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1 Introduction

Entanglement has emerged as a topic of extensive interest in a wide variety range of research
areas ranging from quantum information theory to high energy physics (see [1–5] for reviews).
In particular, in order to quantify quantum entanglement different measures have been studied
so far including entanglement and Renyi entropies. It is well-known that for a system in
a pure state, the entanglement entropy is the unique quantity which measures the amount
of quantum entanglement between two complement subsystems. To define this quantity,
let us assume that for a bipartite system the total Hilbert space can be written as a direct
product of two spaces Htot = HA ⊗ HB corresponding to those of subsystems A and B.
Now summing over the degrees of freedom in HB we find the reduced density matrix for A,
i.e., ρA = TrB ρtot. Then the entanglement entropy of the subsystem A defined as the von
Neumann entropy of the reduced density matrix ρA as follows

SE = −TrA (ρA log ρA) . (1.1)

Moreover, employing the definition of the modular Hamiltonian, i.e., HA = − log ρA, one
can show that SE = ⟨HA⟩. Another interesting measure which has been widely studied
is the Renyi entropy defined as

Sn = 1
1 − n

log TrρnA, (1.2)

where n is a positive integer. This quantity contains the information of the reduced density
matrix spectrum and reduces to SE in n→ 1 limit. Further, to gain more information about
the spectrum of ρA we can consider the capacity of entanglement which is given by [6]

CE = lim
n→1

Cn = lim
n→1

n2 ∂
2

∂n2 ((1 − n)Sn) , (1.3)
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where Cn is the n-th capacity of entanglement. It is relatively simple to show that the above
quantity gives the variance of the modular Hamiltonian, i.e., CE = ⟨H2

A⟩ − ⟨HA⟩2. In this
sense, the capacity of entanglement distinguishes the width of the eigenvalue spectrum of ρA.
For example, considering a maximally entangled state which has a flat entanglement spectra,
the corresponding Renyi entropies are independent of n and CE vanishes.

While the entanglement entropy and capacity of entanglement are intrinsically different
quantities, they exactly coincide with each other in certain setups, e.g., quantum field theories
dual to classical Einstein gravity [7]. An interesting question is that whether this result also
hold for more general QFTs without a holographic dual. Moreover, in [8] the authors define
a c-function based on the capacity of entanglement similar to the one based on SE , which
displays a monotonic behavior under the renormalisation group flow generated by the mass
parameter. See also [9–20] for other developments on the general properties of the capacity
of entanglement in different setups both in the field theory and holography.

Let us mention that the most common way available in the literature for studying
quantum entanglement is to compute entanglement measures between two different spatial
regions of a field theory. In this case, A and B are two spatial subregions at a constant time
slice and the resultant measure depends on the geometric structure of the entangling surface
∂A which is an artificial co-dimension-two boundary between these two subregions.1 In
particular, entanglement entropy is UV divergent in the continuum limit of a local quantum
field theory such that the coefficient of the leading term is proportional to the area of ∂A

SE = Sd−2
area(∂A)
ϵd−2 + · · · , (1.4)

where ϵ denotes the lattice spacing (the inverse of the UV cut-off) and Sd−2 is a non universal
(scheme dependent) constant. Note that in order to avoid the ultraviolet divergences in the
continuum limit, we regulate the theory by placing it on a spatial lattice.

The area law scaling is a consequence of the short distance correlations that exist across
the entangling surface between modes which reside on different sides of ∂A. This specific
behavior, however, does not always describe the scaling of the entanglement entropy in
generic situations. For example in a (1 + 1)-dimensional critical chain, which is described by
a conformal field theory in continuum limit, the leading behavior of entanglement entropy
is logarithmic. Remarkably, a volume law scaling of the entanglement entropy can also be
achieved in certain setups, e.g., non-local scalar field theories [21] and lattice models with
broken relativistic translational or scaling invariance [22–24].

Another interesting setup for which the volume law appears is dealing with entanglement
in the field space, obtained by summing over a subset of the quantum fields which is meaningful
when more than one field lives in a theory [25]. As a typical example consider two weakly
interacting scalar filed theories which live in a flat spacetime with the following action

I =
∫
ddx (L1(ϕ) + L2(ψ) + Lint.(ϕ, ψ)) , (1.5)

where the first two terms denote the Lagrangian density of free fields and Lint.(ϕ, ψ) contains
the interacting terms. Assuming Htot. = Hϕ ⊗Hψ, the corresponding reduced density matrix

1The corresponding entanglement entropy is sometimes called the geometric entropy.
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can be found by summing either ϕ or ψ, e.g., ρψ = Trϕ (ρ). Then the entanglement entropy
is SE = −Trψ (ρψ log ρψ). As shown in [26] the (field space) entanglement entropy obeys the
volume law scaling behavior as expected. Moreover, SE is a monotonically increasing function
of the strength of interactions between the two fields. Also considering a generalization
of eq. (1.5) to field theories consisting of N number of interacting scalar fields, one can
study other entanglement measures including mutual information [27]. Related investigations
attempting to better understand different aspects of field space entanglement both in the
field theory and holography have also appeared in [28–30].

Despite extensive discussions of different aspects of entanglement entropy in theories
with volume law scaling, the behavior of other entanglement measures and in particular the
capacity of entanglement has not been thoroughly investigated. Therefore, in the present
paper, we explore the behavior of entanglement spectrum and capacity of entanglement in
such theories. To do so, we consider both geometric and field space decompositions of the
Hilbert space. Moreover, to get a better understanding of the results, we will also compare
the behavior of different measures, e.g., Renyi entropies, in various setups. We also investigate
the existence of consistent holographic duals for these specific setups based on the relation
between the entanglement entropy and the capacity of entanglement.

This paper is organized as follows: In section 2, we consider a simple setup which exhibits
volume law scaling, the so-called p-alternating lattice, both in the vacuum and thermal
states. By restricting the reduced subsystem to periodic sublattices, we can compute the
entanglement spectrum and entanglement measures analytically. In section 3 we evaluate
the capacity of entanglement for ground state of a family of non-local scalar field theories.
Specifically, we present a combination of numerical and analytic results on the scaling of
different entanglement measures in the presence of non-local correlations. In section 4,
we extend our studies to specific Gaussian states, the so-called squeezed states, where the
corresponding entanglement entropy obeys the volume law. We investigate the capacity of
entanglement for spherical entangling regions in (3 + 1)-dimensions and discuss behaviors
of this quantity in different regimes. Next, we study field space capacity of entanglement
in different interacting scalar field theories in section 5. We conclude with a discussion of
our results, as well as possible future directions, in section 6.

2 Periodic sublattices

The first model we consider is a free scalar field theory in 1+1 dimensions whose discretized
Hamiltonian is given by

H = 1
2

N−1∑
i=0

(
π2
i + (ϕi+1 − ϕi)2 +m2ϕ2

i

)
, (2.1)

where N denotes the number of total lattice sites. Here we set the lattice spacing equal
to unity, i.e., ϵ = 1 and periodic boundary condition implies ϕN = ϕ0. The calculation of
different entanglement measures for this specific model have already been extensively studied
in the literature, e.g., see [4] and references therein. In the following, we will focus on a
particular entangling region which is a p-alternating sublattice on a lattice with periodic
boundary condition, which was introduced in [31]. These authors considered a spatial
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Figure 1. Examples of p-alternating lattice subregions for Ñ = 4, p = 4 (left) and Ñ = 8, p = 2
(right). The red open circles denote the sites within the entangling region.

subregion consisting of Ñ evenly spaced lattice sites such that N = pÑ (see figure 1). In
what follows, we will compute different entanglement measures in this setup both in the
vacuum and thermal states.

