ∆1,∆2) = γ0GR(ω, kx, ky; ∆1,∆2), (4.14)

which allows for the numerical calculation of the full Green’s function in the boundary once
the numerical matrices M± have been obtained.

Finally, notice that after appropriate rescaling of eqs. (4.5) and (4.6), the only free param-
eters remaining in the whole system are qf and λ. Both of these parameters determine the
coupling strength of the fermions to the bosonic fields in the background. Once again, taking
inspiration in Landau’s theory we set λ = qf = 1/2 for all the following numerical calculations.

5 Warm up: fermionic pole skipping in the Schwarzschild geometry

Pole skipping refers to a peculiar behavior of a Green function in momentum space where
a line of poles meets a line of zeros [33–35]. In recent years it has caught a lot of attention
as in certain situations the analytic structure of Green functions might be related to the

– 7 –
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chaotic behavior of the quantum system. At this stage we will detour for a moment from
our main goal to test our numerical algorithm against recent analytical computations for
the pole skipping points of the retarded fermionic Green’s function on a Schwarchild AdS
black hole [23].1 This is a particular case of the semimetal that is modeled by the action (4.1)
achieved by simply turning off the gauge and scalar fields, and only retaining the fermionic
and gravitational sectors of the action. Hence it is the perfect warm up for our program
and a numerical check of the results presented in [23] via a near horizon analysis. A near
horizon analysis in our coordinate system is presented in appendix A.

The first pole-skipping points read
ω1
T

= −3i
4 ,

k

T
= 0

ω2
T

= −9i
4 ,

k

T
= 0 , ±i

√
3

ω3
T

= −15i
4 ,

k

T
= 0 , ±i

√
3
2
(
5 +

√
5
)
, ±i

√
3
2
(
5−

√
5
)

...

(5.1)

where frequencies shown in eq. (5.1) are just the first fermionic Matsubara frequencies and
the associated pole-skipping spatial momenta k are determined from the near-horizon physics
of the Dirac equations (4.5) and (4.6).

The pole-skipping points are associated to values of the parameters (ω, k) for which
the in-falling boundary conditions (4.9) fail to give a unique solution to the Dirac equation,
and instead result in two sets of free parameters, unrelated to one another, that makes the
construction of the boundary Green’s function ill-defined. The precise values shown in eq. (5.1)
can be obtained by solving each coefficient in the expansion (4.9) order by order, and looking
for values of (ω, k) that make the resulting system of equations for each coefficient singular (see
appendix A for more details). The IR near-horizon physics that determines the pole-skipping
points also translates into the analytic structure of the retarded correlator in the UV (4.11).

Specifically, the pole-skipping points (ω, k) correspond to intersections between lines of
zeroes and lines of poles of the correlator in the purely imaginary ω− k plane [23]. Hence, by
systematically setting ∆1 = ∆2 = 0, we can recover the pole skipping points by chasing the
zeros of det(M−) and det(M+) defined in section 4 that would correspond respectively to
the poles and zeros of the retarded Green’s function. The corresponding numerical results
are shown in figure 3.

6 Poles of the retarded Green’s function

We now proceed to study the quasinormal modes associated to the fermionic retarded Green’s
function. Let us begin by restating the main features of our holographic model: we have a
family of black holes depending on two independent parameters ∆1, ∆2 measured in units of
the black hole temperature. On top of those black holes we set probe fermions to compute
their dual fermionic Green’s function. There will be two protagonist modes in our analysis: the

1This phenomenon is certainly not restricted to fermions in holographic black-hole backgrounds, and can
be extended to more complicated settings (see for example [36, 37]).
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Im(kx)

-4

-3
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Im(ω)

Figure 3. Plot of lines of poles (red lines) and lines of zeroes (blue lines) of the boundary Green’s
function in the Im(kx)–Im(ω) plane, for the AdS4 Schwarzschild black hole background. As can be
seen the pole-skipping points (black dots) are located precisely on the intersections of these two types
of lines.

