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1 Introduction

In 1964, Gell-Mann and Zweig postulated the existence of quarks as the underlying degrees
of freedom in the eightfold way, the scheme to classify hadrons introduced back in 1961.
Following their hypothesis, Taylor, Kendall and Friedman conducted a series of experiments
in SLAC between 1966 and 1978, where they discovered the inner structure of hadrons. Their
studies consisted of deep inelastic scattering (DIS) reactions probing protons and neutrons
with electrons at high energies. Ever since, different inclusive and exclusive processes have
been discovered to offer a privileged window to the structure of baryons and mesons. We
focus in those exclusive scattering processes where there is a large momentum transfer to the
hadron target and factorization theorems hold [1–3]. They allow to separate the amplitude
in two main pieces: the scattering of the probe with quarks and gluons and the internal
structure of the target. The first is calculable in perturbation theory and it is described by
coefficient functions, while the second is a consequence of QCD confinement at low energies
and it is given by a variety of soft distributions, like generalized parton distributions (GPDs)
and distribution amplitudes (DAs). Examples of processes where the DA appears are meson
photoproduction [4], γ∗γ∗ → M , and deeply virtual meson production (DVMP), in which
an off-shell photon interacts with a target, a proton for example, and a meson is produced
in the final state γ∗p → Mp.
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The DA of a single meson, our object of interest, is a particular case of the more
universal generalized distribution amplitudes (GDAs), which consider interacting hadrons,
and depend on further degrees of freedom. GDAs and GPDs are connected via the crossing
symmetry, allowing for a more uniform theoretical study of these quantities, see [5] for a
review. Unfortunately, the non-perturbative nature of these functions makes them difficult
to compute, and usually contribute the most to the cross-section uncertainty. In turn, this
makes extracting information from experiments more difficult. Traditionally, the DA has been
studied using non-relativistic QCD (NRQCD) [6, 7], Dyson-Schwinger (DS) equations [8–10],
light-front dynamics [11] or light-cone sum rules [12, 13]. Of especial interest for our work are
the studies of charmonium DAs employing the latter method in [14–17]. As these quantities
are non-pertubative, it would be reasonable to think that lattice simulations are a natural
choice to compute GPDs, DAs and other functions from first principles. Several works exist
that reconstruct the DA from its first moments [18, 19]. However, it was not until 2013 that
fundamental limitations were overcome in the seminal paper by Ji [20]. At the beginning,
many efforts focused on the parton distribution function (PDF) of the nucleon [21, 22] and
the PDF and DA of the pion and kaon [23–28], while other works aim now to compute their
GPDs [29, 30] as well as the structure of heavy mesons [31]. See [32] for a review on the lattice
progress. The latter are especially important to benefit the most from the EIC, EicC and
LHC experiments, and with this project we aim at contributing to this effort. To this end, we
present an ab initio calculation of the ηc-meson DA at leading twist, the first employing LQCD.

Let us start by defining the quantity of interest. The quark DA for a pseudoscalar state,
which was introduced in 1977 [33] for the particular case of the pion, is given by the Fourier
transform of a bi-local matrix element. In particular, using the light-cone metric in the
light-cone gauge, A+ = 0, the DA is given by [5]

ϕ(x) =
∫ dz−

2π
e−i(x−1/2)p+z− ⟨ηc(p)|c(−z/2)γ+γ5c(z/2)|0⟩

∣∣∣∣
z+=zT=0

, (1.1)

where ⟨ηc| is the pseudoscalar meson in the final state, |0⟩ is the QCD vacuum, and c and
c are the quark fields. The distance z = (z+, z−, zT), with z+ = zT = 0, separates the
quark fields and lies on the light-cone, z2 = 0. Therefore, we may choose the direction
p+ for the ηc momentum. The definition in eq. (1.1) may include an additional i factor
to match the definition of the pseudoscalar decay constant, all while having a real-valued
function ϕ. However, this factor i simply redefines the phase of the meson state and it is not
observable. Due to Lorentz invariance, this function depends solely on the plus-momentum
fraction of the quark with respect to the meson, x = q+/p+. In other gauges, a straight
Wilson line W (−z−/2, z−/2) appears between the two field positions −z−/2 and z−/2 to
ensure gauge invariance,

W (a, b) = P exp
(

ig
∫ a

b
dz− A+(z−n−)

)
(1.2)

where P indicates path ordering from a to b. Neither DAs, nor GPDs or other related
functions can be computed using lattice simulations because, in Euclidean metric, only the
null vector lies on the light cone. In [20], Ji proposed a generalization of PDFs to space-like
separations, e.g. z = (0, 0, z3, 0) and p = (0, 0, p3, E) in Euclidean space, commonly known
as quasi-PDFs, which tend towards the light-cone PDFs in the infinite momentum limit
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p3 →∞. A similar approach can be applied to DAs and GPDs [34]. However, it was noted
by Radyushkin in [35] that the dependence of quasi-PDFs on their momentum is rather
complicated, and that p3 ≥ 3GeV are necessary to approach their behavior at infinity. This
requirement is still difficult to meet and, in particular, our set of ensembles have lattice
spacings too coarse to reach the desired momentum.

In the same work [35], an alternative method was proposed, known as pseudo distributions,
which are related via Fourier transform to Ioffe-time pseudo-distributions. The latter are
given by bi-local matrix elements in terms of the Ioffe time ν = pz = p3z3 [36] and z2

3 . These
pseudo distributions also generalize the light-cone distributions to spacelike intervals, and
tend towards them in the short distance limit z2

3 → 0. The factor 1/z2
3 plays an analogous role

to a renormalization scale µ2. In our work, we employ the proposal in [35] as we understand
the systematics are more favorable for our setup.

The remainder of this paper is organized as follows: in section 2, we define the fundamental
object which is computed on the lattice, the reduced Ioffe-time pseudo-DA (rpITD), we
explain how we extract it, how we model the light-cone DA (LCDA), and how we relate the
two. In section 3, we detail our lattice calculation and the set of Nf = 2 ensembles that we
use. In section 4, we take the continuum limit using three different lattice spacings. Since our
ensembles include a variety of pion masses, we also take into account the subleading quark
dependence. Finally, we present there the leading-twist DA of the ηc-meson, which is the main
result of this work. Section 5 is devoted to estimate several sources of systematic uncertainties,
while section 6 compares our results with alternative methods relying on NRQCD and DS
equations. We give our conclusions in section 7.