In order to find the entanglement measures we use the so-called correlator method which
is an efficient algorithm to compute the eigenvalues of the reduced density matrix in general
Gaussain states, e.g., see [32–34]. Indeed for a thermal state we do so by first considering
the following two-point functions

Xij ≡ ⟨ϕiϕj⟩ = 1
2N

N−1∑
k=0

1
ωk

coth ωk
2T cos 2π(i− j)k

Ñ
,

Pij ≡ ⟨πiπj⟩ = 1
2N

N−1∑
k=0

ωk coth ωk
2T cos 2π(i− j)k

Ñ
, (2.2)

where
ω2
k = m2 +

(
2 sin πk

N

)2
, (2.3)

is the corresponding dispersion relation which can be derived from eq. (2.1) and i, j ∈ [0, Ñ−1].
Next, defining the matrix

√
X.P whose eigenvalues are {λj}, the corresponding expression

for the Renyi entropy becomes

Sn = 1
n− 1

Ñ−1∑
j=0

log
((

λj + 1
2

)n
−
(
λj −

1
2

)n)
. (2.4)

Further, using eqs. (1.1) and (1.3) one can also find the entanglement entropy and capacity
of entanglement as follows

SE =
Ñ−1∑
j=0

((
λj + 1

2

)
log

(
λj + 1

2

)
−
(
λj −

1
2

)
log

(
λj −

1
2

))
, (2.5)

CE =
Ñ−1∑
j=0

(
λ2
j −

1
4

)(
log

λj − 1
2

λj + 1
2

)2

. (2.6)

Note that using the uncertainty principle, it is a simple exercise to show that λj ≥ 1
2 .

An interesting observation is that for p-alternating lattice subregions the spectrum of the
matrix

√
X.P can be determined in terms of the corresponding eigenvalues of a circulant
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covariance matrix. We relegate certain details of the calculations and refer the interested
reader to [31] for further details. It is relatively simple to show that in this set-up the
eigenvalues can be written as

λj = 1
4p

[ p−1∑
k=0

coth
ω

kÑ+j

2T
ω
kÑ+j

+
coth

ω
(k+1)Ñ−j

2T
ω(k+1)Ñ−j


×
p−1∑
l=0

(
ω
lÑ+j coth

ω
lÑ+j
2T + ω(l+1)Ñ−j coth

ω(l+1)Ñ−j
2T

)] 1
2

. (2.7)

Having the corresponding eigenvalues, it is then possible to determine the behavior of
the entanglement measures. To gain some intuition for the problem, in what follows, we
first consider some simple cases where the spectrum has a closed form and the capacity
of entanglement in various configurations can be determined analytically. Also we carry
out a perturbative analysis for calculating different measures in the specific regimes of the
parameter space.

2.1 Alternating lattice

We begin by considering a p = 2 alternating lattice at finite temperature. Before examining
the full behavior of the capacity of entanglement, we consider two coupled harmonic oscillators,
i.e., N = 2, as the simplest example. In this case, there is only one eigenvalue and eq. (2.7)
reduces to

λ = 1
4

(
coth2 ω0

2T + coth2 ω1
2T +

(
ω0
ω1

+ ω1
ω0

)
coth ω0

2T coth ω1
2T

) 1
2
, (2.8)

where ω0 = m and ω1 =
√
m2 + 4. Specifically, in zero temperature limit we recover the

vacuum state result, i.e., λvac. = ω0+ω1
4√ω0ω1

. Upon substituting the latter expression into
eqs. (2.4), (2.5) and (2.6) and expand for small mass, the resulting measures are

SE = 1
2 log 1

8m + 1 + O(m), (2.9)

Sn = 1
2 log 1

8m + log n
n− 1 + O(m), (2.10)

CE = 1 −O(m). (2.11)

We see that both entanglement and Renyi entropies diverge in the massless limit which is
due to the existence of a zero mode. Indeed, as shown in [2] one way to get rid of this
zero mode is to break the translational symmetry of the system, e.g., replacing the periodic
boundary condition with the Dirichlet boundary condition. On the other hand, the capacity
of entanglement remains finite in this limit as expected. Moreover, in small mass regime it is
straightforward to show that temperature corrections are exponentially suppressed, although
we do not explicitly show the corresponding results here. Further, at finite temperature
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Figure 2. Entanglement entropy (left), capacity of entanglement (middle) and Renyi entropy for
n = 2 (right) as functions of mass for p = 2 and several values of Ñ at zero temperature.

with vanishingly small mass we have

SE = log T

2m + 1 + 1
2 log

(
1 + 1

T
coth 1

T

)
+ O(m2),

Sn = log T

2m + log n
n− 1 + 1

2 log
(

1 + 1
T

coth 1
T

)
+ O(m2), (2.12)

CE = 1 −O(m2).

Now let us generalize these results to a chain of harmonic oscillators on an alternating lattice.
In this case we have Ñ eigenvalues and eq. (2.7) simplifies to

λj = 1
4

coth ωj

2T
ωj

+
coth

ω
Ñ+j

2T
ω
Ñ+j

(ωj coth ωj
2T + ω

Ñ+j coth
ω
Ñ+j
2T

) 1
2

. (2.13)

Moreover, at zero temperature the above expression becomes

λj,vac. =
ωj + ω

Ñ+j
4√ωjωÑ+j

. (2.14)

Using the above result we present the mass dependence of various measures at zero temperature
for several values of Ñ in figure 2. Note that for evaluating the Renyi entropy we focus on
n = 2, because the interesting qualitative features of this measure are independent of the
Renyi index. We find a number of key features: First, all the measures are extensive for
sufficiently large values of Ñ and m. In particular, CE/Ñ becomes constant in this limit
which is reminiscent of a volume law scaling. Second, although the entanglement and Renyi
entropies diverge in the massless limit, the capacity of entanglement saturates to a finite value
in agreement with eqs. (2.9) and (2.11). Further, the Renyi entropy is a decreasing function
of the Renyi index as expected. Moreover, all the measures are monotonically decreasing as
we increase the mass parameter. Remarkably, in the massless case when we consider large N
limit one can find the leading scaling of the measures for the vacuum state analytically. In [31]
the authors found the leading behavior of the entanglement entropy using this approach.
Indeed, in the limit of large N , neglecting the zero mode contribution we can express the
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measures as an integral over a continuous variable defined as x ≡ j/N

Sn = 2Ñ
n− 1

∫ 1
2

0
dx log

((
λ(x) + 1

2

)n
−
(
λ(x) − 1

2

)n)
,

CE = 2Ñ
∫ 1

2

0
dx

(
λ2(x) − 1

4

)(
log

λ(x) − 1
2

λ(x) + 1
2

)2

, (2.15)

where λ(x) can be determined by simply evaluating eqs. (2.3) and (2.14) in this limit, i.e.,

λ(x) = sin πx+ cosπx
4
√

sin πx cosπx
. (2.16)

Also the entanglement entropy has a similar expression which can be found using eq. (2.5).
Evaluating numerically the integrals for the entanglement entropy and capacity of entan-
glement yield

SE = 0.36 Ñ , CE = 0.48 Ñ , (2.17)

and thus both measures obey a volume law and become extensive. Note that the numerical
coefficients are consistent with the numerical results reported in figure 2 in the large N
limit and small mass regime. Further, the Renyi entropy for some values of the Renyi
index is given by

S2 =
(2C
π

− log
√

2
)
Ñ ∼ 0.24 Ñ , S3 = 0.2 Ñ , (2.18)

where C denotes the Catalan’s constant. Again we see that the Renyi entropies become
extensive and the qualitative behaviors are consistent with figure 2.