0.20 0.40 0.60 0.80 1.0
Δ1

0.50

1.0

1.5

2.0

ω

Re(ω0)

Re(ω1)

-Im(ω0)

-Im(ω1)

Figure 4. Evolution of the real and imaginary parts of the quasinormal frequencies of the lowest-lying
and first excited modes, as a function of ∆1 for ∆2 = 0. As the fields are progresively turned off, both
modes become massless, but their imaginary frequencies don’t converge to the same value.

lowest-lying mode of the boundary correlator, and the first excited mode. The frequencies of
these two modes will be respectively denoted by ω0 and ω1 throughout the rest of this section.
To better understand them let us first consider zero spatial momentum kx = ky = 0 solutions.
Turning off both sources ∆1 = ∆2 = 0, we have a series of fermionic modes at kx,y = 0 with
Re(ω) = 0 and Im(ω) ̸= 0. Now let us study what happens with these two modes when we
turn on the ∆1 while keeping ∆2 = 0. As we show in figure 4 both modes acquire a real gap.

Now we are ready to turn on ∆2 while fixing ∆1 = 1. We see in figure 5 that the gap
decreases for both modes as ∆2 increases, and eventually the lowest lying mode ω0 hits the
real axes and becomes massless at ∆2 ≈ 0.8831. Notably, ω0 becomes null at kx,y = 0 exactly
when the horizon values of the background fields a0 and b0 coincide in figure 2. This fact
reinforces the interpretation of these being the corresponding renormalized IR values for the
UV deformations ∆i. From our free model, our naive expectation would be that this mode
would bounce again immediately. Contrary to that intuition we see that the mode remains
massless for a finite range of ∆2. Eventually the first excited mode ω1 hits the real axis in the
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Figure 5. Left plot: evolution of real and imaginary parts of the quasi-normal frequency at zero kx,y

as a function of ∆2, for fixed ∆1 = 1. The frequency of the first excited mode is denoted by ω1, while
that of the ground (lowest-lying) mode is denoted as ω0. Right plot: phase diagram for the ∆1 −∆2
parameter space, where the different curves correspond to different phase transitions of the lowest and
excited modes of the fermionic correlator, showing the different regions in the ∆i plane defined by the
transitions of the quasinormal frequencies for both ω0 and ω1, as shown in the left plot.

Figure 6. Plots of the full dispersion relation for the lowest lying mode ω0, for ∆1 = 1 and
∆2 ≈ 0.6253, 0.8831, 0.916 respectively. The plots in the top panel corresponds to the real part of ω0
for finite kx,y, while plots in the bottom panel are the corresponding imaginary parts.

ω plane and we have a phase with two massless excitations. Finally, as ∆2 keeps increasing, ω0
and ω1 collide in the complex plane and, as a result, they merge and acquire a real mass gap.

The corresponding phase diagram in the ∆1–∆2 plane with the different topological
phases characterized by the corresponding fermionic excitations is shown in the right panel of
figure 5. To fully address the meaning of each of this phases we must turn on the momentum
of the fermionic background fields. To this end we illustrate three particular dispersion
relations in figure 6.

We see that the real gap has a very different interpretation depending on which ∆i

dominates. For large ∆2 (orange region) we observe that we have a regular mass gap with
a mild anisotropy. From [38], we expect that the Yukawa coupling will gap these modes
and this is indeed what happens. On the other hand, for small ∆2 (the light-blue region)
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Figure 7. Top panel: dispersion relation for the real part of ω0 (left plot) and ω1 (right plot) at
∆2 ≈ 0.9092. Both modes showcase linear dispersion relations at small momenta, with the quadratic
contribution to the kx direction of Re(ω0) having vanished in this region of the ∆1–∆2 phase diagram.
Bottom panel: dispersion relation for the negative imaginary part of ω0 (left plot) and ω1 (right plot).

the dispersion relation for the ground mode shows two Dirac cones separated one from the
other in momentum space. This behavior could be expected as the gauge field contribution
dominates in this region (see for instance [20]).