2 Methodology

In Euclidean metric, we start from the matrix element [37]

Mα(p, z) = e−ipz/2 ⟨ηc(p)|c(0)γαγ5W (0, z)c(z)|0⟩ (2.1)

where W is the 0 → z straight Wilson line, ⟨ηc(p)| is the pseudoscalar meson state with
momentum p, |0⟩ is the QCD vacuum, c and c are quark fields, and the Wilson line W along
the vector z ensures gauge invariance of the matrix element. Computing the matrix element
in an asymmetric configuration as in eq. (2.1) allows to access all the lattice sites in the
simulation, and to connect with the symmetric definition given in eq. (1.1), we use translation
invariance and multiply by the appropriate phase, exp(−ipz/2). A Lorentz decomposition
divides Mα in two pieces [37],

Mα(p, z) = 2pαM(p, z) + zαM′(p, z) (2.2)

where M carries both the leading-twist contribution and a higher-twist contamination at
O
(
z2Λ2

QCD

)
, whileM′ is a purely higher-twist effect. To removeM′, we align the momentum

along the z-axis, p = (0, 0, p3, E), set an equal-time separation z = (0, 0, z3, 0) and select α = 4,
such that M4(p, z) = 2EM(p, z). Note that M is a Lorentz invariant, and therefore it only
depends on scalar combinations of p and z, which are ν and z2. To take the continuum limit the
operator c(0)γαγ5W (0, z)c(z) needs to be renormalized, and while standard DAs ϕ(x, µ) are
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defined in the MS scheme and exhibit a logarithmic dependence on the renormalization scale
µ [5, 38], pseudo-DAs (pDAs) ϕ(x, z2

3) have ultraviolet singularities and diverge logarithmically
in the limit z2 → 0. To suppress the first, the authors of [37, 39, 40] use the results from [41],
where it is proven that the entire operator is multiplicatively renormalizable. Since the
renormalization constant only depends on z3, we cancel it forming a renormalization group
invariant (RGI) ratio that can be factorized using the MS scheme into the DA and Wilson
coefficients. The result is the RGI ratio [37, 39, 40]

ϕ̃(ν, z) ≡ M(p, z)M(0, 0)
M(0, z)M(p, 0) (2.3)

where ν = pz is the Ioffe time. The ratio ϕ̃(ν, z) is a Lorentz scalar, and it depends solely
on ν and z2, but for notational convenience we suppress the square. We call eq. (2.3) the
reduced Ioffe-time pseudo-DA (rpITD) from now on, and this is the actual quantity extracted
from the lattice data. Let us briefly discuss the form of eq. (2.3). The factor M(0, z) cancels
the renormalization factor of M(p, z), and it corresponds to a local axial-vector current in
the limit z = 0. Said current should be conserved and normalized. However, this is not
the case in lattice simulations due to lattice artifacts. To cancel the latter, we form the
ratios M(p, z)/M(p, 0) and M(0, z)/M(0, 0), and then we divide the first by the second,
cancelling the renormalization factors. This cancellation holds at all orders in perturbation
theory [41], and the double ratio in eq. (2.3) has a well defined continuum limit and does
not require an additional renormalization factor.

Regarding the logarithmic divergences in the limit z2 → 0, the matching relation eq. (2.4)
cancels them. Specifically, upon removing the QFT regulator and any remaining higher-twist
contamination (see section 4), we can relate the leading- twist rpITD ϕ̃lt(ν, z) and the light-
cone Ioffe-time DA (ITD) ϕ̃lt(ν, µ) in the MS scheme via the matching kernel C, which is
derived in [34, 42] at next-to-leading order (NLO) in perturbation theory. Since the rpITD is
RGI, its z2 behavior is scheme-independent, but its dependence on this scale must match
the µ dependence of the MS ITD. After performing the matching, we can Fourier-transform
to obtain the LCDA at leading twist ϕlt(x, µ),

ϕ̃lt(ν, z) =
∫ 1

0
dw C(w, ν, zµ)

∫ 1

0
dx cos(wxν − wν/2)ϕlt(x, µ), (2.4)

where we choose the renormalization scale µ = 3GeV throughout this work. Inverting the
Fourier transform in eq. (2.4) with only a limited number of data points in ϕ̃lt(ν, z) is an
ill-posed problem which requires adding some extra information. In particular, we parametrize
the DA ϕlt(x, µ) in terms of the shifted Gegenbauer polynomials G̃(x) ≡ G(−1 + 2x) [43,
chapter 18], where x ∈ [0, 1] and G are the standard ultraspherical polynomials defined in
the domain g ∈ [−1, 1]. The left-hand side is determined thanks to the lattice simulations.
Furthermore, we exchange the order of integration, expanding the cosine in a series of G̃

and computing the moments of C in powers of w.
Let us explain more in detail the procedure. Starting with the LCDA parameterization, at

leading twist and leading order in αs, the Gegenbauer polynomials G̃(3/2)(x) are eigenvectors of
the Efremov-Radyushkin-Brodsky-Lepage (ERBL) equations describing the DA evolution [44].

– 4 –
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This means that, at this order, one can express the DA as a polynomial series with coefficient
3/2 [45, 46],

ϕlt(x, µ) = 6x(1− x)
∞∑

n=0
d(3/2)

n (µ)G̃(3/2)
n (x). (2.5)

The DA is then an analytic function normalized to one,
∫
dx ϕ = 1. In this project, we assume

that eq. (2.5) is also a reasonable model of the DA that we compute non-perturbatively. If
we were to use the infinite series of polynomials, the latter could describe functions like 1/x

and 1/(1− x), and so the DA does not have to vanish at the endpoints x = 0 and x = 1. In
practice, we truncate eq. (2.5) at small n, and the DA vanishes at the boundaries. Since the
lattice data provides no information in this region, we are introducing some model dependence.
After this discussion, we need to adapt eq. (2.5) to the particular case of charmonium, where
the DA should be symmetric around x = 1/2. Since Gegenbauer polynomials with n odd are
anti-symmetric, their corresponding coefficients vanish. Besides, we can leave the coefficient
3/2 undetermined and fit it to our data to speed up the convergence of the series. Changing
the coefficient, which we call λ from now on, amounts to choosing one particular basis of
polynomials, but it is always possible to transform back to eq. (2.5). Therefore, we will
employ the following expression to describe the charmonium light-cone DA,

ϕlt(x, µ) = (1− x)λ−1/2xλ−1/2
∞∑

n=0
d

(λ)
2n G̃

(λ)
2n (x), d

(λ)
0 = 4λ

B (1/2, λ + 1/2) (2.6)

where B is a beta function and the cofficients λ and d2n will be constrained with our lattice
data. Eq. (2.6) is normalized to one and we can recover eq. (2.5) replacing λ = 3/2. A
similar approach has been used in the context of PDFs [22].

