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1 Introduction

Dark matter (DM) comprises approximately a quarter of the present energy density of our
universe. However, despite compelling observational evidence for its existence, it has yet to
be directly detected, and its exact nature is still unknown. The available parameter space for
the properties of dark matter and the mechanisms by which it might be produced are vast.
There are myriad dark matter candidates which can be produced via interactions with the
standard model (SM) in the early universe. Two well-studied methods to produce dark matter
are freeze-out, in which the dark matter begins in thermal equilibrium with SM particles then
‘freezes-out’ to some relic abundance due to the expansion of the universe, and ‘freeze-in’ in
which the dark matter does not begin in thermal equilibrium, but rather is produced due to
small interactions with standard model particles. Both of these processes require the dark
matter to interact with the standard model. Given that one of the few facts known about
dark matter is that it must interact only very weakly with the standard model, if at all, it is
attractive to consider alternative dark matter production mechanisms which do not require
any couplings to standard model particles, e.g., which are ‘completely dark.’

One such mechanism is cosmological gravitational particle production (GPP) [1–5] in
which particles are produced during inflation due to the rapid expansion of the universe.
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Particles produced via GPP are generally thought to be in the supermassive range (i.e.,
m ≳ He where He is the Hubble parameter at the end of inflation), but can also have masses
in the ultralight regime [6–8]. Previous work has shown that GPP is a viable production
mechanism for particles with a wide variety of masses and spins [4, 6–18] and in both single
field and multifield inflation models [19]. In particular, refs. [6, 7] have shown that spin-1,
or ‘dark photon’ dark matter can be gravitationally produced to yield the correct DM relic
density. Dark photons have been considered as a portal from the standard model to a dark
sector, but can also be considered a DM candidate in their own right, see e.g., [6, 7, 20–38].

Previous work on GPP of dark photon dark matter has largely considered particles
which are minimally coupled to gravity [6–8, 11]. However, a theory of a massive spin-1
field can also contain nonminimal couplings to gravity; general principles of effectice field
theory (EFT) demand their inclusion. These additional couplings are an important factor
in fully understanding gravitational production of spin-1 particles and dark photon dark
matter. Recent works have begun to discuss these possibilities [16, 39–41], however a full
survey of the viable parameter space while also taking into account instabilities in the theory
is yet to appear in the literature.

In this paper, we extend previous work to consider the gravitational production of dark
photon dark matter with nonminimal couplings to gravity. We carefully consider the viable
parameter space of the theory which is both non-ghostly and does not lead to runaway
particle production due to a tachyonic gradient instability (as discussed in [42]) and show
how the addition of nonminimal couplings in the allowed region can lead to an enhancement
of particle production, particularly at low masses, while also avoiding modes which propagate
superluminally. We find the parameter space to obtain the corrent present-day dark matter
relic density and find that the addition of nonminimal couplings allows for gravitational
production of dark matter with the correct relic abundance, extending the possible range of
parameter space found for the minimal theory. We further discuss the GPP of dark photons
in a broader class of rapid-turn multi-field inflation models in the minimally coupled theory.

The structure of the paper is as follows: After a brief review of GPP in section 2, in
section 3 we discuss the theory of non-minimally coupled spin-1 fields, then in section 4 we
discuss the conditions on the parameter space such that the theory remains ghost-free and
also avoids catastrophic runaway production. We then show numerical results in section 5,
and discuss the present-day dark matter relic density and allowed parameter space to be a
viable dark matter candidate. Finally, we conclude with a discussion in section 6. Lastly, we
show explicit GPP results for dark photons in rapid-turn multi-field inflation in appendix A
and for early reheating in appendix B.

Throughout this work the following conventions are employed: we use a mostly minus
metric signature and natural units c = ℏ = 1 unless explicitly stated otherwise. Greek
letters µ, ν, . . . indicate a sum over all spacetime indices while Latin letters i, j, k denote
a sum over spatial indices.

2 ABCs of gravitational particle production

Here we give a brief overview of the mechanics of gravitational particle production. For
further details, see [43] and references therein. As discussed previously, gravitational particle
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production exploits the fact that particles can be created by the expansion of the universe.
This is due to the fact that the initial (early) and final (late) creation and annihilation
operators are not the same, but can be related by a Bogliubov transformation with the
coefficients αk and βk.

Solutions to the wave equation can be expressed in terms of mode functions χk(η) as

ϕ(η, x) =
∫

d3k

(2π)3

[
âkχk(η)eik·x + â†

kχ∗
k(η)e−ik·x

]
. (2.1)

If one defines the initial vacuum state with early-time creation and annihilation operators
â†

k and âk as

âearly
k |0early⟩ = 0 |0early⟩ , (2.2)

which is related to the late-time operators as

âearly
k = α∗

kâlate
k − β∗

kâlate†
−k , (2.3)

where αk and βk are the Bogoliubov coefficients. The value of βk can be found from the
mode equations such that

|βk|2 = lim
η→∞

[
ωk

2 |χk|2 +
1

2ωk
|∂ηχk|2 −

1
2

]
, (2.4)

where ωk is the frequency of the mode. (Since the background spacetime will be taken to
be homogeneous and isotropic, β depends only on k = |k|.) Then, we can construct the
spectrum of particles produced in terms of the βk and the comoving wavenumber as [6]

nk = k3

2π2 |βk|2. (2.5)

The comoving number density is then given by

na3 =
∫

dk

k
nk. (2.6)

From the comoving number density, one can determine the relic density, as we will explicitly
see in section 5.3. Generally, one takes Bunch-Davies initial conditions to numerically solve
for the particle production. The early time limit η → −∞ corresponds to the limit where
a → 0 and a2R →0, which implies that ω2

k → k2. In this limit, the mode functions are deep
within the Hubble radius. The Bunch-Davies initial conditions then correspond to mode
equations that are in a Minkowski spacetime, that is

lim
kη→−∞

χk(η) =
1√
2k

e−ikη. (2.7)

3 Spin-1 field with nonminimal couplings

In this section we review details of de Broglie-Proca theory for a massive spin-1 field with
nonminimal couplings to gravity [44–46]. On a generic spacetime background with metric
gµν , the de Broglie-Proca action for a massive spin-1 (dark photon) field can be written as [6]

S =
∫

d4x
√
−g

(
−1
4F µνFµν + 1

2m2gµνAµAν − 1
2ξ1RgµνAµAν − 1

2ξ2RµνAµAν

)
, (3.1)
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where Aµ is the dark photon, R the Ricci scalar, Rµν the Ricci tensor and ξ1 and ξ2
are dimensionless coupling constants. The dark photon field strength, Fµν , is defined as
Fµν = ∇µAν − ∇νAµ.

Notice that the two interaction terms we have constructed are the only dimension-four
operators which can appear with the vector field coupled to curvature. They are consistent
with the symmetries of the Proca theory and Einstein gravity, and thus, the effective field
theory approach would be to include these terms with coupling constants ξ1 and ξ2 to be
fixed by experiment. Moreover, as discussed in [42], these terms are expected to be generated
by loops even if they are set to zero at tree-level. This is analogous to the renormalization
of scalar fields in curved space [47–49].

In principle, additional couplings can appear, for example to the Riemann tensor, but
will involve higher dimensional operators. Thus, we consider only the two coupling terms
as written above. To recover the minimally coupled spin-1 scenario, one can simply set
ξ1 = ξ2 = 0. As we will see below, the two terms proportional to {ξ1, ξ2} will induce a
time-dependent effective mass for the dark photon.

Let us now specify these general considerations to a cosmological background. We
now take gµν to be the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, gµν =
a2(η)diag(1,−1,−1,−1), where a(η) is the scale factor as a function of conformal time.
Following [6], we can explicitly see the effects of the non-minimal couplings ξ1 and ξ2 by
decomposing the action, eq. (3.1), into components A0 and Ai:

S [Aµ(t, x)] =
∫

d4x

[1
2a (∂0Ai − ∂iA0)2 − 1

4a−1 (∂iAj − ∂jAi)2

+ 1
2a3m2

t A2
0 −

1
2am2

xA2
i

]
,

(3.2)

where we have defined two effective masses, mt and mx, as

m2
t = m2 − ξ1R − 1

2ξ2R − 3ξ2H2 (3.3)

m2
x = m2 − ξ1R − 1

6ξ2R + ξ2H2. (3.4)

In this expansion, we can see the explicit role of ξ1 and ξ2 as contributions to the effective
masses of A0 and Ai, and furthermore that mt and mx will now be time-dependent functions
given that R and H evolve throughout the inflationary period.

