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Introduction and summary of results

The effective field theory (EFT) S-matrix bootstrap makes use of fundamental physical

assumptions, such as unitarity, analyticity, and Froissart-like bounds, to constrain the

allowed ranges for Wilson coefficients of higher-dimensional operators. The so-called “dual”

formulation of the S-matrix bootstrap, which explicitly rules out coupling parameter space,

has been applied to EFTs with a broad range of massless states, including permutation



symmetric scalars, pions, photons, gluons, and gravitons [1-16]. More recent implementations
of this bootstrap technique study how additional physical assumptions about the massive
spectrum can limit the allowed parameter space and yield new interesting features [17, 18].
In particular, [17] showed that for large-N massless pion scattering, a new corner appeared
in the allowed parameter space when information about the spin of the lowest-lying massive
particles in the spectrum was included in the bootstrap.

Motivated by these recent results, we derive bounds on maximally supersymmetric
Yang-Mills (SYM) EFTs using the S-matrix bootstrap combined with basic assumptions
about the lowest massive states in the spectrum of the UV theory. We work at large rank of
the gauge group so that multi-trace operators are suppressed and we assume weak coupling
to suppress massless loops and ensure that the low-energy expansion is polynomial in the
Mandelstam variables. Using maximal supersymmetry and locality, the general ansatz for
the low-energy 4-point scattering amplitudes is!

s
A(s,u) = - + 5* [a070 +a10(s 4+ u) + ago(s* + u?) + ag1su + .. } . (1.1)

The a4 are the Wilson coefficients of the maximally supersymmetrized versions of the local
single-trace operators tr(D?**F*), e.g.

apgp < trF?, aip < trD?F*, asp,a21 trD*F* . ete. (1.2)

There are two independent maximally supersymmetric trD*F* operators, hence two coeffi-
cients are listed. From the low-energy perspective, without regard for the UV origin of the
EFT, the Wilson coefficients ay, 4 in (1.1) could be any real numbers in units of some UV cutoff.
The EFT S-matrix bootstrap allows us to compute upper and lower bounds on ratios of ay, 4.

One of the possible UV completions of the EFTs considered here is the open superstring,
whose 4-point tree-level scattering process is given by the Veneziano amplitude?

[(—a/s)T'(—a'u)

str = —(a’s)? )
A% (s,u) = —( )F(l—a/(5+u))

(1.3)
Its low-energy o’-expansion,
1
A% (s,u) = _2 42 <C20/2 + (303 (s +u) + Gt (82 +u?) + Z(4a’4su +.. > . (1.4)
u

corresponds to a specific choice of the coeflicients a4 in (1.1). One of the goals of this paper
is to bootstrap the Veneziano amplitude using as little physical input as possible.

In [15], we determined universal two-sided bounds on the Wilson coefficients a4 of
4-dimensional N' = 4 SYM EFT assuming the existence of a mass gap, but with no constraints
imposed the UV spectrum; hence the notion of ‘universal bounds’ To compute the bounds,
the ay , are made dimensionless by scaling out powers of the mass gap and the bounds are
derived for ratios of couplings

_ ar,
Qg = aog . (1.5)

1Polarization-dependent overall factors are accounted for in section 2.
2This amplitude is related by supersymmetry to the string tree amplitude of [19], so we simply refer to it
as the “Veneziano amplitude”.



The universal bounds determine an allowed region in the space of effective couplings ay, ;. The
Veneziano amplitude was found in the interior of the allowed region; it was not at any special
place such as near a corner or cusp in the boundary. However, when the EFT bootstrap was
combined with the additional constraint that the amplitude obeyed the string monodromy
relations,? it was found [15, 16] that the two-sided bounds narrowed in on the aj , values
of the Veneziano amplitude (1.4). This was evidence for the earlier conjecture [25] that the
open string is the unique amplitude compatible with the combined constraints of the EFT
bootstrap and the string monodromy relations.

Isolating the low-energy expansion of the Veneziano amplitude with the monodromy
relations has an interesting geometric interpretation,* but it is not satisfactory to bootstrap
the string amplitude by assuming one of its salient worldsheet properties. Instead, it would
be much more desirable to find evidence of string theory (here specifically the Veneziano
amplitude) from a more particle-based approach.

In this paper, we pursue a bottom-up EFT S-matrix bootstrap of the Veneziano amplitude
in D = 10 dimensions. The new “ingredient” in the bootstrap is information about the lowest
massive states. In particular, the open string has a spin 0 state at mass-squared 1/¢/, a
spin 1 state at 2/a’, a spin 2 state at 3/, etc, as its leading Regge trajectory. We find
that even just assuming that the lowest-lying massive state is a scalar and that there is a
suitable gap to the next (otherwise unspecified) state restricts the allowed parameter space
so that the string is now found very near a corner in the resulting bounds. Moreover, we
show that with input about only the lowest-mass state’s spin and coupling to the massless
states relative to ago, the Veneziano amplitude is isolated on islands that shrink in size as
more constraints from higher-derivative operators are included.’

More generally, we also examine the effects of basic low-spectrum input on the bounds
in the EFT S-matrix bootstrap.

Setup and summary of results. We compute bounds on the ratios of Wilson coefficients
in (1.5). This is done by using analyticity and the Froissart bound to derive dispersive
representations for each ay 4. Then those are used, together with unitarity, to formulate
an optimization problem which is solved numerically with the semi-definite problem solver
SDPB [26]. This involves truncating the derivative expansion (1.1) to some finite order
Emax (corresponding to 2kpax + 4 derivative order); the numerical bounds get stronger with
increasing Kpax.

As context for the new bounds, the universal bounds in the (ai,a20) plane (the
coefficients of trD?F* and of one of the trD*F* operators, respectively) are simply [2, 15]:

(_1%,0 <agp < aip- (1.6)

3The string monodromy relations [20-24] are a set of linear relations arising from the disk amplitude via
contour deformations of the integration over the vertex operator insertion points.

“We found in [15] that the general coupling space (i.e. without monodromy relations imposed) has fewer
independent Wilson coefficients than the general EF T-expansion (1.1) suggests, and we proposed a partially
resummed low-energy expansion of the 4-point amplitude. We do not use the partially resummed form in
this paper.

5The Veneziano amplitude is not the unique UV completion of a maximally supersymmetric YM EFT;
other options include the Coulomb branch amplitudes. In that case, the massive states couple quadratically
and therefore have to appear in loops. In contrast, we assume that the lowest mass states are exchanged at
tree-level.



This region (whose bounds happen to be independent of kyx) is shown in figure 1 in teal.
The region has two corners: the corner at (0,0) corresponds to a model in which the trF*
coupling dominates all other EFT couplings (ao,0 > ag,q for all k& > 0) and the (1, 1) corner
is an (unphysical) model with an infinite spin tower at the mass gap.

The simplest assumption we can make about the massive spectrum is that the lowest
mass states (also in the adjoint of the color-group) contribute to the 4-point amplitude
A(s,u) via simple pole exchanges, e.g.

for a particle with mass ]\JZ2 , spin ¢;, and coupling g; to the massless external states.® To
begin with, we only put in a single state, then subsequently, inspired by [17], two states.

Single-state input. Suppose that the amplitude A(s,u) has a pole at the mass gap Mgap
from the exchange of a massive spin-£; particle. We assume that, apart from this state, there

are no other massive states until the “cutoff scale” ucMgZap for some p. > 1:

1

[ o y (1.8)

0 M? e M2

gap gap

In (1.8), the circle at s = Mg2ap indicates the simple pole in the s-channel of A(s,u) while

the thick blue line starting at ,u,CMgQap indicates that we are completely agnostic about what

occurs at or above the “cutoff scale” ,uCMgZap:

it can be poles, branch cuts, or both, so
long as it is unitary.

We first consider the choice of spin ¢;. When ¢; = 1,2,3,4,5, we find that for p. > 1
there is no effect from adding in the spin state at the mass gap: the bounds will be the
same as if no states were at the mass gap at all. Further, when we look at the maximal
allowed relative couplings |gy, |?/ao,o for an isolated state with spin ¢, > 0, we find that they
decrease exponentially with kp.x, corresponding to including constraints from higher derivative
operators. That selects the scalar as the only well-motivated choice for the lowest-mass state.

Setting ¢; = 0, the bounds depend on the choice of cutoff scale pu.. When p, — 1, we
recover the full allowed parameter space, the teal region in figure 1. However, as we increase
e, the allowed region shrinks in size. Thinking of Mgap as 1/a’, we make the string-inspired
choice p. = 2, so that the input is

{1=0
e O — (1.9)
0 MgQap 2Mg2ap

5Specifying the spin of the internal state, which must be part of a supermultiplet, only makes sense when
the external states of A(s,u) are chosen. This will be done in section 2.1.
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Figure 1. This plot shows the allowed region for Wilson coefficients @, o and as 9. Teal shows the
region with unrestricted spectrum above the mass gap. Purple shows the allowed region for a scalar
at the mass gap and no assumptions about the spectrum at and above 2Mg2ap. In magenta is shown

the allowed region when the cutoff is at 2Mg2ap and there is a non-zero spin state or no state at Mgzap.

(This is simply the teal region scaled by a factor of two on the horizontal axis and a factor of four on
the vertical axis.) The red dot corresponds to the Veneziano amplitude values for these coefficients
and it sits very close to the corner in the purple bounds. The inset zooms in near the tip of the
purple allowed region and shows the dependence of the bounds on the truncation parameter ky .y for
kmax = 4,6,8,10,12, and 14.

The resulting allowed region, shown in purple in figure 1, has a new corner at
aio~ 0.7336, az0~ 0.6598. (1.10)

(These are the values for kpax = 14; the change from kpax = 12 to 14 is of order 10*4.) The
corner values are close to the values for the Veneziano amplitude (1.4),

asth = 22 ~0.7308, alh = S~ 0.6580, (1.11)
) Cz ; C2

shown as a red dot in figure 1. Thus, we have found a new corner on the EFT bounds

very close to the Veneziano amplitude! The only string-motivated input was the choice

of gap p. = 2 in (1.9).
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Figure 2. Island bounds bootstrapping the Veneziano amplitude (red dot). The gray region shows
the knax = 4 bounds without the scalar coupling fixed. The blue island is kpyax = 4 bounds with
the scalar coupling fixed to the string value (1.12). The zoomed inset shows that the island bounds
continue to shrink for k. = 4,6,8,10,12, 14, 16, narrowing in on the Veneziano amplitude.

Single-state input with coupling. The lowest-mass state of the Veneziano amplitude is a
scalar that couples to the massless states with (normalized) coupling
g5l _ 1

9

Let us pretend that this is a number that we have ‘measured’. If we enter this into the EFT
bootstrap with spectrum assumptions, how much freedom is left in the EFT? Naively, one
might think that fixing the spin and coupling of the lowest state does not amount to much
information, but the EFT bootstrap says otherwise.