The next step is to compute the moments of the matching kernel C derived in [34, 42],

cn(ν, zµ) =
∫ 1

0
dw C(w, ν, zµ)wn = 1− αsCF

2π

[
log

(
µ2

µ2
0

)
bn(ν) + ln(ν)

]
(2.7)

where CF = 4/3 is the Casimir in the fundamental representation, µ = 3GeV, and the initial
energy scale µ0 is given by the Wilson line,

1
µ2

0
≡ z2 e2γE+1

4 (2.8)

where γE is the Euler constant. We use the strong coupling constant in the MS-scheme [47]
αs = 0.2243, together with Λ ≡ Λ(2)

QCD = 330MeV [48] and nf = 2 flavors. The functions
bn and ln are given in terms of hypergeometric functions pFq,

bn(ν) = −
1
2 −

n−1∑
j=0

2
j + 2 1F2

(
1,

j + 3
2 ,

j + 4
2 ,−ν2

16

)
− ν2

24 2F3

(
1, 1, 2, 2,

5
2 ,−ν2

16

)

+ 1
(n + 2)(n + 1) 1F2

(
1,

n + 3
2 ,

n + 4
2 ,−ν2

16

) (2.9)
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Figure 1. Moments cn(ν, z3µ) of the DA matching kernel versus Ioffe time. For illustration, we set
z3 = 5× 0.0658 fm.

and

ln(ν) = 1 + 4
n−1∑
j=0

(
n

j + 1

)
(−1)j

(j + 1)2 2F3

(
j + 1
2 ,

j + 1
2 ,

1
2 ,

j + 3
2 ,

j + 3
2 ,−ν2

16

)

+ ν2

8 3F4

(
1, 1, 1,

3
2 , 2, 2, 2,−ν2

16

)
− 2

(n + 2)(n + 1) 1F2

(
1,

n + 3
2 ,

n + 4
2 ,−ν2

16

)
.

(2.10)
Note that all the hypergeometric functions pFq in eqs. (2.9) and (2.10) fulfill p ≤ q, which is
sufficient to prove that they converge for all values of Ioffe time [49]. In figure 1, we plot cn for
several n’s as a function of Ioffe time. In our analysis we will only use the lines for even n’s.

Now we are in a position to rewrite the relation between the rpITD in the continuum and
the light-cone DA, eq. (2.4). In essence, we expand the cosine in a Taylor series, separating
the variables w, ν and x. Then, we perform the integral over w, which yields the moments of
the matching kernel c2k(ν, zµ), and we expand the powers of x− 1/2 in terms of Gegenbauer
polynomials. This procedure yields

ϕ̃lt(ν, z) =
∫ 1

0
dx K(x, ν, zµ)ϕlt(x, µ) (2.11)

where the new kernel K(x, ν, zµ) is an infinite series

K(x, ν, zµ) =
∞∑

n=0

σ
(λ)
2n (ν, zµ)

A
(λ)
2n

G̃
(λ)
2n (x). (2.12)

The normalization of Gegenbauer polynomials is

A(λ)
n = 21−2λπΓ(n + 2λ)

(n + λ)Γ(λ)2n! (2.13)

with the gamma functions Γ. The new set of functions σn are given by

σ(λ)
n (ν, zµ) =

∞∑
k=0

(
−ν2

4

)k
c2k(ν, zµ)
Γ(2k + 1)I(n, k, λ) (2.14)

– 6 –
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where c2k(ν, zµ) are the moments of the matching kernel and I(n, k, λ) is proportional to
the Mellin transform of Gegenbauer polynomials,

I(n, k, λ) = 2π

4λ+kn!
Γ(1 + 2k)Γ(n + 2λ)

Γ(λ)Γ
(

λ + n + 2k + 2
2

)
Γ
(
1 + k − n

2

) . (2.15)

The general expression of I simplifies to a beta function for the first values n = 0, 2, 4, . . .

Finally, we use the DA parameterization eq. (2.6) such that the integral over x adopts the
form of the orthogonality relation between Gegenbauer polynomials. As a consequence,
eq. (2.4) can be rewritten as

ϕ̃lt(ν, z) =
∞∑

n=0
d̃

(λ)
2n σ

(λ)
2n (ν, zµ), d̃(λ)

n = d
(λ)
n

4λ
. (2.16)

In section 4, we use eq. (2.16) to fit the coefficients d2n and the parameter λ, which determine
the LCDA, to the data obtained from the lattice after taking the continuum limit and
removing the higher-twist effects. In the following, it is useful to define the leading order
(LO) contribution to σn, which corresponds to the LO contribution to the matching kernel,

σ
(λ)
LO,n(ν) =

∞∑
k=0

(
−ν2

4

)k
I(n, k, α)
Γ(2k + 1) (2.17)

as well as the NLO contribution,

σ
(λ)
NLO,n = σ(λ)

n − σ
(λ)
LO,n. (2.18)

In figure 2, we plot σLO,n and σNLO,n as a function of Ioffe time for several values of n. Note
that all odd n’s vanish. Looking at the LO contribution, which contributes the most to
σn, we observe that each line peaks in a certain domain of Ioffe time and then vanishes.
Given that we explore the range ν ≲ 6 in our calculation, we are most sensitive to σ0 and its
associated parameter d0 and perhaps σ2 and d2, which peaks later. As we shall see, our data
can only determine in practice λ and d0, and we will set d2, d4, etc., to zero. Nonetheless,
this will be sufficient to describe our lattice data.

3 Lattice setup

We employ the set of Nf = 2 Coordinated Lattice Simulations (CLS) ensembles collected in
table 1. These data sets employ the Wilson plaquette gauge action and two mass-degenerate
Wilson quarks with non-perturbative O(a)-improvement. The pion masses range between
190MeV < mπ < 440MeV, and κc is fixed so that mDS

= mDS ,phys = 1968MeV [47]. The
scale is set using fK [50], which exhibits a milder mass extrapolation than the pion decay
constant. For more details on the gauge simulations, see [50, 51] and references therein. We
employ the package openQCD v2.0 [52] to compute the quark all-to-all propagators with wall
sources diluted in spin. The Dirac equation is solved with deflated SAP-GCR [53–55], and the
contractions are carried out with a custom version of the DD-HMC algorithm [56]. Throughout
the analysis, statistical errors are propagated using the Gamma method detailed in [57–59]

– 7 –
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Figure 2. The LO contribution to σn, σLO,n(ν), and the NLO contribution, σNLO,n(ν, zµ) =
σn(ν, zµ)− σLO,s(ν). We used λ = 2.7 and z3 = 5× 0.0658 fm as representative values.

id β a [fm] L/a amπ mπ [MeV] mπL κc Measurements

A5 5.2 0.0755(9)(7) 32 0.1265(8) 331 4.0 0.12531 1980
B6 48 0.1073(7) 281 5.2 0.12529 1180

D5* 5.3 0.0658(7)(7) 24 0.1499(1) 449 3.6 0.12724 1500
E5 32 0.1458(3) 437 4.7 0.12724 2000
F6 48 0.1036(3) 311 5.0 0.12713 1200
F7 48 0.0885(3) 265 4.3 0.12713 2000
G8 64 0.0617(3) 185 4.1 0.12710 1790