To close this subsection, let us comment on extending this discussion to finite temperature
case. Indeed, in this case our numerical results show that all the aforementioned measures
increase with the temperature and further the qualitative dependence on mass is similar to
the corresponding results for the vacuum state. Moreover, in the high temperature limit
we can find the leading behavior of these quantities rather easily. In fact, in this limit
eq. (2.13) can be approximated by

λj ∼
T√
2

(
1
ω2
j

+ 1
ω2
j+NA

) 1
2

. (2.19)

Noting that in 1 ≪ m≪ T limit the eigenfrequencies become equal (see eq. (2.3)) and the
above expression then simplifies to λj ∼ T

m . In this case the corresponding expressions for
the measures at leading order become

SE ∼ Sn ∼ Ñ log T
m
, CE ∼ Ñ . (2.20)

Indeed, based on the above results we see that at leading order all the measures are proportional
to the volume. Interestingly, we see that in this limit CE ≪ SE which shows that the reduced
density matrix becomes more and more maximally mixed as one increases the temperature
as expected.
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Figure 3. Entanglement entropy (left), capacity of entanglement (middle) and Renyi entropy for
n = 2 (right) as functions of mass for p = 10 and several values of Ñ .

2.2 p-alternating lattice and the continuum limit

In this section we generalize our studies to a p-alternating lattice of coupled harmonic
oscillators, where the corresponding eigenvalues are given by eq. (2.7), in specific directions.
We will focus on the zero temperature limit corresponds to the vacuum state. Some numerical
results for p = 10 are illustrated in figure 3. In comparing these results with figure 2, we see
that the entanglement measures increase for larger values of p such that their qualitative
behavior does not depend strongly on this parameter.

Remarkably, we can find the behavior of the entanglement measures in p≫ 1 limit for
fixed value of Ñ . As shown in [31] in this case the spectrum becomes degenerate and the
corresponding expression for the entanglement entropy becomes

SE = Ñ

((
λ+ 1

2

)
log

(
λ+ 1

2

)
−
(
λ− 1

2

)
log

(
λ− 1

2

))
, (2.21)

with λ = 1
π

√
K (−4/m2)E (−4/m2) where K(x) and E(x) denote the elliptic integrals.

Similarly for the capacity of entanglement using eq. (2.6) we have

CE = Ñ

(
λ2 − 1

4

)(
log

λ− 1
2

λ+ 1
2

)2

. (2.22)

Indeed, in both cases the volume law scaling is clearly manifest. Figure 4 illustrates the
behavior of the above quantities as functions of the mass parameter. For completeness, we
also plot the Renyi entropy for several values of n. Again, all the measures are monotonically
decreasing as we increase m. Indeed, we can make use of the above expressions to find the
small mass expansion of the measures as follows

SE = Ñ

2 log
(

log 1
m

)
+ O(1), CE = Ñ −O

( 1
logm

)
. (2.23)

Interestingly, we see that in this case the divergence of the entanglement entropy is double
logarithm which is much softer than the case with finite p (see eq. (2.9)). Moreover, in this
limit CE/SE ≪ 1 which shows that the reduced density matrix becomes more and more
maximally mixed as one decreases the mass parameter. A simple analysis shows that these
results hold qualitatively even in a finite temperature state.
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Figure 4. Entanglement entropy and capacity of entanglement (left) and Renyi entropy (right) as
functions of mass in p→ ∞ limit.

3 Non-local scalar theories

In this section we evaluate capacity of entanglement for a family of non-local scalar field
theories with the following Hamiltonian in 1 + 1 dimensions [21]

H = 1
2

∫
dx
(
(∂tϕ)2 + ϕeA(−∂x∂x)w/2

ϕ
)
, (3.1)

where A and w are constants. Note that due the presence of spatial higher derivatives the
number of lattice sites which are correlated together depends on w. Also by increasing A the
correlation strength between the lattice sites becomes more pronounced. Indeed, we will see
that different choices of these parameters will modify leading contributions to entanglement
measures in the following. Moreover, the Hamiltonian is still second order in time derivative
and thus the corresponding conjugate momentum is π = ∂tϕ as expected.

Again, we employ the correlator method and use eqs. (2.5) and (2.6) to find the corre-
sponding entanglement measures. However, unlike in the Klein-Gordon case, which is a two
derivative theory, now the higher derivative terms on a discrete lattice are more involved. It
is relatively straightforward to diagonalize (−∂x∂x)w/2 by a Fourier transform, which leads
to the following relations for the two point functions

Xmn = 1
2π

∫ π

−π
e−

A
2 (2 sin k

2 )w

eik(m−n)dk, (3.2)

Pmn = 1
2π

∫ π

−π
e

A
2 (2 sin k

2 )w

eik(m−n)dk. (3.3)

In [21] it was shown that due to the non-local structure of the Hamiltonian the corre-
sponding entanglement entropy for this model obeys a volume law.2 These authors argued
that this scaling behavior happens provided that the size of subregion is smaller than a
certain length scale which depends on A. Indeed, for specific values of w the scaling of the
entanglement entropy can be found numerically as follows

SE ≈
{
c1AÑ Ñ ≪ A

c2A
2 Ñ ≫ A

, (3.4)

2Several aspects of quantum information theoretic measures has been studied in this non-local model, e.g.,
see [35, 36].
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Figure 5. Entanglement entropy in Ñ ≪ A (left) and Ñ ≫ A (right) regimes for w = 1.

A=400

A=600

A=800

A=1000

0 5 10 15 20
0

5

10

15

20

N


C
E

A=40

A=60

A=80

0 20 40 60 80 100
0

5

10

15

20

N


C
E

Figure 6. Capacity of entanglement in Ñ ≪ A (left) and Ñ ≫ A (right) regimes for w = 1.

where c1 and c2 are w-dependent constants and the best fit gives c1 ≈ w
2 . In figure 5 we

reproduce the results first found in [21] for several values of A with w = 1. The numerical
results depicted in the left panel show that entanglement entropy has a linear dependence on
Ñ in Ñ ≪ A limit and thus scales with the volume (instead of the area) of the entangling
region. On the other hand, the right panel shows that for Ñ ≫ A the entanglement entropy
first increases very sharply with Ñ and then suddenly saturates to a constant value. Moreover,
the saturation value is a monotonically increasing function of A due to the enhancement
of the correlation between the lattice sites. It is worth to mention that considering other
values of w the qualitative features of these results do not change.

Let us now turn to the computation of capacity of entanglement in this non-local model
using eq. (2.6). The corresponding numerical results are summarized in figures 6 and 7 for
w = 1, 2 respectively. Note that we will mainly consider the same values of A as in figure 5
since this choice facilitates a comparison to the analogous results for the entanglement entropy.
Based on the left panels, we observe that the capacity of entanglement grows linearly with
the subregion width in Ñ ≪ A limit. Remarkably, comparing figures 6 and 7, we see that
the rate of growth of CE is independent of both w and A. On the other hand, the right
panels show that for Ñ ≫ A the capacity of entanglement first increases linearly with Ñ and
then suddenly saturates to a constant value. Further, the saturation value monotonically
increases for larger values of w and A, as expected. Our numerical results suggest that the
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Figure 7. Capacity of entanglement in Ñ ≪ A (left) and Ñ ≫ A (right) regimes for w = 2.

capacity of entanglement behaves like

CE ∼
{

Ñ Ñ ≪ A,

c3A Ñ ≫ A,
(3.5)

where c3 ≈ w
3 . We conclude that for Ñ ≪ A the capacity of entanglement obeys a volume law

whose coefficient is completely independent of the chosen parameters which is unexpected.
Interestingly, comparing the above result with eq. (3.4) we see that in both regimes CE

SE
∼ A−1.