Let us further expand the action in terms of mode functions

Aµ(t, x) =
∫

d3k

(2π)3 Aµ
keik·x (3.5)

to obtain

S [Aµ(t,x)] =
∫

dt

∫
d3k

(2π)3

[
i

2akiA
∗
0 (∂0Ai)−

i

2aki (∂0A∗
i )A0+

1
2a
(
k2+a2m2

t

)
|A0|2

− 1
4a−1 |kiAj −kjAi|2+

1
2a |∂0Ai|2−

1
2am2

x |Ai|2
]

,

(3.6)

where we have integrated over k′ and x, leaving integration over only k, and have suppressed
the k subscript on A0 and Ai for notational simplicity.
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In order to solve for A0, we rewrite the action as

S [Aµ(t, x)] =
∫

dt

∫
d3k

(2π3)

[
1
2a
(
k2 + a2m2

t

) ∣∣∣∣A0 + i
ki (∂0Ai)

k2 + a2m2
t

∣∣∣∣2
− 1

2a
|ki (∂0Ai)|2

k2 + a2m2
t

− 1
4a−1 |kiAj − kjAi|2 +

1
2a |∂0Ai|2 −

1
2a2m2

x |Ai|2
]

.

(3.7)

In this form, it is clear that the temporal component, A0, is non-dynamical, and can be
solved for as:

A0 = −i
ki (∂0Ai)

k2 + a2m2
t

. (3.8)

Integrating out A0, the action becomes

S [Aµ(t, x)] =
∫

dt

∫
d3k

(2π3)

[1
2a (∂0A∗

i )
(

δij −
kikj

k2 + a2m2
t

)
(∂0Aj)

−1
2a−1A∗

i

[(
k2 + a2m2

x

)
δij − kikj

]
Aj

]
,

(3.9)

By introducing an orthonormal set of transverse and longitudinal mode functions AT
k

(
x0)

and AL
k

(
x0), the action separates into two pieces:

ST =
∑

b=1,2

∫
dη

∫
d3k

(2π)3

[1
2

∣∣∣∂ηATb
k

∣∣∣2 − 1
2
(
k2 + a2m2

x

) ∣∣∣ATb
k

∣∣∣]

SL =
∫

dη

∫
d3k

(2π)3

[
1
2

a2m2
t

k2 + a2m2
t

∣∣∣∂ηAL
k

∣∣∣2 − 1
2a2m2

x

∣∣∣AL
k

∣∣∣2] ,

(3.10)

where we have now expressed SL and ST in terms of the conformal time, η. In order for
the kinetic term of SL to be canonically normalized, we perform a field redefinition of the
longitudinal mode such that

AL
k (η) = κ(η)χL

k (η), (3.11)

where
κ2(η) = k2 + a2m2

t

a2m2
t

. (3.12)

Finally, we are left with two decoupled actions for the transverse and longitudinal modes:

ST =
∑

b=1,2

∫
dη

∫
d3k

(2π)3

(1
2

∣∣∣∂ηATb
k

∣∣∣2 − 1
2ω2

T

∣∣∣ATb
k

∣∣∣2)

SL =
∫

dη

∫
d3k

(2π)3

(1
2 |∂ηχ|2 − 1

2ω2
L|χ|2

)
.

(3.13)

The transverse and longitudinal frequencies, ωT and ωL, respectively, are defined as:

ω2
T (η) = k2 + a2m2

x (3.14)

ω2
L(η) = k2 m2

x

m2
t

+ a2m2
x + ∂η

(
∂ηκ

κ

)
−
(

∂ηκ

κ

)2
. (3.15)
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In the minimally coupled theory, the frequencies reduce to the explicit forms found in ref. [6],
but become substantially more complicated with {ξ1, ξ2} ̸= 0. We have:

ω2
T = k2 + a2m2

x (3.16)

ω2
L = k2 m2

x

m2
t

+ a2m2
x + 3k2a4m2

t H2

(k2 + a2m2
t )2 + k2a2R

6(k2 + a2m2
t )

+ Hak2m2′
t

m2
t

(−k2 + 2a2m2
t )

(k2 + a2m2
t )2 + k2(m2′

t )2

4(m2
t )2

(k2 + 4a2m2
t )

(k2 + a2m2
t )2 − k2m2′′

t

2m2
t (k2 + a2m2

t )
, (3.17)

where the derivatives of mt are given explicitly by

m2′
t = −6ξ2HH ′ − ξ1R′ − 1

2ξ2R′, (3.18)

m2′′
t = −6ξ2H ′2 − 6ξ2HH ′′ − ξ1R′′ − 1

2ξ2R′′. (3.19)

Taking {ξ1, ξ2} = 0, we are left with mx = mt = m and m2′
t = m2′′

t = 0, recovering the result
in the minimal theory. We can thus see that the effects of the non-minimal modifications
are controlled by the choice of the coupling parameters, {ξ1, ξ2}.

A signature feature of this model, as can be appreciated from the k2 term in ω2
L, is the

time-dependent sound speed of the longitudinal mode,

c2
s ≡ m2

x

m2
t

=
1− ξ1+ 1

6 ξ2
m2 R + ξ2

m2 H2

1− ξ1+ 1
2 ξ2

m2 R − 3 ξ2
m2 H2

(3.20)

From this one may appreciate that the sound speed depends only on the mass and couplings
via the combination ξ1,2/m2.

In the spirit of effective field theory, these couplings are free parameters to be fixed by
comparison to data. However, as we will see in the next section, if one desires a healthy
theory which does not propagate ghosts and tachyonic instabilities, more restrictions apply.

4 Instabilities of the theory

We now turn to the possible instabilities in the Proca theory with nonminimal couplings.1

As we will see, a key distinction between the minimally and nonminimally coupled theories is
that with the inclusion of nonminimal couplings, there are several potential instabilities. This
can be seen explicitly from the forms of the effective masses, eqs. (3.3) and (3.4), which are
not necessarily positive definite for all values of R and H and in fact oscillate through zero for
particular combinations of {m/He, ξ1, ξ2}.2 As a result, there are three potential instabilities:

1. Ghost. The theory will propagate ghost modes due to an overall minus sign in the
kinetic term of the longitudinal mode.

2. Gradient. At high momentum, a negative value of m2
x will lead to a runaway particle

production [42].
1An abbreviated discussion of instabilities in Proca with nonminimal couplings can be found in ref. [42].
2The subscript “e” indicates the value of the variable at the end of inflation.
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3. Superluminal: For parameters which are both ghost-free and runaway-free, it is
possible for modes to have sound speed cs > 1 and propagate superluminally.

We would like to understand the viable parameter space in which dark photons can be
gravitationally produced without any of these instabilities, i.e., ghost-free, non-runaway,
and subluminal. We will refer to such a regions as a “safe” region. Let us consider each
of these scenarios in turn.

4.1 Ghost instabilities

First let us explore the scenario which leads to a ghost instability in the theory. The presence
of a ghost is indicated by the kinetic term of the action eq. (3.13) having the wrong sign.
This is controlled by the parameter κ, eq. (3.12), and therefore the effective mass m2

t . Clearly,
for positive values of m2

t there will be no issues as κ2 will remain positive throughout the
evolution from inflation into radiation and/or matter domination. Negative values of κ2,
however, will be problematic. In particular, if m2

t < 0 and k2 > a2m2
t , then κ2 < 0, leading

to a ghost. Notice that it is indeed possible for m2
t to be negative but retain κ2 > 0 if one

considers low-momentum modes with k2 < a2m2
t . However, we would like for the theory

to remain ghost-free for arbitrarily large k. Therefore, the conservative requirement for a
ghostless theory is to demand that m2

t remains positive definite for given values of {ξ1, ξ2}
throughout the de Sitter phase of inflation and through the evolution into radiation and/or
matter domination via reheating.

To determine where this region lies in the {ξ1, ξ2} parameter space, consider first the
limit in which m ≪ H.3 Let us define the quantity µ̄t = mt/H such that we can rewrite
the expression for m2

t , eq. (3.3), as

µ̄2
t (m ≪ H) = − R

H2

(
ξ1 +

1
2ξ2

)
− 3ξ2. (4.1)

We can see that the overall sign of µ̄2
t depends on the ratio of R/H2. To see explicitly

the bounds this places on {ξ1, ξ2} consider a representative example of quadratic inflation
such that Vϕ ∝ m2

ϕϕ2, with ϕ the inflaton.4 Figure 1 shows the evolution of R/H2 for
quadratic inflation for two reheating scenarios. In the left panel, we consider ‘late rehating’ in
which reheating occurs at a late enough time that during the relevant timescales for particle
production the universe evolves from an inflationary de Sitter phase into a matter-dominated
phase, then reheats at a much later time. On the right, we consider an ‘early reheating’
scenario in which there is an intermediate period of radiation domination, whose onset is
controlled by the paramter aRH/ae, where ae is the scale factor at the end of inflation and
aRH is the scale factor at equality of radiation and inflaton energy densities. Details of the
early-reheating scenario are to be found in appendix B.

3It is convenient to work with dimensionless variables for the masses. We define {µ, µt, µx} as
{m/He, mt/He, mx/He}, and {µ̄, µ̄t, µ̄x} as {m/H, mt/H, mx/H}. Note that {µ, µt, µx} are constant in
the evolution of the background, but {µ̄, µ̄t, µ̄x} evolve in the evolution.

4Though quadratic inflation model has been ruled out by Planck CMB observations [50, 51], our results are
largely model-independent and we therefore consider quadratic inflation as a simple, representative example.
The analysis presented here also applies to allowed inflation models.
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6
R
/H

2

Late Reheating

10−2 10−1 100 101 102

a/ae

aRH/ae = 3.34

Figure 1. Evolution of R/H2 for quadratic inflation in late (left) and early (right) reheating scenarios.