First, we find that the cutoff scale p. above the lowest mass state (cf. the spectrum (1.8))
now has a maximum which we find converges to p. = 2 as kmax increases (see figure 7). Next,
choosing this extremal value of the cutoff, y. = 2, we find that the allowed region becomes a



small island around the Veneziano amplitude! This is illustrated for the (a0, az20) plane in
figure 2. Moreover, as we increase the value of k., the size of the island shrinks, see the
zoomed inset in figure 2 for kyax = 4,6, 8,10, 12,14, and 16. (In the main text, we show the
allowed islands for other Wilson coefficients.) Pushing to kpax = 18, we find

0.7261 < a1 < 0.7333, 0.6569 < az o < 0.6598. (1.13)

These values are within about 1% and 0.5% of the Veneziano string values (1.11), respectively.
Thus, even with the minimal physical input of the lowest mass state, there is very little room
for anything else in the maximally supersymmetric EFT.

Two-states input. Let us approach the bootstrap of the open string from a different
angle that does not require fixing any couplings. Consider the input of two massive states
instead of one:

b 2

o—o o f— (1.14)

2
0 MgQap p2 Mg,y “CMg?ap

We find that the only non-trivial options for the spins are
El =0 and 52 =1. (1.15)

With this choice, we compute, for given choice of ps, the maximum allowed value of the
Wilson coefficient a1, and find that its value stays constant as j. increases from ps up to
e =~ 29 — 1 where it begins to drop off and reduce the allowed coupling space. This is
illustrated in the plot of figure 3 for a selection of us choices, including the string-case of
p2 = 2 shown in dark green. The sudden drop in max(a ) suggests that when p. is taken
larger than 2u9 — 1 some amplitude with a massive state at (2ug — 1)M§ap is ruled out. This
would be compatible with a model whose spectrum has a linear Regge trajectory

M7 = (pp — 1) +1. (1.16)

Thus the bootstrap ‘discovers’ a one-parameter family of potentially interesting models with
linear Regge trajectories (at least for 1 < ug < 2 where the corner is quite sharp). The case
with o = 2 is the open string, but in this analysis it is not entirely clear what singles it
out among the other ones. Apart from the case of Veneziano with po = 2, we do not know
a closed form of the generic ‘corner theory’ amplitudes.

The curves for max(aj ) vs. pe appear to have another set of corners for p. > 22 —1 (see
figure 14.). If any theories ‘live’ there, they would have non-linear Regge trajectories, similar
to those of mesons in real-world QCD and in the pion EFT studied in [17]. If we select p2 to
take the same value as the mass gap between the p and f» mesons, namely (1.65)2, we find a
corner in the bounds (when done in 4D) quite similar to that found in the pion model [17].
There are some practical and qualitative similarities between our maximally supersymmetric
model and the pion EFT of [4, 7, 17] that are likely responsible for this coincidence of numbers.

In this work, we have sought to assume only a minimum of well-motivated physical
information about the spectrum. The guideline for the input has been to think about what
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Figure 3. Max(ay ) vs. the cutoff scale . for puo =1, 1.2, 1.4, 1.6, 1.8, 2, 2.4 and (1.65)? computed
with kpax = 10. Each curve has a corner near p. = 2us — 1, suggesting a one-parameter family of
models with a state of mass-squared (2us — 1)Mg2ap The dashed line corresponds to the upper bound
on a0 with p. = po, while the dotted line shows the max(a; o) for . = 2us — 1. The inset shows
the location of the “corner theories” in the (a0, az2,0)-plane for a selection of po values and with
fe = 2p2 — 1. For given choice of Mg, (an arbitrary scale below which there are no massive states),
the Veneziano amplitudes with 1/a’ > Mg2aLp must also lie within the allowed region. Thus, the red
curve in the inset corresponds to the Veneziano amplitude with varying 0 < o/ M2, < 1, while the

gap —=
red dot is for « MgQap = 1. Note that varying o/ M2  is distinct from changing the Regge slope by
varying fio.

gap

data would be experimentally available had this been a “real-world” model. From that
perspective, it seems reasonable to assume that the lowest EFT coefficient ago can been
measured and that a scattering experiment can determine the mass, spin, and coupling g3 of
the lowest massive state. (This is certainly the case for pion scattering where much more
information about the meson spectrum is also available.) For the maximally supersymmetric
YM EFT, this basic data was sufficient to reduce the allowed space of Wilson coefficients to
a small island around the Veneziano amplitude. Such strong constraints may not be found in
bootstraps of generic EFTs with less symmetry. Also, experimentally, there would be error
bars on the measurements of masses and couplings, so one would have to smear over any



islands resulting from the bootstrap to take these uncertainties into account. Nonetheless,
one can think of our setup as a very simple toy model for the application of the S-matrix
bootstrap to more realistic cases.

Outline. In section 2, we discuss the constraints of maximal supersymmetry, the dispersive
representation, and some simple analytic bounds. The input of spectral information is
described and put in the context of known UV completions. We also outline the numerical
implementation.

Section 3 begins with a bootstrap of the possible spins for the state with the lowest
mass in the spectrum. We then discuss the string at the corner of the bounds (e.g. figure 1)
and the string islands (figure 2.)

Next, in section 4, we argue that input of specific states can give corners in the bounds
of Wilson coefficients and we show how that motivates particular spectrum input for the
bootstrap. We examine this first for the bootstrap of the Veneziano amplitude and next
more generally to find the one-parameter of corner theories from figure 3. We notice that, for
larger mass gaps, the bounds have secondary corners which would correspond to models with
non-linear Regge trajectories. We compare one such corner with the pion-bootstrap.

In section 5, we show that the bounds obtained with one- and two-state input are very
similar to those computed by imposing a fixed leading Regge trajectory on the full spectrum.

We discuss the results and outlook in section 6. The appendices contain additional details
about the numerical implementation (appendix A) as well as some results of bootstrapping
the Veneziano amplitude using information about the two lowest massive states and their
couplings (appendix B).

Note added. As this paper was being completed, we learned about similar ideas being
pursued by Albert, Knop, and Rastelli [27]. Their results for the open string bootstrap are
largely complementary and appear to be in good physical agreement with ours.

2 SUSY constraints and the dispersive representation

In this section, we show how to implement the constraints of maximal supersymmetry and
generalize the derivation of the dispersive represention in [15] to D-dimensions. We then
describe the general set up for adding the lowest-massive states into the spectrum. Finally
we discuss the spectrum and couplings of the massive states exchanged in the open string
tree amplitude.

2.1 Supersymmetry constraints

In D = 4 dimensions, maximal super Yang-Mills theory has N' = 4 supersymmetry and
the self-dual supermultiplet of massless states consists of the gluons, the four gluinos, and
three pairs of complex scalars. The N' = 4 SUSY Ward identities imply that all 4-point
single-trace amplitudes are proportional to each other. Thus, without loss of generality, we
can focus on the color-ordered scalar amplitude

A(s,u) = Alzzzz], (2.1)

where z and Z is any pair of conjugate complex scalars of the A/ = 4 massless supermultiplet.
It was shown in [15] that the N/ =4 SUSY Ward identities requires the amplitude (2.1) to



take the form A(s,u) = s%f(s,u), where f(u,s) = f(s,u). This is a SUSY version of crossing
symmetry. The most general ansatz for the EFT expansion of this amplitude is then”

s
AR T (5 ) = =2 4+ 62 Z A g sF79u%  with Al k—g = Qg - (2.2)
Y o<qsk

The constraints ay —q = ay 4 follows from the SUSY crossing condition f(u,s) = f(s,u). The
first term is the gluon-exchange in the u-channel of the leading order 2-derivative SYM theory.
The polynomial terms in the Mandelstam variables s and u are in 1-to-1 correspondence
with (linear combinations of) the on-shell N' =4 compatible local operators of the schematic
form tr(D?*+42222) SUSY, tr(D?**F*). The ay, are Wilson coefficients for these operators,
e.g. agp is the coefficient of tr(F*), a1 = a1 1 is the coefficient of tr(D?F*) and so on, as
outlined in (1.2). The subscript k£ on a4 is associated with the derivative order and ¢ labels
distinct operators of the same order.

Consider now 2 — 2 scattering amplitudes in maximally supersymmetric Yang-Mills
theory in D > 4 spacetime dimensions. If we restrict the external states to a 4D subspace,
the states can be decomposed into the massless N/ = 4 supermultiplet and the amplitudes
obey the 4D N =4 SUSY Ward identities. We can then reuse all the above 4D results.

Thus, in D dimensions, we consider a four-point amplitude A(s,u) whose restriction to a
4D subspace gives the scalar amplitude (2.1). The dependence on the spacetime dimension
D enters via the partial wave decomposition

& 2
Alsa) =3 nf”arlo) 67 (142 (2.3
=0

(D)

in which ay(s) is the spectral density, n, ’ is a dimension-dependent normalization [1, 28],

(p) _ (4m)P/2(D +2¢ - 3)I(D + ¢ — 3)

" ol (252) (e + 1) 24)

and GgD) are the D-dimensional Gegenbauer polynomials, which can be written in terms

of the hypergeometric function oF; as

(2.5)

D -2 1—3:)
2 2 '

GP)(z) = o Fy (—z,e +D-3, ==
Thus, the internally exchanged particles with spin ‘know’ that they ‘live’ in D dimensions.

2.2 Dispersive representation

The EFT S-matrix bootstrap assumptions are unitarity (specifically positivity since we are
working at tree-level), analyticity, and the Froissart-like bounds that A(s,u)/s?> — 0 for
|s|] = oo at fixed u < 0 (and similarly at fixed ¢ < 0). In addition, we assume a mass gap,

"For simplicity, we scale all amplitudes to be dimensionless and have no explicit coupling for the leading
pole term —s/u. Since we only bound ratios of couplings, this has no impact on the results. Also, our 4-point
Mandelstam variables are s = —(p1 + p2)?, t = —(p1 + p3)?, and u = —(p1 + p4)?, treating all momenta
as outgoing.

,10,



large rank of the gauge group (e.g. only single-trace operators considered), and weak couplings
so that any running of the couplings is suppressed and we can work at tree-level in the EFT.
More detailed statements of the assumptions are given in section 3 of [15].

Using a standard contour deformation argument, it was shown in [15] that all the Wilson
coefficients ay, 4 of the amplitude (2.2) have a dispersive representation. Generalizing to
D-dimensions and redefining all a; , to be dimensionless, we have

©  roo g2 b Mga k+D/2 5
Uhg= /M2 e pe(M) (Jj;’) o p(MP) >0, (2.6)
£=0

gap

Unitarity ensures positivity of the spectral density py(s) = s(D*4)/21m(ag(s)). In D =4, the
(4)

4q
dimensions, the numbers v

are the coefficients of the Legendre polynomials Py(1 + 2§) = 22:0 v7,407. In general D
(D)

Lq

v
are similarly derived from the Gegenbauers (2.5) as
01 D -2

1
Uéz) = (—1)qa@ 2F1 (—€,€+ D — 3, 2,.’1))

(2.7)
=0

(D)
L,q
superscript (?) with the understanding that vy4 are the 10-dimensional coefficients unless

Importantly, all v,/ are non-negative. Our analysis is in D = 10, so henceforth we drop the

otherwise stated.
Changing integration variable to y = M2/Mg2ap in (2.6), we find

g = /1 dy fo(y) y Fveg = <y”“ve,q>1 : (2.8)
=0

where fy(y) = y_(D/QH)néD)pz(Mg oY) = 0 and we have introduced the compact notation

a

(@) =% [ s ey, (2.9)
=0

If 4 > 1, the dispersion integral starts above the mass gap, i.e. the lowest mass-scale to

. . . . 2
enter the dispersive integral is pMg, ;.