Hence for large values of A we have CE ≪ SE which is consistent with the idea that the
corresponding reduced density matrix becomes more and more maximally mixed as one
increases the strength of the correlation between the lattice sites.

Before we proceed further, we would like to study the asymptotic behaviors of the
entanglement measures in Ñ ≪ A limit employing a semi analytic treatment. Indeed, this
study plays an important role in our analysis in the following. Based on our numerical results
the main contribution to the measures comes from the largest eigenvalue of

√
X.P , i.e., νmax.3

Thus using eqs. (2.5) and (2.6) the asymptotic expansions of SE and CE for νmax ≫ 1 are

SE ∼
Ñ∑
k=1

(log νmax + O(1)) = Ñ log νmax + · · · ,

CE ∼
Ñ∑
k=1

(
1 + O(ν−2

max)
)

= Ñ + · · · , (3.6)

which are consistent with eqs. (3.4) and (3.5). Now combining the above two equations
yields the following

CE
SE

∼ 2Ñ
Ñ log νmax

∼ 1
log νmax

≪ 1 → CE ≪ SE , (3.7)

which shows that the corresponding state becomes maximally mixed. Moreover, we can find
the leading behavior of νmax in this limit to obtain a more rigorous estimation. Although

3Indeed, based on our numerics we see that other eigenvalues are less than O(10−3) times νmax.
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this behavior is independent of w, let us for simplicity restrict our analysis to a specific
case with w = 2. In this case eq. (3.2) yields

Xmn = 1
π

∫ π

0
e−2A(sin k

2 )2
cos ((m− n)k) = e−A(−i)m−nJm−n(iA),

Pmn = 1
π

∫ π

0
e2A(sin k

2 )2
cos ((m− n)k) = eAim−nJm−n(iA), (3.8)

and hence

(X.P )mn =
Ñ∑
j=1

Jm−j(iA)Jj−n(iA). (3.9)

Now in Ñ ≪ A limit using the asymptotic behavior of the Bessel function Jα(z) z≫α−−−→√
2
πz cos

(
z − απ

2 − π
4
)

we have

(X.P )mn = 2
πiA

Ñ∑
j=1

cos
(
iA− (m− j)π

2 − π

4

)
cos

(
iA− (j − n)π

2 − π

4

)

= 1
2πiA

(
2iÑ sinh

(
2A+ i(m− n)π

2

)

+ sin
(

(m+ n+ 1 − 2Ñ)π
2

)
− cos

((m+ n)π
2

))

∼ Ñ

2πAe
2A + · · · ≈ ν2

max, (3.10)

where in the last step we neglect the higher order terms. Plugging the above result back
into eq. (3.6) we are left with

SE ∼ ÑA− Ñ

2 logA+ · · · , (3.11)

CE ∼ Ñ − πA

6 e−2A + · · · , (3.12)

which is precisely matches with eqs. (3.4) and (3.5) for w = 2 at leading order. Interestingly
enough, based on these results we see that in A ≫ Ñ limit the relationship CE = SE is
completely broken. Generally, the entanglement entropy and the capacity of entanglement
have no reason to be equal. However, it was argued in [7] that perhaps such a relation in
QFTs is a hint of a dual gravitational picture. Hence, at least in this regime our results
suggest that the corresponding vacuum state may not have a solution of a classical gravity
theory as a holographic dual.

To close this section, let us comment on the behavior of Renyi entropy in this non-local
model. We present the n-dependence of the Renyi entropy for several values of the parameters
in figure 8. From these plots, one can infer that the qualitative features of the Renyi entropy
are similar to the entanglement entropy. Interestingly, from the left panel we see that in
the regime where the volume law dominates, the Renyi entropy is completely independent
of the Renyi index. On the other hand, the right panel shows that for Ñ ≫ A, Renyi
entropy is a decreasing function of n such that the rate of change of Sn is a monotonically
decreasing function of the Renyi index.
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Figure 8. Renyi entropy in Ñ ≪ A (left) and Ñ ≫ A (right) regimes for several values of n
with w = 1.

4 Scalar fields in squeezed states

In this section we extend our studies to specific Gaussian states, the so-called squeezed
states, where the corresponding entanglement entropy obeys the volume law. This intriguing
behavior first observed for a (1 + 1)-dimensional scalar field theory in [37] and then extended
to higher dimensional spherical entangling regions in [38]. Of course, in our previous work we
have studied several aspects of capacity of entanglement in a two dimensional setup [20]. Our
main objective in the following is to extend this study to 3+1 dimensions with a spherical
entangling surface. This is easily accomplished by generalizing the ground state calculations
first performed in [39, 40] to squeezed states where the corresponding wave function reads

ψ(x, t) =
(
mRe(w(t))

π

)1/4
exp

(
−mw(t)

2 (x− x0(t))2 + ip0(t)(x− x0(t)) − iϕs(t)
)
, (4.1)

where

w(t) = ω
1 − i sinh z cos 2ωt

cosh z + sinh z sin 2ωt, ϕs(t) = ϕc(t)−
ωt

2 + 1
2 tan−1 tanh z

2 + tanωt
1 + tanh z

2 tanωt. (4.2)

In what follows, we consider a free massive scalar field with Hamiltonian

H = 1
2

∫
d3x

(
π2(x⃗) + ∇⃗ϕ(x⃗).∇⃗ϕ(x⃗) + µ2ϕ2(x⃗)

)
. (4.3)

Expanding the scalar field in terms of the spherical harmonics ϕ = ∑
ℓ,m

ϕℓ,m(r)Yℓ,m(θ,φ)
r ,

we have

H = 1
2
∑
ℓ,m

∫ ∞

0
dr

[
π2
ℓm(r) + r2

(
∂r

(
ϕℓm(r)
r

))2
+
(
ℓ(ℓ+ 1)
r2 + µ2

)
ϕ2
ℓm(r)

]
, (4.4)

where ℓ > 0 and −ℓ ≤ m ≤ ℓ. Further, replacing the space continuum with a discrete mesh
of lattice points the discretized version of the above expression becomes

H = 1
2ϵ
∑
ℓ,m

N∑
j=1

[
π2
ℓm,j +

(
j + 1

2

)2 (ϕℓm,j
j

− ϕℓm,j+1
j + 1

)2
+
(
ℓ(ℓ+ 1)
j2 + µ2ϵ2

)
ϕ2
ℓm,j

]
, (4.5)
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where N denotes the number of lattice sites inside in a spherical box of radius L = Nϵ. Again,
without loss of generality we set the lattice spacing equal to unity, i.e., ϵ = 1. Defining

Kij =
((

i+ 1
2

)2
+
(
i− 1

2

)2
(1 − δi,1) + ℓ(ℓ+ 1) + µ2i2

)
δi,j
i2

−

(
i+ 1

2

)2
δi+1,j

ij
−

(
j + 1

2

)2
δi,j+1

ij
, (4.6)

we see that eq. (4.5) can be rewritten as follows

H =
∑
ℓ,m

1
2

N∑
i=1

π2
ℓm,i + 1

2

N∑
i,j=1

ϕℓm,iKijϕℓm,j

 ≡
∑
ℓ,m

Hℓ,m, (4.7)

where Hℓ,m is the same as a Hamiltonian for a system of N harmonic oscillators with specific
couplings. In a similar manner to the analysis of the ground state in [40], we can diagonalize
the matrix K using a similarity transformation, i.e., KD = UKUT . Further, to evaluate
the spectrum of the reduced density matrix by tracing over the first Ñ oscillators one can
consider the following decomposition for the square root of K