N6 5.5 0.0486(4)(5) 48 0.0838(2) 340 4.0 0.13026 1900
O7 64 0.0660(1) 268 4.2 0.13022 1640

Table 1. The CLS ensembles used in this study. From left to right the ensemble label, the bare strong
coupling, the lattice spacing [50], the number of lattice sites in every spatial direction (T = 2L), the
approximate value of the pion mass [61], the proxy of finite-volume effects mπL, the value of κc [62]
and the number of measurements. Ensembles marked with an asterisk are only used to check the size
of finite-size effects (FSEs) but are not included in the continuum extrapolation.

and implemented in [60]. The momentum p in the final-state meson is introduced using
partially twisted boundary conditions (PTBC) [63] on one of the charm-quark fields, while
the other retains anti-periodic boundary conditions (aPBC). Following the setup described
in section 2 to isolate M, we apply the twist angle θ in the z-direction, such that p3L = θ

while p1 = p2 = 0. To obtain a realistic meson ηc and remove higher excitations, we form a
Generalized Eigenvalue Problem (GEVP) with the interpolator cγ5c at four levels of Gaussian
smearing [64], which correspond to the smearing radii r/a = 0, 2.74, 3.54 and 4.47. The
links in the smearing operator employ ten iterations of APE smearing [65] to reduce their
short distance fluctuations. To compute the DA we need the Wick contractions of Mα, which
appear in figure 3. Looking at the disconnected piece first, it induces a mixing with the
iso-singlet states η and η′, but in our simulations the latter state cannot appear because the

– 8 –
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y

z

x

y

z

x

Figure 3. Wick contractions for the ηc meson. The double black vector represents a Wilson line
and the red solid stripes show the charm-quark propagators. In this work, we only consider the
quark-connected contribution on the left.

Figure 4. Double ratio in eq. (2.3) for parameters ap = 0.5 and z3/a = 3 on ensemble F6. The
rpITD ϕ̃(ν, z) can be extracted from the plateau region between time slices 20 and 30.

strange-quark is quenched. We exclude this quark-disconnected contribution to simplify the
analysis and because we expect it to be small due to Okubo-Zweig-Iizuka (OZI) suppression.
In perturbation theory the diagram requires a two-gluon exchange, which means that it is
suppressed by a factor α2

s(µ) ∼ 0.05 at our renormalization scale. A single gluon exchange
vanishes because this is a vector state, and any expectation value where we project to a
pseudoscalar state will vanish, requiring two gluons to obtain the correct quantum numbers.

The first step of the data analysis is forming eq. (2.1) and the RGI ratio eq. (2.3). At this
stage, the latter shows some time dependence at early times due to excited states, see figure 4.
They quickly decay leaving plateaus which are typically O(0.5 fm) wide from where we can
extract ϕ̃(ν, z) fitting to a constant. However, one should not forget that all (ν, z2) data on a
given ensemble are correlated. Tackling the problem head-on, that is, fitting all plateaus in an
ensemble simultaneously including their correlations is not possible, as the covariance matrix
has a dimension of O(1000). Our statistics are not sufficient to properly estimate all entries
and the matrix is not invertible. Instead, we exploit a hierarchy in the correlation matrix:
data points (ν, z2) at the same time slice are far more correlated than points at different time
slices. This fact guides our approach to solve the problem. Instead of fitting to a plateau, we
select a particular time slice to be ϕ̃(ν, z) and carry out the entire analysis. This approach
preserves the most important correlations in our data while providing a conservative error
estimate. Of course, the choice of the time slice introduces a systematic that needs to be
assessed (see section 5). The estimate of this uncertainty is the second error in table 2. After
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Figure 5. The rpITD defined in eq. (2.3) computed on ensemble G8 as a function of the final-state
meson p and the extension of the Wilson line z3/a.

Figure 6. The rpITD as a function of Ioffe time on all the ensembles used in the continuum
extrapolation. Different ensembles are shown with different markers, and different Wilson lines are
given by the color gradient.

this step, we obtain the rpITD ϕ̃(ν, z) as given by eq. (2.3). The result on ensemble G8
appears in figure 5 as a function of the final-state momentum p and the extension of the
Wilson line. The complete data set, this time as a function of Ioffe time and the Wilson line,
appears in figure 6. We notice that the data collapse to a nearly universal line, but important
lattice artifacts remain which are accounted for in the continuum extrapolation.

4 Continuum limit

Once we have obtained ϕ̃(ν, z) on every ensemble of table 1 at various Ioffe times ν and
Wilson lines z, we remove the cutoff and match our results to the LCDA in one single step.
See [22] for a study of PDFs using this approach. Although separating in two distinct steps
the extrapolation and the problem with the inverse Fourier transform could be simpler, we
would need several lattices for every momentum and Wilson line in physical units. See [66]
for alternative methods to recover the DA from the ITD with only limited data. The first
step to extrapolate to the continuum is building a model to account for the lattice artifacts,
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the higher-twist contamination, and the small quark mass dependence. We start by noting
that the CP symmetry of the strong interactions constraints the behavior of the DA,

ϕ̃(p, z) = ϕ̃∗(−p, z) = ϕ̃∗(p,−z) = ϕ̃(−p,−z). (4.1)

In particular, the equality ϕ̃(p, z) = ϕ̃(−p,−z) restricts lattice artifacts with odd powers
of a to be functions of a|p| and a/|z|. Then, the lattice data ϕ̃(ν, z) can be related to the
continuum rpITD ϕ̃con(ν, z) via a Taylor expansion in the lattice spacing,

ϕ̃(ν, z) = ϕ̃con(ν, z) +
∑
r=1

(
a

|z|

)r

Ar(ν) + (aΛ)r Br(ν), (4.2)

where we use Λ ≡ Λ(2)
QCD = 330MeV [48] to render all terms dimensionless. Following [22],

we introduce auxiliary functions Ar and Br to model the Ioffe-time dependence of the
lattice artifacts. We define them in analogous way to ϕ(x, µ), and use the same basis of
Gegenbauer polynomials,

A(λ)
r (x) = (1− x)λ−1/2xλ−1/2

Sa,r∑
s=0

a
(λ)
r,2sG̃

(λ)
2s (x),

B(λ)
r (x) = (1− x)λ−1/2xλ−1/2

Sb,r∑
s=0

b
(λ)
r,2sG̃

(λ)
2s (x).