Null constraints. The SUSY crossing constraints ay, y—q = a4 from (2.2) place constraints
on the spectral density. It is further constrained by relations derived from the dispersion
relations at constant ¢ (as opposed to constant u < 0 used to derive (2.6)). These constraints
are collectively referred to as the “null constraints” and they play a key role for the numerical
computation of the bounds. We provide the explicit expressions for the null constraints
in appendix A.l.

2.3 Simple analytic bounds

It follows directly from the integral (2.8) and the non-negativity of the vy, that ay, > 0
for all k and ¢, and that

Qg > apq  for k<K (2.10)

— 11 —



Together with the SUSY crossing constraint, ay y—q = a4, one can show [15] that aj < ago
for all k and g. Thus, the lowest-dimension operator, trF'*4, has an effective coupling ap,o that,
in units of the mass gap Mgap, is greater than all other Wilson coefficients. It is therefore
natural to bound the higher-derivative couplings relative to ag,o:

Gpg = 29 for which 0<a, <1. (2.11)
a,0

One can derive the analytic bounds [15]
an ) <awo<apo for k<K (2.12)

The case of k =1 and k' = 2 was given in (1.6) and shown as the teal region in figure 1.

Scaling of bounds. The bounds in (2.11) and (2.12) were derived from the dispersive
representation (2.8). If we change the lower bound on the dispersion integral from 1 to
p > 1, ie. if we define

afl) = <y"“ve,q>u, (2.13)

then it follows from a scaling of the dispersion integral that

(1)
—wy _ 1 ~(1) A 7 R
max (a;.,) = Emax (ay,) with @, = ok (2.14)
0,0
The bounds (2.11) and (2.12) then become
0<al <u™ and (af))¥/* <al) < @b Fal) for k< K. (2.15)
For example, with p = 2 we get
1 1
0<aly< 5 and (aly)? < asy < 3 al’y . (2.16)
This is relevant for the projection of the allowed region to the (a1, a20) plane and is shown

as the magenta-colored region in figure 1.

2.4 Spectrum input

In the Introduction, we discussed the specification of explicit low-mass states in the EFT
bootstrap. We now detail how this is implemented, reviewing the ideas proposed in [4, 17].
The contribution from a state with spin ¢; and mass M; to an s-channel pole is captured
by the residue of the 4-point amplitude as

— 1:{ess:M?A‘l = _’gi|2 G&‘ (1 + ) ’ (217)

where g; is the coupling between the massive state and the two massless external states 2.

8Technically, our bootstrap cannot distinguish whether there is a single spin #; particle with coupling |g;|?
or multiple spin £; particles with couplings that add up to |g:|>.
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gap

Im 8/M2

Figure 4. The analytic structure of the amplitude A(s,u) with N poles located on the positive real

s-axis at s = unMgap forn=1,2,...,N. For s > ,ucMgap we are agnostic about the form of the

spectral density.

The residue appears in the spectrum as a delta-function, i.e.
(M2)4=D)2p, (M) o |gif25(M? — M) . (2.18)

Thus, including an explicit spectrum up to a given cutoff scale MCMgQap means we can
analytically integrate (2.8) for each Wilson coefficient ay , up to the scale set by p.. For

the spectrum of simple poles illustrated in figure 4, we get

(kg = Z Z ‘gelﬁ:?, vig + (¥ o) (2.19)

n=1¢=0 Hn He

The couplings |gs,,,|* enter the bootstrap as additional parameters in the optimization
problem. They can be specified explicitly, extremized, or left as free parameters of the
optimization. The numerical implementation is briefly discussed in section 2.6 with further
details relegated to appendix A.

As an example, for a spin ¢; state with coupling gy at the mass gap, i.e. u1 = 1, and
a spin ¢ state with coupling g1 at ps gives

1
= lgol?ve.q + Lklg Vg + (y 0na) (2.20)

The Gegenbauer coefficients vy, vanish unless £ > ¢. Naively, that means that a spin ¢; state
only contributes to Wilson coefficients with ¢ < ¢;; however, the SUSY crossing constraints

aj k—q = ak,q Makes this more subtle. For example, a spin 0 state contributes explicitly to
arp = |gol? + <y‘kw’0> , but also indirectly to a1 = <y‘kvg’1> via the SUSY crossing
He

. He
constraints aj o = ai,1.

The factors of ,u_k 3in (2.19) and (2.20) arise from the redefined spectral function,
fo(y) o< y= @240 o, (M2, y), the factor of (M?)(4=P)/2 that appears in the relationship
—k /M2

Mgy :

Their appearance implies that the contributions from higher-mass states are significantly

between pe and the couplings (2.18), and the integrand factor of y=* with y =
suppressed, especially for higher values of k. This offers some intuition of why the input
of the lowest-mass state(s) has a substantial effect on the bootstrap bounds. We discuss
this further in section 3.

It should be noted that any explicitly input spin-£ state for the s-channel of the amplitude
AlzzzZz] is part of a supermultiplet. The other states of that supermultiplet are exchanged in
other component amplitudes proportional to A[zzzZz] by supersymmetry.
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Figure 5. The table shows the 10D values of |ge ., |, as defined in (2.17), in units of 1/a’ for the
scalar Veneziano amplitude (1.3). ¢ labels the spin and the nth level has mass n/a’. The plot of M?
vs. spin shows the Regge trajectories for the Veneziano amplitude. Note that the scalar coupling at

3(10—D)

S(D—T)a’» 5° it vanishes in D = 10.

mass level n = 3 is

2.5 UV models: Veneziano, IST, and SSE

Veneziano spectrum and couplings. Consider the Veneziano amplitude in D > 4

dimensions. With the external states restricted to a 4D subspace, the Veneziano amplitude

can be written

s (=d/s)T'(—u)
r'l—ao(s+u)’

which was the form presented in (1.3). The low-energy expansion of the Veneziano amplitude

A (s,u) = AN [2222] = —(ds) (2.21)

was given in (1.4).

The gamma-functions in the numerator of (2.21) give simple poles whenever their
arguments are 0 or a negative integer. In the s-channel, the poles are at s = m2 = n/a/
for n = 0,1,2,3,..., but the s = 0 pole is eliminated by the overall SUSY factor s?; in
N = 4 SYM, there is no massless pole in the s-channel of the amplitude A5[z22Z] (but
there is a gluon exchange in the u-channel).

The residues of the first few massive poles show that the exchanged states are as follows:
a scalar at 1/a/, a vector at 2/c/, a spin 2 particle at 3/a’ etc. The tower of spin n states at
n/a’ lie on the first Regge trajectory, illustrated in figure 5. In addition, there are towers
of daughter trajectories starting at 4/a’. Also listed in figure 5 are the couplings g;,, of
each state as computed via (2.17) for D = 10. When we compare bootstrap results to
the Veneziano amplitude, we take the mass gap to be given by the lowest-mass state of the
Venaziano amplitude, i.e. M7, = 1/a’.

Infinite spin tower (IST). The amplitude

2

AST (s, u) = —% e 5;(m2 — (2.22)

9The precise value of these couplings depends on the choice of normalization for the Gegenbauer polynomials.
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has an infinite tower of spins, all with the same mass m?. This is not expected to be physical,

but it is also not ruled out by the universal EFT bounds. With m? = uMgap, the low-energy

expansion gives effective couplings,

apy = kl_z : (2.23)
]

for all £ and ¢. Thus, in the (a1, az)-plane, the IST amplitudes saturate the lower bound

in (1.6) as they have asg = EL%O. Hence, the lower bound on the teal region in figure 1 is

matched by IST amplitudes with mass m? = uMgQap. The corner at the (1, 1) in that plot is

the IST amplitude with m? = Mgap, whereas the corner at (1/2,1/4) of the purple region

in figure 1 is the IST with m? = 2Mg2ap.

SUSY scalar exchange (SSE). The amplitude

SSE S 32 1 1
A (50) = “u o \r—s T (224)
gap

grows as s2 for |s| — oo and therefore just barely fails to satisfy our Froissart bound. A
modification of the amplitude (see [4]) can remedy this and, as such, we can consider ASF
as a borderline case. The low-energy expansion identifies the values of the Wilson coefficients
as app = 1, apo = apr = 1/(2m2(k+1)M§ap) for kK > 0, and ary = 0 for 0 < ¢ < k. In
figure 1, the SSE amplitude with m? = MZ  is located at (a1, a2,0) = (1/2,1/2) on the
diagonal upper bound on the allowed region. The rest of the diagonal is the SSE amplitude
with mass greater than MZ, (for a1 < 1/2) or a linear combination of the SSE and the

IST (fOI‘ 1/2 < 5170 < 1).

Coulomb branch. On the Coulomb branch, the massive states couple quadratically to
the massless states, so they cannot enter as tree-level exchange of the 4-point amplitudes,
but they contribute via loops. Thus, the simplest Coulomb branch amplitude has a branch
cut starting at 4m?, where m is the mass of the massive W-supermultiplet. Our spectrum
input assumes poles from the lowest-mass states and explicitly excludes branch cut below
the cutoff ucMgQap. For that reason, the Coulomb branch does not play any significant role
in the bootstrap analysis of this paper.

2.6 Numerical implementation

The method for turning the dispersive representation of the Wilson coefficients with positivity
bound py(M?) > 0 into a linear optimization problem has been discussed in detail in the
literature; see for example [1, 4, 15]. Here, we briefly describe the essential components so we
can fix notation, following section 4 in [15]. To start, we allow only a finite number of spins
contained in a spin vector 7to appear in our dispersive sum and write a vector equation

— 1 —
V=% [ dayfiw) B, (2.25)

where V' contains, as its first element, agp, and a4 as its second element when ay, , is the
coefficient we wish to extremize. The subsequent entries contain any expression we wish
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to set to zero, that is, ay o — Rao to fix the value fo ay o to R, or |gr ., |* — Gag, fixing
G0, |> = 19,4, )?/a0,0 to the value G. The vector V also includes all linearly independent
null constraints from SUSY crossing (given explicitly in appendix A.1) up to some kmax
which truncates the derivative expansion to 2kmax + 4 derivative order. Emperically, we find
that the bounds only change substantially at even ky.x, and so do not give bounds at odd
values. The entries of E_:g’y are chosen so that (2.25) matches the dispersive representation
of the coefficients and null constraints. The vertex representation (2.25) can brought to the
standard form of a linear or semi-definite optimization problem [1, 4, 15].