In both scenarios, we see that min(R/H2) = −12, corresponding to the universe in a de
Sitter phase during inflation. In the late reheating scenario, R/H2 oscillates to a maximum
of R/H2 = 6 in the matter dominated phase, corresponding to when the inflaton is at
the minimum of the potential and in a momentary kination phase with w = 1. For the
early reheating scenario, the maximum value is slightly lower than R/H2 = 6 due to the
intermediate radiation-dominated period.

We can convert these bounds into analytic constraints on {ξ1, ξ2}. For late reheating,
requiring that µ̄2

t remain positive throughout the evolution, we find that

−ξ2
4 < ξ1 < −ξ2, (4.2)

which carves out a wedge in the {ξ1, ξ2} plane for which the theory is non-ghostly. For
early reheating, the size of the wedge increases slightly. For the choice of aRH/ae = 3.34, we
instead obtain a constraint −ξ2/4 < ξ1 ≲ −0.866ξ2. Figure 2 shows the ghost-free parameter
space for both of these scenarios, as well as the scenario in which aRH/ae = 15.52, which is
indistinguishable from the late reheating model. For most of the paper, we will focus on
late reheating as a representative scenario and postpone discussion of the effects of early
reheating until appendix B.

Recall that what we have discussed above is the m ≪ H limit. As one increases the
mass, the ghost-free region in the {ξ1, ξ2} plane will also increase. We can approximate
the µ̄-dependent condition as

µ̄2 ≳ 6(ξ1 + ξ2) µ̄2 ≳ −12
(

ξ1 +
ξ2
4

)
. (4.3)

Recalling that µ̄ ≡ m/H is itself time-dependent, since it is dependent on H , we require that
eq. (4.3) remain satisfied throughout the entire evolution. Thus, choosing {ξ1, ξ2} such that
eq. (4.3) is satisfied for any given value of m will ensure that theory remains ghostless.

4.2 Gradient (“sound speed”) instability

Requiring a theory which does not propagate ghosts is a necessary, but not sufficient require-
ment for the theory to be stable. The ghost instability in the previous section appears when

– 8 –
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ξ 1

Quadratic Inflation µ2 = 0

late reheating

aRH/ae = 3.34

aRH/ae = 15.52

Figure 2. Ghost-free region for m = 0 for both the late and early reheating scenarios. The upper
line for aRH/ae = 15.52 is practically indistinguishable from the late-reheating line.

the kinetic term of the action has the incorrect sign, but there is also the possibility for a
tachyonic instability in which the mass term of the action becomes negative. In this case,
the modes become tachyonic, corresponding to ω2 < 0.

Note that a transient negative ω2 is not inherently problematic and there is a regime in
which this is allowed; in fact, the oscillations of ωT,L through zero lead to an enhancement of
the particle production, which occurs even in the minimally coupled theory.

To see where the tachyonic behavior becomes problematic, consider the k → ∞ limit
of the frequencies ω2

T,L, eqs. (3.14) and (3.15). We can see that for the transverse mode
limk→∞ ω2

T = k2 and is thus well behaved in the large-k limit. On the other hand, for
the longitudinal mode

lim
k→∞

ω2
L = c2

sk2, (4.4)

where c2
s ≡ m2

x/m2
t as per eq. (3.20). The inclusion of the nonminimal couplings induces a

modification to the sound speed with cs = mx/mt ̸= 1. We have required that m2
t > 0 to

remain ghost-free, but have placed no such constraints on m2
x < 0. If m2

x < 0 while m2
t > 0,

then c2
s < 0; referred to as a gradient instability.

Let us consider the effects of c2
s < 0 on ω2

L. Figure 3, shows the evolution of ω2
L comparing

a minimally-coupled model (blue) to a nonminimally-coupled model with (ξ1, ξ2) which has
c2

s < 0 (red) and a nonminimal model with (ξ1, ξ2) where c2
s > 0 throughout the evolution

(green) for a ‘low-k’ (k/aeHe = 0.1, left) and ‘high-k’ (k/aeHe = 10, right) mode.
We can see that all three modes are tachyonic at k = 0.1, oscillating through zero. As

mentioned previously, this is not problematic and occurs for even the minimally coupled
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Figure 3. Comparison of ω2
L for a mode with k = 0.1 vs k = 10 for three choices of {ξ1, ξ2}. The

red curve corresponds to a “runaway” mode, which continues to oscillate through zero at arbitrarily
large k.
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Figure 4. Spectrum of particle production comparing the minimally coupled theory to the nonminimal
theory which exhibits a runaway instability.

mode. However, as one goes to larger k = 10, the minimal and c2
s > 0 modes approach a

constant ω2
L → k2, but the c2

s < 0 mode continues to oscillate through zero. One can interpret
oscillation through zero as an enhancement of particle production, which thus occurs in this
case for arbitrarily large k. This is the source the runaway particle production and instability,
which we explicitly show an example of in figure 4 (from [42]).

Here we observe that the particle production in the nonminimal theory is actually
suppressed at low k, but quickly becomes exponentially enhanced at high k. Recall that
to determine the comoving number density, one needs to integrate over the nk spectrum.
This is obviously not possible in this case without imposing a cutoff in k. In order for
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the GPP of nonminimally coupled dark photons to be well-behaved and viable as a dark
matter production mechanism, one needs to either resolve or avoid this runaway production.
The runaway instability found here is similar to a production instability previous found
for gravitinos [13, 14].

The dark photon runaway instability is discussed in further detail in ref. [42], where it is
shown that several potential resolutions, including the inclusion of higher-order operators
in the Proca EFT, the imposition of a UV cutoff, and the UV completion into a Higgs
mechanism, do not tame the runaway.5 However, we can determine the {µ, ξ1, ξ2} parameter
space where the runaway instability does not appear. To avoid catastrophic high-k production,
we must require c2

s > 0 throughout inflation and the resuming matter/radiation dominated
era. We have already required that m2

t > 0 to prevent ghosts, so we now must also impose
that m2

x > 0, leading to the constraint

µ̄2
x = µ̄2 − R

H2

(
ξ1 +

ξ2
6

)
> 0, (4.5)

corresponding to

µ̄2 ≳ 6ξ1 (4.6)

when one considers −12 < R/H2 < 6. Notice that taken along with eq. (4.3) this implies
that in the massless limit, {ξ1, ξ2} must be {0, 0} to avoid both a ghostly theory and the
runaway instability.

Fortunately, as one increases the particle mass, there exists an overlapping region in the
{ξ1, ξ2} plane in which both conditions eqs. (4.3) and (4.6) are satisfied. We show below in
figure 5 the parameter space for two representative choices of the mass [42]. We consider
m/He = 0.1 (left) and m/He = 1 (right). We see that for any given value of nonzero µ there
is indeed a small region of the {ξ1, ξ2} plane which avoids both instabilities. For the remainder
of the paper, we will focus on this allowed region of parameter space for a given µ. Note that
the boundaries of the allowable region are rounded due to the time dependence of R and H.

Lastly, note that while the above results are shown for quadratic inflation, the allowed
parameter space in {ξ1, ξ2} is generally independent of the background inflation model.
Regardless of the specifics of the model, as long as the universe begins in an inflationary
de Sitter phase and goes through a kination phase, the same bounds will apply as for the
quadratic model above.

4.3 Superluminal propagation

Finally, we note that the sound speed c2
s, eq. (3.20), can be greater than unity for certain

values of ξ1 and ξ2, corresponding to superluminal propagation. To appreciate this, in figure 6
we plot the evolution in time of c2

s for various values of the nonminimal couplings. The
red curve exemplifies an example for c2

s > 1, corresponding to superluminal propagation.
5It was recently suggested in [52] that the runaway instability can be removed by introducing a disformal

transformation such that gµν = ηµν + hµν − βM−2
pl AµAν . At face value, this solution appears to resolve the

runaway, but at the expense of modifying gravity. Furthermore, as was discussed in [42], even if one removes
the nonminimal couplings responsible for the runaway at tree level, one still expects them to be generated
from loops.
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Figure 5. The parameter space in the ξ2 − ξ1 plane for µ = 0.1 (left) and µ = 1 (right). The
interior of the blue contour has µ2

t > 0, and is therefore ghostless, while the interior of the red contour
has µ2

x > 0, and avoids runaway GPP at high k. The shaded region is the allowed region to avoid
both instabilities.

Fortunately, this pathology only occurs for {ξ1 < 0, ξ2 > 0}, and can be avoided by the
restriction away from this region, e.g. by the restriction to {ξ1 > 0, ξ2 < 0}.

There are of course theories in which superluminal propagation of perturbations does not
lead to causality paradoxes, such as k-essence models [53] or noncommutative geometries [54].
However, there are others in which superluminal propagation is indeed causally problematic
(e.g. [55, 56]). A full analysis of the causality structure of the theory is beyond the scope of our
current analysis, and so to be conservative, we choose to impose (sub)luminality restrictions
on the sound speed. Even with this restriction, the theory admits a broad parameter space
for a viable cosmological relic density of dark photons.