Ω = UTK
1/2
D U ≡

(
A B

BT C

)
, (KD)ij = wi δij , (4.8)

where A is an Ñ × Ñ matrix and C is an (N − Ñ)× (N − Ñ) matrix. Note that for squeezed
states wi’s are given by the application of eq. (4.2) for each normal mode and thus Ω is a
complex symmetric matrix. Finally, it was shown in [37] that in this case the entanglement
entropy is given by eq. (2.5) by substituting λj → ξ̃j/2 where ξ̃j ’s are the corresponding
eigenvalues of a matrix Ω̃ defined by

Ω̃ = Re(Ω)−1
(

−Re(A) iIm(B)
−iIm(B)T Re(C)

)
. (4.9)

Similarly, the capacity of entanglement can be fund by using eq. (2.6). Before we proceed,
let us recall that in this setup due to the spherical symmetry the wave function of the total
Hamiltonian is a direct product of the corresponding wave functions of each Hℓ,m and hence
the entanglement measures are found by summing over ℓ and m. Moreover, from eq. (4.7)
we see that the Hamiltonian for each ℓ-sector is independent of m and thus summing over
m gives a factor of 2ℓ + 1, i.e.,

Sn =
∞∑
ℓ=0

(2ℓ+ 1)Sn,ℓ, CE =
∞∑
ℓ=0

(2ℓ+ 1)CE,ℓ (4.10)

Let us recall that as shown in [40] the above series for the entanglement entropy with z = 0
is convergent. Indeed, in this case it is easy to show that the value of SE,ℓ decreases with
ℓ such that for ℓ ≫ N we have

SE,ℓ ∼
Ñ(Ñ + 1)(2Ñ + 1)2

16ℓ4 log ℓ+ · · · . (4.11)
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Figure 9. Mean values of the entanglement entropy, capacity of entanglement and second Renyi
entropy as functions of Ñ for several values of z when all modes lie in a squeezed state with the same
squeezing parameter. The left panel corresponds to the vacuum state with z = 0.

Similarly for the capacity of entanglement the contribution of each large angular momentum
sector can be computed as follows

CE,ℓ ∼
Ñ(Ñ + 1)(2Ñ + 1)2

4ℓ4 (log ℓ)2 + · · · . (4.12)

From the numerical results, one can infer that for a non trivial squeezing the large angular
momentum sectors exhibit qualitatively similar behavior. Hence, in what follows we consider
an angular cutoff 500 ≤ ℓmax ≤ 1000 when performing the numerical calculations which is
perfectly consistent with the previous results reported in the literature, e.g., [40–42]. Further,
based on eq. (4.2) the spectrum of the reduced density matrix depends on time and hence the
measures are also time-dependent. To gain more insights into the behavior of the measures,
we compute the mean quantities by sampling over 100 random time instances.

The corresponding numerical results for different quantities in the massless limit are
summarized in figures 9 and 10. Here we will mainly consider N = 60, because this choice
facilitates a comparison to the analogous results for entanglement entropy in [40] for z = 0
and [38] for larger values of the squeezing parameter.

Figure 9 illustrates the mean values of the entanglement entropy, capacity of entanglement
and second Renyi entropy as functions of Ñ for several values of the squeezing parameter
when all modes lie in a squeezed state with the same squeezing parameter. The left panel
corresponds to z = 0 case where all these measures obey the area law scaling. Indeed, as
can be seen, the points are well-fitted by

SE ∼ 0.29R
2

ϵ2
+ · · · , CE ∼ 1.43R

2

ϵ2
+ · · · , S2 ∼ 0.096R

2

ϵ2
+ · · · , (4.13)

where R ≡
(
Ñ + 1

2

)
ϵ denotes the radius of the spherical entangling region. Note that the

coefficients of the leading area term are nonuniversal (scheme-dependent) numbers. Moreover,
the middle and right panels in this figure correspond to z = 1 and z = 2 cases respectively.
Interestingly, in these cases the leading behavior of the measures is proportional to the volume
of the sphere, e.g., for z = 2 we have4

SE ∼ 5.1R
3

ϵ3
+ 29R

2

ϵ2
+ · · · , CE ∼ 1.8R

3

ϵ3
+ 161R

2

ϵ2
+ · · · , S2 ∼ 4.1R

3

ϵ3
+ 4.8R

2

ϵ2
+ · · · .
(4.14)

4Note that a single volume term fits almost perfectly the numerical data, although the combination of area
and volume is more precise.
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Figure 10. Left: Mean values of the entanglement entropy, capacity of entanglement and second
Renyi entropy as functions of Ñ for z = 3 in the massless limit. Right: The same quantities as
functions of the squeezing parameter for Ñ = N/2.

Indeed, our numerical results make it clear that even for small values of the squeezing
parameter, the volume law scaling holds. Further, all the measures are monotonically
increasing functions of z. A more careful examination shows that although SE < CE for small
values of z, in the large squeezing limit the entropy becomes much larger than the capacity.
We have plotted an explicit example of this behavior in the left panel of figure 10. Based on
this figure, we see that the entanglement and Renyi entropies go on to grow indefinitely as we
increase z, while the capacity of entanglement saturates to a finite value. Remarkably, in [37]
a large z expansion was performed for an arbitrary harmonic chain which shows that at
leading order the entanglement entropy is time-independent and proportional to the volume
of the smaller subsystem. Moreover, in [20] a similar approach employed which shows that
the capacity of entanglement is also obeys a volume law scaling in large squeezing limit such
that CE/SE ∼ z−1 ≪ 1. The right panel of figure 10 illustrates the mean values of the
measures as a function of z for Ñ = N/2 which shows qualitatively similar behavior.

To close this section, we examine the mass dependence of the capacity of entanglement
in figure 11. The left and middle panels in this figure show the mean value of the capacity
of entanglement as a function of Ñ for several values of µ and z. We see that for massive
theory CE decreases as one increases the mass parameter. However, this behavior becomes
less pronounced as we increase the squeezing. Hence, the behavior of the massless case at
fixed z is the same as the behavior of large z at fixed mass. This is better shown in the right
panel that reports the ratio CE(µ)

CE(0) versus µ for several values of the squeezing parameter
with Ñ = N

2 . Clearly, the rate of change of CE(µ) is a monotonically decreasing function
of z. Note that in our numerics we have chosen the mass scale to µ < 1, which corresponds
to a typical correlation length of ξ ∼ µ−1 > 1(= ϵ).

5 Field space entanglement

In this section we continue our study by computing the field space capacity of entanglement
in interacting scalar theories. As we have mentioned before in this case the reduced density
matrix can be obtained by summing over a subset of the quantum fields and the resultant
entanglement entropy is proportional to the spatial volume. In what follows, we first study
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Figure 11. Mean value of the capacity of entanglement as a function of Ñ for several values of µ
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the case of two interacting scalar fields and then we consider more general cases with N

number of scalar fields with different interaction patterns.