The red line located between the light-blue and pink regions corresponds to the transition
line where both Dirac cones in the semi-metallic phase collide, and ω0 becomes null for
kx,y = 0. Precisely at this point we see an anisotropic Dirac behavior, with the x direction
dispersing quadratically

ω0 = −iα+ (±β − iγ)k2
x + . . . (6.1)

while the y direction disperses linearly

ω0 = −iα± vfky + . . . , (6.2)

where vf , α, β, γ are parameters that are fitted to the numerical data.
As soon as we depart from this specific line, we see that a linear component starts

developing in the x direction again and the dispersion relation becomes linear in all directions,
although increasingly anisotropic as it approaches the red line. This phase corresponds to
the pink region in the phase diagram in figure 5. If we keep increasing ∆2 we find that
ω1 eventually becomes massless as well and we have a region with two gapless fermions
(purple region in the phase diagram in figure 5). Hence in this region we find two modes
that disperse linearly as shown in figure 7.

Finally, at the orange line both modes collide and meet, and we find the gapped phase
described above.

7 Conclusions

In this paper we presented a toy model featuring a topological phase transition between a
Dirac and a gapped phase, featuring an anisotropic Dirac semimetal at the critical point.
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The construction relies on identifying a symmetry breaking pattern on a free field theory
with a relativistic UV fixed point. Then, by reproducing such symmetry breaking pattern,
we obtained an holographic model consisting on a Schwarchild AdS black hole with a scalar
and non abelian fields living outside of it. We test our model by coupling it with probe
fermions in the bulk and by computing the fermionic quasinormal modes. The quasinormal
frequencies indeed display a qualitative behavior that agrees with the expectations for each
of the phases of the model.

As closing remarks, we would like to discuss some open questions. A straightforward
extension of our work will be to include backreaction to the model. This would allow us
to have a deeper understanding of the dynamics of the system. For instance, we would
gain access on the dynamics of the dual stress tensor and in principle we could compute
viscosities. Anisotropic Dirac semimetals were reported [39] to violate the conjectured bound
η/s ≥ 1/4π [40] for relativistic holographic systems. It would be interesting to understand
if such violation occurs in our holographic model in order to further understand the origin
of the tension between these results. A backreacting model would also allow us to access
to lower temperatures and even constructing the corresponding domain walls at T = 0. In
this limit, interesting emerging behaviors were reported previously for topological phase
transitions [14, 41]. These include IR geometries with different Lifshitz scaling in different
directions and exotic Boomerang RG flows, where the UV and IR central charges match.
Another computation feasible with a backreacting geometry would be to obtain an analog to
the pole-skiping phenomena studied in section 5 but now including the effect of the relevant
deformations associated to the topological phase transition.

A second possible direction concerns the possibility of having phase transitions. Quantum
field theoretical descriptions of Dirac semimetals report a plethora of symmetry breaking
patterns at finite interaction strength [9]. It would be interesting to explore if something
similar happens in our model that is strongly interacting by construction. In the present
construction such phase transitions would correspond to our geometries developing some
spontaneous sourceless profiles for some generalized ansatz. AdS black holes with non-Abelian
sources are known to be prone to instabilities. The end point of such instabilities is a hairy
black hole and many examples appear in the literature [18, 20, 42].

A final possible direction we would like to discuss now relies on the possibility of
understanding the UV completion of out model. This would allow us to fix the couplings in
our theory in a way that is consistent with string theory. In this sense, as our construction
mimics the reasoning behind the holographic Weyl semimetal [13], we expect that we might
be able to generalize the construction of [43, 44] but now including at least two branes
featuring a 2 + 1 dimensional intersection.
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A Near-horizon expansion of the Dirac equation and pole-skipping points

The Dirac equation for the re-scaled, projected spinor fields (eqs. (4.5) and (4.6)) can be
analitically expanded around r = 1 (the black hole horizon) so as to impose the in-falling
boundary conditions, as is presented in eq. (4.9) and restated here for completeness

ζIR
± (r) = (1− r)−iω/4πT

(
a±0 + a±1/2

√
1− r + a1(1− r) + a±3/2(

√
1− r)3 + a±2 (1− r)2 + · · ·

)
.