(4.3)

The unknown functional dependence is contained in the fit parameters ar,2s and br,2s. The
function Ar in Ioffe time can be obtained via

A(λ)
r (ν) =

∫ 1

0
dx A(λ)

r (x) cos (xν − ν/2) =
SA,r∑
s=0

ã
(λ)
r,2sσ

(λ)
LO,2s(ν), (4.4)

where ãr,2s = ar,2s/4λ. A similar result holds for Br. Note that the integrand of σLO,s is even
(odd) in the domain of integration for s even (odd), and only the even terms are non-zero.
Finally, we set ar,0 = 0 because ϕ̃(ν = 0, z) = 1. The continuum limit ϕ̃con is a sum of the
leading-twist contribution in eq. (2.16) and higher-twist contamination. We emphasize that
the latter piece includes the so-called target-mass corrections, which depend on the physical
ηc-meson mass as z2m2

ηc,phy. We model all higher-twist corrections using another auxiliary
function, Cr(ν), which is analogous to Ar and Br,

ϕ̃(ν, z) = ϕ̃lt(ν, z) +
∑
n=1

(
a

|z|

)n

An(ν) + (aΛ)nBn(ν) + (z2Λ2)nCn(ν). (4.5)

Note that the target-mass effects are absorbed in the definition of the Cr(ν) fit parameters.
Since we remove them before matching to the light-cone, we need not modify the kernel
C(w, ν, zµ) to take the meson mass into account. As the only effect of the light-quark on
the DA comes from the fermionic determinant, we may expect a polynomial expansion in
the light-quark mass mℓ, which has itself a chiral expansion in m2

π at LO. We checked that
the latter function is enough to describe the pion mass dependence for ensembles at β = 5.3.
Besides, we take into account the small mistuning in the charm-quark mass with another
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term proportional to the ηc mass, mηc , which we obtain from the GEVP. After trying several
functional combinations, we observe that the type of model which describes best our data is

ϕ̃(ν, z) = ϕ̃lt(ν, z) +
∑
n=1

[(
a

|z|

)n

An(ν) + (aΛ)nBn(ν) + (z2Λ2)nCn(ν)

+
(

a

|z|

)n (
Λ−1 (mηc −mηc,phy)Dn(ν) + Λ−2

(
m2

π −m2
π,phy

)
En(ν)

)]
,

(4.6)

where we normalize by the physical masses [47]

mηc,phy = 2983.9(4)MeV, mπ,phy = 134.9768(5)MeV (4.7)

and we have introduced further auxiliary functions D(ν) and E(ν) with the same form as
A(ν). In practice, our data is only sensitive to the first coefficient n = 1 in the series of
auxiliary functions, the first nonzero coefficient for each function A(ν), B(ν), etc., and the
first term in ϕ̃lt(ν, z), so that our model simplifies to

ϕ̃(ν, z) = ϕ̃lt(ν, z) + a

|z|
A1(ν) + aΛB1(ν) + z2Λ2C1(ν)

+ a

|z|

(
Λ−1 (mηc −mηc,phy)D1(ν) + Λ−2

(
m2

π −m2
π,phy

)
E1(ν)

)
.

(4.8)

To fit eq. (4.8) to our lattice data we minimize a chi-square using the variable projection (VP)
algorithm —see [67] for the original work, and appendix A for our particular implementation.
We include the correlations among the data on each ensemble, and tame very small eigenvalues
in the covariance matrix using the averaging method outlined in [68] and implemented in [60].
We find the minimum at χ2/dof = 368/467 = 0.79 and the results are gathered in table 2.
Looking at its second column, where the fit parameter estimates appear, we observe that λ

lies far away from its asymptotic value of 1.5. Furthermore, we observe a certain hierarchy in
the coefficients: those associated with terms proportional to a/|z| and the mistuning of the
charm-quark mass are the most relevant, followed by pure lattice artifacts, the pion mass
dependence and higher-twist effects. Nonetheless, every term is necessary to describe the data
well, and in particular we observe non-zero higher-twist effects, which include target-mass
corrections. See section 5 for an explanation of the two systematic errors. Now we can
evaluate the LCDA defined in eq. (2.6) using the first term in the series and λ = 2.73(18),

ϕlt(x, µ) = 4λ(1− x)λ−1/2xλ−1/2

B (1/2, 1/2 + λ) , (4.9)

where we used the fact that G̃0(x) = 1. The plot of ϕ(x, µ) can be seen in figure 7. We
tried to add higher coefficients to describe the DA, in particular d2 and d4, which correspond
to G̃2(x) and G̃4, respectively. Although they are both compatible with zero, our data has
not sufficient range in ν to determine them reliably.

5 Systematics

Lattice simulations are performed in a finite volume, but it is only after estimating the infinite
volume limit that we can compare our results to physical quantities. The associated difference
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λ 2.73± 0.12± 0.12± 0.06 2.75(12) 2.61(15) 2.62(10)
a1,2 −7.58± 0.05± 0.59± 0.55 −8.12(5) −8.68(13) −6.76(4)
b1,2 0.88± 0.07± 0.08± 0.06 0.89(7) 0.77(10) 0.81(7)
c1,2 −0.042± 0.002± 0.005± 0.001 −0.0428(22) −0.0440(28) −0.0407(24)
d1,2 −2.221± 0.015± 0.063± 0.15 −2.368(15) −2.52(4) −2.000(11)
e1,2 −0.0897± 0.001± 0.159± 0.116 −0.1700(16) −0.321(5) −0.068 48(12)

Table 2. Expected value and uncertainty for each fit parameter. The first column labels the parameter.
The second column corresponds to a global fit to all table 1 ensembles except D5. The first uncertainty
in this column indicates the statistical error, the second shows the variation of our result depending
on the time slice selected as ϕ̃(ν, z) (see section 3), and the third the extrapolation uncertainty. The
third column removes the heavier pion mass, E5, from the fit, and the fourth column includes only
ensembles with mπ < 300MeV. In the fifth column, we remove all Wilson lines with z3/a > 0.5 fm.
For details about the systematic errors and this table, see section 5.

Figure 7. The LCDA of the ηc-meson. The band shows the statistical error.

between the two results, or FSEs, are especially difficult to estimate in the case of concern
here, a non-local matrix element. Some works have explored this problem, and for example the
authors of [69] give analytic expressions for a non-local matrix element with scalar currents.
Although it omits the Wilson line, one can see that the main FSEs stem from the pion as a
decreasing exponential of mπL, plus some extra function for the ηc in terms of mηc(L− z).
Their subsequent work in [70] determines the same quantity non-perturbatively in terms of the
form factors of the asymptotic hadron state. Yet, the estimation of FSEs for non-local matrix
elements remains a complicated subject, and no theoretical prediction exists for the DA.
Several studies of the nucleon PDFs report negligible effects [21, 71], while other detect them
with some significance [72]. In the case of the pion PDF, the authors of [23] perform a fit to
capture the volume effects directly. In our calculation, we compare the results for the rpITD
ϕ̃(ν, z) on ensembles D5 and E5, which only differ by their volume, and found very good
agreement. Therefore, we neglect FSEs in our project and do not attempt to correct our data.