5.1 Two interacting scalar fields

Let us begin by considering the case of two interacting scalar fields whose action is given
by eq. (1.5). For simplicity we restrict our analysis to Gaussian interactions and thus the
corresponding Lagrangian is quadratic. In this case the ground state wave function is Gaussian
and most of the expressions can be evaluated analytically which allows us to derive in detail
several features of the entanglement measures. Indeed, similar setup first introduced in [43]
for computing geometric entropy which can be readily extend to field space as was done
in [26]. Here we would like to apply the techniques developed in these references to examine
the behavior of field space capacity of entanglement. To do so, consider a general two point
function for ϕ and ψ as follows (up to a certain normalization factor)

⟨{ϕ, ψ}|Ψ⟩ (5.1)

∝ exp
{
−1

2

∫
dd−1xdd−1y (ϕ(x)G1(x, y)ϕ(y) + ψ(x)G2(x, y)ψ(y) + 2ϕ(x)G3(x, y)ψ(y))

}
,

where G1,2,3(x, y) are complex symmetric functions. The corresponding reduced density
matrix for ψ can be evaluated as

ρψ(ψ1, ψ2) =
∫

Dϕ⟨{ϕ, ψ1}|Ψ⟩⟨Ψ|{ϕ, ψ2}⟩

= N exp
{
−1

2

∫
dd−1xdd−1y

(
ψ1(x) ψ2(x)

)(X(x, y) 2Y (x, y)
2Y (x, y) X∗(x, y)

)(
ψ1(y)
ψ2(y)

)}
,

where N is a normalization constant which can be find by setting Tr (ρψ) = 1 and

X = G2 −G3(G1 +G∗
1)−1G3, Y = −1

2Re
(
G3(G1 +G∗

1)−1G∗
3

)
. (5.2)

Now using the replica trick and after a mostly straightforward calculation we have

Trρnψ = N n exp

−
∫
dd−1xdd−1y

(
ψ1(x), · · · , ψn(x)

)
Mn(x, y)


ψ1(y)

...
ψn(y)


 , (5.3)
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where

Mn(x, y) =



ReX Y 0 0 · · · Y

Y ReX Y 0 · · · 0
0 Y ReX Y · · · 0
...

...
... . . . ...

...
0 0 0 Y ReX Y

Y 0 0 0 Y ReX


. (5.4)

Further, summing over ψ gives

Trρnψ =
(
det

(
π−1 (ReX + 2Y )

))n
2
(
det

(
π−1Mn

))− 1
2 . (5.5)

Inserting the above expression into eq. (1.2), the corresponding Renyi entropy becomes [26]

Sn =
∑
i

n log(1 − ξi) − log(1 − ξni )
1 − n

, ξi =
1 −

√
1 − z2

i

zi
, (5.6)

where zi denotes the eigenvalues of Z ≡ −2Y (ReX)−1 matrix. Further, combining the above
result with eq. (1.3), we obtain the capacity of entanglement as follows

CE =
∑
i

ξi

( log ξi
1 − ξi

)2
. (5.7)

So far we have mostly been keeping the discussion at a general level, without specifying the
explicit form of the interaction term Lint.(ϕ, ψ). In the subsequent sections, we will narrow
our focus to specific cases including kinetic mixing and massive interactions.

5.1.1 Kinetic mixing interactions

The first model we consider is that of two massless scalar fields interacting via a kinetic
mixing term

S = 1
2

∫
ddx (∂µϕ∂µϕ+ ∂µψ∂

µψ + λ∂µϕ∂
µψ) , (5.8)

where λ determines the strength of the coupling between the two fields such that the weak
and strong coupling regimes correspond to λ→ 0 and λ→ 2 limits respectively. Let us recall
that the positivity of the corresponding Hamiltonian implies that |λ| ≤ 2. It is relatively
simple to show that the ground state wave functional becomes [26]

⟨{ϕ, ψ}|Ω⟩ = N exp

{
−1

2

∫
dd−1x dd−1yW (x, y) (ϕ(x)ϕ(y) + ψ(x)ψ(y) + λϕ(x)ψ(y))

}
,

(5.9)
where

W (x, y) = V −1 ∑
k ̸=0

|k|eik(x−y), (5.10)

and V is the spatial volume. We see that the above expression and eq. (5.1) will be in
complete agreement if we choose

G1 = G2 = 2
λ
G3 = W, X = (1 − λ2/8)W, Y = −(λ2/16)W. (5.11)
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Moreover, the eigenvalues of Z can then be evaluated as z = λ2

8−λ2 and thus ξ = 1−
√

1−z2

z .
Note that based on these results the weak and strong coupling regimes correspond to ξ → 0
and ξ → 1 limits respectively. Now using eqs. (5.6) and (5.7) we have

Sn(λ) = sn(λ)
∑
k ̸=0

1, sn(λ) = n log(1 − ξ) − log(1 − ξn)
1 − n

, (5.12)

CE(λ) = cE(λ)
∑
k ̸=0

1, cE(λ) = ξ log2 ξ

(ξ − 1)2 . (5.13)

Clearly, the above measures are divergent which can be regularized by introducing a mo-
mentum cutoff. Indeed, as shown in [26] considering a (1 + 1)-dimensional compact space
with length L and imposing periodic boundary condition we have

∑
k ̸=0

1 ∼
∑
k ̸=0

e−ϵ|k| =
∑
n ̸=0

e−ϵ
2π
L
|n| = L

πϵ
− 1 + · · · , (5.14)

and thus the entanglement measures obey the volume law.5 Although both the entanglement
entropy and capacity of entanglement are sensitive to the UV cutoff, but the ratio is finite
and scheme independent. Before examining the full λ-dependence of the measures, we would
like to study their asymptotic behaviors in weak and strong coupling regimes. Remarkably,
in the weak coupling regime a perturbative expansion yields

sn(λ) = 1
n− 1

(
n
λ2

16 −
(
λ2

16

)n)
+ · · · , cE(λ) = λ2

16

(
log λ

2

16

)2

+ · · · , (5.15)

which shows that in this limit both quantities vanish. This is consistent with the idea that as
λ decreases, the reduced density matrix becomes more and more separable. On the other
hand, in 2 − |λ| ≪ 1 limit we obtain

sn(λ) = −1
2 log(2 − |λ|) + log n

n− 1 − log 2 + · · · , cE(λ) = 1 − 1
3(2 − |λ|) + · · · , (5.16)

and thus
CE
SE

(|λ| → 2) ∼ −2
log(2 − |λ|) ≪ 1. (5.17)

Interestingly, we see that in this limit CE ≪ SE which is consistent with the idea that
the corresponding reduced density matrix becomes more and more maximally mixed as
one increases the coupling.

We summarize the numerical results for different entanglement measures as functions
of the coupling between the two scalar fields in figure 12. The left panel demonstrates the
entanglement entropy and capacity of entanglement. We note a number of key features:
First, both these measures increase as one increases the coupling. Second, although the
entanglement entropy diverges in the strong coupling limit, the capacity of entanglement
saturates to unity in agreement with eq. (5.16). Interestingly, for a specific value of the

5Similarly in higher dimensions one finds that the leading divergent term is proportional to
(

L
ϵ

)d−1.
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Figure 12. sE and cE (left), sn (middle) and cn (right) as functions of the coupling between the two
scalar fields.

coupling these measures coincide, i.e., CE(λc) = SE(λc) where |λ|c ∼ 1.7. Moreover, the
middle panel presents the Renyi entropy as a function of λ for several values of n. Although Sn
is a decreasing function of the Renyi index, it increases with the coupling as expected. In the
right panel we show the n-th capacity of entanglement for the same values of the parameters.
We see that Cn decreases with n and also saturates from below to unity. From the behavior
of Sn and Cn, we see that the qualitative dependence of these measures on the coupling is
similar to n = 1 case. Also both measures decrease as we increase the Renyi index. Further,
the entanglement entropy and capacity of entanglement have no reason to be equal, except for
a certain coupling between the fields. This observation is different from what happens for the
geometric entanglement entropy in QFTs with a gravity dual. Indeed, as discussed in [7] in
holographic duals of Einstein gravity, the ratio CE/SE turns out to be exactly equal to one.