5 GPP of the nonminimal Proca

Having enumerated the parameter space where the nonminimally coupled Proca theory is
well behaved and instability-free, we now turn to a calculation of the gravitational particle
production and the subsequent relic density of dark photon dark matter.

5.1 Particle production

For the numerical results presented in this section, we employ for a background model
quadratic inflation with late reheating. For the initial conditions, we take the limit of ωL

as a → 0 and a2R → 0 to obtain

ω2,init
L = k2 m2

x

m2
t

+ (m2′
t )2

4m2
t

− m2′′
t

2m2
t

(5.1)

and define a quantity keff =
√

ω2,init
L such that

χinit
k = 1√

2keff
e−ikeffη

(
1− i

keffη

)
, (5.2)

where we have now kept the subleading term in the usual Bunch-Davies initial conditions
as well.
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Figure 6. Evolution of the sound speed, cs, for example values of {ξ1, ξ2} in the ghost-free and
runaway-free region. The sound speed begins to oscillate at the end of inflation with amplitude
determined by the size of the nonminimal coupling parameters.

Recall from the discussion in section 3, the key distinction between the free theory and
non-minimally coupled case is the form of the squared frequencies for both the transverse
and longitudinal modes arising from their effective masses. In particular, even in the {ξ1, ξ2}
regime which avoids the instabilities discussed in section 4.1, there is still the possibility of a
tachyonic instability in ω2

L which has the effect of enhancing the total particle production
but will remain well behaved at high k. We show an example of this in figure 7. We chose
a particular mode with µ = 0.1, k/aeHe = 1 and {ξ1 = 0.009, ξ2 = −0.002}.6 We show the
comoving number density for both the longitudinal and transverse modes. For these particular
values, we see that we are in a regime where the particle production is enhanced compared to
the minimal theory, but does not lead to runaway production at high k. Additionally, while
the number density of the transverse mode is enhaced relative to the minimal theory, the
particle production is still dominated by the longitudinal mode.

We can also explore how the nonminmal couplings impact the spectrum of nk as a function
of k for a range of masses. In figure 8, we show the comoving number density spectrum,
a3nk/a3

eH3
e for a representative example of µ = 0.1, comparing the particle production for

the minimal and nonminimal theories. In this case, we focus solely on the longitudinal
modes, as the total number density is dominated by their production. In the left-hand
panel we show nk for varying ξ1 with ξ2 = 0, and the right-hand panel shows the effect of
additionally varying ξ2 for a fixed nonzero value of ξ1. In both cases we compare to the
minimal theory with {ξ1 = 0, ξ2 = 0} (blue curve). On the left, we see that the particle

6Note that the expression for |βk|2 in eq. (2.4) has a physical interpretation related to the number density
only at late times (η → ∞). At earlier times, one may still use eq. (2.4) to define |βk|2(η), but when ω2

k ≤ 0
the result is imaginary. Regions of a/ae where ω2

k < 0 are left blank in figure 7.
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Figure 7. Evolution of the comoving number density for the specific case of µ = 0.1 and k/aeHe = 1.
We compare the minimal and non-minimally coupled scenarios for particular example values of the
nonminimal couplings. In both figures L and T are for the longitudinal and the transverse modes.

production can be enhanced at high-k for choices of the couplings within the allowable region.
In this case, cs = 1 and does not oscillate, and so the enhancement arises from the last
three terms in eq. (3.17). We see that there is a characteristic second peak in the spectrum,
near k/aeHe ≈ 10 for the nonminimally coupled spectra, which leads to an enhancement
compared to minimal curve (blue). For small enough values of ξ1, as in the purple curve, there
is still a characteristic second bump, but the overall production can in fact be suppressed
compared to the in the minimal coupling scenario. On the right, we now consider nonzero
ξ2 for fixed ξ1/µ2 = 0.5. In this case, there is an enhancement contribution from both the
last three terms in eq. (3.17) as well as the oscillation of cs. We consider three example
values of ξ2/µ2, compared to the minimally coupled theory (blue) and the nonminimal theory
with {ξ1/µ2 = 0.5, ξ2/µ2 = 0} (green). The yellow curve corresponds to min(cs) ≈ 0.9, and
follows the green curve closely. The magenta curve has min(cs) ≈ 0.5, but is suppressed
compared to the green and yellow because it is in the region of parameter space in which
ξ2 = −2ξ1. In this case, the R dependence in µ2

t cancels out and thus the enhancement is
lessened. Lastly, the cyan curve corresponds to the very edge of the allowable parameter
space, such that min(cs) ≈ 0.08, which we can see corresponds to the largest amount of
enhancement in the produced particle number.

While the above results are for quadratic inflation, the story is qualitatively similar for
alternative inflation models. For example, in appendix A, we show explicitly the GPP for
dark photons in two different rapid-turn multi-field inflation models; hyperbolic inflation
and monodromy inflation.
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Figure 8. Number density spectrum as a function of k for variations in ξ1/µ2 with ξ2/µ2 = 0 (left)
and fixed ξ1/µ2 and nonzero ξ2/µ2. We consider µ = 0.1 as a representative example.

5.2 Parameter scan approach: tracking the sound speed

The nonminimal Proca theory is characterized by three parameters µ, ξ1, and ξ2. In section 5.1,
we considered only a few representative examples for the values of {ξ1, ξ2}. We would like to
understand the full parameter space. However, it is computationally expensive to compute
the particle production for even a single set of parameters. The latter presents a challenge
to fully exploring the {µ, ξ1, ξ2} parameter space.

To aid in the parameter scan, and motivated by the sound-speed induced runaway [42],
we will sample parameter space according to the behaviour of c2

s. Namely, we characterize
the deviation from cs = 1 by considering the minimum value reached by cs, corresponding
to the first oscillation near a/ae = 1 (see figure 6). Since cs depends on µ, ξ1, ξ2 only via
the combination ξ1/µ2, ξ2/µ2, this effectively reduces the dimension of the problem from
3 to 2. Figure 9 shows the variation of min(cs) over the allowable (ie., stable) parameter
space of ξ1,2/µ2.

5.3 Contribution to the present-day relic density

Having numerically calculated the comoving number density of dark photons produced
during inflation, we would now like to consider how this translates to the relic density today.
To obtain a present-day relic density, one has to make assumptions about the time and
temperature of post-inflationary reheating, characterized by the parameter TRH. In terms
of Ωχh2, one finds the relic abundance to be [6]

Ωχh2

0.12 = mχ

He

(
He

1012GeV

)2 ( TRH

109GeV

)
na3

10−5 . (5.3)

For simplicity we will consider a fixed TRH = 106 GeV and He = 1012 GeV. Changing the values
of these parameters simply leads to an overall scaling in the value of Ωχh2/0.12 as in eq. (5.3).
Recall that to obtain the correct present-day abundance, one requires that Ωχh2/0.12 ≈ 1.
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Figure 9. Variation in the minimum oscillation value of cs over the allowable (ghost-free, non-runaway,
subluminal) parameter space of ξ1,2/µ2 with contours of constant min(cs).

To explore the dependence of the relic density on the parameters ξ1,2 and µ2 we fol-
low the approach discussed in section 5.2 and compute the present-day relic density along
contours of constant min(cs) as shown in figure 9. Since the particle production is domi-
nated by the longitudinal mode (see figure 7), we neglect any contribution from the trans-
verse modes.

Results for Ωχh2 are shown in figure 10. Here we fix µ = 0.1 and sample in ξ1,2
according along contours of fixed min(cs). The results are shown in terms of the quantity
(Ωχh2/µ)/0.12 × (1012GeV)/TRH.

We can see that for these choices of µ, He, we obtain a range of O(10−3) ≲ Ωχh2/0.12 ≲
O(1). Recall that the present-day relic density corresponds to Ωχh2/0.12 ≈ 1. One can easily
change He or TRH to obtain the correct amount of DM.

Furthermore, for parameters with min(cs) ≪ 1, the dependence of the relic density on
the mass µ is approximately linear, reflecting the overall prefactor of mχ/He in eq. (5.3).
This indicates that the produced comoving particle number, na3 is independent of the mass.
The latter manifests the µ-rescaling invariance of c2

s and the fact that the particle production
is driven by the reduction of cs in this regime. This can be appreciated figure 11, which
shows Ωχh2/0.12 as a function of the particle mass at fixed values of {ξ1/µ2, ξ2/µ2}

From figure 10 we see that, throughout the parameter space, the relic density tracks
the increasing contours of min(cs), reaching a maximum towards the edge of the parameter
space where one approaches the runaway region. As a result, it is possible that one can
obtain arbitrarily light dark photons in a wider range of parameter space than is possible
in the minimally coupled scenario. In particular, we expect the possible mass range to be
increased for a wider range of He and TRH values. We defer a full analysis of the implications
of this scenario of ultralight dark matter to future work.
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Figure 10. Relic density Ωh2 in the {ξ1, ξ2} plane for µ = 0.1.