As already mentioned in section 3, an important source of systematic uncertainty
originates in the extraction of ϕ̃(ν, z) from the lattice data. The ratio in eq. (2.3) shows a
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residual time dependence, although a wide plateau is visible for all the momenta and Wilson
lines. For a given ensemble, we choose one time slice as the rpITD ϕ̃(ν, z) (the same for all
(ν, z2)) and extrapolate to the continuum. In this way we can keep the correlations between
the different Ioffe times and Wilson lines intact, all while the correlation matrix remains
invertible. Accounting for all the possible time slices that can be chosen on the various
ensembles, there are more than 3.5 million possible extrapolations to the continuum. To
estimate the impact of our choice on the final result, we sample nearly 16000 cases. The
spread of the results, which is Gaussian, gives the second uncertainty in table 2.

To further test the stability of the continuum extrapolation we perform two cuts in
the pion mass. First, we fit only ensembles with mπ < 400MeV, which removes ensemble
E5. Second, we perform a more stringent cut and we only fit mπ < 300MeV, which further
removes A5, F6 and N6. The result of both fits appear in table 2 together with the fit that
considers all ensembles. We observe that the physical parameter λ remains compatible while
some of the nuisance parameters have a more pronounced shift, especially e1,2 that takes
care of the pion-mass dependence. We employ the mass cuts to estimate the systematic
uncertainty associated to the extrapolation, which is fixed to half the distance between the
fit to all ensembles and the cut furthest away. This is the third uncertainty in table 2.

The perturbative matching we use in section 2 is only valid for sufficiently short Wilson
lines. In particular, [73] argues that z3 ≤ 0.5 fm is necessary. In our analysis, see for instance
figure 6, five Wilson lines exceed this mark: z3/a > 6 for β = 5.2 and z3/a > 7 for β = 5.3.
To test the validity of our results, we repeat the extrapolation to the continuum as given
in section 4, which also includes the matching procedure, removing these Wilson lines. The
result we obtain with this reduced data set is λ = 2.62(10), χ2/dof = 388/374 = 1.04. The
uncertainty is slightly smaller since the data with the largest z2 are noisier than average.
We report the value of all parameters in this fit on the fifth column of table 2. The value
of λ is compatible with our preferred result (see second column of table 2), and we use this
as a corroboration of our analysis. We decide against adding the difference between the
two results as an extra systematic uncertainty, and we rather see the proximity of both
as proof that, in our case, it is safe to include slightly longer Wilson lines. Regarding
the nuisance parameters, the situation is similar, with the variation well explained by our
predetermined error budget. In particular, the value of c1,2, which controls the size of
higher-twist corrections, is unchanged within errors.

Before finishing this section, we note several other systematic uncertainties that we
cannot estimate at the moment. Most important of all, the strange quark is quenched, and its
effects on our determination can only be estimated reliably including it in the action. Second,
an extra lattice spacing would allow us to estimate the O(a2) dependence neglected in our
continuum extrapolation. Finally, we consider the pion mass dependence in our results, and
although it is only a subleading effect, having an ensemble at the physical pion mass would
remove any systematic associated with the extrapolation in the mass.

6 Comparison to other approaches

As a last step, we compare our ab initio determination of the DA to the NRQCD calculation
in [7] and the DS method used in [8]. The former alternative assumes that the charm-quarks
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This work DS NRQCD
⟨g2⟩ 0.134(6) 0.118(18) 0.171(23)
⟨g4⟩ 0.043(4) 0.036(9) 0.018 808(19)

Table 3. First nonzero moments of the DA as determined by this work, by the DS approach in [8],
and by the NRQCD calculation in [7]. We define g = −1 + 2x for x ∈ [0, 1].

can be approximated as non-relativistic particles, whose DA at LO is a Dirac delta centered
at x = 1/2. The authors of [7] further include the first relativistic and quantum corrections,
which they note are of the same size, to produce a more accurate description. In appendix C,
we gather the important equations for this method. The latter alternative [8] solves the DS
equations to obtain Bethe-Salpeter wave functions [74, 75], which are related to the DA. The
data on the light cone are subsequently fitted to a finite-width representation of a Dirac delta,
which appears together with the other important parameters of this method in appendix D. To
compare to the latter, we also need to evolve the DA in [8] from their original scale, µ̃ = 2GeV,
to ours, µ = 3GeV. To solve the evolution equations we employ the APFEL++ suite [76, 77].

Especially for NRQCD, it is interesting to Fourier-transform to Ioffe-time space and
compare the various determinations, getting rid of the Dirac delta and its derivatives appearing
in x space. The Fourier transform of the NRQCD and DS DAs appears in appendices C
and D, while the Fourier transform of our DA is simply given by

ϕ̃lt(ν, µ) =
∞∑

n=0
d̃2nσLO,2n(ν). (6.1)

The three DAs appear in figure 8, and we observe excellent agreement between the lattice and
the DS determination, while both show a very different behavior from NRQCD for larger Ioffe
times. The band estimates the uncertainty of each determination: for our result, it is the total
error; for NRQCD, it is the uncertainty of ⟨v2⟩, a parameter defined in appendix C; and for
DS, it indicates the deviation between the data points obtained from the DS equations and the
functional form used to fit them. Furthermore, observe that at leading order the NRQCD DA
is equal to 1, and the first-order corrections are just as large around ν ∼ 6, with the quantum
loops and the relativistic correction of similar size. Therefore, we argue that one should
extend the NRQCD calculation to the next order in both quantum and relativistic corrections.

Finally, we compute the first Mellin moments for each determination,

⟨gn⟩ (µ) =
∫ 1

0
dx gnϕ(x, µ), (6.2)

where g = −1 + 2x and only even n’s are non-zero. Appendices B–D gather the expressions
for the moments, and we show ⟨g2⟩ and ⟨g4⟩ in table 3. Once more, we find good agreement
only with the DS method. Looking at the Mellin moments of NRQCD in appendix C, we see
that ⟨v2⟩ only contributes for ⟨g2⟩, and further corrections should be included to estimate
⟨g4⟩. This explains the tiny uncertainty in ⟨g4⟩.