(A.1)

For the purposes of this section, the background scalar and gauge fields are turned off,
which leads to a bulk where only the fermion fields propagate on the gravitational background
with no backreaction. In this case, the Dirac equation takes the simpler form

dζ+
dr + i√

f(r)
Uζ− = 0 (A.2)

dζ−
dr − i√

f(r)
Uζ+ = 0, (A.3)

where the matrix operator U ≡ U(r;ω, kx, ky) takes the simpler block-diagonal form

U(r;ω, kx, ky) =



ky kx − ω√
f(r)

0 0

kx + ω√
f(r)

−ky 0 0

0 0 ky kx − ω√
f(r)

0 0 kx + ω√
f(r)

−ky


. (A.4)

The shape of U(r;ω, kx, ky) implies that the Dirac equations (4.5), (4.6) can be simplified
from a pair of ODE’s that couple two 4-dimensional spinors to a pair of ODE’s that couple
two 2-dimensional spinors, since the diagonal form of U decouples the lower and upper sectors
of ζ±. This is just an indication that the sources and VEV’s of the fermion operators on
the two graphene layers of the toy-model boundary theory don’t sense each other’s presence,
since the only thing coupling both of them are the gauge and scalar fields. Therefore, we are
left with two separate copies of a 2-dimnensional massless Dirac excitation, and therefore
the bulk fields also decouple down to two copies of the same ODE’s.

Given all of the above, for the purposes of this section the fermion fields ζ±(r) will be
considered to be 2-dimensional spinors, related to each other by the following Dirac equation:

dζ+
dr + i√

f(r)

 ky kx − ω√
f(r)

kx + ω√
f(r)

−ky

 ζ− = 0 (A.5)

dζ−
dr − i√

f(r)

 ky kx − ω√
f(r)

kx + ω√
f(r)

−ky

 ζ+ = 0 . (A.6)

By plugging the expansion (A.1) into (A.5) and (A.6), making a series expansion and, finally,
solving for each series coefficent order by order, each coefficient a+

j for j ∈ {1/2, 1, 3/2, 2, . . .}
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and a−j for j ∈ {0, 1/2, 1, 3/2, 2, . . .} can be solved in terms of a+
0 . The set of two numbers

contained in a+
0 =

[
a+

0,1
a+

0,2

]
correspond to a single initial condition which defines a unique

solution to the Dirac equation in the IR, which propagates to the UV through the full
numerical solution to the full Dirac equation in the bulk. However, the system of equations
that’s obtained, order by order, through this procedure involves an explicit parametric
dependence on ω, kx and ky, and therefore there may be special choices of these parameters
for which the system of equations (up to certain order) becomes ill-defined [23]. For these
choices of ω, kx and ky, some coefficients in the expansion (A.1) may not be explicitly
expressed as a function of the zeroth-order coefficients a+

0 , and a second set of independent
initial values for the Dirac equation will arise, making the construction of a unique Green’s
function on the boundary will not be possible, in principle [23].

In order to illustrate the aforementioned procedure for finding the pole-skipping fre-
quencies, let us explicitely state the system of equations for the solution up to order 1/2
in the Fröbenius expansion (A.1)

ω(a+
0,2 − a−0,1) = 0 (A.7)

ω(a+
0,1 − a−0,2) = 0 (A.8)

√
3(kya+

0,1 + kxa
+
0,2)−

3i
2

(
1− 2iω

3

)
a−1/2,1 − ωa+

1/2,2 = 0 (A.9)

√
3(kxa+

0,1 − kya
+
0,2)−

3i
2

(
1− 2iω

3

)
a−1/2,2 + ωa+

1/2,1 = 0 (A.10)

√
3(kya−0,1 + kxa

−
0,2)−

3i
2

(
1− 2iω

3

)
a+

1/2,1 − ωa−1/2,2 = 0 (A.11)

√
3(kxa−0,1 − kya

−
0,2)−

3i
2

(
1− 2iω

3

)
a+

1/2,2 + ωa−1/2,1 = 0 (A.12)