As noted, the spin sum has to be truncated to a finite list of spins. Rather than including
all spins up to some f,.x, it turns out to be computationally advantageous to instead include
all spins up to some cutoff between 50 and 200, then use a sparse set of spins that includes
both even and odd spins up to some much higher maximum. The bounds depend on the
spin list E_: which is chosen empirically for each k.« by ensuring that the bounds do not
change more than an acceptable amount (say, less than O(107%)) when the maximum spin
is increased or the spin list includes a denser set of spins. Using this kind of spin vector
was initially suggested in [4] and greatly reduces the computational time needed to bound
coefficients at large kmax.

3 Single state input

In this section, we consider bounds on amplitudes with a single massive state at the mass gap
and then no other contributions up to a second cutoff scale. We assume the state contributes
to the amplitude A(s,u) via a tree-level exchange, as in section 2.4. First, we show that
the single state at the mass gap has to be scalar. We then describe how leveraging this
information, along with one additional piece of string-inspired input, reduces the allowed
space in a way that singles out the Veneziano amplitude as special.

3.1 Bootstrapping the spectrum at the mass gap

Consider a spin ¢; particle at the mass gap. Using (2.19), we have

0
2 —k
0—0—— kg = |90, 1| veq + <y Ug’q> . (3.1)
0 M2, pM, fe

The coupling | gghl\Q is a variable that can be optimized on the same footing as the Wilson
coefficients.

To examine the different options for the choice of spin ¢1, we compute the maximum
allowed value for the coupling of the massive state to the massless states relative to the
trF* coupling app. Specifically, we maximize

2
Gy = 9l (3.2)
ao,0

To enforce that the spin ¢; state is the only state at the mass gap, we set the cutoff ,u,;MgQap
to be above the mass gap, e.g. i > 1. For non-zero spin, ¢1 > 0, we find that the maximum
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Figure 6. Left: the maximum of the coupling |gi1,1]? of a spin-1 particle at the mass gap with three
different values of u. as a function of kyax. Right: the maximum of | §g71|2 for the given spins and
te = 1.1. Both plots illustrate that a state with spin ¢; > 0 at the mass gap M., has a coupling that
is suppressed exponentially with increasing ki ax.

allowed value of | 54171]2 decreases quickly as the cutoff p. increases. It is expected that all
non-zero spin couplings go to zero as u. — 0o because there is no single-spin £ > 0 exchange
amplitude (analogous to (2.24)) compatible with the Froissart bound.

However, even just above the mass gap, e.g. for p. = 1.1, we find that max(|ge, 1/?)
decreases towards 0 exponentially fast with increasing ky.x. This is illustrated in figure 6
for /1 = 1,2,3,4,5, indicating that in the limit of including constraints from arbitrarily
high orders in the derivative expansion, kp.x — 00, having a single state with non-zero
spin is not allowed: its coupling to the massless states is exponentially suppressed. This
implies that bounds on the Wilson coefficients ay, , will not be sensitive to a non-zero spin
state at the mass gap.

In contrast, for a spin 0 state, the maximum allowed coupling | §071]2 is constant as
a function of knax and has no suppression, as also shown in figure 6 for pu. = 1.1. Thus,
we conclude that if the spectrum only has one state at the mass gap MgQap, that state has
to be a scalar!

We also checked the generalized scenario in which we allowed two states at the mass
gap, a scalar and either a spin one or two exchange. There, with y. = 1.1, the maxima of
the allowed couplings for the spin 1 and 2 states are larger than those given on the right
side of figure 6, but they are still are decreasing exponentially with kpyax.

Studying the scalar coupling as a function of . shows that the maximal value of |go 1|
decreases monotonically. At p. = 1, it takes the value (777 — 11201n(2)) ~ 0.6752, which
matches the scalar coupling of the IST model (2.22) and as pu. — oo, |go1]? asymptotes
toward 1/2, which is the normalized scalar coupling of the SSE model (2.24). There are no
particular features in that plot which point to any special values of the cutoff p..

3.2 Cornering Veneziano

A single scalar exchanged at the mass gap exactly matches the first massive state at Mg2ap =

1/’ in the open string spectrum. We know from section 2.5 there are no other states

that contribute to the Veneziano amplitude until 2Mg2ap = 2/d/, so we now impose this
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string-inspired cutoff p. = 2:

61 =0
: akg = lgov0g + (y7Fueg) . (33)

0 MgQap QJWgQap ’
Leaving |go|? as a free parameter for the maximization/minimization of the Wilson coefficient
az,0 as a function of a1 9, we obtain figure 1. The purple region corresponds to the bounds
on the as vs. aj ¢ region with this spectrum. The region outside the purple but within the
teal bounds is where there must be more than a scalar in the spectrum below M? = 2Mg2ap.
Moreover, the region within the purple space but outside of the magenta region must have a
nontrivial contribution from a scalar at the mass gap Mg2ap.

As discussed in the Introduction, the string values of ay, 4 are close to the boundary of the
allowed region.’’ Quantitatively, the maximal values of a1 ¢ and ag differ from the string
coefficients by just 2.8 x 1073 and 2.3 x 1073 for kmyayx > 14.

In figure 1, the inset shows that, upon zooming in close to the string value, the bounds
sharpen as we increase kpyax. Note that the lower bound on azo appears to be moving
extremely slowly with k.. Though the space does become slightly more constrained, there
is no clear evidence that it is shrinking fast enough that the string would lie directly on the
boundary even as kpyax is taken very large. It is possible that further physics input would be
needed to truly corner the string and we discuss examples of this in the following sections.

We picked the gap p. = 2 solely based on input from the string spectrum. It is natural

to ask what happens for other values of p.. We discuss this further in section 4.3.

3.3 Veneziano island

Next we experiment with fixing the coupling gg of the massive scalar to the massless states
from (3.3). We let the cutoff ucMgQap be general, but pick the string-value (see table in
figure 5) for the coupling:

—str|2 |g(s)tr 2 1
a3 == =—. 3.4
| 0 CLB% <2 ( )

We then have

90
/1 =0 1

~_ Uogq Lk
o @ — Qpg = G +a070 <y W’q>u . (3.5)

0 M2 p.M? ‘

gap gap

Since vg,y = 1 for ¢ = 0 and is zero for ¢ > 0, only the a; coefficients ‘see’ the
contribution from the scalar directly.

10T hese bounds are computed in 10D. For lower dimensions, 4 < D < 10, the bounds are not as sharp
and a bit further from the string. The Veneziano amplitude is unitary only in < 10 dimensions (for a recent
discussion, see [29]) and our numerical bootstrap can also exclude D > 11. Since D = 10 is also the critical
dimension of the superstring, it is natural do carry out the analysis in 10D.
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Figure 7. a; o vs. po with [go|? = 1/(a for kmax = 4,6,8,10,12. The gray dashed lines are the naive
bounds on @ o from (3.9). The inset shows on a log-log scale the maximum allowed value of the cutoff
po converging to 2 as kpyax is increased.

Analytic bounds. Due to this explicit contribution to the aj o coefficients, fixing the
coupling to the string value as in (3.4) gives a non-zero lower bound on a ¢ since the high
energy integral in (3.5) must be non-negative:

. 1
aro > — ~ 0.608. (3.6)
2

We can also extract an analytic expression for a new upper bound on ag . The high energy
integral obeys scaling arguments like those discussed in section 2.3, i.e.

max(<y7kvg70>uc> = max (:5<ykv[’0>1) . (3.7)

Normally, Wlo<y*kvg70>1 would be bounded from above by 1, but because we have already
subtracted out a contribution of size 1/(2, we must find that in the yu. — 1 limit of (3.5),

1 1

—k
— v <1l——. 3.8
o), < 1= (3.8)
Combining (3.6) and (3.7), we arrive at the two-sided bounds
1 1 1-1/G
—<apo< —+—7—. 3.9
e pg (39)

Thus, for any p. > 1, the value of a ¢ is increasingly squeezed from above and below for
larger values of k and limy_,o ag o = 1/¢2. Notably, for the Veneziano amplitude, we have

1
a0 = Ch2 — — for k— o0. (3.10)

C2 G2

,19,



0.08 0.04F

0.06 . o . u R 0.03
. "'m.

- N, .D
g . : S Lot
0.04- . . B 0.02 ety
. AT
et
. . e ot
002} d 001 ey
0.00 | | | | | L k| 0.00 . | | .
0.08 0.10 0.12 0.14 0.16 0.18 0.01 0.02 0.03 004
ax as

Figure 8. Bounds on the allowed regions in the (@s1,a31) and (@a,1,a4,2) planes for kpax =

4,6,8,10,12. We assume a scalar at M2, with coupling |go|* = 1/{2 and no other state until 2M2, .

It is rather surprising that simple low-energy input, as the mass, spin, and coupling of the
lowest-mass state in the spectrum has such significant impact on the coupling of high-dimension
operators: at large k, we find that only the string values of the ay o coefficients are allowed!

Numerical bounds. For lower values of k, analytic bounds (3.9) are not as constraining as
for higher k. However, it turns out that the SDPB bounds are substantially stronger. Figure 7
shows the upper and lower bounds on a; o as a function of .. The analytic bounds (3.9)
are shown for comparison as the dashed curves. Importantly, the upper and lower numerical
bounds show that there are no solutions to the bootstrap above a certain ky.x-dependent
value of the cutoff .. The existence of this maximal cutoff means that there must be a state
either at or below that cutoff in order for there to be a unitary theory with the chosen |gol?.
The inset gives evidence that the maximum allowed value of p. is 2 in the limit of large knax.
We take this maximum to be the “bootstrap” choice for u.. Thus, by fixing the coupling to
the scalar, we have bootstrapped the choice of cutoff . = 2 from section 3.1.

Continuing with p. = 2, we find that the allowed region in the (a1, a2,0) coupling space is
reduced to the shrinking islands displayed in figure 2 of the Introduction. As noted, the scalar
input affects the only the ay, ¢ coefficients directly, but we also find islands in other projections,
for example for the (a1, as 1)-plane and the (a4 1, a4 2)-plane shown in figure 8. In all these
cases, the allowed coupling region shrinks to an island around the string, much smaller than
the region that was allowed by our universal bounds or even the bounds with the naive
constraint in (3.9). More generally, we find that the upper and lower bounds for all coefficients
ar,q with £ < 4 narrow in on their string values with increasing kmax, as illustrated in figure 9.

The fact that u. = 2 appears to be the maximal value for . for the choice of |go|? = 1/(2
implies that there must be some contribution to the high energy spectrum that lives at
M? = 2Mg2ap. We can determine what that contribution is by performing similar tests to
those described by figure 6. We assume the most simple input, that there is a single particle
exchange of spin ¢ at ps = 2, set the cutoff mass to various values slightly above ps = 2, then
evaluate the maximal | §g72|2. We find that at knax = 10, there are no unitary solutions to the
optimization problem unless the single particle input is a vector. Once we know that, we can
insert the vector, then test whether other particles can live at uo = 2 by again evaluating the
maximal |gy2|? (still with the scalar at the mass gap input with its coupling fixed by (3.4),
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with the coupling |go|? fixed to the string value (3.4), and no other states
The bounds indicate convergence towards the string values (red dashed lines) as kpax



but with the vector at ps = 2 having unfixed coupling). We find strong evidence that the
couplings to states with ¢ > 2 would vanish at large kmax. For the scalar, though, the maximal
| §072\2 appears to decrease more slowly at higher kp,.x, at least to the point we tested, so there
is no obvious bootstrap-inspired reason to rule out its existence. The Veneziano amplitude
has no scalar contribution at uo = 2, so it is not clear the bootstrap can directly determine
the Veneziano spectrum without either more input or higher kp,x information. In the next
section, we study how the low-mass spectrum affects the bounds.