Finally, in figure 11, we show the relic density as a function of the particle mass for the
various min(cs) contours. We see that for the large deviations in cs, Ωχh2/0.12 is independent
of the mass for µ ≲ 1, then begins decreasing as one goes to higher masses. This matches
our intuition from GPP in the minimally coupled theory [6].

6 Discussion and conclusions

In this work we have extended previous analysis of gravitational particle production of spin-1
dark matter to include non-minimal couplings to gravity. We have first explored the viable
parameter space of the theory to avoid both ghosts and a high-k tachyonic instability which
leads to runaway particle production. Requiring that any healthy theory of nonminimally
coupled dark photons avoid both of these instabilities sets mass-dependent constraints on
the value of the coupling parameters {ξ1, ξ2}, and we further restrict to modes which have a
subluminal sound speed. We then showed how the addition of allowed nonminimal couplings
in the theory impacts GPP of the dark photons. We find that there is a region of {ξ1, ξ2}
which is free of the above instabilities but that still leads to an overall enhancement of the
particle number. As a result, we find that GPP can be responsible for production of dark
photon dark matter, widening the parameter space for a range of particle masses, inflationary
energy scales, and reheating models. Lastly, we comment that the results presented here
are largely independent of the background inflation model one chooses and also hold for a
wider class of rapid-turn multi-field inflation models.
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Figure 11. Ωχh2 as a function of particle mass µ for fixed ξ1,2/µ2 (and hence fixed min(cs)).

It is further interesting to note, that as was pointed out in [16], one can obtain the dark
matter relic density for a class of Kalb-Ramond-like-particle (KRLP) dark matter with an
identical procedure to the spin-1 scenario, with and without nonminimal couplings. Thus,
the results that we have presented here are also applicable to GPP of KRLP dark matter.

There are many interesting paths forward. For example, there is much to be done in the
realm of particle phenomenology of spin-1 dark matter, including that which is produced
gravitationally, in particular dark matter direct detection, which is sensitive to the velocity
distribution of dark matter and hence primordial spectrum of particles nk. Complementary
to this is directional direct detection, which is sensitive to the spin of the dark matter
particle [57–59]. On the astrophyics and cosmology side, it will be interesting to study the
implications of nonminimal gravitational couplings, in particular in the case of ultralight
vector dark matter. Spin-1 dark matter production during inflation may also be probed by
hot spots in the cosmic microwave background, analogous to that in the case of scalar dark
matter production [60–63] (for recent constraints see [64]).

We leave these and other interesting directions to future work.

Acknowledgments

The authors thank Anamaria Hell, Bohdan Grzadkowski, Andrew Long, and Anna Socha for
helpful discussions and correspondence. C.C. is supported by a fellowship from the Trottier
Space Institute at McGill via an endowment from the Trottier Family Foundation, and by
the Arthur B. McDonald Institute via the Canada First Research Excellence Fund (CFREF).
L.J. is supported by the Kavli Institute for Cosmological Physics at the University of Chicago.
The work of E.W.K. was supported in part by the US Department of Energy contract

– 18 –



J
H
E
P
0
9
(
2
0
2
4
)
0
7
1

DE-FG02-13ER41958 and the Kavli Institute for Cosmological Physics. E.M. is supported in
part by a Discovery Grant from the Natural Sciences and Engineering Research Council of
Canada and by a New Investigator Operating Grant from Research Manitoba.

A GPP of dark photons in rapid-turn multi-field inflation

In this appendix we give an overview of GPP of nonminimally coupled dark photons in
an additional class of multi-field, rapid-turn inflation models. These models have more
complicated dynamics than the single field m2φ2 model consdidered above, but we will see
that GPP results are qualitatively similar. Such models have gained interest recently due to
their consistency with CMB results as well as the de Sitter swampland conjecture. Following
the discussion in [19], we consider two realizations; hyperbolic inflation and monodromy
inflation. We provide a brief overview of each of these models below in section A.1 and
then numerical results for the GPP in section A.2.

A.1 Rapid-turn multi-field inflation

Here we provide an overview of both hyperbolic inflation and monodromy inflation. Further
details of the models and their motivations can be found in ref. [19].

1. Hyperbolic Inflation
We first consider a model of hyperbolic inflation (‘hyperinflation’), which is characterized
by having a hyperbolic field-space manifold, see e.g., [65–68]. In this case, there are
two fields: a radial field, ϕ, and an angular field, θ, and the dynamics are characterized
by the action [65]

S =
∫

d4x
√
−g

[1
2GIJ(ϕ)∂µφI∂µφJ − V (ϕ)

]
, (A.1)

where I, J stands for ϕ, θ and the field space metric is

GIJ(ϕ) =
(
1 0
0 L2 sinh2(ϕ/L)

)
, (A.2)

with L defined in terms of the scalar curvature Rfield-space = −2/L2. For the potential
we consider a representative toy model chosen for simplicity:

V (ϕ) = V0 tanh2
(

ϕ − v

f

)
eλϕ/MP . (A.3)

2. Monodromy Inflation:
As a second example of multi-field rapid-turn inflation, we additionally consider mon-
odromy inflation [69, 70]. In this scenario, the model again has a radial field, ϕ and an
angular field, θ, but the field-space is now flat. The action is given by

S =
∫

d4x
√
−g

[1
2(∂ϕ)2 + 1

2ϕ2(∂θ)2 − V (θ, ϕ)
]

. (A.4)

As in ref. [19] we consider a potential of the form

V (θ, ϕ) = V0e−α(θ−θi)/V0 tanh2(θ/f) + 1
2m2(ϕ − ϕ0)2. (A.5)
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A.2 GPP results: rapid-turn multi-field inflation

We now turn to the GPP dark photons in the two rapid-turn multi-field inflation models
discussed above. The parameters for hyperbolic inflation are chosen to be [19]

V0 = 2.6× 10−36M4
Pl

L = 0.0054MPl

λ = 2
v = 10−2MPl

f = 10−2MPl

while for the monodromy model the parameters are takes to be

V0 = 7.49× 10−10M4
Pl

α = −5.05× 10−13M4
Pl

f = 10
ϕ0 = 6.80× 10−4MPl

m = 4.00× 10−4MPl

θi = 2000 .

These parameters were chosen to be consistent with CMB observations [50, 51].
In this appendix, we consider the GPP of dark photons minimally coupled in the models

described above, taking ξ1 = ξ2 = 0. An analysis of which has not yet appeared in the
literature. We anticipate that adding ξ1,2 ̸= 0 will yield similar results as in the quadratic
model previously discussed, but we defer a full analysis to future work.

As before, we numerically solve for the spectrum of particle production as shown in
figures 12 and 13 for hyperbolic and monodromy inflation, respectively. We consider rep-
resentative masses µ = 0.01, 0.1, 1 and see that the shape of the spectra differ between the
two models and the peak value is several orders of magnitude higher in monodromy inflation
than for the hyperbolic model. This is in agreement with the results of [19], which found
that while monodromy inflation could be a viable model to obtain the relic density of scalar
dark matter via GPP, the particle density produced in hyperbolic inflation was too low to
explain the present-day dark matter abundance.

Given that we found the impact of adding nonminimal couplings is to enhance the particle
production in the quadratic inflation model, it is reasonable to expect that the same would
be the case for both of the multifield models. It is likely that enhancement of the particle
density produced in monodromy inflation would widen the range of viable parameter space
of e.g. He and TRH, as we found for the quadratic model. Similarly, it is possible that an
enhancement due to nonminimal couplings could render hyperbolic inflation able to produce
the dark matter relic density via GPP. We save a careful analysis of both of these models
with the inclusion of nonminimal couplings for future work.
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Figure 12. Comoving number density spectrum of the longitudinal modes as a function of k in the
minimally coupled theory assuming hyperbolic inflation for µ = 0.01, 0.1, 1.0.
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Figure 13. Comoving number density spectrum of the longitudinal modes as a function of k in the
minimally coupled theory assuming monodromy inflation for µ = 0.01, 0.1, 1.0.
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Figure 14. The effect of early reheating on the spectrum of GPP for m/He = 0.01. The festures in
nk for late reheating in the region 1 ≲ k/aeHe ≲ 3 are due to quantum interference in gravitational
particle production [72].

B Early reheating

How might early reheating effect the runaway instability? Answer: It doesn’t matter much.
In this appendix we justify that statement.

Reheating can be modelled by including a decay width, Γφ, for the inflaton field, φ, into
the equation of motion for the inflaton field, and the evolution of the matter and radiation
energy densities ρφ and ρR (for more details, see, e.g., ref. [71]):

φ̈ + 3Hφ̇ + dV (φ)/dt + Γφφ̇ = 0 , (B.1)
ρ̇φ + 3Hρφ + Γφρφ = 0 , (B.2)
ρ̇R + 4HρR − Γφρφ = 0 . (B.3)

The initial condition deep in the inflationare era is ρR = 0.
After inflation ρR grows to become equal to the ρφ, and thereafter dominates ρφ. We

refer to the epoch when ρR = ρφ as “reheating,” with the value of the scale factor at the epoch
defined as aRH. The value of aRH/ae is determined by Γφ. We consider two representative
values of Γφ: 0.1mφ and 0.01mφ. The first choice results in aRH/ae = 3.34 while the second
choice results in aRH/ae = 15.52. (As mentioned in section 4.1, for late reheating, reheating
occurs at a late enough time that during the relevant timescales for particle production the
universe is still in a matter-dominated phase.)