Solving eqs. (A.7) and (A.8) will result in a−0 expresed in terms of a+
0 , which (for ω ̸= 0)

gives the zeroth-order relation a−0 = −iσ2a
+
0 (compare to the zeroth-order relation between

coeffcients of fermions in the IR presented in [21] and [26]). This solution is then inserted
in eqs. (A.9) through (A.12), which would give a±1/2 exclusively in terms of a+

0 . This last
set of equations can be rewritten in matrix form as:

0 −ω −3i
2

(
1− 2iω

3

)
0

ω 0 0 −3i
2

(
1− 2iω

3

)
3i
2

(
1− 2iω

3

)
0 0 −ω

0 3i
2

(
1− 2iω

3

)
ω 0


[
a+

1/2
a−1/2

]
=

√
3


ky kx 0 0
kx −ky 0 0
0 0 ky kx
0 0 kx −ky


[
a+

0
a−0

]
,

(A.13)
where a−0 is implicitly related to a+

0 through a−0 = −iσ2a
+
0 . Equation (A.13) has a solution

for a±1/2 only if the left-hand side matrix is invertible, which fails to be the case when its
determinant is zero. Since said determinant is a function of ω, solving for this condition gives
that eq. (A.13) will become singular if and only if ω = ω1 = −3i

4 . This result corresponds
precisely to the first fermionic Matsubara frequency outlined in eq. (5.1).
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When ω = ω1, the four independent equations (A.9) through (A.12) actually devolve to
only two independent equations, which can be taken to be eqs. (A.9) and (A.10). This system
of two equations is solvable, and actually results in a specific linear combination of a+

1/2 and
a−1/2 that can be expresed in terms of a+

0 . When ω = ω1, said equations can be rewritten as:

a+
1/2,1 + a−1/2,2 = − 4i√

3
(kya+

0,1 − kxa
−
0,2) (A.14)

a+
1/2,2 − a−1/2,1 = 4i√

3
(kya+

0,1 + kxa
−
0,2), (A.15)

where the variable a−0 has been eliminated through the zeroth order relation stated previously.
Following [23], by calling b1/2 := a−1/2 + iσ2a

+
1/2 one obtains:

b1/2 = 4i√
3

[
ky kx
kx −ky

]
a+

0 . (A.16)

Equation (A.16) states that, even though a±1/2 can not each be separately related to the
independent initial condition a+

0 of the Dirac equation, a new linear combination of those
parameters, called b1/2, actually can, and therefore one still has a way of building a unique
solution for the IR expansion of the Dirac equation up to order (1− r)1/2. However, even
this fails if eq. (A.16) becomes singular, which happens when the right-hand side matrix of
this equation has determinant equal to zero. This happens if and only if kx = ky = 0, which
corresponds to the pole-skiping spatial momenta at ω = ω1 shown in eq. (5.1). In this case
the (1− r)1/2 order contribution to the series expansion (A.1) becomes completely decoupled
from the (1− r)0-order part, and therefore both sets of parameters are truly independent.
This means that there is complete freedom to choose b1/2 independently of a+

0 ; namely, one
can choose b1/2 = 0 (once again following [23]). In this case, a+

0 and a+
1/2 are both free

parameters of the Dirac equation, which set the a−1/2 and a−0 fermion components through:

a−0 = −iσ2a
+
0 , a−1/2 = −iσ2a

+
1/2 . (A.17)

Given all of the above, there is no unique way of building a solution to the Dirac equation
since there are two sets of unrelated free parameters in the near-horizon expansion, and so
the boundary Green’s function is not uniquely defined [23].

Conditions of singularity for higher order coefficients give rise to the rest of fermionic
Matsubara frequencies, with their corresponding pole-skipping spatial momenta. As one can
see, the pole-skipping condition is entirely determined by the near-horizon behavior of the
bulk fields, yet it can be still determined from the near-boundary physics that is associated to
the boundary theory through the analytic structure of the Green’s function, as it was explicitly
shown in section 5. This is shown back in figure 3, where the first three Matsubara frequencies,
along with their corresponding pole-skipping space momenta, are shown as black dots placed
on top of the intersections of lines of poles and zeroes of the Green’s function. These black
dots indeed correspond to the tuples of frequencies and momenta shown in eq. (5.1).

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
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