4 Multiple state input

We now take a step back from the Veneziano-centric analysis in sections 3.2 and 3.3 in
order to understand better how state input affects the coupling bounds and selects different
“bootstrap trajectories”.

4.1 Bifurcation from state input

Consider the following input to the bootstrap:

b lo 2
g9 —
o——o o p— g = |90/ 004 + ol klgvf%q + <y kvz,q> SENCRY
0 M2 peMZ, pMZ K2 ¢

gap

We do not fix the couplings gg or g;; they are variables in the optimization problem.

The Wilson coefficient aq ¢ is sensitive to all spins, so we study the maximum allowed
value of a1 as a function of pp and the cutoff y.. We allow p. to extend all the way down
to the mass gap, p. = 1, in order to track the effect of the state insertion at ps. The results
we describe here are computed with uo = 2 but are qualitatively the same for other values
of po, as will be discussed further in section 4.3.

Figure 10 shows the maximum value of a;o vs. 1/pu.. We start in the upper right
corner where with max(a; o) = 1 for p, = 1; this is the maximum from the basic universal
bounds (2.11). The diagonal line from (1,1) to (0,0) corresponds to the basic scaling from
eq. (2.14), which gives max(&g‘fg)) = imax(&l}o)) = 1/p. when there are no states at all
below p.. This upper bound on a; o is saturated by the Infinite Spin Tower (IST) amplitude
from section 2.5.

As we increase p., we find two separate paths: one for which the state at the mass gap is
a scalar and one when it is not. The latter is simply the diagonal in figure 10; hence including
a spin £ # 0 state at the mass gap is the same as not allowing it at all! This is equivalent
to the finding in section 3.1 that non-scalar input at the mass gap have highly suppressed
couplings. In contrast, a scalar at the mass gap gives the higher trajectory in figure 10.

When p. reaches pus = 2, there is a bifurcation due to the explicit state input at that
point. Following first the diagonal path, a new trajectory splits off for o = 0 only. This
is simply a repeat of the split of paths at (1,1). For the upper path with a scalar at the
mass gap ({1 = 0), the bifurcation is more interesting. The maximum of a, ¢ is insensitive
to any other state than a vector £ = 1. When we input a vector state at pus = 2, the
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Figure 10. Max(a1,0) vs. the cutoff scale . at kmax = 14 for listed state insertions. Starting at the
upper right corner, the bound on a; o follows two different trajectories depending on whether a scalar
is assumed at Mgzap or not. A similar bifurcation happens based on what states are allowed at 2Mg2&p.
Near 3Mg2ap there is a corner in the bounds, indicating that another bifurcation is possible when a
specific state is inserted at that point. We tested other spins up to £ = 5 and found results similar
to figure 6. The dashed gray lines extrapolate the bounds to p. — oo (in the large kpyax limit). As
indicated, two of these curves are expected to go to the Single Scalar Exchange (SSE) amplitude from

: 2 2
section 2.5 at Mg, , and 2Mg, .

respectively.

maximum of a; o stays nearly constant!! until close to y. = 3. Around p. = 3, the maximum
suddenly decreases and asymptotes back to the trajectory of having only the scalar input
at the mass gap. The inset on the lower right of figure 10 zooms in on the curve near the
corner and illustrates its dependence on increasing ky,.x. It shows that the constant value
corner is nearly saturated by kpax = 10.

The fact that max(ai) stays nearly constant and then suddenly decreases is a sign
of another potential bifurcation point. As seen at ps = 2, bifurcations and the resulting
corners in the bounds are associated with state inputs. However, unlike the other splittings,
this new corner does not occur at a place that we have explicitly inserted a state. Instead,
it appears naturally as we increase the cutoff, so it can be interpreted as the bootstrap
discovering that a state is “missing” at 3M2 !

gap*

From the Veneziano amplitude, we know that the missing state at 3]\45ap =3/ is a

spin 2 state. For further comparison with the string, the dashed red line in figure 10 shows

HNumerically, the difference between the maximal a1,0 at . = 2 and p. = 3 is less than 7 x 107 at
kmax = 14 and that difference is even smaller for higher kmax.
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Figure 11. The kpax = 14 extremal spectrum for the maximal a; ¢ with the string spectrum inserted
up to p. = 3 with (right) and without (left) additional maximal spin assumptions. The first two states
in the string spectrum are enforced (black) and the rest of the spectrum is generated by SDPB (blue).
The gray dashed lines correspond to the lowest Regge trajectories of the string spectrum.

the value, &ﬁf{) = (3/(o for Veneziano. This is close to the nearly flat bound with the scalar

and vector input. If we include a spin 2 state at 3Mg2ap, then max(aj o) has to stay above
the string value, so this generates a new path which is nearly horizontal until the cutoff
reaches the next “missing” state.

One could continue adding states this way to understand which states and where to
insert them preserves the nearly horizontal behavior of the max(a; ). Rather than adding

more states in by hand, we now discuss the bootstrap with two states input.

4.2 Veneziano bootstrap with 2-state input

A main take-away from the previous section is that with a scalar at Mgap and a vector
at 2Mg2ap, the bootstrap tells us we should maximally push the cutoff to ~ 3Mg23p if no
other states are inserted. Setting p. = 3, we can then proceed to compute the resulting
allowed regions for the Wilson coefficients. This gives a somewhat sharper corner in the
(@1,0,a2,0)-plane near the Veneziano amplitude than for the single scalar input in figure 1.
Such plots are shown in appendix B where we also experiment with fixing both the scalar
and vector couplings to get even smaller islands than in figure 2.

Rather than using the approach from figure 10 to determine higher-mass state insertions,
we can use the built-in SDPB tool'? that can extract the spectrum for a theory, assuming
it has only tree-level exchanges. Given that we find the maximal a; o to be nearly flat, we
can expect it to track the actual value the bootstrapped model, and hence SDPB should be
able to extract the spectrum from maximizing a; . As shown on the left in figure 11, for
any p. between two and three, we find that the SDPB spectra all share the same important
feature: a spin two state near 3Mg2ap7 a spin three state around 4Mg2ap, and a spin four state
close to 5Mg2ap, following closely the leading string Regge trajectory. At higher masses, we
find that the SDPB states are not quite the string trajectory, but instead there are states

that are slightly larger in mass than the string spectrum.

12This was used in [17] to find that extremal spectra near corners in an EFT of massless pions at large-N
and they found that it looked strikingly similar to the experimental spectrum of QCD for the lowest states,
but differed more at higher masses.
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SDPB does not appear to find the “daughter” Regge trajectories. Instead, the SDPB
spectra tends to have many low-mass states with large spin, i.e. states that lie below the
first “physical” linear Regge trajectory and mimic infinite spin tower theories. (This was
also observed in [17].) These are similar to the states which have maximal couplings that
decrease exponentially as we increase kyax, as we discussed in section 3.1. We can ad hoc
eliminate such “too high spin” states by requiring that there be a minimal mass allowed for
states with a particular spin, a condition recently studied in [18]. In particular, we assume
that the spectrum obeys a Regge-like constraint

M2
r<n ( _ 1) ’ (4.2)
Mgap

where ~ is the first Regge slope. Upon imposing this condition, the spectrum, shown on
the right hand side of figure 11, is much cleaner and has more states along the first Regge
trajectory and a few states along the second Regge trajectory, yet it also has many additional
states that do not lie at stringy locations. This may be a finite-ky.x effect.

It was argued in [30] that (under fairly general assumptions) amplitudes with single
Regge trajectories cannot be dual-resonant. Dual resonance is implied by the vanishing of an
amplitude in the Regge limit [31-33], so while it does not apply directly to our amplitudes,
it does apply to the function f(s,u) = A(s,u)/s%. Therefore, because f(s,u) contains the
nontrivial s-channel spectrum information, it seems that these amplitudes should not be
able to escape the argument of [30]. One may therefore suspect that the lack of daughter
trajectories in the SDPB spectrum is a numerical artifact. The leading Regge trajectory is
the largest contribution to each coefficient because it has the largest couplings and is the
least mass-suppressed for any given spin. Any violation of crossing symmetry or unitarity at
finite kmax can likely be compensated numerically by states above or near the leading Regge
trajectory. Hence we may expect daughter trajectories to appear at sufficiently large kyax.

4.3 New linear Regge trajectories

We have seen that we obtain nontrivial constraints from the bootstrap when we insert a scalar
at the mass gap MgQap and a spin 1 state at twice that mass gap, i.e. at MQ/MgQap = g = 2.
However, this choice of mass for the second state is not unique.

As an example, we choose the vector to be at 1.5M§ap instead of 2Mg23p,
The result of repeating the analysis from section 4.1 is shown in figure 12, which is qualitatively

i.e. pick po = 1.5.

similar to figure 10. The horizontal path now has a corner at pu, = 2. We find that inserting

a spin two state at 2Mg2ap is the choice that allows the horizontal trajectory to continue to

be flat for higher p., but now there is a new dropoff at p. near 2.5. Figure 12 includes the
path with a spin 3 state allowed at 2.5Mg2ap. This set of states corresponds to a linear Regge
trajectory with slope 1/2 instead of the string choice of 1.

More generally, we can examine the behavior of max(a ) for the spectrum

l1=0 lr=1

e O O b (4.3)

0 ngap ”2ng2'ap “C]Wg?ap

as a function of p.. In that case, we find corners near 2u9 — 1. This is illustrated at on the right
of figure 12, which is the same as figure 3, though with 1/u. on the horizontal axis. There is
a sharp corner for the lower values of uo, but it becomes more rounded as po increases.
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Figure 12. Left: Max(a1,0) vs. the cutoff mass pi. at kmax = 10 for ps = 3/2. As in figure 10,
dashed gray lines indicate expected behavior of these curves as u. — oo in the large k. limit. Right:
Max(a1,0) vs. 1/pic at kmax = 10 for ps = 1, 1.2, 1.4, 1.6, 1.8, 2, 2.4 and (1.65)%. This figure is the
same as figure 3, but the horizontal axis is inverted.

The corner at 2us — 1 suggests, as we saw for the ps = 1.5 case, that some model has a

spin 2 state at (2u2 — 1)Mg2ap. This indicates a linear Regge trajectory of the form:

M;

2
Mg,

= (o — 1)l +1. (4.4)

This family of linear Regge trajectories has a spin 0 state at the mass gap, a spin one state
at g2, and a spin two state at 2us — 1, and predicts a spin 3 state at 3us — 2. Extracting
the spectrum from SDPB for ps = 1.2 corroborates this linear Regge trajectory, as shown
in the left of figure 13. As in figure 11, the SDPB spectrum contains several other states
with high spin. We can input the Regge constraint (4.2) with v = 5 to match the pus = 1.2
trajectory. The result is shown on the right in figure 13, but it is a bit unclear how exactly
to interpret these spectrum plots. However, with the maximal spin constraint, we do begin
to see some signs of daughter trajectories. Their appearance here and not in the string case
is likely due to the fact that the daughter trajectory states are far less mass-suppressed
here, and so have a larger numerical impact in the constraints meaning SDPB cannot simply
compensate for their existence elsewhere.