5.1.2 Massive interactions

In this section we evaluate capacity of entanglement and some other entanglement measures
for a family of massive interacting scalar theories with the following action [26]

S = 1
2

∫
ddx

(
∂µϕ∂

µϕ+ ∂µψ∂
µψ − (ϕ, ψ)

(
A C

C B

)(
ϕ

ψ

))
, (5.18)

where A,B and C are real constants. Using an orthogonal transformation the above action
can be diagonalized as follows

S = 1
2

∫
ddx

(
∂µϕ

′∂µϕ′ + ∂µψ
′∂µψ′ −m2

1ϕ
′2 −m2

2ψ
′2
)
, (5.19)

where (
ϕ′

ψ′

)
=
(

cos θ − sin θ
sin θ cos θ

)(
ϕ

ψ

)
. (5.20)

Considering the vacuum state for the total Hamiltonian, it is relatively simple to show that
in this case the ground state wave functional is given by eq. (5.1), but now Gi’s are given by

Gi(x, y) = V −1∑
k

Gi(k)eik(x−y), (5.21)
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where

G1(k) =
√
k2 +m2

1 cos2 θ +
√
k2 +m2

2 sin2 θ,

G2(k) =
√
k2 +m2

1 sin2 θ +
√
k2 +m2

2 cos2 θ,

G3(k) =
(√

k2 +m2
1 −

√
k2 +m2

2

)
sin θ cos θ. (5.22)

Note that for m2 = m1 we have G2 = G1 and G3 vanishes. Further, the Renyi entropy
and capacity of entanglement are obtained by the replacement z(k) =

(
2G1G2G−2

3 − 1
)−1

in eqs. (5.6) and (5.7). Now taking the continuum limit, i.e., V → ∞ and V −1∑
k(· · · ) →

(2π)1−d ∫ (· · · )dd−1k, one finds

Sn = V Ωd−1
(2π)d−1

∫ ϵ−1

0
dk kd−2 log (1 − ξn(k)) − n log (1 − ξ(k))

n− 1 ,

CE = V Ωd−1
(2π)d−1

∫ ϵ−1

0
dk kd−2ξ(k)

( log ξ(k)
1 − ξ(k)

)2
, (5.23)

where ϵ is introduced to avoid the ultraviolet divergences. The leading behavior can be
found by expanding the above expressions in k → ∞ limit. Indeed, in this case we have
z ∼ (m2

1−m
2
2)2

32k4 sin2(2θ) which yields

Sn = V Ωd−1
(2π)d−1

n(m2
1 −m2

2)2 sin2 2θ
64(1 − n)

{
log ϵ d = 5,

1
(5−d)ϵd−5 d ≥ 6 .

CE = V Ωd−1
(2π)d−1

(m2
1 −m2

2)2 sin2 2θ
4

{ −1
3 (log ϵ)3 d = 5,
1

(d−5)ϵd−5 (log ϵ)2 d ≥ 6 . (5.24)

Also the entanglement entropy is easily found to be [26]

SE = V Ωd−1
(2π)d−1

(m2
1 −m2

2)2 sin2 2θ
16

{ 1
2 (log ϵ)2 d = 5,

1
(5−d)ϵd−5 log ϵ d ≥ 6 . (5.25)

Remarkably, based on the above results we see that the ratio CE
SE

is scheme independent.
Moreover, in all dimensions the volume law scaling is clearly manifest and for m2 = m1,
where the fields do not mix with each other, the measures vanish.

5.2 N interacting scalar fields

In this section we generalize our studies to N number of massless interacting scalar field
theories. Following [27], our calculations here will focus on two specific models with kinetic
mixing interactions whose couplings are marginal. The first model is infinite-range model
with the following action

SI = 1
2

∫
ddx

 N∑
i=1

(∂µϕi)2 + λ
∑

1≤i<j≤N
∂µϕi∂

µϕj

 , (5.26)
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where we have chosen the same value of coupling between different types of scalar fields for
simplicity. The second model is nearest-neighbor model where any field interacts only with
its nearest neighbors and the corresponding action is

SII = 1
2

∫
ddx

 N∑
i=1

(∂µϕi)2 + λ
∑
⟨i,j⟩

∂µϕi∂
µϕj

 . (5.27)

We would like to evaluate the reduced density matrix by tracing over the first Ñ fields. To do so,
we decompose the total Hilbert space as Htot. = H{Ñ}⊗H{N−Ñ} where H{Ñ} = H1⊗· · ·⊗H

Ñ

and H{N−Ñ} = H
Ñ+1 ⊗ · · · ⊗ HN . In this case the corresponding reduced density matrix is

ρ{Ñ} = Tr{N−Ñ}ρtot., (5.28)

and the Renyi entropy is given by

Sn(Ñ ,N) = 1
1 − n

log Trρn{Ñ}, (5.29)

which gives the same result as in eq. (5.6). Further, the corresponding expressions for
entanglement entropy and capacity of entanglement are similar to previous sections. It is
relatively straightforward to show that in both infinite-range and nearest-neighbor models
the corresponding vacuum state wave functional is given by [27]

Ψ[ϕi] = N exp

−1
2

∫
dd−1xdd−1y

N∑
i,j=1

ϕi(x)Gij(x, y)ϕj(y)

 , (5.30)

where G(x, y) = W (x,y)
2 G and

GIR =



2 λ λ λ · · · λ
λ 2 λ λ · · · λ
λ λ 2 λ · · · λ
...

...
... . . . ...

...
λ λ λ · · · 2 λ

λ λ λ · · · λ 2


, GNN =



2 λ 0 0 · · · λ
λ 2 λ 0 · · · 0
0 λ 2 λ · · · 0
...

...
... . . . ...

...
0 0 0 λ 2 λ

λ 0 0 0 λ 2


. (5.31)

In the above expressions W (x, y) is the same as eq. (5.10). In what follows, we mainly focus
on the infinite-range model, because the interesting qualitative features of the measures
are independent of the details of the interaction pattern. In this case the positivity of the
Hamiltonian implies that −2

N−1 ≤ λ ≤ 2. Further, in order to find the capacity of entanglement
using eq. (5.7), we note that the corresponding expression for ξ can be written in a closed
form for any N and Ñ as6

ξ(Ñ ,N) =
1 −

√
1 − f(Ñ ,N)2

f(Ñ ,N)
, (5.32)

6We skip over the details of the calculation and we refer the interested reader to [27] for further details.
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Figure 13. Capacity of entanglement (solid) and entanglement entropy (dashed) as functions of the
coupling constant for N = 10 (left) and Ñ = N

2 (right).

where

f(Ñ ,N) = (N − Ñ)Y (Ñ)
(N − Ñ)Y (Ñ) − (N − Ñ + 1)λ− 2

Y (Ñ) = Ñ

1 + (Ñ − 1)λ/2

(
λ

2

)2
.

(5.33)
Again the resultant measures are divergent and we can employ a similar method as in eq. (5.14)
to regularize the corresponding expressions. In what follows we consider density of these
measures, i.e., the measures in units of the infinite volume. It is straightforward to show
that in the weak coupling limit a perturbative expansion yields

sE = −Ñ(N − Ñ)
16 λ2 log

[
λ2Ñ(N − Ñ)

]
+ · · · , (5.34)

cE = Ñ(N − Ñ)
16 λ2

(
log

[
λ2Ñ(N − Ñ)

])2
+ · · · . (5.35)

Further, in 2 − |λ| ≪ 1 limit we have

sE = −1
2 log |2 − λ| + · · · , cE = 1 − N

6Ñ(N − Ñ)
|2 − λ| + · · · , (5.36)

which shows that in the strong coupling limit the corresponding reduced density matrix
becomes more and more maximally mixed. Note that we consider a pure state and hence
all the above expressions are symmetric under Ñ → N − Ñ .