7 Conclusions

We present the first lattice calculation of the ηc-meson DA, which is parametrized in eq. (4.9).
We compute the pseudo-DA on the lattice and match it to the light-cone DA, which we
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Figure 8. Comparison in Ioffe-time space between the DA as determined in this work, by NRQCD [7]
and by DS [8]. The bands reflect the uncertainties reported on each work, ours indicating the
total error.

study via a series of Gegenbauer polynomials that allows for systematic improvement upon
extending the data to larger Ioffe times. We employ three different lattice spacings and a wide
range of pion masses, allowing us to take the continuum limit accounting for the subleading
effects of the quark masses. We study several systematics, and in particular we find that
FSEs are negligible. We compare our results in the continuum to other approaches, and
find good agreement with the Dyson-Schwinger equations, while we strongly disagree with
the NRQCD prediction at all but the smallest Ioffe times. In the future we will address
several sources of systematics with a new set of simulations at the physical pion mass which
include also the strange and charm quarks in the sea.
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A Variable projection

All but one fit parameters in eq. (4.8) are linear. This suggests that we should separate the
extrapolation to the continuum limit in a nonlinear minimization, where only λ is optimized,
and a linear minimization, where all the linear fit parameters are obtained from the optimal
value of λ. This idea is commonly known as variable projection (VP), it was originally
suggested in [67], and implementations for different types of problems exist in Python [78],
Matlab [79] and other languages. See [80] for a review of the general concept and applications.
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In this section, we present our implementation. Start from the common chi-square

χ2
1 = (ȳ − η)T C−1 (ȳ − η) (A.1)

where the column vector ȳ ∈ Rn×1 contains the data, η ∈ Rn×1 is the model, and C ∈ Rn×n

is the covariance matrix. For example, if we were fitting ensembles B6, F7 and O7, the
data vector would be

ȳ =
(
ϕ̃B6,0, . . . ϕ̃B6,NB6−1, ϕ̃F7,0, . . . ϕ̃F7,NF7−1, ϕ̃O7,0, . . . ϕ̃O7,NO7−1

)T
, (A.2)

where the dots run over all datapoints ϕ̃ for a particular ensemble and n = NB6 +NF7 +NO7.
In the same fashion, the covariance matrix would be block diagonal,

C = CB6 ⊕ CF7 ⊕ CO7, (A.3)

and the chi-square χ2
1 fits each data point ȳi for i = 0, . . . , n − 1 using the model

ηi =
q−1∑
j=0

qjΦi,j(r) + Θi(r) (A.4)

which has q linear fit parameters q ∈ Rq×1 and r nonlinear fit parameters r ∈ Sr ⊂ Rr×1,
all organized in column vectors. Sr is the subspace of values that the parameters r are
allowed to adopt given the physical constraints of the problem. Φ(r) ∈ Rn×q is a matrix of
nonlinear functions of r, which is a mapping between the latter and a linear transformation
L(Rn,Rq). Θi(r) is a column vector of similar properties to Φ(r). Using the extrapolation
model eq. (4.8) as an example, r has only one entry,

r =
(
λ
)

. (A.5)

If we expand ϕ̃lt up to n = 4 and we include several nuisance functions with only one
parameter, the linear fit parameters are

q =
(
d2, d4, a1,2, b1,2, c1,2

)T
(A.6)

and the columns of Φ and Θ contain the information about

Φi =
(

σ2, σ4,
a

|z|
σLO,2, aΛσLO,2, z2Λ2σLO,2

)
, Θi =

(
4λσ0

B(1/2, λ + 1/2)

)
(A.7)

where each row evaluates a given point (ν, z). We suppose the minimum chi-square is
obtained for certain values (r̂, q̂),

min
r,q

χ2
1 = χ2

1(r̂, q̂). (A.8)

When building the covariance matrix C, we control its small eigenvalues using the averaging
procedure given in [68]. Then, we can decompose the covariance matrix, C−1 = (L−1)T L−1,
define new variables

A ≡ L−1Φ ∈ Rn×q, B ≡ L−1Θ ∈ Rn×1, y ≡ L−1 (ȳ −Θ) ∈ Rn×1, (A.9)
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and rewrite the chi-square problem as a 2-norm,

χ2
1 = ∥y −Aq∥22. (A.10)

Rewriting our problem in the form of eq. (A.10) enables us to use the results of [67], although
we must take into account that y is also a function of the nonlinear parameters r. For a
given value of r, the minimum of χ2

1 occurs at

q̂ = A+y, (A.11)

where the generalized left inverse of A is given by

A+ =
(
AT A

)−1
AT . (A.12)

The form of A+ is problematic because we need to compute the inverse of a large n×n matrix
which can be singular or almost singular. Fortunately, we may choose other definitions for
A+ because the property it needs to fulfill is AA+A = A. To improve stability, we choose
the singular value decomposition (SVD)

A = USV † → A+ = V S−1U †, (A.13)

where U and V are unitary matrices, and S is a diagonal matrix containing the singular values
of A. In our case, A is real and has not full rank, and so U ∈ Rn×q, S ∈ Rq×q, and V ∈ Rq×q.
Just as in [67], we can obtain the optimal parameters r̂, q̂ with the following algorithm:

1. Obtain the optimal values r̂ minimizing the modified norm

χ2
2(r) =

∥∥∥P⊥y
∥∥∥2

2
, P⊥ = 1−AA+. (A.14)

2. Obtain the optimal fit parameters q̂ using

q̂ = A+(r̂)y(r̂). (A.15)

3. The fit quality is given by

min
r,q

χ2
1 = χ2

1(r̂, q̂) = min
r

χ2
2 = χ2

2(r̂). (A.16)

For the minimization of χ2
2 we need its gradient with respect to r, which is given by [67]

∇χ2
2(λ) = yT∇P⊥y + 2yT P⊥∇y. (A.17)

The last term does not appear in [67] because they do not consider the possibility of an
affine fit function Θ. The derivative of the projector is

∇P⊥ = −
(

P⊥∇AA+ +
(
P⊥∇AA+

)T
)

(A.18)

while the derivative of the shifted datapoints is simply

∇y = −L−1∇Θ. (A.19)
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B Moments of the DA

The Mellin moments of the parameterization in eq. (2.6) are

⟨gn⟩ =

0 if n is odd,
1
4λ

∑⌊n/2⌋
j=0 d

(λ)
2j I

(
2j, n

2 , λ
)

if n is zero or even,
(B.1)

where I is defined in eq. (2.15), and n = 0, 1, 2, . . . , 2j = 0, 1, 2, . . . , n, and λ > −1/2 but
λ ̸= 0. Using our result λ = 2.73(18) and neglecting the parameters d2 = d4 = · · · = 0,
the first couple of nonzero DA moments are〈

g2
〉
= I(1, 0, λ)

B

(1
2 ,

1
2 + λ

) = 0.134(6),
〈
g4
〉
= I(2, 0, λ)

B

(1
2 ,

1
2 + λ

) = 0.043(4). (B.2)

We are making a clear systematic error in the determination of the moments, since we are
not able to measure d2, d4, etc. However, the method is systematically improvable as we
extend the domain of data to larger Ioffe times.