We briefly turn to the question of which amplitudes may correspond to the 1-parameter
family of corner theories. Parameterizing them by their Regge slope with v = 1/(ua — 1), we
know three explicit cases: v = 1 is the Veneziano amplitude. For v = 0, we must have £ < 0
for all finite mass, so only the scalar exchange is allowed in the s-channel. This corresponds
to the scalar exchange amplitude (2.24). Finally, for the v — oo limits, particles of all spin
are allowed for any M? > Mgap, so the maximal a; o will match the generic bounds, that is,
will be a; 9o = 1. The same will be true for all other Wilson coefficients, so the corner theory
corresponds to the Infnite Spin Tower amplitude (2.22). The corners in figure 3 indicates
that there could be a 1-parameter family of unitary 4-point amplitudes that connect these
three cases. However, for no other choices of v do we have a closed form expression for
the amplitude that corresponds to the corner.
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Figure 13. The kpax = 14 extremal spectrum for the maximal a; o with a scalar at pi, a vector at
t2 = 1.2 and no other state up to p. = 1.4 when the maximal spin assumptions are (right) and are
not (left) enforced. The first two states are input (black) and the rest of the spectrum is generated by
SDPB (blue). The gray dashed line corresponds to a linear trajectory with slope 5.

There has been recent progress in studying general variations on the Veneziano ampli-
tude [32-37], but these amplitudes do not have linear Regge trajectories with slope # 1 and
they are not supersymmetrizable. One possible way forward is something similar to the
“bespoke” proposal in [33, 38] for amplitudes with a customizable spectrum

Other possible variations involve modifying the Veneziano amplitude in the style of the
Lovelace-Schapiro amplitude [39-41]:

o — /s)T (a1 — &)
rb+ao(s+u)

so the slope is controlled by o'/ap. However, any such simple modification results in an

A(s,u) ~ —(s) (4.5)

infinite tower of negative norm states or tachyons. One could, in principle, try to subtract off
the negative norm states from the amplitude, but this would still not necessarily lead to an
expression for the amplitude any more exact than trying to read off Wilson coefficients from
these corner plots. Further, it is difficult to see how an amplitude with such a form could
approach the scalar exchange or infinite spin tower amplitudes in their appropriate limits.

4.4 Non-linear Regge trajectories?

One interesting feature of the maximally supersymmetric model is that, while it has nothing
to do with 4D real-world QCD or the large-N pion EFT, the optimization problems we
solve are almost identical to those solved for the pions in [4, 6, 17]. The large-N pion model
has no massless poles and an Adler zero, so, instead of (1.1), the generic ansatz for the
low-energy color-ordered amplitude is

Apion(s, u) _ b170(S + ’LL) + b270(82 + u2) + bQ,]_SU +... (46)

Other than the absence of the agg coefficient, the amplitude has the same degrees of
freedom as (1.1). Where the pion amplitude has crossing symmetry AP%(u, s) = API%(s, u),
the SYM amplitude has the SUSY-induced crossing relation ASUSY (s, u) = s2f(s,u) with
f(u,s) = f(s,u). The null constraints from these crossing relations are equivalent, and, since
these numerical bootstrap procedures relies on imposing null constraints, the optimization
problems are mathematically very similar. The only technical difference is that the additional

in ASUSY

factor of s? means that we can write convergent dispersion relations for all of our
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Figure 14. Maximum aj o vs. g for ps = (1.65)% computed at kpax = 12 in 10D (left) and in
4D (right).

Wilson coefficients, while in the large N pion bootstrap, the by, ;. coefficient is inaccessible at
every level k. Therefore, crossing relations such as by, — by o = 0 cannot be imposed. These
simple equalities are related to the X,f:g and y,f;g null relations described in appendix A.1, so
while we can impose the relations for all k and ¢, only some can be enforced in the pion model.
At kmax = 2, for example, crossing symmetry implies the following high energy integrals vanish,

() (25 (V8) () (08) L (95) = 0. (4.7)

In the large-N pion bootstrap, though, only a single linear combination of these null relations
has a convergent dispersion relation:

(2958 - V5t) = 0. (4.8)

In general, we have at least one additional null constraint at every level compared with the
pion bootstrap. Importantly for the discussion here, these additional null constraints prevent
the “scalar-subtracted” versions of amplitudes that are allowed in [1, 6, 17] from always living
in our bounds because the 0 = ay 1, — a0 null constraints access information about the scalar.
Nevertheless, the allowed regions for Wilson coefficients still share many qualitative features.

Albert, Henriksson, Rastelli, and Vichi studied spectrum assumptions in the pion model
in [17]. Motivated by the experimentally observed meson spectrum, they input as the two-
lowest mass states a spin 1 particle (the p-meson m, = 770MeV/c?) at p1 = 1 and the
fo-meson (1270 MeV /c?) with spin 2 at us = (1270/770)% ~ (1.65)2. They find a corner in
the maximum of the fy-meson coupling 91202 near p. = 4.748. This translates to a mass of
Mmp ~ 1678 MeV /c?, remarkably close to that of the spin 3 p3 meson whose mass is
1690 MeV /c?. Similarly, an SDPB spectrum calculation gives a few more of the next states
near the leading QCD Regge trajectory, see figure 1 of [17]. Unlike our corner theories in
section 4.3, the QCD meson spectrum is not linear.

The results of [17] inspired us to extend our plots beyond ps = 2 and to look carefully
at the o = (1.65)? case as well. We find that the max(a; o) vs. y. curves have hints of two

corners at masses greater than (2u. — 1)M?2, . For ps = (1.65)2, these “corners” are located

gap*
at u. ~ 4.56 and p, =~ 4.85, neither of which match the pion model’s particularly well. Of
course, this analysis is in 10D and with spins that are shifted by one compared with those

of QCD. Re-analyzing the bounds in D = 4, shown on the right hand side of figure 14, the
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first corner is roughly at u. = 4.77, nearly matching the QCD spectrum! The other, more
prominent corner moves to higher values, approximately pu. = 4.97.

To compare more directly, we also plot the maximum of |g;|?, the coupling to the vector
state at s = (1.65)2, in figure 15. There is a clear corner for p. ~ 4.770 (for kpax = 16).
(We do not see any features in the max(|g1|?) curve associated with the u. ~ 4.97 corner of
the figure 14.) The quantity |g;|? is analogous to the coupling gi of the spin-two fy state
of the pion model, shown in figures 5 and 6 of [17]. We use the same range of p. as the
zoomed-in figure 6 from [17]. At nmax = 17 (their equivalent of kpax), the corner in the pion
bootstrap appears to be at p. ~ 4.747, while for our bootstrap the knax = 16 corner is closer
to 4.770. While not exact, the agreement is surprising for two ostensibly unrelated problems.
The values of the maximal couplings near the corner, though, are not clearly directly related.

This discrepancy is not unexpected since we are studying different models.

5 Regge bounds

Imposing Regge-bounds, such as (4.2), together with the S-matrix bootstrap constraints
has been pursued for both the closed and open string in [18]. Let us compare the spectrum
restrictions resulting from imposing Regge slope 1 versus the single-state input at the mass
gap pe = 2

06 =0
Regge: ¢ < (M2 —1 vs.
88 = (Mg%p ) 0o M, 2MZ,
1. A state at the mass gap 1. At the mass gap, couplings
must be a scalar: of states with ¢; < 0 are suppressed
2 _ as2 _ 2 _ g2 _
M _Mgap == (=0 M _Mgap — 61—0 (51)
2. Scalars allowed 2. No states allowed
2 2 2 2 2 2
for Mg,, < M* <2Mg,, for Mg, , < M= < 2Mg,,
3. Spin of states with M? > 2Mg2ap 3. Spin of states with M? > 2Mg2ap
restricted by Regge unrestricted
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A priori, the bounds on Wilson coefficients resulting from these two different sets of constraints
do not obviously have anything to do with each other. Surprisingly, we find that they are
largely identical. This is illustrated in figure 16, which for comparison also includes the
bounds from inputting both the scalar state at the mass gap Mgap and the vector at 2Mg2ap.

It is surprising that what we consider a rather mild, low-spectrum constraint — a scalar
at Mg2ap and the string-inspired gap to the next state — yields essentially the same constraints
on the ay 4 as the imposing the linear Regge behavior at all orders (up to the maximum spin
considered for the numerical implementation) of the spectrum.

By considering different values of o, we found corners in the bounds corresponding to a
l-parameter family of models with linear trajectories M7 = (u2 — 1)¢ + 1. We can extend

the analysis to compare the bounds from

1 M?
Regge: ¢ < —1 5.2
% ~oH2— (Mgzap ) 2

to bounds obtained with the spectrum input

=0 0= =1

and e O O j— (5.3)

2
0 Mgap iuQMgZap 0 Mgzap NZMgzap (2p2 — 1)]\/Ig?ap
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Figure 17. Outer bounds on the kmax = 12 (@1,0, G2,0) region with the Regge slope v = 2 maximal
spin requirement (blue), the scalar input at the mass gap with u. = 3/2 (orange), and the scalar at
the mass gap and vector at pus = 3/2 input with pu. = 2. The black points indicate the locations of
the tip of the allowed region for the “corner theories” parameterized by the first gap parameter po
(see section 4.3). The brown dot is the case with us = 3/2, and as shown it is right at the tip of the
allowed region. The red dot is the Veneziano amplitude.

The result for puo = 1.5 is shown in figure 17. These bounds again give very similar constraints
and they all have a sharp corner. This corner is where we expect to find the models with
linear Regge trajectories.

In section 4, we discussed how imposing the Regge bound can help give a cleaner SDPB
spectrum. We have also tested how the combined constraints of Regge plus lowest mass state
coupling input affect the bounds; details are given in appendix B. In short, the outcome
is that for the single state input with the scalar coupling fixed at the string-value, we get
significantly smaller islands around the Veneziano amplitude when the Regge slope conditions
are imposed. This is shown in figure 21. However, for the two-state input, there is hardly
any difference between the islands found from fixing the couplings of both the scalar and the
vector to their string values versus those with the Regge slope condition added.

6 Discussion

We have shown that basic, low-energy input to maximally supersymmetric YM EFT generates
novel, physically interesting features in the space of Wilson coefficients consistent with a local,
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unitary UV theory. We found that when there is a single state at bottom of the massive
spectrum, it has to be a scalar. When we enforce the existence of a scalar at the mass gap
Mgap, a vector at ugMgQap, and no other states until a cutoff scale ,uCMgQap, the maximal values
of the a0 Wilson coefficient remains almost exactly the same until p. ~ 2us — 1, at which
point it begins falling off rapidly. The dramatic change in behavior suggests the existence of
an amplitude with a contribution from a spin two state at ,ugMgQap = (2ug — 1)Mg2ap. This
would correspond to a theory with a linear Regge trajectory.