In order to gain further insights into certain properties of these quantities we summarize
the full λ-dependence of the entanglement measures in figures 13 and 14. Figure 13 presents
sE and cE as functions of the coupling between the scalar fields. Both these measures increase
as one increases the coupling such that the entanglement entropy diverges in the strong
coupling limit and the capacity of entanglement saturates to unity which is consistent with
eq. (5.36). Interestingly, for specific values of the coupling these measures coincide, i.e.,
cE(λcrit.) = sE(λcrit.) where the value of λcrit. depends on N and Ñ . In the left panel of
figure 14 we plot λcrit.(N) for several values of Ñ . Based on this plot, we see that for large
values of N , and when Ñ ∼ O(N), the two measures coincide in the weak coupling limit.
Further, in the right panel we present entanglement entropy and capacity of entanglement as
functions of Ñ for specific values of λ and N . The Ñ → N − Ñ symmetry is clearly manifest.
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Figure 14. Left: λcrit. as a function of N for several values of Ñ . Right: Capacity of entanglement
and entanglement entropy as functions of Ñ for λ = 0.5 and N = 100.
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Figure 15. Capacity of entanglement (left) and entanglement entropy (right) as functions of the
coupling constant for nearest-neighbor model with N = 8.

At this point, let us turn our attention to the nearest-neighbor model. In this case the
positivity of the Hamiltonian implies that |λ| ≤ 1 and −1 ≤ λ ≤ (cos π

N )−1 for even and odd
values of N respectively.7 Again we can find the measures using eqs. (5.6) and (5.7), although
in this case one needs a long, involved computation to find the corresponding expression for
ξ. Here we skip over the details of the calculation and we refer the interested reader to [27]
for further details. It is straightforward to show that in the weak coupling limit we have

sE = −λ
2

8 log λ2 + · · · , cE = λ2

8
(
log λ2

)2
+ · · · . (5.37)

Figure 15 presents sE and cE as functions of the coupling between the scalar fields. Again,
both the measures increase as one increases the coupling such that the entanglement entropy
diverges in the strong coupling limit and the capacity of entanglement saturates to a finite value.
We see that the saturation value of cE depends on N and Ñ , unlike the infinite-range model.
Further, for large values of N and Ñ these two measures coincide in the weak coupling limit.

7Note that for the special case of N = 2 this model reduces to the one presented in section 5.1.1 and we
have |λ| ≤ 2.
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6 Conclusions and discussions

In this paper, we explored several aspects of capacity of entanglement, the quantum informa-
tion theoretic counterpart of heat capacity, in certain setups whose entanglement entropy
obeys a volume law scaling. We have mainly studied the behavior of “geometric” capacity
of entanglement between two different spatial regions of a field theory or its regularized
counterpart on a lattice. We also generalize our study to the case of “field space” capacity
of entanglement by considering interacting scalar fields with different interaction patterns.
We discuss how our results are consistent with the behavior of other entanglement measures
including entanglement and Renyi entropies. In the following, we would like to summarize
our main results and also discuss some further problems.

• In a two dimensional p-alternating sublattice on a periodic lattice, the capacity of
entanglement and Renyi entropies obey a volume law and become extensive. In this
case discrete translation symmetry along the entangling region was preserved which
allows us an analytical treatment. We have studied several aspects of the capacity of
entanglement and Renyi entropy for different values of the parameters numerically both
in the vacuum and thermal states. Moreover, we have also obtained analytical results
in the specific regimes of the parameter space. Specifically, a careful examination shows
that in T ≫ m limit the corresponding reduced density matrix becomes more and more
maximally mixed which implies CE ≪ SE .

• In a non-local scalar field theory whose action contains spatial higher derivatives,
the ground state capacity of entanglement follows a volume law as long as the size
of the entangling region is smaller than a certain length scale. This scale is related
to the number of lattice sites which are correlated together (due to the presence of
higher derivative terms) and also on the correlation strength between the lattice points.
Moreover, for larger entangling regions, CE saturates to a finite value. Remarkably,
in both regimes the corresponding reduced density matrix becomes more and more
maximally mixed as one increases the strength of the correlation between the lattice
sites.

• Considering a (3+1)-dimensional free scalar theory in a squeezed state, the corresponding
capacity of entanglement monotonically increases with z and obeys a volume law even
for small values of the squeezing parameter. A more careful examination shows that
although SE < CE for small values of z, in the large squeezing limit the entropy becomes
much larger than the capacity. Moreover, we see that in this limit the capacity of
entanglement at leading order is time-independent and saturates to a finite value. We
have also observed that for massive theory the capacity of entanglement decreases as
one increases the mass parameter. However, this behavior becomes less pronounced as
we increase z. Hence, the behavior of the massless case at fixed z is the same as the
behavior of large z at fixed mass.

• We have also generalized the notion of capacity of entanglement to setups where more
than one field lives in a field theory to examine the behavior of field space capacity of
entanglement. In particular, considering the case of two interacting massless scalar fields,
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we have found that CE increases as one increases the coupling. Moreover, although the
entanglement entropy diverges in the strong coupling limit, the capacity of entanglement
saturates to unity. Interestingly, these two measures coincide in the relatively strong
coupling limit. On the other hand, in the case of N interacting scalars, we have shown
that the interesting qualitative features of SE and CE are independent of the details
of the interaction pattern. Again, both these measures increase as one increases the
coupling such that the entanglement entropy diverges in the strong coupling limit and
the capacity of entanglement saturates to a finite value. Further, for a large number
of interacting fields these two measures coincide in the weak coupling limit. Indeed,
our numerical results make it clear that in the strong coupling limit the corresponding
reduced density matrix becomes more and more maximally mixed, i.e., CE/SE ≪ 1.
This behavior presumably means maximal entanglement in field space.

Interestingly enough, based on the above results we see that the entanglement entropy
and the capacity of entanglement have no reason to be equal in general situations. However,
it was argued in [7] that for quantum field theories dual to classical Einstein gravity SE
and CE exactly coincide with each other. Thus, at least in these specific models our results
suggest that the corresponding states under study may not have a solution of a classical
gravity theory as a holographic dual.

There are several interesting directions which one can follow to further investigate
the different aspects of capacity of entanglement both in field theory and holography. An
interesting question is to explore the existence of consistent holographic duals for states with
volume law scaling in the gravity side. Indeed, in our study we have found that CE/SE → 0
in specific regimes of the parameter space which means that the corresponding reduced
density matrix can be approximated as proportional to identity. Hence, the corresponding
Renyi entropies are independent of the Renyi index and we have a flat entanglement spectra.
The situation is similar to holographic fixed-area states which have n-independent Renyi
entropies [56, 57]. It is an interesting question to explore possible connections between the
states with volume law scaling in the field theory and fixed-area states of quantum gravity.

It is also interesting to study the scaling and time evolution of capacity of entanglement
in nonrelativistic theories, in particular those with Lifshitz exponent [58, 59]. Another way
to extend our study is to go beyond the free theories and consider interactions both in
relativistic [60] or nonrelativistic setups [61]. Indeed, this analysis may shed more light on the
role of interactions on the entanglement structure. Moreover, it will be an important future
problem to study the possible connection between the magic and non-flatness of entanglement
spectrum which can be characterized by the capacity of entanglement, e.g., see [62, 63].8
We leave further investigations of these aspects to future work.
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