From figure 14 we see that early reheating lessens the high-k instability but does not
remove it.

– 22 –



J
H
E
P
0
9
(
2
0
2
4
)
0
7
1

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.

References

[1] L. Parker, Quantized fields and particle creation in expanding universes. 1, Phys. Rev. 183 (1969)
1057 [INSPIRE].

[2] L. Parker, Quantized fields and particle creation in expanding universes. 2, Phys. Rev. D 3 (1971)
346 [INSPIRE].

[3] L.H. Ford, Cosmological particle production: a review, Rept. Prog. Phys. 84 (2021) 116901
[arXiv:2112.02444] [INSPIRE].

[4] D.J.H. Chung, E.W. Kolb and A. Riotto, Superheavy dark matter, Phys. Rev. D 59 (1998)
023501 [hep-ph/9802238] [INSPIRE].

[5] D.J.H. Chung, E.W. Kolb and A. Riotto, Nonthermal supermassive dark matter, Phys. Rev. Lett.
81 (1998) 4048 [hep-ph/9805473] [INSPIRE].

[6] E.W. Kolb and A.J. Long, Completely dark photons from gravitational particle production during
the inflationary era, JHEP 03 (2021) 283 [arXiv:2009.03828] [INSPIRE].

[7] P.W. Graham, J. Mardon and S. Rajendran, Vector Dark Matter from Inflationary Fluctuations,
Phys. Rev. D 93 (2016) 103520 [arXiv:1504.02102] [INSPIRE].

[8] A. Ahmed, B. Grzadkowski and A. Socha, Gravitational production of vector dark matter, JHEP
08 (2020) 059 [arXiv:2005.01766] [INSPIRE].

[9] Y. Ema, R. Jinno, K. Mukaida and K. Nakayama, Gravitational Effects on Inflaton Decay,
JCAP 05 (2015) 038 [arXiv:1502.02475] [INSPIRE].

[10] Y. Ema, R. Jinno, K. Mukaida and K. Nakayama, Gravitational particle production in oscillating
backgrounds and its cosmological implications, Phys. Rev. D 94 (2016) 063517
[arXiv:1604.08898] [INSPIRE].

[11] Y. Ema, K. Nakayama and Y. Tang, Production of purely gravitational dark matter: the case of
fermion and vector boson, JHEP 07 (2019) 060 [arXiv:1903.10973] [INSPIRE].

[12] S. Alexander, L. Jenks and E. McDonough, Higher spin dark matter, Phys. Lett. B 819 (2021)
136436 [arXiv:2010.15125] [INSPIRE].

[13] E.W. Kolb, A.J. Long and E. McDonough, Catastrophic production of slow gravitinos, Phys. Rev.
D 104 (2021) 075015 [arXiv:2102.10113] [INSPIRE].

[14] E.W. Kolb, A.J. Long and E. McDonough, Gravitino Swampland Conjecture, Phys. Rev. Lett.
127 (2021) 131603 [arXiv:2103.10437] [INSPIRE].

[15] E.W. Kolb, S. Ling, A.J. Long and R.A. Rosen, Cosmological gravitational particle production of
massive spin-2 particles, JHEP 05 (2023) 181 [arXiv:2302.04390] [INSPIRE].

[16] C. Capanelli, L. Jenks, E.W. Kolb and E. McDonough, Cosmological implications of
Kalb-Ramond-like particles, JHEP 06 (2024) 075 [arXiv:2309.02485] [INSPIRE].

[17] K. Kaneta et al., Gravitational production of spin-3/2 particles during reheating, Phys. Rev. D
108 (2023) 115027 [arXiv:2309.15146] [INSPIRE].

[18] A. Maleknejad and E. McDonough, Ultralight pion and superheavy baryon dark matter, Phys.
Rev. D 106 (2022) 095011 [arXiv:2205.12983] [INSPIRE].

– 23 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRev.183.1057
https://doi.org/10.1103/PhysRev.183.1057
https://inspirehep.net/literature/55157
https://doi.org/10.1103/PhysRevD.3.346
https://doi.org/10.1103/PhysRevD.3.346
https://inspirehep.net/literature/68226
https://doi.org/10.1088/1361-6633/ac1b23
https://doi.org/10.48550/arXiv.2112.02444
https://inspirehep.net/literature/1984597
https://doi.org/10.1103/PhysRevD.59.023501
https://doi.org/10.1103/PhysRevD.59.023501
https://doi.org/10.48550/arXiv.hep-ph/9802238
https://inspirehep.net/literature/466858
https://doi.org/10.1103/PhysRevLett.81.4048
https://doi.org/10.1103/PhysRevLett.81.4048
https://doi.org/10.48550/arXiv.hep-ph/9805473
https://inspirehep.net/literature/471013
https://doi.org/10.1007/JHEP03(2021)283
https://doi.org/10.48550/arXiv.2009.03828
https://inspirehep.net/literature/1815658
https://doi.org/10.1103/PhysRevD.93.103520
https://doi.org/10.48550/arXiv.1504.02102
https://inspirehep.net/literature/1358647
https://doi.org/10.1007/JHEP08(2020)059
https://doi.org/10.1007/JHEP08(2020)059
https://doi.org/10.48550/arXiv.2005.01766
https://inspirehep.net/literature/1794425
https://doi.org/10.1088/1475-7516/2015/05/038
https://doi.org/10.48550/arXiv.1502.02475
https://inspirehep.net/literature/1343475
https://doi.org/10.1103/PhysRevD.94.063517
https://doi.org/10.48550/arXiv.1604.08898
https://inspirehep.net/literature/1454064
https://doi.org/10.1007/JHEP07(2019)060
https://doi.org/10.48550/arXiv.1903.10973
https://inspirehep.net/literature/1726798
https://doi.org/10.1016/j.physletb.2021.136436
https://doi.org/10.1016/j.physletb.2021.136436
https://doi.org/10.48550/arXiv.2010.15125
https://inspirehep.net/literature/1826794
https://doi.org/10.1103/PhysRevD.104.075015
https://doi.org/10.1103/PhysRevD.104.075015
https://doi.org/10.48550/arXiv.2102.10113
https://inspirehep.net/literature/1847862
https://doi.org/10.1103/PhysRevLett.127.131603
https://doi.org/10.1103/PhysRevLett.127.131603
https://doi.org/10.48550/arXiv.2103.10437
https://inspirehep.net/literature/1852616
https://doi.org/10.1007/JHEP05(2023)181
https://doi.org/10.48550/arXiv.2302.04390
https://inspirehep.net/literature/2630832
https://doi.org/10.1007/JHEP06(2024)075
https://doi.org/10.48550/arXiv.2309.02485
https://inspirehep.net/literature/2693964
https://doi.org/10.1103/PhysRevD.108.115027
https://doi.org/10.1103/PhysRevD.108.115027
https://doi.org/10.48550/arXiv.2309.15146
https://inspirehep.net/literature/2703530
https://doi.org/10.1103/PhysRevD.106.095011
https://doi.org/10.1103/PhysRevD.106.095011
https://doi.org/10.48550/arXiv.2205.12983
https://inspirehep.net/literature/2087939


J
H
E
P
0
9
(
2
0
2
4
)
0
7
1

[19] E.W. Kolb, A.J. Long, E. McDonough and G. Payeur, Completely dark matter from rapid-turn
multifield inflation, JHEP 02 (2023) 181 [arXiv:2211.14323] [INSPIRE].

[20] J. Redondo and M. Postma, Massive hidden photons as lukewarm dark matter, JCAP 02 (2009)
005 [arXiv:0811.0326] [INSPIRE].

[21] A.E. Nelson and J. Scholtz, Dark Light, Dark Matter and the Misalignment Mechanism, Phys.
Rev. D 84 (2011) 103501 [arXiv:1105.2812] [INSPIRE].

[22] A.J. Long and L.-T. Wang, Dark Photon Dark Matter from a Network of Cosmic Strings, Phys.
Rev. D 99 (2019) 063529 [arXiv:1901.03312] [INSPIRE].

[23] P. Arias et al., WISPy Cold Dark Matter, JCAP 06 (2012) 013 [arXiv:1201.5902] [INSPIRE].

[24] R.T. Co, A. Pierce, Z. Zhang and Y. Zhao, Dark Photon Dark Matter Produced by Axion
Oscillations, Phys. Rev. D 99 (2019) 075002 [arXiv:1810.07196] [INSPIRE].

[25] J.A. Dror, K. Harigaya and V. Narayan, Parametric Resonance Production of Ultralight Vector
Dark Matter, Phys. Rev. D 99 (2019) 035036 [arXiv:1810.07195] [INSPIRE].

[26] M. Bastero-Gil, J. Santiago, L. Ubaldi and R. Vega-Morales, Vector dark matter production at
the end of inflation, JCAP 04 (2019) 015 [arXiv:1810.07208] [INSPIRE].