If, instead of explicitly requiring the vector at /@Mg2

ap> We require that the scalar at M, 2

s
has a coupling to the massless states equal to that known from the Veneziano amplitufiéj,
then the maximal size of the second mass scale was found to be pus = 2. Assuming there
are no states until 2Mg2ap, the allowed region of Wilson coefficients shrinks to a small island.
As more constraints are included from the derivative expansion, the islands were found to
shrink in size, indicating that perhaps the only allowed point corresponds to the Veneziano
amplitude in the kyax — oo limit. If the island did indeed shrink all the way, that would

mean that to bootstrap Veneziano, one only needs two pieces of low-energy information:

1. that there is only one state at the lowest mass and it contributes via a pole exchange
to the 4-point amplitude (the bootstrap then requires it must be a scalar),

2. the ratio, |go|?> = |go|?>/a00, between the massive scalar’s coupling to the massless
external states and the trF* Wilson coefficient ao,0-

In a practical scenario, these two inputs might necessarily become three because it would
likely be difficult to determine |go|?> without measuring both gy and ap,o individually. It
is still surprising, though, how little information is needed to bootstrap the Veneziano
amplitude. It would be interesting to understand to what extent this is a consequence of
supersymmetry and/or crossing.

Consider now what happens when we fix |go|? to a number different from the string value.
There are two qualitatively different cases to discuss, depending on whether |go|? is greater
or smaller than 1/2. Starting with the former, we find that the maximum allowed value of
|Go|? is (777 — 11201og(2)) = 0.675158, which occurs for the Infinite Spin Tower and requires
the cutoff to be taken all the way down to the mass gap, p. = 1. The Single Scalar Exchange
model (SSE, section 2.5) has |go|?> = 1/2 and cutoff y1. — co. Any value of |go|? between these
extremes, i.e. 1/2 < |go|?> < 0.675158, will bootstrap the cutoff y. to a maximum allowed value
between 1 and co. The resulting bounds are expected to be islands around the black points in
figure 17. These are the models with linear Regge slopes 1/(max(u.) — 1) found as the corner
theories in section 4.3. It would be interesting to understand if these models have realizations
as generalized versions of the Veneziano amplitude, as explored in for example [32-34, 36, 37].
If they exist, such new amplitudes would presumably have to interpolate between the SSE
amplitude, the Veneziano amplitude, and the Infinite Spin Tower.

To actually compute this family of islands, one needs a very precise determination of
the cutoff scale . for a given value of |go|?; since the islands are going to be small, slightly
different values of u. can give mutually excluding islands. For any finite value of kpyax, one
can determine the maximum allowed value of ., but one would then need to extrapolate
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that to kmax — 00. Alternatively, one can specify the cutoff . and seek to bootstrap the
value of |go|? by a maximization principle.

From a theoretical perspective there is no reason to necessarily favor coupling input
over input of the cutoff mass. Imagine doing a bootstrap like this in an context where the
input comes from actual experimental data. One may then view the coupling choice as more
well-motivated than the gap input because in an experimental situation that directly produces
a high energy particle, we would be able to determine both the spin and coupling of that state.
On the other hand, it would be impossible to experimentally determine the exact gap to the
next state without having enough energy to produce it, at which point, the spin and coupling
of that state could be used as bootstrap input. However, an experiment would not give us an
exact value for any measurement, so the ratio |gg|? would be determined with some error. The
bootstrapped maximal p. value would then give the approximate scale at which new physics
must appear. To get a reasonable “island” in such a scenario, one would have to compute
islands for a selection of values of |go|? within the experimental bounds and their corresponding
largest cutoff scale. The full allowed region of Wilson coefficients would then be obtained
from smearing of these islands. This smeared region would likely not shrink to a single point
with increasing kmax, but would still be far more constraining than any naive bound.

Consider now the range of couplings 0 < |go|? < 1/2. In this case, there is no maximal
cutoff mass .. Similarly to the case of SSE with |gg|? = 1/2, we only expect islands in the
pte — oo limit. Models with 0 < [go|? < 1/2 can be obtained as linear combinations of SSE
amplitudes with different choices of m?, for example (with Mg,, = 1 for simplicity)

AAFSE (1 - \)ABSE (6.1)

For this amplitude, |go|?> = A/2 because when m? > 1 its only contribution is from the A7S®
part of the amplitude. The coefficient ag o, on the other hand, is given by ago = (A + (1 —
A)/m?), and so the ratio becomes

A
_ 12
= . 6.2
oF = S =N (62
By then setting m? = /), we find that in the limit of A — 0 and r fixed,
r
lim |go|? = : :
i 190l” = 5775 (6.3)

Therefore, 0 < |go|? < 1/2 is allowed and gives examples of islands in a limiting sense.!?

Returning to the bootstrap of the Veneziano amplitude, one potential path to stronger
bounds is through the fact that, in the Regge limit with fixed © < 0, the Veneziano
amplitude (1.3) actually scales with large |s| as

lim
|s|—o00 S

~ st 0. (6.4)

This is one power of s stronger than we assume with the Froissart bound that A(s,u)/s? — 0.
Therefore, one could restrict to amplitudes that have this improved Regge behavior and

13Limiting, because the SSE amplitudes are borderline cases for the Froissart behavior.
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derive additional null constraints that correspond to the fact that aj 1 = 0 for all £ > —1.
This rules out, for example, the SSE amplitude, so it could improve our ability to corner
and isolate the string. The implementation of these null constraints is discussed in [27]
using techniques developed in [42].

The type of bounds computed in this paper are so-called “dual” bootstrap bounds. Any
point outside of our bounds does not have a unitary UV completion (with the specified
assumptions), but points within our bounds may or may not have them. An important
aspect of the bootstrap program not considered in this work is the “primal” formulation of
the S-matrix bootstrap, which has been studied for permutation symmetric scalars, pions,
photons, and gravitons [18, 43-47]. In the primal version of the bootstrap, unitarity is imposed
numerically on an ansatz that manifestly satisfies both locality and crossing symmetry, and
points within their bounds necessarily have a unitary UV complete amplitude,'® but points
outside could as well. The primal bootstrap has the advantage of being clearly applicable
beyond the strict perturbative limit. Further, as shown in [18, 47], there can be reasonably
good agreement between the dual and primal bounds. It would be interesting to know whether
the primal type bounds could rule-in parameter space such that we can test if the scalar-input
islands somehow do not continue to shrink to include the string alone.

Finally, the fact that low-energy input leads to important new features of the space
of allowed Wilson coefficients in both the pion and N' = 4 SYM models suggests that
such features might also appear in less mathematically similar bootstrap problems. If the
appearance of novel features is generic, one might hope to eventually apply these principles
to more phenomenologically relevant models as well.
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A Implementation as an SDP

A.1 Null constraints

There are two sets of null constraints: the X'-constraints are due to the basic SUSY crossing
condition a4 — agr—q = 0, and the Y-constraints come from reconciliation of dispersive
representations of the ay, 4 derived for fixed u and fixed ¢. These two sets of conditions impose

14But this does not guarantee a UV complete theory.
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constraints on the spectral density and they were derived in detail in [15]. They are

£=0
1
Vg 3 /O da po(a) Vi =0 (A1)
l
, k : q q
with yk,lg _ I‘k Vgg — (_1)£ Z (—1)‘1 Ve, g’ ((k > < >> )
q'=0 1 !
where
xZMgQap— -1 and (x) == (M2 ) = 2f< ) (A.2)
=2 Y pe\®) = 2pe(Mgap/T) =y~ Je(Y) - '

We can rewrite these in terms of y and fy(y) to match the notation here by simply making a
change of variables from x — y. Doing this variable replacement takes

2 po(a)de =y~ (y 2 p(Mgpy)dy = y~* fo(y)dy . (A.3)

Thus, we find that in terms of y and fy(y), the null constraints become

oo
Vg Y /1 dy fo(y) XY =0 with XY =y vgg — ver—g]
£=0

v k. ; /1 dy foly) Vp2 =0 (A.4)

k / /
with Vf =y [f S D g ((kq_q> " (2»] |
q'=0

A.2 Explicit states

For the practical implementation in SDPB, it is convenient to set Mg,, = 1. Recall that
the dispersive representation (2.8) is

kg = /1 dyy ™" fo(y) vegq - (A.5)
=0

Consider the case of a spin-0 state at the mass gap (y = 1) and a spin 1 state at y = puo.
The simple poles correspond to delta functions in the spectral density, so with the definition
of fi(y) above equation (2.9), we have

1
foly) = 8(y — V)drolgol> + 6(y — p2)dealgr QF + 1) (), (A.6)
2

where fg(“c)(y) only has support for y > p.. From this, one obtains eq. (2.20).
The derivation of the null constraints using the full f;(y) gives exactly the same results as
without spectral input. We denote these crossing constraints jointly as “null” in the following.

Using the “bracket-notation” (2.9) the general vertex representation (2.25) is of the form

V=(E), (A7)



where V and Ef,y are described briefly in section 2.6; more explicit expressions can be found
in equation (4.2) in [15]. The precise specification of (A.7) depends on which quantity we
wish to extremize. It is useful to note, for example, that it follows from (A.6) that

. . 1 = .
(EY), = |go|*Eo1 + ’gllzﬁEl,uz + <E>Mc : (A.8)
2
This is the key ingredient in the following.
A.3 Optimization problem: maximizing aj.q
Define
ao,0 1
V=] g and Eg’y = |y P , (A.9)
— —
(null ), nully,

where (Il—uﬁ>1 indicates all the null constraints, which may including also conditions such
as ap ¢ = Rag,o that sets the question to: what are the extremal values of aj /a0 when
ag g /aop is fixed to be R.

Now let

a=(A-1,5). (A.10)

With the vanishing of the null constraints, it is clear that & - V= Aago — ar4. Hence,
if we assume that

Q1

Eo1>0, @-Eyu>0,

- (A.11)
a-FEpy>0 forall{=0,1,...,0lna and y > pe,
then @V = (a- E>1 > 0 implies that on the vanishing of the null constraints
Aagg —apg >0 = A>Tk (A.12)

@0,0

so that minimizing A is maximizing ax 4/a00. In SDPB, the conditions & - 5071 > 0 and
a- E”lm > 0 simply mean that we allow for scalar or vector states, respectively, at y = 1
and y = pe. Leaving out one or both of these conditions mean that we disallow all states
at the respective masses.

It is useful to reformulate the problem as follows. Write

0
V = a0001 — arg00 + Vautls  Vautl = 0 (A.13)
—
(null )¢

for 71 = (1,0,0,...) and 7o = (0,—1,0,...). The vector ¥ identifies the quantity we optimize
in &, i.e. A = & - U7 whereas the objective vector Up ensures the proper normalization of
the “objective” of our optimization by having

a-vo=1. (A.14)

Next, consider optimization of the couplings |go|? and |g1|?.

— 36 —



A.4 Optimization problem: bounding couplings

In this appendix, we describe two methods for optimizing couplings.