The moments ⟨gn⟩ and the Gegenbauer moments d
(3/2)
n are related by

⟨gn⟩ = An +
n∑

j=1
d(3/2)

n Bn,j (B.3)

where

An =


0 if n is odd,
3
2

( 1
1 + n

− 1
3 + n

)
if n is even or zero,

(B.4)

and

Bn,j =


3

2n+3

√
π(j + 2)(j + 1)n!

Γ
(5
2 + n + j

2

)
Γ
(
1 + n− j

2

) if n + j is even and j ≤ n,

0 otherwise

(B.5)

The first few nonzero values of the coefficients An and Bn,j appear in table 4, and the first
nonzero Gegenbauer moments are

d
(3/2)
2 = 7

12
(
5 ⟨g2⟩ − 1

)
= −0.192(19), d

(3/2)
4 = 77

8 ⟨g
4⟩ − 77

12 ⟨g
2⟩+ 11

24 = 0.007(6).
(B.6)

C NRQCD approach

In this appendix, we gather the equations used to compute the NRQCD prediction of the
DA, which is given in x-space as (see [7] and references therein)

ϕ(x, µ) = ϕ(0)(x) + αs(µ)CF

4π
ϕ(1)(x) + ⟨v2⟩ϕ(v2)(x) +O

(
α2

s, αsv, v4
)
. (C.1)
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n 0 2 4 6
An 1 1/5 3/35 1/21

n 1 2 3 3 4 4
j 1 2 1 3 2 4

Bn,j 3/5 12/35 9/35 4/21 8/35 8/77

Table 4. First nonzero coefficients An and Bn,j used to relate the moments ⟨gn⟩ and the Gegenbauer
moments d

(3/2)
n of the DA.

The parameter ⟨v2⟩ = 0.222(70) [7] is the relativistic correction to the long-distance matrix
element (LDME). The other functions are given by [81–83]

ϕ(0)(x) = δ(x− 1/2),

ϕ(1)(x) =
(
log µ2

0
m2

Q

− 1
)[

4x
1 + 2x̄

1− 2x
θ(1− 2x)

]
++
−
[
8x

1 + 2x̄

1− 2x
log(1− 2x)θ(1− 2x)

]
++

+
[ 16xx̄

(1− 2x)2 θ(1− 2x)
]

+++
+∆ [16xθ(1− 2x)]++ + (x←→ x̄),

ϕ(v2)(x) = 1
24δ(2)

(
x− 1

2

)
.

(C.2)
The plus prescriptions are given by∫ 1

0
dx [f(x)]++g(x) =

∫ 1

0
dx f(x)(g(x)− g(1/2)),∫ 1

0
dx [f(x)]+++g(x) =

∫ 1

0
dx f(x)(g(x)− g(1/2)− g′(1/2)(x− 1/2)),

(C.3)

for generic functions f(x) and g(x), and the ITD of eq. (C.1) is

ϕ̃(ν, µ) = 1 + αs(µ)CF

4π

([
log

[
µ2

0
m2

Q

]
− 1

]
A(ν) + B(ν) + C(ν) + ∆D(ν)

)
− ⟨v2⟩ ν2

24 , (C.4)

where the quantum corrections are

A(ν) = 4Ci
(

ν

2

)
− 4 log

(
ν

2

)
− 4γ − 8

ν
sin
(

ν

2

)
+ 3 + 8

ν2

(
1− cos

(
ν

2

))
,

B(ν) = ν2

4 3F4

(
1, 1, 1,

3
2 , 2, 2, 2,−ν2

16

)
− 42F3

(
1
2 ,

1
2 ,

1
2 ,

3
2 ,

3
2 ,−ν2

16

)

− 2F3

(
1, 1,

1
2 , 2, 2,−ν2

16

)
+ 5,

C(ν) = 8− 4 cos
(

ν

2

)
− 8

ν
sin
(

ν

2

)
− 2ν Si

(
ν

2

)
,

D(ν) = 4 + 32
ν2

(
1− cos

(
ν

2

))
.

(C.5)

Ci and Si are the cosine and sine integrals and pFq are hypergeometric functions. Since
p ≤ q, their convergence is guaranteed for all Ioffe times [49]. The parenthesis multiplying αs
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vanishes at ν = 0, such that ϕ̃(ν = 0, µ) = 1. To plot the DA we need several parameters: we
take the typical energy scale for the NRQCD LDME, µ0, to be 2m̄c, the MS charm-quark mass
m̄c = 1.27(2)GeV [47], and we take the one-loop corrected MS mass for a given quark [84]

mc = m̄c

(
1 + 1

π
α(m̄c)CF

)
= 1.46(2)GeV. (C.6)

The even Mellin moments of eq. (C.1) are given by

〈
g2n
〉
= ⟨v

2⟩
3 δn,1 +

αs(µ)CF

2π

{[
log

(
µ2

0
m2

Q

)
− 1

]( 1
n
− 1

2n + 1 −
1

2n + 2

)
+ 1

n2 −
2

(2n + 1)2 −
1

2(1 + n)2 + 2
2n− 1 −

2
2n + 1

+ 4∆
( 1
2n + 1 −

1
2n + 2

)}
.

(C.7)

D Dyson-Schwinger approach

In this section, we gather the equations used in the DS approach to compute the DA. The
authors of [8] propose to model the DA like a finite-width representation of the static limit,
δ(x − 1/2). That is, they propose a function that is convex-concave-convex in the range
x ∈ [0, 1],

ϕ(g) = 3
2Nλ(1− g2)e−(λg)2 (D.1)

where λ = 1.70(27). Denoting the error function by erf, the normalization is

N−1
λ = 1

8λ3

(
3(2λ2 − 1)

√
π erf(λ) + 6λe−λ2)

. (D.2)

The ITD corresponding to eq. (D.1) is

ϕ(ν, µ) = 3
4λ

Nλ

[
√

π

(
1− 1

2λ2 + ν2

16λ4

)
exp

(
− ν2

16λ2

)
ℜ erf

(
λ− νi

4λ

)

+
( 1

λ
cos

(
ν

2

)
− ν

4λ3 sin
(

ν

2

))
e−λ2

]
.

(D.3)

The even moments of eq. (D.1) are〈
g2n
〉
= 3

4
Nλ

λ2n+1

[
γ
(
n + 1/2, λ2

)
− 1

λ2 γ
(
n + 3/2, λ2

)]
(D.4)

where γ is the lower incomplete gamma function. The odd moments are zero, while ⟨1⟩ = 1
so that the DA is normalized.
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