[27] M. Bastero-Gil, J. Santiago, R. Vega-Morales and L. Ubaldi, Dark photon dark matter from a
rolling inflaton, JCAP 02 (2022) 015 [arXiv:2103.12145] [INSPIRE].

[28] P. Agrawal et al., Relic Abundance of Dark Photon Dark Matter, Phys. Lett. B 801 (2020)
135136 [arXiv:1810.07188] [INSPIRE].

[29] G. Krnjaic, D. Rocha and A. Sokolenko, Freezing in vector dark matter through magnetic dipole
interactions, Phys. Rev. D 108 (2023) 035047 [arXiv:2210.06487] [INSPIRE].

[30] M. Pospelov, A. Ritz and M.B. Voloshin, Bosonic super-WIMPs as keV-scale dark matter, Phys.
Rev. D 78 (2008) 115012 [arXiv:0807.3279] [INSPIRE].

[31] A. Fradette, M. Pospelov, J. Pradler and A. Ritz, Cosmological Constraints on Very Dark
Photons, Phys. Rev. D 90 (2014) 035022 [arXiv:1407.0993] [INSPIRE].

[32] J. Jaeckel, A force beyond the Standard Model — Status of the quest for hidden photons, Frascati
Phys. Ser. 56 (2012) 172 [arXiv:1303.1821] [INSPIRE].

[33] K. Nakayama, Vector Coherent Oscillation Dark Matter, JCAP 10 (2019) 019
[arXiv:1907.06243] [INSPIRE].

[34] W.E. East and J. Huang, Dark photon vortex formation and dynamics, JHEP 12 (2022) 089
[arXiv:2206.12432] [INSPIRE].

[35] D. Cyncynates and Z.J. Weiner, Detectable, defect-free dark photon dark matter,
arXiv:2310.18397 [INSPIRE].

[36] H.-Y. Zhang and S. Ling, Phenomenology of wavelike vector dark matter nonminimally coupled
to gravity, JCAP 07 (2023) 055 [arXiv:2305.03841] [INSPIRE].

[37] N. Kitajima and K. Nakayama, Viable vector coherent oscillation dark matter, JCAP 07 (2023)
014 [arXiv:2303.04287] [INSPIRE].

[38] A. Bhattacharyya, S. Ghosh and S. Pal, Worldline effective field theory of inspiralling black hole
binaries in presence of dark photon and axionic dark matter, JHEP 08 (2023) 207
[arXiv:2305.15473] [INSPIRE].

[39] G. Alonso-Álvarez, T. Hugle and J. Jaeckel, Misalignment & Co.: (Pseudo-)scalar and vector
dark matter with curvature couplings, JCAP 02 (2020) 014 [arXiv:1905.09836] [INSPIRE].

– 24 –

https://doi.org/10.1007/JHEP02(2023)181
https://doi.org/10.48550/arXiv.2211.14323
https://inspirehep.net/literature/2601311
https://doi.org/10.1088/1475-7516/2009/02/005
https://doi.org/10.1088/1475-7516/2009/02/005
https://doi.org/10.48550/arXiv.0811.0326
https://inspirehep.net/literature/801408
https://doi.org/10.1103/PhysRevD.84.103501
https://doi.org/10.1103/PhysRevD.84.103501
https://doi.org/10.48550/arXiv.1105.2812
https://inspirehep.net/literature/899563
https://doi.org/10.1103/PhysRevD.99.063529
https://doi.org/10.1103/PhysRevD.99.063529
https://doi.org/10.48550/arXiv.1901.03312
https://inspirehep.net/literature/1713050
https://doi.org/10.1088/1475-7516/2012/06/013
https://doi.org/10.48550/arXiv.1201.5902
https://inspirehep.net/literature/1086565
https://doi.org/10.1103/PhysRevD.99.075002
https://doi.org/10.48550/arXiv.1810.07196
https://inspirehep.net/literature/1699014
https://doi.org/10.1103/PhysRevD.99.035036
https://doi.org/10.48550/arXiv.1810.07195
https://inspirehep.net/literature/1699006
https://doi.org/10.1088/1475-7516/2019/04/015
https://doi.org/10.48550/arXiv.1810.07208
https://inspirehep.net/literature/1699023
https://doi.org/10.1088/1475-7516/2022/02/015
https://doi.org/10.48550/arXiv.2103.12145
https://inspirehep.net/literature/1853030
https://doi.org/10.1016/j.physletb.2019.135136
https://doi.org/10.1016/j.physletb.2019.135136
https://doi.org/10.48550/arXiv.1810.07188
https://inspirehep.net/literature/1699020
https://doi.org/10.1103/PhysRevD.108.035047
https://doi.org/10.48550/arXiv.2210.06487
https://inspirehep.net/literature/2165209
https://doi.org/10.1103/PhysRevD.78.115012
https://doi.org/10.1103/PhysRevD.78.115012
https://doi.org/10.48550/arXiv.0807.3279
https://inspirehep.net/literature/791181
https://doi.org/10.1103/PhysRevD.90.035022
https://doi.org/10.48550/arXiv.1407.0993
https://inspirehep.net/literature/1304672
https://doi.org/10.48550/arXiv.1303.1821
https://inspirehep.net/literature/1223126
https://doi.org/10.1088/1475-7516/2019/10/019
https://doi.org/10.48550/arXiv.1907.06243
https://inspirehep.net/literature/1744113
https://doi.org/10.1007/JHEP12(2022)089
https://doi.org/10.48550/arXiv.2206.12432
https://inspirehep.net/literature/2101830
https://doi.org/10.48550/arXiv.2310.18397
https://inspirehep.net/literature/2715339
https://doi.org/10.1088/1475-7516/2023/07/055
https://doi.org/10.48550/arXiv.2305.03841
https://inspirehep.net/literature/2657672
https://doi.org/10.1088/1475-7516/2023/07/014
https://doi.org/10.1088/1475-7516/2023/07/014
https://doi.org/10.48550/arXiv.2303.04287
https://inspirehep.net/literature/2639387
https://doi.org/10.1007/JHEP08(2023)207
https://doi.org/10.48550/arXiv.2305.15473
https://inspirehep.net/literature/2662626
https://doi.org/10.1088/1475-7516/2020/02/014
https://doi.org/10.48550/arXiv.1905.09836
https://inspirehep.net/literature/1736741


J
H
E
P
0
9
(
2
0
2
4
)
0
7
1

[40] O. Özsoy and G. Tasinato, Vector dark matter, inflation, and non-minimal couplings with
gravity, JCAP 06 (2024) 003 [arXiv:2310.03862] [INSPIRE].

[41] J.A.R. Cembranos, L.J. Garay, Á. Parra-López and J.M. Sánchez Velázquez, Vector dark matter
production during inflation and reheating, JCAP 02 (2024) 013 [arXiv:2310.07515] [INSPIRE].

[42] C. Capanelli, L. Jenks, E.W. Kolb and E. McDonough, Runaway Gravitational Production of
Dark Photons, Phys. Rev. Lett. 133 (2024) 061602 [arXiv:2403.15536] [INSPIRE].

[43] E.W. Kolb and A.J. Long, Cosmological gravitational particle production and its implications for
cosmological relics, arXiv:2312.09042 [INSPIRE].

[44] L. de Broglie, Black radiation and light quantum, J. Phys. Radium 3 (1922) 422 [INSPIRE].

[45] L.V.P.R. de Broglie, Recherches sur la théorie des quanta, Annals Phys. 2 (1925) 22 [INSPIRE].

[46] A. Proca, Sur la theorie ondulatoire des electrons positifs et negatifs, J. Phys. Radium 7 (1936)
347 [INSPIRE].

[47] L.E. Parker and D. Toms, Quantum Field Theory in Curved Spacetime: Quantized Field and
Gravity, Cambridge University Press (2009) [DOI:10.1017/CBO9780511813924] [INSPIRE].

[48] N.D. Birrell and P.C.W. Davies, Quantum Fields in Curved Space, Cambridge Univ. Press,
Cambridge, U.K. (1984) [DOI:10.1017/CBO9780511622632] [INSPIRE].

[49] T.S. Bunch and P. Panangaden, On renormalization of λϕ4 field theory in curved space-time. II,
J. Phys. A 13 (1980) 919 [INSPIRE].

[50] Planck collaboration, Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys.
594 (2016) A20 [arXiv:1502.02114] [INSPIRE].

[51] Planck collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641
(2020) A10 [arXiv:1807.06211] [INSPIRE].

[52] A. Hell, Unveiling the inconsistency of the Proca theory with non-minimal coupling to gravity,
arXiv:2403.18673 [INSPIRE].

[53] E. Babichev, V. Mukhanov and A. Vikman, k-Essence, superluminal propagation, causality and
emergent geometry, JHEP 02 (2008) 101 [arXiv:0708.0561] [INSPIRE].

[54] A. Hashimoto and N. Itzhaki, Traveling faster than the speed of light in noncommutative
geometry, Phys. Rev. D 63 (2001) 126004 [hep-th/0012093] [INSPIRE].

[55] A. Adams et al., Causality, analyticity and an IR obstruction to UV completion, JHEP 10
(2006) 014 [hep-th/0602178] [INSPIRE].