Bounding couplings by choosing objective vectors. The approach described here
was developed in [4]. Define

. ap,o S 1 ( )
V= and Ey, = A.15
(xull ) "\l
ie.
- . . 0
V =apot1 + Voun, with Vi = N (A.16)
(null );

This time we pick @ = (A4, 5). We now describe how to use V = <E>1 to maximize |gol|?.
Then we show how a similar approach is used to extremize |g|?.

« Maximize |go|?.

With the help of (A.8), we can write V = <E>1 as

) L P
aoo® — |90|*Eo.1 + Vaunl = !91!2EE1,,L2 + <E>MC .
2

(A.17)
This can be viewed as an optimization problem like (A.13) with objective |go|> and
objective vector vp = 50,1- The normalization condition (A.14) then says that we need
to have

a-Eg1=1. (A.18)

Using that, and imposing the null constraints, we then find that dotting & into (A.17) gives

1 . = L o=
ag0A — |gol* = |91|2F a-Eyy, +(a-E), (A.19)
1
so that if we impose
a- El Z 0 )
o (A.20)
a-Epy>0 forall{=0,1,... . lpax and y > pe,
then we get
2
aopA — g2 >0 = A> 901 (A.21)
ao,0
i.e. minimizing A maximizes |go|?/ao -
o Maximize |g;|?.
Using (A.8), we now write V = <E>1 as
" I = % = =
a,0U1 — 191|2FE1,M + Vol = |g0/*Eo1 + (E),, - (A.22)
2
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To extremize |g1|?, we choose the objective vector vip = ﬁEl,m and the normalization
2

condition (A.14) then becomes

py2a - By, =1. (A.23)
Dotting & into (A.22) and imposing the null constraints then gives
agpA —|g1[* > 0 (A.24)
assuming that
Q- EO,I > 0 )
(A.25)

& Epy>0 forall £=0,1,... . 0pax and y > pe.

As in previous cases, this lets us find the maximum of |g1|?/ago by minimizing A.

Bounding couplings by solving null constraints. The above approach allows us to
bound couplings | gg}u\Q of the massive exchanged particles to the massless particles relative

to ag,0. However, it does not allow to fix |§g“u’2 = |ge,u 2/a070 to a specific value. To do so, we
use a different method which is to use the null constraints to derive dispersive representations
for the couplings |gr,,|? that we want to fix.

As a simple example of this, suppose we want to fix the coupling |go|? in (3.3) to a
specific value. Since |go|? enters the null condition aip = a1,1, we can use that to solve

for |go?. Start with

0=aio— a1 = |go|*(vo1 — v00) + (¥ (vr1 — v10))pe (A.26)

where we used that the high energy average is a linear operation. Using that v;, = 0 for
q > ¢ and vy = 1, we solve for |go|? find

lg01* = (¥~ (vi,1 — v1,0)) e (A.27)

Using this dispersive representation, we can fixed |gg| to a specific value R in the numer-
ical bootstrap by making |go|? — Rap o a null constraint in our vector V. The dispersive
representation (A.27) determines the corresponding entry in the E_"&y vectors.

To fix more couplings we can use more null conditions. For example, if we want to fix both

|go|? and |g1|* as discussed in the maintext, we can use a1 = a1 along with 0 = a3 — ag 2
(that is the lowest-k null relation to which |go|? does not contribute). Then, we find
2
0=a10—a11 = |g0*(vo,1 — vo0) + \g;%\ (011 = v10) + (¥~ (011 = 010 (A.28)
2 |91|2 -3
0=as1 —as2 = |gol (vo1 — vo2) + i (vig—vi2) (v — v - (A29)

Using the fact that v, = 0 for ¢ > [ to simplify these expressions, along with v; = 2,
we solve the linear system that can be solved to give |go|? and |g1|? in terms of their high

energy integrals:

2
901 = B2y (2 = )b + (7 (01 = w00 (A.30)
2 18 a,, A31
lg1|” = 5 (v (v2 — vi1))pe - (A.31)
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Figure 18. Left: the a9 and az ¢ with no spectral assumptions in teal and when the lowest massive

states are assumed to be a scalar at the mass gap Mg2ap7 a vector at 2Mg2ap, and a further mass-gap

to SMgQap in purple. The purple region has a corner very close to the Veneziano amplitude (red dot).
Right: zoom-in around the corner of the purple region. For comparison is also shown in light purple

the allowed region when we only input a spin 0 particle at M2, and a further mass gap to 2MZ, .

The bounds for these regions were computed with ky. = 10.

In principle, we could use a null constraint of any order to solve for a coefficient. However, to
keep track of kma.x properly, we restrict ourselves to using only null constraints up to those
with k = kmax. To have access to the null constraint 0 = ag 1 — a3 2 we need to take kmax > 3
and the maximal number of couplings we can fix depends on kyax.

When we solve for couplings using null relations, we are no longer strictly enforcing
their positivity. Hence, we only use this approach when we either fix or extremize a coupling
that is solved for by the null conditions; otherwise, we risk allowing non-unitary theories
where these couplings are negative. It is important to note that when we use SDPB to
minimize a coupling g ., it may give a negative value, so we enforce positivity by hand,
taking Min|gy,,, |* = Max(0, SDPB minimum).

B Multi-state bootstrap of Veneziano

In this appendix, we compare the corner and island bootstrap of the Veneziano amplitude for
two different types of low energy assumptions: (1) the single state input from section 3 with
a scalar at Mg2ap and no states until the cutoff at 2Mg2ap versus (2) inputting the two lowest

. 2 2 : 2 i
mass states: a scalar at Mg, a vector at 2Mg,, and no other states until 3Mg,, (which is

the “corner” value for the cutoff discussed in section 4.1).

B.1 Corners
For the two state input discussed above, we have

2 |91/ —k
kg = |go|"vo,q + ok+3 ULa + <y W,q>3' (B.1)
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Figure 19. Allowed regions for listed spectrum assumptions at ky.x = 10. The red dot is the
Veneziano amplitude.

With this input, the allowed region of the (aj o, @2 0)-plane is shown in figure 18 is somewhat
smaller than that of just the single scalar input and still has the string amplitude at the
corner. Most importantly, the corner near the string is, as shown on the right of figure 18
quite a bit sharper than with just the single mass input.

It is interesting to see how the regions are built up and which parts of them are sensitive
to the various mass and spin inputs. In figure 19, we show the allowed regions in the
(@1,0,a2,0)-plane for various different spectral assumptions. The red region shows the allowed
region with no states allowed all the way to the cutoff at 3M2,_. A large chunk of parameter

gap*

space becomes allowed if we turn on the gy coupling, allowing for a scalar at Mggap. If we
keep the cutoff at 3Mg2ap, the region, shown in gray excludes the string (red dot), but when

the cutoff is reduced to 2Mg2

ap> We get the blue-gray region that now includes the string.

This is the region studied previously in section 3.2 and shown in figure 1. Next, we allow
for a vector at 2Mg,, we get the region shown in dark purple, for which the Veneziano
amplitude is at the sharp corner.

The next corner. The cutoff ;. = 3 was chosen as the value near the corner in the a g
maximum value. It is interesting to consider what happens if we continued with further
string-y input and take the existence of this spin two state as something “implied” by the
bootstrap and then use it to find where the next state in the spectrum lives. We then have
a dispersion relation of the form

~ lgol2v0 + gi® - Lol + (5o, (B.2)

Figure 20 shows maximal a1 vs. the cutoff. The maximal values is almost exactly constant
from p. = 3 to u. = 4 and then has a dramatic falloff, indicating the need for a new state
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Figure 20. The maximal a; g vs. e at kmax = 4,6, 8,10 for the spectrum given by (B.2). The red
dashed line corresponds to the string value a; o = (3/(2 and gets ruled out for p. 2 4, the mass at
which the string amplitude has a state.

at 4Mg2ap. This is corroborated by the SDPB spectrum from figure 11 which also indicated

that there is a spin 2 state at 4Mg2ap.

At 4Mg2ap, we encounter another feature of the string spectrum: the first daughter
trajectory. There is not just a spin three state at M? = 4/a/, but also a spin one state
exchanged. The fact that a corner appears at (or near) py = 4 does not tell us what spin the
particle there should have, so we can turn to SDPB’s spectrum analysis to test for the states
that live at the feature. As before, the extremal spectrum does not contain any daughter
trajectories, so we do not see any purely bootstrap way to proceed along the string spectrum,
at least for the values of knax we can achieve. Additional assumptions, such as the Regge

slope help a bit, but the spectrum is still not clean.

B.2 Islands

In section 3.3, we showed that fixing |go|?, the coupling of the scalar at the mass gap, resulted

in a maximal allowed cutoff mass ,ucMgap. A unitary theory must have new massive states at

or below that maximum value. We found that when |gg|? was taken to be its string value,
the maximum cutoff mass corresponded precisely to the mass at which the second string
state appeared, namely as 2Mg2ap. Fixing p. = 2, we found shrinking islands around the
Veneziano amplitude Wilson coefficients.

To get stronger bounds we now impose stronger assumptions on the spectrum. Specifically,
we input information about the state at 2Mg2&p, as in the previous section.

We first consider a dispersion relation of the form

2

_ Vo,q | 196:,21700, 4 —k
_ 19652 "v02,4 , B.3
Ok.q Co + 2k+3¢, +<y W’q>uc (5:5)

where the spin {5 of the state at us = 2 and the cutoff u. > 2 are unfixed. We find that,
by kmax = 12, there are no theories compatible with the bounds unless ¢o = 1, i.e. there
has to be a vector at the state at 2Mg2ap.
£ > 1 has a coupling that gets suppressed exponentially with kpay, similar to what we saw in

With that vector assumed, any state with spin
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gap and a vector at ps = 2 with their string couplings along with a cutoff p. = 3. Right: comparing
the scalar-only island with smaller scalar with Regge slope, scalar and vector, and scalar and vector
with Regge slope island at kpax = 12.

section 3.1 for non-scalar states at the mass gap. The maximal coupling to a scalar state
at 2Mg2ap decreases with knax, but it does not appear to approach zero as quickly as those
for £ > 1, so there is not any clear a priori reason to rule it out.

To proceed, we simply make the string-inspired choice to add in just the vector state
with its coupling and as well as a gap to j. = 3.> The dispersion relation for the Wilson

coeflicients is then

- _ ’U07q 2U1’q —k
Af,q = <2 + 2k+3€2 + <y Uﬁ,q>3 ) (B4)
using |g5|2 = 1/¢2 and |g5¥|? = 2/¢2. The bootstrap then gives small shrinking islands

around the Veneziano amplitude, as shown on the right of figure 21. The size of these islands
are considerably smaller than the those with only the single state input (e.g. figure 2). A
direct comparison of the kna.x = 12 islands for the single and double state input is given on
the right of figure 21. For further comparison, we also include in that plot the islands obtained
with the same one- and two-state input but with the additional assumption of no states below
the leading Regge trajectories (as discussed in section 5.). This assumption has a significant
effect on the single-scalar island, but results in hardly any change for the two-scalar island.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
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