[56] A. De Felice, M. Hindmarsh and M. Trodden, Ghosts, Instabilities, and Superluminal
Propagation in Modified Gravity Models, JCAP 08 (2006) 005 [astro-ph/0604154] [INSPIRE].

[57] L. Jenks et al., Towards a direct detection of the spin of dark matter, Phys. Lett. B 842 (2023)
137956 [arXiv:2212.07442] [INSPIRE].

[58] R. Catena, K. Fridell and V. Zema, Direct detection of fermionic and vector dark matter with
polarised targets, JCAP 11 (2018) 018 [arXiv:1810.01515] [INSPIRE].

[59] R. Catena et al., Dark matter spin determination with directional direct detection experiments,
Phys. Rev. D 97 (2018) 023007 [arXiv:1706.09471] [INSPIRE].

[60] J. Maldacena, A model with cosmological Bell inequalities, Fortsch. Phys. 64 (2016) 10
[arXiv:1508.01082] [INSPIRE].

– 25 –

https://doi.org/10.1088/1475-7516/2024/06/003
https://doi.org/10.48550/arXiv.2310.03862
https://inspirehep.net/literature/2709191
https://doi.org/10.1088/1475-7516/2024/02/013
https://doi.org/10.48550/arXiv.2310.07515
https://inspirehep.net/literature/2708950
https://doi.org/10.1103/PhysRevLett.133.061602
https://doi.org/10.48550/arXiv.2403.15536
https://inspirehep.net/literature/2771377
https://doi.org/10.48550/arXiv.2312.09042
https://inspirehep.net/literature/2737356
https://doi.org/10.1051/jphysrad:01922003011042200
https://inspirehep.net/literature/45397
https://inspirehep.net/literature/896430
https://doi.org/10.1051/jphysrad:0193600708034700
https://doi.org/10.1051/jphysrad:0193600708034700
https://inspirehep.net/literature/1242541
https://doi.org/10.1017/CBO9780511813924
https://inspirehep.net/literature/1204522
https://doi.org/10.1017/CBO9780511622632
https://inspirehep.net/literature/181166
https://doi.org/10.1088/0305-4470/13/3/023
https://inspirehep.net/literature/157347
https://doi.org/10.1051/0004-6361/201525898
https://doi.org/10.1051/0004-6361/201525898
https://doi.org/10.48550/arXiv.1502.02114
https://inspirehep.net/literature/1343460
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.48550/arXiv.1807.06211
https://inspirehep.net/literature/1682899
https://doi.org/10.48550/arXiv.2403.18673
https://inspirehep.net/literature/2772119
https://doi.org/10.1088/1126-6708/2008/02/101
https://doi.org/10.48550/arXiv.0708.0561
https://inspirehep.net/literature/757469
https://doi.org/10.1103/PhysRevD.63.126004
https://doi.org/10.48550/arXiv.hep-th/0012093
https://inspirehep.net/literature/538450
https://doi.org/10.1088/1126-6708/2006/10/014
https://doi.org/10.1088/1126-6708/2006/10/014
https://doi.org/10.48550/arXiv.hep-th/0602178
https://inspirehep.net/literature/710888
https://doi.org/10.1088/1475-7516/2006/08/005
https://doi.org/10.48550/arXiv.astro-ph/0604154
https://inspirehep.net/literature/714029
https://doi.org/10.1016/j.physletb.2023.137956
https://doi.org/10.1016/j.physletb.2023.137956
https://doi.org/10.48550/arXiv.2212.07442
https://inspirehep.net/literature/2614891
https://doi.org/10.1088/1475-7516/2018/11/018
https://doi.org/10.48550/arXiv.1810.01515
https://inspirehep.net/literature/1696813
https://doi.org/10.1103/PhysRevD.97.023007
https://doi.org/10.48550/arXiv.1706.09471
https://inspirehep.net/literature/1608032
https://doi.org/10.1002/prop.201500097
https://doi.org/10.48550/arXiv.1508.01082
https://inspirehep.net/literature/1386659


J
H
E
P
0
9
(
2
0
2
4
)
0
7
1

[61] A. Fialkov, N. Itzhaki and E.D. Kovetz, Cosmological Imprints of Pre-Inflationary Particles,
JCAP 02 (2010) 004 [arXiv:0911.2100] [INSPIRE].

[62] J.H. Kim, S. Kumar, A. Martin and Y. Tsai, Cosmological particle production and pairwise
hotspots on the CMB, JHEP 11 (2021) 158 [arXiv:2107.09061] [INSPIRE].

[63] T. Kim et al., Probing cosmological particle production and pairwise hotspots with deep neural
networks, Phys. Rev. D 108 (2023) 043525 [arXiv:2303.08869] [INSPIRE].

[64] O.H.E. Philcox, S. Kumar and J.C. Hill, Too Hot to Handle: Searching for Inflationary Particle
Production in Planck Data, arXiv:2405.03738 [INSPIRE].

[65] A.R. Brown, Hyperbolic Inflation, Phys. Rev. Lett. 121 (2018) 251601 [arXiv:1705.03023]
[INSPIRE].

[66] T. Bjorkmo and M.C.D. Marsh, Hyperinflation generalised: from its attractor mechanism to its
tension with the ‘swampland conditions’, JHEP 04 (2019) 172 [arXiv:1901.08603] [INSPIRE].

[67] P. Christodoulidis, D. Roest and E.I. Sfakianakis, Angular inflation in multi-field α-attractors,
JCAP 11 (2019) 002 [arXiv:1803.09841] [INSPIRE].

[68] S. Garcia-Saenz, S. Renaux-Petel and J. Ronayne, Primordial fluctuations and non-Gaussianities
in sidetracked inflation, JCAP 07 (2018) 057 [arXiv:1804.11279] [INSPIRE].

[69] A. Achúcarro et al., Shift-symmetric orbital inflation: Single field or multifield?, Phys. Rev. D
102 (2020) 021302 [arXiv:1901.03657] [INSPIRE].

[70] A. Achúcarro et al., Heavy fields, reduced speeds of sound and decoupling during inflation, Phys.
Rev. D 86 (2012) 121301 [arXiv:1205.0710] [INSPIRE].

[71] G.F. Giudice, E.W. Kolb and A. Riotto, Largest temperature of the radiation era and its
cosmological implications, Phys. Rev. D 64 (2001) 023508 [hep-ph/0005123] [INSPIRE].

[72] E. Basso, D.J.H. Chung, E.W. Kolb and A.J. Long, Quantum interference in gravitational
particle production, JHEP 12 (2022) 108 [arXiv:2209.01713] [INSPIRE].

– 26 –

https://doi.org/10.1088/1475-7516/2010/02/004
https://doi.org/10.48550/arXiv.0911.2100
https://inspirehep.net/literature/836638
https://doi.org/10.1007/JHEP11(2021)158
https://doi.org/10.48550/arXiv.2107.09061
https://inspirehep.net/literature/1888601
https://doi.org/10.1103/PhysRevD.108.043525
https://doi.org/10.48550/arXiv.2303.08869
https://inspirehep.net/literature/2643035
https://doi.org/10.48550/arXiv.2405.03738
https://inspirehep.net/literature/2783985
https://doi.org/10.1103/PhysRevLett.121.251601
https://doi.org/10.48550/arXiv.1705.03023
https://inspirehep.net/literature/1598635
https://doi.org/10.1007/JHEP04(2019)172
https://doi.org/10.48550/arXiv.1901.08603
https://inspirehep.net/literature/1716810
https://doi.org/10.1088/1475-7516/2019/11/002
https://doi.org/10.48550/arXiv.1803.09841
https://inspirehep.net/literature/1664422
https://doi.org/10.1088/1475-7516/2018/07/057
https://doi.org/10.48550/arXiv.1804.11279
https://inspirehep.net/literature/1670881
https://doi.org/10.1103/PhysRevD.102.021302
https://doi.org/10.1103/PhysRevD.102.021302
https://doi.org/10.48550/arXiv.1901.03657
https://inspirehep.net/literature/1713392
https://doi.org/10.1103/PhysRevD.86.121301
https://doi.org/10.1103/PhysRevD.86.121301
https://doi.org/10.48550/arXiv.1205.0710
https://inspirehep.net/literature/1113421
https://doi.org/10.1103/PhysRevD.64.023508
https://doi.org/10.48550/arXiv.hep-ph/0005123
https://inspirehep.net/literature/527208
https://doi.org/10.1007/JHEP12(2022)108
https://doi.org/10.48550/arXiv.2209.01713
https://inspirehep.net/literature/2147110

	Introduction
	ABCs of gravitational particle production
	Spin-1 field with nonminimal couplings
	Instabilities of the theory
	Ghost instabilities
	Gradient (``sound speed'') instability
	Superluminal propagation

	GPP of the nonminimal Proca
	Particle production
	Parameter scan approach: tracking the sound speed
	Contribution to the present-day relic density

	Discussion and conclusions
	GPP of dark photons in rapid-turn multi-field inflation
	Rapid-turn multi-field inflation
	GPP results: rapid-turn multi-field inflation

	Early reheating

